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 Transportation mode choice models typically represent user decision making using utility-based 

mode choice models. However, utility models assume that users make compensatory trade-offs between 

decision variables to maximize their expected utility. The decision process literature raises alternative, 

non-compensatory theories that suggest people employ simpler, cognitively frugal heuristics in their 

decision making. Non-compensatory models, including decision tree classifiers, present an opportunity to 

test the effects of transit accessibility variables on mode choices and improve descriptions of mode choice 

behaviour. Dynamic forms of transit accessibility, which measure variations in transit service over time, 

may better capture heuristic perceptions of transit service quality. 

 This research addresses the need to understand how dynamic transit accessibility (DTA) impacts 

mode choices, without compensatory decision process assumptions. First, this research develops DTA 

measures for the Region of Waterloo using General Transit Feed Specification (GTFS) transit schedule 

information to calculate travel impedance matrices for departures at every 5-minute interval of the day. 

Zonal mode shares are regressed against alternative DTA measures to analyze the effects of different 

destination types, time periods of aggregation, and statistical parameters of transit accessibility (i.e., mean 

and distribution over time). Based on the aggregate mode share predictive performance, a DTA metric is 

selected for analysis within a binary (transit and not transit) disaggregate mode choice model. Second, 

this research uses trip diary data to train and score a Chi-squared Automatic Interaction Detection 

(CHAID) decision tree classifier to represent and predict rules-based mode choice processes. Finally, the 

selected DTA metric is merged with the trip diary data and applied in another decision tree for 

comparison. The comparison between the two rules-based mode choice models is based on overall model 

accuracy, class recall, precision, and interpretability. 

 Results from the decision tree classifier reveal that users apply heuristics in their transportation 

mode decision making, including lexicographic and aspiration-level based decision rules. User choices 

depend primarily on transit pass ownership, and non-transit-pass users consider the trip’s distance 

thereafter. Including DTA as an independent variable in the decision tree has a small but statistically 

significant effect: users only seem to consider DTA, a generalized location-based measure, if they do not 

own a transit pass and only after considering the trip-specific distance. Overall, the rules-based mode 

choice models report accuracies of roughly 84%; however, low precision in the transit predictions (i.e., 

many false positives) result in an overestimation of regional transit shares. 
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Transportation demand forecasts anticipate how people consume transportation facilities and services. 

Urbanization combined with ecological preservation pressures generally motivate forecasting as means to 

maintain accessibility within constrained urban space. However, the financial argument for transportation 

demand forecasting is perhaps more compelling. Decisions to invest in physical transportation 

infrastructure rely on accurate demand forecasts to understand infrastructure effects and justify their large 

direct costs. For example, the Province of Ontario’s 2019-2020 economic outlook commits $8.5 billion to 

transportation infrastructure expenses, representing 58% of the Province’s annual investment out of all 

sectors, including health, education, natural resource, social, and administration. Within the transportation 

budget, public transit expenses specifically account for $5.5 billion, or 37% of the provincial 

infrastructure budget (Ontario Ministry of Finance, 2020, p. 13). Governments develop transportation 

infrastructure seeking returns in the form of increased economic productivity through access to new 

markets, improved living standards through wage increases, and private sector investment due to reduced 

business costs (The Centre for Spatial Economics, 2017). The expectation of transit development is that 

increased transit adoption abates resource inefficiencies related to space, time or monetary costs, and 

environmental externalities notoriously exemplified by traffic congestion. Transit investment assumes 

that private automobile users will switch to transit in response to more attractive transit service: a causal 

relationship central to the investigation of mode choice modellers. Investing in transportation 

infrastructure requires an understanding of how user behaviours respond to changes in transportation 

ecology. Governments therefore depend on accurate and defensible mode choice models to reliably invest 

in sustainable and cost-effective infrastructures. 

Mode choice is a component of transportation demand forecasting concerned with how people 

choose between transportation modes, including driving, cycling, walking, and transit. It is a critical 

process for understanding how personal choices respond to infrastructure-level changes. Modellers 

estimate choice outcomes using models that differ primarily by analysis units: aggregate or disaggregate. 

Aggregate models estimate macroscopic transportation phenomena as the “population demand” of people 

grouped into geographic zones. Aggregate models were popular in transportation analysis until the late 

1970s, when disaggregate models grew popular because computing power increased and modellers 

realized that aggregate phenomena were the result of many individual decisions (Banister, 2002). 

Disaggregate models capture behaviour better by estimating decisions at the individual, household, or 

firm level, thereby eliminating aggregation errors (ecological fallacy) from the zonal homogeneity 

assumption (Ortúzar & Willumsen, 2011, p. 229). Since predictions based on disaggregate data may be 

aggregated at more flexible geographies, the approach maintains predictions at the macroscopic level, 

with which transportation planners are principally concerned. In refocusing analysis to the level at which 

behaviours occur, disaggregation allows the modeller to interpret decision maker sensitivities to a wider 

range of transport system and personal attributes. 

Disaggregate mode choice modelling was among the first applications of discrete choice analysis 

(Ben-Akiva & Lerman, 1985, p. 3). Discrete choice analysis examines how individuals choose within a 

set of discrete and finite alternatives, as opposed to continuous and infinite alternatives, based on the 

microeconomic theory of consumer choice. Consumer choice theory suggests that individuals are 

economic agents who possess, observe, and act on objective (demand) functions to maximize self-

interests (Ben-Akiva & Lerman, 1985; McFadden, 2000). Lancaster’s (1966) interpretation of consumer 

choice suggests that individuals derive benefits (utility) from choices indirectly through the characteristics 

of the alternative and the individual making the decision, instead of the alternative in itself. Consumer 

choice is useful for transforming behavioural assumptions into models of choice because it supports 

arithmetic expressions of preferences as a function of choice set attributes (characteristics). Constant 
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utility (or Lancaster’s indirect utility) is an expression that represents a deterministic decision process 

consistent with consumer choice. In a simple bivariate example, individual n’s utility for alternative 𝑖 is 

𝑉𝑛𝑖 =  𝛽𝑛𝑥𝑖 + 𝛼𝑛𝑦𝑖 where 𝑥𝑖 and 𝑦𝑖 are decision attributes (independent variables) linearly related to 

utility 𝑉𝑛𝑖 (dependent variable) by parameters 𝛽𝑛 and 𝛼𝑛. This deterministic (systematic) function of 

additive explanatory attributes (e.g., 𝑥𝑖 , 𝑦𝑖) forms the basis for classical discrete choice models. 

Although microeconomic assumptions support a model of behaviours, it is impossible for models 

to perfectly predict actual decisions. Modellers observe inconsistent choice outcomes between similar 

individuals and across trips. Probabilistic modelling approaches, including random utility models 

(RUMs), reason that choice discrepancies may be caused by inherently probabilistic human behaviour or 

analyst ignorance about the decision process (Ben-Akiva & Lerman, 1985, p. 49). The random utility 

concept, as opposed to deterministic utility, describes individual 𝑛’s utility from alternative 𝑖 in two parts: 

a systematic component (𝑉𝑛𝑖) made of observable independent variables (𝑥𝑖 , 𝑦𝑖) and a random error term 

(𝜀𝑛𝑖). In its simplest form, the function used in random utility models (RUMs) is shown in [1.1]. 

 𝑈𝑛𝑖 = 𝑉𝑛𝑖 + 𝜀𝑛𝑖  ∀𝑖, 𝑉𝑛𝑖 =  𝛽𝑛𝑥𝑖 + 𝛼𝑛𝑦𝑖 [1.1] 

𝜀𝑛𝑖 is a set random variables that are unobserved by 𝑉𝑛𝑖 because of randomness from any of four sources: 

unobserved attributes, unobserved taste variation, measurement error, and instrumental/proxy variables 

(Manski, 1973). 

Advancements in mode choice modelling, including disaggregate analysis and RUMs, reveal an 

underlying effort to better model human behaviour through an economic lens. Disaggregate analysis can 

correlate user- and trip-specific attributes with discrete choices, and random utility partly accounts for 

inconsistent choices; however, both maintain the economics-based assumption that utility is a 

representative decision rule. Aside from its conceptual and formulaic definitions, utility is a class of 

decision rules that assumes compensatory decision attributes (independent variables) to represent the 

attractiveness of an alternative using a scalar, linear index called the utility function (𝑈𝑛𝑖 in [1.1]) 

(Banister, 1978; Ben-Akiva & Lerman, 1985, p. 37). The compensatory characteristic appropriately 

describes scenarios when a user is willing to trade decreases in one good for increases in another. For 

example, a user may be willing to pay more fare, which reduces personal utility, in exchange for a 

decrease in travel time, which increases personal utility. The compensatory characteristic of utility models 

is central to the model’s behavioural assumptions because it imposes requirements on how decision 

variables interact with each other (additively), how decision variables relate to the choice (linearly), and 

how the decision rule operates (user seeks maximum). 

Transportation analysts apply utility models widely in mode choice analysis, accepting the utility 

decision rule and its behavioural assumptions as convention. The most popular utility model (and by 

extension, mode choice model) is the multinomial logit (MNL) due to its tractable (closed-form) 

structure, familiar microeconomic interpretation, and computational practicality (Domencich & 

McFadden, 1975; National Academies of Sciences Engineering and Medicine, 2018). Analysts apply 

MNL using travel diary survey data to test different specifications (i.e., combinations of cost, travel time, 

and other independent variables) and estimate the parameters (𝛼𝑛 and 𝛽𝑛 of utility function [1.1]) most 

likely to produce observed mode choices. Analysts use the calibrated utility functions to forecast future 

behaviours by logistic regression. However, unlike the decision variable (e.g., travel time, income, fare) 

coefficients 𝛼𝑛 and 𝛽𝑛 embedded in the model, which must be estimated in new contexts, the 

representation of the decision process itself receives little critique in mode choice modelling practice: 

transportation users are assumed to behave by maximizing their utility. 

Outside of mode choice, behavioural psychologists present alternative theories of decision 

processes that have limited reception in transportation modelling practice. For example, heuristic decision 

making (Tversky & Kahneman, 1974) is a cognitively-frugal decision rule that favours a rules-based 

model framework. Theories that reject the compensatory structure borrow methodological contributions 
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from other disciplines, including machine learning, which presents an application barrier for some 

transportation analysts. However, if accurate behavioural representation is a concern of transportation 

analysts, transportation demand models ought to reflect actual decision processes in the mode choice 

context.  

 

Popular use of utility models has entrenched assumptions of compensatory decision-making within mode 

choice modelling practice. However, decision process literature raises alternative decision rules that 

challenge the utility rule’s widespread application. Analysts should consider whether people truly perform 

compensatory trade-offs between decision variables as utility models suggest. To advance behavioural 

representation and improve the descriptive power of mode choice models, there is a need to examine the 

accuracy of decision process assumptions and test the predictive performance of alternative models in the 

mode choice space. 

 A non-prescriptive decision structure also presents an opportunity to test transit-related decision 

variables, investigating whether they influence choices at all, and the process by which users interpret 

them. Just as mode choice models endeavour for behavioural representation, the decision variables within 

them should respect decision-making psychology. Adapting decision variables to possible user 

considerations, including temporally aggregated transit service quality, may improve mode choice model 

accuracy and descriptive power. Despite the need to understand how transit system variables affect mode 

choice behaviours, no studies have applied transit accessibility as a decision variable within a non-

compensatory mode choice model. 

 

The goal of this research is to understand how transit system attributes may support mode choice 

prediction as an explanatory variable in a non-compensatory decision process. The first objective is to 

build and test a rules-based mode choice model and the second objective is to develop a transit 

accessibility metric. Third, this research incorporates the transit accessibility metric as a decision variable 

within the rules-based mode choice model. Analyses of these components are focused on the objectives of 

urban transportation planning, which aim to identify transit-system-level characteristics that can shift user 

mode choices from private automobile to transit. 

 The application of a rules-based mode choice model can identify non-compensatory decision 

structures and the specific rules or heuristics that result in mode choices. This objective is consistent with 

a broader goal in transportation modelling, which is to express a description of human behaviour that 

supports prediction (Ben-Akiva & Lerman, 1985). Relaxing compensatory assumptions may better align 

mode choice models with theories of behaviour from psychological (decision process) literature. Since 

rules-based models are not frequently applied in practice, this research aims to produce an interpretable 

classification scheme using an existing, accessible data source. Increasing the applicability of rules-based 

models allows analysts to employ them during the demand modelling stages of infrastructure 

development. 

 Development of a transit accessibility metric aims quantify transit system variables relevant to 

mode choice. Specifically, the metric ought to combine the value of mobility offered by the transit system 

with the land-use-related activities that motivate it. Literature review informs different configurations of 

transit accessibility that this research tests to find the model that best describes actual user considerations. 

Since the value of travel varies spatially (where users go) and temporally (when users make the trip), a 

more representative metric should leverage available datasets and methods to likewise vary across space 

and time, taking a dynamic form. 
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 Incorporating the transit accessibility metric within a rules-based mode choice model can reveal 

opportunities to encourage further transit adoption. In utility models, decision variables affect an outcome 

linearly and additively. Rules-based methods do not impose structural restrictions on the way decision 

variables affect an outcome and therefore more flexibly accommodate the influence of decision variables. 

The rules-based model is a useful test platform to understand the impact of transit accessibility on mode 

choice. Since transit accessibility is sensitive to the operational policies over which transportation 

planners have influence (e.g., service frequency, capacity, routing), understanding whether and how users 

interpret transit accessibility can guide government interventions towards those most likely to encourage 

transit adoption. More broadly, this research aims to support urban transportation system management by 

finding opportunities to encourage sustainable and efficient mass mobility through transit. 

 

The Region of Waterloo (the “Region”) is the application context of this research. The Region was 

chosen due to the availability of travel diary survey data (2016), transit schedule information, and its 

computationally manageable geographic size. Every day, the roughly 530,000 residents in the Region 

make approximately 1,009,897 intraregional trips and an additional 143,298 interregional trips to 

destinations outside of the Region. Of the intraregional trips, the mode shares are 7.5% transit, 70.2% 

drive alone, 14.5% passenger, 1.6% cycle, and 6.2% walk (Data Management Group, 2018). 

Overwhelmingly, trips related to the personal automobile, including drive alone and passenger trips, 

represent the largest share of trips at 84.7%. Based on the 2016 national census, 277,785 employed 

individuals lived in the Region (Region of Waterloo, 2016). Mode choice analyses that identify decision 

structures and account for transit service and land use variables may help planners select tools to reduce 

the disproportionate share of personal automobile users. 

 This research is focused on applying a non-compensatory, rules-based mode choice model, where 

transport users interpret decision variables and use decision rules within cognitive boundaries. The non-

compensatory approach uses machine learning methods to empirically induce decision rules from travel 

diary survey responses. It does not pursue perfect representation of decision rules or structures because 

analysis is limited to observable variables in the dataset; rather, it searches for the most likely decision 

process from the training data. An explicit understanding of decision structures and rules may require 

qualitative decision process surveys (e.g., heuristics survey by Hannes et al. (2009)), which are beyond 

the scope of this thesis. Instead, this method relies on secondary data sources that are 1) more accessible 

to the analyst because they are regularly collected, and 2) specific to the estimation context (geographic 

region). Furthermore, this research does not offer a comparative analysis of rules-based model 

performance and utility-based models. Other papers, presented in the Literature Review, fill this niche 

with adequate context. Instead, this research endeavours to demonstrate the practical application of rules-

based models in mode choice classification and address some limitations of compensatory models related 

to behaviour that rules-based models may overcome. Although this research analyzes decision process 

(behavioural) representation and assesses the predictive outputs of the mode choice model (see “Measures 

of Effectiveness” subsection), this research ignores some MOEs related to computational efficiency or 

applicability in practice, limiting its transferability in practice. Potentially relevant MOEs include speed 

(computational cost) and robustness (accuracy, given noisy or incomplete data) but remain outside the 

scope of this thesis. 

 

Chapters in this thesis review and apply methods for constructing a non-compensatory mode choice 

model and transit accessibility metric. Chapter 1 describes the motivation for applying a non-

compensatory mode choice model and transit accessibility as a decision variable. Chapter 2 presents a 
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three-part literature review of decision process research, the predictive merit of machine learning 

classifiers, and transit accessibility measures, all within the context of mode choice research. 

 The next three chapters describe the methods and outputs of this research. Chapter 3 presents the 

public data sources and manipulations used throughout this research. Chapter 4 develops and analyzes 

different transit accessibility measures for predicting aggregate mode shares. Chapter 5 trains and tests a 

rules-based mode choice model using the Chi-squared Automatic Interaction Detection (CHAID) tree-

growing algorithm. At the end of chapter 5, selected transit accessibility measures from chapter 4 are 

introduced as independent variables in the mode choice model. Each chapter discusses the strengths and 

limitations of the analysis in the context of decision process representation and choice prediction. 

 Chapter 6 concludes this thesis with a summary of goals and findings, providing direction for 

further research.  
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This literature review is divided among the two topics that this thesis combines: 1) decision process 

research (psychology) in mode choice, and 2) transit accessibility measurement. First, decision process 

theories are reviewed for their consistency with mode choice modelling conventions. Next, the machine 

learning research space is explored to support the application and testing of some behavioural theories. 

Finally, this review examines the different forms of transit accessibility, their applications, and their 

theoretical strengths and limitations related to transportation mode decision making. 

 

This section of the literature review focuses on theories and models of mode choice, considering cognitive 

and perceptual limits that suggest people do not pursue compensatory decision strategies. Instead, users 

may rely on non-compensatory, heuristic strategies. Exploring non-compensatory theories of choice can 

further the development of mode choice and transit accessibility models. 

 Decision process research is concerned with how choice outcomes (behaviours) are connected to 

psychological theory. Theorists in and outside of travel demand research raise ideas about how people 

make decisions, which make assumptions about the components of the choice process: problem 

definition, generation of alternatives, evaluation of alternatives’ attributes, decision rule, and then 

implementation (Ben-Akiva & Lerman, 1985, pp. 31–32). Researchers often test conjectures about the 

decision rule component, given its implications on possible modelling structures and interesting insights 

about human psychology. Decision rule effectiveness seems to be sensitive to antecedent choice process 

components, including attribute evaluation. Thus, more complete theories of decision making describe 

assumptions about decision components that are guided or imposed by the decision rule component. 

 Four decision rule classes are raised in travel demand modelling literature: 1) dominance, 2) 

satisficing/aspiration levels, 3) lexicographic rules, and 4) utility (Ben-Akiva & Lerman, 1985, p. 35; 

Timmermans, 1983). Dominance suggests that users choose the alternative that is no worse across all 

attributes and is better in at least one attribute compared to other alternatives. Satisficing assumes some 

critical value (level of aspiration) for every attribute and that only an alternative that exceeds these levels 

can be selected. Lexicographic rules involve ranking alternatives’ attributes by importance and selecting 

the best alternative for the most important attribute. If there is a tie, the next most important attribute is 

considered in sequence until an alternative is selected. Finally, utility involves forming a scalar objective 

function (index) of attractiveness for alternatives (the utility function, represented in [1.1]), and the user 

selects the alternative with the highest index value.  

 

 Mode choice modellers often employ utility as the decision rule in travel demand modelling, 

specifically within logistic regression models (e.g., MNL, Mixed MNL, and nested logit). Utility is 

advantageous because of its familiar microeconomic basis, computational practicality, and elegant closed-

form structure (Domencich & McFadden, 1975). Its objective function is easy to interpret, offering high 

explanatory power and the ability to derive elasticities. In application, logistic regression models exhibit 

consistently high predictive accuracy on testing datasets (samples held out during model calibration) but 

vary according to context. MNL model accuracy is the proportion of predicted choices that are correctly 

classified (true positives and true negatives). This research uses accuracy as one measure of effectiveness 

for model selection (see “Measures of Effectiveness” subsection). Applied MNL models often report 

overall accuracies around 60-70%, including 63.02% (Cheng et al., 2019), 64.7% (Zhao et al., 2020), 

66.3% (G. Wets et al., 2000) and 70.5% (D. Lee et al., 2018). 
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 Despite its predictive successes, some authors suggest the utility rule ought to be refuted because 

its representativeness is contingent on users optimizing decision process components related to 

information search and processing (i.e., defined goals, stable decision context, exhaustive alternatives 

sets, and exhaustive attribute evaluation) and adoption of the utility rule therefore assumes a rational 

person (Ewing, 1973; Klein, 2002, p. 109). Herbert Simon’s (1955, 1972) bounded rationality theory 

submits that people are incapable of the collection and assimilation required for classically rational 

behaviour, which is the consistent and transitive ordering of preferences (Ben-Akiva & Lerman, 1985, p. 

38). Simon cites mental computational constraints, complex environments, and incomplete information 

about alternatives for refuting models of classical rationality, like Luce’s strict utility (Luce, 1959). 

Utility’s widespread adoption nonetheless has led authors to criticize its imposition of rational decision 

processes and obsession with model specification over the basic theories of travel and decision making 

(Banister, 2002; Innocenti et al., 2013). 

 Although utility models would perform better if classical rationality were true, RUMs respond to 

bounded rationality’s criticisms without altogether abandoning utility. RUMs, which include logistic 

regression models, are considered behavioural models because they introduce error terms (i.e., 𝜀𝑛𝑖 in 

[1.1]) to relax assumptions about user decision processes and account for choice discrepancies (irrational 

behaviours) (Ben-Akiva & Lerman, 1985). Representations of choice discrepancies stem from 

psychological theorist L.L. Thurstone’s (1927) Law of Comparative Judgement, where stimuli (and its 

derivative benefit) is perceived with a normally distributed error that Thurstone calls discriminal 

deviation. Marschak (1960) adapts this psychometric approach to economic analyses, exploring what he 

calls RUMs, which Manski (1977) later formalizes (see Ben-Akiva & Lerman, 1985, pp. 55–57). RUMs 

are more consistent with bounded rationality compared with strict utility. 

 Unfortunately, the introduction of error terms may itself impose statistical assumptions (related to 

error distributions), and does not address the structural (compensatory) limitations of the deterministic 

component of utility (i.e., 𝑉𝑛𝑖 in equation [1.1]). Timmermans and Golledge (1990) describe some 

assumptions of RUMs that can imperfectly represent decision processes: 

• behaviour is compensatory, 

• the independence from irrelevant alternatives (IIA) property for MNL, 

• introducing new alternatives cannot increase choice probabilities for existing alternatives, and 

• user indifference towards alternatives do not affect choices (indifference thresholds). 

Some of these assumptions are logical consequences of others, and primarily stem from strict statistical 

assumptions (Wang & Ross, 2018). The next section discusses the behavioural consequences related to 

the statistical assumptions of RUMs, followed by assumptions of the compensatory model structure. 

 

 RUMs can account for behaviours unexplained by systematic (deterministic) predictors; however, 

some RUMs introduce assumptions about the error distribution and error term placement within the utility 

function that can weaken behavioural representation. For example, MNL estimates choices between 

alternatives by assuming each error term (𝜀𝑛𝑖) from equation [1.1] is identically and independently 

distributed (iid) Extreme Value Type I (Gumbel) (Domencich & McFadden, 1975). In developing MNL, 

McFadden (1974) found that logit is consistent with the RUM concept of choice probabilities if and only 

if the error terms are iid Extreme Value Type I. Notably, Luce (1959) originally derived the logit formula 

based on the assumption that discrete choices are characterized by the independence from irrelevant 

alternatives (IIA) property, whereas McFadden found IIA to be a resulting property of iid RUMs 

(Domencich & McFadden, 1975, p. 69; McFadden, 2000). The iid error assumption enables the 

probabilistic form of MNL: the probability of choosing alternative 𝑀𝑖 (Pr(𝑀𝑖)) depends on its random 

utility 𝑈𝑛𝑖 relative to all other alternatives, or that Pr(𝑈𝑛𝑖) > Pr(𝑈𝑛𝑗) for all 𝑀𝑗 ∈ 𝑀 (equation [2.1]). 
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𝑃𝑟(𝑀𝑛𝑖) =

𝑒𝑈𝑛𝑖

∑ 𝑒𝑈𝑛𝑗
𝑀𝑗∈𝑀

 
[2.1] 

A limitation of the MNL, and standard logit models in general, is that it represents systematic 

taste variation (𝑉𝑛𝑖 value varies by 𝛽𝑛 and 𝛼𝑛) but does not account for random taste variation between 

households (𝛽𝑛 and 𝛼𝑛 parameters themselves would vary randomly) (Train, 2002, p. 44). To vary tastes 

randomly, additional random variables 𝜌𝑖 and 𝜂𝑖 would enter utility 𝑈𝑛𝑖 grouped in a new error 

component 𝜀𝑛̃𝑖, such as in equation [2.2]. 

 𝑈𝑛𝑖 = 𝛽𝑛𝑥𝑖 + 𝛼𝑛𝑦𝑖 + 𝜀𝑛̃𝑖 , 𝜀𝑛̃𝑖 = 𝜌𝑛𝑥𝑖 + 𝜂𝑛𝑦𝑖 + 𝜀𝑛𝑖   [2.2] 

Introducing new random error terms (𝜌𝑖 , 𝜂𝑖) within independent variable parameters would necessarily 

correlate the errors over alternatives in set 𝑀. As a result, random taste variation violates the iid 

assumption (Train, 2002, pp. 42–47).  

 The IIA property also imposes assumptions of proportional shifting in choice behaviour, a 

limitation famously exemplified by the red-bus-blue-bus paradox. The red-bus-blue-bus paradox 

describes a choice scenario where the proportion of choices between two equivalent alternatives such as 

driving, D, and taking a red bus, R (i.e., Pr(𝑈𝑛𝐷) = Pr(𝑈𝑛𝑅), predicting equal probability of choosing 

either mode), is maintained despite the addition of a blue bus, B, with identical characteristics to the red 

bus. As a result, choice probabilities are split evenly (33% for each mode 𝑖 because Pr(𝑈𝑛𝐷) =
Pr(𝑈𝑛𝑅) = Pr (𝑈𝑛𝐵) and ∑ 𝑃𝑟𝑛(𝑖)𝑖 = 1, despite the blue bus being more likely to cannibalize red bus 

shares than automobile shares. The full mathematical explanation for this transitive property is widely 

available ((Ben-Akiva & Lerman, 1985, pp. 50–52; Luce, 1959; Train, 2002, p. 46)). Other models 

respond to these limitations, including mixed multinomial logit (MMNL) and nested logit, but receive 

less widespread application. MMNL can accommodate random taste variation in the 𝛽 parameters by 

discarding the assumption of iid errors. MMNL defines a more general class of models where MNL is a 

special case with no variance within the 𝛽 parameters (McFadden & Train, 2000). Nested configurations 

of MNL subdivide the alternatives set to address scenarios where proportional shifting between some 

alternatives are unrealistic. 

 Issues related to systematic taste variation (from distributional assumptions) and transitive 

substitution patterns (from the IIA property) require more advanced discrete choice models (e.g., MMNL, 

nested logit) to reconcile consumer choice theory with human behaviours. However, these advancements 

maintain the assumption that utility is a representative decision rule. 

 

 Utility is considered a compensatory rule because its additive combination of decision attributes 

imply that losses in one decision attribute may be compensated by gains in another decision attribute 

(Ewing, 1973). For example, the user may accept the alternative with a longer travel time if incentivized 

by a reduction in fare: cost savings in one attribute offset cost increases in another. Behaviourally, this is 

an important assumption of the utility rule because it precludes non-linear interactions between 

explanatory variables. Conditional (if-then) and threshold effects cannot be represented (D. Lee et al., 

2018) and dominance effects are ignored. Heterogeneous decision rules and biases from habit formation 

(inelastic behaviours) also remain unexplained by compensatory rules (Innocenti et al., 2013). 

Compensatory assumptions also have important implications on policy. Foerster (1979) notes that if mode 

choices were compensatory, incentives in carpooling would be just as effective as disincentives to driving 

alone. If all people in all situations applied this strategy, as implied by the blanket application of utility in 

mode choice modelling, incremental policy interventions would effect changes in behaviour. No authors 

outright reject that the compensatory strategy is a plausible description of behaviour; however, that utility 

is adopted so widely has prompted authors to consider alternative decision rules and theories. 
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 Researchers in psychology have raised alternative decision process theories in response to 

utility’s compensatory trade-offs, statistical assumptions, and sensitivity to irrational (i.e., contradictory, 

non-transitive) decisions. Simon’s (1955, 1972) recognition of bounded rationality cast doubt on 

compensatory rules because of their consistency with rational decision making and the non-compensatory 

research paradigm emerged (Gigerenzer & Gaissmaier, 2011). Non-compensatory decision process 

theories do not allow trade-offs between the decision attributes of choice alternatives; instead, decisions 

are assumed to be made on “an attribute-by-attribute” basis because separate utilities (Lancaster’s 

attribute-derived value) are not combined into a single value (Timmermans, 1983). Dominance, 

satisfaction, and lexicographic rules are employed within non-compensatory decision processes. 

 Heuristics describe cognitively frugal decision processes that involve search rules, stopping rules, 

and decision rules (Tversky & Kahneman, 1974; van der Pligt, 2015). Although different definitions of 

heuristics exist (e.g., heuristics assess targets by substituting another attribute; or heuristics describe all 

effort-reduction strategies, including compensatory strategies), this research defines heuristics as a class 

of decision process theories that employ non-compensatory rules (Jensen, 2016). Alternative terms such 

as procedural rationality, bounded rationality, and non-rational denote the same class of decision 

processes as heuristics (Gigerenzer & Gaissmaier, 2015). Generally, heuristics are associated with 

detrimental effects on decision quality (van der Pligt, 2015); however, some authors argue that heuristics 

can lead to economical decision making without a detailed deliberation in the decision process, especially 

for repeated decisions or habits (Aarts et al., 1997). Some specific heuristics include representativeness, 

availability, if-then-else (Hannes et al., 2009), take-the-best (dominance-based), and satisficing 

(aspiration levels based). In terms of decision process components, the representative and availability 

heuristics describe simple search and stop rules, whereas if-then-else, take-the-best, and satisficing 

heuristics are frugal decision rules. 

 Tversky and Kahneman popularized the representativeness (stereotyping/similarity) heuristic and 

availability (or frequency) heuristic in their studies of preference and classification under uncertainty and 

risk (1973, 1974). In contexts where the outcome of a decision is uncertain with respect to some criterion, 

the representativeness heuristic suggests that people evaluate the probability of an outcome by the degree 

to which it resembles another event/outcome from their experience. Therefore, if travel time delay is 

highly representative of transit travel from their own experience, the probability that delays originate from 

transit travel is judged high. Any subsequent decision rule would be biased against transit travel. The 

availability heuristic suggests that people evaluate the probability of an outcome based on how easily 

relevant instances come to mind. Since repetition strengthens association, a choice for which “good” 

outcomes are observed more frequently is evaluated more favourably. Within their experiments, authors 

presented subjects with information that triggered these heuristics and observed that subjects consistently 

neglected prior information (given). Heuristics bias the evaluation of alternatives in predictable directions. 

Tversky and Kahneman (1981) describe the concept of decision frames – the decision maker’s conception 

of acts, outcomes, and contingencies (risks) related to choices – to relate perceptual biases from search 

processes to choices. Their experiments demonstrated shifts in choices for problems related to monetary 

risk or loss of human life after otherwise inconsequential changes in the descriptions (the “framing”) of 

each problem. 

 Heuristics are difficult to transfer because they ought to be inferred for each choice context; that 

is, heuristics raised in experiments of monetary risk do not necessarily apply to transportation mode 

choice. Early behaviour-oriented transportation researchers reflected on the difficulty in testing the 

validity of non-compensatory strategies because of decision processes must be inferred from observations 

(Timmermans, 1983). Within mode choice research, heuristic decision making is often related to the 

formation of mode choice habits, resulting from adaptation to uncertainty over time. Mode “stickiness” or 

habituation causes observable inelastic behaviours that disregard incremental changes in alternatives’ 
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attributes that would have an effect within compensatory models (Aarts et al., 1997; Innocenti et al., 

2013). More recently, supervised machine learning models have presented a means to infer how people 

may make non-compensatory choices. 

 

Supervised Machine Learning (ML) models demonstrate high prediction accuracy and embody structures 

consistent with heuristic decision process theory, offering mode choice modellers a promising 

methodological alternative to utility-based models. This section explores supervised ML literature for 

classification algorithms that may represent the non-compensatory decision processes proposed in the 

decision process literature. Within ML research, different terms describe the inputs, outputs, and 

processes of a model. Features refer to independent variables (e.g., age), and dimensions are the unique 

categories or values of a feature (e.g., 11-19, 20-30 years). Target variables refer to dependent variables 

(e.g., primary mode of a trip), and classes (e.g., transit, car, cycle, walk) are the categories of a target. 

 Supervised ML algorithms are model induction (“learning”) processes using training data whose 

classes (e.g., chosen transportation mode) are known – hence, supervised – by the modeller, as opposed to 

unsupervised processes which lack target variable measurements (Hastie et al., 2008). Supervised ML 

methods can be segmented by their learning/induction tasks, which include regression and classification. 

Generally, problems with quantitative target variables are regression problems, whereas problems with 

qualitative (categorical, discrete) target variables are classification problems. Selection of a task and 

specific method depends on the problem at hand. For the classification task, model induction is the 

development of classification rules that can determine an observation’s class (e.g., chosen transportation 

mode) from the dimensions of its features (Quinlan, 1986). 

 

 One method of supervised ML is decision tree (DT) classification. DTs use splitting criteria, 

which are analogous to decision rules, to recursively partition the training data into mutually exclusive, 

increasingly homogeneous regions. The algorithm may be illustrated using the inverted tree analogy 

presented in Figure 1. 

 

Figure 1: Decision Tree Classifier Components (Generic, Binary Splits) 
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 James et al. (2013) describe a generic DT algorithm and its components using terminology from 

the inverted tree analogy. Each node along the tree is a region of the training data, characterized by the 

target classes therein and delimited by feature dimensions. The root node describes the entire predictor 

space, including all training data and their attributes (feature dimensions) used for tree induction. Tree 

depth relates to the number of splits performed on the data and provides an organizational structure for 

partitioned regions. Regions where splits occur are parent nodes, whereas regions resulting from splits are 

child nodes. DT classification algorithms use different splitting criteria to partition the predictor space. 

Creators of each algorithm describe splitting criteria in detail. Sutton (2005), Han (2011), and software 

documentation from IBM (2011) offer higher-level summaries. Splits form mutually exclusive pathways, 

called branches, which describe the sequence of if-then-else rules or heuristics leading to a terminal 

region. Terminal regions, or leaf nodes, describe child nodes when some stopping criterion is met and no 

further splits are allowed. 

 Generally, DTs are useful classifiers because they can handle numeric and categorial predictor 

variables, alongside missing values (assume a “missing” dimension for features where data are 

incomplete). In their ML textbook, Hastie et al. (2008) also credit DTs with their insensitivity to scaling 

issues (unaffected by monotonic variable transformations), immunity to outliers, and high predictive 

accuracy across disciplines. In their comparison of CHAID, MNL, and C4 performance in mode choice 

modelling, within transport studies, Wets et al. (2000) also discuss the insensitivity of DT algorithms to 

outliers in travel diary data. However, compared with regression techniques, DTs may not extrapolate 

beyond the range of training observations (Breiman et al., 1984). DTs are also dependent on 

comprehensive testing data (outside of the training dataset, used for prediction), since predictions using 

the tree structure are susceptible to missing elements (e.g., parent node links, variables). Since DTs grow 

by splitting the training dataset, trees with higher depths also increase the data requirements to populate 

representative classifications; overgrowing a tree could cause overfitting to the training data and reduce 

generalizability.  

 DTs are powerful tools for inducing and representing heuristic decision processes. DTs are non-

parametric models because they do not assume a functional form or shape. In contrast, parametric models 

reduce the model estimation process to that of estimating a parameter set, such as by stepwise variable 

selection. The lack of functional form in DTs relaxes the decision process assumptions of the 

compensatory model, allowing the induction of non-compensatory rule sets. James et al. (2013, pp. 22–

23) address this issue directly, referring to model flexibility as an advantage of non-parametric 

approaches for modelling phenomena where the functional form is unknown. Wets et al. (2000) argue that 

DT models are “theory-free” because they induce their structure from data. DTs are thus structurally 

consistent with ideas of non-compensatory, rules-based decision making. 

 This research reviews five common DT algorithms (i.e., CART, C4/4.5/5, QUEST, CHAID, 

Random Forests) for their advantages and disadvantages in mode choice classification, considering both 

theoretical limitations and constraints to application. The most straightforward DT algorithm is 

classification and regression trees (CART) (Breiman et al., 1984). CART refers to DTs that create binary 

splits, where parent nodes can only split into two child nodes, using measures of impurity as the splitting 

criteria: Gini impurity or entropy. Gini impurity indicates the goodness (rather, “badness”) of a split by 

the proportion of a region that belongs to a class (e.g., transit) after a split. Each split minimizes the 

impurity (maximizes purity) within resulting child nodes, where a completely pure node includes training 

observations from only one class. Entropy employs a similar purity measure based on information gain 

(see Geert Wets et al. (2000) for a formulaic summary). CART features and classes can be numeric or 

categorical, but popular application libraries such as Scikit-learn first require that categorical variables be 

encoded into dummy (flag/interval) variables for CART to perform binary splits (Pedregosa et al., 2011). 

One limitation of CART is its interpretation: high-dimensionality features present many opportunities for 

splitting. Since CART only performs binary splits, these training data can induce deep, narrow trees that 

complicate interpretation. Deeper trees are also prone to overfitting on training data, and thus require 
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pruning to reduce dimensionality and improve out-of-sample accuracy. CART uses “cost-complexity 

pruning”, which eliminates nodes as a function of the misclassification (i.e., error) rate and the number of 

leaves in a given subtree through a bottom-up search (Breiman et al., 1984; Han et al., 2011). 

 Other popular DT classifiers improve computational performance using purity-based measures, 

like CART. One proprietary algorithm is Quinlan’s Iterative Dichotomizer 3 (ID3) and its family of 

descendants C4, C4.5, and C5 (Quinlan, 1986, 1993). Quinlan’s algorithms also use the information gain 

(entropy) splitting criterion, which partitions the training data using the feature that maximizes the 

information gain value (Quinlan, 1993). Han et al. (2011) provide a succinct summary of C4.5’s pruning 

procedure. The more recent C5 algorithm focuses on computational improvements, but Quinlan’s 

algorithms differ from CART primarily by allowing multicategory splits. Loh and Shih (1997) developed 

the Quick, Unbiased, Efficient, Statistical Tree (QUEST) algorithm which, as its authors demonstrate, has 

a lower computational cost and variable selection bias than CART. However, the QUEST algorithm also 

produces binary splits and reports similar accuracies and tree sizes to CART after pruning. 

 Chi-squared Automatic Interaction Detection (CHAID) is a DT algorithm that uses the chi-square 

statistic to determine splits (and resulting partitions) at decision nodes for categorical dependent variables 

(continuous dependent variables use the F-test). Kass (1980) developed CHAID to manage categorical 

variables using statistical tests to perform multiway splits. At every decision (parent) node, the CHAID 

algorithm applies the chi-squared test of independence, which finds the least significantly different (most 

homogenous) dimension(s) of a given feature with respect to the target classes. CHAID’s statistically-

significant splitting yields interpretable confidences and functions as an internal feature selection 

mechanism, requiring less data preprocessing (IBM Corporation, 2012). CHAID’s splitting criterion also 

handles qualitative predictors without creating dummy variables, increasing application ease and 

interpretability (Kass, 1980). The confluence of multiway splits and categorical feature interpretation 

results in wider, more shallow trees than CART. Since this DT algorithm is chosen for application in this 

thesis, additional detail is available in the Splitting Criterion section. 

 Random Forests (RF) refers to an ensemble of CART trees, given its developmental history with 

CART as its basis (Breiman, 2001). RF represents a distinct category of models, called “ensemble” 

methods, where many decision trees (an ensemble) are generated and then aggregated to improve 

predictive performance. RF builds its trees using training samples that are drawn randomly with 

replacement (bootstrapping); that is, the same training observation may be drawn multiple times. As 

another source of randomness, RF also randomly selects a subset of features (independent variables) to 

train each tree. The splitting procedure for tree construction is therefore not the best split for all training 

data, but the best split for a random subset of the training data. For every tree grown, the withheld testing 

data are scored (applied to trained trees) and results are averaged to get the final prediction, resulting in 

high variance and low bias. The primary drawback of using ensemble methods is that the final prediction 

rules appreciate in complexity alongside the reduction of error (Sutton, 2005). Despite its complex 

interpretation, RF has been applied within mode choice literature with high predictive accuracy (Cheng et 

al., 2019). 

 

 Researchers have successfully applied rules-based mode choice (RBMC) models using different 

machine learning algorithms, yielding similar predictive accuracies to logit models. In this research, rules-

based models refer to the decision tree algorithms applied in mode choice to represent heuristic decision 

processes (i.e., if-then-else rules). Compared with conventional discrete choice methods (logistic 

regression), RBMC models have shown comparable and sometimes higher predictive accuracy. In their 

early application on activity diary data (full day travel diary, 3 modes) in Denmark for the ALBATROSS 

model system, Wets et al. (2000) found that overall prediction accuracies of CHAID (66.7%) and C4 

(63.5%) were comparable to MNL (66.3%). Xie et al. (2003) modelled commuter mode choices (5 

modes) in San Francisco with a C4.5 DT and compared it with a MNL model. On testing data, their MNL 
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model had a 72.9% accuracy, whereas the DT had 76.8% accuracy. Lindner et al. (2017) modeled binary 

mode choices (transit and private automobile) in São Paulo using CART and found that it yielder greater 

(79.2%) accuracy than their logit model (73.9%) when applied to their test set. More recently, Zhao et al. 

(2020) compared the accuracy of ML models, including CART (59.3%) and RF (85.6%), with MNL 

(64.7%) and mixed logit (63.1%) for 8,141 testing samples. Notably, the Zhao et al. study’s context has a 

uniquely low automobile share (14.89%) because it was sampled from a university campus (University of 

Michigan). Rasouli and Timmermans (2014) tested the impact of ensemble size in RF predictions of 

mode choice, reaching approx. 65% accuracy (35% error, stable after 20 trees). Cheng et al. (2019) also 

applied RF in mode choice and found a 85.36% accuracy (stability after 200 trees), compared with their 

MNL model’s 63.02%. However, these authors continue to stress the difficulty of interpreting ensemble 

methods due to the inability to derive elasticities. The common adoption of RT suggests that some 

researchers are willing to trade off interpretability for higher prediction accuracies, sacrificing the 

descriptive power of their models. 

 

Accessibility is a performance indicator for the land-use transportation (LUT) system (Boisjoly & El-

Geneidy, 2016). Originally defined by Hansen (1959), accessibility is a measure of the spatial distribution 

of relevant activities, adjusted for travel impediment. Although this research is specifically concerned 

with transit accessibility (i.e., travel impediment as experienced through use of public transportation), an 

understanding of general accessibility is useful. Accessibility measures include two major components: an 

attractiveness component, such as the number of activities (i.e., jobs, shops, and services) at a destination, 

and a travel impedance factor, which is often a function of distance or time (A. M. El-Geneidy & 

Levinson, 2006; Nassir et al., 2016). Since travel is uncertain in that users do not necessarily respond to 

destination attractiveness, probabilistic terms would define attractiveness as the number of opportunities 

(potential activities) at a destination and travel impedance as a decrease in the probability that the user is 

attracted to the destination. Accessibility reflects the core theory of transportation demand theory because 

attractiveness presents a motivation for trip-making, whereas the impedance factor reflects the 

inconvenience associated with travel (Handy & Niemeier, 1997). Other definitions of accessibility, 

including those concerned with barriers to persons with disabilities are not the focus of this thesis. 

Furthermore, accessibility is distinct from connectivity and mobility concepts. Connectivity refers to the 

existence of transit service between origins and destinations, ignoring the friction of travel. Mobility 

refers to the ease of making such movements but disregards the attractiveness of the trip. Accessibility 

incorporates the value of opportunities at destinations with mobility, capturing the value of a trip and its 

ease in a composite measure (Beimborn et al., 2003; Boisjoly & El-Geneidy, 2016). Accessibility is a 

useful concept to describe the large-scale interaction between urban land use and transportation systems, 

especially to non-experts (Straatemeier & Bertolini, 2019). 
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 Figure 2 presents the urban system as a feedback cycle, where the transportation system varies the 

extent of accessibility to land uses across space. Land uses facilitate activities that generate transportation 

demand, thereby prompting further transportation service provision, and so forth (Guiliano & Agarwal, 

2017; Meyer & Miller, 2001; Wegener, 1995).  

 

Figure 2: "The urban system" adapted (Guiliano & Agarwal, 2017) 

Planners and governments can affect the LUT system by intervention to either the land use or 

transportation components. However, since land uses change more slowly, transportation agencies often 

hold land use changes constant and affect accessibility outcomes through interventions in the 

transportation system (Levinson & Krizek, 2005). For example, small operational changes to bus transit, 

including new branches extending from an existing route, can increase accessibility to destinations along 

the new corridor in the short term and induce new activity patterns in the longer term. Accessibility can 

explain the long-term evolution of urban structure, and it also influences a location’s value. Recognizing 

the effects of transit accessibility is crucial towards improving life satisfaction through positive 

perceptions of transit accessibility, improving public health, and increasing engagement in social 

activities (Saif et al., 2019). 

 

 In the transportation literature, four classes of measures attempt to quantify the value of 

accessibility: gravity-based, cumulative opportunity (isochronic), space-time (infrastructure-based), and 

utility-based (econometric) (A. M. El-Geneidy & Levinson, 2006; Handy & Niemeier, 1997). Based on 

the original formulation of accessibility, each measure describes the relative accessibility of an origin area 

to an activity type (e.g., employment) at a destination area. Thus, total accessibility to employment from 

an origin area is the sum of the accessibility to all individual destination areas around the origin (Hansen, 

1959). The most common accessibility measures are the gravity-based and cumulative opportunity 

measures because of their interpretability and consistency with the original, location-based concept of 

accessibility. Space-time and utility-based accessibility measures are person-based. They address the 

socioeconomic dependencies and activity-based constraints that affect the directionality, scheduling, and 

ultimately, the value of accessibility. Person-based accessibility measures expand the definition of 

accessibility to include four components: land-use (attractiveness), transport (impedance), temporal, and 

individual components (Geurs & van Wee, 2004). 

 Gravity-based (“spatial interaction”) measures reduce the weight of opportunities by the travel 

impedance. Alluding to the Law of Universal Gravitation, they define the attractiveness compelling travel 

between two physically separate points as a product of the weight of opportunities at the origin and 

destination locations (Roy & Thill, 2003). Using an exponential impedance function, the gravity measure 

can capture the influence of all opportunities in any given study area and the steep decrease in willingness 

to travel over longer distances. Gravity-based accessibility is a location-based measure because it 
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represents the number of opportunities accessible from one location. Gravity-based measures are practical 

for application because their location-based outputs are potentially compatible with local travel 

forecasting models, which store information at the zonal level (Krizek et al., 2009). A limitation of the 

gravity measure is that it fails to recognize user-specific perceptions of attractiveness (taste 

heterogeneity), because it assumes that accessibility is the same for all users accessing a destination, 

although actual perceptions and travel contexts may vary (Cascetta et al., 2013; Hanson & Schwab, 

1987).  

 
𝐺𝑟𝑎𝑣𝑖𝑡𝑦‐ 𝑏𝑎𝑠𝑒𝑑 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑖 = ∑

𝑂𝑖 ∗ 𝐷𝑗

𝑇𝑇𝑖𝑗
2

∀𝑗≠𝑖

 
[2.3] 

The travel impedance function in gravity-based accessibility often uses the squared travel time (𝑇𝑇𝑖𝑗
2) 

between origin 𝑖 (𝑂𝑖) and destination 𝑗 (𝐷𝑗), following a denominator sometimes used in the trip 

distribution gravity model for demand forecasting (Niemeier, 1997). More recent travel forecasting 

models typically calibrate the travel impedance function (e.g., using power functions, 𝑓(𝑇𝑇𝑖𝑗) = 𝑇𝑇𝑖𝑗
−𝑏; 

exponential functions, 𝑓(𝑇𝑇𝑖𝑗) = 𝑒−𝑏𝑇𝑇𝑖𝑗; or gamma functions, 𝑓(𝑇𝑇𝑖𝑗) = (𝑇𝑇𝑖𝑗)
𝑎

𝑒−𝑏𝑇𝑇𝑖𝑗, where 

parameters 𝑎 and 𝑏 are calibrated) using household travel diary data. However, transit accessibility 

studies continue to adopt the power-based impedance function, where 𝑏 = 2. The calibration of travel 

impedance within transit accessibility measures is left for further research. 

 Cumulative opportunity measures, also described as count-based or isochronic measures, 

represent the simplest form of accessibility. Cumulative opportunity measures count the number of 

opportunities (at destination zones 𝑗, among set of all destination zones 𝐽) reachable from origin 𝑖 within a 

time threshold (𝛼𝑖𝑗). Based on the gravity-based measure definition, the cumulative opportunity measure 

is a specific subset of gravity-based measures where the travel impedance has a value of 1 if the 

destination is reachable within a travel time threshold, 𝛽 (e.g., 𝛽 = 30 minutes), and 0 otherwise (Handy 

& Niemeier, 1997). 

 
𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦 𝑖 = ∑ 𝐷𝑗 ∗ 𝛼𝑖𝑗

𝑗

, 𝛼𝑖𝑗 = {
1, 𝑖𝑓 𝑇𝑇𝑖𝑗 ≤ 𝛽 ;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

[2.4] 

Although the cumulative opportunity measure is easy to interpret, the measure uses discrete and arbitrary 

travel time thresholds (𝛽) within which all reachable destinations are assumed to be equally attractive 

(Hasnine et al., 2019). In contrast to the gravity-based measure, the binary weighting function used in the 

cumulative opportunity measure does not accommodate continuously differentiated travel impedance. 

 Space-time, constrained-cumulative, or time-geography measures are constraint-based in that 

they delineate the countable opportunity space using activity availability and individual time budgets. 

Hägerstrand (1970) first developed the concept of a space-time prism to geometrically represent this 

opportunity space, where space is a two-dimensional plane (x and y axes) from which time extends along 

a perpendicular axis (z axis). Opportunities are fixed to the spatial plane but only occupy positions along 

the temporal axis when they are available, such as during working hours for a place of employment. 

Therefore, the boundary of accessible opportunities may follow an individual’s schedule of activities 

throughout the day, only counting those within a travel budget bounded by the location and time of fixed, 

non-discretionary activities (called “space-time anchors”). Space-time measures can represent day-to-day 

variations in personal accessibility, based on individual activity schedules (Neutens et al., 2012). The 

temporal component of this measure overcomes the location-based accessibility assumption of static, 

unconstrained accessibility to all destinations. However, similar to the cumulative opportunity approach 

of delineating “accessible” spaces, the space-time prism also imposes a discrete boundary of inaccessible 

spaces outside of the prism interior (Miller, 2017). Fang et al. (2010, p. 4) present a space-time 
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accessibility indicator for an activity type (e.g., shopping) that is assigned to a destination 𝑖 in equation 

[2.5] based on the availability of accessible activities. 𝑘𝑠 represents an activity at place 𝑠 (e.g., shopping 

at store “A”), within the activity place set 𝐾 (𝐾 = {𝑘𝑠 |   𝑠 ∈ 𝑛}) of all places 𝑛. Elements of set 𝐾 are 

candidate activity places (available or unavailable). 𝐾′(𝑜, 𝑑) are the available activities within the space-

time prism defined by space time anchors (first origin, 𝑜, and final destination, 𝑑) and activity place set 

𝐾. 𝐾′(𝑜, 𝑑) =  𝑘𝑗
′, 𝑘𝑗

′ ∈ 𝐾, where place 𝑗 has an available activity among total available activities 𝑚 

within the space-time prism. Thus, if all activity places in the prism are available, 𝐾′(𝑜, 𝑑) = 𝐾. The 

available activity time of 𝑘𝑗
′ (𝑘𝑗

′ ∈ 𝐾) from origin 𝑜 to destination 𝑖 is 𝐴𝐴𝑇(𝑘𝑗
′). 

 𝑆𝑝𝑎𝑐𝑒 − 𝑇𝑖𝑚𝑒 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑖 = ∑ 𝐴𝐴𝑇(𝑘𝑗
′), 𝐾′(𝑜, 𝑖) ∈ 𝐾

𝑘𝑗
′∈𝐾′(𝑜,𝑗)

 [2.5] 

 Utility-based, accessibility-benefit, or econometric accessibility measures also constrain the 

accessibility space, but rather than count potential opportunities, accessibility assumes the form of a 

utility function with a value corresponding with the individual’s maximum utility trip (Ben-Akiva & 

Lerman, 1985; Chorus & de Jong, 2011). The linear utility function takes the form of equation [1.1], 

where the dependent variable is accessibility, and the independent variables are socioeconomic and 

transportation service variables. Here, the accessibility envelope is a generated set of potential paths 

(perceived accessibility), which is assumed equivalent to the expected maximum utility path to a user (the 

logsum) (Nassir et al., 2016). The maximum utility path is chosen using a discrete choice model among a 

set of available activities, given the individual’s preferences derived from socioeconomic characteristics 

(Hasnine et al., 2019). Although utility-based accessibility provides some measurement of perceived 

accessibility values and can thus capture preference heterogeneity, the unitless measure lacks 

interpretability of results and cannot be quantitatively compared across different areas because of its 

connection to individual characteristics (Cascetta et al., 2013). Instead, accessibility can be compared 

between schedules and activities as the difference in the individual’s utility resulting from choosing an 

alternative, or opportunity cost. 

 

 This thesis is specifically concerned with transit accessibility, which describes the opportunities 

reachable using transit services from an origin location. For clarity, transit accessibility refers to the 

accessibility measurement of taking transit trips, or accessibility by transit, rather than accessibility to 

transit services, which is focused on access/egress trip components (often by walking). Applications of 

transit accessibility in the literature are focused on the differentiation of transit accessibility values across 

space to support planning and monitoring efforts. These applications include evaluations of infrastructure 

development or divestment impacts (Farber & Fu, 2016; J. Lee & Miller, 2018), service gap identification 

(Fayyaz, Liu, & Porter, 2017; Fransen et al., 2015), land value uplift (Higgins & Kanaroglou, 2018), and 

inequity between socioeconomic strata (A. El-Geneidy et al., 2016; Stępniak & Goliszek, 2017). A 

handful of studies have studied the impact of transit accessibility on transit mode shares (Moniruzzaman 

& Páez, 2012; Owen & Levinson, 2015; Papaioannou & Martinez, 2015).  

 The subject of transit accessibility measurement, and of non-automobile modes in general, has 

been subject to limited research despite the emergence of the accessibility concept roughly half a century 

ago (Krizek et al., 2009). Since transit trips have unique travel components and spatiotemporal constraints 

relative to other modes, methodological research in transit accessibility literature explores techniques to 

calculate transit travel impedance (i.e., total travel times) towards adapting accessibility measures (e.g., 

cumulative opportunity) to transit travel characteristics (Lei & Church, 2010). Like general accessibility 

measures, transit accessibility applications do not universally employ a specific measure (i.e., gravity-

based, cumulative opportunity, space-time, or utility-based) because of the advantages and disadvantages 

associated with each measure class. 
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 Historically, transit accessibility researchers faced difficulty with the accurate and comprehensive 

calculation of transit travel times. Compared with other modes, transit is uniquely constrained by its fixed 

departures over time, more limited accesses/egresses across space, and dependence on transfers (Nassir et 

al., 2016). Since transit accessibility evaluations are highly sensitive to these sources of measurement 

errors, transit accessibility researchers were motivated towards improving geographical models. Early 

computational approaches for transit travel time measurement in the late 1990s used Geographical 

Information Systems (GIS) to model transit trip components over space (Lei & Church, 2010). Authors 

often simplified travel times by dividing travel component distances with average speeds, or using 

distance as a proxy (Liu & Zhu, 2004). Without reference to transit schedules, these approaches would 

fail to represent variation in waiting, transfer, and departure times along alternative trip paths and between 

different times of day. O’Sullivan et al. (2000) were the first researchers to explicitly apply transit 

schedule data to create shortest-path travel time isochrones (lines of equal travel time) but still simplified 

the calculation. Specifically, they used scheduled route travel times to derive distance-weighted segment 

travel times and calculated transfer times as half of the departing route’s scheduled headway. Although 

the timetable data were complete, network construction for representation of all possible trips and 

transfers was still too data intensive for modelling from even a single origin, let alone all origins in a 

network (O’Sullivan et al., 2000). 

 More recent improvements in computing capacity and GIS have allowed researchers to calculate 

transit accessibility at a near-continuous temporal resolution (Fayyaz, Liu, & Zhang, 2017). Google’s 

introduction of the General Transit Feed Specification in 2005 enabled researchers and practitioners to 

model entire transit networks with detailed schedule information (see “Transit Schedule Information” 

subsection for detail). For example, Lei and Church (2010) developed the “Transit Accessibility Planning 

Analyst” GIS tool to calculate the shortest path by transit from an origin to every destination in the 

network. They produced isochrone-based maps using typical commuter arrival and departure times (i.e., 

8:00 and 17:00). In a study of all non-motorized modes, Krizek et al. (2009) calculated gravity-based 

transit accessibility measures for eight time periods throughout the day, for seven entire transit networks 

(metropolitan areas), and for three different years (only the most recent year, 2005, of schedule 

information was digitally available, corresponding to GTFS). Boisjoly and El-Geneidy (2016) collect 

hourly departure times and aggregate them within five periods of the day to represent daily transit travel 

time fluctuation in their cumulative opportunity measure. Although these studies increased representation 

for multiple times of day, a temporal sampling error still exists because accessibility drops at transit stops 

immediately after vehicle departures. Since headways and other service parameters vary minute-by-

minute, measures that can capture short-term transit service dynamics offer more descriptive assessments 

of transit accessibility.  

 Methodological research on transit accessibility has expanded to examine the descriptive and 

statistical merit of increasingly high-resolution temporal sampling. “Dynamic” accessibility modelling is 

an extension of accessibility measures concerned with how user trip-making, transportation system 

performance, and activities are distributed over time (Järv et al., 2018). Several studies use dynamic 

accessibility methods to represent intra-period variation in transit accessibility, including 15-minute 

(Stępniak & Goliszek, 2017), 10-minute (Fayyaz, Liu, & Porter, 2017), five-minute (Fransen et al., 2015), 

and even one-minute intervals (Farber & Fu, 2016). Stępniak et al. (2019) provide a comprehensive list of 

dynamic accessibility literature and then test temporal-sampling-frequency scenarios against a one-minute 

benchmark to understand losses in precision at lower frequencies. For all scenarios, they found that there 

is a negligible decrease in precision for sampling intervals less than five minutes (which have a mean 

absolute error (MAE) < 1 min.). Furthermore, they recommend the use of 15-minute sampling intervals, 

trading a small decrease in precision (MAE < 2 min.) for a large computation time reduction. 
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 Murphy and Owen (2019) compare four different sampling strategies (simple random, 

systematic/regular interval, hybrid, and constrained-walk) alongside sampling frequency and found that 

all sampling strategies performed well at high frequencies (i.e., approximately 20 per hour, or every 4 

minutes), but warned that systematic sampling is sensitive to harmonic error effects (i.e., when departure 

schedules are regularly coincident or discordant with the sampling time) transit schedules at 10-minute 

intervals. They suggest the use of two, three, and four-minute sampling intervals with the systematic 

sampling strategy to guarantee an average normalized root mean square error (NRMSE) below 2.5%. 

These findings consistently describe the trade-off between computation time and temporal sampling error, 

but that “best” sampling strategies are difficult to recommend without testing within specific application 

contexts. Thus, depending on computational resources, measurement complexity, and transit network 

characteristics, some authors continue to select a representative departure time for daily travel periods (J. 

Lee & Miller, 2018; Legrain et al., 2015). 

 

 In measuring transit accessibility, the selection of attraction components (land use interaction 

terms), and ultimately the type of measure, also depend on the application context and research objective. 

Generally, the land use component of accessibility describes the spatial distribution of activities from an 

economic, incentives-based perspective, where value reflects the user demand for accessibility to 

locations (Geurs & Ritsema van Eck, 2001). The incentives-based definition of attraction is especially 

accurate when used in studies about how transit accessibility affects land values. For example, Higgins 

and Kanaroglou (2018) relate the impact of increased transit accessibility (within a bundle of “transit 

oriented development” goods) to some measurable increase in nearby property values. Within their 

gravity-based transit accessibility measure, the land use interaction terms include total population at the 

origin zone (𝑃𝑜𝑝𝑖) and total employment at the destination zone (𝐸𝑚𝑝𝑗). Of course, people do not 

exclusively perform commuter trips. Studies interested in the assessing the value of transit accessibility 

outside of markets (e.g., user-derived value) ought to account for different trip purposes. Moya-Gómez et 

al. (2018) discuss the need for dynamic accessibility analyses that consider the location of the population 

throughout the day as a proxy for destination attractiveness, and Stępniak et al. (2019) note that the 

population uses accessibility to participate in activities that improve their well-being. Burns and Golob 

(1976) offered an early summary of interaction terms (attraction measures) based on generic activities:  

• total population (general measure of attraction to activities corresponding to population centres: 

shopping, social, employment),  

• total employment (employment opportunities),  

• commercial building acres (shopping),  

• retail employment (shopping), and 

• industry (employment). 

 

 Limited research exists on the relationship between transit accessibility and mode choices due to 

the difficulty in calculating complex transit travel times for individual users (Mavoa et al., 2012; Owen & 

Levinson, 2015). However, transit accessibility has a strong theoretical relationship with transit choices in 

urban dwellers because it can be sensitive to “valuable” land uses and transit service quality (Wegener & 

Fürst, 1999). Temporally dynamic measures of transit accessibility, or dynamic transit accessibility 

(DTA) measures, can reflect system characteristics to which individuals respond when making mode 

choices. DTA captures the accessibility impacts of transit frequency, often the most important attribute in 

mode choices (Cirillo et al., 2011; Eboli & Mazzulla, 2011; Legrain et al., 2015), and other statistically 

significant attributes of transit choice, including waiting time and in-vehicle travel time (Dell’Olio et al., 

2011). DTA also presents an opportunity to reflect differences in transit demand over time. For example, 

Polzin et al. (2002) used a time-of-day based transit accessibility measure, where the proportion of daily 
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trips in a period were applied as a weight factor for accessibility values calculated in that period. This 

incorporates the time sensitivity of travel demand which is related to the perceived value and availability 

of activity types at different times of day. Transit service to an employment location at the middle of the 

night is not as valuable as that same service during the morning peak. These studies reveal DTA’s ability 

to capture pertinent mode choice factors and strengthen the theoretical motivation for this analysis. 

 A few researchers have attempted to quantify transit accessibility’s relationship with mode 

choices (either aggregate or disaggregate). Studies of transit accessibility’s impact on mode shares 

typically use coarse spatial or temporal analysis dimensions, but offer promising results relating transit 

accessibility to transit shares. Moniruzzaman and Páez (2012) apply a cumulative opportunity measure to 

jobs in a logistic mode share model and include a spatial filter to control for spatial autocorrelation. They 

find that transit accessibility contributes to higher transit use and remains a significant predictor even after 

applying the spatial filter. However, their measure of transit accessibility is atemporal (i.e., disregards 

distribution of services over time) because it assumes average travel times around stations to assess the 

accessibility provided by new transit routes. Papaioannou and Martinez (2015) also use an atemporal 

gravity-based transit accessibility measure in a structural equation model of mode choices, finding that 

accessibility must be good in general, but also high for a particular trip. However, the study uses 

theoretical impedance functions (estimated from stated preference surveys), rather than from network 

travel time samples (Miguel Martínez & Viegas, 2013). Although this kind of transit accessibility is not 

spatially derived, it may be more adapted to user attributes and perceptions (Papaioannou & Martinez, 

2015). 

 Only one analysis increases the spatiotemporal resolution of transit accessibility to model transit 

shares. Owen and Levinson’s (2015) binomial logistic regression predicting automobile and transit shares 

uses a transit accessibility metric in an application closely related to this thesis. They, like Moniruzzaman 

and Páez, measured the cumulative opportunity to jobs at a continuous temporal resolution (one-minute 

intervals) for the morning peak period (7 to 9 AM) and found that average transit accessibility is 

positively correlated with zonal transit shares for all time thresholds (isochrones). Their model was best 

fit using the 40-minute threshold, achieving a 𝜌2 value of 0.597. Transit accessibility variation also made 

a small but statistically significant improvement to Owen and Levinson’s model fit: variation is 

negatively correlated with zonal transit mode share (higher variation in service lowered transit shares). 

Other studies allude to the role of transit accessibility in mode choice but use alternative definitions of 

transit accessibility (accessibility to transit, rather than by transit) (e.g., Chow et al., 2006). 

 

 

 Studies of transit accessibility attempt to improve the representation of transit accessibility value 

by manipulating spatiotemporal parameters (i.e., higher temporal sampling frequency, more disaggregate 

zones), introducing land use attraction components that are better connected to travel demand, and testing 

different classes of transit accessibility. Recently, developments in transit accessibility methodology have 

permeated mode choice analysis: researchers use higher spatiotemporal resolutions that are sensitive to 

transit system attributes found to influence transit choice. Dynamic transit accessibility measures can 

reflect changes in transit waiting time, in-vehicle travel time, and service frequency that are relevant to 

perceived transit value (Dell’Olio et al., 2011). Given the recency of dynamic accessibility measures, few 

studies have analyzed dynamic transit accessibility’s impact on mode choices. Only Owen and Levinson 

(2015) have used dynamic transit accessibility to predict zonal mode shares, applying a cumulative 

opportunity measure within a binomial logit model. No consensus exists on the class or form of transit 

accessibility measure that is the best predictor for mode choices. Researchers that relate transit 

accessibility to mode choices also typically study the commute to jobs alone (Chow et al., 2006; 
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Moniruzzaman & Páez, 2012; Owen & Levinson, 2015), disregarding different activity demands and 

transit services over the span of a day.  

 A gap exists in evaluating the predictive abilities of different transit accessibility measures, 

including temporally dynamic measures, in the context of mode choice analysis. There is an opportunity 

to merge the different bodies of transit accessibility research related to computational methods, attraction 

(land-use) term specification, merit assessment of different measure classes (gravity-based, cumulative 

opportunity, etc.), and transportation mode decision making. Transportation mode choice analysis may be 

extended by testing transit accessibility’s predictive power for: 

• multiple accessibility measure classes, 

• non-peak periods of the day, and 

• land-use attraction terms specific to the time of day. 

 This research fills the gap by expanding the application domain of dynamic transit accessibility 

and evaluate its effects on transit mode shares. Testing different measure classes may provide insight on 

the appropriate measure form for mode share analysis. High-resolution temporal sampling can calculate 

these different measures dynamically and precisely across multiple time periods, which are connected to 

demand for different trip purposes throughout the day. 

 

 Previous research has demonstrated that RBMC models can induce non-compensatory decision 

processes without sacrificing prediction accuracy. These models generally focus on reducing bias in the 

model induction process and increasing prediction accuracy, sometimes at the expense of interpretability. 

Like transit accessibility measures, there is no consensus on the appropriate model structure to induce 

mode choices. The methods presented in this thesis can strengthen the connection between decision 

process theory and RBMC application, improving descriptions of behaviour and encouraging further 

adoption of RBMC models in the field.  

 One avenue for improving the descriptive power of RBMC models is the analysis of how land-

use transportation variables impact mode choices. Researchers have called for using more detailed land-

use variables to improve forecasting because of its connection to travel demand. Within the RBMC space, 

Cheng et al. (2019) found that land use variables were important predictors for mode choice in their RF 

model and suggest that changing the land use strategy can shift travel demand. They emphasize the 

importance of using datasets from different sources: specifically, travel data measurements. Towards 

identifying decision rules that are consistent with travel demand theory, this thesis investigates dynamic 

transit accessibility’s impact on mode choices in a less restrictive (non-compensatory) model structure. 
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The Transportation Tomorrow Survey (TTS) includes stated trip diary information for the Greater 

Toronto and Hamilton Area (GTHA) and surrounding municipalities, including the Region of Waterloo. 

Funded by the 22 provincial and municipal government organizations, the TTS is the largest travel diary 

survey in Canada (Data Management Group, 2018). The TTS samples every five years, most recently in 

October 2016 when it achieved an overall sampling rate of 5.0% of all households in its study area. The 

sampling rate in the Region was 4.8% of all households, varying by ±0.5% between the Region’s lower-

tier municipalities (e.g., City of Waterloo achieved 5.4%). The TTS represents the most comprehensive 

set of trip information in the Region, recording trip, transit, person, and household attributes for each 

sample. Both the transit accessibility analysis and mode choice model retrieve trip and demographic 

information from the TTS. 

 Zonal aggregations of TTS data use the Population-Land-Use Model (PLUM) zone system, also 

known as PZ2165. PLUM zones divide the Region into 2165 zones, each with areas averaging 645,228 

m2 (0.645 km2) and population and employment counts averaging 244.5 people and 147.9 jobs, 

respectively. This research uses PLUM zones for their higher degree of spatial disaggregation compared 

with the TTS’s larger traffic analysis zones (TZ576), which divide the same area into 576 zones. 

Population figures from the TTS are derived from expanded person-level samples and are therefore 

aggregated to PLUM zones alongside all trip data. Employment figures expanded from person-level 

samples do not classify employment by sector and appear to underrepresent the total Regional 

employment (215,546 jobs) compared with a table of employment, also provided by the TTS, for the 

same area (317,539 jobs). No detail exists on why the discrepancy is so high; however, the employment 

data table is used in this thesis because it classifies employment into sectors (industrial, retail, office, 

service, primary, education, work-at-home), suggesting some manipulation occurred to match an external 

data source. Employment data from the sector-specific table is aggregated to TZ576 zones. For consistent 

use of PLUM zones in this research, employment counts were transformed into employment densities by 

sector for each TZ576 zone, spatially-joined to the PLUM zones contained therein, and then recalculated 

for PLUM zone areas, assuming uniform distribution across space. 

 Disaggregate trip data code to PLUM zone identities to spatially distribute observed trip attributes 

(modes used, trip times, purposes, and auxiliary information). Some trips recorded in the TTS are not 

attached to zone geography (no ID), possibly due to incomplete surveys or privacy reasons. Non-zone 

trips are still geographically connected to the Region, but their lack of zonal identification precludes them 

from this analysis, which identifies mode choices and trip departure times based on origin zones (i.e., for 

calculating location-based accessibility). Therefore, the sum of total trips by mode for all zones differ 

from Regional mode shares. Regional mode shares are still noted in the Calculating Mode Shares section 

because they include a larger sample of users from the Region and are therefore more representative of 

Regionally aggregate trip characteristics. 

 The rules-based mode choice model employs the same disaggregate trip data with additional 

personal and household information. Detailed information about preprocessing the independent variables 

for mode choice analysis are described in the Independent Variables section, which lists the independent 

variables, their categories, and the unit of organization used in the mode choice model. 

 

Aside from Travel Diary (trip survey) data collection methods, transportation engineers and planners have 

system-level information related to measuring the performance of transportation infrastructure. The 

General Transit Feed Specification (GTFS) is a standard format for storing transit schedule information 
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and associated geographic information (Google, 2020). Google created GTFS for transit agencies to 

distribute standardized schedule information for interpretation by the public, developers, and researchers. 

It is available in dynamic and static forms. The dynamic information is a feed of real-time transit vehicle 

location data, often used for live departure updates in transit information devices and mobile applications. 

The static information comprises files that collectively detail all planned trips within a schedule period 

(roughly, one month); that is, they represent the occurrence of every planned transit trip departure at any 

given stop in the system at a one-minute resolution. Static GTFS, at a minimum, includes five, comma-

separated value (csv), files: 

1. Agency: identity of the transit agency providing the service 

2. Stops: locations and identification (numbers and names) for transit stops and stations 

3. Routes: transit route identification and route type (vehicle technology) 

4. Trips: trip identification, their associated route ID numbers, and dates of service (M-F, Sat, etc.) 

5. Stop times: for stops along a particular trip, the trip ID number, stop ID number, departure time, 

stop sequence number within the trip 

 GTFS information is available publicly through online repositories for many transit systems 

around the world. Transit agencies regularly produce GTFS datasets and update them alongside changes 

in operating conditions. The Region’s local transit agency, Grand River Transit (GRT), regularly 

publishes this information for their services. Thus, the schedule period was selected to align with the 

travel diary survey collection period in October 2016. An arbitrary day, Wednesday, October 19, 2016 

was chosen because it is not a holiday, weekend, or otherwise eventful day. 

 

Road network elements are represented in Esri’s shapefile format. Relevant attributes include road names, 

road classifications, and physical lengths (Region of Waterloo, 2019). The Region updated this data on 

January 4, 2019 and no historical repository exists. Within the shapefile, roads are represented by their 

centre lines, digitized as line elements. Road elements classified as freeways and expressways are 

restricted to pedestrians for the purposes of the transit accessibility analysis. 
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This chapter explores the relationship between transit accessibility and aggregate mode shares. Based on 

findings from decision process literature related to the boundaries of cognition and heuristics (Gigerenzer 

& Gaissmaier, 2011; Simon, 1972; van der Pligt, 2015), the hypothesis of this chapter is that transit 

accessibility enters user decision frames through the heuristic recollection of generally positive or 

negative transit experiences. Thus, a representative measure of perceived transit accessibility ought to be 

a statistically significant predictor of higher observed transit shares. An interesting extension of this 

hypothesis is whether people also interpret the temporal variation in transit accessibility when making 

their decisions. Broadly, the objective of this chapter is to find a transit accessibility metric that is, by 

magnitude or its dispersion, a statistically significant explanatory variable of aggregate mode shares. The 

objectives of this chapter are: 

• Develop alternative transit accessibility metrics 

• Analyze possible linear relationships with mode shares using regression 

• Compare different transit accessibility metrics by statistical merit 

• Select a metric for use in subsequent mode choice analysis 

Several assumptions underpin the research objectives. This research assumes that aggregate user 

behaviour responds to some appropriately specified form of transit accessibility, and that a statistically 

significant relationship with transit shares supports the subsequent implementation of the transit 

accessibility metric in a disaggregate mode choice model (see “DTA in a RBMC Model” subsection). 

 

Dynamic transit accessibility (DTA) is defined in this research as a statistical description of transit 

accessibility value over time. Generally, DTA refers to the transit-specific form of dynamic accessibility, 

which is a concept concerned with the distribution of transportation system services over time (Järv et al., 

2018). Statistical measures of central tendency (e.g., mean) and variation (e.g., standard deviation) may 

describe the magnitude and distribution of transit accessibility values for multiple departures over time, 

thus representing DTA. Discussion in Measure Selection (DTA Magnitude and Dispersion subsection) 

addresses the statistical attributes of DTA used in this analysis. 

 Accessibility frameworks in literature, resource constraints (data or computational), and broader 

objectives of this thesis guided the development of the DTA metric. Handy and Niemeier (1997) created a 

development framework for transit accessibility measures from which this thesis partly borrows. First, the 

class of measure must be selected based on study objectives. Second, measure specification must address 

the degree and type (spatial or temporal) of disaggregation, the definition of origins and destinations, and 

how attractiveness and travel impedance are measured. The objectives of this chapter and broader 

objectives of this thesis inform the metric specification, interpretation, and application space. Objectives 

of DTA development can be organized by application requirements: 

• Theory: apply a measure that is connected to transportation demand theory and decision process 

research (heuristics) 

• Applicability and Transferability: use existing, publicly available datasets 

• Interpretability: present a conceptually straightforward representation of accessibility value 

• Robustness: statistically significant explanatory performance in a variety of scenarios 

• Location-based: can be compared across space and provides opportunities for 

infrastructure/service intervention 
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 The original gravity-based measure of accessibility is attractive because of its simplicity over 

more complex measures (i.e., utility-based and space-time prisms). It is also useful for comparison across 

space because it is location-based. These attributes make it an attractive candidate for testing. An early 

criticism of gravity-based measures is presented by Kutter (1972), who argues that travel behaviour ought 

to be based on behavioural and attitudinal surveys, rather than the assumption that travel motivation is 

some function of origin and destination “masses,” postulated by gravity measures (Banister, 2002). 

However, these measures may remain useful because the attraction components used to represent 

“masses” (e.g., population, employment) are proxies for underlying travel motivations and mode share 

dependencies. For example, measures using population magnitude may represent the activity size of an 

area, which is found to affect transit shares (Taylor et al., 2003). Population density is one of the 3D’s 

(density, diversity, design), which are built-environment factors found to have a statistically significant 

affect on mode shares (Cervero, 2002). This research, therefore, tests gravity-based measure forms. 

 Countable accessibility measure classes (cumulative opportunity and space-time) offer an 

interpretable result in their expression of a magnitude of activities accessible within an isochrone. The 

cumulative opportunity measure is especially simple because the count is only constrained by the selected 

time threshold, within which travel is assumed to be equally valuable to users. However, a criticism of 

cumulative opportunity measures is that they are limited by their high sensitivity to the chosen time 

threshold value. Stępniak et al.’s (2019) study of temporal resolution in transit accessibility measurement 

found that cumulative opportunity measures are not suitable to explain accessibility changes over time 

because of discrete boundary effects and arbitration of the boundary itself. Cascetta et al. (2013) note an 

inability to calibrate a robust threshold from real data, and therefore the difficulty in reproducing user 

behaviours wherein highly attractive destinations overcome a high impedance of travel. Despite the 

weaknesses of cumulative opportunity measures, some forms have been applied successfully in mode 

choice modelling, producing statistically significant results when the threshold is set at 40 minutes (Owen 

& Levinson, 2015). Although it is technically a subset of the gravity-based measure, and therefore subject 

to the same weaknesses in behavioural representation, the single attraction component used within 

cumulative opportunity measures may be more consistent with travel demand theory than interaction-

based gravity measures (i.e., where two attraction components exist) because trip makers may be 

compelled to travel based on the attraction of their destination alone. This research therefore tests 

cumulative opportunity measure forms. 

 Space-time prism measures introduce temporal constraints related to activity availability that 

could benefit this research. Temporal constraints on activities address the limitations of basic location-

based accessibility measures related to user demand representation (i.e., changes in demand throughout 

the day to different activity locations). However, space-time measures are similarly at the mercy of the 

temporal resolution of analysis. Studies using space-time measures may still measure accessibility values 

sparsely throughout the day, which could distort actual accessibility envelopes. For example, Lee and 

Harvey (2018) generalize transit accessibility levels for four time periods using a single sample per period 

(8 a.m., 1 p.m., 6p.m., 9 p.m.) and discuss the value of using dynamic transit accessibility analysis in 

future work. Consideration towards activity availability also primarily affects trip generation rather than 

mode choices because activity availability is constant across all modes (i.e., the grocery store closes at the 

same time regardless of whether the user takes transit or car). Except for trips at the fringes of activity 

availability times, where travel time differentiation between modes are sufficiently large for users to 

“miss” an activity with some modes and not others, activity availability times are less relevant for mode 

choice analysis. In any case, no reliable activity availability data exists that are expressed in terms of 

employment counts for the Region. Information that does exist about business availability times are not 

connected to information about business size (i.e., number of employees, retail floor area). Activity 

availability times also vary within zones and thus require a user-/activity-based approach, where 
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individual destinations and daily schedules are known, to provide meaningful accessibility values. 

Therefore, this research does not apply space-time accessibility measures. 

 Utility-based accessibility relies on economics-based, utility-maximizing axioms (Ben-Akiva & 

Lerman, 1979), from which this thesis departs in favour of other psychological theory. Utility-based 

accessibility measures are difficult to interpret, sensitive to existing user characteristics, and cannot be 

meaningfully compared between territorial areas (Cascetta et al., 2013). The inclusion of user 

characteristics is also problematic at this modelling stage because the transit accessibility metric 

developed in this chapter is intended for use in a mode choice model. User characteristics are considered 

later within a disaggregate decision process model. Including user characteristics within the transit 

accessibility metric risks covariance. This research does not apply a utility-based measure of accessibility. 

 Efforts to model perceived TA typically vary TA based on user socioeconomic attributes 

(Cascetta et al., 2013) and temporal accessibility components, which location-based measures ignore 

(Krizek et al., 2009). However, aggregate mode share models using dynamic, location-based transit 

accessibility measures have offered encouraging results (Owen & Levinson, 2015). This thesis modifies 

the standard gravity-based measure to increase sensitivity to user demand in two ways. First, by 

evaluating travel impedance at multiple departures, the metric is sensitive to changes in transit 

accessibility over time. Second, the attraction components are manipulated to reflect dominant trip 

purposes within each period of the day. This thesis tests these modifications on three types of location-

based accessibility measures for their relationships with mode shares. A gravity-based measure with two 

attraction terms (origin and destination) is used alongside a cumulative opportunity measure with a 40-

minute time threshold. A third, hybridized measure uses a single destination attraction term (e.g., 

employment only) and scales the weight of opportunities by the travel impedance. It is referred to in this 

research as the time-decayed opportunity measure. Other authors have described this measure as a gravity 

based measure (Alam et al., 2010). This research uses “Time-Decayed Opportunity” to avoid confusion 

with interaction-based (classical) gravity models. 

 

 The time-decayed opportunity measure differs from the classical, interaction-based gravity 

measure by reducing the number of interaction terms to 1, like the cumulative opportunity measure. 

Rather than weighing the number of people “gravitating” from an origin to a destination, individuals are 

assumed to be attracted to destinations alone, regardless of the number of other individuals in their origin 

zone. In contrast to the cumulative opportunity measure, no arbitrary time threshold is used. Instead, 

destination attractiveness decays based on the travel impedance so that far-away, high-attraction 

destinations are appropriately included. Continuous decay of opportunities can mitigate the strong 

boundary effects of cumulative opportunity measures. Time-decayed opportunity attempts to improve the 

behavioural representation of gravity-based measures by ignoring the “attractiveness” of the origin node, 

which may be irrelevant to user’s individual decision making. 

 

 Increasing the temporal resolution of analysis aims to reduce sampling bias, include the influence 

of dynamic transit service parameters, and represent a period-level conception of transit’s accessibility 

context that users may use during the mode choice process. Findings from transit accessibility’s temporal 

sampling literature suggest that the 5-minute sampling interval is sufficiently accurate compared with the 

1-minute baseline, while offering a five-fold reduction in calculation times (Stępniak et al., 2019). 

Although Stępniak et al. discuss the feasibility of a 15-minute sampling interval, this research attempts to 

limit the impact of harmonic departure times on travel time sampling error (Murphy & Owen, 2019). The 

TTS trip data are also reported at the 5-minute interval. This research therefore samples transit travel 

times (including waiting, in-vehicle travel time, and access/egress walking times) at the 5-minute interval. 



 

26 
 

 Temporally dynamic transit accessibility can represent two categories of attributes affecting 

travel demand. First, intra-period variations in transit service parameters include departure frequency, 

transfer incidence/times, and overall travel time. Second, inter-period variations in travel purposes affect 

the relative importance of connectivity to some destination types over others. This research calculates all-

day transit accessibility at a high temporal resolution to capture intra-period service attributes and varies 

attraction terms to capture inter-period changes in demand. Finally, this research postulates that users do 

not assess the value of discrete trips and instead inform their judgements using period-level temporal 

aggregations of service attributes. It is possible that users are more likely to ponder whether morning 

transit services would fit their morning trip-making needs rather than, for instance, the value of a specific 

trip at 8:36 AM. Therefore, dynamic transit accessibility is represented at the period level using statistical 

aggregations (i.e., measures of central tendency and measures of variance) of the 5-minute transit 

accessibility values. 

 GTFS integration with GIS software and general computing abilities enable the analysis of highly 

disaggregate spatial zones for increasingly large study areas. GTFS is interpretable by macroscopic 

transportation modelling software and other GIS software, which can digitize transit systems (stops and 

schedule data) and spatially relate them to other layers (e.g., land use, streets). Network-wide analyses can 

spatially attribute quantitative transit accessibility levels for comparison across an entire urban area. 

Spatial characteristics can also be joined to individuals, describing the individual’s travel context with 

detail that may be missed in a travel demand survey. Within network accessibility analyses, higher levels 

of spatial disaggregation are preferable because larger zones suffer greater losses in accuracy from spatial 

aggregation bias (modifiable areal unit problem). Transit accessibility measures are sensitive to the 

resolution of spatial land use information because access and egress components rely on other modes 

(usually, walking) that may contribute greatly to total travel times in larger zones (Krizek, 2005). 

Therefore, this research uses the most highly disaggregated public dataset of trip information to the 

authors knowledge: PLUM zones. PLUM zones have a small average size (0.645 km2) and populations 

and activities within each zone are assumed to be more homogeneous than other zones, based on Tobler’s 

First Law of Geography (everything is related to everything else, but near things are more related than 

distant things). 

 

 The travel impedance function, 𝑓(𝑇𝑇𝑖𝑗), and attraction components ought to describe travel 

demand as a function of the cost to travel between zones 𝑖 and 𝑗. In this case, travel cost is represented in 

time units (minutes). This research applies a common travel impedance function shown in equation [4.1] 

(Fu, 2017, p. 54): 

 𝑓(𝑇𝑇𝑖𝑗) = 𝑇𝑇𝑖𝑗
 −2 [4.1] 

where the 𝑇𝑇𝑖𝑗 represents the travel time between origin zone 𝑖 and destination zone 𝑗. This model of 

experienced travel impedance increasingly reduces the value of destinations to which it takes longer to 

travel. Other accessibility measures in the literature also apply this impedance function (see “Classes of 

Accessibility” subsection for references). This research assumes that all trip components are experienced 

equally: travel cost varies only by time, regardless of differences in comfort between trip components. 

 Transit and walking modes are both included in the travel impedance measure to include trips 

where walking is faster than transit, account for the influence of intrazonal destinations, and represent a 

baseline accessibility value that respects location. Performing transit trips requires walking trips for stop 

access and egress components. However, instances where waiting for the transit trip departure would be 

longer than the walking trip are completely replaced by walking trips. It is conventional to do this in the 

literature to avoid eliminating the value of short walking trips and to assess a baseline level of 

accessibility for time periods when no transit service is available (Owen & Levinson, 2015). 
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 Three attraction terms describe the potential activities at each zone: population, employment, and 

retail. Attraction terms take the form of expanded counts from the TTS. Population values represent the 

total number of persons living in a PLUM zone. Employment values represent the total number of 

employed people working in the Primary, Education, Office, and Industrial & Warehousing sectors at a 

zone. Discretionary values are the total number of employed people working in Retail and Services 

sectors at a zone. 

 

Evaluating DTA involves creating a spatial system on which to run the analysis, including transit system 

information from GTFS; calculating travel time matrices on the network using geoprocessing tools across 

all departure times and zones; evaluating transit accessibility using attraction measures for each departure 

time, 𝑛 (𝑇𝐴𝑛); and finally, aggregating the results temporally for period 𝑝 (𝐷𝑇𝐴𝑝). The method is shown 

in Figure 3. 

 
Figure 3: Dynamic Transit Accessibility Evaluation Method 

 

 The spatial system was built on ArcGIS Pro version 2.6 using the network analysis toolbox, 

developed by Esri (2020). Inputs for the spatial system, at the minimum, include a geographical road 

network and the locations of transit stops (Lei & Church, 2010). Figure 4 shows the spatial elements that 

are used to model a user’s path through pedestrian and transit networks on GIS software. 
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Figure 4: Spatial network elements traversed during a transit trip 

 ArcGIS’s “GTFS to Network Dataset Transit Sources” tool plots stop locations as points using 

GTFS longitude/latitude data and connects successive stops along transit routes. Rather than representing 

the actual network paths taken by transit vehicles, Euclidean lines represent the transit routes that connect 

successive stops because their travel times do not depend on line geometry. Instead, ArcGIS parses GTFS 

schedules to attribute route lines with segment travel times for all trips between any two stops. This is 

used downstream during the network analysis that accumulates travel times along travel time connections.  

 Road network lines (see “3.3Road Data” subsection) represent all the possible paths taken by 

pedestrians either on their way to transit stops or directly to final destinations. Pedestrian restrictions 

exclude road network lines categorized as “Freeways” or “Highways” from this analysis. Transit stop 

locations are the only points by which pedestrians traversing the road network may access/egress transit 

services. For different times of day and for different destinations, the “nearest” stop location may vary 

because of trip directionality and alternative route availability. Since stops are not placed along street 

centre lines, modelling pedestrian movement between the road and transit networks requires virtual 

connective elements between transit stops and road lines. The “Connect Network Dataset Transit Sources 

to Streets” tool connects stop locations with a line perpendicular to the nearest road element using a 

search radius of 500m. Connections between stops and roads are atemporal (frictionless), incurring no 

travel impedance. Travel impedance only accumulates along streets using an average walk speed (1.4 m/s 

or 5 km/h) and along transit route lines using scheduled travel times. Based on this connectivity policy, 

the network is built using the ArcGIS’s “Build Network” tool. Figure 5 geographically illustrates a part of 

the resulting network. 
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Figure 5: Built Transit Network Excerpt from the University of Waterloo campus 

 

 Calculating an interzonal travel time matrix requires specification of the origin and destination 

points, departure time, an evaluator that can accumulate walk and transit travel time components of a trip, 

and a shortest path algorithm. The 2145 PLUM zones (polygons) were transformed into points at their 

geometric centroids to represent the trip end locations (points 𝑖 and 𝑗). These centroids are connected to 

the nearest perpendicular road segment using a generous 1km search radius to ensure that larger zones or 

zones with sparse road lines are connected to the transportation network. Given the spatial network of 

pedestrian-traversable roads and transit elements, shortest path travel times are calculated between every 

zone in the Region, 𝑖, to every other zone, 𝑗, using ArcGIS’s Network Analyst toolbox (𝑖 ∈ 𝐼; 𝑗 ∈ 𝐼 ≠ 𝑖). 
First, an empty origin-destination (OD) cost matrix was created using the “Make OD Cost Matrix 

Analysis Layer”. Second, origin and destination points are loaded onto the layer using the “Add 

Origins/Destination Locations” tool and a single departure time is specified (e.g., 15:05 on October 19, 

2016). The matrix is populated using the “public transit evaluator” within ArcGIS Pro, which interprets 

transit travel times using GTFS transit schedule information and pedestrian walking times as a function of 

the distance travelled. Pedestrian speed is set at 1.4 m/s to calculate transit access/egress and transfer 

times. Finally, travel times between every origin and destination zone are calculated using the Djikstra 

shortest-path algorithm built into ArcGIS Pro (Esri, 2020). 

 DTA requires the travel time analysis of multiple departure times to measure the changes in 

transit accessibility over time. Since the cost matrix analysis layer accepts only a single departure time 

argument, the matrix calculation must reiterate over multiple departure times. Figure 6 shows the 

structure by which interzonal transit travel times (𝑇𝑇𝑖𝑗𝑛) are calculated between origin 𝑖 and destination 𝑗 

for every departure time 𝑛 and period 𝑝. 𝑁𝑝 is the set of departures in a period 𝑝. Periods include the 

morning (AM), mid-day (MD), afternoon (PM), early evening (EE), and night (NT). This analysis also 

aggregates travel times across all periods for an all-day (AD) analysis (𝑝 = [𝐴𝑀, 𝑀𝐷, 𝑃𝑀, 𝐸𝐸, 𝑁𝑇, 𝐴𝐷]). 
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Figure 6: Travel Time (𝑇𝑇𝑖𝑗𝑛) Matrix Structure for Time Periods (p) 

 Python scripts using ArcPy, ArcGIS’s python module, automated the 𝑇𝑇𝑖𝑗𝑛 matrix iteration over 

multiple departure times (𝑛). This research aggregates transit accessibility by the period of day, but uses 

travel time samples at 𝑛 (𝑇𝑇𝑖𝑗𝑛) to calculate the transit accessibility between each OD pair before 

aggregating to the origin zone at the period level. 

 

 Intrazonal trips are assumed to be completed using walking due to high spatial disaggregation of 

the PLUM zone system. Any transit trips that may occur within zones would require discrete origin-

destination pairs to model, which would be cumbersome to randomly populate for travel time evaluation 

and unlikely to compete with walking-only times. The impedance function (equation [4.1]) produces a 

value of 0 for intrazonal trips because the origin and destination points are the same zonal centroid. This 

undervalues accessibility for users making trips originating from high-activity zones and overvalues the 

relative accessibility of users in low-activity zones that happen to be adjacent to high-activity zones. 

Imposing a small travel impedance relative to the size of each zone would improve modelling accuracy.  

 Calculating average intrazonal walking times requires a set of assumptions to reflect differences 

between zonal sizes. First, arbitrary zonal polygons (based on geopolitical boundaries) are assumed to be 

perfect squares proportional to zone areas. Second, the walking trips within the square zones are assumed 

to be randomly distributed (i.e., pairs of points are randomly placed) because there is no information to 

infer the spatial distribution of intrazonal activities. Third, a Manhattan (grid) road network is assumed 

within each zone. Based on findings related to square line picking, the average Euclidian (straight-line/ 

“as the crow flies”) distance within a square is equal to 0.5214 ∗ 𝑥, where 𝑥 is the length (metres) of the 

square (Weisstein, n.d.). Within a Manhattan road network, an additional penalty applies to travel 

distance incurred by having to navigate right angles. For any two, randomly distributed points within a 

rectangular zone, the travel distance is 
1

3
(𝑥 + 𝑦), where the 𝑥 and 𝑦 represent two adjacent sides of the 

rectangle (Larson & Odoni, 1981). Given the assumption of square zones, the average distance of random 

travel within a zone with an area of 90,000m2 would be: 

1

3
(√90,000𝑚2 + √90,000𝑚2) =  200𝑚 
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Average walking speed is consistent with the interzonal travel time calculation: 83.33 m/min (5km/h). 

Thus, the intrazonal travel impedance would be approximately 3.6 minutes. This procedure is applied to 

intrazonal trips within the travel time impedance matrix (Figure 6). 

 

 Figure 7 shows the variations in transit trip components and total travel times for multiple 

hypothetical “transit trips” occurring at three departures times: 𝑛, 𝑛 − 1, and 𝑛 + 1.  

 

Figure 7: Temporal Sensitivity of Transit Trips 

These trips are possible shortest path travel times between origin and destination points, which vary 

depending on the availability of specific transit services at time of departure, 𝑛. For example, some 

departure times may miss the “best” transit route (departure n vs departure n+1) and later require a 

transfer, resulting in a longer total travel time. Departure n also reveals that transit trip components are 

temporally interdependent. The most inflexible component is the first transit vehicle of the trip. 

Depending on the departure time and in-vehicle travel time of the first vehicle, users may miss departures 

at sequential stops, compounding with trip complexity (i.e., number of transfers). Sometimes, walking 

trips are shorter than the transit alternative (n-1). In all cases, the walking travel time between any two 

zones also represents a baseline travel impediment, or “worst-case” accessibility value that still weighs 

land use impacts for the purposes of calculating a DTA measure. Thus, many urban zones nearby high-

activity zones have transit accessibility values that do not vary dramatically with transit trip departures 

because walking consistently affords a high value of accessibility. DTA (with 5-minute temporal 

sampling) measures the intra-period travel time variations that result from these phenomena, offering 

better representation of transit’s modal attributes. 

 

 Six different measures of dynamic transit accessibility are selected based on the different measure 

classes (gravity, time-decayed opportunity, cumulative opportunity) and attraction terms (population, 

employment, discretionary). Measures ending in “2” include discretionary trip purposes as attraction 

terms. All measures include destination attraction terms, but only the gravity-based measures include 

origin attraction terms. Table 1 describes the six transit accessibility measures by their classes, attraction 

term components, and temporal aggregation. 
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Table 1: DTA Measure Components 

Category Measure Dimensions and 

Components 

Measures 

G1 G2 D1 D2 C1 C2 

Accessibility 

Measure 

Gravity-based • •     
Time-decayed Opportunity   • •   
Cumulative Opportunity     • • 

Attraction 

Components 

Origin Attraction Terms • •     
Destination Attraction Terms • • • • • • 
Discretionary Trips Included  •  •  • 

Temporal 

Aggregation 

All Day • • • • • • 
Time Periods 

(AM, MD, PM, EE, NT) 
• • • • • • 

 

 The Gravity-based transit accessibility (𝐺𝑖𝑛) for origin zone 𝑖 at departure time 𝑛 is defined by: 

 
𝐺𝑖𝑛 = ∑

𝑂𝑖𝑝𝐷𝑗𝑝

𝑇𝑇𝑖𝑗𝑛
2

∀𝑗≠𝑖

 
[4.2] 

where 𝑂𝑖𝑝  is the attraction term (frequency) for origin zone 𝑖 during period 𝑝, 𝐷𝑗𝑝 is the attraction term for 

destination zone 𝑗 during period 𝑝, and 𝑇𝑇𝑖𝑗𝑛  is the total travel time by transit and walking between 𝑖 and 

𝑗 at departure time 𝑛. 𝑛 ∈ 𝑁𝑝 represents every 5-minute increment of set 𝑁𝑝, which is the frequency of 5-

minute increments in period 𝑝. If 𝑝 represents a different period, different interaction terms (e.g., 

employment at 𝑖 to population at 𝑗) apply (see Table 3). 

 The Time-decayed Opportunity (𝐷𝑖𝑛) transit accessibility for origin zone 𝑖 at departure time 𝑛 is 

defined by: 

 
𝐷𝑖𝑛 = ∑

𝐷𝑗𝑝

𝑇𝑇𝑖𝑗𝑛
2

∀𝑗≠𝑖

 
[4.3] 

where 𝐷𝑗𝑝 is the attraction term (frequency) for destination zone 𝑗 during period 𝑝. 

 The Cumulative Opportunity transit accessibility (𝐶𝑖𝑛) for origin zone 𝑖 at departure time 𝑛 is 

defined by:  

 𝐶𝑖𝑛 = ∑ 𝐷𝑗𝑝

∀𝑗≠𝑖

 
[4.4] 

where 𝐷𝑗𝑝 is the attraction term for destination zone 𝑗 during period 𝑝, and all possible destinations are 

simply counted. Based on cumulative opportunities studies in the past, the best performing threshold for 

mode share analysis of 40 minutes is used (Owen & Levinson, 2015). 

 

 DTA measures should be described using statistical measures of transit accessibility because 

DTA represents a collection of transit accessibility values over a time period. This research chooses two 

statistics, mean and standard deviation, to represent DTA based on the hypothesis that high magnitude 

and low variation transit accessibility encourages transit use. These statistics describe aggregations of 

transit accessibility (TA) values because DTA characterizes an entire period of TA. Since “mean DTA” 

may be confused for the average DTA between multiple periods (𝑝) and “DTA standard deviation” would 
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likewise refer to the variation between periods, this research refers to DTA “magnitude” and “dispersion” 

to describe temporally aggregated TA values: 

• DTA magnitude (𝐷𝑇𝐴𝑚) is the mean transit accessibility of an origin zone, describing its transit 

accessibility to all other zones in the Region, across all departure times in a period (𝑛 ∈ 𝑁𝑝) 

• DTA dispersion (𝐷𝑇𝐴𝑠) is the standard deviation of an origin zone’s transit accessibility values 

throughout a period (𝑝), measured at every departure time 𝑛. 

The DTA measures used in this research are expressed in terms of 𝐷𝑇𝐴𝑚 and 𝐷𝑇𝐴𝑠 in Table 2. 

Table 2: DTA Measures Selected for Analysis 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑖𝑛 DTA Magnitude (𝐷𝑇𝐴𝑚)1 DTA Dispersion (𝐷𝑇𝐴𝑠)1 

𝐺𝑖𝑛 = ∑
𝑂𝑖𝑝𝐷𝑗𝑝

𝑇𝑇𝑖𝑗𝑛
2

∀𝑗≠𝑖

 
𝐺𝑚,𝑖𝑝 =

∑ ∑
𝑂𝑖𝑝𝐷𝑗𝑝

𝑇𝑇𝑖𝑗𝑛
2∀𝑗≠𝑖𝑛=1

𝑁𝑝
 𝐺𝑠,𝑖𝑝 = √

∑ (𝐺𝑖𝑛 − 𝐺𝑚,𝑖𝑝)
2

𝑛=1

𝑁𝑝
 

𝐷𝑖𝑛 = ∑
𝐷𝑗𝑝

𝑇𝑇𝑖𝑗𝑛
2

∀𝑗≠𝑖

 
𝐷𝑚,𝑖𝑝 =

∑ ∑
𝐷𝑗𝑝

𝑇𝑇𝑖𝑗𝑛
2∀𝑗≠𝑖𝑛=1

𝑁𝑝
 𝐷𝑠,𝑖𝑝 = √

∑ (𝐷𝑖𝑛 − 𝐷𝑚,𝑖𝑝)
2

𝑛=1

𝑁𝑝
 

𝐶𝑖𝑛 = ∑ 𝐷𝑗𝑝

∀𝑗≠𝑖

 𝐶𝑚,𝑖𝑝 =
∑ ∑ 𝐷𝑗𝑝∀𝑗≠𝑖𝑛=1

𝑁𝑝
 

𝐶𝑠,𝑖𝑝 = √
∑ (𝐶𝑖𝑛 − 𝐶𝑚,𝑖𝑝)

2
𝑛=1

𝑁𝑝
 

1 These DTA measures describe a single origin zone, 𝑖. 

Note: log transformations may apply to these measures in the form ln(DTA) (see “Transformations for 

Linearity” subsection). 

 𝐷𝑇𝐴𝑚 allows quick comparison between origin zones: urban zones generally have higher 𝐷𝑇𝐴𝑚 

than suburban or rural zones due to the proximity of concentrated activities. However, 𝐷𝑇𝐴𝑚 is not 

unilaterally representative of transit service value: extreme high- or low-accessibility departure instances 

(at time 𝑛) may skew the mean. Since transit accessibility is temporally dynamic, a measure of DTA’s 

dispersion is useful to capture inconsistent transit services. 𝐷𝑇𝐴𝑠 captures service changes in a way that is 

sensitive to the destinations that origin zone 𝑖 can reach via transit by including location-specific 

attraction terms. Variation between transit accessibility values in a time series can be interpreted in terms 

of transit trip departures. 
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Figure 8: Statistical Description of Transit Accessibility over Time (Zone 965) 

 Figure 8 plots the AD transit accessibility values of origin zone 965 for each departure time, 𝑛, 

using measure D1. Zone 965 was chosen to exemplify “peaky” transit service characteristics. The 

baseline represents times during which there is no transit service or when walking is consistently better 

than transit. This is equivalent to the walking accessibility, or “baseline” transit accessibility: the lowest 

transit accessibility value for that origin. More urban areas generally have higher baseline accessibility 

values due to the concentration of urban activities. Local minima are departure instances with either the 

longest waiting time for transit services, or the baseline walking time – whichever is higher. Local 

maxima are the transit departure times, or shortest waiting time before departure (always <5 mins, the 

temporal sampling resolution) – whichever is shortest. Upward trends in transit accessibility over time 

represent lowered waiting times for a departure, where either the waiting time for the transit trip is shorter 

the baseline walking time or the waiting time for the transit trip is shorter than alternative transit paths – 

whichever is shortest. 

 

 This research uses different origin and destination terms to measure transit accessibility 

depending on the time period of analysis. Choice of attraction term(s) for each period and DTA measure 

type (G, D, C) specifically references the Region’s predominant trip patterns, plotted throughout the day 

in Figure 9. 

 



 

35 
 

 

 

Figure 9: Trip Start Time Distribution by Trip Purpose, Region of Waterloo (Data Management Group, 

2018) 

The trip purposes are groups of trip purpose categories surveyed in the TTS. Work trips include “Home-

based Work” and “Home-based School” trips (i.e., home to work, work to home, home to school, and 

school to home). Discretionary trips include “Home-based Discretionary” and “Non Home-based” trips 

(i.e., discretionary to discretionary, work to discretionary, home to discretionary, discretionary to home). 

The bottom section of Figure 9 shows a moving average (one hour around every point, 30 minutes before 

and 30 minutes after) for legibility and response bias reduction (e.g., people may tend to report departures 

at 8:30 rather than 8:38). The peaks and valleys of this time-series data is not unique to the Region. 

Home-based work trips spike during morning and afternoon peak periods and discretionary trips are 

spread throughout the day. These data informed judgement in selecting the attraction terms that are 

consistent with the motivations for travel demand. These are listed in Table 3. 



 

36 
 

Table 3: Time Period Attraction Component Terms (Origin/Destination) and Sample Frequency 

Period 

(𝑝) 

Time Span 

(inclusive) 

Temporal 

Freq. (𝑁𝑝) 

Measures 

G1 G2 D1 D2 C1 C2 

AM 6:00-9:30 43 

Pop/

Emp 

Pop/ 

(Emp+D) --

/Emp 

--/ 

(Emp+D) --

/Emp 

--/ 

(Emp+D) 

MD 9:35-14:55 65 
Emp/D --/D --/D 

PM 15:00-19:00 49 

Emp/

Pop 

Emp/ 

(Pop+D) 

--

/Pop 

--/(Pop+D) 
--

/Pop 

--/ 

(Pop+D) EE 19:05-22:00 36 

(Emp+D)/ 

Pop NT 22:05-23:55 23 
--/Pop --/Pop 

All 

day 

6:00-23:55 216 Pop/

Emp 

Pop/ 

(Emp+D) 

--

/Emp 
--/ (Emp+D) 

--

/Emp 

--/ 

(Emp+D) 

Periods: morning peak (AM), midday (MD), afternoon peak (PM), early evening (EE), night (NT). 

Attraction terms: Nothing (--), Home (Pop), Work/School (Emp), Retail+Service Discretionary (D). 

 It is important to note that these attraction terms limit the number of zones (data points) used in 

the regression analysis with mode shares. This is unavoidable because zones (and specifically, zoning by-

laws) separate and unevenly distribute activities across space. Since transit accessibility measures in this 

thesis use the number of attractions in a zone to represent the demand for travel to/from that zone, zones 

without incidences of these attraction terms are excluded from analysis. For example, the AM analysis of 

measure G1 does not include origin zones with zero population. The number of zones analyzed are 

therefore limited to origins with recorded populations (1091 zones). In the PM, measure G1’s sample of 

zones is limited to origin zones with employment (2042 zones). Table 6 tabulates the final number of 

zonal samples used in the regression analysis. 

 

Mode shares in each PLUM zone represent the percentage of trips originating from that zone for which 

the analysis mode is the “primary mode of trip” recorded in the TTS. The 13 possible modes surveyed in 

the TTS are grouped into five analysis modes: transit, driver, passenger, bicycle, walk, other. Although 

the school bus mode may be similar to transit’s user experience and operations, it is excluded from the 

transit category since GTFS schedule information does not include its services when calculating transit 

accessibility impedance (i.e., travel times). Likewise, users of GO Rail that do not use local public transit 

on any part of the trip are also excluded from the transit category because they facilitate trips to 

destinations beyond the scope of this thesis. Table 4 lists the original classes of modes from the survey 

included in each analysis mode and their respective all-day shares (6:00 – 23:55) including interregional 

trips. 

  



 

37 
 

Table 4: Analysis Mode Shares for the Region of Waterloo 

Analysis Modes Specific Survey Modes Included (TTS index) Mode Shares 

Transit (excl. GO transit) 
Public Transit excl. GO (B) 

Joint GO Rail and Public Transit (J) 
4.37% 

Non-local Transit GO Rail (G) 0.01% 

Drive alone 
Auto Driver (D) 

Motorcycle (M) 
71.45% 

Passenger 

Auto Passenger (P) 

Taxi (T) 

Paid Rideshare (U) 

14.21% 

Cycle Bicycle (C) 1.45% 

Walk Walk (W) 5.65% 

Other 

School bus (S) 

Other (O) 

Unknown (9) 

2.86% 

 

 Trip departure times can further divide mode shares into each analysis period, 𝑝, to correspond 

with the period-level DTA metrics. Temporal parity between trip departure times and DTA constructions 

may increase predictive accuracy within the mode choice model because mode choices are connected to 

activity types and activity types depend on the time of day. Table 5 shows the average transit shares 

across all PLUM zones for each period used in this analysis. “Total trips” and “average trips per non-zero 

zone” values are provided for reference. Total trips refer to the trips taken using each mode that depart 

within the given period. Trips in non-zero zones refer to the number of transit trips taken when and if a 

transit trip is sampled at all (transit share > 0). Excluding the weight of zero-share zones provides some 

indication of the concentration of transit trips within zones and periods where transit trips have been 

observed. Regional mode shares within each period are useful for comparison because they represent the 

weighted average mode shares (average zonal mode shares are unweighted, disregarding each zone’s 

relative number of trips). Regional shares also include trips that are missing origin identification, which 

represent a small share of total trips. 
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Table 5: Period Mode Shares for Transit and Walking Trips in the Region of Waterloo 

 𝑝 

Average 

Mode Shares 

per Zone (%) 

Average Trip 

Count per Non-

Zero Zone 

Regional 

Mode 

Shares (%) 

Total Expanded 

Trips by Mode 

(all zones) 

Percent of 

Trips without 

Origin ID 

Transit 

Only 

AM 4.60 46.9 4.49 15,101.10 4.94 

MD 3.84 50.35 4.90 14,400.94 2.85 

PM 2.18 72.87 4.06 17,853.48 6.2 

EE 1.19 39.82 1.71 2,269.99 2.73 

NT 3.23 34.88 3.94 976.67 1.22 

All Day 4.20 53.94 4.37 50,602.18 4.62 

Walk 

Only 

AM 6.62 57.49 6.77 22,764.91 0.69 

MD 4.13 59.56 5.15 15,128.37 1.11 

PM 3.41 74.23 4.94 21,748.55 0.42 

EE 2.27 33.67 2.00 2,659.77 1.40 

NT 1.95 35.08 2.41 596.41 0 

All Day 3.29 60.54 5.65 62,898.01 0.72 

Transit 

and Walk 

Combined 

AM 11.22 52.74 11.26 37,866.01 2.38 

MD 7.97 54.68 10.05 29,529.31 1.96 

PM 5.59 73.61 9.00 39,602.03 3.03 

EE 3.46 36.25 3.70 4,929.76 2.01 

NT 5.18 34.96 6.35 1,573.08 0.75 

All Day 7.49 57.41 10.02 113,500.19 2.46 

All values refer to or are derived from expanded trip counts from the TTS.  

 Dividing TTS trip samples between periods (defined in Table 3) excludes some trips based on the 

time of departure and whether spatial information for trip origins were sampled. Trips sampled before 

6:00 or after 23:55 are excluded from this analysis but only account for a small portion of all trips. Many 

TTS trips are excluded because of incomplete spatial information (origin ID not attributed). 553 out of 

2145 zones do not record any trips at all within any analysis period and within the 1592 zones that have at 

least one logged trip throughout the day, some periods have no trip information. The number of zones 

with a minimum of 1 sampled trip are noted for every period in Figure 10. Although the disaggregation of 

zonal mode share data to period-levels may better define the context for many trips, zones and periods 

from which fewer trips originate suffer more from sampling error. Therefore, the average trip count for 

zones that have non-zero trips (by the respective mode) are noted for each period as an indicator of the 

typical sample by which zonal mode shares are calculated. Mode shares for sampled trips without origin 

ID attributes are included for reference in Table 4 and counted within mode shares at the Regional 

aggregation. However, since transit accessibility is spatially explicit, aspatial trips are not considered 

when seeking zonal correlations with mode shares in the analysis. 

 The final number of zones regressed in each period are only those that have non-zero attraction 

terms and, of those, zones with non-zero trips within that period. Table 6 notes the number of zones that 

have data in each measure and period, representing the number of samples in regression results. D- and C- 

measures have identical sample zones because both DTA measures only have destination-based attraction 

terms; that is, an origin zone’s DTA is measured based on the destinations it can access. Since there is no 

interaction term describing the origin (i.e., an origin with 0 population would be excluded), these 

measures always have a non-zero accessibility value. 
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Table 6: Spatial Sample Size (zone count) by DTA Measure and Analysis Period 

Analysis Period (𝑝) G1/G2 D1/D2/C1/C2 

AM 1001 1221 

MD 949 1341 

PM 926 1369 

EE 708 993 

NT 274 415 

AD 1071 1592 

 

 For all regression models predicting mode shares in this thesis, the combined transit and walk 

modes shares are used as the “transit” mode shares for each zone. Figure 10 shows the spatial distribution 

of the combined transit and walking mode shares. Zones with higher combined shares are expectedly 

concentrated around the three downtown areas, with lower transit shares and fewer trips in general during 

later periods of the day (zones without trips by any mode are removed).  
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Figure 10: Zonal Combined Transit & Walk Mode Shares (proportional sizes) by Analysis Period 
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DTA’s effectiveness as an explanatory variable for transit mode shares is measured through an ordinary 

least squares (OLS) regression analysis to predict zonal mode shares using two independent variables 

related to the magnitude and variation of transit accessibility (see “DTA Magnitude and Dispersion” 

subsection): 𝐷𝑇𝐴𝑚 and 𝐷𝑇𝐴𝑠. Regression outputs, including the 𝑝-value, coefficient of determination 

(𝑅2), and sign of the fitted model are used to determine the statistical significance, strength of correlation, 

and confirm or reject the hypothesis. 

 

 Ordinary least squares regression is used to measure the relationship between zonal transit shares 

and DTA. This process is repeated for every period of analysis and measure of DTA, testing both DTA 

magnitude and dispersion. If the resulting 𝑝-value is less than 0.05 (alpha value), the DTA measure is 

statistically significant at the 95% confidence level. If DTA has a statistically significant relationship with 

zonally aggregated transit shares, it is possible that people also perceive and react to transit accessibility 

values within their individual decision processes. Goodness-of-fit is measured by the coefficient of 

determination, 𝑅2, which has a value between 0 and 1. A higher value indicates a better fit because 𝑅2 is 

the variation of mode shares that are explained by DTA divided by the total variation in mode shares. An 

𝑅2 value of 1 means that all mode share values can be explained by the DTA measure. Finally, the sign of 

the fitted model (positive or negative) indicates whether people respond positively to 𝐷𝑇𝐴𝑚 and 

negatively to 𝐷𝑇𝐴𝑠, as hypothesized. Regressing mode shares with DTA across different time periods, 

measure classes, and attraction terms (Table 3) may justify the use of 𝐷𝑇𝐴𝑚 and/or 𝐷𝑇𝐴𝑠 measures as 

explanatory variables in a mode choice model. 

 

 The use of a linear regression model requires some assumptions about the relationship between 

zonal DTA measures and mode shares. The assumptions are that 1) the relationship is linearly structured, 

2) errors are homoscedastic (variance of dependent variable 𝑦 is the same for any value of independent 

variable 𝑥), 3) errors are normally distributed, and 4) observations are independent from each other (Box 

& Cox, 1964). Sometimes, the terms of the original observations do not meet these assumptions 

(specifically, homoscedasticity) so a transformation of either the dependent or independent variable may 

be necessary. Since the true relationship between DTA (magnitude and dispersion) and mode shares is 

unknown, this research uses the Box-Cox transformation to estimate the appropriate non-linear 

transformation for an approximately normal error distribution of 𝑥 (DTA magnitude and dispersion). The 

Box-Cox transformation defines a family of non-linear transformations 𝑥(𝜆) as follows: 

 

𝑥(𝜆) = {
𝑥𝜆 − 1

𝜆
, 𝜆 ≠ 0

log (𝑥), 𝜆 = 0

 

[4.5] 

The Box-Cox transformation is a scaled form of Tukey’s ladder of transformations. For non-zero values 

of 𝜆, the Box-Cox applies the same power transformations as Tukey’s ladder because an analysis of 

variance (ANOVA) is unaffected by linear transformations (-1 in numerator and division by 𝜆 are both 

scalar transformations of 𝑥𝜆) (Box & Cox, 1964, p. 214). Thus, for the purposes of conducting an 

ANOVA, equation [4.5] is equivalent to Tukey’s ladder of transformations in Table 7. 

 Unique to the Box-Cox transformation is that it is continuous at 𝜆 = 0. Since 𝑥𝜆 is undefined at 

𝜆 = 0, the formula can be rewritten in indeterminate form (as 𝜆 → 0) and simplified to log(x) (Scott, 

n.d.). 
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𝑥′ =
𝑒𝜆 log(𝑥) − 1

𝜆
≅

(1 + 𝜆 log(𝑥) +
1
2

𝜆2 log(𝑥)2 + ⋯ ) − 1

𝜆
= log (𝑥) 

[4.6] 

Transformations applied to 𝑥 are indexed to values of 𝜆 in Table 7, which provides a legend for common, 

non-linear transformations that result in 𝑥′. The natural logarithm (𝑙𝑛(𝑥)) is used for the logarithmic 

transformation of 𝑥 at 𝜆 = 0, following the use of ln-transformed gravity-based transit accessibility 

metrics in literature (Higgins & Kanaroglou, 2018). 

Table 7: Box Cox Power Transformation per Index Value (𝜆) 

𝜆 -3 -2 -1 0 1 2 3 

𝑥′ 𝑥−3 𝑥−2 𝑥−1 ln(𝑥) 𝑥 𝑥2 𝑥3 

 

This research uses a Python software package from the SciPy library to apply the Box-Cox transformation 

(scipy.stats.boxcox). The package estimates the optimal value of 𝜆 by maximum likelihood, which 

searches for a value of 𝜆 (−5 ≤ 𝜆 ≤ 5) that minimizes the residual sum of squares. Optimal values of 𝜆 

(in grey text) were rounded to the nearest integer to simplify the transformation for interpretation and ease 

of reverse transformation (transformed values (𝑥’) must be transformed back to original scale (𝑥) for 

prediction). Table 8 notes the rounded values used for transformation of every DTA measure and the 

unrounded 𝜆 estimations. Untransformed values (𝜆 = 1) are shaded in grey for reference. Most 

transformations are 𝜆 = 0 (i.e., 𝑥′ = ln (𝑥), where 𝑥′ are transformed DTA measures). 

Table 8: Box-Cox Transformation Index Values (𝜆) for DTA Measures 

 G1 G2 D1 D2 C1 C2 

 Mag. Disp. Mag. Disp. Mag. Disp. Mag. Disp. Mag. Disp. Mag. Disp. 

AM 0 0 0 0 0 0 0 0 0 0 0 0 

 0.17 0.20 0.18 0.20 -0.01 0.37 0.01 0.40 0.47 0.47 0.48 0.46 

MD 0 0 0 0 0 0 0 0 0 0 0 1 

 0.18 0.21 0.04 0.05 -0.03 0.29 -0.02 0.14 0.47 0.46 0.50 0.51 

PM 0 0 0 0 0 1 0 1 0 0 0 0 

 0.08 0.08 0.07 0.08 0.05 0.60 0.04 0.58 0.45 0.45 0.45 0.45 

EE 0 0 0 0 0 1 0 1 1 0 1 0 

 0.09 0.09 0.14 0.14 0.14 0.54 0.13 0.54 0.50 0.45 0.51 0.45 

NT 0 0 0 0 0 1 0 1 1 0 1 0 

 0.07 0.12 0.12 0.18 0.04 0.72 0.04 0.72 0.50 0.44 0.50 0.44 

AD 0 0 0 0 0 0 0 0 0 0 0 0 

 0.15 0.18 0.16 0.18 -0.03 0.38 -0.02 0.40 0.39 0.40 0.40 0.40 
 

 

All measures of DTA are regressed with the mode shares of trips departing from a given zone during the 

respective analysis period, 𝑝, for temporal parity between transit accessibility and activities. Note that 

comparison between the different measure times (i.e., gravity-based (G), time-decayed opportunity (D), 

and cumulative opportunity (C)) is limited because of some transformations applied to the unitless values. 

DTA values for the same measure types also cannot be compared between periods that use different 

attraction components. Therefore, the different DTA evaluations will be scrutinized based on their 

respective statistical relationships with zonal mode shares, and only slope signs (positive or negative) are 

relevant for describing effects. 
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 G1 measures are correlated with period 𝑁 mode shares in Figure 10. Regression results are in 

Table 9. Gravity-based measure G1 includes 𝑃𝑂𝑃𝑖 and 𝐸𝑀𝑃𝑗 interaction terms for every period of 

analysis. Results are plotted by period to visualize the 𝐷𝑇𝐴𝑚 (blue fitted lines) and 𝐷𝑇𝐴𝑠 (orange fitted 

lines) relationships with mode shares. 

 

 

Figure 11: Plots of Zonal Transit Shares by DTA and Period, G1 
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Table 9: G1 Regression Analysis Results 

DTA  𝐷𝑇𝐴𝑚 𝐷𝑇𝐴𝑠 

Measure Period p-value 𝑅2 slope p-value 𝑅2 slope 

G1 AM 0.000 0.08 3.4 0.000 0.05 2.3 

G1 MD 0.000 0.04 2.1 0.000 0.01 1.1 

G1 PM 0.000 0.03 1.0 0.000 0.02 0.8 

G1 EE 0.004 0.01 0.6 0.046 0.00 0.4 

G1 NT 0.058 0.01 0.9 0.031 0.01 0.8 

G1 AD 0.000 0.09 2.1 0.000 0.04 1.5 

 

 𝐷𝑇𝐴𝑚 using measure G1 is statistically significant for all periods outside of the night (22:00-

23:55), perhaps due to the relatively fewer samples collected (274 zones). Slope signs for 𝐷𝑇𝐴𝑚 are also 

consistent with the hypothesis that transit shares positively correlate with 𝐷𝑇𝐴𝑚; however, slope signs 

reveal and unexpected positive correlation between 𝐷𝑇𝐴𝑠 and zonal mode shares. The explanatory power 

across all periods is consistently low for both 𝐷𝑇𝐴𝑚 (𝑅2 ≤ 0.09) and 𝐷𝑇𝐴𝑠 (𝑅2 ≤ 0.05). Whether this 

result is consistent across measures provides additional insight. 

 G2 measures are correlated with period 𝑁 mode shares in Figure 10. Regression results are in 

Table 10. 
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Figure 12: Plots of Zonal Transit Shares by DTA and Period, G2 

Table 10: G2 Regression Analysis Results 

DTA  𝐷𝑇𝐴𝑚 𝐷𝑇𝐴𝑠 

Measure Period p-value 𝑅2 slope p-value 𝑅2 slope 

G2 AM 0.000 0.08 3.3 0.000 0.05 2.2 

G2 MD 0.000 0.02 1.1 0.000 0.01 0.7 

G2 PM 0.000 0.03 1.0 0.000 0.02 0.8 

G2 EE 0.008 0.01 0.6 0.089 0.00 0.4 

G2 NT 0.033 0.01 1.1 0.024 0.01 0.8 

G2 AD 0.000 0.08 2.1 0.000 0.04 1.4 

 

 G2 includes discretionary trip attraction terms (𝐷𝐼𝑆) throughout the day, differing with G1 in 

only this regard. While most results are the same, early evening 𝐷𝑇𝐴𝑠 no longer has a statistically 

significant relationship with zonal mode shares. EE’s attraction terms are 𝐸𝑀𝑃𝑖 + 𝐷𝐼𝑆𝑖 at the origin and 

𝑃𝑂𝑃𝑗 at the destination, meaning that the change in the origin attraction term affected the mode share 

relationship. In contrast, adding the 𝐷𝐼𝑆 term to the destination attraction term during the PM period did 

not; 𝐷𝑇𝐴𝑚 during the PM remained significant, but no better a predictor. 

 

 D1 measures are correlated with period 𝑁 mode shares in Figure 10. Regression results are in 

Table 11. Time-decayed opportunity measure D1 includes only destination-based attraction terms. Results 

are plotted by period to visualize the 𝐷𝑇𝐴𝑚 (blue fitted lines) and 𝐷𝑇𝐴𝑠 (orange fitted lines) relationships 

with mode shares.  
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Figure 13: Plots of Zonal Transit Shares by DTA and Period, D1 

Table 11: D1 Regression Analysis Results 

DTA  𝐷𝑇𝐴𝑚 𝐷𝑇𝐴𝑠 

Measure Period p-value 𝑅2 slope p-value 𝑅2 slope 

D1 AM 0.000 0.09 4.9 0.000 0.06 3.9 

D1 MD 0.000 0.04 3.0 0.000 0.02 2.1 

D1 PM 0.000 0.03 2.0 01 0.0271 0.1211 

D1 EE 0.000 0.02 2.0 0.00361 0.0091 0.0641 

D1 NT 0.006 0.02 2.8 0.00311 0.0211 0.1151 

D1 AD 0.000 0.07 2.6 0.000 0.06 2.8 
1 These shaded values are untransformed (no log transformation) as per Figure 8. 
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 D1 performs similarly to measure G1 despite the complete exclusion of the origin attraction 

terms. D1’s magnitude (𝐷𝑇𝐴𝑚) is significant for all periods including NT, in contrast to G1. Since the 

AM attraction component only includes destination employment (𝐸𝑀𝑃𝑗), this suggests that users who are 

travelling to employment are unconcerned with the population characteristics of the zone from which they 

originate. D1 𝐷𝑇𝐴𝑠 slope signs are also positive, corroborating the positive relationship between mode 

shares and transit service dispersion apparent in G- measures. 

D2 measures are correlated with period 𝑁 mode shares in Figure 10. Regression results are in Table 12. 

 

Figure 14: Plots of Zonal Transit Shares by DTA and period, D2 



 

48 
 

Table 12: D2 Regression Analysis Results 

DTA  𝐷𝑇𝐴𝑚 𝐷𝑇𝐴𝑠 

Measure Period p-value 𝑅2 slope p-value 𝑅2 slope 

D2 AM 0.000 0.08 4.9 0.000 0.06 3.8 

D2 MD 0.000 0.04 2.9 0.000 0.01 1.6 

D2 PM 0.000 0.03 1.8 01 0.031 0.0981 

D2 EE 0.000 0.02 1.8 0.0031 0.0091 0.0511 

D2 NT 0.006 0.02 2.8 0.00311 0.0211 0.1151 

D2 AD 0.000 0.07 2.6 0.000 0.06 2.7 
1 These shaded values are untransformed (no log transformation) as per Figure 8. 

 D2 differs from D1 by including discretionary attraction terms in all periods, except for NT (D2’s 

NT is the same as D1’s NT). Specifically, the 𝐷𝐼𝑆 values are added to AM and PM destinations, and 𝐷𝐼𝑆 

is the sole attraction term during the MD. D2 has similar results to D1, which may be attributed to the 

spatial correlation between discretionary and employment trip destinations. Compared with the G2 

measure, the removal of the (𝐸𝑀𝑃𝑖 + 𝐷𝐼𝑆𝑖) origin term in D- class measures results in a statistically 

significant relationship with mode shares in the EE. This finding supports the motivation for using the D- 

class measures (i.e., ignoring the origin node trip production terms). 

 

 C1 measures are correlated with period 𝑁 mode shares in Figure 10. Regression results are in 

Table 13. C1’s 𝐷𝑇𝐴𝑚 values are untransformed for the EE and NT periods, where the x-axis is the sum of 

opportunities within 40 minutes of each zone. Results are plotted by period to visualize the 𝐷𝑇𝐴𝑚 (blue 

fitted lines) and 𝐷𝑇𝐴𝑠 (orange fitted lines) relationships with mode shares. 
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Figure 15: Plots of Zonal Transit Shares by DTA and period, C1 

Table 13: C1 Regression Analysis Results 

DTA  𝐷𝑇𝐴𝑚 𝐷𝑇𝐴𝑠 

Measure Period p-value 𝑅2 slope p-value 𝑅2 slope 

C1 AM 0.000 0.07 2.5 0.000 0.04 0.9 

C1 MD 0.000 0.04 1.7 0.000 0.01 0.5 

C1 PM 0.000 0.03 1.2 0.000 0.02 0.3 

C1 EE 01 0.0371 01 0.047 0.00 0.2 

C1 NT 0.00061 0.0281 01 0.012 0.02 0.5 

C1 AD 0.000 0.08 2.5 0.000 0.05 0.9 
1 These shaded values are untransformed (no log transformation) as per Figure 8. 

 C1 𝐷𝑇𝐴𝑚 has a statistically significant relationship with mode shares for all periods. This is 

consistent with findings from the time-decayed opportunity measures (D1, D2) that the attraction of the 

origin zone may be irrelevant to transit choices. That C1 is a significant measure also suggests that the 40-

minute time boundary captures destinations relevant to the common transit user. 
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C2 measures are correlated with period 𝑁 mode shares in Figure 10. Regression results are in Table 14. 

 

 

Figure 16: Plots of Zonal Transit Shares by DTA and period, C2 

Table 14: C2 Regression Analysis Results 

DTA  𝐷𝑇𝐴𝑚 𝐷𝑇𝐴𝑠 

Measure Period p-value 𝑅2 slope p-value 𝑅2 slope 

C2 AM 0.000 0.07 1.6 0.000 0.04 0.6 

C2 MD 0.000 0.03 2.5 0.01681 0.0041 0.81 

C2 PM 0.000 0.03 1.4 0.000 0.02 0.001 

C2 EE 01 0.0361 1.11 0.054 0.00 0.3 

C2 NT 0.00061 0.0281 01 0.012 0.02 0.2 

C2 AD 0.000 0.08 0 0.000 0.05 0.5 
1 These shaded values are untransformed (no log transformation) as per Figure 8. 
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 C2 results are very similar to C1 despite the use of discretionary trip attraction terms. This may be 

related to the concentration and/or spatial correlation of employment and retail/service sector destinations 

or the use of a generous time threshold (𝛼 = 40 minutes). Although 𝐷𝑇𝐴𝑚 values are statistically 

significant, it is possible that the transit travel time threshold of 40 minutes is a large boundary for travel 

within the Region. If there is no continuous differentiation in destination attractiveness based on a time- 

or distance-decay measure, C1 and C2 measures may not adequately differentiate between zonal 

behaviours. Finally, the addition of 𝐷𝐼𝑆𝑗 to C1’s 𝑃𝑂𝑃𝑗 in the EE period seems to make the 𝐷𝑇𝐴𝑠 lose 

significance; however, the D2 dispersion measure is significant despite the inclusion of 𝐷𝐼𝑆𝑗. This 

suggests that shorter trips (≤ 40 minutes) may not be as impacted by transit accessibility dispersion as 

longer trips during the EE. 

 

 Table 15 summarizes linear regression analysis results for each DTA measure and period. 

Keeping measure classes constant, DTA yields similar predictive power and signs of slope across all 

periods. For all the different periods and attraction terms studied, statistical outcomes describe the 

relationship between aggregate mode choices and each type of DTA (𝐷𝑇𝐴𝑚, 𝐷𝑇𝐴𝑠). 

Table 15: Regression Analysis Results Summary 

DTA 

Measure Period 

𝐷𝑇𝐴𝑚 𝐷𝑇𝐴𝑠 

p-value 𝑅2 Slope Zones (n) p-value 𝑅2 Slope 

Zones 

(n) 

G1 AM 0.000 0.08 3.4 1002 0.000 0.05 2.3 1002 

G1 MD 0.000 0.04 2.1 950 0.000 0.01 1.1 950 

G1 PM 0.000 0.03 1.0 1296 0.000 0.02 0.8 1296 

G1 EE 0.004 0.01 0.6 939 0.046 0.00 0.4 939 

G1 NT 0.058 0.01 0.9 399 0.031 0.01 0.8 399 

G1 AD 0.000 0.09 2.1 1072 0.000 0.04 1.5 1072 

G2 AM 0.000 0.08 3.3 1002 0.000 0.05 2.2 1002 

G2 MD 0.000 0.02 1.1 1268 0.000 0.01 0.7 1268 

G2 PM 0.000 0.03 1.0 1298 0.000 0.02 0.8 1298 

G2 EE 0.008 0.01 0.6 981 0.089 0.00 0.4 981 

G2 NT 0.033 0.01 1.1 413 0.024 0.01 0.8 413 

G2 AD 0.000 0.08 2.1 1072 0.000 0.04 1.4 1072 

D1 AM 0.000 0.09 4.9 1221 0.000 0.06 3.9 1221 

D1 MD 0.000 0.04 3.0 1341 0.000 0.02 2.1 1341 

D1 PM 0.000 0.03 2.0 1367 01 0.0271 0.1211 1367 

D1 EE 0.000 0.02 2.0 992 0.00361 0.0091 0.0641 992 

D1 NT 0.006 0.02 2.8 413 0.00311 0.0211 0.1151 413 

D1 AD 0.000 0.07 2.6 1592 0.000 0.06 2.8 1592 

D2 AM 0.000 0.08 4.9 1221 0.000 0.06 3.8 1221 

D2 MD 0.000 0.04 2.9 1341 0.000 0.01 1.6 1341 

D2 PM 0.000 0.03 1.8 1369 01 0.031 0.0981 1369 

D2 EE 0.000 0.02 1.8 993 0.0031 0.0091 0.0511 993 

D2 NT 0.006 0.02 2.8 413 0.00311 0.0211 0.1151 413 

D2 AD 0.000 0.07 2.6 1592 0.000 0.06 2.7 1592 

C1 AM 0.000 0.07 2.5 1221 0.000 0.04 0.9 1221 

C1 MD 0.000 0.04 1.7 1341 0.000 0.01 0.5 1341 

C1 PM 0.000 0.03 1.2 1364 0.000 0.02 0.3 1364 
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DTA 

Measure Period 

𝐷𝑇𝐴𝑚 𝐷𝑇𝐴𝑠 

p-value 𝑅2 Slope Zones (n) p-value 𝑅2 Slope 

Zones 

(n) 

C1 EE 01 0.0371 01 991 0.047 0.00 0.2 991 

C1 NT 0.00061 0.0281 01 412 0.012 0.02 0.5 412 

C1 AD 0.000 0.08 2.5 1592 0.000 0.05 0.9 1592 

C2 AM 0.000 0.07 1.6 1221 0.000 0.04 0.6 1221 

C2 MD 0.000 0.03 2.5 1333 0.01681 0.0041 0.81 1333 

C2 PM 0.000 0.03 1.4 1369 0.000 0.02 0.001 1369 

C2 EE 01 0.0361 1.11 993 0.054 0.00 0.3 993 

C2 NT 0.00061 0.0281 01 412 0.012 0.02 0.2 412 

C2 AD 0.000 0.08 0 1592 0.000 0.05 0.5 1592 
1 These shaded values are untransformed (no log transformation) as per Figure 8. 

 Overall, all measures have low explanatory power across all periods. The low explanatory power 

is not surprising because DTA only constitutes a single possible variable in mode choice decisions. DTA 

only represents some transit system (modal) and land use factors (related to trip purpose) but excludes 

many other environmental, personal, and modal characteristics that are normally considered in modal split 

analysis.  

 Statistical outcomes only slightly differed between the measures ending in 1 (no discretionary 

trips) and measures ending in 2 (discretionary trip attractors included). The similar results between 

measures ending in 1 and 2 suggests that DIS attraction terms at the destination do not generally improve 

predictive ability and that employment-destined trips during the AM are most sensitive to average transit 

accessibility values. One exception seems to be the addition of origin attractor 𝐷𝐼𝑆𝑖 in G2 at NT, which 

makes 𝐷𝑇𝐴𝑚 significant (G1 𝐷𝑇𝐴𝑚 is not significant). This supports the inclusion of discretionary trip 

origins for gravity-based formulations of DTA, especially because 𝐷𝐼𝑆 trips constitute most EE trips (see 

Figure 9). 

 Class D- measures are useful for understanding the influence of destination trip attractors because 

they exclude origin-based attraction terms from the measurement. D1 performs similarly to G1 despite 

completely removing the origin attraction term from the measure. During the NT period, D1 𝐷𝑇𝐴𝑚 (→
𝑃𝑂𝑃𝑗) is significant although G1 is not. Since D1 uses the same destination 𝑗 attraction terms as G1, 

similar performance supports the original intent of applying this measure class, which is to understand 

whether origin zone “attractiveness” is relevant to user decision making (see “Selecting Measure Classes 

for Testing” subsection). The finding that D- measures offer comparable performance to G- measures 

agrees with literature that criticizes the inclusion of origin-based attraction terms in transit accessibility 

measurement because of its disconnect from travel motivations (Kutter, 1972). 

 The best performing (highest correlation coefficient) periods for all measures are the AD and 

AM, which share the same attraction terms, generally to 𝐸𝑀𝑃𝑗. This suggests that aggregate transit shares 

may not be as sensitive to the trip times as much as it is to trip purpose (attraction terms). All-day analysis 

is also coarser than the period-level analyses because it uses constant attraction terms throughout the day. 

Despite its insensitivity to varying trip purpose demands over time, all-day analysis allows comparison of 

transit services across periods. Thus, all-day 𝐷𝑇𝐴𝑚 and 𝐷𝑇𝐴𝑠 describe zonal mode share’s relationship 

with inter-period service changes. Compared with period-level 𝐷𝑇𝐴𝑚, AD is statistically significant 

using all measure classes and attraction terms. This suggests that users may have temporally large 

decision frames with which they discern transit accessibility’s value towards making mode choices. 
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Analysis of DTA’s impact on mode shares is constrained by its data, methodological, and theoretical 

limitations. The first data limitation relates to the “Calculating Mode Shares” subsection of this research. 

Many zones exhibit extreme values for zonal transit shares (100% or 0%), possibly due to sampling issues 

inherited from the TTS dataset. A validation procedure could remove the outliers if a secondary, more 

reliable dataset were spatially joined and compared at the PLUM zone level. The 2016 Census data was 

considered but dismissed due to incongruent boundaries, larger zones (755 Census Dissemination Areas 

vs 2145 PLUM zones in the Region), unreported non-commuter trips, and limited observation periods 

(4:59-11:59 a.m. only). Travel diary surveys from previous years (e.g., 2011) have the same geographic 

resolution and temporal span as the current dataset but suffer similar sampling errors and merging the data 

risks sample duplication. Since no secondary dataset are available to systematically remove outliers, the 

original mode share data were kept because the extent of disaggregation in PLUM zones is very high and 

therefore unlikely to have dramatic impacts on the results. Data limitations also cause inaccurate 

representation of non-work travel demands and bar the use of alternative frameworks for transit 

accessibility measurement. Travel demand to discretionary activities are particularly weak in this analysis, 

resulting in inconsistent results between measures ending in 1 and 2 (e.g., between AM D1 and PM D2). 

This research uses TTS employment counts for the Retail and Service sectors to approximate the degree 

of attraction for non-work destinations. However, the data are not sufficiently specific or expansive 

enough to delineate high-value activities or capture the range of trip types that people make. The "Retail 

and Service” sector cannot differentiate the relative attraction of retail, dining, and leisure activities (e.g., 

gym, entertainment) classified therein. It also ignores other discretionary destinations, including trips to 

the park, groceries, or recreational programming. Unfortunately, attraction terms are difficult to specify 

because attractiveness may not scale with measurable terms. For example, the value of grocery stores may 

not scale with the number of employees, nor the value of parks with their sizes. Handy and Niemeier 

(1997, p. 1180) suggest measuring attractiveness using the activity’s physical or economic size, the price 

of products, the quality of services, or the mere existence of an opportunity itself. The attractiveness of a 

location for discretionary activity is especially difficult to measure because discretionary activity value is 

up to individual arbitration. It is perhaps more related to the frequency and necessity of a trip type (user 

based) than to economic land use variables. Qualitative study could better reflect perceived attraction 

term values and improve travel demand representation in a location-based transit accessibility measure. 

 Methodological limitations related to the development and evaluation of the DTA metric can 

misrepresent transit travel behaviours. The development of the DTA metric necessitates the inclusion of 

walking trips between zones to create a baseline accessibility level and represent trips where walking is 

faster than transit; however, walking is generally perceived has a higher-friction travel mode due to the 

discomfort of physical exertion. This thesis does not distinguish the difference in travel by walking or 

transit, and therefore may overrepresent the value of zones accessible with walking. Underrepresentation 

of walking’s higher burden is compounded by the travel time evaluation method. This thesis uses ArcGIS 

Pro 2.6’s to accumulate total travel times along a road (sidewalk) and transit network using GTFS 

schedule data. The built-in network evaluator encounters two problems: it cannot limit the total number of 

transfers, and it cannot limit the walking time component of a transit trip separately from the total travel 

time (Esri, 2020). Therefore, some instances of unrealistic travel times may be included in the travel time 

matrices used for DTA measurement. Finally, the period-level DTA analysis uses discrete boundaries to 

aggregate transit accessibility measurements sampled at 5-minute intervals. Transit service parameters do 

not fit neatly into time periods because there are transitionary step up/down periods of service. Since the 

periods are aggregated and represented as a constant, service provision characteristics are not fully 

captured in this research. Further research could explore the effects of inter-period, transitionary transit 

services (e.g., between AM and MD) on mode shares. 
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 Theoretical weaknesses of this research are related to the linear regression analysis performed, the 

forms of dynamic transit accessibility (i.e., transit accessibility mean, standard deviation, or otherwise), 

and the possibility of confounding variables underlying DTA measures. Linear regression may be an 

inappropriate classification method for mode share prediction using DTA because people may make 

transit decisions using discrete thresholds of DTA value, or if-then-else rules (e.g., choose transit if DTA 

is above a threshold, DTA is relevant if another requirement is met). Alternative measures of transit 

accessibility dispersion also warrant further examination because transit accessibility standard deviation 

offers different interpretations. Specifically, low 𝐷𝑇𝐴𝑠 values do not necessarily indicate that the transit 

service is more consistent at an origin location – only that transit accessibility scores are more consistent. 

Consistent transit services are just as undispersed as a complete lack of transit services because transit 

accessibility still has value at times when transit service is not available (baseline accessibility). A zone 

with no transit service would have uniform transit accessibility values (at the baseline) and thus zero 

dispersion. It would be reasonable to hypothesize a negative mode share response to high-dispersion 

transit accessibility in this scenario because of the complete lack of transit service. Inversely, users may 

also react positively (higher mode shares) to high dispersion in scenarios where they are dependent on a 

few high-accessibility trips. For example, a zone with a low baseline but very good transit service (e.g., 

express buses into a city centre) would have a high standard deviation. 𝐷𝑇𝐴𝑠 and 𝐷𝑇𝐴𝑚 values should be 

interpreted together to ensure the consistency of transit services is not merely the result of unavailable 

transit services; however, the specification of such an interaction term is left for further research. 

 Finally, testing mode share’s sensitivity to transit accessibility in a regression model does not 

isolate the impacts of transit accessibility nor imply causality. The regression analysis describes a 

statistical relationship between DTA and transit shares, but DTA’s formulation indexes many underlying 

land-use and transit service variables while ignoring many other mode choice factors. Further 

investigation in Chapter 5 may identify confounding land-use, user, or mode-specific variables embedded 

in DTA values that may better predict transit choices. The regression analysis from this chapter only 

supports the selection of a singular DTA metric (i.e., between gravity-based, cumulative opportunity, and 

time-decayed opportunity) for use in the mode choice model. 
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Towards a theory of behaviour that is descriptive rather than prescriptive of human behaviour, this 

research supports that use of non-compensatory mode choice modelling methods as an alternative to the 

compensatory approach because non-compensatory models are capable of representing lexicographic, 

dominance, and satisficing decision rules where compensatory models cannot. Synthesis of alternative 

decision-making theories from the review of psychological literature (see “Alternative Theories of 

Decision Making” section) supports this approach. The first objective of this chapter is to apply a rules-

based mode choice (RBMC) model to the Region of Waterloo to demonstrate success in prediction. A 

secondary objective is to induce (train) a decision tree structure that yields interpretable choice processes, 

providing insight into the mode choice process. Third, this chapter takes one of the transit accessibility 

metrics developed in Chapter 4 and uses it as an additional feature to train the RBMC model.  

 

This chapter’s methods (algorithms and decisions) are guided by the Literature Review on Alternative 

Theories of Decision Making and the predictive ability of supervised ML models previously applied to 

mode choice. Development of the RBMC involves two major steps: learning a decision tree using a 

training dataset and applying it to the testing (holdout) dataset. Figure 17 shows the DT training method 

in this chapter. 

 

Figure 17: Rules-based Mode Choice Model Training Method 

 Broadly, the first step in modelling a decision tree is the training (tree induction) and the second 

step is post-processing. The initial training step involves setting the independent and dependent variables 

to the model and separating them into training and testing (holdout) datasets. Selecting the independent 

variables for DT training requires merging TTS data (i.e., household- and person-level attributes to trip 

attributes), creating equal-sized (percentile-based bins), and expanding the data to ensure 

representativeness of the population. Sampling the data into training and testing datasets requires 

definition of the split size, randomly shuffling the data, and then balancing the target classes (dependent 

variables) to ensure no bias in DT splits towards high-frequency classes. The post-processing stage occurs 

after training DTs with different configurations of training parameters (hyperparameters). Through cross-
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validation (resampling the training dataset), tree predictions are compared based on the measures of 

effectiveness and a final, trained tree is scored based on the thus far held out testing sample. 

 

The independent (explanatory) variables used in the analysis are noted in Table 16. These variables, 

referred to as features, each have dimensions referring to the number of unique values or categories that 

delimit the sample space. Figure 19 illustrates how the terminology used in DT analyses define the 

predictor space.  

Table 16: Independent Variables (Features) 

Features (Label) Dimensions Bins Unit 

Sociodemographic    

Age (age) (11-19]; (19-28]; (28-35]; (35-41]; (41-47]; (47-53]; (53-58]; (58-

65]; (65-72]; (72-99] 

10 PER 

Sex (sex) F: female; M: male 2 PER 

Income (hh_income) <15k; 15k-39k; 40k-59k; 60k-99k; 100k-124k; >124k; Unknown 7 HH 

Employment (emp_stat) Employed; Not_employed; Work_at_Home; 9: Unknown 4 PER 

Student (stu_sat) Student; Not_student 2 PER 

Occupation (occupation) Retail&Service; General_Office; Manufacturing; Not_employed; 9: 

Unknown 

5 PER 

    

Licensed (driver_lic) Y: yes; N: no; 9: Unknown 2 PER 

Vehicle ownership (hh_n_vehs) 0; 1; 2; more than 2 4 HH 

Transit pass (tran_pass) Y: yes; N: no; Other agency (non-GRT pass); 9: Unknown 2 PER 

Free parking at work(free_park) Y: yes; N: no; NA: not applicable; 9: Unknown 4 PER 

    

Household size (hh_size) (0.9-1]; (1-2]; (2-3]; (3-4]; (4-9] 5 HH 

Dwelling type (hh_dwell_type) House; Townhouse, Apartment 3 HH 

    

Trip-related    

Trip Purpose Home-based work; home-based discretionary; non-home-based 3 TRP 

Trip Time Peak: [6:00-9:35], [15:00-17:00]; Off_Peak 2 TRP 

Manhattan Trip distance (trip_dist) (0-1]; (1-2]; (2-3]; (3-4]; (4-5]; (5-6]; (6-8]; (8-11]; (11-16]; (16-56] 10 TRP 

Daily trip count (n_pers_trip) [1-2]; (2-3]; (3-4]; (4-6]; (6-18] 5 PER 

Note: all numeric variables are discrete (numeric categories) 

 

 

 TTS data are available in four .csv files: person, trip, household, and transit, which are merged for 

DT classification. Unique trips constitute the unit of analysis for the mode choice model. All non-trip 

attributes are therefore merged with the trip table to relate trip attributes with trip maker attributes, 

exemplified in Figure 18.  
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Figure 18: Merging TTS Datasets and Removing Missing (Null) Values 

 Unfortunately, some trip samples have incomplete attributes (missing values) and the problem is 

exacerbated by the merging process: since TTS data are split into four files, merging the tables into a 

single dataset may attribute an otherwise complete observation (e.g., complete trip attributes) with 

missing values (e.g., incomplete personal attributes). One strategy to manage incomplete datasets is to 

simply remove rows (observations) with incomplete data (as in Figure 18); however, this results in the 

loss of potentially useful data. Of the original 55,958 trips that begin or end in the Region, only 45,208 

trips are intraregional (both trip ends in Region). After merging the household and person tables to trips, 

44,698 trips remain for analysis. 

 Note that this research distinguishes “Unknown” values (given a universal label “9” for each 

feature) where the travel diary survey notes an unwillingness to respond. Response hesitancy may, in 

itself, yield some insight. The CHAID DT manages these unknown values as separate categories that 

should not support prediction, assuming the unknown values are indeed randomly distributed. Alternative 

strategies for handling missing/unknown values involve imputing (infer values using available data) 

values through some statistical measure (most frequent categorical variable, mean/median of numerical 

variables) or machine learning algorithm (Pedregosa et al., 2011). However, data imputation effects are 

left out of scope for this research. 

 

 CHAID DTs benefit from discrete bins of continuous variables because each unique value is 

interpreted by the algorithm as its own “category.” Larger categories (bins) may better describe trends 

within feature dimensions and equal-sized bins reduces training bias towards frequently observed 

categories. Continuous variables in this research include age, household size, number of vehicles in 

household, travel distance, and (later) DTA. Percentile-based bin sizes are used to discretize the 

continuous data. As opposed to equal-interval, which segments based on equal ranges of a variable’s 

value, percentile-based bins have equal sample sizes. Percentile-based discretization is advantageous for 

decision tree building because DTs require high sample sizes and model training may be biased by 

unbalanced dimensions. A limitation of using percentile-based discretization is that the tree may not 

discern useful splits if the bins are not meaningful. For example, if observations for the number of 

vehicles in a household are skewed right and the “most useful split” (see “Splitting Criterion” subsection) 

occurs between the lower two quartiles at the 2.5 vehicle boundary (0 ≤ 𝑄1 < 2.5, 2.5 ≤ 𝑄2 < 3), then 

the split provides less information about the variable’s influence on mode class outcomes. 
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 Departure times were grouped according to whether they were peak or off-peak periods. Peak and 

off-peak definitions are consistent with those used in the “Dynamic Transit Accessibility Metric 

Development” section (see Table 3), where AM and PM peak periods are 6:00-9:35 and 15:00-17:00, 

respectively. This follows methodology from (Xie et al., 2003), who used binary peak and off-peak 

dimensions for departure time classification in their mode choice DT model. 

 

 TTS trip samples include expansion factors (expf) to improve representation of population and 

demographic characteristics within zones (see “Travel Diary Survey” subsection for more detail). This 

research uses the expanded TTS trip samples for modelling, deferring to the expansion process adopted 

by the TTS. Expansion factors are numerical attributes that describe each sampled (unexpanded) trip in 

the TTS trip dataset. DTs require data to be structured such that each observation occupies its own row. 

Thus, a Python script was written to iterate through unexpanded trips and copy each sample (including all 

trip, person, and household attributes) according to the trip expansion factor. Expansion factors are 

applied after rounding to the nearest whole number, so if a sampled trip has an expansion factor of 3.7, 

the trip is copied to occupy four (4) observations in the dataset used in the DT. 

 

The dependent variable (target variable) of this analysis is individual (disaggregate) mode choices, where 

a transportation mode is a target class among the assumed choice set of modal classes. Since this research 

is specifically concerned with the prediction of transit choices, the dependent variable is binary: transit or 

non-transit. In this thesis, the transit class includes local transit system (GRT) and walking modes because 

of the inclusion of walking accessibility within the transit accessibility metric (see “Travel Impedance” 

subsection). Since this mode choice model is intended to include the transit accessibility metric as a 

feature and baseline transit accessibility is measured using the walking trip between zones, the target class 

also includes walking trips. Since the characteristics and decision processes leading to walking trips may 

be different than for transit trips and not all transit trips are replaceable with walking trips, this is an 

important limitation of including location-based transit accessibility within a mode choice analysis. 

Furthermore, the transit class excludes the GO Transit interregional system. The not-transit class includes 

the other modes defined in the “Calculating Mode Shares” subsection of the DTA chapter: Non-local 

Transit, Drive Alone, Passenger, Cycle, Other. 

 

 

 Splitting the balanced dataset into subsets is a component of the validation procedure used in DT 

analysis. The data are split into a random training group (80%) and a random testing group (20%). A 

portion of the training data is required for data-intensive post-processing steps, including hyperparameter 

tuning through cross-validation (DT post-processing). Therefore, the size of the training group is much 

larger than the testing group, but the exact proportions chosen for the split are arbitrary but comparable to 

other studies (e.g., Wets et al. (2000) used a 75% training dataset, extracted from a 4,810-trip sample). 

 

 A pseudorandom number generator in Python (“train_test_split” module) is used to randomly 

shuffle the data during the splitting procedure. The pseudorandom number generator produces a 

deterministic sequence of numbers that depends on an initial input number used to seed the generator. 

Given the same seed (non-negative integer), the module’s “random_state” parameter produces the same 

random subset and is therefore reproducible (Pedregosa et al., 2011). 
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 The splitting procedure maintains representation of the different target classes within the resulting 

subsets (training and test) through the “stratify” parameter. Stratified sampling splits each target class 

between training and test data subsets proportionally; that is, if 10% of observations belong to the Not-

transit target class, 10% of the training dataset will belong to the Not-transit target class and 10% of the 

test dataset will belong to the Not-transit target class. 

 

 Balancing the training dataset between the different target classes (i.e., transit, not-transit) is 

necessary to prevent a training bias towards the dominant classes (in this case, driving). Performing class 

balancing requires either sampling an equal number of samples per class (e.g., undersampling, which 

reduces sample size for dominant classes) or normalizing the sum of sample weights to the same value for 

each class. Normalizing the sum of sample weights is preferable because it does not lose feature 

information that could be useful in prediction, but still scales an observation’s impact. This research 

applies the latter method, so the tree pruning criteria (hyperparameter tuning criteria) become weight 

based. For example, the “minimum sample per split” becomes the “minimum weight per split,” so leaf 

nodes must contain a minimum fraction of the overall sample weights. Class balancing is performed on 

expanded trip sample outputs from the Data Expansion step that belong to the training data subset created 

in the Data Subsets: Training and Testing step. 

 This research uses the scikit-learn “compute_class_weight” module to automate the class 

balancing procedure. The class balancing process involves taking all target classes (transportation modes) 

and applying a weight to every class that increases the weight of infrequently sampled classes (e.g., 

transit), and decreases the weight of frequently sampled classes (e.g., non-transit) for tree learning. The 

module applies equation [5.1]. 

 𝑤𝑒𝑖𝑔ℎ𝑡𝑚 =
𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑛𝑚 ∗ 𝑛𝑏𝑖𝑛𝑠(𝑦)
 

[5.1] 

where 𝑤𝑒𝑖𝑔ℎ𝑡𝑚 is the weight of the target class 𝑚, relative to all other target classes of the dependent 

variable, 𝑦. 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is the total number of samples in the training dataset, including all target classes. 𝑛𝑚 

is the number of samples belonging to class 𝑚, and 𝑛𝑏𝑖𝑛𝑠 is the number of bins (different classes) in 

dependent variable, 𝑦. For example, since there are two bins (Transit and Not-Transit), a dataset of size 

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 10, where 2 belong to 𝑛𝑡𝑟𝑎𝑛𝑠𝑖𝑡 would have a 𝑤𝑒𝑖𝑔ℎ𝑡𝑛𝑜𝑡−𝑡𝑟𝑎𝑛𝑠𝑖𝑡 of 0.625 and 𝑤𝑒𝑖𝑔ℎ𝑡𝑡𝑟𝑎𝑛𝑠𝑖𝑡 

of 2.5. Weights are recorded within the attributes of respective observations in a new column.  

 Final class weights are calculated as 4.641 for the Transit class and 0.56 for the Not-Transit class. 

Alternatively, every Transit observation has a weight of 8.2875 and every Not-Transit observation has a 

weight of 1. SPSS Modeler Subscription Version 18.2 can interpret the weight variable column when it 

trains CHAID DTs. 

 

A DT’s splitting criterion influences how the tree grows during the training process. Splitting criteria 

partition the predictor space (i.e., training observations) into mutually exclusive regions based on the 

boundaries between each independent variable’s values/categories (i.e., feature dimensions). Although 

splitting criteria and resulting DT algorithms differ, they generally aim to improve the homogeneity of the 

dependent variable categories (i.e., target classes) within partitioned regions. A tree “grows” through the 

recursive partitioning of the predictor space until some stopping criteria are met. Figure 19 illustrates the 

splitting operation using a fictional example. 
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Figure 19: Splitting Along Dimensions of the Target Class Predictor Space: Visual Example 

 Figure 19 exemplifies a predictor space for a classification problem with two features: Feature 1 

and Feature 2 (independent variables). Feature dimensions (1:[A, B, C]; 2:[X,Y,Z]) divide the predictor 

space into regions, which include Region 𝑞. Region 𝑞 defined as the set of training observations that fall 

into feature dimensions Y and C. If dimension C is the age group 50-60 years old and dimension Y is the 

$60,000-$80,000 per year income group (i.e., Feature 1 is “Age” and Feature 2 is “Income”), then Region 

𝑞 includes all the observations from people who are 50-60 years old and making between $60 and $80 

thousand per year. Observations within Region 𝑞 may include any number of target classes (unique 

values of the dependent variable) within the alternatives set M, but only the observations that fall under 

dimensions Y and C. The fictional partition of Region 𝑞 reveals an uneven split between the classes, 

where class 𝑚3 is more frequently observed than 𝑚1 and 𝑚2. Therefore, Region 𝑞 may be chosen for a 

split if it compares favourably with other possible regions based on the splitting criterion. 

 

 This research uses the CHAID algorithm, which applies the chi-square test of independence as 

the splitting criterion. Compared with the common CART algorithms, which apply binary splits at 

decision nodes using purity measures, CHAID can create multiway splits of categorical features using a 

statistical test (Kass, 1980). Multiway splits create wider trees because all possible feature dimensions 

descend from the parent node, grouping dimensions (categories of independent variables) by their feature 

(independent variables). Wider trees are advantageous over deeper trees because all the dimensions of a 

feature are presented together, as opposed to further down the tree, to compare class proportions across all 

dimensions for a sample region and thus represent aspiration-level based decision rules. High-dimension 

features increase tree complexity and reduce interpretation; however, binary splitting algorithms likewise 

suffer from high dimensionality. 

 The chi-square statistic (𝜒2 score) was introduced by Karl Pearson to test the independence of 

categorical variables (Franke et al., 2011). Equation [5.2] arithmetically describes the chi-square statistic. 
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𝐶ℎ𝑖 − 𝑠𝑞𝑢𝑎𝑟𝑒 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 (𝜒2) = ∑ ∑

(𝑞𝑖𝑚 − 𝑞̂𝑖𝑚)2

𝑞̂𝑖𝑚
𝑚=1𝑖=1

 

[5.2] 

where 𝑞𝑖𝑚 is the frequency of observations in class 𝑚 (𝑚 ∈ 𝑀) and dimension 𝑖 (𝑖 ∈ 𝐼), and 𝑞̂𝑖𝑗 is the 

expected frequency of observations in class 𝑚 and dimension 𝑖 under the null hypothesis. 𝜒2 is calculated 

for each feature. 

 The 𝜒2 test of independence uses the chi-square statistic to test the null hypothesis that observed 

classes are independent of a feature. For a given feature, the test involves cross tabulating the target 

classes (rows) with each of the feature’s dimensions (columns). The expected frequencies of class 𝑚 in 

dimension 𝑖 (𝑞̂𝑖𝑚) represent the null hypothesis: if class outcomes are independent of features, the 

proportion of class 𝑚 in dimension 𝑖 would be the same as the proportion of total observations that are in 

dimension 𝑖, across all classes 𝑀. Equation [5.3] is used to calculate expected frequency (𝑞̂𝑖𝑗), 

 
𝑞̂𝑖𝑚 = ∑ 𝑞𝑖𝑚

𝑖=1

∗ (
∑ 𝑞𝑖𝑚𝑚=1

𝑛
) 

[5.3] 

where 𝑞𝑖𝑚 is the frequency of observations in dimension 𝑖 and class 𝑚, and 𝑛 is the total number of 

observations. In the cross tabulation, the sum of 𝑞𝑖𝑚 across all dimensions 𝑖 is the row total of the class 

and the sum of 𝑞𝑖𝑚 across all classes 𝑚 is the column total of the dimension. The sum of all cell values in 

the entire cross tabulation is the 𝜒2 score for a feature. The 𝜒2 is corresponds to a 𝑝-value based on the 

chi-square distribution with degrees of freedom 𝑑𝑓 = (𝑀 − 1) − (𝐼 − 1). A 𝑝-value lower than the 

selected significance level (𝛼 value) rejects the null hypothesis and the result is statistically significant. 

 Kass (1980) describes the original CHAID method and more recent implementations provide 

documentation on the process (IBM, 2011). This research uses IBM’s SPSS Modeler Subscription 

Version 18.2 implementation of CHAID due to its ability to interpret (call) trained DTs for validation and 

testing. Three general steps comprise IBM’s implementation of CHAID: merging, splitting, and stopping. 

The steps are paraphrased from the algorithms guide (IBM, 2011): 

Merging 

1. If the feature only has 1 dimension, set the 𝑝-value to 1. 

2. If the feature has 2 dimensions, go to splitting step. 

3. Otherwise, search for the pair of dimensions in feature X that are the least significantly different 

(most similar) with respect to the dependent variable using the 𝜒2 test of independence (largest 𝑝-

value). 

4. If 𝑝-value > 𝛼, merge the two dimensions into a new dimension. 

5. (Optional) if any dimension has too few observations (𝑛 < 𝑚𝑖𝑛. 𝑝𝑎𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 𝑠𝑖𝑧𝑒), the 

dimension is merged with the category with the largest 𝑝-value 

6. Compute the Bonferroni adjusted 𝑝-value for the merged dimensions. 

Splitting 

7. Select the feature with the lowest 𝑝-value. 

8. If the 𝑝-value is less than 𝛼, split the node using this feature. This is a parent node. 

9. If the 𝑝-value is greater than 𝛼, do not split the node. This is a terminal (leaf) node. 

Stopping 

10. Stop if all observations in the node belong to the same class (pure) 

11. Stop if tree depth hyperparameter limit is reached 

12. Stop if minimum parent node size limit is reached 
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13. If a child node size is below the minimum child node size limit, merge with another child node 

with the largest 𝑝-value. If no other child nodes, stop. 

 

This analysis uses three measures of effectiveness (MOEs) to assess the trained decision tree model: 

overall accuracy, sensitivity (true positive rate), and specificity (true negative rate). Mode choice models  

that apply machine learning classification techniques commonly report these three MOEs for comparison 

(see the “Decision Trees and Mode Choice” subsection). The hyperparameter tuning process uses cross 

validation to find and select the best performing model with respect to these MOEs. After selecting the 

best performing CHAID RBMC model, the held-out testing sample is applied to the trained model and 

scored with respect to the same MOEs.  

 

 Han et al. (2011, p. 365) describe common DT evaluation measures using the classification 

terminology of a confusion (or misclassification) matrix, adapted in Table 17. ML classifiers applied in 

mode choice prediction also use confusion matrices for comparative analyses (Xie et al., 2003). 

Table 17: Binary confusion matrix for classifier evaluation, adapted (Han et al., 2011, p. 366) 

Actual Class 
Predicted Class 

Total Recall (%) 
Transit Not_Transit 

Transit True Positives 

(𝑇𝑃) 

False Negatives 

(𝐹𝑁) 𝑇𝑃 + 𝐹𝑁 = 𝑃 𝑆𝑒𝑛𝑠𝑖𝑡. =
𝑇𝑃

𝑃
 

Not_transit False Positives 

(𝐹𝑃) 

True Negatives 

(𝑇𝑁) 𝐹𝑃 + 𝑇𝑁 = 𝑁 𝑆𝑝𝑒𝑐𝑖𝑓. =
𝑇𝑁

𝑁
 

Total 𝑇𝑃 + 𝐹𝑃 = 𝑃’ 𝐹𝑁 + 𝑇𝑁 = 𝑁’ 
𝑃 + 𝑁 = 𝑇𝑜𝑡𝑎𝑙 

𝑃′ + 𝑁′ = 𝑇𝑜𝑡𝑎𝑙 

𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
= 𝐴𝑐𝑐. 

Precision 
𝑇𝑃

𝑃′
 

𝑇𝑁

𝑁′
   

 

 The confusion matrix describes the potential outcomes of a classifier, listed below, in terms of 

prediction correctness with respect to observations from the test set. 

• True positives (𝑇𝑃): the number of positive outcomes that the classifier labeled correctly 

• True negatives (𝑇𝑁): the number of negative outcomes that the classifier labeled correctly 

• False positives (𝐹𝑃): the number of positive outcomes that the classifier labeled incorrectly 

• False negatives (𝐹𝑁): the number of negative outcomes that the classifier labelled incorrectly 

Each predicted (labelled) outcome is the class with the highest probability at the terminal (leaf or child 

node) into which an observation falls. This assumption is built into SPSS Modeller’s model scoring 

process and is therefore used to calculate MOEs for the hyperparameter tuning process; however, 

assuming choice based on highest proportion is an imprecise interpretation of odds. During the Model 

Predictions: Proportional Enumeration step, when test data are applied to the trained DT, predictions are 

represented by the shares of the leaf node into which an observation falls. 
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 The model accuracy (equation [5.4]), or recognition rate, is the number of correctly predicted 

outcomes (𝑇𝑃 + 𝑇𝑁) out of the total test set. The inverse of accuracy is the risk, or error rate, which 

describes the number of misclassified observations. 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑚𝑜𝑑𝑒𝑙 =

𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 

[5.4] 

 
𝑅𝑖𝑠𝑘𝑚𝑜𝑑𝑒𝑙 =

𝐹𝑃 + 𝐹𝑁

𝑃 + 𝑁
 

[5.5] 

 

 Recall is a class-specific measure of accuracy. Sensitivity is the proportion of positive outcomes 

that were classified correctly. Inversely, specificity is the proportion of negative outcomes that were 

classified correctly. In this binary study, transit is a positive outcome and not-transit is a negative 

outcome. Sensitivity and specificity resist data imbalance effects because they are isolated measures 

concerning each outcome class. Since class imbalances in the training data can cause the model to more 

likely predict the more frequent class, these measures are considered the “true positive/negative rate” 

(Han et al., 2011, p. 367).  

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑐𝑙𝑎𝑠𝑠 =

𝑇𝑃

𝑃
 

[5.6] 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦𝑐𝑙𝑎𝑠𝑠 =

𝑇𝑁

𝑁
 

[5.7] 

 

 Precision (equation [5.8]) is another class-specific measure that is concerned with the exactness 

of the prediction. While recall measures the proportion of outcomes (observations) that are labelled 

correctly, precision measures the proportion of a class’s predictions that match the observations (Han et 

al., 2011). A perfect precision score (1.0) for the transit class means that every “transit” prediction made 

by the DT indeed belongs to the transit class. However, it does not reveal the number of observations that 

the DT mislabelled. Conversely, a perfect recall score does not reveal the number of predictions that were 

incorrect. Together, recall and precision give a more complete picture of the model’s predictive ability. 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐𝑙𝑎𝑠𝑠 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

[5.8] 

 

 Interpretability generally refers to a subjective degree of insight that a classifier or its predicted 

output provides (Han et al., 2011). Pursuant the objectives of this thesis, interpretability is the extent to 

which the model can coherently represent non-compensatory decision processes and respect behavioural 

limits. Therefore, discussion related to model interpretability considers model outputs as follows: 

• Ease to deduce the model structure, components, and mechanics (i.e., splitting criteria, features, 

dimensions, hierarchy), 

• Whether the model can be read in terms of discrete non-compensatory decision rules, and  

• Whether features have plausible directions of association (variable sign). 

 

Decision tree development requires that the modeller define parameters that create boundaries to the 

model learning process. These parameters are called “hyperparameters” in machine learning literature 

because they refer to parameters of the model induction process (Wang & Ross, 2018). Hyperparameters 
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affect model outcomes (i.e., predictive ability, structure) and the resources required to learn a model. 

Decision tree hyperparameters include tree depth, number of samples required for a split (at the parent 

node), and number of samples required for a leaf (child) node. The tree depth describes the number of 

splits produced by the model. More shallow trees can lead to more interpretable trees but reduce 

prediction accuracy, whereas deeper trees are prone to overfitting. Minimum samples for a split refers to 

the number of samples that must exist within a region (e.g., region 𝑞, defined by feature dimensions 𝑋 

and 𝐶) for a split to be considered. Low minimum samples for split may also overfit the data (enables 

creation of many insignificant splits), whereas a high minimum sample may prevent the tree form 

learning (insufficient samples for splitting).  

 Hyperparameter tuning involves searching the hyperparameter space to improve model prediction 

(i.e., optimize a measure of performance). Modellers must “tune” hyperparameters carefully because the 

unrestricted optimization of hyperparameters may lead to overfit, uninterpretable, or inaccurate decision 

trees. For example, increasing the tree depth hyperparameter through an unbounded optimization routine 

would produce a model that is perfectly fit to the training data (i.e., each leaf/terminal node is a discrete 

observation) but unusable for interpretation or out-of-sample prediction. Therefore, hyperparameters are 

tuned through the model validation process. 

 

 Model validation is an evaluation process concerned with reducing model bias, abating 

overfitting to training data, and affirming model flexibility (i.e., generalized performance). The validation 

step tests the trained model using “unseen” data that are excluded from the learning process, thereby 

mitigating sampling bias. Resampling methods, which redraw subsamples from a training set and refit a 

model, are the primary tools for model validation (James et al., 2013, p. 177). 

 This research uses SPSS Modeler for model validation. In the context of the model selection step 

in ML post-processing, a validation procedure is applied to part of the training dataset, further partitioning 

the original training dataset into secondary training and validation subsamples (Hastie et al., 2008, pp. 

241–254). These subsamples serve a distinct purpose from the original training/testing datasets. Whereas 

the testing dataset is used to evaluate the unbiased performance of a model (model assessment), the 

training/validation subsamples are drawn from the training dataset to tune the hyperparameters of a final 

model with less bias (model selection). If hyperparameters were tuned to improve performance on the test 

set alone, knowledge from the test set could “leak” into the tuned model and reduce generalizability 

(Pedregosa et al., 2011). The testing dataset is still held out at this modelling stage because it is used to 

measure the trained model’s performance (i.e., after hyperparameters are selected) on unseen data. Figure 

20 offers a 4-subsample (fold) example of the data partitioning process. 
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Figure 20: Decision Tree Cross-validation Subsampling (example) 

 This research uses K-fold cross validation, adapted from Bishop, C.M. (2011, p. 33), to tune the 

tree depth hyperparameter from the range of 1 level to 5 levels. K-fold cross validation is a popular 

resampling method where the data is randomly partitioned (resampled) into K number of subsamples of 

equal size (“folds”) and then successively held out for validation. A common value for 𝐾 is 10 (i.e., 10 

folds), where the original training set is resampled ten times without replacement. K-fold cross validation 

is advantageous over hold-out validation (single hold out sample) because K-fold uses the entire dataset 

for both training and validation over multiple runs (Figure 20 uses four). Hold-out validation is subject to 

greater bias from the delineation of a single validation subsample. One disadvantage of K-fold cross 

validation is its relatively higher computational cost because a higher number of folds (𝐾) increases the 

number of times the model must be trained on the 𝐾 ≠ 𝑘 folds; however, modern computers overcome 

this barrier with relative ease. 

 This research uses 10-fold cross validation for hyperparameter tuning. Each decision tree, 

characterized by a unique hyperparameter set (𝜃𝑖), trains on the 𝐾 ≠ 𝑘 subsamples and tests on fold 𝑘. 

Note that 𝑖 is a list with notation in the format [depth, parent node size, child node size] for all 

hyperparameter combinations within the grid search range, shown in Table 18. For example, 𝜃3,10,5 is the 

tree trained using max depth = 3 levels, parent node size = 10% of the training sample, and child node 

size = 5% of the training sample. 

Table 18: Hyperparameter Search Details 

Hyperparameter Range Search Increment 

Max Tree Depth (levels) [1,5] 1 

Min. parent node size (% training samples) [0.1, 50] 5% 

Min. child node size (% training samples) [0.05, 25] 5% 

 

The range of grid search values (𝜃1,1,0.5, 𝜃1,5,0.5, … , 𝜃𝑖 ∈ Θ) occupy extreme values for each 

hyperparameter. Maximum tree depth begins at 1, producing a tree with a single split. A single-split tree 

would have low prediction accuracy and insufficiently describe mode choice behaviours. The maximum 

of 5 is chosen to avoid overfitting and because tree depth can quickly increase model complexity: the 

number of leaf nodes is a product of the number of dimensions for features selected at each level. Parent 

and child node sizes are proportions of the training data sample (𝑛 = 807,916 expanded trips) and must be 
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greater than 0. At the lower boundary, a minimum of 1% of the total training sample (𝑛 = 8,079) is used 

for a split (at any parent node). Since the sample includes expanded trips, this is a low number for a parent 

node. Notably, the CHAID tree is less sensitive to low parent node sizes because the 𝜒2 test only allows 

statistically significant splits. At the higher boundary for parent node size, 50% of the training sample 

must exist within a parent node to allow a split (𝑛 = 403,958), which would decrease tree complexity and 

limit prediction accuracy. Since child nodes must result from splits at parent nodes, child node values are 

capped at 25% of the training dataset (𝑛 = 201,979). 

 Five MOEs are calculated for each 𝐾 ≠ 𝑘 tree using data from fold 𝑘 (the fold excluded from 

training): 1) overall model accuracy (equation [5.4]), 2) sensitivity (equation [5.6]), 3) specificity 

(equation [5.7]), 4) precision of transit (equation [5.8]), and 5) precision of not-transit (equation [5.8]). 

Since each unique combination of hyperparameters (𝜃𝑖) defines a tree that is cross-validated 10-fold, 

reported measures of effectiveness describe average results across the 10 folds. Table 19 reports the 

average recall and precision measures across 10-folds for the best performing parent and child node 

combination by tree depth. 

Table 19: Hyperparameter Search Results Scored on Validation Subsamples 

Max. Tree Depth 1 2 3 4 5 

Overall Model Accuracy 89% 82.5% 79.2% 84.3% 83.9% 

Transit Recall (Sensitivity) 42.8% 79.7% 88.7% 84% 87.6% 

Not-Transit Recall (Specificity) 94.6% 82.8% 78% 86.9% 83.5% 

Transit Precision 49% 35.8% 32.7% 39.6% 39% 

Not-Transit Precision 93.2% 97.1% 98.3% 98.2% 98.2% 

 Among the model hyperparameters (i.e., tree depth, minimum parent node size, minimum child 

node size), Table 19 only reports changes across tree depth. Node sizes are effectively unrestricted at 1% 

and 0.5% of samples for minimum parent and child node sizes, respectively. The hyperparameter grid 

search indicated that restrictions on node sizes can quickly reduce the tree to lower depths without 

improving model accuracy. Confusion matrices report that the trees of parent-node-restricted models 

𝜃2,25,0.5, 𝜃3,25,0.5, 𝜃4,25,0.5, and 𝜃5,25,0.5 are all the same with an 82.4% overall accuracy. Since the child 

node remains unrestricted, the search indicates that prohibiting splits using <25% of training data do not 

allow trees to grow above a maximum depth of 2. Similarly, prohibiting splits using <10% of data at the 

parent node do not allow trees to grow beyond a depth of 3 and prohibiting splits using <5% of data at the 

parent node do not allow depths beyond 4 (models 𝜃4,5,0.5 and 𝜃5,5,0.5 produced identical predictions). At 

the lower node size restrictions, the primary inhibitor to growth is the tree depth. This is inferred from 

models with adjacent parent node size restrictions producing the same predictions, holding tree depth and 

child node sizes constant. For example, models 𝜃1,25,0.5, 𝜃1,10,0.5, 𝜃1,5,0.5, and 𝜃1,1,0.5 produce identical 

confusion matrices on validation data. 

 Based on the hyperparameter tuning process, this research selects the RBMC model trained on 

hyperparameter set 𝜃4,1,0.5. This combination of unrestricted node sizes and higher tree depth produced a 

high overall accuracy (84%), high recall values (84-86%), and the highest transit precision (39.6%) above 

a tree depth of 1. Increasing the tree depth to 5 had the effect of reducing accuracy and recall for the not-

transit class (transit specificity). The trained tree is plotted in Figure 21 with some reduced detail (not 

every dimension is labeled at higher depth) to support interpretation.
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Figure 21: Trained Decision Tree Diagram (RBMC model)
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 The raw, unedited output of the DT is in Appendix B with bar charts representing the 

(unbalanced) proportion of each node that belongs to each class. Note that the raw output’s class 

proportions do not represent the balanced class values on which the DT trains (see “Class Balancing” 

subsection). Therefore, the raw output graphic underestimates the training samples belonging to transit 

within each node by a factor of approximately 8.29 relative to not-transit samples, which Figure 21 

corrects. A full list of tree nodes, including the balanced proportion of each class per node, is in Appendix 

A. 

 CHAID produces nodes that are selected based on their probabilities (𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05). The 

selected splits (parent nodes) for the trained DT with hyperparameter set 𝜃4,1,0.5 are noted in Table 20. All 

parent nodes between the root node and leaf nodes satisfy the significance criterion. 

Table 20: CHAID Split (Parent Nodes) Statistics: Trained Model 

Depth Node Feature (var. name) n split df 𝝌𝟐 p-value 

0 Root Transit pass (tran_pass) 807,916 3 135,503.4 <0.000 

1 2 Trip distance (trip_man_km) 731,870 8 99,565.1 <0.000 

1 3 Vehicle ownership (hh_n_vehs) 61,679 3 8,091.8 <0.000 

1 4 Trip purpose (trip_purp) 9,165 1 525.9 <0.000 

2 5 Trip purpose (trip_purp) 117,540 2 29,546.2 <0.000 

2 6 Age (age) 80,930 6 8,723.0 <0.000 

2 7 Income (hh_income) 67,094 4 2,399.7 <0.000 

2 8 Vehicle ownership (hh_n_vehs) 74,040 2 4,577.8 <0.000 

2 9 Licensing (driver_lic) 72,225 1 4,312.5 <0.000 

2 10 Licensing (driver_lic) 120,063 1 5,390.3 <0.000 

2 11 Daily trips (n_pers_trip) 50,120 3 2,938.7 <0.000 

2 12 Daily trips (n_pers_trip) 79,228 4 2,125.3 <0.000 

2 13 Licensing (driver_lic) 70,630 1 4,118.7 <0.000 

2 14 Age (age) 14,046 1 845.733 <0.000 

2 15 Daily trips (n_pers_trip) 21,597 2 2,463.4 <0.000 

2 16 Trip purpose (trip_purp) 19,532 1 3,135.6 <0.000 

3 20 Age (age) 60,119 5 2,940.2 <0.000 

3 21 Free parking (free_park) 34,913 1 4,623.6 <0.000 

3 22 Age (age) 22,508 3 2,112.6 <0.000 

3 23 Income (hh_income) 12,747 1 149.5 <0.000 

3 24 Trip purpose (trip_purp) 14,977 1 1,032.4 <0.000 

3 25 Trip purpose (trip_purp) 9,448 1 602.0 <0.000 

3 26 Vehicle ownership (hh_n_vehs) 12,716 1 193.7 <0.000 

3 27 Daily trips (n_pers_trip) 10,168 1 1,649.7 <0.000 

3 29 Daily trips (n_pers_trip) 13,893 1 324.2 <0.000 

3 30 Trip purpose (trip_purp) 9,786 1 386.8 <0.000 

3 33 Vehicle ownership (hh_n_vehs) 32,761 1 157.8 <0.000 

3 35 Daily trips (n_pers_trip) 14,893 1 321.4 <0.000 

3 37 Household size (hh_size) 23,002 1 207.5 <0.000 

3 38 Sex (sex) 9,976 1 64.9 <0.000 

3 39 Age (age) 62,249 4 1,819.4 <0.000 

3 40 Student status (stu_stat) 15,174 1 1,525.5 <0.000 

3 41 Vehicle ownership (hh_n_vehs) 104,889 1 1,790.7 <0.000 

3 42 Age (age) 15,489 1 611.4 <0.000 

3 44 Income (hh_income) 11,062 1 357.1 <0.000 
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3 46 Vehicle ownership (hh_n_vehs) 27,668 2 2,914.2 <0.000 

3 47 Vehicle ownership (hh_n_vehs) 8,619 1 804.9 <0.000 

3 48 Employment status (emp_stat) 18,286 1 1,350.4 <0.000 

3 50 Vehicle ownership (hh_n_vehs) 9,439 1 53.8 <0.000 

3 51 Age (age) 66,398 4 1,254.2 <0.000 

3 55 Trip distance (trip_man_km) 9,453 1 615.1 <0.000 

3 58 Student status (stu_stat) 8,226 1 26.3 <0.000 

3 59 Household size (hh_size) 11,306 1 373.7 <0.000 

Note: n split refers to observations in the training dataset that belong to each node. Since only parent 

nodes are reported, n split of subsequent levels may be lower than antecedent levels whenever stopping 

criteria are reached along any intermediate child branches. 

 

 

 A review of the specific decision processes induced by the DT, following the tree diagram 

presented in Figure 21, reveals interesting relationships between the independent variables and transit 

choice. At the top of the tree, the best predictor at the root node is transit pass ownership. This discussion 

is organized by the branches resulting from the root node split (transit pass owners, non transit pass 

owners, and unknowns). Proportions at each node are specifically listed in Appendix A, while the rough 

value is represented by colour in Figure 21. 

 

 People who reply “Yes” own a local transit pass with GRT, and already 91% of users in this 

category are predicted to take transit. Descending from this, trip purpose shows that HBW trips are 

slightly more likely to use transit (94% vs 86%). No further splits result from this branch at depth 2, 

meaning no other predictors reveal statistically significant differences within these regions. 

 Respondents who have transit passes for other agencies (e.g., regional transit services) also tend 

to favour transit (90%); however, their choices depend on the number of vehicles in the household (depth 

2 split). Households without vehicles (personal automobiles) are predicted to choose transit 98% of the 

time; for households with a non-GRT transit pass (“other agency”) and only one car, that probability 

drops to 88% and further splitting (depth 3) occurs based on the number of trips per person. People who 

take more trips are less likely to take transit. This reflects the phenomenon where households compete for 

access to not-transit modes, including driving and passenger modes, and that more frequent trip users may 

find transit less appealing. Households with 2 cars will still probably take transit if they own a transit pass 

but will consider the trip purpose (depth 3), where commuter (HBW) trips are more likely (91%) to use 

transit than HBD and Non-HB trips (61%). It is unclear whether “other agency” passes in the TTS include 

University-distributed transit passes (e.g., the University of Waterloo’s U-Pass program), which could 

affect this interpretation. 

 

 Users who do not own a transit pass are far more likely to not take transit, constituting the entire 

vertical midsection of the tree. People who do not have transit passes may still choose to use transit based 

primarily on the trip distance (depth 2). Measured in Manhattan distances (grid- or network-based 

distances), trips less than 1km have a 76% chance of taking transit, and longer trips less than 2 or 3km 

quickly decrease that probability to 45% and 28%, respectively. Since walking trips are included in the 

transit share, findings related to shorter trips more likely represent important decision variables for 

walking rather than transit. Short trips less than 1km split based on trip purposes (depth 3), where HBW 

trips are, again, transit oriented. Depth 3 splits for the (1-2km] range show that people more likely to take 
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transit if they are adolescents (<19 years). People who do not have a transit pass (depth 1) and travel 2-

5km (depth 2) may make transit decisions based on whether they have a driver’s license (depth 3). This 

split is very polarizing because people who do not have driver’s licenses are predicted to take transit 53%-

63% of the time, compared with 11-17% if they do have a license. The most surprising finding from this 

model is that users who take 3-5 km trips tend to take transit (77%) if they are not students (depth 4) and 

tend not to take transit if they are students (34%). However, student attributes and preferences may be 

underrepresented in these data since they seldom have permanent addresses in the Region and are less 

likely to receive invitations to participate in the travel diary survey. 

 Users without transit passes who are travelling longer distances (>5 km) take Not-Transit modes 

almost universally; however, a segment (node 13, depth 3) of users are somewhat likely to take transit 

(52%) for 8-11km trips if they do not have a driver’s license. Licensed users that make 8-11km trips are 

further split (depth 4) by age, where younger people (11-28 years) have a slim chance of taking transit 

(12%) and older people (41+ years) have virtually none (<1%). Non-transit pass, long-distance trips have 

statistically significant splits at depth 3 by income, number of vehicles, and number of trips. None of 

these variables dramatically impact the proportions of transit and not-transit observations between child 

feature dimensions. Survey respondents whose transit pass status is unknown reveal an even class 

distribution (presumably random) and do not produce further splits. 

 

 Scoring a model (extrasample) involves running testing data through a trained DT to evaluate the 

DT’s out-of-sample performance. Extrasample scoring is used for model assessment, whereas intrasample 

scoring is used for model selection during the hyperparameter tuning stage. During the hyperparameter 

tuning stage (cross-validation procedure), DTs trained on 𝐾 ≠ 𝑘 data are scored by running 𝑘 subsamples 

(folds) through the DTs to derive predictions, respectively. Although each validation fold is successively 

excluded from the training sample during CV, the final trained tree uses the entire training dataset (𝐾) to 

derive its rules. During the extrasample scoring stage, the DT is trained with all the training data (𝐾) and 

is scored using thus far held-out testing data to produce an unbiased assessment. 

 During the scoring process, rules produced by the trained DT (with hyperparameter set 𝜃4,1,0.5) 

are applied to the testing dataset’s attributes so that each testing observation falls into a leaf node. This 

research uses SPSS Modeler to score the trained DT based on the highest probability class at a leaf node. 

 

 Using SPSS Modeler’s scoring process, the predicted mode for each testing observation is the 

highest probability class of the leaf into which the testing observation fell. For example, if the validation 

sample landed in a leaf where 55% of training observations were in the transit class (45% in the not-

transit class), the predicted choice would be transit. Recall that class weights were applied during the DT 

training process and that proportions within each leaf therefore represent the number of balanced, 

expanded training observations that fall into each node. Column totals in Table 21 show the resulting 

predictions for the testing dataset based on the highest probability at leaves. 
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Table 21: Confusion Matrix: Testing Data Applied to Trained Model 

Actual Class 

Predicted Class 

Total Recall (%) Transit Not_Transit 

Transit 19,060 2,702 21,762 87.58% 

Not_Transit 29,340 150,877 180,217 83.72% 

Total 48,400 153,579 201,979 84.14% 

Precision 39.38% 98.24%   

 Scoring the tree based on the testing data, resulting recall values are comparable to the results 

from the cross-validation. The RBMC model accuracy of 84.14% is lower than the average accuracy from 

the cross validation (86.9%). Model sensitivity (transit recall) is higher at 87.58% compared with 84.0%, 

and specificity (not-transit recall) is lower at 83.72% compared with 86.9%. The precision of not_transit 

predictions is high, whereas the precision of the transit class is low. Less than half of the model’s transit 

predictions actually belonged to transit, even though over 87% of testing observations were predicted 

correctly. The model tends to overestimate transit choices. One possible cause of transit overestimation is 

the rounding error produced by taking the highest probability class at a leaf. Therefore, alternative sample 

enumeration methods may improve precision. 

 

 For a given testing observation’s prediction (highest probability class), prediction confidence 

refers to the proportion of training data (weighted) that belongs to the highest-proportion class in that 

node. For a “Not-Transit” prediction in a leaf where 60% of training data are Not-Transit and 40% are 

transit, the confidence is 60%. Likewise, a “Transit” prediction at a leaf with 75% Transit and 25% Not-

Transit has a confidence of 75%. SPSS Modeler also defines propensity to describe the confidence of one 

specific target class. This research calculates the propensity relative to the Transit class. Therefore, the 

propensity of transit predictions is the same as the confidence value, and the propensity of not-transit 

predictions is equal to 1-confidence. This research uses the propensity to enumerate the popular mode 

shares using a simple Python script that interprets SPSS Modeler prediction outputs, shown in Figure 22. 

 

Figure 22: Predicted Mode Shares by Scoring Method Compared with Observed Outcomes 

Confusion matrices cannot represent results from proportional enumeration because predicted choices are 

not discrete. Therefore, the class-specific MOEs, including class-specific recall and precision, are only 

reported for the “highest probability at leaf” method. 

 Figure 22 compares the observed modes in the testing dataset with the predicted modes for 

highest-probability and proportional enumeration methods. The proportional enumeration approach seems 
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to overestimate transit (27.3%) more than the highest probability at leaf method (24%). This suggests that 

transit overestimation in the DT is negatively related to rounding at leaf nodes. Since more leaves result in 

Not-Transit predictions (i.e., nodes with orange outline in Figure 21), rounding to the highest probability 

class may have obscured the influence of Transit observations in Not-Transit-dominant leaves more than 

the influence of Not-Transit observations in Transit-dominant leaves. Few authors explore the trade off 

between accuracy and precision in mode choice literature, since RBMC analyses (see “Decision Trees 

and Mode Choice” subsection) tend to emphasize recall values and overall model accuracy. In general 

ML textbooks, hyperparameter tuning allows modellers to trade off DT precision and accuracy (Han et 

al., 2011), but alternative tree depth hyperparameters for this specific model appear to suffer worse 

precision values. This suggests an issue related to the representativeness of the expanded TTS data for 

transit choice, and further research ought to explore methods to improve representativeness through either 

bootstrap aggregation (as opposed to cross validation used in this research), data imputation, and 

investigating data expansion factors (see “Further Research” subsection). 

 

 The CHAID decision tree algorithm is specifically chosen in this research for its ability to 

produce a visually interpretable (wide) and statistically-defensible description of possible mode choice 

decision processes. DT width is important for interpretability because it can reveal differences between 

the choices of users that belong to different dimensions of the same feature (e.g., people 20-30 vs 30-40 

years old) at the same parent node. Some DTs, including the popular CART alternative, encode 

categorical variables into dummy variables because they perform binary splits, and therefore do not allow 

comparison of choices within the bins (dimensions) of the same feature (only whether a categorical 

dimension is true). 

 The tree depth hyperparameter is analogous to the user’s psychological stopping criteria in that it 

can reflect limits to cognitive effort (e.g., user does not consider more than the first two decision 

attributes) or the number of factors the user is willing to consider. A higher tree depth represents the 

potentially more complex user decision rules, but the hyperparameter tuning process showed that past a 

tree depth of 4, the increase in accuracy is almost negligible, and precision begins to drop. In the mode 

choice context, this suggests that users are unwilling to consider more than 4 decision elements within 

their decision process, and that many people will consider even fewer variables than that (i.e., where 

leaves emerge at depths less than 4).  

 The DT can represent heterogeneous decision processes because each branch represents a 

different set of considerations (features) and each node represents a viable stopping point for a user to 

make a choice. Decisions are not restricted to occurring at leaf nodes (terminals). The user may decide, 

even partway along a branch (i.e., at an intermediate parent node), that the information gathered and 

assimilated so far is sufficient for a choice. At this node, the model represents their choice probability 

through proportions of each class, and a backwards trace towards the root of the DT represents the user’s 

decision process in terms of complexity (length of if-then sequences) and factors (features and their 

dimensions). 

 

 The RBMC model structure is consistent with non-compensatory decision processes raised in 

literature, including lexicographic and aspiration-level based decision rules. The induced model explicitly 

represents a lexicographic decision process, which relies on ordering attributes (features) by importance. 

The user selects the best class based on the most important feature, and if no choice is made, the user 

considers the next most important attribute until a class is selected. The DT branch structure represents 

this with sequences of hierarchical rules: higher order (lower depth) nodes represent more important 

attributes and when users proceed along a branch (no choice is made), their probability of choosing a 

class depends on the sequence of nodes that descend.  
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 The RBMC model’s wide, multidimension splitting procedure represents features based on their 

“degrees” of value (i.e., for ordinal dimensions). Reading the tree across the child nodes of a split can 

reveal the aspiration levels that users consider when choosing one class over another. Differentiated class 

proportions across dimensions reveal the direction of association and the aspiration levels to which these 

users respond. For example, splits along the trip distance (trip_dist) variable (depth 2) show that the 

aspiration level for a not-transit trip is roughly >1km for most users (inversely, the level for transit choice 

is <1km for those same users). 

 

 The RBMC model allows non-compensatory decision processes to emerge without necessarily 

restricting the compensatory processes. If a compensatory decision process was learned by the DT 

algorithm, users in all regions would have considered the same set of features. Thus, each level of the 

decision tree would be occupied by the same feature, regardless of the preceding dimension from which 

the branch grew. This condition is necessary for the observation of compensatory decision processes 

because compensatory trade-offs must be observable between the dimensions of two or more features. In 

an ordinal example, decreases in transit fare costs would result in more transit choice but regardless of (or 

at least, less sensitively react to) increases in trip distance. One of these features must precede the other, 

and all regions resulting from the dimensions of the higher-order (lower depth) feature must then split on 

the same successive feature. 

 Unfortunately, this decision tree structure cannot deny the possibility of compensatory decision 

processes. Although the DT does not reveal a compensatory structure, underlying compensatory 

behaviours may exist because the full set of significant features at a given region is hidden by the DT 

algorithm’s choice of “best” splits (i.e., most significant feature at a given region). This limitation is 

discussed further in the “Limitations: RBMC Model” subsection. Given this limitation, it is still worth 

noting that the algorithm’s selection criteria “learned” non-compensatory decision rules. 

 

This section tests whether the developed DTA metric may supplement the RBMC model. In a decision 

process that uses the availability heuristic, DTA is a theoretically relevant variable because it describes 

temporally aggregate transit service quality that users experience locally and frequently. Availability 

suggests that users evaluate an outcome’s probability based on the ease with which they recall relevant 

instances. Therefore, if transit services are consistently (over time) poor, users will evaluate negative 

transit service outcomes as likely and perhaps less likely take transit. 

 The RBMC model is used for testing DTA because of its non-parametric form. If the model’s 

framework imposes assumptions on the decision process, explanatory variables specified within that 

framework are limited in how they affect the decision. In the case of the utility function, the assumption 

of a compensatory strategy forces decision variables to influence a decision by the linear utility functions 

that relate variable quantities with their coefficients. A RBMC model presents an opportunity to flexibly 

accommodate and test a decision variable’s impact on mode choice. Figure 23 presents the method 

applied in this section. 
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Figure 23: DTA Variable in RBMC Model 

 

 “DTA Metric” refers to the DTA measure selected for disaggregate mode choice prediction 

(feature in training RBMC model). Selection of the appropriate DTA measure for mode choice modelling 

is based on the aggregate relationships with zonal (aggregate) mode shares observed in Impact of Transit 

Accessibility  and whether a metric has met the DTA development objectives, repeated here for reference: 

the DTA metric ought to be connected to transportation demand theory and decision process research; use 

existing. publicly available datasets; present a straightforward representation of accessibility value; is 

statistically significant across scenarios; and is location based for spatial comparison. 

 The all-day, D1 measure of 𝐷𝑇𝐴𝑚 for zone 𝑖, shown in equation [5.9], is most appropriate for use 

as the DTA metric within a mode choice analysis because of its statistical significance across analysis 

periods, consistency with travel demand theory, and large sample size given its simple trip attraction 

terms. 

 

𝐷1𝑖,𝐴𝐷,𝑚 = 𝑙𝑛

∑ ∑
𝐸𝑀𝑃𝑗

𝑇𝑇𝑖𝑗𝑛
2∀𝑗≠𝑖𝑛∈𝐴𝐷

𝑁𝐴𝐷
 

[5.9] 

Class D- DTA measures has a stronger theoretical basis than the other location-based measures. The 

conventional gravity-based measure (class G-) is disconnected from travel demand decision processes 

because it supposes that users consider the characteristics of their origin zone when making trips. The 

cumulative opportunity measure (class C-) creates a discrete time boundary, within which destinations are 

considered accessible, but risks excluding high-attraction zones and misrepresenting accessibility 

perception along these boundaries (e.g., a destination that is 41 minutes away may be just as attractive as 

one that is 40 minutes away). D- class measures address these limitations by excluding the origin-based 

attraction terms and dissolving the boundary of travel, hybridizing the gravity-base and cumulative 

opportunity measures. Note that some researchers have referred to the distance-decay measure as simply a 

gravity-based measure (Alam et al., 2010); however, this research distinguishes the two types to 

understand origin term exclusion effects. GTFS data are almost universally collected from transit agencies 

and population variables from the TTS (e.g., zonal employment, population, mode shares) are often 

collected via travel diary surveys. The interpretability of the D1 measure is slightly less than that of the 

simpler cumulative opportunity measures, which use unweighted activity counts. However, all DTA 

measures are moderately challenging to interpret due to the temporal resolution of analysis and use of 

transformations for normality (often log transformed). 

 Regression results suggest that the first hypothesis about mean transit accessibility’s (DTA 

magnitude, or 𝐷𝑇𝐴𝑚) relationship with mode shares is stronger than the second, regarding transit 

accessibility variation (DTA dispersion, or 𝐷𝑇𝐴𝑠). The D1 measure of 𝐷𝑇𝐴𝑚 consistently rejects the null 

hypothesis across all periods and provides some explanatory power for mode shares (𝑅2 ≤ 0.09). 

Nonetheless, despite the stronger relationship (higher 𝑅2) between 𝐷𝑇𝐴𝑚 and mode shares, 𝐷𝑇𝐴𝑠 is a 
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significant predictor (at 𝛼 < 0.05) and is therefore included for DT training. Finally, since the AD 

analysis encompasses a larger span of time, it is preferable for mode choice analysis because more 

observations can be used for model estimation. 

 In addition to the independent variables in Table 16, Table 22 presents the DTA variables this 

research uses to train the RBMC model. The log-transformed DTA variables’ dimensions represent data 

quantiles to ensure they are balanced. 

Table 22: DTA Variables for Training (Features) 

Features (Label) Dimensions Bins Unit 

All Day DTA Magnitude (DTA_m) (0-3.96], (3.96-4.36], (4.36-4.68], (4.68-5.24], (5.24-11.86] 5 ZONE 

All Day DTA Dispersion (DTA_s) (0-2.39], (2.39-2.72], (2.72-2.94], (2.94-3.25], (3.25-5.18] 5 ZONE 

 

 

 The hyperparameter search yielded very similar results (Table 23) to the base RBMC model in 

terms of the quantitative MOEs. The model resulting from a tree depth limit of 4 is chosen (Figure 23). 

Table 23: Hyperparameter Search Details (with DTA) 

Max. Tree Depth 1 2 3 4 5 

Overall Model Accuracy 89% 82.4% 79.1% 84.2% 83.9% 

Transit Recall (Sensitivity) 42.9% 79.7% 88.7% 87% 87.9% 

Not-Transit Recall (Specificity) 93.2% 82.7% 78% 83.8% 83.3% 

Transit Precision 49% 35.8% 32.7% 39.4% 39% 

Not-Transit Precision 93.2% 97.1% 98.3% 98.2% 98.3% 
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Figure 24: Trained Decision Tree Diagram (RBMC model with DTA)
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The raw, unedited output of the RBMC model DT with DTA is in Appendix C with bar charts 

representing the (unbalanced) proportion of each node that belongs to each class. 

 This section retrains the decision tree classifier on the same set of observations, now attributed 

with the 𝐷𝑇𝐴𝑚 and 𝐷𝑇𝐴𝑠 variables. First, new decision rules induced by including DTA as a feature 

within the RBMC model are discussed. Then, this analysis evaluates the same MOEs used for the RBMC 

model analysis (without DTA) to compare model performance. The training and testing datasets are 

constant between the RBMC model (or “base DT”) and the RBMC model with DTA. 

 

 The base DT remains largely unaffected by the inclusion of DTA variables. Only splits at depth 3 

changed in the model, where 𝐷𝑇𝐴𝑚 created a split at two places (nodes 23 and 33) and 𝐷𝑇𝐴𝑠 produced a 

split at one (node 30). All of these nodes descend from the branch of users without transit passes. The first 

𝐷𝑇𝐴𝑚 split (node 23) followed people who travelled a distance between 1 and 2km and are either 

adolescent (10-19 years) or retired (72-99 years). In the case of the older group, who were already 

predisposed to not-transit modes (15% transit in the parent node), the split occurred between 𝐷𝑇𝐴𝑚values 

less than 107 and 𝐷𝑇𝐴𝑚 values greater than 107 (unitless). Users with lower 𝐷𝑇𝐴𝑚 were unlikely to use 

transit (5%) whereas users with higher 𝐷𝑇𝐴𝑚 had a relatively higher probability of using transit (27%). 

DTA’s relationship with transit use is inconsistent for adolescents making short trips: users with 𝐷𝑇𝐴𝑚 

values in the range of 0-53, 78-107, and >187 had only slightly lower transit use (72%) compared with 

the groups in between (84%). Medium-distance trips (11-16km) at depth 2 were influenced by both DTA 

variables (𝐷𝑇𝐴𝑚 and 𝐷𝑇𝐴𝑠). Medium-distance trip makers split based on household income (depth 3), 

where the income group making $100k-$120k per year split on 𝐷𝑇𝐴𝑠 (node 30) and the group making 

$60k-$99k or >$124k split on 𝐷𝑇𝐴𝑚 (node 33). Unfortunately, these parent nodes already have very low 

proportions (7% and 1%, respectively) and therefore did not produce very impactful child nodes. 

 Even though DTA is a statistically significant predictor in the model, its nonetheless small impact 

on predictions reflects the lexicographic decision process represented in the model. The CHAID would 

not allow a different split at an earlier depth unless 𝐷𝑇𝐴𝑚 or 𝐷𝑇𝐴𝑠 were the most statistically significant 

feature for an earlier region of the training dataset. This emulates lexicographic rules, where no other 

attributes are considered until after the user evaluates the first, most important attribute. Ensemble 

methods (discussed in the “Decision Tree Classifiers” subsection of the literature review) present an 

alternative method to reduce the consistency of the learned ruleset (introduce heterogeneity) by using 

random subsets of both the data (bootstrapping) and features to induce many decision trees. However, an 

ensemble method would limit interpretability because model scoring relies on averaging results across 

many DTs. 

 One inference from this RBMC application of DTA is related to the comparison between the two 

travel impedance variables in in the mode choice model: Manhattan distance of trip, and overall transit 

accessibility magnitude. In contrast with the Manhattan distance of trip (in km) variable, 𝐷𝑇𝐴𝑚 describes 

location-based accessibility, whereas the Manhattan distance measures mobility for a specific trip. 

Evaluations (splits in the tree) using the trip distance variable are more closely associated with the 

behavioural response to friction caused by a specific trip (the one observed in the TTS survey). Inclusion 

of both variables suggests that both general accessibility and accessibility of a specific trip may be 

important in mode choice decisions. This is consistent with findings in literature that transit choice 

depends on the combination of good overall transit accessibility and good trip-specific connectivity 

(Papaioannou & Martinez, 2015). Since trip distance is a measure of mobility (or “goodness of 

connectivity”) for a specific trip, this research expands on the topic by showing the dominant effect of 

trip-specific impedance compared with overall transit accessibility. Specifically, the RBMC model 
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reveals a common decision process sequence: the user considers trip-specific impedance first, then the 

distance of the trip, and then overall DTA. 

 

 Table 24 is the confusion matrix resulting from scoring the RBMC model with DTA on the 

testing dataset. 

Table 24: Confusion Matrix (DTA): Testing Data Applied to Trained Model 

Actual Class 

Predicted Class 

Total Recall (%) Transit Not_Transit 

Transit 19,019 2,743 21,762 87.4% 

Not_Transit 29,188 151,029 180,217 83.8% 

Total 48,207 153,772 201,979 84.19% 

Precision 39.45% 98.22% 

Scored test data produced recall and precision values similar to the cross validated predictions. Like the 

base RBMC model results, the column totals of Table 24 show the resulting predictions for the testing 

dataset based on the highest probability at leaves. This analysis applies the same proportional sample 

enumeration process explained in the “Model Predictions: Proportional Enumeration” subsection. 

 Compared with the RBMC model without DTA, there were very minor changes in MOE values, 

resulting again in the selection of a model with tree depth 4. After including the DTA variables, any 

changes to overall model accuracy were less than 0.1%. For the recall values at tree depth 4 (no 

differences at other depths), inclusion of DTA increased the ability to recall transit observations at the 

expense of not-transit recall. Specifically, transit recall increased by 3% from 84% to 87% and not-transit 

recall decreased by 3% from 86.9% to 83.8%. There are no differences in precision, throughout.  

 

 

Figure 25: Predicted Mode Shares by Scoring Method Compared with Observed Outcomes (with DTA) 

 The proportional enumeration scoring process at DT leaves also produces very similar results to 

the base RBMC model. Compared with the non-DTA RBMC model, there is only a 0.1% difference in 

mode shares, regardless of enumeration method. 
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This section discusses the limitations of the RBMC modelling method, data, and inclusion of the DTA 

variable as an independent variable. The Limitations: DTA in Aggregate Modal Analysis section 

discusses limitations related to the DTA metric development and regression analysis with zonal mode 

shares. 

 The RBMC model’s induction (tree learning) process is limited by its dependence on sufficiently 

large, representative, and balanced datasets. First, training on datasets with unbalanced classes (i.e., 

different sample sizes between modes) tends to bias more frequently sampled classes (Hastie et al., 2008). 

This research’s aggregation of trips into only two classes (Transit and Not-Transit) may reduce this effect; 

however, Not-Transit observations are still much more frequent in the sample. The class balancing 

process (see “Class Balancing” subsection) increased the weight of every transit observation 

(oversampling) by 8.28 to train the decision tree. Unfortunately, increasing the influence of transit 

observations may have overinflated the representativeness of existing transit samples and biased the 

induced rulesets, contributing to the high transit prediction during extra-sample scoring. Although class 

balancing improved representativeness of the Transit class, sample sizes would ideally be sufficiently 

large and balanced to induce robust rules across target classes without balancing or aggregating modes. 

DT algorithms also favour high-dimensionality features for their potential to increase purity within 

resulting child nodes. Hastie et al. (2008) warn that although partitioning algorithms favour features with 

many dimensions, such variables can result in “severe overfitting” and should therefore be avoided. 

Unfortunately, dimensionality reduction may also reduce prediction precision and interpretation of results 

because the behaviours of small groups within some features (e.g., people making $50-55 thousand a 

year) may be obfuscated within the lower-dimensionality aggregations (e.g., a group making $40-80 

thousand a year). Sample representativeness is an important limitation in RBMC modelling because DTs 

are insensitive to (unable to classify) feature values beyond those observed in the training data. Due to the 

partitioning process, DTs can neither interpret values beyond input feature dimensions (no extrapolation) 

nor differentiate effects within dimension boundaries (interpolate) (Zhao et al., 2020). Without 

representative training datasets that cover the full extent of possible values, scoring the RBMC model 

using outside samples (i.e., possibly introducing new feature dimensions) may cause classification errors. 

 Applying the DTA metric to the RBMC model can introduce limitations from transit accessibility 

measurement (see “Limitations: DTA in Aggregate Modal Analysis” subsection) to the mode choice 

model. Since transit accessibility measurement determines a baseline accessibility value (accessibility 

does not drop to 0), researchers must aggregate transit and walking classes to form the dependent variable 

in mode share analyses (Owen & Levinson, 2015). Disentangling the base transit accessibility value (the 

walking accessibility) from transit accessibility would allow the RBMC model to distinguish separate 

heuristic rules for each mode and induce more powerful transit choice rules. 

 The CHAID algorithm also limits detailed analysis of the DTA metric in a RBMC model 

structure. CHAID operates by selecting the “best” splitting features at every decision (parent) node. The 

inability to prune or force the selection of specific features for splitting at each decision node limits 

feature-oriented analysis efforts (i.e., of specific independent variables), in favour of class-oriented 

analyses. A region of data may have a set of statistically significant features where CHAID would choose 

the most significant (i.e., highest 𝜒2 statistic, lowest p-value) feature and ignore other, also statistically 

valid splits. For example, the algorithm may have found that in the first region (entire training dataset), 

four variables – including transit pass ownership, Manhattan distance of trip, age, and DTA – would 

produce statistically significant splits. However, the algorithm only selects transit pass ownership because 

it happens to be the “most significant” and ignores the effects of other features until after the first 

partition. Since the training dataset is split, the other three variables may not have a significant 

relationship with subsequent regions. The analyst therefore cannot identify alternative regions on which 

the DTA variable may have significant influence.  
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This thesis seeks to understand whether and how transit accessibility to land uses impacts the mode 

choice decision process. The DTA metric development aims to reflect the user’s heuristic recollection of 

generally positive or negative transit experiences over time. The application of a RBMC model aims to 

improve descriptions of mode choice behaviour by departing from utility models and their compensatory 

assumptions without losses in accuracy. Putting them together, the RBMC model provided a non-

compensatory framework to investigate DTA’s effect size on mode choices and the DTA variable 

introduced travel impedance-weighted land use attraction terms to the mode choice model. 

 The regression analysis in Chapter 4 identified a transit accessibility metric for application in the 

RBMC model. This research compared three classes of transit accessibility, including gravity-based, 

time-decayed opportunity, and cumulative opportunity measures, based on their correlations with 

aggregate (zonal) mode shares. Regression analyses considered measure sensitivity to periods of the day 

(AM, MD, PM, EE, NT, and AD) and attraction terms (discretionary, employment, and population). 

Based on its explanatory power (𝑅2 = 0.07), statistical significance, interpretability, and large sample 

size (1592 zones), an all-day time-decayed opportunity measure, D1 (see equation [5.9]), was selected as 

a feature in the RBMC model. 

 In Chapter 5, a rules-based, binary mode choice model using the CHAID algorithm yielded high 

accuracy, low precision, and interpretable heuristics for mode choice processes. When scored on testing 

data, the RBMC’s overall model accuracy of 84.14% was similar to reported DT accuracies in the 

literature. The DT produced high recall rates for testing observations, correctly predicting 87.58% of 

transit observations and 83.72% of not transit observations. However, transit predictions were imprecise: 

only 39.38% of the model’s transit predictions are truly transit observations whereas 98.24% of not transit 

predictions are correct. Two different sample enumeration strategies, higher probability at leaf and 

proportional enumeration, produced regional mode splits that overestimated the transit mode share (24% 

and 27.3%, respectively) compared with the 10.8% transit share observed in the testing data. Model 

interpretability is high due to the hierarchical, wide structure of the CHAID decision tree. Prior to 

including DTA, results suggested that users evaluate their transit pass ownership and trip distance with 

the greatest importance when choosing transit. DTA’s inclusion in the RBMC model showed that DTA 

magnitude (represented as the average D1 transit accessibility throughout the day) is a significant 

predictor of mode choice for non-transit pass users who are travelling short distances (>1km and ≤ 2km). 

However, this accounted for a small subsection of the population and no higher-order (i.e., lower tree 

depth) regions of the trained DT changed. Predictions of the testing data scored similarly (84.19% overall 

accuracy) due to DTA’s small effect size. DTA only affected a few predictions at the fourth tree depth. 

 The learned decision trees provide valuable descriptive insight into heuristic decision process 

structures and the features that users judge important. The RBMC model’s hierarchical structure is 

consistent with a lexicographic decision process, where users evaluate features ordinally based on feature 

importance. Based on the first tree splits, the most important factors for transit choice are transit pass 

ownership and the trip distance, where transit pass ownership has a positive association with transit use. 

Among users without transit passes, trips with low to medium distances still have high probabilities of 

taking transit. Within the non-transit-pass subset, which represents most of the training dataset that does 

not take transit, conditional transit users still occupy some regions: users making trips shorter than 1km 

have a 76% chance of taking transit, and users who make 2-5km trips have a 53-63% chance of taking 

transit, if they also do not have driver’s licenses. Including DTA in the rule induction process revealed 

that general (location-based) accessibility is not as important in transit choice as the impedance related to 

a specific trip. For some users, both high transit accessibility magnitude and high trip-specific mobility 

(i.e., low trip distance, related to high accessibility) is necessary to take transit. 
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Further research can extend the understanding of accessibility impacts on mode choice and improve the 

representativeness of the RBMC model. 

 This research makes a case for the further development of DTA variables. Given transit 

accessibility is an important predictor of mode choice here and elsewhere (see “Transit Accessibility and 

Mode Choice” subsection) the accuracy of the specification presented in this research may be improved. 

Towards approximating a more detailed understanding of general accessibility’s impact on mode choices, 

further analysis ought to extend the testing of dynamic accessibility using different specifications and 

datasets. The positive, statistically significant correlation between DTA and mode shares found in this 

research suggests that users respond to the period-level aggregations of transit accessibility when 

choosing modes. Future research should investigate user perception, rules-based or otherwise, of 

accessibility for different modes and trip types (i.e., via new attraction terms). Whether people evaluate 

the accessibility of standalone modes in their decision process or the accessibility of all modes before 

applying decision criteria is unknown. Applying network skims (i.e., travel impedance matrices) for 

different modes, such as those required in logit model predictions, in RBMC models may support model 

prediction. Within transit accessibility research, analysis of different measures of DTA dispersion (𝐷𝑇𝐴𝑠) 

may also discern more relevant predictors of transit choice. DTA dispersion’s weaker and unexpected 

positive correlation with mode choices is difficult to interpret because of baseline transit accessibility 

effects and dependency on the accessibility magnitude (𝐷𝑇𝐴𝑚) (see “Limitations: DTA in Aggregate 

Modal Analysis” subsection). One avenue of further research is to examine the interaction effects of 

𝐷𝑇𝐴𝑚 and 𝐷𝑇𝐴𝑠 as a combined index, respecting that low dispersion transit accessibility is not 

necessarily an indicator of “good” or “poor” services. 

 This thesis selected CHAID, a single-tree DT algorithm, to produce a visually interpretable 

diagram of discrete user decision processes (i.e., if-then-else sequences). Then, a K-fold cross-validation 

approach was used to reduce sample bias rather than popular ensemble methods in the supervised 

classifier space. Bootstrap aggregation (bagging) methods, including random forests or CHAID forests, 

ought to be explored in further research to improve prediction accuracy and precision at the expense of 

computation time and interpretability. Although other researchers have applied random forests in the 

mode choice space, none have included the influence of DTA in their models or applied CHAID forests in 

mode choice (Van Middelkoop et al., 2003; Wang & Ross, 2018; Zhao et al., 2020). 

 Predictive performance of the RBMC model in terms of accuracy is high but its poor precision 

results in the dramatic overestimation of regional transit shares. Future research may improve RBMC 

model precision through increasing the representativeness of infrequent class observations (e.g., of 

transit). This may be possible through exploring data imputation methods that can reduce the number of 

missing values (i.e., reduce DT limitations related to data hungriness), or by approximating a minimum 

sample size in travel diary surveys for transit to support transit choice analysis (i.e., build a more 

representative transit user profile). A more qualitative research direction would involve supplementing the 

travel diary data with stated preference surveys of mode choice decision factors, integrating methods such 

as Hannes et al. (2009); however, such surveys would dramatically increase collection and interpretation 

difficulty while constraining model transferability. Finally, this research makes the argument that future 

research should continue to apply supervised ML algorithms to model non-compensatory decision 

processes in transportation. The CHAID algorithm is easy to implement given adequate modeller 

knowledge of machine learning processes. However, its popularity seems to be hindered by the required 

knowledge of software and domain to select an appropriate ML implementation. As further work 

continues to apply supervised ML algorithms to model non-compensatory decision processes, the 

transferability of this research’s methodology and understanding of heuristic behaviours may improve. 
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Branch and Leaf Node Values   

(Node values are calculated using weight factor on n_Transit)  

WEIGHT: 8.2875 Transit trips for every Not-Transit trip  

Node ID transit_proportion nottransit_proportion predicted mode (majority) 

1 0.549 0.451 Transit 

2 0.377 0.623 N/A 

3 0.896 0.104 N/A 

4 0.914 0.086 N/A 

5 0.757 0.243 N/A 

6 0.451 0.549 N/A 

7 0.071 0.929 N/A 

8 0.044 0.956 N/A 

9 0.280 0.720 N/A 

10 0.196 0.804 N/A 

11 0.120 0.880 N/A 

12 0.102 0.898 N/A 

13 0.089 0.911 N/A 

14 0.977 0.023 N/A 

15 0.876 0.124 N/A 

16 0.839 0.161 N/A 

17 0.810 0.190 Transit 

18 0.861 0.139 Transit 

19 0.943 0.057 Transit 

20 0.552 0.448 N/A 

21 0.930 0.070 N/A 

22 0.536 0.464 N/A 

23 0.780 0.220 N/A 

24 0.476 0.524 N/A 

25 0.372 0.628 N/A 

26 0.150 0.850 N/A 

27 0.197 0.803 N/A 

28 0.295 0.705 Not_Transit 

29 0.232 0.768 N/A 

30 0.074 0.926 N/A 

31 0.255 0.745 Not_Transit 

32 0.192 0.808 Not_Transit 
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33 0.007 0.993 N/A 

34 0.000 1.000 Not_Transit 

35 0.181 0.819 N/A 

36 0.000 1.000 Not_Transit 

37 0.009 0.991 N/A 

38 0.631 0.369 N/A 

39 0.173 0.827 N/A 

40 0.534 0.466 N/A 

41 0.113 0.887 N/A 

42 0.252 0.748 N/A 

43 0.128 0.872 Not_Transit 

44 0.081 0.919 N/A 

45 0.000 1.000 Not_Transit 

46 0.192 0.808 N/A 

47 0.136 0.864 N/A 

48 0.053 0.947 N/A 

49 0.000 1.000 Not_Transit 

50 0.009 0.991 N/A 

51 0.041 0.959 N/A 

52 0.517 0.483 Transit 

53 0.958 0.042 Transit 

54 0.989 0.011 Transit 

55 0.935 0.065 N/A 

56 0.848 0.152 Transit 

57 0.683 0.317 Transit 

58 0.609 0.391 N/A 

59 0.911 0.089 N/A 

60 0.623 0.377 Transit 

61 0.578 0.422 Transit 

62 0.740 0.260 Transit 

63 0.264 0.736 Not_Transit 

64 0.385 0.615 Not_Transit 

65 0.428 0.572 Not_Transit 

66 0.845 0.155 Transit 

67 0.963 0.037 Transit 

68 0.738 0.262 Transit 

69 0.414 0.586 Not_Transit 

70 0.140 0.860 Not_Transit 

71 0.277 0.723 Not_Transit 

72 0.719 0.281 Transit 

73 0.809 0.191 Transit 
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74 0.281 0.719 Not_Transit 

75 0.692 0.308 Transit 

76 0.077 0.923 Not_Transit 

77 0.567 0.433 Transit 

78 0.256 0.744 Not_Transit 

79 0.036 0.964 Not_Transit 

80 0.363 0.637 Not_Transit 

81 0.000 1.000 Not_Transit 

82 0.389 0.611 Not_Transit 

83 0.101 0.899 Not_Transit 

84 0.000 1.000 Not_Transit 

85 0.133 0.867 Not_Transit 

86 0.015 0.985 Not_Transit 

87 0.000 1.000 Not_Transit 

88 0.241 0.759 Not_Transit 

89 0.000 1.000 Not_Transit 

90 0.000 1.000 Not_Transit 

91 0.025 0.975 Not_Transit 

92 0.580 0.420 Transit 

93 0.680 0.320 Transit 

94 0.428 0.572 Not_Transit 

95 0.201 0.799 Not_Transit 

96 0.152 0.848 Not_Transit 

97 0.068 0.932 Not_Transit 

98 0.029 0.971 Not_Transit 

99 0.772 0.228 Transit 

100 0.337 0.663 Not_Transit 

101 0.252 0.748 Not_Transit 

102 0.036 0.964 Not_Transit 

103 0.475 0.525 Not_Transit 

104 0.106 0.894 Not_Transit 

105 0.000 1.000 Not_Transit 

106 0.129 0.871 Not_Transit 

107 0.445 0.555 Not_Transit 

108 0.112 0.888 Not_Transit 

109 0.000 1.000 Not_Transit 

110 0.252 0.748 Not_Transit 

111 0.000 1.000 Not_Transit 

112 0.000 1.000 Not_Transit 

113 0.162 0.838 Not_Transit 

114 0.000 1.000 Not_Transit 
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115 0.019 0.981 Not_Transit 

116 0.123 0.877 Not_Transit 

117 0.036 0.964 Not_Transit 

118 0.062 0.938 Not_Transit 

119 0.000 1.000 Not_Transit 

120 0.022 0.978 Not_Transit 

121 0.965 0.035 Transit 

122 0.900 0.100 Transit 

123 0.568 0.432 Transit 

124 0.643 0.357 Transit 

125 0.868 0.132 Transit 

126 0.933 0.067 Transit 
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Node 1

Category % n

87.197 4536Not_Transit
12.803 666Transit

Total 0.644 5202

9

Node 5

Category % n

72.717 85471Not_Transit
27.283 32069Transit

Total 14.549 117540

trip_purp
Adj. P-value=0.000, Chi-square=29546.151, df=2

(-0.001, 1.0]

Node 20

Category % n

87.034 52324Not_Transit
12.966 7795Transit

Total 7.441 60119

age
Adj. P-value=0.000, Chi-square=2940.237, df=5

HBD

Node 21

Category % n

38.364 13394Not_Transit
61.636 21519Transit

Total 4.321 34913

free_park
Adj. P-value=0.000, Chi-square=4623.580, df=1

HBW

Node 22

Category % n

87.760 19753Not_Transit
12.240 2755Transit

Total 2.786 22508

age
Adj. P-value=0.000, Chi-square=2112.555, df=3

Non-HB

Node 60

Category % n

83.374 13961Not_Transit
16.626 2784Transit

Total 2.073 16745

(10.999, 19.0]; (19.0, 28.0]; (41.0, 47.0]

Node 61

Category % n

85.805 5936Not_Transit
14.195 982Transit

Total 0.856 6918

(28.0, 35.0]

Node 62

Category % n

74.386 7330Not_Transit
25.614 2524Transit

Total 1.220 9854

(35.0, 41.0]

Node 63

Category % n

95.857 14576Not_Transit
4.143 630Transit

Total 1.882 15206

(47.0, 53.0]; (53.0, 58.0]; (65.0, 72.0]

Node 64

Category % n

92.969 5183Not_Transit
7.031 392Transit

Total 0.690 5575

(58.0, 65.0]

Node 65

Category % n

91.702 5338Not_Transit
8.298 483Transit

Total 0.720 5821

(72.0, 99.0]

Node 66

Category % n

60.264 8311Not_Transit
39.736 5480Transit

Total 1.707 13791

9; Y

Node 67

Category % n

24.065 5083Not_Transit
75.935 16039Transit

Total 2.614 21122

N; NA

Node 68

Category % n

74.578 6014Not_Transit
25.422 2050Transit

Total 0.998 8064

(10.999, 19.0]; (19.0, 28.0]; (28.0, 35.0]; (35.0, 41.0]

Node 69

Category % n

92.135 4756Not_Transit
7.865 406Transit

Total 0.639 5162

(41.0, 47.0]; (53.0, 58.0]

Node 70

Category % n

98.072 4374Not_Transit
1.928 86Transit

Total 0.552 4460

(47.0, 53.0]; (65.0, 72.0]

mode_prime
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Node 6

Category % n

90.975 73626Not_Transit
9.025 7304Transit

Total 10.017 80930

age
Adj. P-value=0.000, Chi-square=8723.027, df=6

(1.0, 2.0]

Node 23

Category % n

70.095 8935Not_Transit
29.905 3812Transit

Total 1.578 12747

hh_income
Adj. P-value=0.000, Chi-square=149.520, df=1

(10.999, 19.0]

Node 24

Category % n

90.125 13498Not_Transit
9.875 1479Transit

Total 1.854 14977

trip_purp
Adj. P-value=0.000, Chi-square=1032.418, df=1

(19.0, 28.0]; (28.0, 35.0]

Node 25

Category % n

93.321 8817Not_Transit
6.679 631Transit

Total 1.169 9448

trip_purp
Adj. P-value=0.000, Chi-square=601.952, df=1

(35.0, 41.0]

Node 26

Category % n

97.908 12450Not_Transit
2.092 266Transit

Total 1.574 12716

hh_n_vehs
Adj. P-value=0.000, Chi-square=193.677, df=1

(41.0, 47.0]; (72.0, 99.0]

Node 27

Category % n

97.118 9875Not_Transit
2.882 293Transit

Total 1.259 10168

n_pers_trip
Adj. P-value=0.000, Chi-square=1649.724, df=1

(47.0, 53.0]

Node 28

Category % n

95.201 6646Not_Transit
4.799 335Transit

Total 0.864 6981

(53.0, 58.0]

Node 71

Category % n

95.583 4609Not_Transit
4.417 213Transit

Total 0.597 4822

(58.0, 65.0]; (72.0, 99.0]

Node 72

Category % n

76.380 3735Not_Transit
23.620 1155Transit

Total 0.605 4890

100k-124k; Unknown

Node 73

Category % n

66.183 5200Not_Transit
33.817 2657Transit

Total 0.973 7857

15k-39k; 40k-59k; 60k-99k; <15k; >124k

Node 74

Category % n

95.488 9736Not_Transit
4.512 460Transit

Total 1.262 10196

HBD; Non-HB

Node 75

Category % n

78.686 3762Not_Transit
21.314 1019Transit

Total 0.592 4781

HBW

Node 76

Category % n

99.002 5160Not_Transit
0.998 52Transit

Total 0.645 5212

HBD

Node 77

Category % n

86.331 3657Not_Transit
13.669 579Transit

Total 0.524 4236

HBW; Non-HB

Node 78

Category % n

96.004 5646Not_Transit
3.996 235Transit

Total 0.728 5881

(-0.01, 0.0]; (0.0, 1.0]

Node 79

Category % n

99.546 6804Not_Transit
0.454 31Transit

Total 0.846 6835

(1.0, 2.0]; (2.0, 99.0]

Node 80

Category % n

93.552 4251Not_Transit
6.448 293Transit

Total 0.562 4544

(0.999, 2.0]; (4.0, 6.0]

Node 81

Category % n

100.000 5624Not_Transit
0.000 0Transit

Total 0.696 5624

(2.0, 3.0]; (3.0, 4.0]; (6.0, 18.0]

Cate

Not_
Trans

Total

(0

mode_prime
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Node 7

Category % n

99.080 66477Not_Transit
0.920 617Transit

Total 8.305 67094

hh_income
Adj. P-value=0.000, Chi-square=2399.730, df=4

(11.0, 16.0]

Node 8

Category % n

99.444 73628Not_Transit
0.556 412Transit

Total 9.164 74040

hh_n_vehs
Adj. P-value=0.000, Chi-square=4577.757, df=2

(16.0, 56.0]

Node 29

Category % n

96.487 13405Not_Transit
3.513 488Transit

Total 1.720 13893

n_pers_trip
Adj. P-value=0.000, Chi-square=324.247, df=1

(58.0, 65.0]; (65.0, 72.0]

Node 30

Category % n

99.039 9692Not_Transit
0.961 94Transit

Total 1.211 9786

trip_purp
Adj. P-value=0.000, Chi-square=386.831, df=1

100k-124k

Node 31

Category % n

96.034 6925Not_Transit
3.966 286Transit

Total 0.893 7211

15k-39k; <15k

Node 32

Category % n

97.203 7334Not_Transit
2.797 211Transit

Total 0.934 7545

40k-59k

Node 33

Category % n

99.921 32735Not_Transit
0.079 26Transit

Total 4.055 32761

hh_n_vehs
Adj. P-value=0.000, Chi-square=157.778, df=1

60k-99k; >124k

Node 34

Category % n

100.000 9791Not_Transit
0.000 0Transit

Total 1.212 9791

Unknown

Node 35

Category % n

97.408 14507Not_Transit
2.592 386Transit

Total 1.843 14893

n_pers_trip
Adj. P-value=0.000, Chi-square=321.407, df=1

(-0.01, 0.0]; (0.0, 1.0]

Node 36

Category % n

100.000 36145Not_Transit
0.000 0Transit

Total 4.474 36145

(1.0, 2.0]

Node 37

Category % n

99.887 22976Not_Transit
0.113 26Transit

Total 2.847 23002

hh_size
Adj. P-value=0.000, Chi-square=207.467, df=1

(2.0, 99.0]

Node 82

gory % n

92.854 4834Transit
7.146 372sit

0.644 5206

.999, 2.0]; (2.0, 3.0]

Node 83

Category % n

98.665 8571Not_Transit
1.335 116Transit

Total 1.075 8687

(3.0, 4.0]; (4.0, 6.0]; (6.0, 18.0]

Node 84

Category % n

100.000 4616Not_Transit
0.000 0Transit

Total 0.571 4616

HBD; Non-HB

Node 85

Category % n

98.182 5076Not_Transit
1.818 94Transit

Total 0.640 5170

HBW

Node 86

Category % n

99.817 14166Not_Transit
0.183 26Transit

Total 1.757 14192

(0.0, 1.0]; (2.0, 99.0]

Node 87

Category % n

100.000 18569Not_Transit
0.000 0Transit

Total 2.298 18569

(1.0, 2.0]

Node 88

Category % n

95.137 7277Not_Transit
4.863 372Transit

Total 0.947 7649

(0.999, 2.0]; (2.0, 3.0]

Node 89

Category % n

99.807 7230Not_Transit
0.193 14Transit

Total 0.897 7244

(3.0, 4.0]; (4.0, 6.0]; (6.0, 18.0]

Node 90

Category % n

100.000 14548Not_Transit
0.000 0Transit

Total 1.801 14548

(0.99, 1.0]; (1.0, 2.0]; (2.0, 3.0]; (4.0, 9.0]

Node 91

Category % n

99.692 84Not_Transit
0.308Transit

Total 1.046 84

(3.0, 4.0]

mode_prime
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Node 2

Category % n

93.198 682091Not_Transit
6.802 49779Transit

Total 90.587 731870

trip_man_km
Adj. P-value=0.000, Chi-square=99565.087, df=8

N

Node 9

Category % n

95.518 68988Not_Transit
4.482 3237Transit

Total 8.940 72225

driver_lic
Adj. P-value=0.000, Chi-square=4312.457, df=1

(2.0, 3.0]

Node 10

Category % n

97.140 116629Not_Transit
2.860 3434Transit

Total 14.861 120063

driver_lic
Adj. P-value=0.000, Chi-square=5390.286, df=1

(3.0, 4.0]; (4.0, 5.0]

Node 38

Category % n

82.889 8269Not_Transit
17.111 1707Transit

Total 1.235 9976

sex
Adj. P-value=0.000, Chi-square=64.942, df=1

9; N

Node 39

Category % n

97.542 60719Not_Transit
2.458 1530Transit

Total 7.705 62249

age
Adj. P-value=0.000, Chi-square=1819.356, df=4

Y

Node 40

Category % n

87.854 13331Not_Transit
12.146 1843Transit

Total 1.878 15174

stu_stat
Adj. P-value=0.000, Chi-square=1525.504, df=1

9; N

Node 41

Category % n

98.483 103298Not_Transit
1.517 1591Transit

Total 12.983 104889

hh_n_vehs
Adj. P-value=0.000, Chi-square=1790.688, df=1

Y

n

28
26

54

Node 92

Category % n

85.696 4613Not_Transit
14.304 770Transit

Total 0.666 5383

F

Node 93

Category % n

79.599 3656Not_Transit
20.401 937Transit

Total 0.568 4593

M

Node 94

Category % n

91.726 9168Not_Transit
8.274 827Transit

Total 1.237 9995

(10.999, 19.0]; (28.0, 35.0]

Node 95

Category % n

97.059 5676Not_Transit
2.941 172Transit

Total 0.724 5848

(19.0, 28.0]

Node 96

Category % n

97.877 11756Not_Transit
2.123 255Transit

Total 1.487 12011

(35.0, 41.0]; (72.0, 99.0]

Node 97

Category % n

99.126 29380Not_Transit
0.874 259Transit

Total 3.669 29639

(41.0, 47.0]; (47.0, 53.0]; (53.0, 58.0]; (58.0, 65.0]

Node 98

Category % n

99.643 4739Not_Transit
0.357 17Transit

Total 0.589 4756

(65.0, 72.0]

Node 99

Category % n

70.996 2952Not_Transit
29.004 1206Transit

Total 0.515 4158

Not_student

Node 100

Category % n

94.218 10379Not_Transit
5.782 637Transit

Total 1.364 11016

Student

Node 101

Category % n

96.094 31117Not_Transit
3.906 1265Transit

Total 4.008 32382

(-0.01, 0.0]; (0.0, 1.0]

Node 102

Category % n

99.550 72181Not_Transit
0.450 326Transit

Total 8.975 72507

(1.0, 2.0]; (2.0, 99.0]

Cate

Not_
Tran

Tota

(10.9

mode_prime
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Node 0

Category % n

89.225 720866Not_Transit
10.775 87050Transit

Total 100.000 807916

tran_pass
Adj. P-value=0.000, Chi-square=135503.418, df=3

mode_prime

Node 11

Category % n

98.378 49307Not_Transit
1.622 813Transit

Total 6.204 50120

n_pers_trip
Adj. P-value=0.000, Chi-square=2938.666, df=3

(5.0, 6.0]

Node 12

Category %

98.6Not_Transit
1.3Transit

Total 9.8

n_pers_tr
Adj. P-value=0.000, Chi-squ

(6.0, 8.0]

Node 42

Category % n

96.100 14885Not_Transit
3.900 604Transit

Total 1.917 15489

age
Adj. P-value=0.000, Chi-square=611.420, df=1

(0.999, 2.0]

Node 43

Category % n

98.265 5211Not_Transit
1.735 92Transit

Total 0.656 5303

(2.0, 3.0]

Node 44

Category % n

98.942 10945Not_Transit
1.058 117Transit

Total 1.369 11062

hh_income
Adj. P-value=0.000, Chi-square=357.139, df=1

(3.0, 4.0]

Node 45

Category % n

100.000 18266Not_Transit
0.000 0Transit

Total 2.261 18266

(4.0, 6.0]; (6.0, 18.0]

Node 46

Category % n

97.210 26896Not_Transit
2.790 772Transit

Total 3.425 27668

hh_n_vehs
Adj. P-value=0.000, Chi-square=2914.205, df=2

(0.999, 2.0]

Node 47

Category % n

98.132 8458Not_Transit
1.868 161Transit

Total 1.067 8619

hh_n_vehs
Adj. P-value=0.000, Chi-square=804.917, df=1

(2.0, 3.0]

Node 48

Category %

99.3Not_Transit
0.6Transit

Total 2.2

emp_sta
Adj. P-value=0.000, Chi-squ

(3.0, 4.0]

Node 103

gory % n

90.141 4105Transit
9.859 449sit

0.564 4554

999, 19.0]; (19.0, 28.0]

Node 104

Category % n

98.583 10780Not_Transit
1.417 155Transit

Total 1.353 10935

(28.0, 35.0]; (35.0, 41.0]; (41.0, 47.0]; (47.0, 53.0]; (53.0, 58.0]; (58.0, 65.0]; (65.0, 72.0]; (72.0, 99.0]

Node 105

Category % n

100.000 4409Not_Transit
0.000 0Transit

Total 0.546 4409

100k-124k; >124k

Node 106

Category % n

98.241 6536Not_Transit
1.759 117Transit

Total 0.823 6653

15k-39k; 40k-59k; 60k-99k; Unknown

Node 107

Category % n

91.185 5834Not_Transit
8.815 564Transit

Total 0.792 6398

(-0.01, 0.0]; (0.0, 1.0]

Node 108

Category % n

98.501 13664Not_Transit
1.499 208Transit

Total 1.717 13872

(1.0, 2.0]

Node 109

Category % n

100.000 7398Not_Transit
0.000 0Transit

Total 0.916 7398

(2.0, 99.0]

Node 110

Category % n

96.093 3960Not_Transit
3.907 161Transit

Total 0.510 4121

(-0.01, 0.0]; (0.0, 1.0]; (2.0, 99.0]

Node 111

Category % n

100.000 4498Not_Transit
0.000 0Transit

Total 0.557 4498

(1.0, 2.0]

Node 112

Category % n

100.000 12870Not_Transit
0.000 0Transit

Total 1.593 12870

9; Employed; Work_at_Home

mode_prime
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n

655 78162
345 1066

806 79228

p
are=2125.333, df=4

Node 13

Category % n

98.829 69803Not_Transit
1.171 827Transit

Total 8.742 70630

driver_lic
Adj. P-value=0.000, Chi-square=4118.696, df=1

(8.0, 11.0]

Node 14

Category % n

16.482 2315Not_Transit
83.518 11731Transit

Total 1.739 14046

age
Adj. P-value=0.000, Chi-square=845.733, df=1

(-0.01, 0.0]

n

327 18163
673 123

263 18286

t
are=1350.379, df=1

Node 49

Category % n

100.000 15216Not_Transit
0.000 0Transit

Total 1.883 15216

(4.0, 6.0]

Node 50

Category % n

99.894 9429Not_Transit
0.106 10Transit

Total 1.168 9439

hh_n_vehs
Adj. P-value=0.000, Chi-square=53.811, df=1

(6.0, 18.0]

Node 51

Category % n

99.485 66056Not_Transit
0.515 342Transit

Total 8.218 66398

age
Adj. P-value=0.000, Chi-square=1254.167, df=4

9; Y

Node 52

Category % n

88.540 3747Not_Transit
11.460 485Transit

Total 0.524 4232

N

Node 53

Category % n

26.604 1671Not_Transit
73.396 4610Transit

Total 0.777 6281

(10.999, 19.0]; (28.0, 35.0]; (35.0, 41.0]; (41.0, 47.0]; (53.0, 58.0]; (72.0, 99.0]

Node 54

Category % n

8.294 644Not_Transit
91.706 7121Transit

Total 0.961 7765

(19.0, 28.0]; (47.0, 53.0]; (58.0, 65.0]; (65.0, 72.0]

Node

Category

Not_Transit
Transit

Total

trip_ma
Adj. P-value=0.000, Ch

(0.999

Node 113

Category % n

97.729 5293Not_Transit
2.271 123Transit

Total 0.670 5416

Not_employed

Node 114

Category % n

100.000 5070Not_Transit
0.000 0Transit

Total 0.628 5070

(0.0, 1.0]; (2.0, 99.0]

Node 115

Category % n

99.771 4359Not_Transit
0.229 10Transit

Total 0.541 4369

(1.0, 2.0]

Node 116

Category % n

98.332 9138Not_Transit
1.668 155Transit

Total 1.150 9293

(10.999, 19.0]; (19.0, 28.0]

Node 117

Category % n

99.548 16287Not_Transit
0.452 74Transit

Total 2.025 16361

(28.0, 35.0]; (53.0, 58.0]

Node 118

Category % n

99.211 12077Not_Transit
0.789 96Transit

Total 1.507 12173

(35.0, 41.0]; (65.0, 72.0]

Node 119

Category % n

100.000 22160Not_Transit
0.000 0Transit

Total 2.743 22160

(41.0, 47.0]; (47.0, 53.0]; (72.0, 99.0]

Node 120

Category % n

99.735 6394Not_Transit
0.265 17Transit

Total 0.794 6411

(58.0, 65.0]

Node 121

Category % n

23.129 992Not_Transit
76.871 3297Transit

Total 0.531 4289

(-0.001, 1.0]; (2.0, 3.0]; (3.0, 4.0]; (4.0, 5.0] (1.0,

mode_prime
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Node 3

Category % n

49.000 30223Not_Transit
51.000 31456Transit

Total 7.634 61679

hh_n_vehs
Adj. P-value=0.000, Chi-square=8091.824, df=3

Other_agency

Node 4

Category % n

43.819 4016Not_Transit
56.181 5149Transit

Total 1.134 9165

trip_purp
Adj. P-value=0.000, Chi-square=525.878, df=1

Y

Node 15

Category % n

53.873 11635Not_Transit
46.127 9962Transit

Total 2.673 21597

n_pers_trip
Adj. P-value=0.000, Chi-square=2463.380, df=2

(0.0, 1.0]

Node 16

Category % n

61.320 11977Not_Transit
38.680 7555Transit

Total 2.418 19532

trip_purp
Adj. P-value=0.000, Chi-square=3135.588, df=1

(1.0, 2.0]

Node 17

Category % n

66.052 4296Not_Transit
33.948 2208Transit

Total 0.805 6504

(2.0, 99.0]

Node 18

Category % n

57.108 2326Not_Transit
42.892 1747Transit

Total 0.504 4073

HBD; Non-HB

Node 19

Category % n

33.189 1690Not_Transit
66.811 3402Transit

Total 0.630 5092

HBW

e 55

% n

36.613 3461
63.387 5992

1.170 9453

an_km
-square=615.076, df=1

9, 2.0]

Node 56

Category % n

59.707 4447Not_Transit
40.293 3001Transit

Total 0.922 7448

(2.0, 3.0]; (3.0, 4.0]

Node 57

Category % n

79.365 3727Not_Transit
20.635 969Transit

Total 0.581 4696

(4.0, 6.0]; (6.0, 18.0]

Node 58

Category % n

84.196 6926Not_Transit
15.804 1300Transit

Total 1.018 8226

stu_stat
Adj. P-value=0.000, Chi-square=26.272, df=1

HBD; Non-HB

Node 59

Category % n

44.675 5051Not_Transit
55.325 6255Transit

Total 1.399 11306

hh_size
Adj. P-value=0.000, Chi-square=373.658, df=1

HBW

Node 122

Category % n

47.812 2469Not_Transit
52.188 2695Transit

Total 0.639 5164

2.0]; (11.0, 16.0]; (16.0, 56.0]; (5.0, 6.0]; (6.0, 8.0]; (8.0, 11.0]

Node 123

Category % n

86.284 3504Not_Transit
13.716 557Transit

Total 0.503 4061

Not_student

Node 124

Category % n

82.161 3422Not_Transit
17.839 743Transit

Total 0.516 4165

Student

Node 125

Category % n

55.727 2525Not_Transit
44.273 2006Transit

Total 0.561 4531

(0.99, 1.0]; (1.0, 2.0]; (4.0, 9.0]

Node 126

Category % n

37.284 2526Not_Transit
62.716 4249Transit

Total 0.839 6775

(2.0, 3.0]; (3.0, 4.0]

mode_prime
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Node 1

Category % n

87.384 4523Not_Transit
12.616 653Transit

Total 0.641 5176

9

Node 5

Category % n

72.748 85505Not_Transit
27.252 32031Transit

Total 14.548 117536

trip_purp
Adj. P-value=0.000, Chi-square=29459.162, df=2

(-0.001, 1.0]

Node 6

Category % n

90.977 73663Not_Transit
9.023 7306Transit

Total 10.022 80969

age
Adj. P-value=0.000, Chi-square=8889.079, df=6

(1.0, 2.0]

Node 20

Category % n

87.020 52375Not_Transit
12.980 7812Transit

Total 7.450 60187

age
Adj. P-value=0.000, Chi-square=2867.457, df=5

HBD

Node 21

Category % n

38.463 13431Not_Transit
61.537 21488Transit

Total 4.322 34919

free_park
Adj. P-value=0.000, Chi-square=4585.402, df=1

HBW

Node 22

Category % n

87.824 19699Not_Transit
12.176 2731Transit

Total 2.776 22430

age
Adj. P-value=0.000, Chi-square=2124.144, df=3

Non-HB

Node 23

Category % n

69.921 8938Not_Transit
30.079 3845Transit

Total 1.582 12783

IPsMean_q
Adj. P-value=0.000, Chi-square=295.845, df=1

(10.999, 19.0]

Node 24

Category % n

90.132 13418Not_Transit
9.868 1469Transit

Total 1.843 14887

trip_purp
Adj. P-value=0.000, Chi-square=1061.551, df=1

(19.0, 28.0]; (28.0, 35.0]

Node 25

Category % n

93.292 8831Not_Transit
6.708 635Transit

Total 1.172 9466

trip_purp
Adj. P-value=0.000, Chi-square=649.910, df=1

(35.0, 41.0]

Node 26

Category % n

97.884 12489Not_Transit
2.116 270Transit

Total 1.579 12759

IPsMean_q
Adj. P-value=0.000, Chi-square=199.572, df=1

(41.0, 47.0]; (72.0, 99.0]

Node 2

Category

96Not_Transit
3Transit

Total 2

n_pers_
Adj. P-value=0.000, Chi-s

(47.0, 53.0]; (6

Node 60

Category % n

83.310 13862Not_Transit
16.690 2777Transit

Total 2.059 16639

(10.999, 19.0]; (19.0, 28.0]; (41.0, 47.0]

Node 61

Category % n

85.956 5955Not_Transit
14.044 973Transit

Total 0.858 6928

(28.0, 35.0]

Node 62

Category % n

74.708 7476Not_Transit
25.292 2531Transit

Total 1.239 10007

(35.0, 41.0]

Node 63

Category % n

95.855 14454Not_Transit
4.145 625Transit

Total 1.866 15079

(47.0, 53.0]; (53.0, 58.0]; (65.0, 72.0]

Node 64

Category % n

92.818 5195Not_Transit
7.182 402Transit

Total 0.693 5597

(58.0, 65.0]

Node 65

Category % n

91.511 5433Not_Transit
8.489 504Transit

Total 0.735 5937

(72.0, 99.0]

Node 66

Category % n

60.228 8332Not_Transit
39.772 5502Transit

Total 1.712 13834

9; Y

Node 67

Category % n

24.183 5099Not_Transit
75.817 15986Transit

Total 2.610 21085

N; NA

Node 68

Category % n

74.655 6012Not_Transit
25.345 2041Transit

Total 0.997 8053

(10.999, 19.0]; (19.0, 28.0]; (28.0, 35.0]; (35.0, 41.0]

Node 69

Category % n

92.020 4682Not_Transit
7.980 406Transit

Total 0.630 5088

(41.0, 47.0]; (53.0, 58.0]

Node 70

Category % n

98.167 4391Not_Transit
1.833 82Transit

Total 0.554 4473

(47.0, 53.0]; (65.0, 72.0]

Node 71

Category % n

95.806 4614Not_Transit
4.194 202Transit

Total 0.596 4816

(58.0, 65.0]; (72.0, 99.0]

Node 72

Category % n

76.050 5487Not_Transit
23.950 1728Transit

Total 0.893 7215

(1.729, 52.584]; (187.881, 141383.342]; (78.516, 107.245]

Node 73

Category % n

61.979 3451Not_Transit
38.021 2117Transit

Total 0.689 5568

(107.245, 187.881]; (52.584, 78.516]

Node 74

Category % n

95.530 9745Not_Transit
4.470 456Transit

Total 1.263 10201

HBD; Non-HB

Node 75

Category % n

78.382 3673Not_Transit
21.618 1013Transit

Total 0.580 4686

HBW

Node 76

Category % n

99.112 5246Not_Transit
0.888 47Transit

Total 0.655 5293

HBD

Node 77

Category % n

85.909 3585Not_Transit
14.091 588Transit

Total 0.517 4173

HBW; Non-HB

Node 78

Category % n

99.339 7665Not_Transit
0.661 51Transit

Total 0.955 7716

(1.729, 52.584]; (52.584, 78.516]; (78.516, 107.245]

Node 79

Category % n

95.657 4824Not_Transit
4.343 219Transit

Total 0.624 5043

(107.245, 187.881]; (187.881, 141383.342]

Node 80

Category % n

95.933 11746Not_Transit
4.067 498Transit

Total 1.516 12244

(0.999, 2.0]; (2.0, 3.0]; (3.0, 4.0]; (4.0, 6.0]

mode_prime
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Node 2

Category % n

93.207 681956Not_Transit
6.793 49701Transit

Total 90.561 731657

trip_man_km
Adj. P-value=0.000, Chi-square=99457.375, df=8

N

Node 7

Category % n

99.052 65950Not_Transit
0.948 631Transit

Total 8.241 66581

hh_income
Adj. P-value=0.000, Chi-square=2496.385, df=4

(11.0, 16.0]

Node 8

Category % n

99.449 73597Not_Transit
0.551 408Transit

Total 9.160 74005

hh_n_vehs
Adj. P-value=0.000, Chi-square=4594.027, df=2

(16.0, 56.0]

Node 9

Category % n

95.568 69242Not_Transit
4.432 3211Transit

Total 8.968 72453

driver_lic
Adj. P-value=0.000, Chi-square=4423.372, df=1

(2.0, 3.0]

Node 10

Category % n

97.148 116772Not_Transit
2.852 3428Transit

Total 14.878 120200

driver_lic
Adj. P-value=0.000, Chi-square=5352.061, df=1

(3.0, 4.0]; (4.0, 5.0]

7

% n

.975 15965

.025 498

.038 16463

trip
quare=782.302, df=1

5.0, 72.0]

Node 28

Category % n

95.476 6711Not_Transit
4.524 318Transit

Total 0.870 7029

(53.0, 58.0]

Node 29

Category % n

96.426 7311Not_Transit
3.574 271Transit

Total 0.938 7582

(58.0, 65.0]

Node 30

Category % n

99.125 9632Not_Transit
0.875 85Transit

Total 1.203 9717

IPsStd_q
Adj. P-value=0.000, Chi-square=388.887, df=1

100k-124k

Node 31

Category % n

95.704 6883Not_Transit
4.296 309Transit

Total 0.890 7192

15k-39k; <15k

Node 32

Category % n

97.287 7280Not_Transit
2.713 203Transit

Total 0.926 7483

40k-59k

Node 33

Category % n

99.896 32657Not_Transit
0.104 34Transit

Total 4.046 32691

IPsMean_q
Adj. P-value=0.000, Chi-square=240.498, df=2

60k-99k; >124k

Node 34

Category % n

100.000 9498Not_Transit
0.000 0Transit

Total 1.176 9498

Unknown

Node 35

Category % n

97.425 14607Not_Transit
2.575 386Transit

Total 1.856 14993

n_pers_trip
Adj. P-value=0.000, Chi-square=342.429, df=1

(-0.01, 0.0]; (0.0, 1.0]

Node 36

Category % n

100.000 36164Not_Transit
0.000 0Transit

Total 4.476 36164

(1.0, 2.0]

Node 37

Category % n

99.904 22826Not_Transit
0.096 22Transit

Total 2.828 22848

hh_size
Adj. P-value=0.000, Chi-square=175.087, df=1

(2.0, 99.0]

Node 38

Category % n

82.883 8314Not_Transit
17.117 1717Transit

Total 1.242 10031

sex
Adj. P-value=0.000, Chi-square=59.771, df=1

9; N

Node 39

Category % n

97.607 60928Not_Transit
2.393 1494Transit

Total 7.726 62422

age
Adj. P-value=0.000, Chi-square=1758.793, df=4

Y

Node 40

Category % n

87.918 13368Not_Transit
12.082 1837Transit

Total 1.882 15205

stu_stat
Adj. P-value=0.000, Chi-square=1442.324, df=1

9; N

Node 41

Category %

98.485 103Not_Transit
1.515Transit

Total 12.996 104

hh_n_vehs
Adj. P-value=0.000, Chi-square=18

Y

Node 81

Category % n

100.000 4219Not_Transit
0.000 0Transit

Total 0.522 4219

(6.0, 18.0]

Node 82

Category % n

98.257 4793Not_Transit
1.743 85Transit

Total 0.604 4878

(-0.001, 10.96]; (15.142, 18.908]

Node 83

Category % n

100.000 4839Not_Transit
0.000 0Transit

Total 0.599 4839

(10.96, 15.142]; (18.908, 25.899]; (25.899, 178.304]

Node 84

Category % n

100.000 17905Not_Transit
0.000 0Transit

Total 2.216 17905

(1.729, 52.584]; (52.584, 78.516]

Node 85

Category % n

99.910 5529Not_Transit
0.090 5Transit

Total 0.685 5534

(107.245, 187.881]

Node 86

Category % n

99.687 9223Not_Transit
0.313 29Transit

Total 1.145 9252

(187.881, 141383.342]; (78.516, 107.245]

Node 87

Category % n

95.101 7338Not_Transit
4.899 378Transit

Total 0.955 7716

(0.999, 2.0]; (2.0, 3.0]

Node 88

Category % n

99.890 7269Not_Transit
0.110 8Transit

Total 0.901 7277

(3.0, 4.0]; (4.0, 6.0]; (6.0, 18.0]

Node 89

Category % n

100.000 14436Not_Transit
0.000 0Transit

Total 1.787 14436

(0.99, 1.0]; (1.0, 2.0]; (2.0, 3.0]; (4.0, 9.0]

Node 90

Category % n

99.738 8390Not_Transit
0.262 22Transit

Total 1.041 8412

(3.0, 4.0]

Node 91

Category % n

85.569 4631Not_Transit
14.431 781Transit

Total 0.670 5412

F

Node 92

Category % n

79.736 3683Not_Transit
20.264 936Transit

Total 0.572 4619

M

Node 93

Category % n

91.976 9227Not_Transit
8.024 805Transit

Total 1.242 10032

(10.999, 19.0]; (28.0, 35.0]

Node 94

Category % n

97.105 5601Not_Transit
2.895 167Transit

Total 0.714 5768

(19.0, 28.0]

Node 95

Category % n

97.931 11741Not_Transit
2.069 248Transit

Total 1.484 11989

(35.0, 41.0]; (72.0, 99.0]

Node 96

Category % n

99.136 29592Not_Transit
0.864 258Transit

Total 3.695 29850

(41.0, 47.0]; (47.0, 53.0]; (53.0, 58.0]; (58.0, 65.0]

Node 97

Category % n

99.665 4767Not_Transit
0.335 16Transit

Total 0.592 4783

(65.0, 72.0]

Node 98

Category % n

71.562 2977Not_Transit
28.438 1183Transit

Total 0.515 4160

Not_student

Node 99

Category % n

94.079 10391Not_Transit
5.921 654Transit

Total 1.367 11045

Student

Node 100

Category % n

96.076 31045Not_Transit
3.924 1268Transit

Total 4.000 32313

(-0.01, 0.0]; (0.0, 1.0]

Catego

Not_Tra
Transit

Total

(1.0

mode_prime
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Node 0

Category % n

89.225 720866Not_Transit
10.775 87050Transit

Total 100.000 807916

tran_pass
Adj. P-value=0.000, Chi-square=135691.853, df=3

mode_prime

Node 11

Category % n

98.398 49316Not_Transit
1.602 803Transit

Total 6.203 50119

n_pers_trip
Adj. P-value=0.000, Chi-square=2813.862, df=3

(5.0, 6.0]

Node 12

Category % n

98.660 78124Not_Transit
1.340 1061Transit

Total 9.801 79185

n_pers_trip
Adj. P-value=0.000, Chi-square=2190.765, df=4

(6.0, 8.0]

Node 13

Category % n

98.836 69787Not_Transit
1.164 822Transit

Total 8.740 70609

driver_lic
Adj. P-value=0.000, Chi-square=3948.590, df=1

(8.0, 11.0]

Node 14

Category % n

16.655 2341Not_Transit
83.345 11715Transit

Total 1.740 14056

age
Adj. P-value=0.000, Chi-square=888.149, df=1

(-0.01, 0.0]

n

3404
591

4995

14.900, df=1

Node 42

Category % n

96.221 14869Not_Transit
3.779 584Transit

Total 1.913 15453

age
Adj. P-value=0.000, Chi-square=609.601, df=1

(0.999, 2.0]

Node 43

Category % n

98.154 5212Not_Transit
1.846 98Transit

Total 0.657 5310

(2.0, 3.0]

Node 44

Category % n

98.917 11055Not_Transit
1.083 121Transit

Total 1.383 11176

hh_income
Adj. P-value=0.000, Chi-square=365.930, df=1

(3.0, 4.0]

Node 45

Category % n

100.000 18180Not_Transit
0.000 0Transit

Total 2.250 18180

(4.0, 6.0]; (6.0, 18.0]

Node 46

Category % n

97.171 26993Not_Transit
2.829 786Transit

Total 3.438 27779

hh_n_vehs
Adj. P-value=0.000, Chi-square=2985.806, df=2

(0.999, 2.0]

Node 47

Category % n

98.167 8460Not_Transit
1.833 158Transit

Total 1.067 8618

hh_n_vehs
Adj. P-value=0.000, Chi-square=788.096, df=1

(2.0, 3.0]

Node 48

Category % n

99.417 18084Not_Transit
0.583 106Transit

Total 2.251 18190

emp_stat
Adj. P-value=0.000, Chi-square=1161.229, df=1

(3.0, 4.0]

Node 49

Category % n

100.000 15198Not_Transit
0.000 0Transit

Total 1.881 15198

(4.0, 6.0]

Node 50

Category % n

99.883 9389Not_Transit
0.117 11Transit

Total 1.163 9400

sex
Adj. P-value=0.000, Chi-square=58.332, df=1

(6.0, 18.0]

Node 51

Category % n

99.476 66036Not_Transit
0.524 348Transit

Total 8.217 66384

age
Adj. P-value=0.000, Chi-square=1245.511, df=3

9; Y

Node 52

Category % n

88.781 3751Not_Transit
11.219 474Transit

Total 0.523 4225

N

Node 53

Category % n

27.156 1691Not_Transit
72.844 4536Transit

Total 0.771 6227

(10.999, 19.0]; (28.0, 35.0]; (35.0, 41.0]; (41.0, 47.0]; (53.0, 58.0]; (72.0, 99.0]

Node 54

Category % n

8.302 650Not_Transit
91.698 7179Transit

Total 0.969 7829

(19.0, 28.0]; (47.0, 53.0]; (58.0, 65.0]; (65.0, 72.0]

Adj. P

Node 101

ry % n

99.556 72359ansit
0.444 323

8.996 72682

, 2.0]; (2.0, 99.0]

Node 102

Category % n

90.412 4168Not_Transit
9.588 442Transit

Total 0.571 4610

(10.999, 19.0]; (19.0, 28.0]

Node 103

Category % n

98.690 10701Not_Transit
1.310 142Transit

Total 1.342 10843

(28.0, 35.0]; (35.0, 41.0]; (41.0, 47.0]; (47.0, 53.0]; (53.0, 58.0]; (58.0, 65.0]; (65.0, 72.0]; (72.0, 99.0]

Node 104

Category % n

100.000 4430Not_Transit
0.000 0Transit

Total 0.548 4430

100k-124k; >124k

Node 105

Category % n

98.206 6625Not_Transit
1.794 121Transit

Total 0.835 6746

15k-39k; 40k-59k; 60k-99k; Unknown

Node 106

Category % n

91.040 5812Not_Transit
8.960 572Transit

Total 0.790 6384

(-0.01, 0.0]; (0.0, 1.0]

Node 107

Category % n

98.459 13673Not_Transit
1.541 214Transit

Total 1.719 13887

(1.0, 2.0]

Node 108

Category % n

100.000 7508Not_Transit
0.000 0Transit

Total 0.929 7508

(2.0, 99.0]

Node 109

Category % n

96.171 3968Not_Transit
3.829 158Transit

Total 0.511 4126

(-0.01, 0.0]; (0.0, 1.0]; (2.0, 99.0]

Node 110

Category % n

100.000 4492Not_Transit
0.000 0Transit

Total 0.556 4492

(1.0, 2.0]

Node 111

Category % n

100.000 12792Not_Transit
0.000 0Transit

Total 1.583 12792

9; Employed; Work_at_Home

Node 112

Category % n

98.036 5292Not_Transit
1.964 106Transit

Total 0.668 5398

Not_employed

Node 113

Category % n

100.000 5015Not_Transit
0.000 0Transit

Total 0.621 5015

F

Node 114

Category % n

99.749 4374Not_Transit
0.251 11Transit

Total 0.543 4385

M

Node 115

Category % n

98.344 9146Not_Transit
1.656 154Transit

Total 1.151 9300

(10.999, 19.0]; (19.0, 28.0]

Node 116

Category % n

99.594 22569Not_Transit
0.406 92Transit

Total 2.805 22661

(28.0, 35.0]; (53.0, 58.0]; (58.0, 65.0]

Node 117

Category % n

99.164 12102Not_Transit
0.836 102Transit

Total 1.511 12204

(35.0, 41.0]; (65.0, 72.0]

Node 118

Category % n

100.000 22219Not_Transit
0.000 0Transit

Total 2.750 22219

(41.0, 47.0]; (47.0, 53.0]; (72.0, 99.0]

Node 119

Category %

23.265Not_Transit
76.735Transit

Total 0.537

(-0.001, 1.0]; (2.0, 3.0]; (3.0, 4.0

mode_prime
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Node 3

Category % n

49.050 30364Not_Transit
50.950 31540Transit

Total 7.662 61904

hh_n_vehs
Adj. P-value=0.000, Chi-square=8044.074, df=3

Other_agency

Node 4

Category % n

43.828 4023Not_Transit
56.172 5156Transit

Total 1.136 9179

trip_purp
Adj. P-value=0.000, Chi-square=569.059, df=1

Y

Node 15

Category % n

53.813 11687Not_Transit
46.187 10031Transit

Total 2.688 21718

n_pers_trip
Adj. P-value=0.000, Chi-square=2444.073, df=2

(0.0, 1.0]

Node 16

Category % n

61.295 12069Not_Transit
38.705 7621Transit

Total 2.437 19690

trip_purp
Adj. P-value=0.000, Chi-square=3137.762, df=1

(1.0, 2.0]

Node 17

Category % n

66.258 4267Not_Transit
33.742 2173Transit

Total 0.797 6440

(2.0, 99.0]

Node 18

Category % n

57.691 2344Not_Transit
42.309 1719Transit

Total 0.503 4063

HBD; Non-HB

Node 19

Category % n

32.819 1679Not_Transit
67.181 3437Transit

Total 0.633 5116

HBW

Node 55

Category % n

36.712 3495Not_Transit
63.288 6025Transit

Total 1.178 9520

trip_man_km
P-value=0.000, Chi-square=619.986, df=1

(0.999, 2.0]

Node 56

Category % n

59.553 4454Not_Transit
40.447 3025Transit

Total 0.926 7479

(2.0, 3.0]; (3.0, 4.0]

Node 57

Category % n

79.212 3738Not_Transit
20.788 981Transit

Total 0.584 4719

(4.0, 6.0]; (6.0, 18.0]

Node 58

Category % n

84.213 6940Not_Transit
15.787 1301Transit

Total 1.020 8241

stu_stat
Adj. P-value=0.000, Chi-square=27.075, df=1

HBD; Non-HB

Node 59

Category % n

44.799 5129Not_Transit
55.201 6320Transit

Total 1.417 11449

trip_man_km
Adj. P-value=0.000, Chi-square=584.724, df=1

HBW

n

1009
3328

4337

0]; (4.0, 5.0]

Node 120

Category % n

47.964 2486Not_Transit
52.036 2697Transit

Total 0.642 5183

(1.0, 2.0]; (11.0, 16.0]; (16.0, 56.0]; (5.0, 6.0]; (6.0, 8.0]; (8.0, 11.0]

Node 121

Category % n

86.333 3506Not_Transit
13.667 555Transit

Total 0.503 4061

Not_student

Node 122

Category % n

82.153 3434Not_Transit
17.847 746Transit

Total 0.517 4180

Student

Node 123

Category % n

36.393 2672Not_Transit
63.607 4670Transit

Total 0.909 7342

(-0.001, 1.0]; (16.0, 56.0]; (3.0, 4.0]; (5.0, 6.0]; (6.0, 8.0]; (8.0, 11.0]

Node 124

Category % n

59.825 2457Not_Transit
40.175 1650Transit

Total 0.508 4107

(1.0, 2.0]; (11.0, 16.0]; (2.0, 3.0]; (4.0, 5.0]

mode_prime
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Alternative (Class):  One mode of transportation among a set of modes generated by the user 

(choice/alternative set) within the decision process. 

Decision attributes  

(Features): Independent/explanatory variables in mode choice models, or variables 

presumed relevant to the individual making the choice. 

Decision process:  A sequence of components associated with making a choice. 

Decision rule:  Mechanism to assess decision attributes within decision structures, resulting 

in a choice. Decision rules influence the form of decision structures. 

Decision structures:  The decision process framework; it defines the interaction of alternatives 

generation, decision attribute search, and decision rule mechanisms. 

Decision Trees (DT):  Recursive partitioning algorithms that divide the predictor space (along 

feature dimensions) to improve node homogeneity. Includes the CHAID 

algorithm. 

DTA dispersion:  The standard deviation of transit accessibility values over a period of time. 

DTA magnitude: The mean transit accessibility over a period of time. 

DTA measures:  Dynamic Transit Accessibility (DTA) measures. Different forms of 

quantitatively representing time-series transit accessibility. Includes DTA 

dispersion and DTA magnitude. 

Feature dimensions: the unique categories or bins of values associated with each feature. 

Transit accessibility: a measure of the spatial distribution of activities, adjusted for transit travel 

impedance. 

User:  an individual who chooses a mode for transportation. 
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