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Abstract 

Understanding the bone kinematics of the human knee during dynamic motions is necessary to 

evaluate the pathological conditions, design knee prosthesis, orthosis and surgical treatments such as 

knee arthroplasty. Also, knee bone kinematics is essential to assess the biofidelity of the computational 

models. Kinematics of the human knee has been reported in the literature either using in vitro or in vivo 

methodologies. In vivo methodology is widely preferred due to biomechanical accuracies. However, it 

is challenging to obtain the kinematic data in vivo due to limitations in existing methods. One of the 

several existing methods used in such application is using X-ray fluoroscopy imaging, which allows 

for the non-invasive quantification of bone kinematics.  

In the fluoroscopy imaging method, due to procedural simplicity and low radiation exposure, 

single-plane fluoroscopy (SF) is the preferred tool to study the in vivo kinematics of the knee joint. 

Evaluation of the three-dimensional (3D) kinematics from the SF imagery is possible only if prior 

knowledge of the shape of the knee bones is available. The standard technique for acquiring the knee 

shape is to either segment Magnetic Resonance (MR) images, which is expensive to procure, or 

Computed Tomography (CT) images, which exposes the subjects to a heavy dose of ionizing radiation. 

Additionally, both the segmentation procedures are time-consuming and labour-intensive. 

An alternative technique that is rarely used is to reconstruct the knee shape from the SF images. 

It is less expensive than MR imaging, exposes the subjects to relatively lower radiation than CT 

imaging, and since the kinematic study and the shape reconstruction could be carried out using the same 

device, it could save a considerable amount of time for the researchers and the subjects.  

However, due to low exposure levels, SF images are often characterized by a low signal-to-

noise ratio, making it difficult to extract the required information to reconstruct the shape accurately. 

In comparison to conventional X-ray images, SF images are of lower quality and have less detail. 

Additionally, existing methods for reconstructing the shape of the knee remain generally inconvenient 
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since they need a highly controlled system: images must be captured from a calibrated device, care 

must be taken while positioning the subject's knee in the X-ray field to ensure image consistency, and 

user intervention and expert knowledge is required for 3D reconstruction. 

In an attempt to simplify the existing process, this thesis proposes a new methodology to 

reconstruct the 3D shape of the knee bones from multiple uncalibrated SF images using deep learning. 

During the image acquisition using the SF, the subjects in this approach can freely rotate their leg (in a 

fully extended, knee-locked position), resulting in several images captured in arbitrary poses. Relevant 

features are extracted from these images using a novel feature extraction technique before feeding it to 

a custom-built Convolutional Neural Network (CNN). The network, without further optimization, 

directly outputs a meshed 3D surface model of the subject's knee joint. The whole procedure could be 

completed in a few minutes. The robust feature extraction technique can effectively extract relevant 

information from a range of image qualities.  

When tested on eight unseen sets of SF images with known true geometry, the network 

reconstructed knee shape models with a shape error (RMSE) of 1.91± 0.30 mm for the femur, 2.3± 

0.36 mm for the tibia and 3.3± 0.53 mm for the patella. The error was calculated after rigidly aligning 

(scale, rotation, and translation) each of the reconstructed shape models with the corresponding known 

true geometry (obtained through MRI segmentation). Based on a previous study that examined the 

influence of reconstructed shape accuracy on the precision of the evaluation of tibiofemoral kinematics, 

the shape accuracy of the proposed methodology might be adequate to precisely track the bone 

kinematics, although further investigation is required.  
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Chapter 1 Introduction 

Understanding the natural and pathological function of the knee joint requires a thorough 

understanding of the movement of the knee bones during dynamic activities [1]–[3]. Researchers often 

recreate the movement of the bones using the observed trajectories of markers placed on the skin, which 

are not rigidly linked to the underlying bones due to the interposed soft tissues. The local mobility of 

these markers (commonly referred to as soft tissue artifacts) results in errors that may be of the same 

order of magnitude as the movements of the bones under the investigation [4]. Due to this issue, 

assessing the biofidelity of several knee computational models could become difficult. Some reliable 

methods that can accurately track knee bones are photogrammetric analysis using intracortical pins [5] 

and stereo radiography with bone-implanted radio markers [6]. These provide accurate information, but 

they are invasive and risky [4]. Bone tracking using X-ray fluoroscopy is a reliable and non-invasive 

method that quantifies bone kinematics through X-ray image analysis. 

Among fluoroscopy methods, single-plane fluoroscopy (SF) is an advantageous technique for 

studying joint kinematics because it enables subjects to perform activities freely [3], [7], [8], [8]–[15], 

[15]–[19]. Although bi-planar fluoroscopy (BF) with two orthogonal units could have more precise 

outcomes, it would place more constraints on the subject's motion making it difficult to perform 

activities [13]. Moreover, the radiation dose is doubled in BF compared to SF. Since SF devices are 

more commonly used for intra-interventional imaging during surgeries, they are more easily accessible 

to researchers who want to study subject-specific knee kinematics. 

The lack of depth detail in SF images makes 3D kinematics analysis challenging. So, the critical 

stage in measuring the knee kinematics is two–dimensional–to–three–dimensional (2D-3D) registration 

[20], which establishes the poses of the knee bones in the camera's coordinate system. Initially, 

researchers used a library-based registration technique to track knee implants on fluoroscopic sequences 
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[9], [10]. These methods used the implant's known shape for tracking. Later, researchers extended the 

concepts used for tracking implants to track bones through a system for 2D-3D rigid registration[2], 

[21]–[23]. The 3D model used for the registration is generally generated by segmenting 3D magnetic 

resonance (MR) or computed tomography (CT) images [9]–[11]. Both the techniques can achieve 

adequate precision; however, bone segmentation can be labour intensive. Additionally, CT scans 

expose the subjects to high radiation and MR scans are expensive.  

A solution that could greatly simplify the study of knee kinematics is to generate 3D representations 

of models of the knee joint using the same SF device used for kinematics analysis. The technique of 

3D model generation from 2D images is generally referred to as 2D-3D shape reconstruction or simply 

3D shape reconstruction. 3D shape reconstruction using SF images is significantly less expensive than 

MR scans and exposes the subject to substantially less radiation than CT scans [1], [24]. Since the two 

procedures (3D shape reconstruction and 2D-3D registration) could be performed under the same roof 

at the same time using the same device, it could save a considerable amount of time for the subjects 

and that of the researchers.  

Currently, there are a few techniques [20], [25]–[27] available to reconstruct the knee shape from SF 

images. They all involve performing complicated procedures like calibration, image distortion 

correction before acquiring the images. Also, several constraints might be placed on the subject's 

movement during the image acquisition in these techniques. Additionally, the current techniques 

require manual intervention and expert knowledge during 3D reconstruction. Most importantly, due to 

low radiation, the images generated from SF are of poor quality (less detail), making them challenging 

to interpret. 

This research aims to develop an end-to-end framework to reconstruct the 3D shape of a knee joint 

from SF images.  The framework is intended to assist the researcher in generating 3D models of the 
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knee joint quickly and accurately in a hassle-free manner. The work outlined in this thesis lays the 

groundwork for the second stage of 3D kinematic analysis - 2D-3D registration. 

In this approach, for reconstructing the 3D shape of a knee, the subject can be asked to freely rotate 

the leg (in a fully extended, knee-locked position) in an SF device, resulting in several images captured 

in arbitrary poses. It is believed that free leg rotation is the simplest activity a subject can perform to 

generate the maximum information required for the complete 3D shape reconstruction. The information 

from the images is then extracted using a novel feature extraction technique and analyzed using a 

custom-built Convolutional Neural Network (CNN). Without further optimization, the network 

produces a meshed 3D shape model of the subject's knee joint. The whole procedure could be completed 

in a few minutes. 

1.1 Hypothesis 

The research objective was to reconstruct the 3D shape of the knee joint from multiple 

uncalibrated single-plane fluoroscopy (SF) images in a quick, accurate and hassle-free manner. 

It was hypothesized that using multiple uncalibrated SF images featuring random poses of the knee 

taken during a subject's free leg rotation, it is possible to reconstruct the 3D shape of the femur, tibia, 

and patella. 

The required accuracy of the reconstructed model for precise evaluation of kinematics (during 2D-

3D registration) was estimated from the literature and is discussed in section 2.5.3 
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Chapter 2 Background and Related Work 

This chapter provides the necessary background, including knee morphology, statistical shape model, 

knee imaging techniques, and existing methods for reconstructing 3D knee shape from 2D medical 

images. Additionally, it presents the deep learning methods and architectures used in this thesis. This 

chapter concludes with a discussion outlining the challenges in the existing methods in achieving the 

research objectives and how these challenges can be addressed. 

2.1 Knee Anatomical Background 

The application of biomechanical engineering concepts requires prior knowledge of human 

anatomy. This necessitates specifying the standard terms used to define the relative locations of various 

parts of the body. This section provides a summary of anatomical nomenclature, knee anatomy and 

morphology.  

2.1.1 Nomenclature 

Three anatomical planes are specified to denote cross-sections and motions:  

• coronal/frontal: division of the body into front and back,  

• sagittal: division of the body into left and right, and  

• axial: division of the body into cranial and caudal. 

Additionally, the directional pairs are used to characterize the relationship between the position of 

any two structures:  

• anterior-posterior: towards the front or back of the body,  

• superior-inferior: towards the head or feet,  
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• medial-lateral:  towards or away from the body's midline,  

• proximal-distal: closer to or away from the torso, and  

• superficial-deep: towards or away from the skin.  

The anatomical planes and directions are shown in Figure 2.1 

 

Figure 2.1 Anatomical planes and directions. Adapted from [28] 

2.1.2 Knee Anatomy 

The knee joint is the largest joint in the human body. It mainly consists of bones and soft tissues like 

cartilages, menisci, ligaments, tendons, and muscles. The three bones that constitute the knee joint are 

the femur (thighbone), the tibia (shinbone), and the patella (kneecap). Bones are hard tissues that 

maintain the structures and keep the shapes of the body. Compared to the soft tissues, bones are high-

density structures that are easily visible through X-ray imaging. Figure 2.2 shows the anatomical 

structure of a human knee joint. 
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Figure 2.2: Anatomical structure of the human knee joint. Adapted from [29] 

2.1.3 Knee Morphology 

The knee is considered the most complex joint in the human body. This section gives a brief overview 

of the knee bony landmarks that help to characterize the complicated shape of the knee. 

The distal end of the knee consists of many significant bony landmarks, including the lateral and 

medial epicondyles [30]. The bony protrusions' more proximal features are seen here. The lateral and 

medial condyles of the femur are located distal to the epicondyles. These condyles attach to the tibia at 

the bottom. The patellar surface is located between the condyles and articulates with the patella or knee 

cap. These landmarks serve as critical attachment points for ligaments and muscles. The intercondylar 

fossa is located on the posterior aspect of the distal femur. A wide posterior opening is found between 

the two condyles. 
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The tibia is the second largest bone in the knee, and it articulates with the femur to form the knee 

joint's primary component. The tibia is larger at the proximal and distal ends to improve knee and ankle 

stability. The lateral and medial condyles on the proximal tibia match the corresponding structures on 

the distal femur. The lateral condyle is smaller than the medial condyle [31]. The intercondylar 

eminence is a bony ridge that connects the two condyles and blends into the femur's intercondylar fossa. 

The patella is a sesamoid bone that forms within the quadriceps muscle tendon [32]. Sesamoid bones 

are nodules that form in some tendons and are circular or oval. Because of their similarity to sesame 

seeds, they were initially called sesamoid seeds [33]. They are most often seen where tendons touch 

the ends of long bones (as in the knee) and help to shield the tendon from wear and tear. 

 The shape of the knee bones is known to affect the knee's mechanics [34], [35], and the variations in 

knee shapes have been observed across the population [31], [36]. During fluoroscopic experiments, 

knee kinematics are measured by registering the representation of the knee shapes to the fluoroscopic 

image sequences. The availability of quantitative information on the complex shapes of the knee bones 

is essential to build a shape reconstruction framework. A mathematical model to quantify various 

shapes of knee bones is discussed in the following Section. 

2.2 Statistical Shape Model 

Statistical shape models (SSM) [37] are commonly used to describe an object's shape 

variability. Using a point distribution model, an object in a collection can be represented as a set of 

labelled points around their mean positions with multiple modes of variations. Principal component 

analysis is used to describe the variability in shapes. The mathematical model has several advantages, 

including quantifying data variability, allowing for the development of new 'virtual' geometries that are 

representative of the population (also known as the training set), and effectively modelling a subject-
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specific representation from imperfect or fragmented data sets using less intrusive approaches (e.g. X-

ray imaging) [38]. 

Numerous works based on SSM [37]  can be found in biomechanics, including those related to 

bones [17–19]. SSMs allow population-based assessments of knee joints by characterizing anatomical 

variations in size and shape between the population [35]. SSMs have traditionally concentrated on 

individual bones with applications such as implant design [42] and bone joint disorders  [43], but they 

can also be built to study the shape of knee bones and their relative alignments [38].  

2.2.1 The University of Denver's Statistical Shape Model 

The only publicly available statistical shape model (SSM) for the knee is established by the 

University of Denver in 2014. It is freely downloadable from the SimTK website [44]. Their study 

aimed to create a statistical shape and alignment modelling (SSAM), an extension of SSM, that can 

characterize intrasubject variability in knee bone shapes along with their relative alignments. The 

SSAM [38] was used in the proposed research to virtual geometries during the deep learning network's 

training. For more details, the readers may refer to Section 3.3. The remainder of this Section is focused 

on the SSAM's specifics. 

The SSAM [38] was created by segmenting Magnetic Resonance (MR) images of the distal 

femur, the proximal tibia, the patella bone, and the associated articular surface cartilages of 50 healthy 

knees (25 males, 25 females). Select soft tissue structures' attachment sites and line-of-actions were 

also included. Each bone's local coordinate system was described as triads with 1D beam components. 

The joint was aligned in the MRI as-scanned spot. R3D3 tri elements were used to model bones as 2D 

surface meshes (Figure 2.3). There were 2384, 1101, and 472 surface nodes (vertices) for the femur, 

the tibia, and the patella in the training set. 
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To register the training set geometries to the template mesh, an iterative closest point (ICP) 

algorithm [45]  was used. The subject meshes were reported to be finer than the reference mesh; average 

edge lengths for the femur and tibia were 0.4 mm and 0.15 mm, respectively, compared to 3.0 mm for 

the template. 

 

Figure 2.3 The University of Denver's SSM representation. Adapted from [46] 

2.3 Knee Imaging Techniques 

Medical imaging is often used to provide geometrical details on human knee joints. Computed 

tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and X-

ray imaging are the most widely used diagnostic imaging techniques [47]. CT and MRI are the most 

widely used imaging techniques for knee joints. During CT imaging, X-rays are emitted by an X-ray 

tube, attenuated by the patient, and measured by an X-ray detector. Air appears black due to its low x-

ray linear attenuation coefficient; bone appears white due to its much higher x-ray linear attenuation 

coefficient. Different shades of grey are used to represent different kinds of soft tissues [48]. The MRI 
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scanner detects radio signals produced by hydrogen atoms in body tissues using a magnetic field and 

radio waves. Blood, fat, protein, cartilages, bones, and other body parts are expressed in varying degrees 

of illumination [49]. CT imaging, in general, shows very simple bone structures and is better for regions 

sensitive to motion, such as the lungs and intestine, but it exposes the subject to heavy ionizing 

radiation. MRI imaging, however, is safer and more appropriate for soft tissues like ligament and 

cartilage[50]–[52], but they are more expensive compared to CT imaging.  

MRI and CT imaging are pre-interventional 3D imaging techniques. On the other hand, intra-

interventional imaging techniques like single-plane, and bi-planar fluoroscopy, provide real-time 

anatomical information during the surgical procedure. Intra-interventional images are quick to produce 

and can show the position of a tool or a bone in real-time. In addition, compared to pre-interventional 

images, these images are exposed to significantly lower radiation. However, such images provide much 

less detail than pre-interventional 3D modalities [12]. 

2.3.1 Single-plane Fluoroscopy  

This sub-section provides a brief overview of the single-plane Fluoroscopy (SF) in its uses, 

radiation exposure levels and construction. SF is a low radiation X-ray videography used to study 

moving body structures. The body part being studied is exposed to a continuous X-ray beam. The beam 

is captured and transmitted to a digital monitor, displaying the body part and its motion in detail. SF 

allows doctors to examine a variety of body structures, including the skeletal, digestive, urinary, 

respiratory, and reproductive systems. SF can be used to examine individual body parts like bones, 

muscles, and joints, as well as healthy organs like the heart, lungs, and kidneys. 

SF images are a series of low-radiation X-ray images in which the bone appears much darker than the 

soft tissues around it, enabling direct observation and study of its movement under dynamic and weight-

bearing conditions. A standard one-minute protocol exposes the subject between 0.6 to 1.8 rem of 
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radiation [1]. The International Commission on Radiological Protection (ICRP) recommends that the 

practical dose limit for the public and radiation users be expressed as one mSv per year [53].  This 

means a subject can be exposed to up to 20,000 knee SF images [54] a year and can remain within safe 

limits. 

SF is often performed using a C-arm fluoroscopy device (Figure 2.4). Due to its simplicity of 

construction, it can be found in hospital operating rooms across the world. The C-shaped arm that 

connects the X-ray source and the X-ray detector is the source of the name. C-arms can perform 

radiography, but they are often used for fluoroscopic intraoperative imaging during surgical, 

orthopedic, and emergency procedures. The devices can produce high-resolution X-ray images in real-

time, enabling the physician to track progress and make any necessary adjustments right away.  

 

Figure 2.4: Construction of a typical C-arm fluoroscopy machine 
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 The disadvantage of a low-radiation X-ray scan is a low-quality image ( 

Figure 2.5) with significant information loss. In comparison to conventional X-ray radiography 

images, SF images exhibit increased quantum (mottle) and structural noise [55] due to the lower number 

of X-ray photons emitted.  

 

 

Figure 2.5: Fluoroscopic imaging  (a) fluoroscopic machine (b) an example of the fluoroscopic 

image of a knee. Adapted from [12] 

2.4 Deep Learning 

Numerous machine learning and signal processing approaches employ shallow architectures of 

one or two levels of nonlinear feature transformations [56]. Support vector machines (SVM), logistic 

and kernel regressions, Gaussian mixture models (GMM), and maximum entropy models are examples 

of shallow architectures. These architectures have proven extremely successful and have shown 

promise in various straightforward or well-constrained problems [56]. 

Their basic modelling and representational capabilities, on the other hand, could be insufficient 

to cope with more complex real-world applications where a high degree of flexibility is required. For 

such applications, deep learning algorithms and architectures can be powerful and efficient. 

(a) (b) 
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Deep learning comprises deep learning training algorithms that use multi-layer networks of 

nonlinear processing units at each layer to learn features [56]. In deep learning, several learned 

representations refer to different levels of abstraction; the levels correspond to hierarchical latent 

features, and higher-level features are derived from lower-level features [56]. 

Generally, machine learning models have been trained to perform useful tasks using features 

derived manually from raw data or features learned from other basic machine learning models [57], 

[58]. Computers automatically learn useful interpretations and features from raw data in deep learning, 

obviating this time-consuming and manual phase. The primary feature that all deep learning approaches 

have in common is their focus on feature learning: automatically learning representations of data [56]. 

This is the primary distinction between approaches based on deep learning and those based on more 

"traditional" machine learning. The discovery of features and the performance of a task are combined 

into a single problem, and thus both are enhanced during the same training period.  

Multilayer deep neural networks, recurrent neural networks, convolutional neural networks (CNN), 

deep belief networks, auto encoders, and deep stacking networks are examples of state-of-the-art deep 

learning architectures [56]. The interest in deep learning in medical imaging is primarily driven by 

convolutional neural networks (CNNs) [59], a powerful technique for learning useful interpretations of 

images and other structured data. Prior to the advent of efficient CNNs, these features had to be 

manually engineered or generated using less effective machine learning models.  

2.4.1 Convolutional Neural Networks 

In principle, when applying neural networks to pictures, one may use the basic feedforward neural 

networks. However, connecting every node in one layer to every node in the next layer is highly 

inefficient [60]. Pruning connections based on domain information, i.e. the structure of images, results 

in significantly improved efficiency. A CNN is a form of artificial neural network specifically designed 
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to preserve spatial relationships in data using very few connections between the layers [61]. The input 

to a CNN is structured in a grid and then fed through layers that maintain these relationships, with each 

layer operates on a small region of the previous layer [62]. CNNs are capable of forming highly efficient 

representations of input data, making them well-suited for image-based tasks. A CNN is composed of 

several layers of convolutions and activations, often interspersed with pooling layers, and is trained 

using backpropagation and gradient descent in the same way as regular artificial neural networks [61]. 

Additionally, CNNs usually have completely linked layers at the conclusion that compute the output 

results.  

 

Figure 2.6: Building blocks of a typical CNN 

Convolutional layers: Convolutional layers combine the behaviour of previous layers with a collection 

of small, parameterized filters, usually of size 3X3, and store them in a tensor 𝑇(𝑖,𝑗)Where j is the filter 

number, and i is the layer number. By sharing the identical weights across the entire input domain, i.e. 

translational equivariance at each layer, one may significantly reduce the number of weights that must 

be learned [61]. The reason for this weight-sharing is that features that appear in one area of the picture 

are almost certain to appear in other areas. If one has a filter that can detect horizontal lines, then that 



 

 15 

could be used to detect lines anywhere they appear in an image—applying all convolutional filters to a 

convolutional layer at all positions in the input results in a tensor of feature maps [63]. 

Pooling: After feeding the data through one or more convolutional layers, each function map is usually 

pooled in a pooling layer. Pooling operations take input from small grid regions and generate unique 

numbers for each region. Typically, the maximum function (max-pooling) or the average function 

(average pooling) is used to calculate the number. Due to the fact that small changes in the input image 

result in small changes in the activation maps, the pooling layers provide translational invariance to the 

CNN [64]. Using convolutions with increased stride lengths is another way to achieve the 

downsampling effect of pooling [64]. By removing the pooling layers, the network architecture is 

simplified without sacrificing efficiency. 

Dropout: A fundamental concept that significantly improved the efficiency of CNNs. When multiple 

models are averaged together in an ensemble, one usually obtains better output than individual 

models[65]. By deleting neurons randomly during training, one ends up with slightly different networks 

for each batch of training data, and the trained network's weights are tuned based on optimization of 

multiple network variations. 

Batch Normalization:  These layers are usually positioned after activation layers, resulting in 

normalized activation maps for each training batch by subtracting the mean of the data and 

then dividing by the standard deviation[66]. As the training batch passes through these layers, the 

network is forced to adjust its activations to zero mean and unit standard deviation, which 

regularizes the network, speeds up training, and reduces the reliance on careful parameter initialization. 

Activation Layer: Nonlinear activation functions are used to feed feature maps from a convolutional 

layer. As a result, the entire neural network is capable of approximating almost every nonlinear 

function[67]. The activation functions are typically rectified linear units, or ReLUs defined as 
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 𝑅𝑒𝐿𝑈(𝑧) = max⁡(0, 𝑧) (1) 

or variants such as leaky ReLUs or parametric ReLUs. For more detail on these and other activation 

mechanisms, see [68], [69]. 

Architectures of Convolutional Neural Network 

The elements discussed in the preceding Section are combined in increasingly complex and 

interconnected ways or are even replaced by more convenient operations in designing new and 

improved CNN architectures. When building a CNN for a specific task, many considerations must be 

taken into account, including understanding the task at hand and the criteria to be met, determining the 

optimum way to feed data to the network, and maximizing computing and memory usage within a given 

budget. In the early stages of modern deep learning, as in Lenet[59] and AlexNet[62], one appeared to 

use fundamental variations of the building blocks. Later network architectures became significantly 

more complex, with each generation building on previous architectures' ideas and experiences, resulting 

in state-of-the-art changes. Table 1 summarises many well-known CNN architectures, demonstrating 

how the building blocks can be integrated and the field progresses. Usually, these neural networks are 

implemented in one or more of a limited number of frameworks that dominate machine learning 

research, all of which are based on the cuDNN library and NVIDIA's CUDA platform [70]. Today's 

deep learning approaches are almost exclusively implemented using Pytorch [71], a framework 

developed by Facebook Research, Tensor-Flow [72], a framework developed by Google Research, 

Keras [73], a deep learning library that was recently integrated into TensorFlow.  
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Table 1: Some of the popular CNN architectures 

Architecture Description 

AlexNet 

[62] 

AlexNet was born out of the desire to boost the ImageNet challenge performance. 

This was one of the first Deep convolutional networks to attain a high level of 

accuracy on the 2012 ImageNet LSVRC-2012 challenge, achieving an accuracy of 

84.7 percent, compared to the second-best accuracy of 73.8 percent. Convolutional 

layers and receptive fields were used to investigate the concept of spatial similarity 

within an image frame. 

Five Convolutional (CONV) layers and three Fully Connected (FC) layers comprise 

the network. The ReLU is used as the activation. The figure below contains the 

structural information of each layer in the network. 

VGGNet 

[74] 

VGGNet was developed in response to the need to decrease the number of 

parameters in the Convolutional layers and speed up training. VGG16 contains 138 

million parameters in total. The critical point to remember here is that all conv 

kernels are 3x3 in size, while maxpool kernels are 2x2 in size with a stride of two. 

The rationale for using fixed-size kernels is that all Alexnet's variable-size 

convolutional kernels (11x11, 5x5, 3x3) can be repeated using multiple 3x3 kernels 

as building blocks. The replication is done in terms of the kernels' receptive region. 

 

ResNet 

[75] 

ResNet introduced skip connections, which enables the training of far 

deeper networks. A 152-layer deep ResNet won the 2015 ILSVRC competition, and 

the authors also trained a version with 1001 layers successfully. Having skip 

connections in addition to the typical path enables the network to simply copy 
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activations between layers (or, more specifically, between ResNet blocks), 

preserving information as data passes through the layers. Certain features function 

best in shallow networks, while others need greater depth. Both are facilitated by the 

skip connections, which increase the network's versatility when fed input data. 

ResNets perform a type of boosting because the skip connections cause the network 

to learn residuals. 

 

U-Net 

[76] 

 

U-Net is a common and efficient network for 2D image segmentation. When an input 

image is fed into the system, it is first downsampled using a "standard" CNN and 

then upsampled using transpose convolutions to its original scale. Additionally, 

based on ResNet concepts, skip connections link features from the downsampling to 

the upsampling routes. 

 

Domain Shift  

Domain shift [77]–[79] is the difference in data distribution between the testing dataset (source 

domain) and the test dataset (target domain) for a machine learning model. The domain shift problem 

often occurs in real-world implementations of different machine learning algorithms and can result in 

substantial performance degradation. The domain shift problem often plagues deep learning methods 
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in medical image analysis. In the context of this thesis, domain shift is common in single-plane 

fluoroscopic images due to variations in the fluoroscopic devices, imaging protocols, and radiation 

doses.  

Unlike regular image processing, which uses large-scale labelled databases such as ImageNet 

[62], the absence of labelled data poses a significant obstacle in developing accurate and stable machine 

learning models in medical image analysis. Medical image labelling is particularly expensive, time-

consuming, and repetitive, and it necessarily requires the involvement of surgeons, radiologists, and 

other specialists. An intuitive solution is to generate synthetic data for training the deep learning model; 

however, if the training dataset's domain changes from that of the real-world dataset, the accuracy of 

the deep learning model's performance can suffer significantly [80]. 

Domain adaptation (DA) has received much coverage in recent years as a promising approach 

to the domain shift problem. A DA technique aims to minimize the distribution differences in the 

images among different but related domains. Many researchers have used domain adaptation 

approaches to address various medical image processing challenges [80]. Generally, the DA is 

constructed using a machine learning algorithm that needs extensive training. [78].  In rare cases, 

researchers have shown that feeding handcrafted features to the CNN can enhance the performance  

[81]–[89]. A 2018 study [90] uses Gabor filter [91], a linear filter used for texture analysis, to extract 

facial features for a face-related task. In this thesis, a multi-scale feature extraction technique based on 

the Canny edge detection algorithm [92] was used to transform images from different sources (virtual 

or real) into a common representative image. It acts as a preprocessing step for the images before being 

fed into the deep learning network.  



 

 20 

2.5 3D Shape Reconstruction 

Numerous 3D model reconstruction techniques exist for converting 2D medical images to 3D 

models. This section introduces the segmentation procedure - a conventional technique for the 3D 

model reconstruction of the knee joint from MR and CT images. Later, the state-of-the-art techniques 

for reconstruction of the knee joint from X-ray radiographs are discussed. 

2.5.1 Reconstruction from MR/CT Images 

A process known as segmentation is used to create three-dimensional (3D) models from MR 

or CT image volumes. To separate an image volume into several corresponding regions of interest, a 

label field is applied to image voxels (3D pixels) with similar characteristics. A 3D model is generated 

when the segmentation process is repeated on all the images (or slices) in the scan. Segmentation is 

typically performed using medical image processing tools such as Scan, Mimics, Amira, and 3D Slicer 

(www.slicer.org). 3D Slicer was chosen for image segmentation in the current study because it freely 

offers all of the required manual and automated image segmentation resources.  

Automatic segmentation methods can be divided into four types: thresholding, area expanding, 

clustering, and registration-based techniques[93]. Thresholding is determined by a greyscale intensity 

value in an image used to divide segments into two classes, one above and one below the threshold 

value [94]. In the area expanding technique, a seed is put in an image's region of interest, and the 

increasing region algorithm expands the seed by finding neighbouring areas of the same strength. 

Clustering, like area expanding, employs a distance feature to similar group pixels or image patches 

into a single subset [94]. Registration-based techniques use the principle of image registration, where 

a transformation is applied to all points in an image to coordinate it with another image of the same 

anatomical component. Registration-based techniques have the potential to be fully automated [95]. 
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The 3D model generated from MR or CT image segmentation is considered a gold standard 

due to its accurate representation of the anatomical geometry [96].  A 2012 study [97] reports an average 

error of 0.23 mm for 3D models of lower limbs generated from MR image segmentation. To evaluate 

the performance of the proposed 3D reconstruction framework, the reconstructed model was compared 

with the model generated through the segmentation of corresponding MR images.  

2.5.2 Reconstruction from X-ray Images 

The two most widely used medical imaging methods for 3D model reconstruction are computed 

tomography (CT) scanning and magnetic resonance imaging (MRI). Although CT scanning is an 

effective and widely used form of 3D imaging, it exposes the patient to a high radiation dose [50]. This 

procedure could result in unnecessary risk of radiation exposure in many disorders where repeated 

scans are needed for clinical follow-up exams. Additionally, CT scans are expensive and are done with 

the patient lying down, altering the global outline of bone structures [50], [98]. This becomes much 

more important as it comes to illnesses affecting the spine and the knees. Methods based on MRI, on 

the other hand, may not have the issue of high irradiating dose; however, they are more expensive than 

CT imaging, and they are not appropriate for patients with ferromagnetic materials due to the potential 

risks associated with movement or dislodgment of these items, as well as artifacts caused by metallic 

objects [95].  

As a result, numerous studies have been conducted to introduce alternative approaches that 

remove these limitations while still providing realistic 3D knowledge. Because of its precision, low 

irradiating dosage, and potential to be applied in a standing or weight-bearing position, 

photogrammetry for making 3D models from radiographic images is currently considered a viable 

alternative solution. A 2015 study [99] provides a detailed overview of the various state-of-the-art 

photogrammetry-based techniques for 3D reconstruction from radiographic images. The study's work 
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is briefly summarised in this Section after introducing the general methodology followed in the 3D 

reconstruction from radiographic images.  

General methodology 

The important aspects involved in the 3D reconstruction from radiographic images are as follows: 

1. Calibration of the Imaging Device: Single-plane fluoroscopy (SF) or X-ray imaging may be 

represented as a perspective projection model, with the parameters calculated using a 

calibration method. It is widely acknowledged that accurate intra-procedural calibration is 

needed for tracking and reconstruction purposes [100]. The calibration is performed for two 

main purposes: 

i. Determination of intrinsic parameters: During reconstruction, these parameters are 

required to build a perspective projection model. The intrinsic parameters are classified 

into two categories: those related to the pixel scale and those related to the focal length 

(distance between the X-ray source and the image intensifier).  Depending on the electronic 

circuitry, the pixel size of the radiographic images is normally constant during their 

lifetime. The positioning of the X-ray source, on the other hand, varies from pose to pose 

due to the mechanical design's stability and the weight of the X-ray source [100]. The 

intrinsic calibration of the C-arm is position-dependent. As a result, traditional fluoroscopic 

guidance approaches need calibration of the C-arm at each pose, a major disadvantage for 

intraoperative navigation. Traditionally, an image intensifier is connected to a calibration 

phantom, and an X-ray image is taken and sent to a calibration evaluation [100]. 
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ii. Image distortion correction: Distortion of the image may lead to reconstruction error and 

must be corrected. Radial distortion of the detector, the earth's magnetic field, and 

perspective distortion contribute to image distortion of radiographic images  [99], [101].   

2. Image Acquisition:  Depending on the application, images may or may not have markers as 

benchmarks during acquisition. Many kinds of markers, including those surgically inserted into 

the bone and those directly stuck to the tissue [99]. Although using markers improves accuracy, 

it also has some major drawbacks, such as inconvenience for patients [99]. Also, there might 

be severe constraints on placing the knee in a particular position and orientation during the 

image acquisition. 

3. Feature Extraction/ Image Enhancement: X-ray imaging could be extremely noisy, especially 

when captured from low radiation devices like SF. Due to the small number of X-ray photons 

present in SF images, there is a significantly higher quantum noise [100]. It is also worth noting 

that the superimposition of bony structures on X-ray images degrades image clarity. A robust 

feature extraction/image enhancement technique is essential to extract relevant features while 

still suppressing the noise efficiently.  

4. 3D Reconstruction: Several methods exist to reconstruct a 3D model from calibrated multiple 

X-ray images followed by feature extraction or image enhancement. The following section 

summarises the existing methods for the 3D reconstruction from X-ray images. 

Summary of Previous Research 

The existing reconstruction methods from X-ray images can be classified into six types: (1) point-based 

methods, (2) contour-based methods, (3) statistical shape modelling-based methods, (4) parametric 
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methods, (5) hybrid methods and (6) deep learning-based methods. This classification and the 

information presented below complements the literature analysis performed by [99]. 

1. Point-based methods: The methods of this class are based on the identification of low-level 

primitives, such as points, and their matching on multi-view radiographs. The two key types of 

3D reconstruction point-based techniques are Stereo Corresponding Point (SCP) based 

Techniques[102], [103] and Non-Stereo corresponding Point (NSCP) based Techniques [104]. 

The SCP method requires correspondence in identified points between images, while the NSCP 

method does not. These approaches rely heavily on the ability of the specialist operator to 

identify precise points. As a result, their reproducibility is low. Because of the manual 

recognition, these techniques take between 2- 4 hours to reconstruct [99]. 

2. Contour-based Methods: The principle is to link recognizable 2D contours from radiographs to 

3D lines identified on the surface of a reference object. Then an elastic 3D model deformation 

in relation to 2D contours is performed on multiple images [99]. In contrast to point-based 

approaches, contour-based methods use a higher level of geometric primitives, eliminating the 

issue of identifying matching points and decreasing the need for user interaction [105], [106]. 

Despite the appropriate precision of contour-based techniques, 3D reconstruction takes a long 

time for these approaches [100]. The time taken for these 3D reconstruction methods was 

estimated to be about 15-35 minutes for lower limbs [100]. 

3. Statistical Shape Modelling-based Methods:  Another approach is to use statistical shape analysis 

and modelling [20], [25], [37], [42], [105], [107]–[115]  for the 3D shape reconstruction. Only a 

limited number of sparse landmark vertices on the bone's surface is required in this method. 

Since the knowledge in those sparse landmark vertices is insufficient for a complete 3D surface 

reconstruction, a priori information is essential. From a collection of training surfaces that reflect 
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reasonable variations of the surfaces the bone of interest, a statistical model can be built (Section 

2.2). The statistical model is then used as prior information to match the subject's anatomy using 

landmark vertices acquired from radiographs. To summarize, the statistical shape model-based 

method aims to extrapolate a complete and relatively accurate 3D anatomical surface from a 

sparse or incomplete set of 3D vertices. Due to their ability to accurately represent structures, 

model-based approaches are relatively reliable, with recorded reconstruction errors of 1-3 mm 

[116].  

4. Parametric Methods: Rather than using the whole collection of points suggested by SSM 

modelling, statistics are conducted on anatomical descriptive parameters (DP) derived from the 

surface of interest[114]. These methods are suitable for generating an initial 3D reconstruction 

that is both fast and stable. These approaches define a generalized parametric model for the 

representation of the object of interest. According to the considered bony structure, this 

generalized parametric model comprises various geometric primitives such as points, lines, 

circles, and spheres [100].  

5. Hybrid Methods: This class includes various types of reconstruction models, hence known as 

hybrid methods[100]. This class's methods will have a variety of properties depending on how 

they are combined and used. An example[109] would be the combination of the statistical and 

image-based biplanar reconstruction process.  

6. Deep Learning Methods:  Recently, deep learning techniques are being employed to reconstruct 

the shape of a predefined object from multiple images [117], [118]. Geometrically, it is possible 

to reconstruct a three-dimensional surface by triangulating two or more images, assuming the 

cameras' relative positions are known[119].  The following recent studies show how to 

reconstruct shapes from two or more images using deep learning techniques:  Multi-view 
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Stereopsis[120] and 3D-R2N2 [30] both employ RNNs to combine features from multiple 

images in order to reconstruct three-dimensional models. In comparison, Pix2Vox[122]  

reconstructs a single volume from each image and combines them in a context-aware layer. 

Pixel2mesh++ [123] extends the work [117] by refining it using enhanced 2D features sampled 

from the projections of the 3D points on the multiple images. In medical imaging,  3D models 

were reconstructed from simulated bi-planar X-ray images of a single spine vertebra using a deep 

network using an autoencoder scheme [124]. A recent approach to reconstruct 3D knee geometry 

uses end-to-end 3D convolutional layers with skip connections, allowing for quicker and more 

precise reconstruction of multi-class bones for the knee joint [125]. 

2.5.3 Estimation of Target Accuracy for 3D Reconstruction 

3D models generated from the segmentation of MR/CT images are widely regarded as the gold standard 

to which other methods of 3D reconstruction are evaluated. The root mean square (RMS) distance 

between MRI/CT segmented bone surface points (commonly referred to as ground truth) and the 

reconstructed model's surface points is used to measure the shape reconstruction error. Prior to the error 

measurement, the reconstructed surface is matched with the MRI/CT segmented surface using a 3D/3D 

rigid registration. 

In the context of this thesis, the reconstructed shape of the knee bones should be accurate enough to 

precisely register the 3D shape to the 2D images during the kinematic analysis. Since the work on the 

second stage (2D-3D registration) is in progress at the time of writing this thesis, it was decided to set 

an estimated accuracy from the literature.  

A 2014 study [28] investigated the influence of the accuracy of 3D shape reconstruction on the precision 

of the kinematic tracking of the knee joint. From the study, the author would like to point out two 

findings that helped set a target error for the reconstructed model: 
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1. The ability to precisely match the edges in fluoroscopic sequences plays a greater role in 

assessing kinematic precision than the overall 3D shape accuracy of the model. 

2. In one of their experiments, they discovered that the 3D model with the worst RMS error of 1.37 

mm for the femur and 1.64 mm for the tibia had comparable kinematic accuracy to the ground 

truth model. 

 

2.6 Summary 

In this chapter, the main concepts in the literature, the state-of-the-art and previous work related to 

assessing 3D reconstruction from radiographic images were reviewed. Also, the technical background: 

knee morphology, statistical shape model, knee imaging techniques, deep learning concepts and 

architectures related to this thesis were introduced.To recap, the objective of the research was to develop 

a methodology to reconstruct the shape of a knee in a quick, accurate and hassle-free manner from 

multiple single-plane fluoroscopy (SF) images captured during the free leg rotation. This section 

addresses the technical challenges involved in using the existing methods to accomplish the research 

objectives. The section concludes by outlining the approach used in the proposed study to overcome 

these challenges. 

2.6.1 Challenges 

Three major challenges need to be addressed to achieve the research objectives using the existing 

methods. (C1) SF images are generally of poor quality and hence contain less detail. So, it is challenging 

to extract relevant features for accurate reconstruction; (C2) It is difficult to use existing techniques for 

reconstructing the shape from images taken during the arbitrary motion since they were not designed 



 

 28 

for this purpose.; (C3) the existing methods demand images captured from the calibrated device. 

Calibration is a tedious procedure. 

Each of the challenges is discussed in detail below: 

C1.  Poor Image Quality  

Unlike X-ray radiography (XR) images, SF images are not generated for diagnostic interpretation 

but to roughly identify the location of the surgical tools and the bones during surgeries. Since an 

information-rich image is not a critical requirement, the SF devices generate radiation on the order of 

50-100 times lesser than XR devices[126]. Lower radiation results in higher mottle(quantum noise) 

[55], leading to information-poor or low-quality images[127]. This makes it challenging to extract 

features from the images to perform any further interpretation[128]. Figure 2.7 shows the differences 

in the image qualities of a pelvis phantom when captured using an SF device and an XR device. 

Moreover, along with the mottle, one has to deal with low contrast resolution and signal non-

homogeneity when analyzing SF image sequences [11]. 

The information loss at the pixel level can be seen in Figure 2.8. It is hard to extract accurate enough 

features to reconstruct a precise 3D model at this noise level. Most of the methods discussed in the 

previous section require clearly defined features from radiographic images for accurate reconstruction. 

Since SF images are characterized by a low signal-to-noise ratio[129], extracting relevant information 

for reconstruction is challenging.  

Although many techniques exist for the reconstruction of 3D knee models from information-rich XR 

images[105], [110], [112], [115], [124], [125], [130]–[144],  only a few exist for information-poor SF 

images[20], [25]–[27]. All the existing techniques for SF images are based on statistical shaped 

modelling methods. In these methods, usually contours of the bones are extracted either using active 

shape modelling[37] or active contour modelling [145] before fitting a shape model. The two 
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techniques extract only the bones' external edges, which are imaged in a particular pose on which it is 

trained. Employing these techniques would be challenging to extract edges when the knee bones are 

imaged in arbitrary poses.  

 

Figure 2.7:  SF image (a) and XR image (b) of a pelvis phantom captured in the same position. 

Adapted from [126] 

C2. Shape Reconstruction from Free Motion  

It is important to make the in vivo experiment as constraint-free as possible to keep it subject-friendly. 

It is believed that allowing the subjects to conduct tasks at their discretion may simplify the experiment 

process. However, since the images generated this way include a vast range of arbitrary poses, 

interpretation becomes more challenging.  

 The structure from motion (SfM) technique seems like a natural choice to reconstruct the 3D shape 

of an object from a set of images captured in different poses[146]. In medical imaging, SfM has been 

used for close-range photogrammetry applications; an example would be the 3D reconstruction of the 

whole stomach from endoscope video  [147].  However, in SF images,  poor features and the translucent 

nature of the bones can cause complications as the incorrect features can be linked during the automated 

(a) (b) 
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feature matching operation[148]. Also, difficulty in point feature tracking between adjacent frames of 

SF imagery has been reported in several studies [11], [149]–[151]. 

                      

Figure 2.8: A pixel-level view of a fluoroscopic image. The edges at the pixel level are hard to 

detect. 

A 2003 study proposes a methodology for the 3D reconstruction of the computed tomography(CT) 

from images generated by fluoroscopy along an arbitrary path [152]. However, it requires metallic 

beads to be attached to the skin as markers to estimate the poses. The pose information is then used in 

the 3D reconstruction. Although using markers could improve precision, it would cause inconvenience 

for the subjects [99]. 

 

1024x1024 
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C3. Tedious Calibration Procedure 

 SF or XR imaging is modelled as a perspective projection with the parameters estimated using a 

calibration method during reconstruction. It is widely agreed that precise calibration is needed for 

reconstruction to be effective [27], [110], [113], [139], [142], [144]. However, the calibration procedure 

is tedious and adds to system complexity[100]. Hence, it is a major obstacle in making the in vivo 

experiments hassle-free. 

2.6.2 Approach 

The following strategies were followed to address the challenges addressed previously: 

A1. Development of A Novel Feature Extraction Technique 

 A novel feature extraction technique called 'Multi-layer Canny' (Section 3.4) was developed to 

effectively extract the relevant features required for the 3D shape reconstruction. By combining the 

concept of the image pyramid [153] and Canny's edge operator algorithm [92], the technique blends 

global and local (pixel-level) knowledge to detect features while still suppressing the noise. 

A2. Training the CNN to be Pose-invariant 

 To accurately reconstruct the shape of a knee from a set of images taken in a wide range of arbitrary 

poses, a CNN was trained on a massive collection (30,000) of synthetic images generated using huge 

randomization of pose parameters (Section 3.3). The trained pose-invariant CNN can be used to 

reconstruct the shape from a wide variety of knee poses. 

A3. Use of Multiple Images to Reduce the Effect of Calibration Error 

 The calibration is performed for two purposes: to determine the intrinsic parameters and to correct the 

image distortion. Using a theoretical framework, authors in the 2007 paper [100] titled "C-arm 
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Calibration - is it Really Necessary?" argue the C-arm (single-plane fluoroscopy) calibration could be 

avoided in certain situations. They studied the influence of the calibration error on the accuracy of 3D 

shape reconstruction. The authors argue that increasing the number of images will improve the accuracy 

of the 3D reconstruction despite calibration errors. The 3D shape, in particular, was found to be more 

stable even for large calibration errors (100 mm error in focal length). Since the requirement of this 

proposed study is only shape reconstruction and not the full-scale model reconstruction of the knee, it 

was decided to use a large number of images with a generic set of calibration parameters.  

 In one of the experiments described in the study [100], an object's reconstruction accuracy improved 

by 50% when six images were used instead of one despite an error of 100 mm in the focal length 

parameter. To nullify the effect of calibration error on the performance of the proposed framework, it 

was decided to use 16 images for the reconstruction with a generic set of calibration parameters.  
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Chapter 3 Methodology 

At the end of the previous chapter, three challenges to achieving the research objectives were 

discussed, and the appropriate solutions were proposed. This chapter discusses the development of a 

framework for the implementation of these solutions. The goal is to reconstruct the 3D shape of the 

femur, tibia and patella from a set of single-plane fluoroscopic images featuring arbitrary poses of the 

knee captured during the free leg rotation. The input and the output of the framework are shown in  

Figure 3.1. 

 

Figure 3.1: The input and the output of the proposed reconstruction framework. The input is a set of 

single-plane fluoroscopic images featuring arbitrary poses of the knee captured during the free leg 

rotation, and the output is the 3D shape model of the femur, tibia and patella.  
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3.1 Method Overview 

The problem of 3D shape reconstruction from a sequence of fluoroscopy images was viewed as a 

mapping M from a sequence of fluoroscopy images {Ii}to a set of spatial coordinates V, corresponding 

to the 3D structure of the knee bone  (𝑀 ∶ {𝐼𝑖} → 𝑉).  The mapping function is modelled using a custom-

built convolutional neural network (CNN). A supervised learning approach using Procrustes shape 

distance [154] is followed to train the neural network's weights. Once trained, the neural network is 

provided with a new fluoroscopy image sequence, and the corresponding 3D shape of the bone is 

predicted.  Supervised learning approaches rely on large amounts of annotated data, i.e., network input 

and output pairs({𝐼𝑖}, 𝑉)  with different knee shapes, poses, capture conditions etc. to learn the weights 

of the network. 

Annotating fluoroscopy images with their corresponding 3D shapes is difficult and often involves 

tedious manual work. Due to the non-availability of such annotated datasets, the CNN is trained using 

synthetic (computer-generated) fluoroscopic images (Figure 3.2 (c)), whose 3D shapes are generated 

from a statistical shape model. However, synthetic fluoroscopic images are visually and statistically 

different from real fluoroscopic images (Figure 3.2 (a)), and hence a network directly trained on 

synthetic images does not generalize well to real fluoroscopic images. In order to overcome this 

challenge, a feature extraction technique was proposed, which, when applied on synthetic and real 

images, results in images with similar visual and statistical characteristics as shown in (Figure 3.2 (b) 

and (d)). The feature extracted synthetic images and their corresponding 3D bone shapes are used to 

train the CNN. During the evaluation of real fluoroscopic images, the features of the real images are 

first extracted and are provided as input to the trained network.  



 

 35 

  

The rest of the Section is organized as follows: 

• The real X-ray image acquisition process is described in Sec 3.2. The real X-ray images and 

corresponding MRI images are used to evaluate the accuracy of the proposed 3D shape 

reconstruction method.  

• The synthetic image generation process that mimics the real X-ray image acquisition setup in 

a virtual environment is discussed in Sec 3.3 

• A new feature extraction technique used to obtain visually and statistically similar real and 

synthetic images is introduced in Sec 3.4  

• The convolutional neural network architecture for reconstructing the 3D shape of knee bones 

from a sequence of feature-extracted fluoroscopic images is discussed in Sec 3.5. The trained 

network is used to evaluate real X-ray images. 

The overview of the approach followed to train and evaluate the deep neural network is shown in Figure 

3.3  

  

(a) (b) (c) (d) 

Figure 3.2: Comparison of real and synthetic image. (a) Real X-ray image.  (b) Feature-extracted 

real image. (c) Synthetic image (Randomly generated) (d) Feature-extracted synthetic image 
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Figure 3.3: Overview of the approach 
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3.2 About the Acquisition of Real Images  

This section describes the procedures involved in the real X-ray image acquisition system 

such that it can be replicated in the virtual environment to generate synthetic images. 

A diverse collection of data is required to train a versatile network capable of reconstructing 

knee geometry under a range of circumstances. However, it is challenging to acquire a large training 

dataset of annotated X-ray images with variations indicative of those found in real-world scenarios. It 

is time-consuming and costly, especially given the variability of uncontrolled environments. An 

example would be the arbitrary variations in the orientation and location of a subject's knee in relation 

to the X-ray source's reference frame. Instead of acquiring large sets of X-ray images, the 

convolutional neural network (CNN) training and test sets were created using synthetic images 

Figure 3.4: A general case of a real-time image acquisition setup using an X-ray fluoroscopy 

device. As the leg rotates freely around the tibial (mechanical) axis, an image sequence is formed. 
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combined with ground-truth shape details. The technique of massive image creation (hundreds of 

thousands of synthetic images) with huge randomization of input parameters was used rather than 

waste a lot of money and time acquiring real X-ray images.   

However, to determine the input parameters of synthetic image generation, it is necessary to 

understand the processes involved in the real system of X-ray image acquisition. The process would 

begin with a subject with an unknown knee geometry placing his/her leg at an arbitrary distance from 

the X-ray source. The orientation and position of the knee in the X-ray beam field would also be 

arbitrary and could keep varying during the activity. The subject would then freely rotate the leg for 

about 180º around the tibial (mechanical) axis by pivoting his/her heels on the ground. The fluoroscopy 

device would capture this activity, which would generate an image sequence of the knee in different 

poses. The process is tried to capture in Figure 3.4.  

The parameters that influence the content of the X-ray image generation can be broadly categorized 

into three types: 

1. Shape Parameters: Parameters that quantitively reflect the shape of the femur, tibia, patella, 

and the relative arrangement. 

2.  Pose parameters: Extrinsic rotations (Euler angles) of the knee measured with respect to a 

general fixed coordinate system. The Euler angles are typically denoted as α, β and γ. 

3. Scene parameters:  3D distances of the knee's local coordinate system measured from the X-

ray source's reference frame. SD, the distance between the source and the detector plane, is also 

considered as a parameter (see Figure 3.4), although it remains fixed for a given device.  

As discussed earlier, the deep neural network was fully trained on synthetic data. To determine the 

network's performance against real X-ray images, it was tested against a publicly available dataset [155] 

https://www.wikiwand.com/en/Alpha
https://www.wikiwand.com/en/Beta
https://www.wikiwand.com/en/Gamma
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on Zenodo.org. The datasets include the fluoroscopic image sequences of ten subjects captured during 

the activity of the free leg rotation. Selected poses of subject 1 are shown in Figure 3.5. In addition, 

corresponding high-resolution MRI images of the knees are also included. The MRI images were 

downloaded and segmented to construct three-dimensional models that serve as a ground truth. More 

details on MRI segmentation are discussed in Section 4.1 

 

Figure 3.5: Some of the poses captured during the free leg rotation of subject 1. 

 

https://zenodo.org/


 

 40 

3.3 Generation of Synthetic Images 

Figure 3.6:  Setup of a virtual environment. The dense 3D point cloud is projected onto the plane 

using a perspective projection scheme. The randomly created model can be translated and rotated to 

any pose in the virtual environment to generate a corresponding two-dimensional image. 

The simplest way to avoid problems with content inconsistencies between real and synthetic 

images is to replicate real processes as closely as possible. This Section will address the steps taken 

during the research to ensure that the content in the simulated image used for training is as accurate as 

possible.  

One method for learning with only synthetic data is to produce training examples with a lot of 

variation to enable the network to learn invariances. FlowNet[156], which uses highly modified and 

unrealistic composite images between real images and rendered objects, is likely the first application 

of such an approach with CNNs. Despite the fact that our proposed research is in a completely different 
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area, a similar strategy to generate high variety by massively randomizing key input parameters (pose 

and scene parameters) is used, as discussed in the previous Section. 

3D Model Creation and Placement 

A new model can be developed by randomly varying the shape parameters in a statistical shape 

model (SSM). This study uses the SSM created by the University of Denver (Sec Error! Reference 

source not found.) to create all the synthetic models required for the training. The SSM was created 

using the distal femur, proximal tibia, patella bone, and associated articular surface cartilages from 50 

healthy knees (25 males, 25 females). Select soft tissue structures' attachment sites and line-of-actions 

were also included. Each bone's local coordinate system is described as triads with 1D beam 

components. The joint is aligned in the MRI as-scanned spot. R3D3 tri elements are used to model 

bones as 2D surface meshes (Figure 2.3). There were 2384, 1101, and 472 nodes for femur, tibia and 

patella in the training set, respectively. 

Every new model would be some linear deformation of the template mesh used to create the SSM. 

The SSM was created using Principal Component Analysis (PCA), so theoretically, an infinite number 

of unique models can be generated in the PCA space. Since the SSM was created using 50 knee training 

models, any new model can be represented by 

 𝑆0 = 𝑆̅ + 𝑃𝜎 (2) 

where 𝑆0 is a specific 3D model, 𝑆̅ is the mean model, P is the principal orthogonal components, and 

𝜎 is a set of 50 randomly generated shape parameters. To place the newly generated model in a 

particular position and orientation, transformation T is used such that: 

 𝑆 = 𝑇(𝑆0) = 𝑅𝑆0 + 𝑡 (3) 
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where R is a rotation matrix 𝑅 = 𝑅𝛾 ∗ 𝑅𝛽 ∗ 𝑅𝛼, 𝑅𝛼 = [
1 0 1
0 cos𝛼 − sin𝛼
1 sin𝛼 cos 𝛼

]  𝑅𝛽 =

[
cos𝛽 0 sin𝛽
0 1 0

−sin𝛽 0 cos𝛽
] , 𝑅𝛾 = [

cos 𝛾 − sin𝛾 0
sin𝛾 cos𝛾 0
0 0 1

]  and 𝑡 is a translation vector, 𝑡 = [
𝑥
y
𝑧
] 

Along with the 50 shape parameters, the three pose parameters (α, β and γ) and the three scene 

parameters (x,y,z) are randomly varied to generate each synthetic image according to the details shown 

in Figure 3.8. The range's maximum and minimum values reflect highly improbable conditions in the 

real-world scenario. For example, a shape parameter of the value of 3.0 would likely result in an 

unrealistic knee model.  

Setup of the Virtual Environment 

A virtual environment was needed to generate large datasets of synthetic images belonging to 

diverse models in various poses. The fluoroscopic system was modelled after a pinhole camera in the 

virtual environment, with the imaging plane at the image intensifier and the focal point (origin) at the 

X-ray source (Figure 3.7). Using the techniques discussed in the previous Section, every randomly 

generated model was randomly placed in the virtual environment to get projected onto the imaging 

plane. Let 𝑆 ∈ ℜ3 be the point cloud of the 3D model and let 𝑋 = [𝑥́, 𝑦́, 𝑧́], 𝑋 ∈ 𝑆 be the spatial 

coordinates measured from the origin. The projection onto the 2D plane can be expressed as  

 𝑀2𝑑 = 𝑃 ∗ 𝑋 (4) 

where 𝑀2𝑑 is the 2D coordinate array of the 3D model after perspective projection. P is a perspective 

projection matrix of the shape (2x3) and a function of the focal length (SD in Figure 3.7). The technique 

to rendering the project points 𝑀2𝑑 as a digital image is discussed in the next subsection. 

 

https://www.wikiwand.com/en/Alpha
https://www.wikiwand.com/en/Beta
https://www.wikiwand.com/en/Gamma
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Figure 3.7 : Details of the virtual environment 

Figure 3.8:  Recipe to generate a synthetic image. 
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Image Rendering 

A smoother and well-detailed image can be generated by projecting a denser 3D point cloud 

onto the imaging plane. The denser point cloud can be created through random sampling of the mesh 

points. In this study, the knee bone model was sampled to 3 million points. To capture the projected 

points, 𝑆2𝑑 (Eq. 5) into an image of size 1024x1024, a 2D histogram with a million (10242) bins was 

employed. A 2D histogram, also known as a density heatmap, is a 2-dimensional generalization of a 

histogram that is computed by grouping a collection of points defined by their x and y coordinates into 

bins and applying a sum or count function to compute the colour of the tile representing the bin and 

thus creating an image. 

 

Figure 3.9: Random poses of a randomly generated model using the SSM. The poses are arranged 

in the increasing order of roll angle α 
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3.4 Feature Extraction 

A feature in computer vision is a quantifiable piece of data in an image that is unique to a 

particular entity. It may be a specific colour in a picture or a particular form in the image, such as a line, 

an edge, or an image fragment. A useful feature is one that allows artifacts to be distinguished from one 

another. 

Usually, input images contain an excessive amount of detail that is not needed for learning. As 

a result, the first move after preprocessing the image is to simplify it by extracting critical details and 

discarding irrelevant ones. The essential features of an X-ray image required in this research are the 

ones that depict the shape of the femur, tibia and patella and their relative arrangement, while the 

undesirable features are the soft-tissue artifacts and the quantum noise [55]. 

 

Figure 3.10: Different styles of real and (randomly generated) synthetic image 

As seen in Figure 3.7, the synthetic image and real X-ray image have distinct styles. It is 

troublesome because, in order for a deep neural network to perform efficiently, the training and 

validation data sets must share a common style domain. To resolve this problem, a novel technique for 

extracting desirable features from images independent of the style domain they were produced. The 

domain gap between the synthetic and actual X-ray images is tried to eliminate by feeding the network 

only the feature extracted data. Though Canny's edge operator [92]  is a natural choice for feature 
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extraction and generally accurate, its efficiency suffers due to the high degree of noise present in X-ray 

fluoroscopy images. As shown in Figure 3.11, the edges are not continuous, and a considerable noise 

is captured as false edges. Varying the threshold and fine-tuning parameters makes little difference 

since the Signal to Noise ratio is inherently higher [55]. 

 

 

Figure 3.11: Poor performance of Canny' edge detection on a fluoroscopic X-ray image 

 

Multi-layer Canny Operator 

Humans seem to interpret edges easily, although it is usually very challenging for an edge 

detection algorithm. One explanation is that human perception has global knowledge, while the 

edge operator only has information found within a 3x3 or 5x5 neighbourhood. The distinction is 
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perhaps better understood by imagining a mouse trapped in a labyrinth and a bird gazing down from 

the clouds. A new robust technique is presented to accurately extract edges by combining the concept 

of the image pyramid [153] and Canny's edge operator algorithm [92] to blend global and local 

knowledge to detect features while still suppressing the noise. Figure 3.12 illustrates the multi-layer 

canny algorithm's workflow, whereas Figure 3.13 demonstrates how, despite a large domain gap at the 

input, the algorithm produces identical styled images. 
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Figure 3.12: Workflow of Multi-layer Canny algorithm 
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Figure 3.13: The feature-extracted real and (randomly generated) synthetic images are stylistically 

similar 
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3.5 Training of Custom-Built CNN 

Since a CNN needs a vast volume of annotated training data and careful hyperparameter tuning, 

training from scratch is usually difficult and time-consuming. To generalize well and prevent 

overfitting, the learning rates used during training should ensure sufficient convergence. Transfer 

learning is an alternative to learning from scratch that involves fine-tuning CNNs that have already 

been trained in another domain to a target domain, such as the medical one. However, significant 

variations between the source and target domains can restrict information transfer, potentially reducing 

the efficiency of fine-tuned CNNs. Since our featured-extracted synthetic images are uniquely styled 

and structured, any pre-trained CNN existing in the literature is unlikely to be suitable for training. 

However, with enough labelled training data and carefully chosen hyper-parameters, custom-

built CNNs can outperform fine-tuned CNNs and hand-crafted alternatives  [57], [63]. Custom-built 

CNNs are extremely effective in a variety of medical applications. Some of the recent studies that use 

custom-built CNNs for knee image analysis are multi-stream CNNs [157] for cartilage segmentation, 

real-time 2D/3D registration using CNN regressors [158] for volar plate detection and femur bone age 

assessment in X-ray images using deep learning  [159]. Motivated by these methods, our CNN is trained 

from the ground up to reconstruct the 3D knee bone geometry from multiple X-ray image poses. 

A feature-extracted synthetic image containing 16 poses of a knee geometry organized in 

ascending order of roll angle was fed into the network as the input. Each pose has a resolution of 

256x256 pixels, resulting in a 1024x1024 total image size (Figure 3.14). The network produces a 

12576-long vector as its output. In the following step, the long vector can be reshaped into an array of 

spatial coordinates for the vertices of the knee joint model. This architecture is constructed so that the 

vertices are implicitly constrained to conform to the vertices of the reference mesh used to create the 
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statistical form model (SSM). As a result, the output of the network is simply the vertices of a 

predetermined mesh. 

 

  Figure 3.14: The network's input and output 

3.5.1 Architecture 

A 23 layer deep ResNet [75] inspired CNN architecture was custom built for the task of 

reconstruction. The details of the architecture are shown in Figure 3.15.  Batch normalization and a 

ReLU activation layer accompanied each convolutional layer. Every third skip connection used a max-

pooling operation. Two fully connected layers with a 12576-long vector output followed the final 

pooling layer. A drop-out layer with a drop-out ratio of 0.1 was added for the fully connected layer to 

avoid overfitting.  
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Due to the GPU's limitations, a batch size of 16 was used during training. The network was 

trained using Google Colab resources (GPU: NvidiaK80/ T4 with 12 GB of GPU memory). The 

massive datasets were uploaded to the online servers 

through Google Drive. The programs were written in 

python, and pytorch[71] was used as the machine 

learning framework. Wandb [160]was one of many APIs 

used during the coding that had a major impact on the 

results Wandb is a machine learning tracking tool. 

Integrating the Wandb library into every level of the code 

greatly aided in consolidating and tracking results. 

Using the approach described in section 3.3, a set 

of 30,000 images were produced from 10,000 uniquely 

generated models from the SSM for training the network. 

Another 600 images were created to serve as a test set.  

The network was trained for 50 epochs for 24 hours using 

the Adam optimizer with a learning rate of 0.04. 

 

  

 

 

Figure 3.15: Network architecture 
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3.5.2 Loss Function 

At first glance, it might look appropriate to use a regression metric such as Mean Squared Error 

(MSE) (Figure 3.16 (a)) as a loss function since the objective of the neural network is to minimize the 

difference between the 12576-long vector output and the ground truth. However, it should be noted that 

the images (real or synthetic) are generated by perspective projections of 3D geometry and therefore 

lack scale detail. Additionally, the orientation and location of the reconstructed model and the ground 

model do not have to be similar. Taking these points into account, it was determined that the Procrustes 

shape distance (Figure 3.16 (b)) is more appropriate for the task. Given that the output and ground truth 

models' vertices are implicitly constrained to be in exact correspondence, the Procrustes shape distance 

seems to be a reasonable preference. 

Figure 3.16: Loss Functions: (a) Mean Squared Error Loss. (b) Procrustes shape distance Loss 

(a) (b) 
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To compare MSE loss to the Procrustes shape distance metric, the network was trained for 20 epochs 

in each case. Figure 3.17 compares the two loss functions by plotting the loss values for the test cases 

against the epochs. The Procrustes shape distance metric outperforms MSE by a large margin. 

 

Figure 3.17: Comparison of two loss functions 
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Chapter 4 Evaluation  

The preceding chapter covered the process of training the custom-built CNN for 3D reconstruction. 

This chapter addresses the method used for evaluating the accuracy of a CNN's reconstruction. The 

accuracy of the current method is compared and debated with the existing methods. 

4.1 Dataset 

The neural network, which was only trained on synthetic images, was validated against a 

publicly accessible dataset [155] on Zenodo.org to see how well it performed against actual X-ray 

images. The databases include fluoroscopic image sequences of ten subjects taken during the free leg 

rotation activity. Additionally, the study included accompanying research-grade Magnetic Resonance 

(MR) images of the knees. The MR images were downloaded and segmented to build three-dimensional 

ground truth models. Only eight datasets were considered for the model's validation since two (Subject 

8 and 9) of the ten subjects' MRI scans were unsuitable for segmentation due to consistency issues.  The 

appendix comprises a selection of X-ray images from each of the eight subjects. 
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4.1.1 MRI Segmentation: Ground Truth Creation 

As discussed earlier, the ground truth for each dataset was created by segmenting the MR 

images using 3D slicer software (version 4.11). The method of segmenting MR images in 3D Slicer is 

depicted in Figure 4.1. 

 The geometry created by 3D Slicer was coarse and contained jagged edges referred to as staircase 

artifacts, a common characteristic of segmentation. Thus, prior to meshing, the surfaces were smoothed, 

and the geometries' borders were trimmed using the Surface Wizard and Curve Wizard functions in 

SolidWorks 2018 (Dassault Systèmes, Waltham, MA, USA). Smoothing was done with caution to 

avoid distorting the bone's initial geometrical structure or contours, and only the surface defects were 

removed (Figure 4.2). 

Segmentation 

Figure 4.1: Segmentation process of bones in 3D Slicer 
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Figure 4.2: Models used as ground truth. These models were created by segmenting MR images 

4.2 Validation 

The 3D shape reconstructed from real X-ray images was compared with the 3D knee model 

obtained by MR image segmentation using the Iterative closest point (ICP) algorithm [161]. The two 

models were transformed to point clouds before being fed into the ICP algorithm. The ICP aligns the 

reconstructed model to the ground truth by adjusting the rotation and translation of the reconstructed 

model. After aligning the two models, the Root Mean Square Error (RMSE) for the complete knee and 

individual bones was determined. The validation protocol is depicted in Figure 4.3. 
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Figure 4.3: Validation protocol for real test cases 
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The validation protocol was followed to validate the neural network against eight datasets. The results 

are shown in Table 2: Root Mean Squared Error (mm) of eight subjects' bone  The reconstructed model 

for subject 1 is shown in Figure 4.4.  Similar results of the rest of the subjects are shown in the 

Appendix. 

Table 2: Root Mean Squared Error (mm) of eight subjects' bone shapes. 

SUBJECTS FEMUR TIBIA  PATELLA ALL 

SUBJECT 1 1.9 2.9 3.1 2.3 

SUBJECT 2 1.7 2.7 4.2 2.5 

SUBJECT 3 1.5 2.1 2.5 1.8 

SUBJECT 4 1.7 1.9 3.3 1.9 

SUBJECT 5 2.4 2.2 3.1 2.5 

SUBJECT 6 2.0 2.5 3.6 2.3 

SUBJECT 7 2.3 2.7 3.0 2.5 

SUBJECT 10 1.8 1.9 4.1 2.1 

MEAN 1.9 2.3 3.3 2.2 
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Figure 4.4: Reconstructed knee model of subject 1 

4.3  Discussion 

An automated procedure for reconstructing the femur, tibia, and patella from single-plane 

fluoroscopic X-ray sequences without the need for additional 3-D imaging acquisition is demonstrated. 

The three-dimensional reconstruction was accomplished using a deep neural network. Reconstruction 

findings for eight subjects performing free leg rotation sequences are presented to evaluate the accuracy 
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of the proposed method. The results were validated by comparing the reconstructed model with the gold 

standard MRI segmented model. 

The hypothesis was proven correct- it is possible to reconstruct the 3D shape of the femur, 

tibia, and patella from multiple uncalibrated SF images featuring random poses of the knee taken during 

a subject's free leg rotation. According to Table 2, the proposed deep neural network has an overall 

accuracy of 2.2 mm with 1.9 mm, 2.3 mm, and 3.3 mm for the femur, tibia, and patella bones, 

respectively. Based on the discussion in section  2.5.3, the reported accuracy might be sufficient for a 

precise evaluation of knee kinematics, although a detailed investigation is required. 

 The errors in knee bone 3-D reconstruction can be seen in detail through the colour-coded 

error maps presented in Appendix. The surface errors are evenly distributed in the geometry and are 

not location-specific. On the other hand, the patella has the largest error since its appearance rate in the 

X-ray image sequence is significantly smaller than the other two bones. 

4.3.1 Comparison to Related Works 

Table 3 compares the research performance of different existing methods to the 3D bone 

reconstruction from single-plane fluoroscopy (SF) images. While the accuracy of the proposed method 

is marginally lower than that of the current literature, the method is more adaptable than others. It 

appears that the proposed method is the first method to reconstruct the 3D shape of the knee using deep 

learning, while the rest of the methods mostly focus on some deformation of the statistical shape model 

(SSM).  As a result, the computation time and the user intervention for the 3D reconstruction of the 

proposed method are very small. The proposed CNN was trained and tested on Google Colab  Also, 

the proposed method is the only method that does not require calibrated images for the 3D 

reconstruction.  
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Table 3: Comparison to related works 

Study 

Reconstruction 

error 

(mm) 

Test cases 

Is calibration 

required? 

Is reconstruction 

automated? 

Reconstruction 

time/test case 

Wu  [12] 

 

Femur: 1.15 

Tibia: 1.19 

Five knee joints Yes No 20 min 

Kurazume et al. 

[26] 

 

~1 

Two proximal 

femurs 

Yes No 1 min 

Zheng et al.[27] 

 

1.44 

One distal 

femur 

(cadaveric) 

Yes No Not reported 

Tang et al.[162] 

 

1.8 

Two distal 

femurs 

Yes No Not reported 

Hurvitz et al. 

[17] 

 

1.15 

One distal 

femur 

(cadaveric) 

Yes No Not reported 

Current work 

Femur:1.9 

Tibia:2.3 

Patella: 3.3 

Eight knee 

joints 

No Yes ~1 sec 
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Generally, the existing methods aim to extrapolate a complete 3D anatomical surface from 

sparse or incomplete 3D information obtained from 2D radiographic images. This is done by 

deforming the SSM by optimizing the values of a handful of shape parameters.  The deep learning 

model is trained to optimize every vertex of a 3D model (4192 vertices) in the proposed method 

to match the ground truth (known shape model). The model builds a mapping between each pixel 

of the input image (containing 16 poses) to the vertices of the reconstructed 3D model. Since it 

could learn the complex relationship between each vertex and the input image, it can be trained 

for more accurate reconstruction.  

The main purpose of the proposed methodology is to quickly and accurately build the shape of 

the knee so that it could be used during the pose registration of the individual bones during the 

kinematic study. Nevertheless, the full-scale model could be generated by updating a reference 

dimension in the shape model.  A reference dimension could be the femoral bicondylar width 

which can be measured from a pre-operative AP radiograph [163]. It should be noted that the 

accuracy of measurement of the reference dimension could affect the accuracy of the full-scale 

model. 

4.3.2 Feeding hand-crafted features for the convolutional neural network 

Feeding feature extracted data to a CNN is not uncommon. It is a common practice when the 

images are sourced from different domains. To reduce the domain shift (Section 2.4.1), 

researchers have either used domain adaptation technique [78], [80], [164]–[166] or image 

transformation technique [81]–[89]. In the proposed framework to unify the real and synthetic 

image into a common representative image, an image transformation technique was employed. 

The transformed image is still an implicit representation of the ground truth. Moreover, feature 
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extraction is necessary to deal with single-plane fluoroscopy (SF) images that suffer from low 

signal-to-noise ratio, low contrast resolution and signal non-homogeneity [11]. 

4.3.3 Systematic Errors 

In the context of this thesis, systemic errors refer to inaccuracies that occur as a result of the virtual 

environment's inability to capture a particular phenomenon. The author could think of two systematic 

errors: 

i. Relative movement between the knee bones during the free leg rotation:  In the virtual 

environment, different poses are generated by rigidly rotating and translating the knee bones. 

As a result, the reconstruction accuracy could degrade if the subjects in the real world do not 

maintain rigidity of the knee during the free leg rotation. The subjects may be instructed to 

rotate their leg to address this error while keeping their knee in the locked position [167]. In 

the locked position, relative motion between the knee bones is restricted.  

ii. Calibration errors: The calibration is performed for two purposes: to determine the intrinsic 

parameters and correct the image distortion. Using a theoretical framework, authors in the 

2007 study [100] argue that the C-arm (single-plane fluoroscopy) calibration could be 

avoided in certain situations. The authors argue that the reconstructed shape, in particular, 

was found to be more stable even for large calibration errors (100 mm error in focal length) 

when a large number of images were considered. So, to nullify the effect of calibration error 

on the performance of the proposed framework, it was decided to use 16 images for the 

reconstruction with a generic set of calibration parameters.  
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4.4 Limitations 

The present thesis has some acknowledged limitations, including the following: 

1. Although the deep neural network might generate a highly nonlinear mapping between the 

input images and the output model, the network is trained on models produced from a single 

Statistical Shape Model (SSM), an intrinsically linear model [168]. SSMs are essentially low 

pass filters, and it is highly improbable that they can capture high-frequency details in X-ray 

images [169]. Since the network is trained exclusively on SSM models, every reconstructed 

model is mostly limited to some linear combination of the SSMs' training examples. 

2. Since the SSM used to train the convolutional neural network lacks information about the fibula 

bone, the network is completely ignorant of the fibula. As a result, the fibula silhouettes had to 

be manually erased from the feature-extracted images during the test cases. 

3. In addition to the spatial coordinates of the knee bones, the deep neural network also outputs 

predictions for ligament attachment sites. However, due to the low visibility of soft tissues in 

MRI scans, the ligament attachment point could not be segmented, and hence it could not be 

validated. Nonetheless, the predicted ligament attachment sites for all eight subjects could be 

seen in the images of the Appendix. 
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Chapter 5 Conclusions  

5.1 Summary 

This study aimed to accurately reconstruct the three-dimensional shape of knee bones by 

analyzing a small number of knee poses captured during a subject's free leg rotation using an 

uncalibrated fluoroscopy device. Since annotated X-ray images are scarce, the neural network had to 

be trained only on synthetic images. Since radiation dose settings differ between fluoroscopy devices 

and system operators, creating quality variability, the reconstruction output should be reliable across a 

wide range of image quality. 

An end-to-end framework is presented to reconstruct the 3D shape of the knee geometry from 

low radiation X-ray images. First, the mechanisms involved in acquiring a real X-ray image are 

investigated. It is then repeated in a virtual environment to generate hundreds of thousands of 

randomized images. The present work develops a novel domain-invariant feature extraction strategy 

for extracting desirable features from simulated and real-world images of varying quality. Finally, a 

23-layer deep custom-built convolutional neural network(CNN) is trained using the massive feature-

extracted synthetic dataset. Real-world X-ray images are evaluated using the trained network. The 

method is adaptable enough to deal with a wide spectrum of poses and low-quality images, rendering 

it suitable for a broad range of applications. The findings show that the deep learning model is highly 

effective and produces good-quality reconstructions with a high degree of generalization. 

5.2 Future Directions 

Several steps could be taken to overcome the limitations listed in the previous section. Possible 

improvements to improve the overall performance of the framework is discussed below: 



 

 67 

1. Since the Statistical shape model (SSM) is at the core of the presented 3D shape reconstruction 

framework, any improvements in the SSM could directly boost the performance of the CNN. 

The SSM could be improved in a variety of ways: 

• Inclusion of more and diverse training examples:  The SSM used in this study is built 

using 50 training examples [44]. More training examples could result in capturing more 

shape variations. 

• Resolution enhancement: Currently, the SSM mesh is represented by 3957 nodes (2384 

for the femur, 1101 for the tibia and 472 for the patella) [38]. Higher resolutions could 

result in capturing high-frequency details. 

• The PCA-based SSM could be reformulated as Gaussian process morphable models 

(GPMMs) [170] or Kernel-PCA (K-PCA)[171]. These nonlinear models are more 

effective at capturing shape variations in the training examples. 

• Inclusion of Fibula 

2. The MRI images used to create the ground truth seem to be acquired in T2 sequences with low 

visibility of soft tissues.  In the future, acquiring MRI scans in the T1 sequence can increase 

soft tissue visibility, allowing for identifying ligament attachment sites [172]. 
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