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Abstract

In this thesis we adapt the probability of agreement (PoA) methodology for the compar-
ison of distributions. Most of the commonly used methods for comparing distributions
are rooted in hypothesis testing where decisions are made using p-values. The proposed
methodology, however, provides a more context-driven comparison by accounting for prac-
tically important differences. Two situations are considered: first, the one-sample com-
parison problem in which we have observed one sample and interest lies in determining
whether the sample comes from a given known distribution. Second, we consider the
two-sample comparison of distributions in which we have observed two independent sam-
ples and interest lies in determining whether these samples have the same distribution.
The Horvitz-Thompson estimator is used to estimate the cumulative distribution func-
tion(s) corresponding the sample(s) under comparison and the asymptotic normality of
the Horvitz-Thompson estimator is used to estimate the PoA. Confidence intervals (CIs)
are also determined for the estimated PoA so as to quantify estimation uncertainty. We
develop two methods for calculating CIs: one based on asymptotic normality and the
delta-method and the other based on the bootstrap. To illustrate the application and
interpretation of the methodology, we consider both real world and simulated examples.
We also conduct a simulation study that evaluates the bias and variance of the PoA es-
timator as well as the coverage of the associated CIs. Finally we propose the relative
density methodology as a graphical supplement that provides further information about
the similarities and differences between the distributions under comparison. In summary,
the contributions of this thesis are (1), the generalization of the PoA methodology to the
one- and two-sample comparison of distributions, and (2), the suggestion of using the rel-
ative density and the PoA methodologies in tandem to gain more thorough information
about the similarities and differences between the distributions under comparison.
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Part I

One-Sample Problem
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Chapter 1

Introduction

1.1 The Problem

The aim of this thesis is to develop a new method for the common problem of compar-

ing distributions. This thesis is organized into two parts. In Part I we will consider the

goodness-of-fit problem, in which we investigate whether a known distribution is a good

fit for an observed sample that has been drawn from a population. We refer to this as the

“one-sample problem”. In Part II, we focus on the problem of comparing the distributions

of two populations from each of which we have an observed sample. We refer to this as

the “two-sample problem”. The common goal of both Part I and Part II of this thesis is

to understand if there is a difference between the distributions under comparison, and if

there is, to characterize the nature of that difference. Both problems are among the most

common problems in statistical science and have a wide variety of applications in the real

world. One can easily think of countless examples for which interest lies in investigating

the distribution of one or more variables. For instance, one may be interested in the distri-
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bution of the age of patients suffering from a disease, or the distribution of housing prices in

the past year, or even the distribution of the number of vehicles passing a red light camera

during different times of the day. In these kinds of one-sample problems one may be inter-

ested in fitting a parametric model in order to describe the variable probabilistically. This

then requires determining whether a family of distributions (such as the normal, gamma,

or exponential) is a good fit to a given sample. Therefore, one can see that applications of

the problem of goodness-of-fit are endless; in any univariate parametric statistical analysis,

evaluating the goodness of fit of a model is relevant.

Throughout the thesis, we will use a real-world dataset to showcase our methodology

and to illustrate how the analyses should be conducted. We will illustrate both the one-

and two-sample methods in the context of this example dataset. The data we will be using

is the result of a test known as “The Programme for International Student Assessment”

(PISA) which is a test given to 15-year-old students from around the world every three

years. The PISA test evaluates the students’ performance in mathematics, reading, and

science and the goal is to compare the performance of students from different parts of the

world. The dataset we will be using however, only contains reading scores for American

students. It also contains information about the demographics and schools of the stu-

dents although we focus attention on gender and the reading scores of the students. The

interested reader can consult Kaggle1 to access the dataset and obtain a more in-depth

description of the other variables recorded.

1https://www.kaggle.com/econdata/pisa-test-scores
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The dataset consists of 1,791 female and 1,872 male students. Below, in Figure 1.1, we can

see the histogram of all 3,663 students’ reading scores. One may be interested in determin-

ing, for example, whether the students’ reading scores follow a normal distribution. If a

hypothesis test is used to answer this question, the answer will be a simple “yes” or “no”.

However, a more informative analysis would reveal for which scores the two distributions

are similar and for which they are different. Such an analysis can be used to examine

whether the distributions are similar or different, and if they are different, whether this

difference arises in the right tail, the left tail, the middle, or some combination of these.

Figure 1.1: Histogram of the students’ reading scores

We now introduce the one-sample goodness-of-fit problem mathematically. Consider a

population P of size N with true cumulative distribution function (CDF) F and true

probability distribution function (PDF) f . Also, consider a known distribution with CDF

G and corresponding PDF g. Assume that we have observed a sample S of n units from
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P on which we observe {x1, x2, . . . , xn}. Our objective is to compare F with G or, equiva-

lently, to compare f with g. Because we do not know F or f , we must first estimate them

from the sample data, obtaining F̂ and f̂ . Note that we distinguish between estimates

and estimators in our notation. While F̃ (x) is a random variable, F̂ (x) is a real-valued

number which is our estimate of F (x). Note that throughout the thesis we refer to F as

the comparison distribution and G as the reference distribution.

In Section 1.2 we review several traditional solutions for the goodness-of-fit problem. In

particular, we present an overview of the general procedure common to all of the methods

and then discuss some drawbacks. Then, in Section 1.3, we briefly introduce our proposed

solution to the goodness-of-fit problem and we discuss its advantages relative to existing

methods.

1.2 Existing Methods

The problem of comparing distributions has been at the forefront of academic research and

practical data analysis since at least the first half of the twentieth century and so there exist

a variety of methods for comparing distributions. Among the oldest and the most famous

methods are the Shapiro-Wilk test (Shapiro and Wilk, 1965), the Kolmogorov-Smirnov

test (Kolmogorov, 1933), the Anderson-Darling test (Anderson and Darling, 1952; 1954),

and the Cramér–von Mises test (Cramér, 1928; von Mises, 1928). Both the Anderson-

Darling and Cramér–von Mises statistics are special cases of a class of statistics called

quadratic EDF statistics (Stephens, 1986) which are relevant in tests based on the empirical
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distribution function (EDF). The Shapiro-Wilk test is a test only for normality in the one-

sample case i.e., when interest lies in comparing the distribution of an observed sample with

the normal distribution. Each of the other tests, however, can be used for both one-sample

and two-samples problems. We review the one-sample versions here and discuss their two-

sample counterparts in Chapter 5. These tests are based on a standard hypothesis test

where the null hypothesis is the equality between the true distribution of the sample and

the reference distribution. More precisely, following the notation introduced in Section 1.1,

the hypothesis statement is

H0 : F = G vs. HA : F 6= G

or equivalently

H0 : f = g vs. HA : f 6= g.

The decision to reject or not reject the null hypothesis is made by calculating a test statis-

tic and a p-value, and then comparing the p-value with a significance threshold. To better

understand the procedure of these traditional hypothesis tests, we will now look at the

above-mentioned tests in more detail.

First, consider the Shapiro-Wilk test for normality. Given an observed sample {x1, . . . , xn},

the Shapiro–Wilk test statistic is given by

W =
(
∑n

i=1 aix(i))
2∑n

i=1(xi − x̄)2
,

6



where x(i) is the ith order statistic, (i.e., the ith smallest number in the sample), and x̄ is

the sample mean. The coefficients ai are given by

(a1, . . . , an)T =
mTV −1

(mTV −1V −1m)1/2
,

where the n× 1 vector m = (m1, . . . ,mn)T is composed of the expected values of the or-

der statistics of n independent and identically distributed (IID) standard normal random

variables, and V is the n× n covariance matrix of the normal order statistics (Davis and

Stephens, 1977). Values for a1, a2, . . . , an are tabulated in Shapiro and Wilk (1965) for

different values of n. The null distribution of the test statistic W does not have a closed

form but the original paper (Shapiro and Wilk, 1965) provides a table of the quantiles of

the null distribution for sample sizes smaller than 50. Note that it can be shown that if the

sample is indeed from a normal distribution then the numerator and denominator of W

are both, up to a constant, estimates of the normal variance σ2. So, if H0 is true, we would

expect W to be close to 1. For non-normal samples, however, these quantities are not in

general estimates of the same thing and so values very different from 1 provide evidence

against H0. For more details about this test, see Shapiro and Wilk (1965).

Next we consider the Kolmogorov-Smirnov (KS) test. The test statistic quantifies a dis-

tance between the CDF of the known reference distribution and the empirical cumulative

distribution function (ECDF) of the sample which, given the observed data {x1, . . . , xn},
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is defined as

F̂n(x) =
∑
u∈S

I[xu ≤ x]

n
, (1.1)

where I[xu ≤ x] is the indicator function which equals 1 if xu ≤ x and is equal to 0

otherwise. The exact form of the KS test statistic is

Dn = supx∈A|F̂n(x)−G(x)|,

where F̂n(·) is the ECDF corresponding to the sample S, A is the support set of F̂n(x), and

G(·) is the known CDF. This statistic quantifies the distance between the ECDF and the

known CDF at the point where they are farthest away from each other. If G is continuous

and the null hypothesis is true,
√
nDn asymptotically follows the Kolmogorov distribution

which is defined as the distribution of the random variable K = supt∈[0,1] |B(t)| where B(t)

is a Brownian bridge. The CDF of K is given by

P (K ≤ x) =

√
2π

x

∞∑
i=1

e
−(2i−1)2π2

(8x2) .

The form of the KS test statistic and its asymptotic distribution under the null hypothesis

was published by Kolmogorov (1933) and quantiles of the distribution were tabulated by

Smirnov (1948). In summary, once the KS test statistic is calculated, one may reject the

null hypothesis at level α if
√
nDn > Kα where Kα is the value of the Kolmogorov distri-

bution such that P (K ≤ Kα) = 1−α. Note however that in the case that the comparison

is against a family of distributions instead of a completely specified one, the parameters

8



of G should be estimated using the data {x1, . . . , xn}. In such a case the above critical

values are no longer valid and some modifications are necessary. In the special case of an

exponential family distribution, details about the required changes to the test statistic and

the critical values have been published (Pearson and Hartley, 1972).

To describe the Anderson-Darling and Cramér-von Mises tests we define the class of

quadratic EDF statistics (Stephens, 1986) by

Qn = n

∫
x∈A

(F̂n(x)−G(x))2w(x)dF (x),

where w(x) is a non-negative weight function which should be chosen by the experimenter

to put more weight on those values of F̂n(x)−G(x) where the test is desired to have more

sensitivity. As before G(·) denotes the known CDF and F̂n(·) is the ECDF corresponding

to the observed sample. If we choose w(x) = 1 all values of x ∈ A are given equal weight

and the resulting statistic corresponds to the Cramér–von Mises test (Cramér, 1928; von

Mises, 1928). Choosing w(x) = [G(x)(1−G(x))]−1 gives rise to the Anderson-Darling test

statistic (Anderson and Darling, 1952; 1954). The intuition behind this choice of w(x)

can be explained as follows. For any given value of x ∈ A, nF̃n(x) is a binomial ran-

dom variable where the probability of success is F (x), the true CDF of the population

from which the sample was drawn. To see this, notice that to calculate F̂n(x) we are

effectively counting the number of data points that are less than or equal to x, and the

probability that a data point is less than or equal to x is F (x). Under the null hypoth-

esis H0 : F (x) = G(x) the probability of success would be G(x) and the variance would

9



be G(x)(1 − G(x)). Therefore, by choosing w(x) = [G(x)(1 − G(x))]−1, F̂n(x) − G(x) is

divided by its variance over the entire range of x, under the null hypothesis. This makes

the test more sensitive to differences with small variance and less sensitive to differences

with large variance. The quantiles of the distribution of the Anderson-Darling statistic

are not available for small sample sizes. However, the asymptotic quantiles are given by

Anderson and Darling (1954) (there the authors call them significance points). Note that

these quantiles are valid when we are using a completely specified distribution function G

as the reference distribution. However, when we want to test the sample against a distribu-

tion with unknown parameters that must be estimated with {x1, . . . , xn}, the quantiles in

Anderson and Darling (1954) are no longer valid. In this case, Andreson-Darling quantiles

depend on the specific distribution G and also on the method of estimating the parameters.

It is interesting to note that despite the age of these methods (which date back to the

mid-1900s) they still appear to be the most commonly used for these types of problems. To

justify this claim and the corresponding lack of a contemporary literature review, in Table

1.1 we present the number of citations of the seminal Kolmogorov-Smirnov, Anderson-

Darling, and Shapiro-Wilk papers across different years and in aggregate. As we can see,

the number of citations steadily increases over time, with many citations in very recent

years. This suggests that no new methods have been developed in recent years that are

used more widely than these traditional ones.

One issue with each of these hypothesis tests is that they begin with the assumption that

the characteristics under comparison are the same, and evidence is sought to disprove this.
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There are two possibilities, either we find enough evidence to reject the null hypothesis

and conclude that the characteristics are not the same or we fail to find enough evidence

to reject the null hypothesis. However, absence of evidence cannot be considered evidence

Year Kolmogorov (1933) Anderson and Darling (1952) Shapiro and Wilk (1965)

≤ 2000 358 589 2360
2001-2005 163 195 1080
2006-2010 274 523 2080
2011-2015 731 992 4490
2016-2020 1210 1230 7870
All Time 2791 3596 18208

Table 1.1: Citation counts for common statistical tests.

of absence, meaning that in the case of failing to reject the null hypothesis, one cannot

conclude that the null hypothesis is correct. Therefore, in applications for which we aim to

prove the equality of two characteristics, traditional hypothesis testing is not appropriate.

Equivalence testing is an alternative approach designed precisely for this problem. Wellek

(2010) provides a thorough overview. In equivalence testing, we begin with the opposite

assumption, that the two statistical characteristics under comparison are different. Then,

we look for evidence of equivalence. Equivalence testing is commonly used in many fields

including bioequivalence (Karalis and Macheras, 2012; Patterson and Jones, 2017) clinical

psychology (McKay, 2008), and industrial engineering (Anderson-Cook and Borror, 2016;

Szarka, 2014). Another important consideration in equivalence testing is that there is no

need for the equivalence to be exact, meaning that one may consider some small difference

between the characteristics under comparison to be practically negligible. More precisely,

one may define a margin δ and an interval (−δ, δ) within which differences may be con-
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sidered practically unimportant. As long as the two characteristics are within ±δ of each

other they may be considered practically equivalent. See Wellek (2010) for a variety of

one-sample goodness-of-fit equivalence tests.

It is important to emphasize that, except for the points just mentioned, traditional hy-

pothesis tests and equivalence tests have the same procedure: in both cases we calculate

a test statistic and then a p-value which is compared to a significance threshold, to decide

whether to reject or not reject the null hypothesis. As we discuss in the next section,

reliance on p-values can be problematic. In particular, we discuss limitations associated

with p-values and we introduce a new methodology for comparing distributions that is not

rooted in hypothesis testing and therefore does not suffer from these limitations.

1.3 An Alternative Approach

Here we discuss several problems associated with using hypothesis tests (either traditional

or equivalence-based) for the purpose of comparing distributions. First, all of the informa-

tion from either type of hypothesis test is summarised with a single number: the p-value.

This represents a loss of information in the sense that even if the null hypothesis is rejected,

the p-value on its own provides no information about how the two distributions disagree.

For example, the distributions F (x) and G(x) may be similar for x in the middle of the

distributions’ support set but differ drastically in the tails or vice versa, but there is no

way to determine this with just the p-value. On the other hand, in the case that we get a

large p-value, we can neither reject nor accept the null hypothesis.
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The traditional hypothesis test also has a practical issue related to sample size: no matter

how similar the two distributions are, a sufficiently large sample size will result in an ar-

bitrarily small p-value and hence the rejection of the null hypothesis. This problem is not

limited to the case of comparing two distributions, it may occur in any hypothesis testing

setting. This is not ideal if one prefers to ignore very small and practically unimportant

differences. Equivalence tests sensibly avoid this issue by explicitly accounting for practical

significance; a consideration we build into our proposed methodology.

A very real and practical problem associated with hypothesis testing (of both types) is

that the interpretation of the p-value is complicated and non-trivial. Many researchers

tend to interpret the p-value as the probability of the null hypothesis being true, which

is of course not correct. As a result, many non-specialists misinterpret and misuse the

p-value. This issue is especially problematic because hypothesis testing is so popular and

widely used. It has become so controversial that the American Statistical Association

(ASA) published a statement regarding the widespread misuse of p-values and urged the

statistical community to develop alternatives to traditional hypothesis tests that overcome

the limitations of p-values (Wasserstein and Lazar, 2016). In response, The American

Statistician (TAS) published a special issue containing 43 articles concerned with “moving

to a world beyond p < 0.05” (Wasserstein et al., 2019). Therefore, there is substantial

interest in the development of alternative methods that account for practical significance

in addition to, or instead of, statistical significance.

13



The probability of agreement (PoA) has been proposed as a way of quantifying the simi-

larities between two statistical characteristics (random variables), C1 and C2, taking into

consideration the size of a practically important difference. Generally speaking, the PoA

may be defined as

P (|C1 − C2| ≤ δ),

where δ is a constant representing the boundary between practically important and unim-

portant differences. Therefore the PoA is the probability that the difference between the

characteristics under comparison is practically negligible. The primary contribution of

this thesis is the adaptation of the PoA methodology to facilitate the comparison of CDFs.

Here, we take the characteristics of interest C1 and C2 to be CDFs and we develop method-

ology for point and interval estimates of the PoA in this new context. In Part I of the

thesis one of these CDFs is known and the other will be estimated based on sample data;

in Part II both CDFs will be estimated. Thus, the PoA in Part I will be defined as

θ(x) = P (−δ ≤ F̃ (x)−G(x) ≤ δ), (1.2)

where δ is a constant and F̃ (·) is the estimator of the CDF of the observed sample and

G(·) is the known CDF. Notice that any difference smaller than δ between the two CDFs

at point x will be considered practically negligible. Thus the PoA calculated at point x

is the probability that the two CDFs are practically equivalent at point x. The value

of δ depends on the context of the problem and should be chosen by someone who has

insight into the specific application at hand. The PoA does not suffer from the above-

mentioned issues of hypothesis testing and it is also very straightforward to interpret. The
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PoA methodology was first introduced in the context of measurement system comparison

(Stevens et al., 2017; 2018a) and has since been applied to the comparison of population

reliabilities (Stevens and Anderson-Cook, 2017a;b), the comparison of confirmation runs

to previous experimental results (Stevens and Anderson-Cook, 2019), the comparison of

generalized linear response surfaces (Stevens et al., 2019; 2018b), and the comparison of

parametric (Stevens et al., 2020) and nonparametric (Stevens and Lu, 2020) survival func-

tions.

In the next chapter, we describe the details of estimating the PoA in the one-sample

case and we consider both simulated and real examples to illustrate how one should use

this method and what information one can gain when conducting it. We will also explain

the concept of relative density and show how one can use it to supplement the PoA anal-

ysis to gain a more in-depth understanding of the similarities and differences between the

distributions under comparison. In particular, we use the PoA to compare two CDFs and

we use the relative density to compare the corresponding PDFs. In Chapter 3 we present

the results of a simulation study that investigates the performance and properties of our

proposed methodology. That will end Part I of the thesis. In Part II we extend the PoA

and relative density analyses to the problem of two-sample comparisons.
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Chapter 2

Proposed Methodology for the

One-Sample Scenario

Our proposed methodology consists of two parts. We suggest that when determining

whether a sample can be modeled by a specific family of distributions (e.g., normal or

gamma distributions) one first applies the probability of agreement (PoA) methodology as

the primary analysis to quantify the (dis)similarity of the distributions under comparison.

Second, for additional insight, we recommend supplementing this with an informative

graphical visualization based on the concept of relative density. In Section 2.1, we generalize

the PoA methodology so that it can be applied to the problem of comparing a known with

an unknown (estimated) CDF. Recall the comparison of two unknown (estimated) CDFs is

considered in Part II of the thesis. Then, in Section 2.2, we discuss the relative density and

we show how it can be used to provide informative graphical summaries of the similarities

and differences between the two CDFs under comparison. Finally, in Section 2.3, we
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provide several examples to illustrate how our proposed methodology should be conducted

in practice and also to explain how one should interpret the results of the analysis.

2.1 The Probability of Agreement for One-Sample CDF

Comparisons

2.1.1 The Probability of Agreement

In general, the PoA quantifies the similarities between two statistical characteristics, tak-

ing into account what size difference is or is not practically important. This “size” should

be determined by the user and it may vary a great deal depending on the context. In this

context the characteristics of interest are a known and an estimated CDF.

As in Chapter 1, we define F (x) to be the true CDF of the population P from which

we observed the sample, and let F̃ (x) be the corresponding estimator. Also let G(x) be a

known CDF. Then the PoA between F̃ (x) and G(x) is defined as

θ(x) = P (−δ ≤ F̃ (x)−G(x) ≤ δ). (2.1)

Note that the PoA is defined for all x ∈ A, the support set of F̃ (·), which depends on the

observed sample. One may interpret the interval (−δ, δ) as a context-specific indifference

region, meaning that as long as the difference between the CDFs is in this interval, we

consider those CDFs to be practically equal. For instance if F̂ (x) = 0.5 and G(x) = 0.52,
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these are practically equivalent if δ = 0.05 but not if δ = 0.01. Therefore the PoA at point

x is the probability that the CDFs, calculated at point x, are practically equivalent.

To be able to calculate the PoA at any point x we need to know the distribution of

F̃ (x) which depends on the method of estimation. In this thesis, we will use the Horvitz-

Thompson method to estimate the CDF of the observed sample. We use Horvitz-Thompson

estimation because it allows us to account for different sampling protocols, because it also

has desirable distributional properties that enable us to easily estimate the PoA, and be-

cause we regard samples as having been drawn from finite populations.

In the next section, we explain the Horvitz-Thompson method and then in Section 2.1.3,

we show how one can estimate the PoA when we use the Horvitz-Thompson approach to

estimate F (x).

2.1.2 Horvitz-Thompson Estimator

The first step towards calculating the PoA is to estimate the unknown CDF of the popu-

lation from which we have observed a sample. We must then determine the distribution

of the estimated CDF to calculate the PoA. For the first step, we will use the method of

Horvitz-Thompson (Horvitz and Thompson, 1952). As mentioned above this method ac-

counts for the sampling design; different sampling designs will result in different estimates

for the CDF. In the case of simple random sampling, i.e., when every unit in the population

has the same chance of being selected into the sample, the Horvitz-Thompson estimate is
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the same as the empirical cumulative distribution function (ECDF) defined in Equation

1.1. However, the Horvitz-Thompson framework allows us to flexibly accommodate other

sampling protocols if necessary.

Let P denote a population of size N and assume we have a sample S ⊂ P of n units

on which we observe {x1, . . . , xn}. Also assume that F is the true CDF corresponding to

P which is defined as

F (x) =
∑
u∈P

I[xu ≤ x]

N
,

where I[xu ≤ x] is the indicator function defined as

I[xu ≤ x] =

 1 if xu ≤ x

0 if xu > x
.

Then the Horvitz-Thompson estimate of F (x) is given by

F̂HT (x) =
∑
u∈S

I[xu < x]

Nπu
for x ∈ A, (2.2)

where πu = P (u ∈ S) is the inclusion probability for unit u ∈ S and A is the support set of

F̂HT (x). As already mentioned, we distinguish between estimates and estimators, and thus

we denote the Horvitz-Thompson estimate of F (x) by F̂HT (x) and the Horvitz-Thompson
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estimator by F̃HT (x). The variance of F̃HT (x) is given by

V ar
[
F̃HT (x)

]
=
∑
u∈P

∑
v∈P

(πuv − πuπv)
I[xu ≤ x]

Nπu

I[xv ≤ x]

Nπv
,

where πuv = P (u ∈ S, v ∈ S) is the joint inclusion probability for units u, v ∈ P . This

variance cannot be calculated as the whole population is typically not available. However,

it can be estimated using again the Horvitz-Thompson method. The Horvitz-Thompson

estimate of the above variance is given by

V̂ ar
[
F̃HT (x)

]
=
∑
u∈S

∑
v∈S

(
πuv − πuπv

πuv

)
I[xu ≤ x]

Nπu

I[xv ≤ x]

Nπv
. (2.3)

In order to calculate the PoA, we require the distribution of F̃HT (x). Although the exact

distribution of F̃HT (x) is in general not known, Berger (1998) showed that

F̃HT (x)− F (x)√
V̂ ar[F̃HT (x)]

D−→ N(0, 1). (2.4)

We use this asymptotic result to calculate the PoA, which is the focus of the next section.
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2.1.3 Estimating the Probability of Agreement

Because interest lies in the difference between the two CDFs, the asymptotic approximation

from Equation 2.4 can be used to derive the following result for the difference F̃HT (x)−G(x)

(
F̃HT (x)−G(x)

)
−
(
F (x)−G(x)

)
√
V̂ ar[F̃HT (x)]

D−→ N(0, 1). (2.5)

Recall, G(x) represents the reference distribution with which we are comparing the CDF

of the sample and is therefore treated as a known constant. With this result we calculate

the PoA as

θ(x) = P
(
−δ ≤ F̃HT (x)−G(x) ≤ δ

)
∼= Φ

δ − (F (x)−G(x))√
V̂ ar

[
F̃HT (x)

]
− Φ

−δ − (F (x)−G(x))√
V̂ ar

[
F̃HT (x)

]
 ,

(2.6)

where Φ(·) is the CDF of the standard normal distribution. It is important to acknowledge

that the second equivalence in the above equation is an approximation due to the fact that

in practice we have a finite sample size and hence the result in Equation 2.5 holds only

approximately. By replacing F (·) with its Horvitz-Thompson estimate in Equation 2.6, we

obtain the estimate of the PoA

θ̂(x) = Φ

δ − (F̂HT (x)−G(x))√
V̂ ar

[
F̃HT (x)

]
− Φ

−δ − (F̂HT (x)−G(x))√
V̂ ar

[
F̃HT (x)

]
 . (2.7)
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The PoA is then calculated and plotted against x for all x ∈ A. The resulting PoA plot

visualizes the dependence of agreement on x.

Because of the sampling variation inherent in the estimation of the PoA, we use confi-

dence intervals (CIs) to communicate the uncertainty associated with the PoA estimate.

We investigate two different approaches for constructing approximate pointwise CIs. In

Section 2.1.4 we describe the details of constructing approximate CIs for the PoA using

the bootstrap. In Section 2.1.5 we will use asymptotic normality and the delta method to

determine the distribution of θ̃(x) and then use this distribution to calculate CIs for the

PoA. In both cases we calculate and visualize the CI for each x ∈ A.

2.1.4 Confidence Intervals Based on the Bootstrap

The bootstrap methodology was first published by Efron (1979). It is a technique that can

be used to approximate the sampling distribution of a statistic through resampling. Here,

we will use the bootstrap to construct approximate pointwise CIs for the PoA. Let S be

the observed sample of n units. A bootstrap sample also contains n units, each of which

has been selected randomly from S. Note that this selection is done with replacement,

and so a bootstrap sample is not simply a permutation of S. Assume S1, . . . ,SB are B

bootstrap samples from S. Note that B, the number of bootstrap samples, is a value that

should be chosen by the user. Larger values for B result in a more precise estimate of the

sampling distribution and hence lead to CIs with better coverage, but at the expense of
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higher computation time. Efron and Hastie (2016) suggest that B = 2,000 should be used

for bootstrap-based CIs, and so we follow this recommendation.

In previous sections, we have described how the PoA at a given point x ∈ A is esti-

mated from a sample S, yielding θ̂(x). Here we follow the exact same procedure for each

of the bootstrap samples S1, . . . ,SB and we calculate θ̂1(x), . . . , θ̂B(x) for every x ∈ A. We

use the standard deviation of θ̂1(x), . . . , θ̂B(x) to estimate the sampling variability of θ̂(x),

and we use it in our construction of CIs for θ(x). Note that here we consider pointwise

CIs, not simultaneous ones, and so we calculate the standard deviation of θ̂1(x), . . . , θ̂B(x)

for each x ∈ A separately. A bootstrap-based (1− α)× 100% CI for θ(x) is given by

[
θ̂(x)− zα/2 × SE[θ̂(x)], θ̂(x) + zα/2 × SE[θ̂(x)]

]
,

where SE[θ̂(x)] is the standard deviation of θ̂1(x), . . . , θ̂B(x) and zα/2 is the quantile of the

standard normal distribution such that Φ(zα/2) = 1− α/2.

We also considered “percentile method” bootstrap CIs (Efron and Hastie, 2016). How-

ever, with respect to coverage, the percentile method intervals were inferior to the naive

normal theory interval defined above. Several amendments to the percentile method, such

as bias-corrected intervals, have been proposed (Efron and Hastie, 2016). However, we

did not consider them here because Stevens and Lu (2020) investigated them in a similar

context and found that they were not helpful.
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2.1.5 Confidence Intervals Based on Asymptotic Normality

The goal in this section is to determine the sampling distribution of the PoA at a given

point x, and use it to calculate a CI for θ(x). Let us write the estimator version of Equation

2.7 as

θ̃(x) ∼= Φ
(
U(D̃(x))

)
− Φ

(
L(D̃(x))

)
, (2.8)

where

D̃(x) = F̃HT (x)−G(x),

U(D̃(x)) =
δ − D̃(x)√
V̂ ar

[
F̃HT (x)

] ,
and

L(D̃(x)) =
−δ − D̃(x)√
V̂ ar

[
F̃HT (x)

] .
As we can see, θ̃(x) is a function of D̃(x) because θ(x) is a function of D(x). Using the

distributional result for D̃(x) given in Equation 2.5, we can use the delta method (Doob,

1935) to determine the asymptotic distribution of θ̃(x). According to the delta method,
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the variance of θ̃(x) is given by

V ar[θ̃(x)] =

[
dθ(x)

dD(x)

]2
V ar[D̃(x)]

=

−φ(U(D(x)))− φ(L(D(x)))√
V ar

[
F̃HT (x)

]


2

V ar[D̃(x)]

= [φ(U(D(x)))− φ(L(D(x)))]2 ,

where φ(·) is the probability density function (PDF) of a standard normal random variable.

Thus, by delta method we have

θ̃(x)− θ(x)

[φ(U(D(x)))− φ(L(D(x)))]

D−→ N(0, 1). (2.9)

Using this asymptotic result we can build approximate pointwise CIs using the estimate

θ̂(x) and its corresponding standard error φ(U(D̂(x))) − φ(L(D̂(x))). The approximate

100(1− α)% CI for θ(x) is given by

[
θ̂(x)− zα/2 ×

(
φ(U(D̂(x)))− φ(L(D̂(x)))

)
, θ̂(x) + zα/2 ×

(
φ(U(D̂(x)))− φ(L(D̂(x)))

)]
,

where zα/2 is the quantile of the standard normal distribution such that Φ(zα/2) = 1− α
2
.

Comparing this interval to the one developed in Section 2.1.4, we see that the only difference

is in the standard error term. Whereas in the bootstrap approach the standard error is

defined by the bootstrap standard deviation, here it is defined based on the delta method.

In Chapter 3 we use simulation to compare and contrast these two approaches to confidence

25



interval construction.

2.2 The Relative Density for One-Sample PDF Com-

parisons

In this section we review the relative density due to Parzen (1999) which we propose using

as a graphical supplement to the PoA analysis described in Section 2.1. Unlike the PoA

methodology which compares CDFs, the relative density methodology is based on a com-

parison of PDFs. In particular, the ratio of the PDFs is compared to the constant value

1. This ratio, which is called the relative density function, can be estimated directly from

what is called relative data.

Below we define the relative density function, and we discuss how to estimate it and how

to construct approximate CIs for it. In Appendix A, we briefly show how one may perform

a PoA-style calculation to compare the relative density function to the constant value 1.

However, for practical reasons (that are explained in the Appendix), we do not recommend

using the PoA methodology for the relative density and we simply suggest that the relative

density be used as a supplementary graphical tool while applying the PoA methodology

described in Section 2.1.

Recall that X ∼ F and Y ∼ G denote the comparison and the reference distribution.

The relative distribution comparing F to G is defined as the distribution of the random
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variable R = G(X). A realization of R, denoted r (0 ≤ r ≤ 1), is called relative data. Let

H and h be the CDF and PDF of R respectively. One can easily derive the distribution of

R as follows

H(r) = P (R ≤ r) = P (G(X) ≤ r) = P (X ≤ G−1(r)) = F (G−1(r)).

Notice that because G(·) is a CDF, it is an increasing and one-to-one function and thus it

is invertible. The PDF h may be found by taking derivatives of the CDF H with respect

to r, which by chain rule is given by

h(r) =
dH(r)

dr
=
dF (G−1)(r)

dr
=
f(G−1(r))

g(G−1(r))
. (2.10)

Note that if f = g then h(r) = 1 for all 0 ≤ r ≤ 1. Therefore, to gain information about

the possible similarities and differences between f and g, we can compare h(r) with 1 for

each r ∈ [0, 1]. If h(r) > 1 (h(r) < 1), it indicates that at point G−1(r) we have larger

(smaller) density in the comparison distribution compared to the reference distribution.

To be able to use the relative density in practice, we need to first estimate the function h(·).

Recall that here in Part I of the thesis, we treat g(·) as a known function. Therefore,

in Equation 2.10 the only piece that needs estimation is f(·). A naive approach to esti-

mate the relative density is to first estimate f(·) and substitute it into Equation 2.10 to

obtain an estimate for h(·). This would work in principle in the one-sample case, but if

g(·) also needs to be estimated, as in the two-sample case, this plug-in estimation breaks
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down. As such, for a unified approach, Thas (2010) suggests it is preferable to estimate

h(·) directly from the relative data, which for i = 1, . . . , n is defined as

ri = G(xi),

where {x1, . . . , xn} is the observed sample from the comparison distribution. As the xi’s

are independent and identically distributed (IID) realizations from f(·), the ri’s are also

IID realizations from h(·). As such, we can estimate h(·) using a non-parametric density

estimation method applied to the relative data. There are many such methods that can

potentially be used. To name a few, there are estimation using histograms, kernel den-

sity estimators (KDE), and orthogonal series density estimators which have been studied

by Parzen (1983), Eubank et al. (1987), Alexander (1989), Cwik and Mielniczuk (1993),

Mielniczuk (1992), Li et al. (1996), and Parzen (1999).

In the relative density context it is common to use the KDE method to estimate h(·)

because the asymptotic distribution of this estimator is known, allowing one to easily

construct approximate confidence intervals for h(·). The KDE of the function h is given

by

ĥn(u) =
1

nbn

n∑
i=1

K

(
u− ri
bn

)
, (2.11)

where bn is the bandwidth and K(·) is a kernel function satisfying the following conditions

∫ 1

−1
K(u)du = 1,

∫ 1

−1
uK(u)du = 0, and

∫ 1

−1
u2K(u)du = σ2

K > 0.
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Note that in general a kernel function does not have to satisfy the above conditions but

Handcock and Morris (1999) recommend using such a kernel in the context of relative

density estimation because doing so facilitates the asymptotic normality of the KDE which

is the basis for confidence intervals for h(·). Here we adopt the commonly used biweight

kernel

K(u) =


15
16

(1− u2)2 if u ∈ [−1, 1]

0 if u /∈ [−1, 1]
. (2.12)

Another important consideration in kernel density estimation is the choice of the bandwidth

bn. Many bandwidth selection methods exist. For instance, the normal reference rule

(Sheather and Jones, 1991), Scott’s rule (Scott, 1992), and Silverman’s rule (Silverman,

1986). Through simulation and empirical investigation we found the normal reference rule

works well for our purpose. As such, when building relative density plots in this thesis we

calculate the bandwidth as

bn = 2.778×min

(
s,
IQR

1.349

)
n−0.2, (2.13)

where s and IQR are respectively the standard deviation and interquartile range of the

relative data {r1, . . . , rn}.

The asymptotic distributional properties of the estimator 2.11 are proved by Handcock
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and Morris (1999). In particular, we have

h̃n(r)− h(r)√
h(r)R(K)

nbn

D−→ N(0, 1), (2.14)

where R(v) =
∫∞
−∞ v(x)2dx. This asymptotic result is used to build approximate CI’s for

the relative density. The approximate 100(1− α)% CI for h(r) is

ĥn(r)− zα/2

√
ĥn(r)R(K)

nbn
, ĥn(r) + zα/2

√
ĥn(r)R(K)

nbn

 ,
where h(r) has been replaced by ĥn(r) in the standard deviation term of Equation 2.14.

Note that the larger the sample size the better the approximation. In small sample scenarios

(i.e., n < 30) Handcock and Morris (1999) suggest using the bootstrap to estimate the

sampling distribution of the estimated relative density.

2.3 Examples

In this section we will provide a real-world example as well as two simulated examples to

demonstrate the process of comparing distributions in practice and, in particular, illustrate

how one should interpret the PoA and the relative density plots.
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2.3.1 PISA Dataset

We begin by illustrating the methodology on the PISA dataset that we introduced in

Section 1.1. As we explained there, the dataset contains reading scores of 15-year-old stu-

dents. Looking at the histogram of the students’ reading scores shown in Figure 1.1, one

may wonder whether this data can be well-modeled by a normal distribution. Here we for-

mally investigate this. Note that here we will specify the mean and variance of the normal

distribution (G) to be the sample mean and the sample variance of {x1, . . . xn}. Therefore,

the precise question we are trying to answer is whether the population of reading scores

from which our sample was obtained follow a normal distribution with mean and variance

equal to those of the sample.

We have plotted the estimated and known CDFs as well as the difference between them

in Figure 2.1a and 2.1b respectively. Note that to be able to apply the Horvitz-Thompson

method we assume for illustration that the n = 3,663 observed reading scores come from

a population of size N = 20,000. We assume that simple random sampling has been

used and so the marginal and joint inclusion probabilities are πu = n
N

= 3663
20000

and

πuv = n(n−1)
N(N−1) = 3663×3662

20000×19999 . In Figure 2.1c we can see the PoA between the Horvitz-

Thompson estimate of the population CDF and the normal CDF with mean and variance

equal to the sample mean and variance. Recall that the relation between the PoA plot and

the difference plot is that at any point x, the estimated PoA θ̂(x) estimates the probability

that the absolute difference is less than δ. We have used δ = 0.05 for illustration. This

choice implies that we believe an absolute difference of at most 0.05 between the CDFs
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can be considered practically unimportant.

As we can see in Figure 2.1c, the PoA is quite large for all values of x, which is un-

surprising given the agreement between F̂ (x) and G(x) depicted in Figures 2.1a and 2.1b.

These plots illustrate that with δ = 0.05 the reading scores can be well-modeled by the

normal distribution.

However, it is important to acknowledge that the conclusion of the PoA analysis depends

strongly on the value of δ. To illustrate the effect the value of δ has on the estimated PoA,

in Figure 2.2a we provide a contour plot of the PoA as a function of δ and x. Figure 2.2b

shows several PoA curves corresponding to different values of δ. As evidenced by Figures

2.2a and 2.2b, the value of δ dramatically impacts the estimated PoA. As we can see in

both Figures 2.2a and 2.2b, even in this example, when we see very strong similarities be-

tween two CDFs under comparison, choosing δ small enough will yield very small values of

PoA. Likewise, choosing large enough δ values will yield PoA values close to 1 for all values

of x. Therefore, given the impact the value of δ has on the outcome of the PoA analysis,

we suggest that a practitioner should carefully choose a value for δ that is appropriate in

their specific context.

Like the value of δ, how large θ̂(x) must be to conclude practical equivalence between

F̂ (x) and G(x) should also be determined by the practitioner. For some practitioners,

θ̂(x) > 0.95 for all x might be required, whereas others may require the average θ̂(x) value

to be larger than 0.9, for example.

32



(a) HT estimate of the CDF and the known CDF (b) The difference between the estimated CDF and
the known CDF

(c) The PoA

Figure 2.1: (a) Horvitz-Thompson estimate of the CDF of the observed data and the normal CDF with
mean and variance equal to those of the sample. The 95% CI is constructed based on asymptotic normality
of the Horvitz-Thompson estimator. (b) The difference between the estimated and the known CDF. The
95% CI is constructed the same way as in (a). (c) Estimated PoA with δ = 0.05 and 95% bootstrap and
delta method CIs.
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(a) contour plot of PoA (b) PoAs with different δ values

Figure 2.2: (a) The contour plot of PoA. (b) Several PoA plots constructed with different values of δ

To gain further insight into the comparability of the distributions, we also suggest looking

at the relative density plot as a supplementary graphical tool. In Figure 2.3a we can see

that the KDE of the PDF of the sample is overlapping the normal reference PDF with

mean and variance equal to those of the sample for almost all values of x. This is aligned

with what we see in 2.3b because, apart from the tails, the relative density is quite close

to 1. Recall that the relative density at point r is the ratio of the comparison distribution

to the reference distribution, at the rth percentile of the reference distribution. Therefore

a relative density plot (i.e, a plot of h(r) versus r for r ∈ [0, 1]) and a plot of the PDFs

are not comparable pointwise. In fact the value of h(·) at point r corresponds to the ratio

of the PDFs at point G−1(r). Therefore, the range of values of x where the comparison

density is below (above) the reference density, corresponds to the range of values of r where

the relative density is smaller than 1 (larger than 1). However, the fact that the value 1

is contained in the relative density’s 95% pointwise CIs for almost all values of 0 < r < 1,
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suggests good agreement and that the normal family should be a good model for our data.

It is well known that the KDE in this context has a downward bias near the bound-

aries at 0 and 1. That is why we observe values below 1 for values of r near 0 and 1 in

Figure 2.3b. Intuitively speaking, this happens because the kernel density estimator does

not understand the boundaries and acts as if the relative density is zero outside [0, 1] while

it is in fact not defined there. In Chapter 7 we discuss potential remedies for this downward

bias of the KDE.

(a) The estimated and the known PDF (b) The relative density

Figure 2.3: (a) The KDE of the PDF of the observed sample and the normal PDF with mean and variance
equal to those of the sample. (b) The KDE of the relative density plot. The 95% CI is constructed based
on asymtotic normality of the KDE.

2.3.2 Simulated Example (Normal Data)

In the PISA dataset example showcased in the previous section, we did not know whether

the reading scores truly followed a normal distribution or not. In this section we consider a
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simulated example to make sure that our methodology works as expected when the distri-

butions under comparison really are the same. We will also illustrate the effect of sample

size on the PoA which can only be done in a simulated scenario.

First assume our sample is a simple random sample of n = 1,000 observations from a

population of size N = 20,000 which is itself obtained by IID draws from N(4, 1). We use

the proposed methodology to determine whether the sample can indeed be modeled by

a normal distribution. Once again note that, like in the previous section, we specify the

mean and variance of the reference distribution as the sample mean and sample variance

of {x1, . . . , xn}. Then we estimate the PoA between the Horvitz-Thompson estimator of

the CDF for the observed sample and the normal CDF with mean and variance equal to

sample mean and sample variance of the n = 1,000 sample observations. Figures 2.4a and

2.4b both indicate good agreement between the estimated CDF and the normal CDF with

mean and variance equal to those of the sample. Note that the difference plot is contained

in the indifference region showed by two horizontal lines at ±δ = ±0.05. This suggests the

normal distribution is a good model for these data. In Figure 2.4c we use the PoA plot

(with δ = 0.05) to formalize this assessment. We see the PoA equals 1 for all value of x

suggesting that for each x, the sampling distribution of the difference F̃HT − G(x) is en-

tirely contained within ±δ and hence that the sample data can indeed be well-modeled by

a normal distribution. Of course, this is unsurprising since these data were drawn from a

normal distribution. However, the CIs, especially the bootstrap CI, show some uncertainty

in this conclusion around x = 4. The difference plot in Figure 2.4b offers insight into why

this is: the wide CI around x = 4 indicates uncertainty in the estimated difference here,

36



which is transmitted into uncertainty about the probability that the difference lies within

±δ.

Note that, as in the previous section, we have chosen δ = 0.05 for illustration. Larger

(smaller) values of δ would have resulted in uniformly larger (smaller) values of the esti-

mated PoA, independent of whether the distributions under comparison are truly the same

or not. This is due to the fact that it is more (less) probable for the difference between

two CDFs to lie within a larger (smaller) interval regardless of their underlying similarities

and differences.

Next we examine the effect of the sample size n. To that end we consider a sample

10 times smaller (n = 100) and a sample 10 times larger (n = 10,000) than what we

considered above. Both samples are drawn from the same population as before and we

want to quantify the agreement between their estimated CDF and the normal family CDF.

We have re-calculated the CDFs, their difference, and the corresponding PoAs for these

samples and the result is given in Figure 2.5.

When we have just n = 100 observations the sample does not resemble a normal dis-

tribution nearly as strongly as when n = 1,000. We see this in the CDF and difference

plots in Figure 2.5 in the left column. The PoA calculated with δ = 0.05 is much smaller

and is associated with much more uncertainty than when n = 1,000. This is expected;

when we have a smaller sample size and hence less certainty in the sample’s distribution,

the variance of the Horvitz-Thompson estimate of the CDF is larger and so also is the
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variance of the difference between the two CDFs. When this variance is larger, we are less

certain of whether the difference lies with ±δ, which corresponds to a smaller estimated

PoA. Note, however, that even when n = 100 the PoA is close to 1 in the tails. That is

because a CDF always starts at 0 and ends at 1 and therefore the variance is much smaller

in the tails. This accounts for the U-shape pattern exhibited in the PoA plot.

(a) HT estimate of the CDF and the known CDF (b) The difference between the estimated CDF and the
known CDF

(c) The PoA

Figure 2.4: (a) Horvitz-Thompson estimate of the CDF of the observed data and the normal CDF with
mean and variance equal to those of the sample. The 95% CI is constructed based on asymptotic normality
of the Horvitz-Thompson estimator. (b) The difference between the estimated and the known CDF. The
95% CI is cunstructed the same way as in (a). (c) Estimated PoA with δ = 0.05 and 95% bootstrap and
delta method CIs.
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Figure 2.5: The plots in the left column are the estimated CDF overlaid on the reference CDF, the differ-
ence between the estimated and the reference CDFs, and the estimated PoA respectively, corresponding a
sample of size n = 100. On the right hand side we have the same CDF, difference, and PoA plots but this
time with a sample of size n = 10,000. Both samples are generated from N(1,4) and the PoA is calculated
with δ = 0.05 in both cases.

On the other hand, when we have a sample of size n = 10,000 like in the right column of

Figure 2.5 we have absolutely no doubt that the difference lies within ±δ, and hence that

the CDFs are practically equivalent. This is suggested by the CDF, difference, and PoA

plots in the right column of Figure 2.5, where we see the PoA equals 1 for all values of x
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and there is no uncertainty as the upper and lower limits of both CIs are also equal to 1.

This again can be explained by the variance of the Horvitz-Thompson estimator. When

we have a larger sample, the variance of the estimated CDF will be lower, the variance of

the corresponding difference will therefore also be lower, and because the true difference is

F (x)−G(x) = 0 the estimated PoA will therefore be higher.

As we did in the previous section, we can also look at the estimated PDFs and the rela-

tive density to gain more information about how the distributions are similar or different.

We have illustrated the relative density and the PDF plots corresponding samples of size

n = 100, 1,000, and 10,000 in Figure 2.6.

We can see that, as the sample size grows, the known PDF becomes a better approxi-

mation for the estimated PDF and the estimated relative density gets closer to 1 for all

0 ≤ r ≤ 1. For all sample sizes, the pointwise 95% CI for the relative density covers

the value 1 for almost all 0 ≤ r ≤ 1. However, the CIs do not cover the value 1 for r

near 0 and 1 which is a result of the downward bias of the KDE mentioned previously.

In summary, the relative density plots agree with our findings from the PoA analysis: the

normal distribution is a good model for the observed data, and that our confidence in this

conclusion increases as n increases.
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Figure 2.6: The plots on the left are the KDE of the PDF of the observed samples with sizes n =
100, 1,000, and 10,000 respectively and also the normal PDFs with mean and variance equal to those of
the samples. The plots on the right visualize the KDE of the relative density of the corresponding samples
of sizes n = 100, 1,000, and 10,000 respectively. The 95% CI is constructed based on asymtotic normality
of the KDE.
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2.3.3 Simulated Example (Gamma Data)

Both of our examples so far have had two things in common: first, the conclusion of the

analysis in both cases was that the distributions under comparison were practically equiv-

alent. Second, both of the observed samples were well-modeled by a normal distribution.

In this section we consider a different example. The sample is composed of n = 1,000

observations drawn from a population of size N = 20,000 which is itself obtained by IID

draws from Gamma(2,2). We use the proposed methodology to determine whether this

sample can be well-modeled by a normal distribution. Figures 2.7a and 2.7b show the CDF

and difference plots respectively. We can see that for values of x < 7 the CDFs differ no-

ticeably while for x > 7 they are very close to each other. Figure 2.7c shows the estimated

PoA with δ = 0.05. We will explain what we see in the PoA from left to right. Unlike in

previous examples, the PoA is small for x close to zero, indicating a lack of agreement in

the left tail of the distributions being compared. That is because the normal distribution

can have negative values in its support set while a gamma distribution is defined only for

positive values. Therefore the reference CDF (which is a normal CDF with mean and

variance equal to those of the observed sample) has much larger values than the estimated

gamma CDF near x = 0 because the normal distribution has density for x < 0.

Then we find the estimated PoA rises around x = 2, which corresponds to the first in-

tersection of the estimated and the known CDFs. After that the PoA is close to zero for

3 < x < 5 which suggests that in this interval it is quite likely the CDFs differ by more

than δ = 0.05. This is supported by the CDF and the difference plots where we see that the
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differences are not within ±δ for the same interval 3 < x < 5. Finally, like in the previous

examples, we see a large PoA values for x > 7 because both CDFs are close to 1 for such

large x values and thus their difference is almost certainly smaller than 0.05. In summary,

the PoA analysis (with δ = 0.05) suggests that the distributions under comparison are

practically the same for large values of x (x > 7) but they are different for smaller values

of x.

We can also look at the relative density plot (Figure 2.8) for additional insight. We

can see that for most values of 0 ≤ r ≤ 1, the pointwise 95% CIs for the relative density

do not cover 1, which suggests that the PDFs are not the same at those points. This is

unsurprising given what we see in the overlaid densities in Figure 2.8a. More specifically,

the relative density plot suggests that the comparison PDF has more density for values

of r approximately between 0.1 and 0.6 which corresponds to values of x approximately

between 0 and 4 (which are the 10th and 60th percentiles of the reference distribution). But

after that, for r > 0.6 or equivalently x > 4, the reference PDF has more density than the

comparison PDF.

There are two things worth mentioning when considering the plots in Figure 2.8. First,

the PDFs plot and the relative density plot do not agree for large values of x (i.e., x > 10).

In Figure 2.8a we see the comparison PDF is higher than the reference PDF in this region,

which should correspond to a relative density larger than 1. However, in Figure 2.8b we see

the estimated relative density is smaller than 1. This is again the effect of the downward

bias of the KDE estimator near 0 and 1 which causes the relative density to be smaller
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than it should be for values of r near the boundary. Second, one should note that the range

of x values in the PDFs plot is determined by the observed sample and because our sample

is drawn from a Gamma(2,2) population there are only positive observations. However,

the reference PDF is a member of the normal family and so a small part of the PDF is in

the negative values of x which have not been plotted. Therefore, x = 0 on the PDFs plot

does not correspond to r = 0 on the relative density plot.
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(a) HT estimate of the CDF and the known CDF (b) The difference between the estimated CDF and the
known CDF

(c) The PoA

Figure 2.7: (a) Horvitz-Thompson estimate of the CDF of the observed sample (n = 1, 000 IID obser-
vations from Gamma(2,2)) and the normal CDF with mean and variance equal to those of the sample.
The 95% CI is constructed based on asymptotic normality of the Horvitz-Thompson estimator. (b) The
difference between the estimated and the known CDF. The 95% CI is constructed the same way as in (a).
(c) Estimated PoA with δ = 0.05 and 95% bootstrap and delta method CIs.
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(a) The estimated and the known PDFs (b) The relative density

Figure 2.8: (a) The KDE of the PDF of the observed sample (n = 1,000 IID observations from
Gamma(2,2)) and the normal PDF with mean and variance equal to those of the sample. (b) The KDE
of the relative density plot. The 95% CI is constructed based on asymtotic normality of the KDE.
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Chapter 3

One-Sample Evaluation

3.1 Explaining the Design of the Simulation Study

In this chapter we present the results of a simulation study conducted to examine the cover-

age of the proposed CIs for the PoA and also the bias and root mean squared error (RMSE)

of the PoA estimator. We have considered several different scenarios: i. Gamma(2,2) ver-

sus normal family, ii. Gamma(2,2) versus gamma family, iii. N(4,1) versus normal family,

and iv. N(4,1) versus gamma family. We also considered a fifth scenario: N(0,1) versus

N(0,1), which is different from the other four scenarios because unlike those, in this one

the reference distribution is completely specified and its parameters will not be estimated

from the observed sample. We consider this fifth scenario because it is a special and im-

portant case that has many applications, for instance determining whether standardized

residuals follow a N(0,1) distribution. In all five scenarios, we define the population P
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by taking N = 20,000 draws from the specified distribution and we take simple random

samples from this population. We consider three different sample sizes, n = 100, 1,000,

and 10,000, to examine the effect of increasing n. For each sample size, we take J = 1,000

samples from P and for each sample, we estimate the CDF, the PoA, and both types of

confidence intervals. To estimate the coverage for each type of interval, at each point x we

have J = 1,000 CIs and we calculate the proportion of these CIs which cover the true PoA.

As Stevens and Lu (2020) do, we define the true PoA θn(x) using a Monte Carlo approach

as the proportion of J = 1,000 estimated CDFs (estimated using the Horvitz-Thompson

method) that are within ±δ of the known CDF. In other words, the true PoA is defined as

θn(x) =
1

J

J∑
j=1

I{|F̂ j
HT (x)−Gj(x)| ≤ δ}, (3.1)

Which is a Monte Carlo estimate of Equation 2.1. Note that F̂ j
HT (·) is the Horvitz-

Thompson estimate of the CDF for the jth sample and Gj(·) is the known distribution

being used for the jth sample. Note that because the parameters of the reference distri-

bution are estimated using the observed sample, the actual CDF being used as the known

CDF may be different for each of the J = 1,000 samples. As such, Gj(x) for all j will corre-

spond to the same distributional family, but the parameters may be slightly different. Also

note that the subscript n in θn(x) emphasizes the fact that the true PoA defined as in Equa-

tion 3.1 depends on the sample size through the estimator F̃HT (x). Later we will see that

as the sample size grows, θn(x) converges to the indicator function I{|F (x)−G(x)| ≤ δ}.

In particular, we have

lim
n→∞

θn(x) = I{|F (x)−G(x)| ≤ δ},
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where F (·) and G(·) are the true CDFs under comparison. We refer to this indicator func-

tion as the asymptotic PoA.

The bias and RMSE at a given point x are calculated as

bias(x) =
1

J

J∑
j=1

[
θ̂j,n(x)− θn(x)

]
(3.2)

and

RMSE(x) =

√√√√ 1

J

J∑
j=1

[θ̂j,n(x)− θn(x)]2, (3.3)

where θ̂j,n(x) is the PoA estimated using the jth simulated sample of size n.

In what follows, we showcase the results of our simulation studies for three different scenar-

ios, namely Gamma(2,2) vs normal family, N(4,1) vs normal family, and N(0,1) vs N(0,1).

The results of other two scenarios (N(4,1) vs gamma family and Gamma(2,2) vs gamma

family) are similar to the N(4,1) vs normal family case and so, for the sake of brevity, we

do not include them here. They are however presented in Appendix C.

3.2 Gamma(2,2) vs Normal Family

We begin with the Gamma(2,2) vs normal family case where our samples are generated

from a Gamma(2,2) population and we want to determine whether they can be appropri-
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ately modeled by a normal distribution.

Figure 3.1a shows the population CDF (Gamma(2,2)) from which the samples are drawn

and the CDF of the normal distribution (N(4,8)) which has mean and variance equal to the

mean and variance of the Gamma(2,2) distribution. Note however that in the simulations

we do not use the N(4,8) CDF as the reference, exactly. Instead we use the normal distri-

bution with mean and variance estimated from the observed sample. This should be close

to, but not exactly the same as, N(4,8). The asymptotic PoA which is shown in Figure

3.1b with a dashed line, is calculated using the true CDFs of Figure 3.1a. This asymptotic

PoA equals 1 wherever the distance between the true CDFs is smaller than δ = 0.05, and

equals 0 otherwise. The blue, red, and green curves in Figure 3.1b correspond to the true

probability of agreement θn(x) for n = 100, 1,000, and 10,000 respectively. As we can see,

the true PoA approaches the asymptotic PoA as n increases. This is expected because

with a larger sample size, the actual estimated CDFs under comparison (which are the

basis of the definition of the true PoA) get closer to the true CDFs of Figure 3.1a (which

are the basis of the definition of the asymptotic PoA).

Figure 3.1c illustrates the results for coverage of the bootstrap-based and delta method-

based CIs, as well as the bias and RMSE of the PoA estimator, all for n = 100, 1,000,

and 10,000. In each plot we also display the corresponding average values across the entire

range of x for each value of n. The dashed lines in the two coverage plots are drawn at

0.95 and serve as a reference. There are several interesting insights that can be observed

from these plots.

50



Generally speaking, and unsurprisingly, the larger the sample size, the better the result.

However, if we look at each of the plots more carefully, we can see that for some values

of x, even for very large samples, we observe poor coverage, large bias and large variabil-

ity. Figure 3.1b provides a justification. We see that it is for these same values of x that

the asymptotic PoA transitions from 0 to 1 or from 1 to 0. Therefore, we conclude that

the estimated PoA performs worst for values of x where F (x) and G(x) transition from

truly being within versus not within ±δ of each other. These are the periods of greatest

uncertainty regarding whether |F (x)−G(x)| is less than δ or not, and so it is unsurprising

that the PoA methodology would struggle here. We call this phenomenon “the transition

effect” and we will see this effect again in other simulations in this chapter and also in Part

II of the thesis. Although this effect is most pronounced for large values of n, it appears

to be a problem regardless of sample size. Another interesting observation concerning the

transition effect is that as we increase the sample size (especially from 1,000 to 10,000) the

effect’s range becomes narrower but the effect itself becomes more severe. To see this, we

compare the green (n = 10,000) and the red (n = 1,000) curves in all four plots in Figure

3.1c. We see that in the transition areas, the green curve is worst, i.e., the CI coverages

are lower and the RMSE and the bias are higher. However, the range in which we observe

poor performance is narrower, and this results in better performance on average, as can

be seen by the average coverage, average bias, and average RMSE.

With respect to confidence interval coverage we see that the bootstrap-based and delta

method-based CIs follow very similar patterns. In fact, the bootstrap coverage appears
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to be a scaled version of the delta method coverage with generally higher values. This

phenomenon can be seen in all of the simulation scenarios considered here in Part I and

also in Part II. This is to be expected given that the bootstrap CIs and delta method CIs

differ only by their standard error terms, as was discussed in Section 2.1.5. The boot-

strap standard error tends to be larger, which translates into wider intervals and hence the

superior coverage observed in Figure 3.1c.

3.3 N(4,1) vs Normal Family

In this section our samples are drawn from a N(4,1) population and we want to check

whether a normal distribution is a good model for them. The difference between this

section and Section 3.2 is that here the distributions under comparison are truly the same.

Therefore, in Figure 3.2a we have just one true CDF and in Figure 3.2b the asymptotic

PoA (which is invisible beneath the true PoAs corresponding samples of size 1,000 and

10,000), is a constant line at 1. This makes interpretation more straightforward than the

previous section because there is no longer a transition between 0 and 1 and consequently

there is no transition effect in any of the plots of Figure 3.2c. Apart from the transition

effect, every other aspect of the results in Figure 3.2c is similar to what we saw in Figure

3.1c. Larger sample sizes still result in better overall performance, the bootstrap coverage

still looks like an upward scaled version of the delta method coverage, and bias and RMSE

are negligible for reasonably large samples.
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(a) The true CDFs (b) True PoAs

(c) The bootstrap and delta method CI coverage, the bias, and the RMSE

Figure 3.1: (a) The true versions of the CDFs under comparison. (b) The true and asymptotic PoAs.
(c) The results of the simulation study of the scenario Gamma(2,2) vs normal family.
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(a) The true CDF (b) True PoAs

(c) The bootstrap and delta method CI coverage, the bias, and the RMSE

Figure 3.2: (a) The true versions of the CDFs under comparison (in this scenario they are overlapping).
(b) The true and asymptotic PoAs. (c) The results of the simulation study of the scenario N(4,1) vs
normal family.
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3.4 N(0,1) vs N(0,1)

In this section we consider the special scenario where we compare the estimated CDF

against a completely specified distribution. More precisely, our samples are drawn from a

N(0,1) population and we want to check whether N(0,1) is a good model for them. We

include this scenario in our simulation study to verify that the methodology works well

when the reference distribution is completely specified. As we can see, the plots in Figure

3.3 look very similar to those in Figure 3.2 in the previous section. Larger sample sizes

(n = 1,000 and 10,000) still result in close to 100% coverage for both types of CIs, and the

bias and the RMSE are close to zero. For the small sample size (n = 100), however, the

coverage of the CIs are worse than their counterparts in Figure 3.2c. This difference is due

to the variability that exists when estimating the parameters of the reference distribution,

which we did in Section 3.3 but not here. We discuss this point in more detail in Chapter

7.

3.5 General Insights Drawn

The results of the three scenarios considered in this chapter (and also the two scenarios

considered in Appendix C, where we find results very similar to the ones discussed here),

lead us to the following conclusions:

• The bootstrap-based CI has consistently higher coverage than the delta method-based

CI across different scenarios and different sample sizes.
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(a) The true CDF (b) True PoAs

(c) The bootstrap and delta method CI coverage, the bias, and the RMSE

Figure 3.3: (a) The true versions of the CDFs under comparison (in this scenario they are overlapping).
(b) The true and asymptotic PoAs. (c) The results of the simulation study of the scenario N(0,1) vs
N(0,1).
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• With larger sample sizes (n = 1,000 and 10,000) the coverage of the both types of

CIs are reasonably high, though they may perform poorly in transition areas (if there

are any). With the small sample size (n = 100) we still get good average coverage.

• The RMSE and bias of the PoA estimator is almost zero for large sample sizes

(n = 1,000 and 10,000) meaning that the PoA estimator accurately and precisely

estimates the true PoA. When the sample size is small (n = 100), however, we have

non-zero RMSE and bias but they are still reasonably small.
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Part II

Two-Sample Problem
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Chapter 4

Introduction

4.1 The Problem

In Part II of the thesis, we will generalize the methods of Part I to the two-sample problem

i.e., when we have two independent samples from two potentially different populations

and we want to compare the distribution of the populations. Like the one-sample case,

the two-sample problem also has a variety of real-world applications. For example, we

encounter this problem in statistical experiments where we wish to make inferences about

possible differences between subjects in different experimental conditions. Similarly, the

question of whether the distributions of two groups are the same may also be of interest

in two-group comparisons in observational studies.

Such comparisons could be made on the basis of summary statistics such as means or
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medians of the two groups. Although such comparisons reveal some information about the

potential differences between the underlying groups, more insight may be gained if we com-

pare the whole distributions rather than just summary statistics. For example, consider

the PISA dataset introduced in Part I which contains reading scores of 3663 students, and

assume we are investigating whether reading scores differ significantly by gender. In Figure

4.1 we can see the histograms of the girls’ and boys’ reading scores. Suppose we find that

the mean of the reading scores of the girls and boys are practically equivalent, meaning

the difference is practically negligible. Does this mean that the distribution of reading

scores are the same for girls vs. boys? Of course not. A comparison of means provides

information only about the location of these distributions. It is possible that they have

similar means, but they may differ with respect to variability or skewness, for example.

Therefore, it is evident that with a full comparison of the underlying distributions, we can

answer such questions more accurately. Later, in Section 5.3, we will apply our proposed

methodology to this example to investigate the similarities and differences between the

distributions of the reading scores of the girls and boys.

The notation we use here in Part II will be similar to that of Part I. In particular we

consider a population P of size N with the true CDF F and true PDF f from which we

have observed a sample S of n units on which we observe the variable x: {x1, x2, . . . , xn}.

The difference between Part II and Part I is that here G and g are no longer known. In

fact, we consider a second population Q of size M with true CDF G and true PDF g

from which we have observed a sample L of m units on which we observe the variable y:

{y1, . . . ym}. Our objective is again to compare the comparison distribution F with the
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Figure 4.1: Histogram of the girls’ (the left plot) and the boys’ (the right plot) reading scores.

reference distribution G (and also f with g). But here, because we do not know these

functions, we estimate them from the sample data, S and L. Just as we did in Part I, we

use the Horvitz-Thompson estimator to estimate the CDFs, and then we compare these

estimates using a probability of agreement analysis that accounts for the uncertainty asso-

ciated with estimating F and G. For comparing the PDFs we will again use the relative

density. But here, because the functions G and g are unknown, we use a different version

of the relative density from what was used in Section 2.2.

4.2 Existing Methods

Similar to the one-sample case, the common approach for comparing two unknown distri-

butions is with a hypothesis test. Two of the most well-known tests are the Kolmogorov-

Smirnov (Kolmogorov, 1933) test and the Anderson-Darling (Anderson and Darling, 1952;
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1954) test. We have seen the one-sample versions in Chapter 1; here we review their

two-sample counterparts. The primary difference between the one-sample and two-sample

versions of these tests is in the null hypothesis and the corresponding test statistic. While

in the one-sample case the null hypothesis is the equality between the distribution from

which the sample was drawn and the reference distribution, here, in the two-sample case,

the null hypothesis is the equality between the two distributions from which the samples

were drawn. Notationally there is no difference, however. The hypothesis statement is

H0 : F = G vs. HA : F 6= G

or, equivalently,

H0 : f = g vs. HA : f 6= g.

Of course, new test statistics are needed for the two-sample case, but the decision to reject

the null hypothesis or not, is still based on a p-value. The test statistics associated with the

two-sample version of the Kolmogorov-Smirnov (KS) test and the two-sample Anderson

Darling test still quantifiy the distance between the distributions under comparison, but

here the comparison is between the ECDFs of the two samples, defined as

F̂n(x) =
∑
u∈S

I[xu ≤ x]

n
and Ĝm(x) =

∑
u∈L

I[yu ≤ x]

m
, (4.1)
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where {x1, . . . , xn} and {y1, . . . , ym} are the observed data associated with samples S and

L. The two-sample KS test statistic is then given by

Dn,m = supx|F̂n(x)− Ĝm(x)|.

For large sample sizes, the null hypothesis is rejected at level α whenDn,m >
√
−1

2
ln(α

2
)n+m
nm

.

The two-sample Anderson-Darling test statistic also has the same construction as its one-

sample counterpart. It is a weighted sum of the distances between the two distributions

under comparison which here are the two ECDFs. It has the following form

A2
nm =

nm

n+m

∫ ∞
−∞

[
F̂n(x)− Ĝm(x)

]2
Ĥn+m(x)[1− Ĥn+m(x)]

dĤn+m(x),

where Ĥn+m(·) is the ECDF of the combined sample

Ĥn+m(x) =
nF̂n(x) +mĜm(x)

n+m
.

Note that this test statistic makes the test sensitive to differences in the tails of the com-

bined sample where Ĥn+m(x)[1− Ĥn+m(x)] is close to zero. The distribution of A2
nm is not

known in closed form, but tables of critical values have been published (Pettitt, 1976).

In Part I we explained that when we aim to prove the equality of two characteristics,

it may be preferable to start with the opposite assumption, i.e., to begin by assuming that

the two characteristics under comparison are different, and then look for evidence of equiv-
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alence. This philosophy is also true for the two-sample problems discussed here. Wellek

(2010) promotes the use of two-sample equivalence tests in which the null and alternative

hypotheses are defined as

H0 : π+ ≤ 1/2− ε1 or π+ ≥ 1/2 + ε2 vs. HA : 1/2− ε1 ≤ π+ ≤ 1/2 + ε2,

where π+ = P (X > Y ) and X ∼ F and Y ∼ G. The intuition here is that if F = G then

π+ = P (X > Y ) = 1
2
. The constants ε1 and ε2 are chosen using practical considerations

just like δ in the PoA analysis. Wellek (2010) proposes testing this hypothesis with a

statistic related to the Mann-Whitney U-statistic.

However, just as in the one-sample case, the decision to reject or not reject the null hy-

pothesis (in either traditional tests or equivalence tests) is based on a p-value. Therefore,

all of the p-value problems discussed in Part I are still present here. In particular: the

fact that a single p-value is not very informative, difficult to interpret, and can be made

arbitrarily small by making the sample size arbitrarily large, are still relevant issues.

In the next section, we demonstrate that the PoA approach can be easily adapted for

use in the two-sample problem and therefore provides an alternative method of comparing

two unknown distributions that does not suffer from the same issues as hypothesis tests

do.
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4.3 An Alternative Approach

The PoA can also be used in the two-sample setting as well. We define the PoA between

two unknown distributions F and G based on their estimators F̃ and G̃

θ(x) = P (−δ ≤ F̃ (x)− G̃(x) ≤ δ).

The only difference between this definition and the one-sample version in Equation 1.2 is

that here G is also unknown and must be estimated. As in Part I, we suggest that an

additional comparison of PDFs f and g may be beneficial because, as opposed to com-

paring CDFs (which have a cumulative interpretation), comparing PDFs have a pointwise

interpretation that can be insightful. A graphical comparison of PDFs is facilitated by

the two-sample version of the relative density. In Chapter 5 we discuss the two-sample

generalization of the Horvitz-Thompson-based PoA and the use of the relative density in

the two-sample setting. In Chapter 6 we report the results of a simulation study (like the

one in Chapter 3) that investigates the properties and performance of the proposed PoA

methodology in the two-sample setting.
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Chapter 5

Proposed Methodology for the

Two-Sample Scenario

5.1 The Probability of Agreement for Two-Sample

CDF Comparisons

The problem of comparing the distributions of two different populations arises in practi-

cally every field of study. In this section, we adapt the probability of agreement (PoA)

methodology for use in that scenario.
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5.1.1 The Probability of Agreement

The definition of the PoA used in the two-sample scenario is analogous to the one-sample

version in Equation 2.1. The difference is that here we consider the difference between

estimators of two unknown CDFs instead of the difference between the estimator of one

unknown CDF and one known CDF. Therefore, the PoA is defined as

θ(x) = P
(
−δ ≤ F̃ (x)− G̃(x) ≤ δ

)
, (5.1)

where F̃ (·) and G̃(·) are the estimators for the unknown CDFs F (·) and G(·) that charac-

terize populations P and Q, respectively. The interpretation of the interval (−δ, δ) is the

same as in Part I: it is a context-specific indifference region, meaning that as long as the

difference between the characteristics lies in this interval, we consider the characteristics

practically equivalent. In order to calculate the PoA we must estimate the CDFs and,

like in Part I, we do this using the Horvitz-Thompson method as we describe in the next

subsection.

5.1.2 Applying the Horvitz-Thompson Method

To use the Horvitz-Thompson method in the two-sample setting, we mimic what was done

in the one-sample case separately for both samples. Let {x1, . . . , xn} and {y1, . . . , ym}

be the samples from populations P and Q that are characterized by the CDFs F and G

respectively. Then we have

F̂HT (x) =
∑
u∈S

I(xu ≤ x)

Nπu
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and

ĜHT (x) =
∑
u∈L

I(yu ≤ x)

Mπu
,

where N and M are the population sizes corresponding to P and Q respectively, and πu

is a marginal inclusion probability.

The estimated variances of these estimators are given by

V̂ ar
[
F̃HT (x)

]
=
∑
u∈S

∑
v∈S

(
πuv − πuπv

πuv

)
I(xu ≤ x)

Nπu

I(xv ≤ x)

Nπv
(5.2)

and

V̂ ar
[
G̃HT (x)

]
=
∑
u∈L

∑
v∈L

(
πuv − πuπv

πuv

)
I(yu ≤ x)

Mπu

I(yv ≤ x)

Mπv
, (5.3)

where πuv is a joint inclusion probability. Finally, given the asymptotic normality result of

Section 2.2, we have

F̃HT (x)− F (x)

V̂ ar
[
F̃HT (x)

] D−→ N(0, 1) (5.4)

and

G̃HT (x)−G(x)

V̂ ar
[
G̃HT (x)

] D−→ N(0, 1), (5.5)

where the variance estimates are calculated as in Equations 5.2 and 5.3.

68



5.1.3 Estimating the Probability of Agreement

Because interest lies in the distribution of the difference between the two CDFs, the asymp-

totic normality results given in Equations 5.4 and 5.5 can be used to determine the following

asymptotic result for the difference

(
F̃HT (x)− G̃HT (x)

)
−
(
F (x)−G(x)

)
V̂ ar

[
F̃HT (x)

]
+ V̂ ar

[
G̃HT (x)

] D−→ N(0, 1). (5.6)

Note that because the two samples S and L are independent, so also are the two estimators

F̃HT (x) and G̃HT (x), and so the variance of their difference is given by the sum of their

individual variances. With this result, we calculate the PoA as

θ(x) = P
(
−δ ≤ F̃HT (x)− G̃HT (x) ≤ δ

)
∼= Φ

 δ − (F (x)−G(x))√
V̂ ar

[
F̃HT (x)

]
+ V̂ ar

[
G̃HT (x)

]
− Φ

 −δ − (F (x)−G(x))√
V̂ ar

[
F̃HT (x)

]
+ V̂ ar

[
G̃HT (x)

]
 ,

(5.7)

where Φ(·) is the CDF of the standard normal distribution. By replacing F (·) and G(·)

with their Horvitz-Thompson estimates, we obtain an estimate of the PoA

θ̂(x) = Φ

 δ − (F̂HT (x)− ĜHT (x))√
V̂ ar

[
F̃HT (x)

]
+ V̂ ar

[
G̃HT (x)

]
− Φ

 −δ − (F̂HT (x)− ĜHT (x))√
V̂ ar

[
F̃HT (x)

]
+ V̂ ar

[
G̃HT (x)

]
 .

(5.8)
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Like before, we can use either the bootstrap or asymptotic normality and the delta method

to construct approximate CIs for θ(x). The bootstrap approach in this case is identical to

the approach described in Section 2.1.4 for the one-sample case, except that θ̂1(x), . . . θ̂B(x)

are now calculated using Equation 5.8 instead of Equation 2.7. However, the delta method

approach must be generalized for the two-sample problem. We describe this generalization

in the next section.

5.1.4 Confidence Intervals Based on Asymptotic Normality

In this section we use the delta method to estimate the distribution of the PoA estimator

at a given point x, and we use it to calculate a pointwise CI for θ(x). Similar to the

development in Section 2.1.5, we will write the estimator version of Equation 5.8 as

θ̃(x) ∼= Φ
(
U(D̃(x))

)
− Φ

(
L(D̃(x))

)
, (5.9)

where

D̃(x) = F̃HT (x)− G̃HT (x),

U(D̃(x)) =
δ − D̃(x)√

V̂ ar
[
F̃HT (x)

]
+ V̂ ar

[
G̃HT (x)

] ,
and

L(D̃(x)) =
−δ − D̃(x)√

V̂ ar
[
F̃HT (x)

]
+ V̂ ar

[
G̃HT (x)

] .
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Regarding the PoA as a function of D̃(x) and given the distributional result from Equation

5.6, we are able to use the delta method to determine the distribution of the PoA estimator,

θ̃(x). Based on the delta method the variance of θ̃(x) is given by

V ar[θ̃(x)] =

[
dθ(x)

dD(x)

]2
V ar[D̃(x)]

=

− φ(U(D(x)))− φ(L(D(x)))√
V̂ ar

[
F̃HT (x)

]
+ V̂ ar

[
G̃HT (x)

]


2

V ar[D̃(x)]

= [φ(U(D(x)))− φ(L(D(x)))]2 ,

where φ(·) is the PDF of a standard normal distribution. Hence, by the delta method we

have

θ̃(x)− θ(x)

[φ(U(D(x)))− φ(L(D(x)))]

D−→ N(0, 1). (5.10)

Using this asymptotic result one can construct approximate CIs. The approximate 100(1−

α)% CI for θ(x) is given by

[
θ̂(x)− zα/2

(
φ(U(D̂(x)))− φ(L(D̂(x)))

)
, θ̂(x) + zα/2

(
φ(U(D̂(x)))− φ(L(D̂(x)))

)]
,

where zα/2 is the quantile of the standard normal distribution such that Φ(zα/2) = 1− α
2
,

and U(D̂(x)) and L(D̂(x)) are the upper and lower bounds defined above, but evaluated

at D̂(x) = F̂HT (x)− ĜHT (x).
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5.2 The Relative Density for Two-Sample PDF Com-

parisons

Here we review the relative density methodology for the two-sample problem. Just as in

Section 2.2, the goal is to compare two PDF functions, but here both PDFs are unknown

and so additional care is required. In Section 5.2.1, we review the process of estimating

the relative density and its associated confidence intervals in the two-sample context. In

Section 5.2.2 we discuss a decomposition of the relative density which one can use in the

two-sample setting to gain a more in-depth understanding of the similarities/differences

between the two PDFs under comparison.

We could in theory apply the PoA methodology directly to the estimated relative den-

sity, but for the same practical issue discussed in Part I, we do not suggest using the PoA

for the relative density. Nevertheless, the interested reader can refer to Appendix B to see

how the PoA may be defined and calculated for the two-sample relative density.

5.2.1 Two-Sample Relative Density

As in Section 2.2 we assume that we have a random variable X with CDF F and PDF f

that defines the distribution of the comparison population P from which we have observed

a sample S. We also assume we have a random variable Y with CDF G and PDF g that

defines the distribution of the reference population Q, from which we have observed a

sample L. The definition of the two-sample relative density is the same as in one-sample
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setting: the relative distribution comparing F to G is defined as the distribution of the

random variable R = G(X). Therefore, H and h, the CDF and PDF of R, can be found

in the same manner as in Section 2.2

H(r) = F (G−1(r))

and

h(r) =
dH(r)

dr
=
f(G−1(r))

g(G−1(r))
.

However, when estimating the relative density in the two-sample setting, we must now

account for the fact that the function G is not known. We can no longer simply calculate

the relative data defined as ri = G(xi) for i = 1, . . . , n; we must first estimate G. We may

do so using the ECDF of G defined in Equation 4.1, and then we can calculate what is

known as the quasi-relative data (Handcock and Morris, 1999).

qi = Ĝ(xi) for i = 1, . . . , n.

Next we apply the KDE method to the quasi-relative data to estimate the relative density

function h(r)

ĥn,m(r) =
1

nbn

n∑
i=1

K

(
r − qi
bn

)
, (5.11)

where bn is the bandwidth and K(·) is a kernel function. Note that the kernel density esti-

mate of h depends on m through the quasi-relative data qi. As in the one-sample case we

use the biwieght kernel given in Equation 2.12 and we also use the same rule for selecting
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the bandwidth, namely the normal reference rule given in Equation 2.13.

(Handcock and Morris, 1999) provide the asymptotic distribution of the KD estimator

of the relative density in the two-sample setting. They show the following asymptotic

result for the estimator in Equation 5.11

ĥn,m(r)− h(r)√
h(r)R(K)

nbn
+ h2(r)R(K)

mbn

D−→ N(0, 1), (5.12)

where R(v) =
∫∞
−∞ v(x)2dx.

Note that the above result holds when we are using the quasi-relative data qi instead

of relative data ri in the kernel density estimation. The second term in the asymptotic

variance of the estimator, as compared to the single variance term in the one-sample ver-

sion (see Equation 2.14), may be interpreted as the cost of using the estimated Ĝ instead

of the true G.

This asymptotic result can be used to calculate approximate pointwise CIs for h(r). The

approximate level 100(1− α)% CI is given by

ĥn,m(r)− zα/2

√
ĥn,m(r)R(K)

nbn
+
ĥ2n,m(r)R(K)

mbn
, ĥn,m(r) + zα/2

√
ĥn,m(r)R(K)

nbn
+
ĥ2n,m(r)R(K)

mbn

 ,
where the standard errors are obtained by replacing h(r) with ĥn,m(r) in the variance term

of Equation 5.12.
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5.2.2 Decomposition of the Relative Density

In order to gain a more detailed understanding of the potential differences between the two

distributions under comparison, Handcock and Morris (1999) proposed a decomposition of

the relative density into factors that can be attributed to differences in mean, differences

in scale, and differences in shape other than mean and scale. Assume that yr = G−1(r)

and consider the following identity

h(r) =
f(yr)

g(yr)
=
gL(yr)

g(yr)
× gLS(yr)

gL(yr)
× f(yr)

gLS(yr)
.

Here gL is the density function of the random variable Y +α where Y has density g and α

is chosen such that the mean of Y + α equals the mean of X. Similarly, gLS is the density

function of the random variable β(Y + α) where Y is as before and α and β are chosen

such that the mean and variance of β(Y + α) equal those of X. This way the first term

hL(r) = gL(yr)
g(yr)

only corresponds to the difference in mean, the second term hLS(r) = gLS(yr)
gL(yr)

only corresponds to the difference in variance, and the third term (also known as the

residual term) hR(r) = f(yr)
gLS(yr)

contains all the information about shape differences not

attributed to a mean shift or a difference in variability.

It is important to justify why we did not use this decomposition in the one-sample case.

In the one-sample goodness-of-fit problem we were primarily concerned with comparing

F with a known distribution G whose mean and variance were equal to the mean and

variance of X. In this scenario, the above decomposition gives no additional information

because the reference distribution already has the same mean and variance as the com-
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parison distribution and so the first two terms of the decomposition would be 1 and the

residual term would be the same as the overall relative density.

5.3 Examples

In this section we will illustrate our proposed methodology through some examples. We

start with a real world example to demonstrate the process in practice. Then we will

consider several simulated examples to better illustrate the methodology and to show that

the results are in line with our expectation in a simulated scenario where we know the

truth about the distributions being compared.

5.3.1 PISA Dataset, Boys vs Girls

As our first example, we return to the PISA dataset that we introduced in Section 1.1.

In Section 2.3.1 we investigated whether the normal distribution is a good model for the

students’ reading scores. Here we apply our proposed two-sample methodology to compare

the distributions of boys’ and girls’ reading scores and to investigate whether they are

practically equivalent. Figure 4.1 shows the histogram of boys’ and girls’ reading scores.

Looking at those histograms it seems that girls’ and boys’ scores are similarly distributed.

We now apply our proposed methodology to gain more in-depth information about the

similarities and differences between these two distributions.

Figure 5.1a shows the Horvitz-Thompson estimate of the CDFs of the girls’ and boys’
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reading scores along with the corresponding approximate 95% CIs calculated based on

the asymptotic normality of the Horvitz-Thompson estimator. We assume for illustra-

tion a population of size M = N = 10,000 for both girls and boys and we assume

that the observed data (n = 1,791 girls and m = 1,872 boys) represent simple random

samples from them. Therefore the relevant marginal and joint inclusion probabilities are

n
N

= 1791
10000

, n(n−1)
N(N−1) = 1791×1790

10000×9999 for the girls and m
M

= 1872
10000

, m(m−1)
M(M−1) = 1872×1871

10000×9999 for the

boys.

We can see that the estimated CDFs are quite different except in the tails. The same

phenomenon can be seen in Figure 5.1b which shows the difference between the estimated

CDFs from Figure 5.1a. In Figure 5.1b we also include two horizontal lines at ±δ = ±0.05.

We can see that for values of 350 < x < 600 the absolute difference between the two

estimated CDFs is larger than δ = 0.05. The estimated PoA is shown in Figure 5.1c, and

the plot illustrates that in the same range of 350 < x < 600 the chance that the difference

is smaller than δ = 0.05 is very small. For other values of x we are almost certain that the

absolute difference between the estimated CDFs is smaller than 0.05.

However, as was discussed in Section 2.3.1, the conclusion of the PoA analysis depends

on the value of δ. Figure 5.2a shows the contour plot of PoA and Figure 5.2b shows sev-

eral PoA curves corresponding to different values of δ. As is expected, the PoA is larger

(smaller) with larger (smaller) values for δ. As we explained in Part I, like the value of

δ, how large the estimated PoA, θ̂(x), must be to conclude practical equivalence between

F̂ (x) and Ĝ(x) should also be determined by the practitioner. But given what we see in
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Figures 5.1c, 5.2a, and 5.2b, it appears as though there is, generally speaking, poor agree-

ment between these two distributions, and therefore that girls’ and boys’ reading scores

are not practically equivalent.

(a) HT estimate of the CDFs (b) The difference between the estimated CDFs

(c) The PoA

Figure 5.1: (a) Horvitz-Thompson estimate of the CDFs of the girls’ and boys’ reading scores with
their corresponding 95% CIs. The 95% CI is constructed based on asymptotic normality of the Horvitz-
Thompson estimator. (b) The difference between the estimated CDFs. The 95% CI is constructed the
same way as in (a). (c)Estimated PoA with δ = 0.05 and 95% bootstrap and delta method CIs.

Next, we look at the estimated PDFs and the relative density plots to gain more insight
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(a) contour plot of PoA (b) PoAs with different δ values

Figure 5.2: (a)The contour plot of PoA. (b) Several PoA plots constructed with different values of δ.

into how the underlying distributions differ. Figure 5.3a shows the KDE of the PDFs of

the girls’ and boys’ reading scores. As opposed to the histograms in Figure 4.1, Figure

5.3a suggests that the girls’ reading scores tend to be slightly larger than the boys. Figures

5.3b, 5.3c, 5.3d, and 5.3e show the overall, location, scale, and residual relative densities

respectively. Recall that the location relative density quantifies the difference between the

mean of the reference and comparison distributions while the scale relative density corre-

sponds only to the difference in the variance of the two distributions. Finally, the residual

relative density accounts for any difference not attributed to differences in mean or variance.

Let us first interpret the location relative density visualized in Figure 5.3c. When the

mean of the reference distribution is larger (smaller) than the mean of the comparison, we

expect to see a decreasing (increasing) location relative density plot. Apart from values of

r near 0 and 1 which are affected by the downward bias of the KDE, we can see a decreas-

ing trend which suggests that the reference (girls’) distribution has larger mean than the
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comparison (boys’) distribution.

Next we interpret the scale relative density visualized in Figure 5.3d. Generally speak-

ing, in a scale relative density plot we expect to see a U-shape (inverted U-shape) when

the variance of the reference distribution is smaller (larger) than the variance of the com-

parison distribution. However, we do not see either of these patterns. Instead, we see a

relatively flat shape, with the 95% pointwise CIs covering 1 for all values of r except those

close to 0 or 1. Recall, the 95% CI is a pointwise confidence interval and should not be

interpreted as a confidence band. The decrease in relatively density values for r near 0

and 1 should not be interpreted as an inverted U- shape. This is a result of the downward

bias associated with the KDE. Therefore, Figure 5.3d suggests that there is no difference

in the variance of the distribution of boys’ and girls’ scores.

Finally we consider the residual relative density. Unlike the other two plots, here there is

no general pattern that we should look for. We should only check and see if the residual

plot is close to 1. A good reference for closeness is the CI; we should see if the reference

value 1 is included in the pointwise CIs at each 0 < r < 1. In Figure 5.3e we can see that

the reference value 1 is included in the pointwise CIs for all values of r except for those

near 0 and 1 (which are again affected by the downward bias of the KDE). The plots in

Figures 5.3c, 5.3d, and 5.3e together suggest that the primary difference between the two

distributions is a difference in mean. In other words, the two underlying distributions are

likely just shifted versions of each other.
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(a) Estimated PDFs of girls’ and boys’ scores

(b) The overall relative density (c) The location relative density

(d) The scale relative density (e) The residual relative density

Figure 5.3: (a) The KDEs of the PDFs of girls’ and boys’ reading scores. (b), (c), (d), and (e) are the
KDEs of the overall, location, scale, and residual relative densities with corresponding 95% CIs respectively.
All CIs are constructed based on the asymptotic normality of the KDE. The girls’ scores are considered
as the reference sample and the boys’ scores are the comparison sample.
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5.3.2 N(0,1) vs N(0,1)

In the boys’ vs girls’ test score example that we considered in the previous subsection, we

did not know whether the boys’ reading scores and girls’ reading scores were truly from

the same distribution or not. In this section we consider a simulated example where the

two observed samples are truly from the same distribution.

Assume that we have two simple random samples, each composed of m = n = 1,000

observations drawb from populations P and Q which are themselves composed of N =

M = 20,000 IID draws from N(0, 1). The goal is to apply the proposed methodology to

quantify the agreement between the observed distributions and decide whether they are

practically equivalent. Note that we do not want to find a specific distribution that fits

both samples, rather we just want to check whether it is reasonable to believe that they

come from the same underlying model, whatever that happens to be. In our methodology,

we first calculate the Horvitz-Thompson estimate of the CDF of both samples and then

we calculate the PoA which is the probability that these estimated CDFs are practically

equivalent across their support sets.

Figure 5.4a shows the Horvitz-Thompson estimate of the CDFs of the observed samples.

As we can see for values of x near −3 and 3, the two CDFs are very close and the CIs are

very narrow. This is expected because a CDF starts at 0 and increases to 1 and therefore

in the tails the variance of the estimated CDF is very small. For values of x between −3

and 3, on the other hand, the variances of the estimators are larger and so the CIs are not
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as narrow as in the tails. The same phenomenon can be seen in the difference plot (Figure

5.4b) where we see very narrow CIs in the tails and slightly wider CIs in the middle. Note

that in Figure 5.4b the difference curve is in the indifference region for all values of x, but

for values of x ∈ [−1, 1] we can see that the upper bound of the CI is above the horizontal

line at δ = 0.05. This is in line with the PoA plot in Figure 5.4c where we can see large

PoA values in the tails and slightly smaller PoA values for x ∈ [−1, 1]. This means that

we are certain that the absolute difference between the estimated CDFs is smaller than

δ = 0.05 for value of x < −1 and x > 1 but for values of −1 < x < 1 there is less certainty

as evidenced by wider CIs and slightly smaller PoA values in this region. Even still, the

chance of the estimated CDFs being within ±0.05 of each other is still reasonably high

even for x ∈ [−1, 1]. It is up to the practitioner to decide what size the PoA should be to

conclude the estimated CDFs are practically equivalent, but the evidence in Figure 5.4c

seems strong.

Notice that the patterns exhibited in these plots depend on the sample size and the value

of δ. The larger the sample, the smaller the variance, and the less uncertainty we have.

Here, because the true underlying distributions are the same, larger sample sizes will result

in larger PoA values with narrower CIs. For the sake of brevity, we do not include plots

corresponding to larger or smaller sample sizes but one can refer to Section 2.3.2 where we

have illustrated the effect of the sample size in the one-sample case. The effect of sample

size is analogous in the two-sample case. We do, however, explore the effect of sample size

on confidence interval coverage and the bias and variance of the PoA estimator in Chapter

6.
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(a) HT estimate of the CDfs (b) The difference between the estimated CDFs

(c) The PoA

Figure 5.4: (a) Horvitz-Thompson estimate of the CDFs of the observed samples (n = m = 1,000) from
N(0,1) with their corresponding 95% CIs. The 95% CIs are constructed based on asymptotic normality
of the Horvitz-Thompson estimator. (b) The difference between the estimated CDFs. The 95% CI is
constructed the same way as in (a). (c)Estimated PoA with δ = 0.05 and 95% bootstrap and delta
method CIs.
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(a) Estimated PDFs

(b) The overall relative density (c) The location relative density

(d) The scale relative density (e) The residual relative density

Figure 5.5: (a) The KDEs of the PDFs of samples (n = m = 1,000) generated from N(0,1). (b), (c),
(d), and (e) are the KDEs of the overall, location, scale, and residual relative densities with corresponding
95% CIs respectively. All CIs are constructed based on the asymptotic normality of the KDE.
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Finally, we examine the relative density plots for further insight into the comparability of

the two distributions. The KDE estimate of all four types of relative density, as well as

the KDE of the PDFs of the observed samples are shown in Figure 5.9. As we can see, all

five plots suggest that the two samples come from the same distribution. The estimated

PDFs in Figure 5.5a are very similar and the pointwise CIs in all four relative density plots

contain the value 1 for all values of r except for those near 0 or 1 (which are affected by the

downward bias associated with kernel density estimation as has already been discussed).

5.3.3 N(0,1) vs N(0,2)

Next we consider another simulated example where the underlying population distribu-

tions are truly different. More precisely, we consider two simple random samples of size

m = n = 1,000, one drawn from a population of size N = 20,000 characterized by the

N(0, 1) distribution, and the other drawn from a population of size M = 20,000 charac-

terized by the N(0, 2) distribution. As in the previous examples, the goal is to use the

proposed methodology to determine whether or not the distributions that characterize the

underlying populations that gave rise to the samples are practically equivalent.

Figure 5.6a shows the Horvitz-Thompson estimates of the CDFs of the observed sam-

ples along with the corresponding pointwise 95% CIs which are calculated based on the

asymptotic normality of the Horvitz-Thompson estimator. As always, we see that the es-

timated CDFs are very close with very narrow CIs in both tails. However, unlike what we

saw in the previous example, F̂ (x) and Ĝ(x) are not close to each other in the middle of
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the graph. They are substantially different except for values of x near 0 where they have

an intersection. Figure 5.6b visualizes the difference between F̂ (x) and Ĝ(x) and we draw

the same conclusions as in Figure 5.6a: it is almost zero with narrow CIs in the tails, it

crosses 0 around x = 0, and it is far from zero for other values of x. The PoA plot in Figure

5.6c (with δ = 0.05) visualizes the probability that these differences are within ±0.05. The

interpretation of the PoA plot matches intuition: the PoA is large (close to 1) for values

of x where the differences are in the indifference region and the PoA is small (close to

0) where the difference is not contained in the indifference region. Note that the value of

δ = 0.05 is again chosen for illustration. In practice, the user should carefully choose a suit-

able value for δ which facilitates an informative comparison in the context of their problem.

As always, we suggest looking at the relative density plots to gain more information about

the similarities and differences between the two distributions. Figure 5.7a shows the esti-

mated PDFs which suggests that there is a difference in scale but the location seems to be

the same. The same insight is confirmed by the location and scale relative densities in Fig-

ures 5.7c and 5.7d respectively. The location relative density does not show an increasing

or decreasing trend, suggesting there is no difference in the location of the two estimated

PDFs. The scale relative density shows a U-shape which means there is more variability

in the comparison sample compared to the sample reference. The residual relative density

in Figure 5.7e suggests that there is no difference other than a difference in location or

scale. These conclusions are expected as the distribution under comparison differ only with

respect to their variances.
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(a) HT estimate of the CDFs (b) The difference between the estimated CDFs

(c) The PoA

Figure 5.6: (a) Horvitz-Thompson estimate of the CDFs of the observed samples (n = m = 1,000) from
N(0,1) and N(0,2) with their corresponding 95% CIs. The 95% CIs are constructed based on asymptotic
normality of the Horvitz-Thompson estimator. (b) The difference between the estimated CDFs. The 95%
CI is constructed the same way as in (a). (c)Estimated PoA with δ = 0.05 and 95% bootstrap and delta
method CIs.
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(a) Estimated PDFs

(b) The overall relative density (c) The location relative density

(d) The scale relative density (e) The residual relative density

Figure 5.7: (a) The KDEs of the PDFs of the reference and comparison samples (n = m = 1,000) gener-
ated from from N(0,1) and N(0,2) respectively. (b), (c), (d), and (e) are the KDEs of the overall, location,
scale, and residual relative densities with corresponding 95% CIs respectively. All CIs are constructed
based on the asymptotic normality of the KDE.
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5.3.4 N(0,1) vs N(1,2)

In our fourth and final example, we consider two normal distributions which differ both in

terms of mean and variance. Here our two simple random samples of size n = m = 1,000

are drawn from a population of size N = 20,000 characterized by the N(0,1) distribution,

and the other drawn from a population of size M = 20,000 characterized by the N(1,2)

distribution. Figure 5.8a shows the Horvitz-Thompson estimate of the CDFs and Figure

5.8b shows the difference between the estimated CDFs. Both plots show that except in the

tails, the estimated CDFs are quite different. The same interpretation can be gleaned from

the PoA plot in Figure 5.8c which was calculated using δ = 0.05. This plot shows almost

certain practical equivalence in the tails and a very small chance of practical equivalence

for other values of x. However, for x near −2 the PoA increases, suggesting that for those

values of x there is roughly a 70% chance of the two estimated CDFs being within ±δ from

each other. Increased agreement for these values of x is not surprising given that it is for

the same values of x that the estimated CDFs intersect. However, the CIs are very wide

here, indicating increased uncertainty in this conclusion. The final decision in such areas

with high uncertainty should be made by the practitioner.

Just as in the previous example, the PoA plot suggests that the distributions under com-

parison are practically inequivalent, so we consult the relative density plots for insight

into why this might be the case. Figure 5.9a shows the KDE of the PDFs which suggest

the two distributions under comparison are different both in terms of mean and variance.

To calculate the relative density plots we consider the N(1,2) population the reference

90



population and the N(0,1) population the comparison population. We made this choice to

illustrate the fact that when the reference distribution has larger mean and larger variance,

we will see a decreasing location relative density and an inverted U-shape scale relative

density which are shown in Figures 5.9c and 5.9d respectively. Figure 5.9e is the estimated

residual relative density which suggests there is no difference between the two distributions

under comparison beyond a difference in means and variances. This is reassuring given

that the distributions under comparison are normal distributions with different means and

variances.
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(a) HT estimate of the CDfs (b) The difference between the estimated CDFs

(c) The PoA

Figure 5.8: (a) Horvitz-Thompson estimate of the CDFs of the observed samples (n = m = 1,000) from
N(0,1) and N(1,2) with their corresponding 95% CIs. The 95% CIs are constructed based on asymptotic
normality of the Horvitz-Thompson estimator. (b) The difference between the estimated CDFs. The 95%
CI is constructed the same way as in (a). (c)Estimated PoA with δ = 0.05 and 95% bootstrap and delta
method CIs.
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(a) Estimated PDFs

(b) The overall relative density (c) The location relative density

(d) The scale relative density (e) The residual relative density

Figure 5.9: (a) The KDEs of the PDFs of the reference and comparison samples (n = m = 1,000) gener-
ated from from N(1,2) and N(0,1) respectively. (b), (c), (d), and (e) are the KDEs of the overall, location,
scale, and residual relative densities with corresponding 95% CIs respectively. All CIs are constructed
based on the asymptotic normality of the KDE.
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Chapter 6

Two-Sample Evaluation

6.1 Explaining the Design of the Simulation Study

In this chapter, we conduct a similar simulation study to the one in Chapter 3, to ex-

amine the coverage of the proposed CIs for the PoA and also to study the bias and root

mean squared error (RMSE) of the PoA estimator, in the two-sample setting. We have

considered nine different scenarios: i. N(0,1) versus N(0,1), ii. N(0,1) versus N(1,1), iii.

N(0,1) versus N(0,2), iv. N(0,1) versus N(1,2), v. Gamma(2,2) versus Gamma(2,2), vi.

Gamma(4,1) versus Gamma(1,2), vii. Gamma(2,1) versus Gamma(1,2), viii. Gamma(2,2)

versus Gamma(1,2), and ix. N(1,5) vs IG(1,0.2). The intuition behind choosing these sce-

narios is to have an example where the underlying distributions are the same, one where

there is only a difference in mean, one where the only difference is in variance, and one

where we have differences in both mean and variance. The last scenario N(1,5) vs IG(1,0.2)
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is considered as an example where the mean and variance of the underlying distributions

are the same but the distributions themselves are very different. We also consider gamma

distributions to verify that the methodology is not limited to normal data. We define the

populations P and Q by taking N = 20,000 draws from the specified distributions and we

take simple random samples from each population. As in Chapter 3, we considered three

different sample sizes: m = n = 100, m = n = 1,000, and m = n = 10,000 to be able

to examine the effect of an increase in the sample sizes. For a given sample size, we take

simple random samples from P and Q and using this data we estimate the CDFs, the PoA,

and the corresponding CIs. We repeat this J = 1,000 times. Thus, at a given point x, we

have J = 1,000 CIs and we define coverage to be the proportion of these J = 1,000 CIs

that cover the true PoA. The true PoA here is defined similar to in Chapter 3, except that

we replace the known CDF in Equation 3.1 with the Horvitz-Thompson estimate of the

reference CDF calculated from the second observed sample

θn(x) =
1

J

J∑
j=1

I{|F̂ j
HT (x)− Ĝj

HT (x)| ≤ δ}.

The bias and RMSE are calculated exactly as in Equations 3.2 and 3.3 while we consider

nine different scenarios, the results obtained from these scenarios were very similar, hence

we only present two of them here in the main text: N(0,1) vs N(0,1) and N(0,1) vs N(1,2).

The results of the other seven scenarios are provided in Appendix D.
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6.2 N(0,1) vs N(0,1)

In this scenario we have two populations, both characterized by the N(0,1) distribution,

and we want to determine whether the two observed samples apear to come from a single

distribution. Similar to Chapter 3, we summarize the simulation results with six plots: the

true CDFs, the true PoAs, the coverage of the delta method- and bootstrap-based CIs, the

RMSE, and the bias for each of the sample sizes (m = n = 100, 1,000, and 10,000). These

plots, for this scenario, are shown in Figure 6.1. Note that in this scenario the underlying

true CDFs are the same and thus we have only one CDF plotted in Figure 6.1a and there is

no transition between 0 and 1 in Figure 6.1b. This simplifies interpretation because here we

do not have the transition effect (that was explained in Section 3.2). The results in Figure

6.1c look very similar to what we saw in the one-sample evaluation study (compare Figure

6.1c and Figure 3.3c, for example). We still see improved performance in all criteria with

larger sample sizes; the bootstrap coverage looks like an upward-scaled version of the delta

method coverage; and bias and RMSE are negligible for reasonably large samples. The

same reasoning that we provided in Section 3.2 can still be used to explain why the overall

shape of the coverage plots looks so similar: the two methods of CI construction differ only

in how the standard error of the PoA is estimated. As in the one-sample problem, the

bootstrap approach yields wider intervals and hence higher coverage.
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(a) The true CDF (b) True PoAs

(c) The bootstrap and delta method CI coverage, the bias, and the RMSE

Figure 6.1: (a) The true versions of the CDFs under comparison. (b) The true and asymptotic PoAs.
(c) The results of the simulation study of the scenario N(0,1) vs N(0,1).
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6.3 N(0,1) vs N(0,2)

Here we consider a scenario in which the underlying distributions are not truly the same

and the difference is in their variances. Nothing new is learned by examining this scenario,

relative to what has already been learned in the simulations discussed so far. However, we

include this scenario to illustrate that the transition effect is not just a characteristic of

the one-sample problem and it can be seen in two-sample problems as well. If we compare

the true PoAs in Figure 6.2b with the results shown in Figure 6.2c, the transition effect

is clearly visible. While we have good overall performance (especially with larger sample

sizes of 1,000 and 10,000), the performance is worst for values of x when |F (x) − G(x)|

transitions between being less than δ and greater than δ. As before, the larger the sample

size the more severe but more fleeting the transition effect.
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(a) The true CDFs (b) True PoAs

(c) The bootstrap and delta method CI coverage, the bias, and the RMSE

Figure 6.2: (a) The true versions of the CDFs under comparison. (b) The true and asymptotic PoAs.
(c) The results of the simulation study of the scenario N(0,1) vs N(0,2).
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6.4 General Insights Drawn

The results of the two scenarios considered in this chapter (and also the seven scenarios

considered in Appendix D, where we find results very similar to the ones discussed here),

lead us to the following conclusions:

• The bootstrap-based CI has consistently higher coverage than the delta method-based

CI across different scenarios and different sample sizes.

• With larger sample sizes (n = m = 1,000 and 10,000) the coverage of the both types

of CIs are reasonably high, though they may perform poorly in transition areas (if

there are any). With the small sample size (n = m = 100) we still get adequate

average coverage.

• The RMSE and bias of the PoA estimator is almost zero for large sample sizes

(n = m = 1,000 and 10,000) meaning that the PoA estimator accurately and precisely

estimates the true PoA. When the sample size is small (n = m = 100), however, we

have non-zero RMSE and bias but they are still reasonably small.

Note that these are the same conclusions drawn in the one-sample evaluation. As such,

we find that the properties and performance of the PoA methodology is consistent across

both one- and two- sample applications.
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Chapter 7

Conclusions and Future Work

In this thesis, we developed a methodology for the one- and two-sample comparison of dis-

tributions. More precisely, we have adapted the probability of agreement (PoA) methodol-

ogy for use when one wants to compare the distribution of an observed sample with a known

distribution (one-sample case), or when interest lies in comparing the distributions of two

independently observed samples (two-sample case). Our proposed methodology overcomes

the issues of the hypothesis testing-based approaches that are commonly applied in these

circumstances. In particular, the PoA methodology provides more information about the

similarities and differences between the distributions under comparison, its interpretation is

straightforward, and it is based on practical equivalence rather than statistical significance.

We also suggest using relative density plots as a supplementary graphical tool to help diag-

nose why the distributions under comparison are different if the PoA analysis suggest they

are different. We showed how one should apply the PoA and the relative density and how

one should interpret the resulting plots, through several real-world and simulated examples.
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We have used a large sample normal theory approach for estimating the PoA and we

have considered two different methods for calculating confidence intervals for the PoA: a

large sample normal theory method in conjunction with the delta method and a bootstrap-

based method. We have examined the coverage rate of both methods in several simulation

studies and have found that the bootstrap-based method for constructing CIs performs con-

sistently better in all simulation scenarios in both one- and two-sample cases, especially

when the sample sizes are small (samples of size 100 in our simulation studies). For bigger

sample sizes (we considered samples of size 1,000 and 10,000) both methods perform quite

well. We also found that the RMSE and bias of the PoA estimator decrease as the sample

sizes increases, however even with the smallest sample sizes in our simulation (n = 100 in

one-sample case and m = n = 100 in two-sample case) the bias and RMSE values were

reasonable. Therefore we conclude that even with small sample sizes, the PoA estimator

is able to accurately and precisely identify whether the distributions under comparison are

practically equivalent.

There are of course several ways that this work can be extended in the future. First,

the PoA methodology could be generalized for the k-sample (k > 2) problem. That is,

we intend to make the PoA methodology applicable for the situation in which we seek to

compare k samples while accounting for the multiple comparison issue.

Another useful extension would be to adapt the methodology to potentially account for

a non-constant value of δ, making the methodology suitable for a wider range of applica-
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tions. This acknowledges that the indifference interval [−δ, δ] need not be constant across

the whole range of x. For instance, in our examples we saw that because all CDFs start

at 0 and end at 1, the variance of an estimated CDF is smallest in the tails. Therefore, it

may be reasonable to consider smaller values of δ in the tails and larger values of δ in the

middle of the support set of the estimated CDFs.

Another extension, relevant just to the one-sample case, is to account for the uncertainty

associated with estimating the parameters of the reference distribution. Here we use the

observed sample (from the comparison distribution) to estimate the unknown parameters

of the reference distribution. We then treat these values as known, and ignore the fact that

they are in fact estimates. Accounting for uncertainty in this estimation is an important

consideration that we intend to consider in future work. Doing so may provide a more

accurate estimate of the PoA. The challenge is that, unlike in the two-sample case, the

uncertainty associated with both estimated CDFs is the observed sample, so the estimates

are not independent.

In Chapter 2 we justified the use of Horvitz-Thompson estimation because it could ac-

commodate sampling mechanisms other than simple random sampling, but we have not

explored that here. In future work we intend to investigate the PoA methodology with

sampling designs other than simple random sampling. It will be important to conduct a

proper simulation study to evaluate the performance of the PoA methodology when the

sampling design is something other than simple random sampling, such as stratified or

cluster-based random sampling, for example.
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As mentioned several times throughout the thesis the version of the KDE used in this

thesis has a downward bias near 0 and 1. There are however some ways to overcome this

bias, and considering them in the future may result in a more accurate relative density

plots. For example, Cwik and Mielniczuk (1993) propose a boundary kernel estimator

which uses the reflection method to overcome the downward bias of the KDE. They also

provide asymptotic normality results that can be used for the calculation of the CIs. Al-

ternatively one can also construct bootstrap-based CIs.

Finally, we acknowledge that sometimes a single-number summary can be useful, and

may serve as a useful supplement to the PoA plot. One such summary that can be easily

calculated alongside the existing calculations, is a weighted average of the estimated PoA

values across the range of x ∈ A. More precisely, we could use

∑
x∈Aw(x)θ̂(x)∑
x∈Aw(x)

,

where w(x) is a weight function that can be chosen by the practitioner according to their

specific problem, to give differential weight to different values in the support set.
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Appendix A

The PoA for the One-Sample

Relative Density

In this section we discuss an adaptation of the PoA methodology to the relative density.

While this is theoretically feasible, as we describe below, there are some practical concerns

when it comes to using the PoA for the relative density that limit its utility in practice.

We define the PoA in this setting to compare the relative density to the constant value 1

as

θ(r) = P (−δ ≤ h̃n(r)− 1 ≤ δ).

We can interpret θ(r) as the probability that the relative density is practically equivalent

to 1 at point r. In other words, θ(r) may be interpreted as the probability that f and g are

practically equivalent. We can use the asymptotic normal distribution given in Equation
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2.14 to approximate the PoA

θ(r) = P (−δ ≤ h̃n(r)− 1 ≤ δ)

∼= Φ

δ − (h(r)− 1)√
h(r)R(K)

nbn

− Φ

−δ − (h(r)− 1)√
h(r)R(K)

nbn

 ,

where Φ(·) is the CDF of the standard normal distribution. However, because we do not

know h(r), the above asymptotic approximation cannot be calculated. In practice we need

to replace h(r) with its kernel density estimate ĥn(r) to obtain an estimate of th PoA in

this case

θ̂(r) = Φ

δ − (ĥn(r)− 1)√
ĥn(r)R(K)

nbn

− Φ

−δ − (ĥn(r)− 1)√
ĥn(r)R(K)

nbn

 .

We can also build CI’s for this version of the PoA with either the bootstrap method or

the delta method, just as we did for the Horvitz-Thompson-based PoA in Sections 2.1.4

and 2.1.5. However, for the reason described below, we do not pursue the details of these

methods here.

As we have shown, the PoA can easily be defined and calculated, but this relies on a

practitioner being able to specify a meaningful value for δ. As we have seen, the conclu-

sions from a PoA analysis depend dramatically on δ. Because it is difficult to choose the

value of δ in an intuitive manner here, we do not recommend applying the PoA method

on the relative density. Nonetheless the relative density is still a useful graphical tool that

can complement a PoA analysis that compares CDFs.
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Appendix B

The PoA for the Two-Sample

Relative Density

Similar to the one-sample case, given the asymptotic result in Equation 5.12, we can define

a relative density-based PoA for the two-sample case

θ(r) = P (−δ ≤ h̃n,m(r)− 1 ≤ δ)

≈ Φ

 δ − (h(r)− 1)√
h(r)R(K)

nbn
+ h2(r)R(K)

mbn

− Φ

 −δ − (h(r)− 1)√
h(r)R(K)

nbn
+ h2(r)R(K)

mbn

 ,
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which is estimated by substituting the kernel density estimate ĥn,m(r) for h(r)

θ̂(r) = P (−δ ≤ h̃n,m(r)− 1 ≤ δ)

≈ Φ

 δ − (ĥn,m(r)− 1)√
ĥn,m(r)R(K)

nbn
+

ĥ2n,m(r)R(K)

mbn

− Φ

 −δ − (ĥn,m(r)− 1)√
ĥn,m(r)R(K)

nbn
+

ĥ2n,m(r)R(K)

mbn

 .

However, the same practical issue arises that was discussed in Appendix A: the choice of

δ is not intuitive. Recall that, the interval (−δ, δ) should be thought of as an indifference

region and if the difference between the estimated relative density and the constant value

1 is in this interval we consider f and g practically equivalent, and the PoA calculates

the probability of this practical equivalence at a given value r. However, if an appropriate

value of δ is not clear to a practitioner, then the PoA methodology is not useful. Therefore,

as we did in the one-sample case, we suggest that the PoA method should be used only to

compare CDFs and, the relative density methodology can be used as a supplementary and

useful graphical tool.

115



Appendix C

One-Sample Evaluation Studies

116



C.1 N(4,1) vs Gamma Family

(a) The true CDFs (b) True PoAs

(c) The bootstrap and delta method CI coverage, the bias, and the RMSE

Figure C.1: (a) The true versions of the CDFs under comparison. (b) The true and asymptotic PoAs.
(c) The results of the simulation study of the scenario N(4,1) vs gamma family.
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C.2 Gamma(2,2) vs Gamma Family

(a) The true CDF (b) True PoAs

(c) The bootstrap and delta method CI coverage, the bias, and the RMSE

Figure C.2: (a) The true versions of the CDFs under comparison (in this scenario they are overlapping).
(b) The true and asymptotic PoAs. (c) The results of the simulation study of the scenario Gamma(2,2)
vs gamma family.
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Appendix D

Two-Sample Evaluation Studies
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D.1 N(0,1) vs N(1,1)

(a) The true CDFs (b) True PoAs

(c) The bootstrap and delta method CI coverage, the bias, and the RMSE

Figure D.1: (a) The true versions of the CDFs under comparison. (b) The true and asymptotic PoAs.
(c) The results of the simulation study of the scenario N(0,1) vs N(1,1).
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D.2 N(0,1) vs N(1,2)

(a) The true CDFs (b) True PoAs

(c) The bootstrap and delta method CI coverage, the bias, and the RMSE

Figure D.2: (a) The true versions of the CDFs under comparison. (b) The true and asymptotic PoAs.
(c) The results of the simulation study of the scenario N(0,1) vs N(1,2).
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D.3 Gamma(2,2) vs Gamma(2,2)

(a) The true CDF (b) True PoAs

(c) The bootstrap and delta method CI coverage, the bias, and the RMSE

Figure D.3: (a) The true versions of the CDFs under comparison. (b) The true and asymptotic PoAs.
(c) The results of the simulation study of the scenario Gamma(2,2) vs Gamma(2,2).
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D.4 Gamma(4,1) vs Gamma(1,2)

(a) The true CDFs (b) True PoAs

(c) The bootstrap and delta method CI coverage, the bias, and the RMSE

Figure D.4: (a) The true versions of the CDFs under comparison. (b) The true and asymptotic PoAs.
(c) The results of the simulation study of the scenario Gamma(4,1) vs Gamma(1,2).
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D.5 Gamma(2,1) vs Gamma(1,2)

(a) The true CDFs (b) True PoAs

(c) The bootstrap and delta method CI coverage, the bias, and the RMSE

Figure D.5: (a) The true versions of the CDFs under comparison. (b) The true and asymptotic PoAs.
(c) The results of the simulation study of the scenario Gamma(2,1) vs Gamma(1,2).
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D.6 Gamma(2,2) vs Gamma(1,2)

(a) The true CDFs (b) True PoAs

(c) The bootstrap and delta method CI coverage, the bias, and the RMSE

Figure D.6: (a) The true versions of the CDFs under comparison. (b) The true and asymptotic PoAs.
(c) The results of the simulation study of the scenario Gamma(2,2) vs Gamma(1,2).
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D.7 N(1,5) vs IG(1,0.2)

(a) The true CDFs (b) True PoAs

(c) The bootstrap and delta method CI coverage, the bias, and the RMSE

Figure D.7: (a) The true versions of the CDFs under comparison. (b) The true and asymptotic PoAs.
(c) The results of the simulation study of the scenario N(1,5) vs IG(1,0.2).
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