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Abstract

Shared resource extraction among profit-seeking individuals involves a tension between
individual benefit and the collective well-being represented by the persistence of the re-
source. In these systems, the decisions of rational agents have been modeled from a game
theoretic, and more recently, a reinforcement learning approach. Within game theoretic
models, the mechanisms used for learning dynamics are often assumed, and the influence
of the type of learning dynamics are not systematically compared under identical mod-
els. Models using reinforcement learning techniques are a relatively recent addition to this
field, and the literature on multi-agent systems with spatial structure is very sparse. This
thesis presents two common pool resource models, each using one of these two different
approaches.

In the second chapter, an evolutionary common pool resource game is simulated on
a social network with payoff functions that depend on the state of the resource. Model
predictions under two types of learning, best response and imitation dynamics are compared
and it is shown that best response dynamics lead to an increase in sustainability of the
system, the persistence of cooperation while decreasing inequality and debt. Given the
strikingly different outcomes for best response versus imitation dynamics for common-pool
resource systems, our results suggest that modellers should choose strategy update rules
that best represent decision-making in their study systems.

In the third chapter, an analogous model to the one above is presented, however it
uses reinforcement learning techniques to inform the agents’ harvesting decisions. Here,
the harvesting strategies of the agents are learned, rather than prescribed a priori, and
the payoff function is the weighted sum of a profit goal and a social conforming goal.
Preliminary results show that an increased cost of harvesting has a positive effect on the
resource level and sustainability of the system, however, a high cost parameter brings the
system to an unprofitable state where agents harvest above the analytically derived optimal
level. Additionally, the effect of the weight of the conforming goal shows contradictory
outcomes, which are highly dependent on the profitability of the system. These different
outcomes are posited to be due to strong social conformity amplifying existing trends in
the social dynamics.

Results from both chapters demonstrate the profound effect human learning models can
have on common-pool resource systems, as well as the potential for sustainable outcomes
to emerge among a non-hierarchical system of self-interested agents.
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Chapter 1

Introduction

1.1 Common-pool resources

Common-pool resources are resources such as forests and fisheries which are both available
for public extraction and finite, therefore being very susceptible to overuse by profit-seeking
individuals [1–5]. These resources also play a role across much larger temporal and spatial
scales, and current global problems, such as climate change can be explored through this
lens [6]. The ubiquity of common-pool resources as well as their fragility in the face of
individual self-interest has led to their study in many diverse fields such as economics,
sociology, applied mathematics, and ecology [1, 2, 7–15]. A pervasive idea regarding the
outcome of common-pool resources is known as the tragedy of the commons [16]. The
underlying argument is that given a resource shared among rational individuals, each in-
dividual can increase their personal profit by increasing their level of resource extraction.
There is an associated cost to the health of the resource; however, this cost is shared by
all individuals accessing the commons and is consequently less than the expected profit of
increased extraction. The conclusion of the tragedy of the commons is that any common-
pool resource is doomed to depletion in the absence of control by a central government
or private ownership [17]. This paradigm, however, was informed by Hardin’s white na-
tionalist agenda which used misguided fears of scarcity to justify the rhetoric of the racist
and anti-immigration organizations in which he enacted leadership roles [18, 19]. Since
the dissemination of Hardin’s theory, scholars investigating the validity of his claims have
found that many human communities are in fact very capable of sustainably harvesting
common-pool resources without a centralized governing body [1, 2, 20–22]. One important
reason for these successes are the value systems that these communities follow regarding
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proper resource use. These value systems, known as social norms, can range from a limit
to how much an individual should harvest to the importance of telling the truth. They
can be enforced by sanctioning from community members, or self-enforced through inter-
nal feelings of guilt when an individual violates a social norm. These social norms are
dynamic and can evolve among individuals and communities due to both external and
internal pressures [1, 2, 20, 21, 23, 24]. There are a number of techniques used to model
human decision-making in common-pool resource systems and the theory behind some of
these techniques is presented in the following sections.

1.2 Game theory

Game theory studies mathematical models which represent the strategic decision making of
two or more rational agents. These agents are often referred to as players, playing a game
comprised of the rules by which the players interact. These games often represent situations
of social conflict in which each player’s decisions are rewarded by some payoff function which
represents the utility of a given player choosing a given strategy, dependent on the choices
of other players in that game. The assumption that players are rational specifically refers
to the fact that players are self-interested and their objective when choosing a strategy is
to maximize the expected value of their payoff [25].

In its simplest form, a game theoretic model consists of two players (player 1 and
player 2) who each choose between one of two strategies (A and B) and then receive a
payoff determined both by their own strategy and the strategy chosen by their opponent.
This scenario is often represented by a payoff matrix in the form,

Player 2

A B

Player 1
A (a, b) (c, d)

B (e, f) (g, h)

In the above payoff matrix, the payoff of both players is located using the row corre-
sponding to the strategy of player 1 and the column corresponding to the strategy of player
2. The first and second element of each tuple represent the payoffs of player 1 and player 2,
respectively. This can be generalized to games with N players as well as allowing for more
that two strategies. For these generalized games, the payoff of player i can be written as
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πi(x), where the strategy profile, x = (x1, x2, ..., xN), is an N -tuple with the jth element,
ej, being the strategy utilized by player j. The set of strategies available to each player is
denoted Xi, where xi ∈ Xi [25].

An important concept in game theory is the Nash equilibrium. In N -player determin-
istic games, a Nash equilibrium would be the strategy profile x∗ that satisfies πi(x

∗) ≥
πi(x

∗
−i), where x∗−i is the strategy profile x∗, with the strategy of player i replaced by a

different strategy. In other words, the Nash equilibrium is a strategy profile for which no
single player can change their strategy to increase their expected payoff. If the inequality is
made strict such that, πi(x

∗) > πi(x
∗
−i), then x∗ is referred to as a strict Nash equilibrium.

Game theoretic models can be organized into a number of general categories and some
of the most common are briefly addressed below.

Symmetric games satisfy the requirement that the payoff a player receives depends
only on the strategies that each player uses and not the player who uses them. This
means that for any permutation denoted α, we have πα(i)(x) = πi(α(x)), where α(x) =
(xα(1), ..., xα(i), ..., xα(N)). For asymmetric games, this condition does not hold for all players
and strategies [26].

Pure strategy games are composed of deterministic strategies, that define a player’s
decision for any given state of the game. In contrast, mixed strategy games are composed
of probability distributions over the set of available strategies, such that a player using a
mixed strategy would be choosing between two or more pure strategies with probabilities
defined by that mixed strategy.

1.2.1 The Prisoner’s Dilemma

Perhaps the most well-known example of a symmetric two-strategy game is the Prisoner’s
Dilemma. This game describes a situation where two partners-in-crime are imprisoned and
unable to communicate. The prosecutors lack evidence and can only convict each prisoner
for a lesser charge, so they offer the prisoners a deal. This deal comes as a dilemma to
the prisoners as they need to choose between remaining silent or betraying their partner
which would grant them a sentence lighter than that of the lesser charge, only if their
partner remains silent. These two options can be represented as strategies in a game
where remaining silent is referred to as cooperation and betraying the partner-in-crime is
referred to as defection.

3



Player 2

C D

Player 1
C (R,R) (S, T )

D (T, S) (P, P )

Table 1.1: The payoff matrix for the Prisoner’s Dilemma game

In order for this game to be a Prisoner’s Dilemma, the payoff matrix (Table 1.1) must
follow the condition that T > R > P > S. An additional constraint often imposed is that
2R > S + T . The parameter T is known as the temptation to defect and will be further
discussed throughout this chapter. The implications of these constraints are discussed be-
low.

i. Each agent can maximize their individual payoff by defecting so long as the other
player cooperates

This is equivalent to stating that mutual defection is the Nash equilibrium. This means
that π(D,D) ≥ π(C,D), or equivalently, if both players choose to defect, no single player
can change their strategy to increase their expected payoff. Because of this, any rational
player will always choose to defect in a one-shot game.

ii. Mutual cooperation is favoured over mutual defection

This is captured by the condition that R > P and creates a tension when choosing
between strategies as cooperation has the potential to offer a higher payoff if the other
player also chooses to cooperate.

iii. The total payoff of all players is maximized when both choose to cooperate

This is captured by the condition that 2R > S + T and creates a global incentive for
all players to cooperate and maximize their collective payoff.

With these implications, it is clear that the Prisoner’s Dilemma models how individ-
uals often are faced with the choice of acting in their self-interest at the expense of their
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broader community, or acting in the collective interest of the community at the expense of
maximizing their own personal profit. This brings us back to common-pool resources and
the tragedy of the commons discussed in Section 1.1.

In many real-world social dilemmas analogous to the Prisoner’s Dilemma, altruism has
been observed, where parties have chosen to cooperate rather than defect, appearing to
contradict the assertion of defection being the logical strategic choice. However, through
iterated games in the sub-field of evolutionary game theory, researchers have been able to
show that in many cases, self-interested players will chose cooperation over defection.

1.2.2 Evolutionary game theory

Evolutionary game theory emerged as a sub-field in the 1970s combining the framework of
classical game theory with biological models of evolution. In evolutionary game theoretic
models, there is always a temporal aspect to the game, allowing it to be played repeatedly.
Rather than focusing on the strategy a rational player should choose, there is more emphasis
on the dynamics of strategies, or how the frequency of strategies in a given population of
players changes throughout time. These dynamics are governed by the current strategy
composition of the population as well as the relative payoff of a given strategy, which
can be thought of as being analogous to the biological fitness of a given phenotype. This
framework offers a very natural way to model the propagation of human decisions such
as harvesting strategies in which individuals are represented by players of a game, and
an agent’s harvesting decisions are the game strategies. There have been many types of
models exploring the persistence of common-pool resources as well as the tragedy of the
commons in general. These models range from systems of ordinary differential equations
assuming a well-mixed population to discrete spatial models where the agents interact on
a network or a lattice [10, 13, 25, 27–44].

Replicator dynamics

In spatially homogeneous evolutionary game theory models, the fitness of a given strategy
is simply proportional to both the current frequency of the strategy in the population and
the relative utility of that strategy. For a pure strategy symmetric game, let the frequency
of the population playing strategy i be denoted xi. To represent the rate of change for
strategy i’s frequency, the replicator equation is often used, defined as,

ẋi = xi(πi − π̄). (1.1)
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Here, the rate of change is equal to the relative utility of a given strategy multiplied by it’s
current frequency in the population, where π̄ is the mean payoff over the entire population
[44–46]. Note that the payoff for a given strategy, πi is generally a function of the strategy
frequencies, and can be written as πi(x).

From the replicator equation we can introduce the concept of an evolutionary equilib-
rium, or stable state. Here, the state of the system refers to it’s current strategy compo-
sition, which we can represent by the vector x. From the theory of ordinary differential
equations, we can say that a state, x∗ is at equilibrium if ẋ(x∗) = 0. An equilibrium is
asymptotically stable if it is the case that when the system is in a state close enough to
the equilibrium, it will eventually approach that equilibrium. From this, it follows that an
asymptotically stable state is resilient to small perturbations. This is equivalent to,

π̄(x∗) > π̄(x∗ + ε) (1.2)

for some small perturbation ε. The values of ε for which this expression holds represents
the size of the basin of attraction for state x∗. A basin of attraction is simply the set
of states surrounding x∗ such that if the current state of the system, x(t) is a member
of this set, the system will approach x∗ as time progresses. The existence and size of
basins of attraction are dependent on model parameters, and as these parameters change,
a state that was once in the basin of attraction for a given steady state may find itself in
the basin of attraction for an alternative stable state. The concept of alternative stable
states are well studied in many human-environment systems and in many cases, when the
system shifts towards an alternative stable state, the original equilibrium can be difficult
to recover.

An influential common-pool resource model using replicator dynamics was published in
1996 by Sethi & Somanathan [33]. In this model, a well mixed population harvested from
a generalized resource function using three available strategies: defectors, who harvested
at a high level, cooperators, who harvested at a low level, and enforcers, who harvested at
the same level as cooperators and punished defectors at a small cost to themselves. This
punishment and cost was represented by a decreased payoff to the respective strategies
when enforcers were present in the system. The study found that although defective
harvesting was the Nash equilibrium for a static game, introducing evolutionary dynamics
allowed for a mixed equilibria of cooperators and enforcers. If the punishment to defectors
was sufficiently high, these equilibria were asymptotically stable, however if the cost of
punishment was decreased, the size of the basin of attraction for these mixed equilibria
could be decreased to the point where adding defectors to the population brought it to a
defective state where the sustainable equlibria could no longer be recovered. These results
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presented theory supporting ideas of the emergence and persistence of cooperative social
norms and the challenge in recovering these social norms if external forces bring the system
into an unsustainable alternative stable state.

Spatial dynamics

In agent-based evolutionary games with spatial structure, the dynamics of strategies is
often informed by the frequency of strategies in an agent’s spatial neighbourhood. For
example, if players are represented as cells in a rectangular lattice, it is common for a
player to sample from agents in their Moore or von Neumann neighbourhood to determine
what strategy to utilize in the next iteration of the game. For choosing the strategy to
adapt in the next time step, a common practice is for a given player to imitate the strategy
of their highest earning neighbour. This is referred to as imitation dynamics and is defined
as the strategy of agent i at time t, xi,t is that of their neighbour who received the highest
payoff in the previous time step,

xi,t = arg max
xj,t−1

{πj(xj,t−1)}j∈Ni (1.3)

where Ni is the set comprised of agent i and it’s neighbours. With imitation dynamics,
the strategies available to a given agent are limited to what is currently utilized by their
neighbours, and can change throughout the course of the game. Imitation dynamics can
also be stochastic such that the probability that a player copies the strategy of a given
neighbour is positively correlated with the payoff that neighbour received in the previous
time step. For mixed strategies, an agent would imitate the probability distribution of
actions rather than the action chosen by the agent they are imitating [47].

An alternative to imitation dynamics, is what we call best response dynamics. Here,
each agent chooses their strategy in the subsequent time step using the concept of the best
response. In game theory, a player’s best response is choosing the strategy that will give
them the highest payoff, taking into account other player’s strategies. In a spatial iterated
game this can be formulated as,

xi,t = arg max
x ∈ Xi

{πi(with x replacing xi in yt−1)} (1.4)

where yt−1 is the state of the system at the previous time step, including, but not limited
to the set of strategies of each neighbour. With best response dynamics, the strategies
available to a given agent do not change from the outset of the game.
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In spatial models, cooperative strategies, which are not favoured in well-mixed models,
have been shown to be much more resilient, challenging the base assumptions of the tragedy
of the commons. This can be explained through the formation of cooperative spatial
clusters, where defection becomes disadvantageous at the boundaries and cannot invade
[30, 31, 42]. In an iterated Prisoner’s Dilemma played on a lattice, Nowak & May found
that so long as the inequality 2R > S+T (1.1) was satisfied, spatial clusters of cooperators
were able to grow as the game was repeated [30].

Additionally, many studies have extended these spatial model such that players have a
limited memory of their past interactions with other players, such that instead of simply
choosing to cooperate or defect, each player would utilize a strategy that informed them
whether to defect or cooperate given their past interaction with any player [48]. One
evolutionary robust strategy with a memory of one time step is called tit for tat [48, 49]. A
player utilizing this strategy would cooperate during its first game with any given player,
and from then on, copy the strategy that their opponent played in the last time step
[48, 49]. The spatial structure of these models can vary in any given context, however any
framework for local interactions can be represented by graphs which are discussed below.

1.3 Graph theory

Graph theory is the field of discrete mathematics that studies properties of graphs, also
known as networks. A graph is a mathematical structure composed of N vertices or
nodes and edges or links that connect them. A graph can be defined as the ordered pair
G = (V,E), where V is the set of nodes such that |V | = N , and E is the set of edges.
Each edge in a graph connects two nodes, and edges can be ordered pairs in directed
graphs (where each edge has a given orientation) or unordered pairs in undirected graphs.
A simple graph has the restrictions that any two nodes cannot have more than one edge
linking them and a node cannot have an edge connecting it to itself, known as a loop. For
the rest of this thesis we will only be discussing undirected simple graphs. With these
types of graphs, the set of edges is a subset of all distinct pairs of vertices such that
E ⊆ {(vi, vj) : vi, vj ∈ V and vi 6= vj}. Using more compact notation, eij denotes an
edge connecting nodes vi and vj. Each node in a graph has an associated value called the
degree denoted ki for vi. The degree of a node is equal to the number of other nodes vi
shares an edge with, or alternatively, the number of edges connected to it. If each node
shares an edge with every other node, we call this type of graph a complete graph, and
each ki = N −1. A well-studied attribute of graphs is the degree distribution, P (k), which
is the probability that any given vertex has degree k.
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An important idea in graph theory is the concept of a path. In an undirected simple
graph, a finite path is a sequence of nodes, Pi,j = (vi, vi+1, ..., vj), such that vn and vn+1

share an edge. A path is often referred to in relation to the initial and final node in the
sequence, where Pi,j would be a path from vi to vj. A graph for which there is a path
between any two nodes is called a connected graph. The shortest path between any two
nodes is the sequence with the least elements of all paths connecting vi and vj. Note
that the shortest path does not have to be unique. A property of connected graphs is the
average path length, which is defined as the mean of all shortest paths between each pair
of vertices. This can be calculated as,

lG =
2

N(N − 1)

∑
i<j

d(vi, vj) (1.5)

where d(vi, vj) is the distance of the shortest path between vertices vi and vj, measured by
the number of edges between them or |Pi,j| − 1.

Another important concept is graph clustering, which measures the extent which subsets
of nodes share more edges than what is expected from the average probability of any
two nodes sharing an edge. The metric most commonly associated with clustering is the
clustering coefficient, which has two formulations: the local clustering coefficient and the
global clustering coefficient. The local clustering coefficient is calculated for each node in
a graph and measures how close the neighbours of a given node are to forming a complete
graph. Since the number of distinct edges between neighbours of any given node is ki(ki−1)

2
,

the local clustering coefficient for node vi is defined as,

Ci =
2|{ejk : vj, vk ∈ Ni, ejk ∈ E}|

ki(ki − 1)
(1.6)

where | · | denotes the cardinality of a given set. This can be used to measure the clustering
in the entire network by taking the mean over all vertices, which we call the average local
clustering coefficient,

C̄ =
1

N

∑
i

Ci (1.7)

Another metric used to quantify clustering in a graph is the global clustering coefficient
or network transitivity. To define this, we need to introduce the concept of a triplet. A
triplet in graph theory is three vertices that share either two or three edges with each
other. A triplet with three edges is called a closed triplet, where a triplet with two edges is
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called an open triplet. The transitivity of a graph measures the proportion of triplets that
are closed in a graph. If we represent the number of open triplets as To and the number of
closed triplets as Tc, the transitivity of a graph is simply,

C =
Tc

To + Tc
(1.8)

Although these metrics both measure clustering, they differ from each other as nodes
with a higher degree have a greater influence on the transitivity of a graph compared with
the average local clustering coefficient where each node contributes equally.

Often when graphs are used in mathematical models, nodes are given attributes, which
is a set of state descriptors for each node. These can range from simply the colour of the
node to a representation of how an agent corresponding to a node makes decisions in a
social model. The extent by which nodes with similar or identical attributes share edges
(or, alternatively, how like nodes tend to be connected to each other) is called homophily,
and this can be measured using modularity and assortativity. Modularity, denoted Q, is
used for attributes that are not rank ordered such as colours or social descriptors. It is
defined as,

Q =

∑
i,j

(
Aij − kikj

2|E|

)
δij

2|E|
(1.9)

Aij =

{
1 eij ∈ E
0 eij /∈ E

(1.10)

δij =

{
1 xi = xj

0 xi 6= xj
(1.11)

(1.12)

where Aij is index (i, j) in the graph’s N × N adjacency matrix, representing whether vi
and vj share an edge,

kikj
2|E| is equal to the probability that vi and vj share an edge and δij

represents whether vi and vj share the same attribute x. The modularity of a graph falls
in the range [−1

2
, 1], where Q > 0 if nodes that have the same attribute share more edges

that what would be expected by chance alone.

When node attributes are rank ordered, such as the age or cumulative payoff of a node
represented by a scalar, homophily is measured by the assortativity coefficient, r. This
coefficient is an instance of the Pearson correlation coefficient between nodes that share
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edges and is calculated using,

r =

∑
ij Aij(xi − x̄)(xj − x̄)∑

i ki(xi − x̄)2
(1.13)

where xi is the scalar attribute of vi and x̄ = 1
2m

∑
i kixi is the mean value of x weighted

by the degree of the node [50].

1.3.1 Graph topologies

Graphs are often categorized in terms how nodes are connected to one another, which we
will refer to as the graph topology. Graphs with desired course-grained characteristics can
be generated, often using probabilistic models. Three common graph topologies and their
generative models are introduced below.

Random graph

A random graph is characterized by having a degree distribution similar to the Poisson
distribution, centered at the average degree of connectivity, k̄. A common generative
model for random graphs is the Erdős–Rényi model. This model is initialized with the set
of nodes, V and a desired average degree, k̄. Then, for any two unique nodes, an edge
linking them is created with probability k̄

N−1
[51].

Small-world graph

A small-world graph is characterized by the fact that any pair of nodes are unlikely to be
directly connected, yet have a small shortest path length as well as higher clustering than
what would be expected in a random graph. More specifically, the average shortest path
length is proportional to the logarithm of the number of nodes,

lG ∝ log(N) (1.14)

In social networks, this can be interpreted as the phenomenon that any two strangers are
often connected through a small chain of mutual acquaintances. A common generative
model for small-world graphs is the Watts-Strogatz model. This model is initialized with
the set of nodes, V , a desired average degree, k̄ restricted to be an even integer, and the
parameter β ∈ [0, 1], known as the probability of re-wiring. First, a regular ring lattice is
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constructed, for which eij ∈ E if and only if 0 < d(i, j) < k̄
2
. Here, the distance between

vi and vj is defined as min(|i − j|, N − |i − j| to capture that V is cyclic ordered. Then,

for all vi, each eij ∈ {(i, j mod N) : i < j < i + k̄
2
} is changed to eij′ with probability β

where vj′ ∈ V is chosen at random and j′ 6= i. Graphs generated using this model have
the property that C(β) ≈ C(0)(1− β)3, where C(β) is the transitivity of the small-world
graph, parameterized by β, and C(0) is the transitivity of the initial ring lattice [52–54].

Scale-free graph

A scale-free graph is characterized as having a degree distribution fitting a power-law such
that P (k) ∝ k−α. These graphs are often found in online social networks and contain
a small number of nodes with a very high degree. The generative model often used in
creating a scale-free graph is known as the Barabási-Albert model. It is initialized with
a connected graph of m0 nodes such that there is a path between any two nodes. Then
a single node is added with the potential to have edges connecting it to m ≤ m0 existing
nodes. These edges are added, connecting the new node to vi with probability pi = ki∑

j kj
.

This process is repeated until the N th node is added. From the expression pi, we can see
that a newly added node has a much higher likelyhood of sharing an edge with another
node of a high degree and as this process is iterated, we have a positive feedback loop
increasing the amount of connections to existing high-degree nodes [55].

1.4 Self-organized criticality

As mentioned when introducing evolutionary stable states, a concept that is important in
the literature regarding evolutionary game-theoretic models is the system’s sensitivity to
external perturbations [27, 56]. In discrete systems with spatial structure, stability analysis
from ordinary differential equations often cannot be applied. Instead, this concept is often
investigated by changing the strategy of an agent regardless of its perceived benefit when
the system is at equilibrium, or introducing a mutant strategy. If the strategy composition
of the system is robust to these kinds of perturbations, the system is at an evolutionary
stable state. Additionally the time to return to equilibrium is often studied, counting
the resulting time steps that the system takes in order to reach equilibrium again. This
number of time steps is referred to as a cascade. Previous studies have demonstrated
that the cascade size can vary quite drastically covering many orders of magnitude and
in many cases, it behaves in line with the criteria for self-organized criticality proposed
by Bak et al. [56, 57]. Self-organized criticality posits that many complex systems with
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local interactions tune themselves into a critical state that displays scale-invariant spatial
or temporal characteristics. In this state, small perturbations can cascade throughout the
system with the cascade size-distribution fitting a power law [57]. Power law distributions
are scale-invariant, having the form,

p(x) ∝ x−α (1.15)

which forms a straight line when graphed on a log-log plot. These distributions are found
in many physical systems and are most prominent when the system is in a critical state
and extremely sensitive to perturbations [58].

A study bridging this phenomenon with concepts discussed in Sections 1.2.1, 1.2.2, and
1.3 presented an iterated Prisoner’s Dilemma game on a random graph with best response
dynamics [27]. Here, the strategy profile available to all players was all possible strategies
with memory of a single game. The authors found that for a critical range of the temptation
to defect, T , the probability distribution of cascade sizes closely fit a power-law suggesting
self-organized criticality within their model [27].

1.5 Reinforcement learning fundamentals

Reinforcement learning is a sub-field of machine learning concerned with the problem of
an agent or group of agents learning a goal in an environment through experience. More
formally, reinforcement learning systems can be represented by a Markov decision process
where,

• the state of the environment and agent is given by s ∈ S

• the action of an agent or group of agents available in state s is denoted a ∈ A(s)

• the probability of transitioning to state s′ from state s under action a is Pa[s, s
′] =

P [St+1 = s′ | St = s, At = a]

• the reward an agent receives immediately after the above transition is Rt+1

Often, in a reinforcement learning environment, the agent will not have access to the
full state of the system, s, and instead will take actions based on their observations, giving
them only partial information of the current state of the environment. In these cases,
the reinforcement learning process would be represented as a partially observable Markov
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decision process where observations can be denoted o ∈ O. To correspond with the model
presented, for the rest of this thesis we will only be addressing systems that are partially
observable Markov decision processes and have a deterministic state transition such that
Pa[s, s

′] ∈ {0, 1}. Since s′ is a function of (s, a), the reward an agent receives can be
written as Rt+1 = r(s, a). In an N -agent system, the action, a and reward r(s, a) would
be N -dimensional vectors with the ith element corresponding to the reward of agent i. In
the formulation of most reinforcement learning algorithms, instead of directly focusing on
the probability of transitioning to the next state, the emphasis is shifted to the agent’s
decision-making - more specifically, the probability of an agent to take action a in state s,

π(a | s) = P [At = a | St = s] (1.16)

This is called the policy of an agent and iteratively optimizing this policy to maximize the
agents expected reward is the primary goal of reinforcement learning.

1.5.1 Value functions and the Bellman equation

Perhaps the most useful tool utilized in improving an agents’ policy are the value functions.
The first value function we will look at is the state-value function for policy π, denoted
vπ(s). This function represents the utility of state s, under an agents’ policy π, and is
formulated as,

vπ(s) = Eπ[Gt | St = s], ∀s ∈ S (1.17)

Gt =
∞∑
k=0

γkRt+k+1 = Rt+1 + γGt+1 (1.18)

Note that instead of only focusing on the immediate reward, Rt+1, the agent is taking into
account all future rewards, Gt. This is called the return, with a time discounting factor of
γ.

Similar to the state-value function, we have the action-value function for policy π,
denoted qπ(s, a). The action-value function represents the utility of taking action a in
state s and then following policy π where,

qπ(s, a) = Eπ[Gt | St = s, At = a] (1.19)

Now we can define an optimal policy, π∗ as one that maximizes the value functions such
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that,

vπ∗(s) = max
π

vπ(s) (1.20)

qπ∗(s, a) = max
π

qπ(s, a) (1.21)

It follows that the state-value function and the action-value function are related by,

vπ(s) =
∑
a

π(a | s)qπ(s, a) (1.22)

v∗π(s) = max
a
qπ∗(s, a) (1.23)

In most cases, value functions cannot be computed exactly and are instead estimated
recursively using the Bellman equation that reformulates the value functions as,

vπ(s) = Eπ[Rt+1 + γGt+1 | St = s] (1.24)

=
∑
a

π(a|s)
∑
s′,r

P (s′, r|s, a) [r + γEπ[Gt+1 | St+1 = s′]] (1.25)

=
∑
a

π(a|s)
∑
s′,r

P (s′, r|s, a) [r + γvπ(s′)] (1.26)

qπ(s, a) =
∑
s′,r

P (s′, r|s, a) [r + γvπ(s′)] (1.27)

Applying the Bellman equation to the optimal value functions, we have,

vπ∗(s) = max
a

∑
s′,r

P (s′, r|s, a) [r + γvπ∗(s
′)] (1.28)

qπ∗(s, a) =
∑
s′,r

P (s′, r|s, a)
[
r + γmax

a′
qπ∗(s

′, a′)
]
, At+1 = a′ (1.29)

By learning an estimation of vπ∗ , the Bellman optimality equation allows reinforcement
learning agents to approximate expected rewards over an infinite time horizon by only
looking one time step ahead [59, 60].
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1.5.2 Deep reinforcement learning

There are many different methods for learning these value functions, however we will
only be discussing algorithms that use neural networks as function approximators as these
algorithms are most commonly used and serve to model the harvesting decisions of agents
in the model presented in Chapter 3.

The structure of neural networks

Neural networks, more formally referred to as artificial neural networks are a broad class
of algorithms modelled after biological neural networks of human brains. These algorithms
are often represented as graphs, with their nodes and edges analogous to neurons and
synapses. In a feed-forward neural network, an input vector, x ∈ Rn is classified into
meaningful categories with the combination of linear functions and non-linear activation
functions. Each neuron in a neural network has an associated weight vector w ∈ Rn, where
each element can be mapped to an edge, a bias, b ∈ R, and non-linear activation function,
ϕ : R→ R. With these, we can compactly denote the output of any given neuron as,

a = ϕ(wTx+ b) (1.30)

In deep neural networks, neurons are grouped into ordered layers such that the output of
layer (l − 1) is the input to layer l. The outputs of a given layer with k neurons form the
k-dimensional vector represented by,

al = ϕ(wT
l al−1 + bl) (1.31)

The activation function, ϕ must be differentiable (except possibly at a single point) and
have a finite range. Commonly used activation functions are sigmoid functions such as the
logistic function or the hyperbolic tangent function. Another common type of activation
function is the rectified linear unit or ReLU which is defined as simply f(x) = max(x, 0).
Once the data has passed through all hidden layers in the neural network, it is then fed
into an output layer that classifies the data into predefined categories or describes the data
as a continuous vector or scalar quantity [61–64].

Training neural networks

When training a neural network, the goal is to learn weights and biases that can accurately
classify data outside the training set. This is often done using a process called supervised
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learning, where the network is given a training data set which includes the desired labels.
The training process aims to simply minimize the error between the output of the model
and the provided labels. The error is referred to as the loss function, often defined as the
mean squared error,

L =
1

n

n∑
i=1

(yi − ŷi)2 (1.32)

where ŷ is the output of the neural network and y is the desired output. To minimize
this loss function, the partial derivatives with respect to the weights ∂L/∂w, and the bias,
∂L/∂b are calculated starting from the final layer of the network and working backwards.
This process, called backpropagation, is essentially an application of the chain rule for
computing the derivatives for compositions of functions.

The importance of these derivatives is that they are needed to calculate the gradient
of the cost function with respect to all the parameters of the neural network, which we
will refer to as ∇θL, where θ is compact notation for all the weights and biases of the
neural network. Since this gradient points in the direction of greatest increase for the loss
function, updating the weights and biases in the direction opposite to that of the gradient
will decrease this loss. This iterative process to minimize the loss function is called gradient
descent, and using this process the parameters of the neural network are updated at each
time step, t, where,

θt+1 = θt − α∇θL (1.33)

Here, α is the step size and determines the magnitude of updates to θ.

1.6 Reinforcement learning algorithms

Although many different types of reinforcement learning algorithms exist, they are often
categorized in two ways. One is whether the algorithm is model-based or model-free.
In model-based algorithms, agents attempt to learn a model made up of the functions
Pa[s, s

′] and ra(s, s
′) for the environment they are interacting with. In contrast, model-free

algorithms attempt to learn the policy directly without being able to predict the dynamics
of the environment. Another important category is whether the algorithm is on-policy
or off-policy. An agent in an on-policy algorithm calculates the expected return with the
current policy it is using. For an off-policy algorithm, an agent will calculate the expected
return of the learned optimal policy, but choose its actions based on a different policy [59].
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This can be better understood by discussing the trade-off of exploration and exploitation
fundamental to reinforcement learning. In order to maximize its reward, an agent needs
to choose actions that led to high rewards in previous time steps, or exploit its previous
experience. However, in order to find these actions (and discover actions that provide an
even higher reward), the agent must choose actions that it had not previously used in a
given state, or explore the system. Many reinforcement learning algorithms are off-policy
so that an agent can learn a deterministic optimal policy by choosing actions based on a
different stochastic policy that allows for exploration.

An additional challenge in reinforcement learning is that the data an agent is learning
from is significantly autocorrelated. This is a problem in the learning process as the
theory behind training a neural network assumes that the data used to train the network
is independent and identically distributed. To remedy this, instead of learning from each
(s, a, r, s′) transition as they are observed by an agent, these transitions are stored in a
buffer which is then uniformly sampled from in the learning process. This process is called
experience replay and is used in all algorithms discussed below.

1.6.1 Deep Q-networks

Deep Q-networks (DQN) are an off-policy, model-free algorithm that approximate the
action-value function qπ(s, a) with a Q-value function learned through a neural network,
parametrized by θ. In order to learn this Q-function, the loss is defined as the mean
squared error, similar to (eq. 1.32). In this formulation, the output of the neural network
is the Q-value, Q(s, a|θ), and the desired output is the target Q-value, y, derived from the
Bellman optimality equations (see Section 1.5.1). Since the algorithm learns from batches
of size n sampled from the replay buffer, the loss function is computed using,

L(θ) =
1

n

n∑
i=1

(
yi −Q(si, ai|θ)2

)
(1.34)

yi =

{
ri episode terminates at step i+ 1

ri + γmax
a′

Q′(si+1, a
′; θ′) otherwise

(1.35)

This loss is minimized by taking its gradient with respect to θ and using backpropagation
on the neural network. Note, the target, yt uses Q′ instead of Q. This is because most
applications of DQN use two Q-networks, where Q′ is referred to as the target network and
is essentially a copy of the primary Q-network that is updated at a much lower frequency.
Using this target network adds stability to the training process since the target is not
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changing as frequently or with the same magnitude as the primary Q-network. The target
Q-network is initialized to be identical to the original Q-network and can be updated in
one of two ways. If a hard update is used, the weights are updated to that of the original
Q-network every m time steps, and if a soft update is used, the weights are updated such
that θ′ := τθ + (1− τ)θ′, where τ � 1 [59, 65].

Since this network is only learning the Q-function and not a policy directly, it uses
an ε-greedy policy such that with probability 1 − ε, the action arg maxaQ(s, a) is chosen
and otherwise the action is randomly chosen with all actions having equal probability. As
the network is trained, the value of ε decreases. A limitation to DQNs is that since they
are approximating q(s, a) for each a ∈ A(s), the action space must be discrete and if a
continuous action space is discretized to a high-dimensional action space, this can add a
large computational overhead to running the algorithm.

1.6.2 Deep deterministic policy gradient

Deep deterministic policy gradient (DDPG) uses an off-policy, model-free actor-critic al-
gorithm to extend DQNs into continuous action spaces. This algorithm consists of two
neural networks, an actor network and a critic network. The actor network’s role is to
learn a deterministic policy µ : S → A, represented by the actor function a = µ(s|θµ),
parametrized by the weights of the actor network, θµ. Similar to Q-learning, the critic
network, parametrized by θQ, takes state-action pairs as input, and outputs a Q-value,
estimating the utility of taking action, a given a state, s. To improve stability, a tar-
get network is used for both the actor and critic, denoted µ′ and Q′ respectively. These
networks are updated using the soft update rule.

The critic network uses the same loss function as the DQN, however the target value,
y, is calculated using the output of both the actor and critic target networks:

yi = r(si, ai) + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ′) (1.36)

The actor network is trained by maximizing the performance objective which is simply the
expected return from the start state for policy µ,

J(µ) = E[G1|µ] (1.37)
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This is done by using the gradient of the policy’s performance,

∇θµJ(µ) ≈ E[∇θµQ(s, a|θQ)|s=st,a=µ(st|θµ)] (1.38)

= E[∇aQ(s, a|θQ)|s=st,a=µ(st)∇θµµ(s|θµ)|s=st ] (1.39)

To allow for exploration, the action chosen by the deterministic policy is given additive
noise sampled from a normal distribution, such that the action implemented by the agent
is µ+N (0, σ2

t ), where the variance is a function that decreases with t [59, 66, 67].

1.7 Reinforcement learning and evolutionary game the-

ory

Although reinforcement learning and evolutionary game theory originate from different
fields, they both share many similarities as they address the problem of training au-
tonomous agents to make meaningful decisions. In game theory, we discussed the player
playing a game, which is analogous to an agent interacting with the environment in re-
inforcement learning. In many cases, including the models presented in the following
chapters, these systems can be formulated as Markov decision processes where the agents
are learning an optimal policy. In game theory the strategy a player utilizes, given the
state of the system can be thought of as a policy, albeit one that is often much less complex
than what can be learned with a neural network. Additionally, there is a parallel between
the payoff of a player and the reward for an agent as these both represent the immediate
utility of choosing a given strategy or action. A common difference in its application is
that in evolutionary game theory, players generally aim to maximize their immediate pay-
off, whereas in most reinforcement learning models, an agent is maximizing their expected
return over a discounted time frame.

1.8 Objectives & direction

So far this thesis has discussed: the history of common-pool resource systems (Section 1.1),
spatial models in evolutionary game theory (Section 1.2.2), common types of networks and
their generative models (Section 1.3.1), self-organized criticality (Section 1.4), as well as
reinforcement learning algorithms (Section 1.6).

20



These concepts provide a framework for the following two chapters, the first of which
will explore a common-pool resource model formulated as an iterated game where players
interact on a social network, and the second of which will explore a similar system where
agents learn policies to harvest a common-pool resource through reinforcement learning
models.

The game theoretic model (Chapter 2) is inspired by the model published by Sethi &
Somanathan [33] formulating a human-environment system as an evolutionary game, and
the model published by Ebel & Bernholdt [27] investigating self-organized criticality on a
spatial iterated Prisoner’s Dilemma played on a network. In this new model, two mecha-
nisms for strategy propagation: best response and imitation dynamics (see Section 1.2.2)
are compared under identical parameters. This model offers novel insight for a couple rea-
sons. One, being that the literature on common-pool resource models with a social network
structure is sparse. Models that explore this interaction can give significant insight into
common-pool resources since most human interactions are determined by social networks
rather than physical location within a community [68, 69]. One study that has explored this
analyzed an empirical network common-pool resource model where cooperators maximize
their payoffs over a longer time horizon than defectors. Using a single strategy update rule,
a higher number of links between cooperators, as well as smaller networks, were found to
promote cooperation and efficient resource management [36]. A second study investigated
agents on a lattice informed by both social norms and organizational rules when harvesting
a forest; however, the long term dynamics were governed by sampling strategies from a
normal distribution [70]. A third study modelling agents on a network found that in most
cases increasing the probability of rewiring cooperator-defector links increased cooperation
in the system [71].

In the previous studies, as well as the majority of game theoretic models, one mechanism
for the evolution of strategies among agents is assumed. Rarely in the literature are the
dependence of model predictions on this choice of mechanism compared. Two of the
most common mechanisms, imitation and best response dynamics, are supported by the
literature; however, their direct comparison in a single model could shed light on the
qualitative differences resulting from these contrasting psychological inclinations [72, 73].
The closest we have seen to this is a study that systematically compared imitation dynamics
and strategy evolution using genetic algorithms with an N-player Prisoner’s Dilemma game
on a lattice. The authors found evolution to significantly promote cooperation and increase
strategy convergence rates in their system. The genetic algorithm incorporated aspects of
imitation and the model did not include payoffs coupled to a common-pool resource [38].
In our model, we are using best-response dynamics instead of genetic modification as well
as an explicit common-pool resource, allowing us to further separate social learning from
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independent prediction in a human-environment system.

The reinforcement learning model (Chapter 3) is presented as a work in progress with
some preliminary results with the goal of finalizing the analysis and publishing the final
results in the near future. This model is a variation of the model published by von der
Osten et al. [13] as well as an extension of the previous model published by Zhu et al.
[74]. These studies investigate the sustainability of a common-pool resource in a spatially
homogeneous system with up to 15 agents using both the DQN algorithm and DDPG
algorithm discussed in sections 1.6.1 and 1.6.2, respectively. The model presented here
differs from these previous studies in the definition of the reward function as well as by using
a minimum of 24 agents whose interactions are structured by a social network. Additionally,
the actions available to each agent is significantly increased, allowing agents to learn their
own preferred actions rather than having them assigned a priori. These changes offer a
higher degree of realism and present a novel framework for modeling human-environment
systems, where many of the social parameters are learned instead of prescribed by the
modeller.
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Chapter 2

Best response dynamics improve
sustainability and equity outcomes
compared to imitation dynamics in
common-pool resources problems1

Abstract

Shared resource extraction among profit-seeking individuals involves a tension between
individual benefit and the collective well-being represented by the persistence of the re-
source. Many game theoretic models explore this scenario, but these models tend to assume
either best response dynamics (where individuals instantly switch to better paying strate-
gies) or imitation dynamics (where individuals copy successful strategies from neighbours),
and do not systematically compare predictions under the two assumptions. Here we pro-
pose an iterated game on a social network with payoff functions that depend on the state
of the resource. Agents harvest the resource, and the strategy composition of the popu-
lation evolves until an equilibrium is reached. The system is then repeatedly perturbed
and allowed to re-equilibrate. We compare model predictions under best response and
imitation dynamics. Compared to imitation dynamics, best response dynamics increase
sustainability of the system, the persistence of cooperation while decreasing inequality and

1Material from this chapter was published as Farahbakhsh et al. (2021). Best response dynamics
improve sustainability and equity outcomes in common-pool resources problems, compared to imitation
dynamics. Journal of Theoretical Biology 509 (110476) https://doi.org/10.1016/j.jtbi.2020.110476.
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debt corresponding to the Gini index in the agents’ cumulative payoffs. Additionally, for
best response dynamics, the number of strategy switches before equilibrium fits a power-
law distribution under a subset of the parameter space, suggesting the system is in a state
of self-organized criticality. We find little variation in most mean results over different net-
work topologies; however, there is significant variation in the distributions of the raw data,
equality of payoff, clustering of like strategies and power-law fit. We suggest the primary
mechanisms driving the difference in sustainability between the two strategy update rules
to be the clustering of like strategies as well as the time delay imposed by an imitation
processes. Given the strikingly different outcomes for best response versus imitation dy-
namics for common-pool resource systems, our results suggest that modellers should choose
strategy update rules that best represent decision-making in their study systems.
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2.1 Introduction

The model presented in this chapter explores a human population arranged on various
network topologies that harvest an ecological resource. All agents have equal access to
this resource and it’s growth is modeled by a logistic difference equation. Both strategy
evolving mechanisms are compared over identical model parameters. Topologies are also
compared since spatial structure has often been found to influence outcomes in tragedy
of the commons scenarios [11, 28, 29, 75]. Through running this model across a large
parameter space, insight will be gained regarding the mechanisms which lead to cooperation
and the persistence of resources in common-pool resource systems.

2.2 Harvesting model

The model simulated a network of N individuals or nodes harvesting from a generalized
common-pool resource. At initialization, each node is randomly given one of two har-
vesting strategies; cooperation or defection, with the probability of either strategy being
0.5. At each time step, every node simultaneously harvests the resource with cooperators
harvesting less than their ‘maximal equal share’ and defectors harvesting more than their
‘maximal equal share’. The ‘maximal equal share’ is defined by Rt

N
where Rt is the resource

at time t. When harvesting, cooperators inflict a punishment proportional to the depletion
of the resource to any defective nodes to which they are directly linked. This proportional-
ity is justified because enforcement by social norms is often more severe when the resource
is close to depletion [76–78]. This punishment also incurs a small cost to the cooperators’
own harvest. Each nodes respective net harvest is given by the following payoff functions,

πc =
1

N
(cRt − a · p · nd(1−Rt)), c, a < 1 (2.1)

πd =
1

N
(dRt − p · nc(1−Rt)), d ≥ 1 (2.2)

where πc and πd are the cooperators and defectors payoffs respectively, c and d are
the proportions of the ‘maximal equal share’ that the cooperative and defective nodes
harvest respectively, p is the magnitude of the punishment inflicted by cooperative nodes
on defective nodes, a is the relative cost of that punishment for the cooperative nodes, nc
and nd are the amount of cooperative and defective nodes directly connected to any given
node in the network.
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The resource is updated at each time step using a logistic difference equation from
which the net harvest of all the nodes in the network is subtracted. It is modeled by,

Rt+1 = Rt(1 + F (1−Rt))−
Rt

N
(dNd + cNc) (2.3)

where F is the maximal growth rate, or fecundity of the resource, and Nd and Nc are
the total number of defectors and cooperators in the network respectively.

After all nodes harvest and update their payoffs, one randomly selected node changes
its strategy if it is perceived to increase its individual payoff. Only one node is selected
per time step as this is common for simulations of evolutionary games [27, 31, 79]. Ad-
ditionally, in many cases, the time scale over which social norms change is often longer
than that over which a single resource extraction occurs [80–82]. This process is repeated
until a steady state is reached where the frequency of strategies either reaches equilibrium
or a periodic steady state. As no periodic steady states were detected, this steady state
is simply referred to as equilibrium throughout the rest of this chapter. Once equilibrium
is reached, the system is then perturbed by randomly choosing a node and changing its
harvesting strategy regardless of any perceived profit increase. The system is then left to
re-equilibrate. This process continues until the resource is depleted or a predetermined
number of perturbations is reached. In this simulation a single node is chosen to be per-
turbed for similarity with other evolutionary games on networks that explored the concept
of self-organized criticality [27, 56]. Although the number of nodes that have their strategy
changed during a perturbation must be small, the selection of a single node is arbitrary
and any number of nodes could be perturbed so long as that number is significantly smaller
than the size of the network.

If at any point during the simulation, the resource drops below a critical level, ε,
the resource is extinct and the simulation ends. This represents the resource reaching a
depleted level from which it cannot recover. The value for ε scales with the network size
and is given by 1

N ·10000
. A flowchart of this model is shown in Figure 2.1.
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Figure 2.1: Flowchart of the model

2.3 Strategy propagation

Two different mechanisms for the propagation of harvesting strategies among nodes were
compared. One is best response dynamics and the other we call imitation. In the case of
imitation, the node that is selected for strategy reassignment compares its cumulative payoff
with that of its neighbouring nodes. If any neighbouring node has a higher cumulative
payoff, the selected node will change its strategy to that of its highest earning neighbour.
If there are multiple highest earning neighbours, the selected node will randomly choose
between the highest earning neighbours with equal probability. In the case of best response
dynamics, the selected node will change its strategy to that which is most profitable for
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the next time step. It does so by simulating harvesting from the updated resource with
the strategy it wasn’t previously using. If the expected payoff from that simulation is
greater than the selected nodes’ mean payoff over all time steps, the node will change its’
harvesting strategy to the new one.

2.4 Network simulations

Four network topologies were tested in this model; lattice, random, scale-free and small-
world networks. These were chosen as they are very common network topologies used in
the literature, and both scale-free and small-world networks share similarities with social
networks [52, 83]. In the square lattice, the von Neumann neighbourhood was used with pe-
riodic boundary conditions. Random networks were generated by the Erdös-Rényi model,
scale-free networks were generated by the Barabási–Albert model [55], and small-world
networks were generated by the Watts-Strogatz model with β, the probability of rewiring
an edge in the ring equal to 0.08 [52]. For all networks the average degree of connectivity,
k̄ = 4, so that they can be compared to the lattice.

2.5 Parameters

Each network was generated with N = 15× 15 = 225 nodes and average degree of connec-
tivity, k = 4.0. These values were chosen to allow for direct comparison with the square
lattice (as N is a perfect square) using a von Neumann neighbourhood while at the same
time being within the range of those used in Ebel & Bornholdt’s Prisoner’s Dilemma net-
work study [27]. For each network topology, all combinations of parameters shown in Table
2.1 were run. Cooperators harvest was limited to c ≤ 0.6 since cooperators are conserva-
tionists, thus committing to harvest significantly less than their fair share of the resource.
For values of c > 0.6, the resource was depleted very quickly while being initialized with
half of the nodes harvesting at d ≥ 1.0. Defectors harvest was limited to d ≤ 1.9 since
values larger than this result in immediate resource depletion. Fecundity was limited to
0.5 ≤ F ≤ 0.9 to agree with values that allowed for the persistence of the resource within
realistic constraints. For punishment, values larger than 0.3 were not included since they
made punishment and its cost too severe to be realistic. For the cost of punishment, a = 0.1
such that this cost would not be high enough to disincentivize cooperation. This param-
eter space resulted in 450 parameter sets that were simulated for each network topology.
Baseline parameter values were chosen based on mid-range parameter values which allowed
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for the persistence of the resource over multi-parameter variations (see Table 2.1). This
was done as resource persistence is a pre-condition for gathering much of the data that will
be analysed. The resource was initialized at R = 1.0 to simulate a community harvesting
a resource that has not been harvested previously. For each parameter set and topology,
50 networks were generated and each network was perturbed 100 times.

Parameter Minimum Maximum Step Baseline

Cooperators Harvest (c) 0.2 0.6 0.1 0.3

Defectors Harvest (d) 1.0 1.9 0.1 1.4

Fecundity (F ) 0.5 0.9 0.2 0.9

Punishment (p) 0.1 0.3 0.2 0.2

Cost of Punishment (a) – – – 0.1

Table 2.1: Parameter ranges used in model simulations: minimum and maximum of pa-
rameter range, increments sampled, and baseline values.

2.6 Outcome metrics

From the simulations, the cascade size, defined as the amount of strategy switches taken for
the system re-equilibrate after a perturbation, was recorded. The perturbed node’s degree
and clustering coefficient were collected as well. For each cascade, the average number of
strategy switches per time step was also logged. The rest of the data was collected every
time the system reached equilibrium after a perturbation. This data consisted of the level
of the resource and the number of cooperators at equilibrium. Average local clustering co-
efficient and network transitivity over the whole network and over the subnetworks of same
strategy-types were recorded as well as network modularity with respect to the strategy of
the nodes. The Gini index for total node payoff was also recorded over the whole network
to investigate the role of the distribution of wealth in the system [32]. The Gini index was
calculated using, ∑N

i=1

∑N
j=1 |Pi − Pj|

2N
∑N

i=1 Pi
(2.4)

where Pm, m = {1, 2, ..., N} is the total payoff of a given node, m. [84].
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Finally, the sustainability level of each parameter combination was calculated. Here,
sustainability is defined by whether the resource can persist and is quantified by the fre-
quency of simulations in which the resource is not depleted to a value less than ε. Therefore,
this sustainability level is a value between 0 and 1, with 1 being maximally sustainable
and 0 being completely unsustainable.

2.7 Sustainability of the resource

Over the parameter space and all topologies, the systems with best response dynamics
were more sustainable than those employing imitation. However, these differences were
not statistically significant, due to many simulations having extreme values for sustain-
ability. Two important variables related to sustainability are the number of cooperators
and the level of the resource. These variables were recorded when the system was at equi-
librium and the analysis of their means and coefficients of variation (CV) over all topologies
were conducted as seen in Figure 2.2. Similar to the sustainability of the system, the mean
cooperator frequency and resource level were both significantly higher for best response
dynamics; however, there was a greater differential between the mean resource levels for
each network topology. The CV of the cooperator frequency was low for both best response
dynamics and imitation; however, the difference between them was statistically significant
with imitation having a higher CV. Additionally, over all topologies imitation had a higher
CV for the resource level. This difference can be explained by the underlying distributions
of the data. Here, best response dynamics have single values with very high frequency
surrounded by much lower frequency values whereas imitation dynamics result in distribu-
tions closer to a skewed Gaussian with many values having mid range frequencies over a
larger range (Figure A.1). The mechanism driving these distributions is that best response
dynamics converge to a global optimum rapidly as each node evolving its strategy at a
given time step is always able to access the strategy it is not using. In contrast, imitation
dynamics allow only for sampling strategies that are in use by connected nodes. Therefore,
the system can drastically change between perturbations as seen in Figure 2.3.

2.8 Multi-parameter analysis

To gain insight into the different qualitative regimes within each network topology, the
data was visualized in parameter planes visualized as heatmaps. The parameters varied
in the heatmaps were c, the cooperators harvest and d, the defectors harvest. This is
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Figure 2.2: Mean metrics relating to the systems’ sustainability level defined as the fre-
quency of simulations in which the resource is not depleted below ε. Best response dynamics
promote higher sustainability (a), cooperator frequency (b) and resource level (d) at equi-
librium while also having lower coefficients of variation (CV) (c,e). Error bars represent
the 95% confidence interval.
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Figure 2.3: Cooperators at equilibrium after perturbations for 5 runs on a scale-free net-
work with identical parameters. Each colour represents a different stochastic realization
of the model. In the best response system (a), the number of cooperators does not vary
significantly after the first perturbation; however, in the imitation system (b) the there is
much more variance.
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because these two parameters cover a much larger range than the others as they can vary
greatly among human systems and have much more relaxed realism constraints [85, 86].
Heatmaps for the scale-free network are shown here as network topology did not have a
significant effect on these results. Examining the heatmaps for the mean sustainability
over each topology, the plots show that as both harvesting rates are increased, the system
becomes less sustainable to the point where not a single simulation can persist (Figure
2.4a,b). Intuitively, an increase in sustainability would be correlated with an increase in
cooperation. However, the heatmaps for the number of cooperators at equilibrium on all
network topologies in the imitation system show that the number of cooperators increase
with both c and d such that they are maximal at the point in which the system cannot
persist due to over-extraction of resources (Figure 2.4d). In this case, stress in the system
encourages cooperation. For increasing values of c, an increase in cooperation is expected
because the payoff, and therefore the incentive to cooperate, has increased. With high
values of d, the increase in number cooperators is less obvious. When d increases, the
incentive to defect is strong, which could cause a large-scale propagation of defection in
the network. However, with a large defectors’ harvest, the resource decreases very quickly
and once it reaches a very low level, the cooperators’ punishment becomes very large, to
the point that even with few cooperators in the system, defectors adjacent to them cannot
harvest profitably and are likely to switch to the cooperator strategy.

For best response dynamics, there is a difference to this narrative as c is increased. At
high c levels (c > 0.4), there is a drastic increase in cooperators and the average number of
cooperators does in fact decrease with d. This could be caused by having a large enough
incentive to cooperate at initialization such that there are never enough defectors to bring
the resource to a level in which the cooperators’ punishment causes defective harvesting
to be unprofitable. This agrees with the resource having its maximal value at c = 0.5 as
well as the system showing a near saturation of cooperators at c = 0.6 (Figure 2.4c,e).
At this saturation of cooperators, the resource level decreases for low d, demonstrating
that above c = 0.5, cooperators have taken over the system and any higher payoff for
them results in greater resource extraction as defectors are not influencing the system.
With imitation dynamics, the system does not experience the same regime change to a
saturation of cooperators, most likely due to clusters of defective nodes which are immune
to invasion by cooperators.

Regarding modularity in the best response system, for c ≤ 0.4, modularity is maxi-
mized when both d and c are minimized (Figure 2.4g). This happens in order for both
cooperators and defectors to maximize payoff as now punishment and cost of punishment
play a much more significant role in reducing payoffs for nodes connected to others with
opposing strategies. For c > 0.4, modularity approaches 0 since the network is approach-
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Figure 2.4: Comparing mean values for best response (left) and imitation dynamics (right)
on the scale-free network for baseline parameters. The axes are d, corresponding to the
defectors’ harvest and c, corresponding to the cooperators’ harvest. The values shown
are sustainability (a, b), cooperators at equilibrium (c, d), resource at equilibrium (e, f),
modularity at equilibrium (g, h) and the absolute value of the Gini index at equilibrium
(i, j).
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ing a globally homogeneous population. In the imitation system, these phenomena are not
observed (Figure 2.4h). Instead, modularity is maximized for intermediate values of d and
c. The reason it is not maximized for low values of d and c could be because the number
of cooperators is low enough that the system is approaching global homogeneity towards
defection.

Finally, the distribution of payoffs across the network was quantified using the Gini
index. This metric can be interpreted as zero being complete equality with the distance
from zero measuring the extent of inequality among agents. Usually the index is in the
range [0, 1]; however, including negative individual payoffs in its calculation can take it
out of this range. Additionally, a negative Gini index means that the net total payoff of
the system is negative. When calculating the Gini index as well as debt, the cumulative
payoff of each agent was used. When comparing systems with heatmaps, the absolute
value of the Gini index is used in order to have a suitable resolution to compare both
systems. Under the baseline parameters, the best response system has much lower Gini
index values (Figure 2.4i,j). The inequality in the system increases with d and decreases
with c. This is seen across all parameters for best response dynamics; however, the negative
correlation with c is much stronger for the complete parameter space. This correlation with
d and c follows from the fact that as the two parameters approach each other so do πd
and πc, increasing equality in the system. There is also a sudden decrease in Gini index
in the same high c region where the number of cooperators and network modularity also
experience a drastic transition. This regime experiences the highest equality because the
system is saturated with cooperators and therefore all payoffs are equal. For imitation
dynamics, the Gini index is much higher and does not show a strong correlation with
any parameters or variables. The reason for the drastic inequalities in payoff could be
due to defective nodes which only share edges with like strategy nodes. These nodes
will not receive any punishment and will harvest every round at the highest possible level.
Unless the neighbouring nodes are perturbed, they will continue to imitate the high earning
defector which could result in accumulation of debt if they share edges with cooperators,
especially when the resource is at a low level. As the modularity is still relatively low for
these high magnitude Gini index values, these groups of like strategies must not reach a
significantly large size. To differentiate these from clusters around multiple nodes large
enough to significantly influence the modularity, we will call this phenomenon ‘micro-
clustering’.

Consistently across all network topologies for best response dynamics, the extrema
for Gini index values are positive and less than 1, meaning that there is no excessive
debt among individual nodes and all systems have a net positive cumulative payoff (Figure
2.5c). For imitation dynamics, the extrema of the Gini index surpass those of best response

35



dynamics by several orders of magnitude and in fact vary significantly across network
topologies. Regarding the frequency of debt in the system, global and individual debt is
most prevalent in scale-free networks and rarest in small-world networks (Figure 2.5d).
This could be explained by separately examining the clustering of individual strategies in
each network quantified by the relative transitivity for each strategy type (Figure 2.5a,b).
Transitivity offers a metric for clustering through the presence of triadic closure in the
network. Due to the impossibility of triads in lattice networks, this topology was excluded
from the transitivity analysis. When looking at same-strategy clustering, transitivity was
calculated over the whole network as well as a subset of the network made up of nodes
with a single strategy and the edges they share. Since the transitivity over the entire
network varied significantly across topologies, to compare topologies, the transitivity of
a given strategy type was scaled by the transitivity of the entire network. This gives us
the relative transitivity, which measures whether or not the presence of triadic closure
in a given strategy type is greater than that found in the entire network. For scale-free
networks with imitation dynamics, the transitivity of cooperators is significantly lower than
that of the entire network (giving a relative transitivity less than 1) and the transitivity of
defectors is significantly higher (giving a relative transitivity greater than 1). This is due
to the scale-free degree distribution which allows a small number of very high-degree nodes
which are not found in other the other network topologies. If these high-degree nodes are
initialized as defectors, they can be central in much larger ‘micro-clusters’ than are possible
on other network topologies. The central defecting node of this ‘micro-cluster’ is then able
to influence a greater number of nodes to remain defectors when it is unprofitable at low
resource levels, resulting in a larger number of nodes accumulating debt. Interestingly,
in best response systems, these ‘micro-clusters’ found in scale-free networks would more
likely be surrounding a cooperative node. In small-world networks, the transitivity of each
strategy is very close to the transitivity of the whole network. This is because having
nodes with degrees as high as those found in scale-free networks has a low probability in
this system since the re-wiring probability is low (β = 0.08). Additionally, these networks
have a low degree of separation between any given pair of nodes, making it difficult for
‘micro-clusters’ to form, which are strong against invasion from the opposite strategy as
there is a greater probability of high-earning cooperators to share edges with defectors.

2.9 Power-law analysis

In this section, all power-law fitting was conducted using the powerlaw Python package
[87]. As smaller values in empirical data usually do not follow power laws and power-
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Figure 2.5: The clustering of like strategies as quantified by relative transitivity varies
significantly across network topologies (top). Wealth distribution across network topologies
(bottom). In imitation systems there is much more inequality than best response systems
as seen in the Gini index extrema (c). There are also systems with debt in imitation
dynamics (d) which is not seen in best response systems.
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law fitting is often performed on the tails of probability distributions, the data was fit on
cascades larger than the size of the system, N = 225 [88].

To quantify which cascade size distributions fit a power-law, the Kolmogorov– Smirnov
goodness-of-fit test was performed on the data. As the Kolmogorov– Smirnov test is
extremely sensitive to noise, instead of testing whether the distribution is a power law, the
fit of a power law is compared to that of an exponential distribution. If the distribution is
closer to that of an exponential, we can rule out that it is a power law fit, and if it is closer
to a power law we can at least be certain that it is a heavy-tailed distribution [87, 88].

From the results of the Kolmogorov– Smirnov test, all of the cascade size distributions
for imitation dynamics fit an exponential distribution more closely than a power law distri-
bution, immediately ruling out the potential for self-organized criticality in these systems.
However, for best response dynamics, about 21% of the parameter space had distributions
that were closer to a power law for lattice (20.89%), random (22.44%) and small-world
(21.77%) networks and therefore confirm the existence of heavy-tailed distributions sug-
gesting the occurrence of self-organized criticality in these systems. For scale-free networks,
only 6.67% of the parameter space had distributions closer to a power law. This could be
due in part to the existence of larger ‘micro-clusters’ surrounding high degree nodes as
these have a very low probability of invasion by the opposite strategy and could decrease
the probability of very large cascade sizes leading to much fewer heavy-tailed cascade size
distributions.

Along with displaying a power law distribution, self-organized critical systems must
display system-wide effects that are triggered by small perturbations [57]. In terms of
this model, the extent of system-wide cascades can be examined through the maximum
cascade size as well as the proportion of cascades larger than the number of nodes in the
system (see Figure 2.6b). For the simulation presented in this paper, it would be the
proportion of cascades larger than N = 225. For system wide cascades, systems with
best response dynamics had a significantly larger maximum cascade size (by 6-7 orders of
magnitude) as well as a significantly greater proportion of cascades of size greater than N
(Figure 2.6a). Interestingly, scale-free networks have a much higher proportion of cascade
sizes larger than N suggesting that the high-degree nodes unique to this system can in
fact promote strategy switching up to a point (Figure 2.6b). This, along with the results
from the Kolmogorov– Smirnov test strongly suggests that systems with best response
dynamics exhibit self-organized criticality much more than those with imitation; however,
the existence of high-degree nodes in scale-free networks acts contrary to this phenomenon.

Finally, there are similarities across all network topologies regarding fitting the cascade
size distribution to a power-law. The mean standard error, which determines the closeness

38



Figure 2.6: Metrics of self-organized criticality. Best response dynamics show evidence of
self-organized criticality due to large maximum cascade sizes and a significant frequency of
system wide cascades (top). All topologies in the best response systems show similarities
in the mean standard error (MSE) and slope (α) of the power-law fit (bottom).

of the power-law fit over the entire parameter space is similar across all topologies despite
scale-free networks scoring much lower as a power-law distribution in the Kolmogorov–
Smirnov test (Figure 2.6c). Additionally, the slope of the power-law fit given by α does not
significantly differ across topologies (Figure 2.6d). This implies an element of universality in
the shape of the cascade distributions over all network types, even as the scale-free network
distributions are less heavy-tailed. Regarding properties of the node being perturbed before
each cascade, neither the local clustering coefficient nor the degree of the perturbed node
were correlated with the cascade sizes.
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2.10 Discussion

In this model, a tragedy of the commons was averted in many cases, with best response
dynamics increasing the amount of sustainable runs compared to imitation dynamics. Just
as importantly, outcomes were more equitable under best response dynamics, as measured
by individual debt and the population’s Gini index. Additionally, the cascade size distri-
bution in systems with best response dynamics had a closer fit to a power-law and larger
cascade sizes in general, demonstrating evidence of self-organized criticality.

Spatial structure, however, did not have a drastic effect on the persistence of the re-
source or number of cooperators at equilibrium. This agrees with the 2012 empirical study
by Gracia-Lázarao et al. in which humans played a spatial Prisoner’s Dilemma on a lattice
and a scale-free network. In this study, there was no significant difference in cooperation
among the two network topologies and in fact, the level of cooperation was comparable to
that which arose in unstructured populations [29]. This spatial independence is surprising
given the importance of local interaction in this model. However for other metrics, the
network topology did have a significant effect, such as for the Gini index, the clustering
of strategies and the goodness-of-fit of the cascade size distribution to a power-law. Most
of these differences can be attributed to the existence of high-degree nodes in scale-free
networks which can be central in ‘micro-clusters’ of the same strategy type.

The strategy propagation mechanism proved to be extremely important in determin-
ing system sustainability. In all cases, best response dynamics were much more successful
than imitation at averting the tragedy of the commons. This, along with the rapid conver-
gence of best response dynamics, complements similar findings when comparing strategy
propagation in the N-player iterated Prisoner’s Dilemma game [38]. These results hint at
the importance of context-dependent foresight (modeled by best response dynamics) as op-
posed to pure imitation of peers regardless of context for the sustainability of common-pool
resource-dependent human systems. They also suggest that in systems where imitation is
important, more sustainable outcomes might be achievable by increasing the rate of social
learning. This finding is consistent with other recent research on social-climate systems
[89]. In both strategy update rules, each agent is acting in its own self interest; however,
the agent who makes choices based on its current state and relation to others benefits it-
self and the overall community more than a self-interested agent who defaults to following
another individual’s path to success.

Imitation can be seen as a representation of social learning through copying others.
History has shown social learning to be highly adaptive, primarily through the propagation
of information such as technology and survival skills. However, in the past, this social
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learning has been practised with a combined knowledge of an individual’s context and social
norms, as modelled with best response dynamics [90]. In this model, pure social learning
is less sustainable in comparison to independent prediction modelled by best response
dynamics. This could be due to the fact that best response dynamics take into account
the current state of the resource while imitation dynamics do not. Consequently, agents
using a best response strategy update rule are aware of the consequences of over-harvesting
a resource near depletion. Therefore, they explicitly take into account the social norms
of the community when making a decision on how to harvest. Imitating agents however,
are only trying to increase their profitability using a strategy that was advantageous for
others in the past, thus only indirectly accounting for social norms. This implicit time
delay in decision making can have significant detriment to the wealth of the resource as
well as the individual. With this time delay, it is possible that if the model was run for a
longer period of time, the frequency of cooperators may converge to that of best response
dynamics, warranting future work where the maximum number of perturbations to the
system is increased.

The hypothesis of the benefit of best response dynamics versus imitation dynamics
for common-pool resource problems should be further tested with existing models in the
literature that employ either update rule. An identical model with the other update rule
can then be analysed and the results of both models can be compared to investigate whether
best response dynamics do in fact prove more beneficial to the community than imitation
over a diverse array of model assumptions. Models with more complex harvesting strategies
such as mixed strategies or strategies with memory of previous interactions should be
included in this comparison.

Additionally, the socio-ecological coupling in this model could be modified such that the
fecundity of the resource (F , from eq. 4) could be dependent on the number of cooperators.
This has been examined in a number of studies with well-mixed populations and has shown
to support the co-existence of cooperators and defectors as well as sustainable resource
levels [91–93]. A further extension to this model could be to include a small number of
cooperating nodes whose strategy remains fixed for the entirety of the simulation. This
begs the question as to which nodes would be selected for maximizing sustainability, which
has been explored in numerous studies [94–96]. This method of system control could also
demonstrate additional qualitative differences between the topologies of social networks
simulated. Furthermore, a model with global punishment could be compared to the model
presented in this paper to investigate how including network structure in punishment affects
the sustainability of the system. Finally, this model could be tested with empirical networks
and case studies to verify whether the assumptions and conclusions gleaned from this study
remain true in practice.
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Chapter 3

Reinforcement learning model

The model presented in this chapter is an extension of the reinforcement learning common-
pool resource models developed by von der Osten et al. as well as by Zhu and Kirley [13, 74].
Similar to the previous chapter, this model represents a community of agents that harvest a
common-pool resource at discrete time intervals. A fundamental difference, however is that
rather than having agents choose from a predefined set of strategies, they are learning much
more complex strategies by optimizing a reward through experience with the environment.
In the following sections, the model is introduced and preliminary results are presented.

3.1 Resource dynamics

Similar to the model presented in Chapter 2, a generalized common-pool resource, Rt,
is harvested synchronously by agents on a social network who each invest an effort, xi
into harvesting. The change in resource at time t is represented by a growth term and
a harvest term that are dependent on the state of the resource as well as the cumulative
effort, X =

∑
xi at the previous time step,

Rt = Rt−1 + ∆R (3.1)

Rt = Rt−1 +G(Rt−1)−H(Xt−1, Rt−1) (3.2)

Just as in the game-theoretic model, G(R) is a logistic growth function,

G(R) = rgR

(
1− R

K

)
(3.3)
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having a maximal growth rate rg, and carrying capacity K. The harvest, H(X,R) is
modelled differently than the previous model, using the Cobb-Douglas production function
for consistency with previous reinforcement learning common-pool resource models,

H(X,R) = βXαR1−α, α ∈ (0, 1) (3.4)

The Cobb-Douglas production function can be interpreted as follows. X is the labour
invested to the system, which we will refer to as the cumulative effort, R is available
capital, represented by the resource in this system, and β is scaling factor representing the
efficiency of production. The exponents α and 1−α represent what is known in economics
literature as output elasticities. These values represent the extent to which the cumulative
effort and the state of the resource affect the amount of production. Looking at the partial
derivative with respect to X,

∂H

∂X
=
αH

X
(3.5)

we can see that for a constant resource level, the response of H to changes in X is propor-
tional to α. The same holds for how H responds to changes in R, with the proprotionality
being (1 − α). As H(X,R) is a homogeneous function of degree one, meaning that the
exponents, α and (1 − α) sum to one, the production changes exactly in proportion to
the same relative change of the cumulative effort and capital. For example, a 1% increase
in both X and R result in a 1% increase in H(X,R) and economists call this property
constant returns to scale [97–99].

The harvest is distributed among agents proportional to the effort they invested and as
labour incurs costs, each agents harvest is reduced proportional to the effort they invested.
This proportionality is called the cost per unit effort, and is a global parameter, denoted
c. From this, the payoff of each agent and the collective payoff is calculated as follows,

πi =
xi
X
H(X,R)− cxi (3.6)

Π =
∑
i

πi = H(X,R)− cX (3.7)

Note that in equation 3.7, the cumulative payoff, Π is positive when H(X,R) > cX.
Solving for X, we have a condition on the cumulative effort such that cumulative payoff is
positive or in other words, the system is profitable. The cumulative efforts that allows for
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a net profitable system is denoted,

Xprofit <

(
β

c

) 1
1−α

R (3.8)

Similarly, solving for ∆R > 0 gives us a condition for positive net resource growth,

Xsus <

(
rgR(1− R

K
)

βR1−α

) 1
α

(3.9)

From these conditions, we have three distinct regions consisting of the disjoint sets Xprofit \
Xsus, Xsus \Xprofit, and Xprofit ∩Xsus, corresponding to regions that are purely profitable,
purely sustainable and both profitable and sustainable (Figure 3.1).

By finding the intersection of upper the bounds of Xsus and Xsus, we can derive a
condition for the optimal collective effort,

Xopt = K

(
β

c

) 1
1−α
(

1− β

rg

(
β

c

) α
1−α
)

(3.10)

This expression informs the expected cumulative effort when the system is in a steady
state, as it allows for the highest collective payoff without depleting the resource. We can

see here, that Xopt ≥ 0 when c ≥ β
1
α/r

1−α
α

g . If this condition is not satisfied, an optimal
collective effort does not exist as effort is strictly non-negative.

Parameters for the common-pool resource system were chosen to be as similar as pos-
sible to those used by von der Osten et al. [13]. The main difference however is that
there is no lower bound to the total effort possible in the system other than that imposed
by realism constraints (i.e. X ≥ 0). The motivation behind this was to give agents the
option to refrain from harvesting if the system was unprofitable. Additionally the maximal
growth rate, rg was increased from 0.5 to 0.65 as the original growth rate led to repeated
depletions over most parameters during the testing phase. All parameter values are shown
in Table 3.1.
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Figure 3.1: The three distinct harvesting regions, Xprofit\Xsus (purple), Xsus\Xprofit (green),
and Xprofit ∩Xsus (blue) for varying values of the cost per unit effort, c.
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Maximal growth rate (rg) 0.65

Carrying capacity (K) 1000

Output elasticity (α) 0.35

Production efficiency (β) 0.4

Maximum cumulative effort (Xmax) 500

Table 3.1: Parameters that remained constant over all simulations and their values.

Before being fed to the deep learning model, all rewards were scaled to [−1, 1]. Ad-
ditionally, during training, a penalty of -10 was incurred to all agents if the resource was
depleted before the termination of an episode. This early episode termination penalty
is common in reinforcement learning models and can be interpreted as either a fine or
significant loss in profits once the resource being harvested can no longer persist.

3.2 Spatial structure

This model structures the social dynamics by arranging the agents on a social network,
allowing for local interactions to influence the reward function. The network is comprised
of N agents represented by nodes on a network, where the reward of agent i is dependent
on the efforts of all agents for which they share an edge. Identical small-world graphs were
used as social networks for all simulations. This topology was chosen as empirical offline
social networks often demonstrate small-world characteristics [52, 100–103] In selecting the
graph to use in all simulations, 106 small-world graphs were generated using the Watts-
Strogatz algorithm (see Section 1.3.1), and the most characteristic small-world network
was chosen. This was decided by the shortest average path length and the transitivity of
the network.

3.3 Reward function

The reward function each agent uses to learn a policy is defined by two terms, a profit
term, ξi, and a conforming term, λi. The profit term is defined using a logistic piecewise
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function that reaches its maximal value when an agent receives the highest possible payoff
during a given time step, πmax. Since πi ∝ Π, we can define this maximum payoff as,

πmax =

{
xmax

(
H
X
− c
)

H
X
− c > 0

0 H
X
− c ≤ 0

(3.11)

Here we can see that if the system is unprofitable, then the maximal payoff an agent can
receive is 0 (as opposed to a negative payoff), and this is only possible when the agent has
effort, xi = 0, meaning they are not participating in the system during that round. The
conforming term is defined by the local interactions of the agents and represents the social
incentives to conform to existing norms in a social group. It is formulated as a Gaussian
function centered at the mean local effort defined for agent i as,

x̂i =

∑
j∈Ni xj

|Ni|
(3.12)

where Ni is the set of neighbours of agent i. A Gaussian function was chosen as it obtains
its maximum when an agent harvests at x̂i and is symmetric about that mean value. This
function is defined in a piecewise form such that the tail of the function farthest from x̂i
reaches a value close to zero. Adding these two terms together, weighted by w, we have,

ri = wξi + (1− w)λi (3.13)

ξi =

{
1

exp(−k(πi−(πmax+s)))+1
πmax 6= πmin

0 πmax = πmin

(3.14)

λi =


exp

(
−1

2

(
3(xi−x̂i)
xmax−x̂i

)2
)

x̂i <
xmax

2

exp

(
−1

2

(
3(xi−x̂i)

x̂i

)2
)

x̂i ≥ xmax

2

(3.15)

(3.16)

where weight, w ∈ [0, 1] is a global parameter and ri, ξi, λi ∈ [0, 1].
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As πi is a function of xi, we can write both rewards as a function of xi,

ri(xi) = wξi(xi) + (1− w)λi(xi) (3.17)

ξi(xi) =



1

exp

(
− ln(γ)

(
xi

xmax
−
(

1+
ln( 1

0.99−1)
ln(γ)

)))
+1

X <
(
c
β

) 1
α−1

R

1

exp

(
ln(γ)

(
xi

xmax
+

ln( 1
0.99−1)
ln(γ)

))
+1

X >
(
c
β

) 1
α−1

R

0 X =
(
c
β

) 1
α−1

R

(3.18)

λi(xi) =


exp

(
−1

2

(
3(xi−x̂i)
xmax−x̂i

)2
)

x̂i <
xmax

2

exp

(
−1

2

(
3(xi−x̂i)

x̂i

)2
)

x̂i ≥ xmax

2

(3.19)

For the steps taken to make this change of variables, an explanation for parameters chosen
in the logistic and Gaussian function, and a graph of the reward function over various
values for c and w, see Appendix B.

3.4 Two learning models

Here, the learning dynamics are informed by reinforcement learning techniques, where an
agent’s policy is learned through both deep Q-learning (DQN) for a discrete action space
or deep deterministic policy gradient (DDPG) for a continuous action space [65, 66]. With
a discrete action space, the set of actions available to an agent, a ∈ A(s) must be defined
prior to initializing the model. In a generalized CPR system such as this, the choice of
such actions can be difficult as there is little empirical work to inform values for these
abstract actions. Often modellers choose social parameters to allow for the system to
persist, within realism constraints. An arbitrary choice for A(s) could have unintended
effects on the model outcome motivating a novel approach to deriving A from the dynamics
of an identical model free of limitations to the agents’ action space. Currently, only the
DDPG model has been trained and run over all parameters, however future work will use
the results from these experiments to inform the actions of a DQN model on a significantly
larger population of agents.
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3.5 Training the DDPG model

3.5.1 Exploration and exploitation

The agents in this system were trained over an episode length of T = 1000. This means
that the system was run repeatedly for a maximum of 1000 time steps, before the agents’
efforts and the state of the common-pool resource were reset. Training over a single episode
constitutes one epoch, and the model is trained for a maximum number of epochs, Nepoch =
400. To allow for significant exploration at the beginning of training, all agents underwent
a phase of pure exploration for 6000 time steps, in which the agents do not learn and are
only collecting experience through a policy of random actions. After this phase of pure
exploration, the agents begin to learn a policy, however they continue to explore the system
as the action output contains an additive noise term, Nt, for which the variance decays
at the end of each epoch. This noise term is sampled from a Gaussian distribution, such

that Nte ∼ N (0, σte), where σte =
(

1− 0.9
(Nepoch−1)

te

)3

and te ∈ {0, 1, 2, ..., (Nepoch − 1)} is

the current epoch. This insures that σte decays from a maximal value of σ0 = 1 to a final
value of σ(Nepoch−1) = 0.001. This ensures that each agent is exploiting a successful policy
by the end of training. A cubic decay rate was chosen as it was found to stabilize training
most effectively.

3.5.2 Common-pool resource system initialization and parame-
ters

The common-pool resource system has essentially two types of variables that require ini-
tialization, the level of the resource, R, and each agents’ harvesting effort, xi. The resource
was always initialized at its carrying capacity, K = 1000, and each agents’ initial effort
was sampled from a uniform distribution, bounded around X0 = 300 (Table 3.2).
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Variable Initial conditions

Resource (R) R0 = 1000

Mean initial cumulative effort (X0) X0 = 300

Individual efforts (xi) xi0 ∼ U(2
3
X0

N
, 4

3
X0

N
)

Table 3.2: Initial conditions used at the beginning of each episode: the resource level and
each agents’ individual effort.

3.5.3 DDPG formulation

The DDPG model was trained using an actor network with four hidden layers with 64, 128,
256, and 128 nodes, respectively. The critic network had three hidden layers with 128, 256,
and 128 nodes, respectively. In the critic network, the first hidden layer received an agents’
observations as input and the agents’ actions were added to the output of the third layer
before being passed to the activation function. All activation functions were ReLU, except
for the output of the actor network, which used a hyperbolic tangent function to scale the
action output to [−1, 1]. The training used a batch size of 256, and an Adam optimizer
with learning rates of 10−4 and 10−3 for the actor and critic networks, respectively [104].
The future rewards were discounted with a gamma factor of γ = 0.99 and target networks
for both the actor and critic were updated using the soft update rule with τ = 0.001.

Each agent, represented by a unique DDPG, observed a 4-tuple from the environment
as their input consisting of their own harvesting effort, xi, the average effort of their
neighbours, x̂i, their own payoff πi and the cumulative effort of all agents, X, such that
at each time step, si = (xi, x̂i, πi, X). The actions taken by each agent were their change
in harvesting effort ∆xi, such that at each time step, ai = ∆xi and for each agent, xt+1 =
xt + ∆xi. A schematic of the DDPG algorithm and it’s interaction with the common-pool
resource environment is shown in Figure 3.2.

All neural networks were coded using the TensorFlow python library and the common-
pool resource environment interfaced with the DDPG through the gym environment. Code
for the DDPG algorithm was adapted from the model presented by Zhu et al. [74, 105, 106].
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Environment

Actor

Critic

Experience Replay

at = µ(st) +Nt

critic loss

actor loss

Agent

st = (x, x̂, π,X)

µ(st)

Q-value

µ(st)

Figure 3.2: Simplified schematic of the DDPG structure for a single agent interacting
with the common-pool resource environment. In the multi-agent system, the environment
consists of both the resource dynamics and the efforts of a given agents’ neighbours.

3.5.4 Training the agents

Due to limits in computation power, this model was trained for a system of N = 24 agents.
Additionally, as opposed to training at each time step, common in most reinforcement
learning models, the agents were trained simultaneously every 10 time steps. The motiva-
tion behind a slower time scale for the social dynamics relative to the resource dynamics was
twofold. First, as each time step represents a consecutive instance of an agent harvesting
a resource, it would be unrealistic to assume that this agent would change its harvesting
strategy each time they harvest. This inertia of social dynamics has been discussed in
various studies [80, 107, 108]. Second, having these two time scales greatly stabilized the
system for both training and running the simulations.

For each distinct common-pool resource system (parametrized by the cost per unit
effort, c), an individual optimal harvesting level can be predicted simply by equally dis-
tributing the global optimal harvesting effort between all agents such that xopt = Xopt/N .
Note that this assumes a well-mixed system which is not the case here, however it can serve
as a useful approximation. Additionally, for c = 0.1, Xopt does not exist. From the training
data (Figure 3.3), we can see that for intermediate cost values, c ∈ [0.5, 0.7], the learned
efforts closely approximate xopt. In contrast, for low cost values, c ∈ [0.1, 0.2] the efforts
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show increased variability, often learning efforts much greater than xopt, which approach
xmax. In these regions, the short-term cost for an agent to increase their harvest is low,
incentivizing a high harvesting effort to quickly maximize the profit term in their reward
function. This is made more clear examining the effect of w on the learned effort. For
c ∈ [0.1, 0.5], a higher conform weight leads to a much slower increase in efforts as agents’
are rewarded much more by conforming around their initial efforts rather than quickly
maximizing their profit.

The variability in efforts for low c can be attributed to the fact that either Xopt is non-
existent (c = 0.1), or unstable (c = 0.2). The instability is due to the fact thatXprofit > Xsus

for most of the viable phase space, meaning that agents maximizing profit will rarely be
harvesting in the sustainable region. For c = 0.3, this is not the case, allowing for agents
to maximize their profit while still harvesting sustainably, so long as the resource is at a
relatively low level. For high cost values, one can see that there is much less variability
in efforts as there is a high risk for an agent to increase their harvesting effort. For these
regions, we notice the weight of conformity having opposite effect on efforts, where higher
weights correspond to learned efforts greater than xopt. The reason behind this seemingly
contradictory behaviour is that now, Xopt < X0 so that the agents are learning to decrease
their efforts over time, and process becomes much slower due to social inertia present when
agents are primarily trying to conform, rather than maximize their payoffs.

3.6 Testing the DDPG model

Once trained, each model was tested with the same common-pool resource system it was
trained on, with reduced noise where σ = 0.053 remained at a constant value for the entirety
of the simulation. Each model was run under the same initial conditions as the system it
was trained on with ten duplicates for each (c, w) pair. For the entirety of this chapter,
all mean values for each (c, w) are averaged over these ten duplicate runs, beginning at
t = 1000. In the testing phase, all agents learned every 100 time steps, rather than 10, as
this greatly improved the sustainability of the system to allow for meaningful analysis.

3.7 Simulation results

For this model, as the two parameters that varied across simulations were the cost per
unit effort, c and the weight of conformity, w, the following results focus on the effect that
these parameters have on the dynamics of the common-pool resource system. Over all
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Figure 3.3: Mean efforts, x̄ during training plotted with the optimal effort, xopt, for each
cost value, c. For c > 0.3, the efforts approach xopt, however this rate of convergence is
slower for a higher weight of conformity, w.

simulations of the trained model, the cost, c and weight of conformity, w had a significant
effect on the mean resource level R̄. This was tested pairwise with the Kruskal-Wallis test
(p < 0.01). This also holds for the mean efforts x̄ across all c and most w. One exception to
this is that the mean effort for w = 0.4 and w = 0.7 did not differ significantly (p ≈ 0.831).

For most values of the cost per unit effort, c, the mean resource level, R̄ shows little
correlation with the weight of conformity, w (Figure 3.4). The exceptions to this are for
systems with high cost, c > 0.6 where there is a slight downwards trend in R̄ with increased
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Figure 3.4: The effect of the conforming weight, w on the mean resource level, R̄, for each
cost per unit effort value, c. For high values of c, there is a slight downwards trend in R̄
as w is increased.

54



w. This is due to inertia in the efforts caused by strong social conformity, discussed in
Section 3.5.4. For c, the effect of increasing w shows contradictory results on the state of
the resource. These upward spikes with increased w could be due to the fact that for low
c, Xopt is either undefined or unstable, allowing for randomness in the system to influence
the group harvesting dynamics in unpredictable ways.

From the parameter planes, one can immediately observe that in most regions, the mean
resource level, R̄ is positively correlated with the cost per unit effort, c. This intuitively
follows from the fact that if c is a high value, a greater harvesting effort comes with a
greater risk to each agent and conforming to local efforts offers a much greater reward
than diverging from social norms, even when w is low, as H/X − c is much more likely
to be negative making the system unprofitable. This can be seen from the mean asset
level1, Ā, where the system drastically shifts from being profitable to unprofitable between
c = 0.6 and c = 0.7 (Figure 3.5e). In the profitable regime, the resource is at a significantly
higher level than Ropt while efforts are below xopt and this difference increases with the
weight of conformity, w. This trend could be in part, due to the fact that for c < 0.6 we
have x0 < xopt. This means that a high weight of conformity will have a stronger effect of
keeping efforts below xopt, due to social inertia.

In the unprofitable regime, the resource is at a significantly lower level than its optimal
level, and it follows that the mean efforts are above their optimal level. If an agent were to
maximize its profit reward in this regime, it would need to refrain from participating in the
system until it is profitable and then immediately harvest with effort xmax. This policy is
both difficult and risky to learn, as agents do not directly observe the state of the resource
and incorrectly harvesting when the system is unprofitable incurs a large penalty. From
the difference in mean effort to optimal effort, it is clear that agents were unable to learn
this optimal policy as their efforts are consistently greater than the optimal effort, thus
overharvesting and maintaining the system in an unprofitable state. This is supported by a
decrease in the profit reward in the transition to profitable and unprofitable regimes, as well
as an increase in the conform reward, showing that in the unprofitable regime, the agents’
actions are informed by the conform goal, further removing environmental feedback from
their decision making. Additionally, as the weight of conformity increases, the difference
between the mean and optimal levels for both the resource and effort increase. This too,
can be attributed to social inertia as for these c values, x0 > xopt.

One area of interest is the stark transition from high to low resource levels, occurring
at c = 0.3 for w ∈ [0.1, 0.7] and c = 0.4 for w ∈ [0.8, 0.9]. At c = 0.3, this drastic decrease
in resource level is expected, as it can be seen as a critical region between a sustainable

1An agent’s assets is defined as their cumulative payoff where Ai =
∑

t πi
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(a) Mean resource level, R̄ (b) Resource level coefficient of variation

(c) Mean effort, x̄ (d) Effort coefficient of variation

(e) Mean asset level, Ā (f) Asset level coefficient of variation

Figure 3.5: Heatmaps of mean results and coefficients variation over all combinations of the
cost, c and weight of conformity, w. Mean values were taken after a transient of t = 25000
and grey areas denote systems that depleted in a short period of time, t < 1000. Note that
some figures with extreme values have a log-scaled color bar for ease of viewing.
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(a) The difference of the mean resource level
and the optimal resource level R̄−Ropt

(b) The difference of the mean effort and
the optimal effort x̄− xopt

and depleted system. For w ∈ [0.1, 0.7] however, the resource is at a much higher level
than other w values, and this critical region appears to occur at c = 0.4 without leading
to a depleted system for lower values of c. Looking at the time series for these parameters
(Figure 3.8), we can see that for c = 0.4, as w is increased, the resource dynamics transition
from oscillations about an equilibrium (w = 0.7), to a downwards trend in the resource
(w ∈ [0.8, 0.9]). This stark difference in behaviour is due to the difficulty in learning a
policy that maximizes the profit term in the reward such that when w is high enough,
the agents essentially give up on the profit term and focus solely on conforming, a much
easier goal for this system. When this occurs, the agents’ actions cease to be informed by
the state of the resource, allowing for these downward trends without consequence to the
agents’ rewards. For w ∈ [0.8, 0.9], the profit reward remains close to its minimum value,
however for w = 0.7, the profit reward oscillates between high and low values.

A notable exception to this is the single divergent trajectory at w = 0.9. Here, the
agents receive a slightly higher profit reward near the beginning of the simulation and are
incentivizing them to optimize the profit reward rather than discounting it. This leads
to a positive feedback loop as once a sufficient number of agents learn that they can
decrease their reward by decreasing their effort, others quickly follow suit as the weight of
conformity is very high. On the contrary, for c = 0.3, the profit goal only begins to be
taken into account by the agents for the later half of the time series, leading to an increase
in the resource. As w is increased, contrary to intuition, high profit rewards become more
frequent in the system, however this leads to depletions for w = 0.8 as these high profit
rewards incentivize greedy agents to increase their harvesting effort, leading to depletion
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(a) Mean profit goal, ξ̄ (b) Profit goal coefficient of variation

(c) Mean conform goal, λ̄ (d) Conform goal coefficient of variation

Figure 3.7: Heatmaps of mean values and coefficients variation for the two goals in the
reward function. Mean values were taken after a transient of T/2, where T is the total
length of the simulation.
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Figure 3.8: Resource trajectories at the transition between the sustainable and unsus-
tainable regimes shown in Figure 3.5a. Each coloured trajectory represents an individual
duplicate run with identical model parameters.
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in all duplicate runs. For w = 0.9, the trajectories show both increasing and decreasing
trends and this behaviour is likely due to a high conforming weight amplifying stochastic
fluctuations in the system. This difference between dynamics for c = 0.3 and c = 0.4
warrants further investigation to tease out the effect on stochastic processes during both
the training and testing phases as the initial actions that agents take leads to profoundly
different outcomes.

The majority of the resource and effort dynamics showed oscillations about some mean
value, suggesting that agents learned to overcompensate their actions to approach xopt,
creating a boom-bust cycle with the resource. As these oscillatory dynamics were often
centered about some mean, we will call these cases oscillatory steady states. Since the
system showed various dynamical regimes, the testing simulation time series were classified
by their qualitative behaviour, in this case, the resource dynamics. In Figure 3.9a, the
system has been classified into five unique categories, representative of the richness of
dynamics present in this system. Note that behaviour that differs from the dominant
oscillatory steady state occurs for high cost per unit effort and weight of conformity, as
well as at the transition between sustainable and unsustainable regimes. Additionally,
many systems were dominated by regions of high frequency oscillations and these systems
were identified by the magnitude of the fast Fourier transform for high frequencies in the
time series data (Figure 3.9b). These regions of high frequency oscillations correspond to
higher coefficients of variation in both the resource and efforts, which follows from the fact
that with high frequency oscillations, there would be more extreme values, however, this
may suggest that during these high frequency oscillations, the signal is amplified, as has
been observed in many cases, but requires further analysis.

3.8 Discussion

This model demonstrated how self-interested agents were able to learn a sustainable har-
vesting policy in certain conditions without direct feedback for over-harvesting. This is
significant as behaviours were learned without being prescribed by the model formulation
and yet agents were still able to harvest sustainably over most parameters without hav-
ing full knowledge of the system. The cost per unit effort of harvesting had a significant
effect on the resource level and the efforts of the agents, increasing and decreasing them,
respectively. Additionally, the system displayed a discrete transition from a profitable to
unprofitable system as the cost per unit effort increased. This agrees with results from
von der Osten et al, however their model showed a gradual decrease in assets, and did not
have the discrete regime change observed in this system [13]. In the model presented in
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(a) Classes of qualitative behaviour for the
time series of the resource, R

(b) Presence of high frequency oscillations
in the time series of the resource, R

this chapter, not only was the resource at a higher level in the profitable regime, it was
also at a higher level than the optimal resource level expected with agents who are trying
to maximize their profits without depleting the resource. Similar to von der Osten et al’s
model, the weight of conformity did not show as distinct of a trend with the mean values of
resources and efforts, however when compared to the optimal resource and effort levels, a
clear trend emerged where a higher weight of conformity amplified the differences from the
optimal resource values. This amplification could be due to an increased discounting of the
profit reward leading to a lack of feedback from the environment when choosing actions for
high conforming systems. This suggests that strong social conformity can have significant
effects in reinforcing and amplifying the status quo in common-pool resource systems. As
the dynamics at this point ceased to be informed by the environment, this increased weight
of conformity can lead to contradictory outcomes, dependent on the existing social norms
of the system.

This model also displayed a diverse array of resource dynamics, characterized by oscil-
lations on many different scales, usually about a mean value. This behaviour may be, in
part due to overshoot dynamics and slow adaptation brought about by strong conformity
within the system, decoupling the resource from the agents’ actions to varying degrees.
This phenomenon, however requires longer simulations and additional analysis and will
be the focus of future work. These diverse dynamics demonstrate the value of model-
ing this system using an agent-based approach, as opposed to using top-down differential
equations models. Trajectories that stray from analytical solutions show how agents with
only partial information can bring the system to states that were not predicted from a top
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down analysis and this can offer a more realistic understanding of real-world systems where
decision-making over the management of common-pool resources can occur in a bottom-
up manner. Additionally, the use of reinforcement learning for modelling common-pool
resources shows great promise for future studies as many functions and parameters pre-
viously prescribed by the modeller for agent-based models can be learned from the given
common-pool resource system. This allows for a higher diversity and complexity of actions
and strategies that naturally arise from the socio-ecological dynamics.
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Chapter 4

Conclusions and future work

In this thesis, common-pool resource models were compared using a variety of techniques
in game theory and machine learning. In both models, the agents’ actions are informed
by maximizing an individual reward function, however under many conditions, this self-
interest led to outcomes that benefited all agents collectively. An important concept in
both models was the effect learning from peers had on the outcomes of the system. In
Chapter 2, it was found that pure social learning was detrimental to the sustainability of
the system compared with agents who only tried to maximize their payoff regardless of
whether the strategy they were utilizing was successful among their peers. In Chapter 3,
the dichotomy between these two learning strategies was replaced by a spectrum, where the
weight of conformity, analogous to the extent of social learning was a global variable. In
this system, since learning was performed through deep reinforcement learning algorithms,
agents could learn much more complex strategies. In this model, the effect of social learning
on the systems’ behaviour was much more nuanced, amplifying existing trends in the
profitable and unprofitable regimes. A stark difference between these two models was
that in the game theoretic model, defectors with neighboring cooperators would receive an
immediate penalty proportional to the degradation of the resource. For the reinforcement
learning model, the penalty for depletion was shared equally and individual agents had
much less immediate feedback on the effect their actions had on the state of the resource.
Regardless of this difference, both models demonstrated an emergence of cooperation, even
without direct or immediate incentives for sustainable actions. The mechanisms leading
to these sustainable outcomes differed between models with some parameters, namely the
extent of social learning, having contradictory effects. This demonstrates the extreme
importance for modellers to choose learning dynamics informed by the system in study,
and also emphasizes the dangers of prescribing broad top-down conservation policies on
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diverse human-environment systems.

Relating these results to real-world common-pool resource systems, they show how
changes to both the natural system, the human system and the way in which these two
systems are coupled can have significant effects on how the social dynamics affect the
sustainability of the resource. Although these models are formulated on assumptions that
significantly decrease the degree of complexity observed in empirical systems, they can
inform policy makers of the extreme importance to support governance initiatives that are
specific to and informed by the existing social norms as well as the relationship between the
community and the resource they are harvesting. Additionally, the manner in which agents
learn proved to have a significant effect on the state of the resource, which can motivate
policy makers and community leaders to devise systems of governance that are informed by
the existing learning styles present in the community harvesting the common-pool resource.
Creating policy through bottom-up initiatives informed by the local social norms and
economy has led to sustainable outcomes in many real-world systems including Maine’s
lobster fisheries and the harvest of turtle eggs in the Turtle Islands of the Philippines
[109, 110]. In the second example, a top-down policy banning the harvest of turtle eggs
led to their subsequent depletion, further demonstrating how local systems of governance
show much greater success when compared with sweeping rules that are not informed by
the complex pre-existing human-environment dynamics.

As only preliminary results were presented for the reinforcement learning model, the
most obvious next steps are continuing analysis on the data from the reinforcement learning
model to gain a deeper understanding of when qualitative differences in the dynamics were
caused by model parameters or randomness present in both the model initialization and
the neural networks used in learning. Characteristics of the oscillatory dynamics, including
the effect of high frequency oscillations in the system, the presence of chaotic dynamics,
as well as the use of lag-1 autocorrelation as a tool for early warning signals of resource
collapse could all offer critical insight to the dynamics and sustainability of the resource.

In terms of the model formulation, changing the weight of conformity from a global vari-
able to a local variable would improve realism in the model, representing differing learning
styles in human communities. Experimenting with the timescale of learning in both the
training and testing phase can give insight into the manner in which these timescales affect
the state of the resource. There are also plans to run simulations while periodically adding
agents that harvest at a predefined level, reintroducing the binary concept of cooperators
and defectors, to observe how the agents respond to this type of perturbation. Adding
‘naive’ agents, represented by untrained neural networks into a system of trained agents
is also a possibility for future simulations and has already been implemented. Finally,
repeating all simulations as well as the proposed extensions in a much larger system using
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discrete actions informed by the action distributions of the DDPG model can offer valuable
insight to the effect of community size and greater complexity in spatial structure on the
persistence of a common-pool resource.
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Appendix A

A.1 Additional figures

Figure A.1: The frequency distribution of cooperators (a, b) and resource (c, d) at equi-
librium, normalized with a Gaussian kernel density estimate
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Appendix B

B.1 Extrema of the payoff function

We can find global extrema for the collective payoff function below:

∂Π

∂X
= αβXα−1R1−α − c (B.1)

∂2Π

∂X2
= α(α− 1)βXα−2R1−α < 0 (B.2)

X∗ =

(
c

αβ

) 1
α−1

R (B.3)

Π∗ =

(
cα

β

) 1
α−1 (

α
α

1−α − α
1

1−α

)
R (B.4)

From this collective payoff maximum, we can solve for an upper bound on an agents
individual payoff:

π∗i =
xi
X∗

Π∗ (B.5)

π∗i = xic(α
−1 − 1) (B.6)

Since π∗i is a linear function of xi, the highest possible value of xi = xmax will provide the
maximum value for an agent’s payoff.

πmax = xmaxc(α
−1 − 1) (B.7)
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Additionally, as H is strictly increasing in R, the minimum collective payoff must occur
when R = Rmin = 0.01K. Since there is only one local optima of Π in X, the minimum
collective payoff must also either occur at Xmax or Xmin = 0. As Π(X,Rmin) < 0 for

X > Rmin

(
c
β

) 1
α−1

, which is always true for the parameters in this system, then Πmin must

occur at (Xmax, Rmin). Therefore, the minimum individual payoff occurs at:

πmin = min
xi

xi
Xmax

Πmin (B.8)

πmin =
xmax

Xmax

Πmin, since Πmin/Xmax < 0 (B.9)

πmin = xmax

(
βXα−1

maxR
1−α
min − c

)
(B.10)

B.2 Parameters in the reward function

To make sure that the wealth goal saturates at the maximum attainable payoff for a given
round, we can choose values for k and s such that ξi(πmax) = 0.99 and ξi(πmin) = 0.01:

k =
ln(γ)

πmax − πmin

(B.11)

γ =
1

0.01
− 1

1
0.99
− 1

(B.12)

s =
ln
(

1
0.99
− 1
)

k
(B.13)

The group conforming goal, λi is a scaled normal distribution with µ = x̂i and

σ =

{
xmax−x̂i

3
x̂i <

xmax

2
x̂i
3

x̂i ≥ xmax

2

(B.14)

This ensures that λi is maximized at x̂i and reaches a value close to 0 at the boundary
furthest from x̂i.
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B.3 Change of variables for the profit reward

As payoff πi is a function of effort x and the resource R, we can simplify the reward function,
ri by reducing the input variables to be only in terms of effort. Since πi = xi

(
H
X
− c
)

and
0 ≤ xi ≤ xmax, we have three cases for πmin and πmax.
If H

X
− c > 0, then πmax = xmax

(
H
X
− c
)

and πmin = 0.
If H

X
− c < 0, then πmax = 0 and πmin = xmax

(
H
X
− c
)
.

If H
X
− c = 0, then πmax = πmin = 0:

ξi(xi) =



1

exp

(
− ln(γ)

xmax(HX−c)

(
xi(HX−c)−

(
xmax(HX−c)−

ln( 1
0.99−1)xmax(HX−c)

ln(γ)

)))
+1

H
X
− c > 0

1

exp

(
ln(γ)

xmax(HX−c)

(
xi(HX−c)+

ln( 1
0.99−1)xmax(HX−c)

ln(γ)

))
+1

H
X
− c < 0

0 H
X
− c = 0

(B.15)

ξi(xi) =



1

exp

(
− ln(γ)

(
xi

xmax
−
(

1+
ln( 1

0.99−1)
ln(γ)

)))
+1

H
X
− c > 0

1

exp

(
ln(γ)

(
xi

xmax
+

ln( 1
0.99−1)
ln(γ)

))
+1

H
X
− c < 0

0 H
X
− c = 0

(B.16)

An equivalent condition for H
X
− c > 0 is X <

(
c
β

) 1
α−1

R. Similarly for H
X
− c < 0,

X >
(
c
β

) 1
α−1

R and H
X
− c = 0, X =

(
c
β

) 1
α−1

R.

Since this is in terms of the resource rather than cumulative harvest, we will use these
conditions for the reward function instead.
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B.4 Additional figures

Figure B.1: Reward function (ri), profit goal (ξi) and group conforming goal (λi) over all
cases of X, R, and x̂i and three different weights (w).
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Figure B.2: The distribution of actions during testing for each cost value, c. As c increases,
the range of actions chosen by agents decreases since in these systems, the conform goal
has a higher influence on the social dynamics, incentivizing agents to stick with the status
quo.

83



Figure B.3: The mean network assortativity of the agents’ effort, ρ̄x. Note that the trends
in assortativity were not significant as ρ ∈ [−1, 1], however ρx ∈ [−0.06, 0.06]
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(a) w = 0.3, c = 0.9 (b) w = 0.8, c = 0.3

Figure B.4: Trends in autocorrelation were observed and may prove useful as an early warn-
ing signal for resource depletion, however further analysis is required before conclusions
are made.
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Figure B.5: This boxplot for the resource level, R, shows how variance differs with different
weights of conforming, w. The significant difference in mean values also suggests the
presence of alternative stable states at c = 0.5, w = 0.8 and c = 0.9, w = 0.1
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