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Abstract 

The Monod bioreaction equation, though justified from extensive practical use, has been found 

to have limited mechanistic basis (Enouy, Walton, et al., 2021). To attempt to gain a biological 

mechanistic representation of the equation, Enouy, Walton, et al. (2021) created a three-stage 

serial process by deriving Monod as a special case of aquifer phase diffusive transport rate of a 

substrate onto the surface of microbe, uptake rate across the microbial membrane, and the 

subsequent interior biodegradation rate. The derivation was parameterised with single-substrate 

depletion of benzene, phenol, and toluene, and biomass (Pseudomonas putida F1) growth data 

from Reardon et al. (2000). Though this derivation of Monod can fit the data adequately, it is 

simplistic, and sometimes deviates from the data. It is proposed that a detailed understanding of 

the biological processes involved in the biodegradation of aromatic hydrocarbons is necessary to 

begin to provide a meaningful mechanistic basis to the Monod coefficients, 𝐾! and µ"#$, and to 

support and embellish this derivation for the purpose of improving the fit of the data, and of 

future experimental data sets. To this purpose, a literature review of the four major steps in the 

biological degradation of aromatic hydrocarbons was undertaken. The processes studied are as 

follows: a) cellular transport; b) energy storage; c) metabolism of aromatic hydrocarbons (both 

aerobically and anaerobically); and d) cellular growth. The contributions of these processes are 

discussed alongside the fits of the Reardon et al. (2000) data to propose embellishments to the 

Monod derivation for improving the data fit, and future biological investigations for improving 

mechanistic understanding and contributing to biological systematic modelling. 
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Chapter 1 – Introduction 

Environmental contamination is a growing concern in this age of industrial human activity. Soil, 

sediment and groundwater are frequently contaminated by various environmental contaminants, 

xenobiotics, and other pollutants, from lakes, improper disposal, and spills (Edwards et al., 

1992). Xenobiotics are anthropogenic compounds which can include adhesives, dyes, flame 

retardants, lubricants, oil, petroleum products, organic solvents, pesticides, and gasoline and oil 

combustion products (Parker et al., 2018). Petroleum hydrocarbons, in particular, are an ever-

growing source of environmental contamination, particularly of aquifers, during the human 

activity of recovery, refining, storage, use, and disposal of oil and gasoline (Schirmer et al., 

1999). Though they occur naturally, anthropogenic activity greatly increases their environmental 

concentrations, making them grave pollutants. The aromatic compounds of such hydrocarbons 

are the second most widely distributed organic compounds in nature (Carmona et al., 2009). 

Nonoxygenated, homocyclic aromatic compounds, including benzene, toluene, ethylbenzene, 

xylene (BTEX) compounds, are of particular concern since they are suspected or confirmed 

carcinogens, even at low concentrations (Schirmer et al., 1999; Edwards et al., 1992). They are 

all hazardous and have a great environmental impact due to various water solubilities and 

mobilities allowing them to migrate through groundwater, which makes clean up difficult as 

they travel from the original contamination site (Schirmer et al., 1999; Edwards et al., 1992). 

Benzene is the main aromatic compound of concern, commonly found in crude oil, petroleum 

products, and oil pollutants; it is mutagenic and carcinogenic, and is classified as a class A 

human carcinogen under the United States Environmental Protection Agency (Aburto & Ball, 

2009; Ladino-Orjuela et al., 2016). Its six-carbon ring is the defining feature in all aromatic 

compounds (Carmona et al., 2009). It is thermodynamically stable due to its resonance 

structure, and has widespread production and industrial usage, though it is the most toxic and 

most soluble of hydrocarbon pollutants (Carmona et al., 2009; Aburto & Ball, 2009). Due to 

such molecular stability, there is a great persistence of these aromatic ring-containing 

compounds in the environment (Carmona et al., 2009). They resist breakdown, and as such can 

quickly accumulate in the food chain, which can include eventual indirect consumption by 

humans (Parker et al., 2018). Since they are not readily degraded and persist for a long time in 

the environment, this allows them to be indicators of the effectiveness of clean-up procedures, 
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such as government agencies’ regulation standards (Aburto & Ball, 2009; Ladino-Orjuela et al., 

2016). 

 

Despite there being various methods of clean-up, the one that shows the most promise 

for being cost-effective, environmentally friendly, efficient, and permanent, is biodegradation 

(Adams et al., 2015). That is, the use of microbial metabolic processes to destroy or immobilise 

waste material: a detoxification strategy that targets such harmful chemicals via mineralization, 

alteration, and transformation (Parker et al., 2018). Many microorganisms, particularly those 

ubiquitous to soils and groundwater systems, can utilise the aromatic hydrocarbons as their 

carbon and energy source, by degrading the ring structure and converting the products to 

compounds that can then directly enter their central metabolic pathways (Moat et al., 2002). 

Microorganisms can recycle carbon, maintaining the health of the biosphere, and there are many 

bacteria, archaea, and fungi that degrade most naturally occurring organic compounds, including 

these persistent aromatics (Carmona et al., 2009). The microbes produce their energy, via redox 

reactions, for internal respiration, cell maintenance, and reproduction (Parker et al., 2018). 

Individual microorganisms can only metabolise limited ranges of substrates, and have a 

preference for substrates that are easier to degrade over those that are more difficult; these 

differences between species lie in their particular enzymatic genes (mostly chromosomal genes, 

though sometimes found on plasmids), coding for the enzymes necessary for each reaction 

(Adams et al., 2015; Edwards et al., 1992; Parker et al., 2018). Since each individual species can 

only degrade a small range, often multi-species communities of microbes are needed to tackle 

pollutants which are often mixtures of many and varied substrates. Such communities adapt to 

the constant presence of hydrocarbons, and can show selective enrichment and genetic changes 

which allows them to respond in the presence of their preferred substrate within hours (Adams 

et al., 2015). 

 

With all these species and substrates, there are two main methods of degradation: 

aerobic and anaerobic. Aerobic degradation utilises oxygen as the electron acceptor, and 

aromatics, such as benzene, are readily degraded aerobically and as such these processes have 

been extensively studied (Burland & Edwards, 1999; Edwards et al., 1992). Anaerobic processes, 
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by comparison, utilise various non-oxygen electron acceptors, such as nitrate, iron, or sulphate, 

however these processes are much slower and are less understood (Edwards et al., 1992). 

Though the aerobic processes look more promising, since they are faster, it is crucial not to 

overestimate them, for in many habitats where aromatic pollutants are found, oxygen is often 

rapidly depleted, leaving an anoxic environment (such as aquifers, aquatic sediments, submerged 

soils, sludge digesters, intestinal contents, or aerobic sites with high carbon concentration) 

(Burland & Edwards, 1999; Carmona et al., 2009). With all these various factors and 

parameters at play, in situ biodegradation and remediation quickly becomes a very complex 

issue. Each habitat or environment where pollutants are found may vary so widely that any 

intrinsic bioremediation must be demonstrated for each contaminated site individually (Schirmer 

et al., 1999). Therefore, the development and verification of a numerical model is necessary to 

predict and determine whether natural contaminant depletion will be sufficient under specific 

site conditions, to meet remedial goals (Schirmer et al., 1999). A model is a tool which allows 

one to determine the timeline and spread of an environmental pollutant, such as a spill, which is 

useful for legal and political legislation purposes. With any numerical model, the formulation 

and assumptions must be able to be explained by the actual mechanisms, so that the concepts of 

the model fit the real world.  

 

The most common numerical formulation for microbial population growth is that of 

Monod (1949), however despite many attempts to interpret its kinetics within a microbial 

mechanistic framework, it has generally been accepted to have a limited mechanistic basis, 

justified only by its extensive use in practice (Enouy, Walton, et al., 2021). To attempt to show 

on what its coefficients are dependent, Enouy, Walton, et al. (2021) presents a special case of 

Monod described in Chapter 2, with a parameterisation of the model using biodegradation data 

of benzene, toluene, and phenol, with respective biomass growth data from Reardon et al. 

(2000), the simulations of which are presented in Chapter 4. This is an algebraic derivation of 

the Monod bioreaction equation using a simplified three-step serial process involving: aqueous 

phase diffusion transport of the substrate towards a spherical microbe; active transport across 

the membrane; and a zero-order reaction within the microbe (Enouy, Walton, et al., 2021). 

With the aim of recognising of what dependency the Monod coefficients have on the limitations 
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of the microbial processes involved, this study focuses on four key steps within the microbe, that 

are involved in the biodegradation process. They are 1) transmembrane transport, 2) interior 

energy storage, 3) energy production/metabolism, and 4) subsequent growth, survival mode, or 

death. Firstly, there is transport of the substrate across the cell membrane. The microbe needs 

to recognise whether there is substrate available in the near vicinity, and then needs to 

transport the substrate across the cellular membrane, either through passive, passive facilitated, 

or active transport (Hua & Wang, 2014). There is also sometimes internal storage of 

metabolites, especially when the microbe is in variable environments, where energy sources may 

be limited (Hua & Wang, 2014). Next, there is the metabolic process, either aerobic or 

anaerobic, in which the substrate is degraded for energy and/or for growth constituents, like 

carbon. This energy generation involves requiring the appropriate electron acceptor to be 

present in adequate quantity in the environment. Finally, the microbe may use such energy for 

cellular processes of maintenance, and cell growth, or if there is not enough energy supply in the 

environment, the cell may remain in a quiescent state, or may die off (Parker et al., 2018). 

These processes are all identified in microbiological literature, though there are various 

knowledge gaps which limit our current scope of understanding. The motivation of exploring 

these processes is to observe if fitting of these processes into the Monod derivation can improve 

the fit of experimental data sets. To develop and validate a model, with its coefficients and 

parameters, it is necessary to provide support from the literature, that explains the 

mathematical assumptions made. The objective of this thesis is to present the current state of 

scientific understanding of the bacterial degradation of aromatic hydrocarbons pertaining to the 

mechanisms of transport, storage, respiration, and replication, to provide support for the model 

concepts to better fit experimental data.  

 

To reach this objective, an in-depth literature review was conducted. This involved 

searching for papers pertaining to the biodegradation of aromatic hydrocarbons by various 

bacteria, centering on benzene degradation in particular, and then organising them according to 

the portion of the process (identified above) that they were observing. As the model was being 

developed, new subtopics became necessary to be searched for, especially as more detail was 

considered for inclusion in the derivation. A description of the Monod derivation is presented in 
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Chapter 2, the literature review is presented in Chapter 3, and Chapter 4 discusses how the 

literature supports the model, as well as exploring possible ways to improve the model by 

including more detailed understandings of the processes involved. The discussion will also 

include a simulation of the Monod derivation using single-substrate depletion and biomass 

growth data from Reardon et al. (2000), a calibration effort of the model, to assist in 

parameterising the derivation and interpreting Monod kinetics. Several knowledge gaps in the 

research are identified, specifically regarding the quantifiable measures in biological experiments, 

such that there is a gap between the current understanding of microbiological degradation of 

hydrocarbons, and the ability to apply techniques of numerical modelling to model microbial 

behaviour. Though information on both subjects is widespread and detailed, there is limited 

connection between the two. The assumptions made in numerical modelling need to be 

supported and validated by microbiological research, however there is a lack of such research 

with a modelling mindset. As such, though there is much research about the microbial metabolic 

mechanisms at play, certain quantifiable components are not always measured to the fullest 

extent possible or desired. For example, experiments observing the prolonged degradation of a 

hydrocarbon slurry tend to limit the measuring of biomass growth (such as only before and after 

the experiment), however a numerical modelling mindset would require more frequent biomass 

measurements to observe the growth curve, especially where the exponential growth occurred, 

versus the points of plateauing, or of dying off (Schirmer et al., 1999; Parker et al., 2018; 

Reardon et al., 2000).   
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Chapter 2 – Background 

2.1 Monod Kinetics 

The Monod bioreaction equation is the mathematical representation of growth rate first 

introduced by Monod (1949). It is now commonly written as µ = µ"#$𝑆 𝐾! + 𝑆⁄ , where µ is the 

specific growth rate of the bacterium, µ"#$ is its maximum specific growth rate, 𝑆 is the 

substrate concentration, and 𝐾! is the Monod coefficient: a constant representing the substrate 

concentration at which growth rate is half the maximum rate (Alexander, 1999). 𝐾! represents 

the affinity of the organism for the growth-supporting organic nutrient (i.e., a lower value would 

indicate a greater affinity of the bacterium for that molecule) (Alexander, 1999).  

 

2.2 Reardon et al. (2000) Biodegradation Experiment 

Reardon et al. (2000) conducted an experiment biodegradation of benzene, toluene, and phenol, 

by the microorganism Pseudomonas putida F1, to report the kinetics of these reactions in single 

and mixed batch reactors. They chose those three monoaromatic compounds because they are 

produced in huge amounts, are used in fuels, as solvents, and as starting materials in producing 

plastics, synthetic fibers, and pesticides, and are prevalent environmental contaminants due to 

spills and tank leaks (Reardon et al., 2000). P. putida F1 is one of the best characterised 

aromatic hydrocarbon-degrading bacteria, and this particular strain can use toluene, benzene, 

ethylbenzene, phenol, and other aromatics as its sole carbon and energy sources (Reardon et al., 

2000). Multiple batch reactors were set up, to obtain the kinetics of each substrate’s degradation 

singly, as well as all the combinations: benzene + toluene, benzene + phenol, toluene + phenol, 

and benzene + toluene + phenol (Reardon et al., 2000).  

 

The cellular concentration of P. putida F1 was measured throughout the experiment 

using optical density at 600 nm, which corresponded to biomass concentration and therefore 

could be used to observe the population’s growth over time (Reardon et al., 2000). The 

substrate aqueous and gaseous phase concentrations were measured using gas chromatography, 

and any aqueous intermediates that formed were detected by high-pressure liquid 

chromatography (Reardon et al., 2000). The biodegradation rate data was obtained from batch 
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cultivations in stirred-tank bioreactors, with controlled temperature (of 30˚C) and regular 

agitation (pH was not controlled for but remained in the 6.7-6.9 range) (Reardon et al., 2000). 

There was no air sparging since two of the substrates were highly volatile, so the bioreactor was 

run as a closed system after inoculation, except when sampling (Reardon et al., 2000). Since the 

tanks were 3-L tanks, and only 1.6 L of liquid volume was used, that left an adequate headspace 

for sufficient oxygen for cellular growth (Reardon et al., 2000). The DO levels were monitored 

and never fell below 5 mg/L, and Reardon et al. (2000) cite several sources that state that 

aerobic bacterial growth is generally independent of oxygen at concentrations above 0.4 mg/L, 

so it is assumed that oxygen was not a growth-rate-limiting substrate in these experiments 

(Reardon et al., 2000). Each experiment was performed in duplicate, with repeated experiments 

run at separate times, for an accurate variability assessment (Reardon et al., 2000).  

This experiment was considered ideal for model parameterization testing because it was a 

controlled, closed system, and offered multiple variations of substrate depletions (single, double, 

triple), as well as measuring the biomass concentration multiple times throughout the course of 

the experiment (Reardon et al., 2000). This last point is crucial since most other experiments 

only measure biomass concentration initially and at the end of the experiment, or not at all. 

 

2.3 Model Background 

The Monod bioreaction equation is widely used to describe microbial growth and substrate 

depletion with nutrient limitation, however its relation to the corresponding microbial 

mechanisms remains ambiguous (Enouy, Walton, et al., 2021). It is generally accepted to have 

limited mechanistic basis but is rather justified by extensive practice (Enouy, Walton, et al., 

2021). There have been several attempts to derive an interpretation of Monod that is more 

representative of the biomass mechanisms involved (Liu, 2006; Liu, 2007). One attempt takes 

into account mass transfer considerations to provide an approximate prediction of the Monod 

coefficients 𝐾! and µ"#$, assuming that the microbe is the site of a zero-sink condition (Merchuk 

& Asenjo, 1995). This implies that the concentration of the substrate on the surface of the 

microbe is negligible compared to its bulk aqueous phase concentration (Merchuk & Asenjo, 

1995). Other attempts suggest that 𝐾! is governed by substrate-species pairs (Westerhoff et al., 

1982; Tan et al., 1994), that it is concentration dependent (Alexander, 1999), or that it is the 
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direct result of thermodynamics and microbial metabolic processes (Heijnen & Romein, 1995; Jin 

& Bethke, 2003).  

 

Enouy, Walton, et al. (2021) presents a conceptual mass transport and reaction model 

demonstration that the Monod equation can be derived as a special case of the following 

processes in series: aqueous phase diffusive transport of a substrate towards a spherical microbe; 

transport across the microbial membrane; and the depletion reaction within the microbe. The 

microbe is the initiator of transport and thereby depletes the substrate from the aqueous phase 

within its near vicinity, so the transport into the microbe causes a cascade of electron donor 

concentration gradient moving toward the bulk aqueous phase (the electron acceptor is 

considered to be in excess relative to the donor) (Enouy, Walton, et al., 2021). A couple 

assumptions govern this conception: 1) there exists flux continuity across the surface of the 

microbe, which means that the formulation allows for a continuous transition between limiting 

processes, for an ultimate control of the spatiotemporal evolution of the bioreaction process; and 

2) the bulk concentration remains fixed at an infinite distance from the centre of the microbe 

[Figure 1] (Enouy, Malton, et al., 2021; Enouy, Walton, et al., 2021). The transport initiated by 

the microbe could be diffusive, or facilitated diffusive, or active transport (Hua & Wang, 2014). 

Since there is this possibility of passive or active transport, which could be replicated by a 

diffusive or an advective transport rate respectively, it is quantified by a defined macroscopic 

influence coefficient, 𝑘%𝑎[s-1], representing the upscale of transport onto the surface of a 

microscale microbe (Enouy, Malton, et al., 2021). 
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In Enouy, Walton, et al. (2021), there are two substrate transport scenarios investigated 

to describe the flux of a substrate across the surface of a single microbe, which are generic 

representations for the flux: either constant and hence independent, or linearly dependent upon 

the substrate concentration on the surface of a microbe. The derivation serves the purpose of 

ascertaining what the Monod coefficients represent among the biological process involved 

(Enouy, Walton, et al., 2021). They show that 𝐾! [kg/m3] and µ"#$,  [m3q/kgd/s], which are the 

Monod coefficient and the maximal microbial reproduction rate, respectively, are dependent on 

some limitation within the three above-mentioned processes, depending on the scenario (Enouy, 

Walton, et al., 2021). The derivation was parameterised with data of benzene, toluene, and 

phenol depletion, and biomass growth from Reardon et al. (2000), solving for the empirical 

values of substrate flux across the microbial membrane, and the transport velocity at which the 

substrate is taken up into the microbial cytoplasm (Enouy, Walton, et al., 2021). 

 

The first scenario is the constant reaction model, where there is a function of a constant 

flux across the surface of a microbe, which is assumed to sustain the specific reaction process 

within the microbe and assumes both the flux and the interior reaction stay constant (Enouy, 

Walton, et al., 2021). It was suspected that either the reaction rate within the microbe, or the 

Figure 1: Conceptive Reactive Transport Model – The concentration of electron donor in the aqueous phase must 
transport from the bulk aqueous phase to the surface of the microbe, and then be taken up by the microbe so to be 
degraded internally. 
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transmembrane transport may be limiting, such that a constant flux of substrate across the 

surface of the microbe is necessary to sustain interior processes (Enouy, Walton, et al., 2021).  

Thus, the diffusion of the substrate is not considered to be limiting, and the Monod coefficients 

𝐾!  and µ"#$,  solve to about constant and are a function of the physiochemical and mass 

transfer properties of the system (Enouy, Walton, et al., 2021). The key assumption is that the 

utilization of the substrate is independent of the microbe’s surrounding environment (Enouy, 

Walton, et al., 2021). For some scenarios, this condition can predominate until the diffusive 

transport becomes the limiting step of biodegradation (Enouy, Walton, et al., 2021).  

 

The second scenario is the linear reaction model, where substrate flux is assumed to be 

linearly dependent on the product of a constant transport velocity (CTV) and the concentration 

of the substrate on the surface of the microbe (Enouy, Walton, et al., 2021). CTV is the velocity 

at which the substrate moves across the microbial membrane (Enouy, Walton, et al., 2021). It 

was suspected that the substrate flux across the microbial membrane was the limiting process 

(Enouy, Walton, et al., 2021). As such, 𝐾!  and µ"#$ solve to be a function of the 

physiochemical and mass transfer properties of the system, but also to be linearly dependent on 

the substrate’s bulk concentration (in the aqueous phase) (Enouy, Walton, et al., 2021). They 

cannot be constant for this substrate depletion scenario, since they are dependent upon the 

substrate concentration (Enouy, Walton, et al., 2021). The key assumption is that the substrate 

utilisation is proportional to the substrate concentration on the surface of the microbe, which 

means that the microbial consumption of the substrate is dependent upon the surrounding 

environmental conditions (Enouy, Walton, et al., 2021).  

 

A key path to understanding Monod kinetics and in the development of groundwater 

biodegradation models is to observe the microbe’s action throughout the degradation process. In 

such observations, it can generally be determined that the microbe utilises active transport 

pathways to move larger molecules (such as the aromatic hydrocarbons) across the microbial 

membrane. The rate of active transport should be dictated by the rate of internal biochemical 

processes able to decompose hydrocarbons to extract energy. There is also evidence of storage 

mechanisms, which would indicate that the microbe could be something of a delayed zero sink, 
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however these have yet to be considered in the model (Hua & Wang, 2014). The active 

transport pathway matches with the assumptions of Schäfer et al. (1998) such that the electron 

donors are distributed between aqueous and biomass phases solely based on the chemical 

potential gradient. 
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Chapter 3 – The Four Pillars of Microbiological Growth 

In modelling development, there must be a mechanistic understanding as well as a suitable 

explanation for all parameters and processes inherent in the conceptual model including any 

numerical assumptions within the algorithm used to implement it. Observations of substrate 

depletion and biomass growth curves representing various substrate-species pairs from both 

laboratory experiments and field sites are essential both for determining how these processes 

occur, and moreover, how to represent these processes for modelling purposes. There are many 

aromatic hydrocarbons industrially utilized, and subsequently introduced into the environment 

as pollutants, the most chemically stable being benzene: a ring of six alternative double-bonded 

carbons (Ladino-Orjuela et al., 2016). The electrons are delocalized making this compound 

immensely stable, thus slow and difficult to degrade (Ladino-Orjuela et al., 2016). Since all 

aromatic compounds include this structure as a part of their whole molecule, they all encompass 

the most persistent environmental pollutants. Though they can be degraded both aerobically 

and anaerobically, the aerobic pathway has proved more efficient, though the anaerobic pathway 

is more commonly utilized since biodegradation tends to occur in more anaerobic environments 

(Chakraborty & Coates, 2004; Carmona et al., 2009).  

 

 Following below are insights into the four main steps in 

microbiological biodegradation of aromatic hydrocarbons and 

subsequent microbial growth. The steps involved are: cellular 

transport involving the uptake of substrates for metabolism; 

storage of energy in the form of lipid inclusions; metabolic 

degradation and energy production from the substrate (either 

aerobically or anaerobically); and finally, cellular growth 

[Figure 2]. 

 

 

 
Figure 2: The growth-associated 
processes that make up the main 
principles of aerobic degradation of 
hydrocarbons, from Fritsche and 
Hofrichter, (2000). 
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3.1 Cellular Transport 

The first major step involved in biodegradation is the sensing of hydrocarbons in the 

environment, and subsequent uptake of these substrates. For environmental remediation, the 

hydrocarbon substrate must pass the cell membrane, however the outer membrane (OM) of 

Gram-negative bacteria provides a barrier against just hydrophobic molecules (Hua & Wang, 

2014). Gram-negative outer membranes contain lipopolysaccharides on their surface, requiring 

uptake channels, from proteins embedded in the OM, for hydrophobic molecules (Hua & Wang, 

2014; van den Berg et al., 2015). Transmembrane transport is a sort of bottleneck, such that the 

uptake of hydrocarbons determines the efficiency of bioaccumulation and biodegradation (Jin et 

al., 2017). Membrane transport mechanisms must be able to maintain internal conditions within 

a prescribed range, despite external environmental changes (Parker et al., 2018).  

 

The theories behind the various methods of uptake are unclear and controversial mainly 

due to difficulties in the current methods of investigation (Jin et al., 2017). However, optimising 

and enhancing these methods promotes degradation efficiency, so is essential in natural 

bioremediation (Jin et al., 2017). Jin et al., (2017) discusses these challenges, stating that they 

are poorly studied because there is no sensitive detection method to analyse transmembrane 

process in vivo. Though the usual detection and analysation methods of chromatography and 

mass spectrometry can analyse hydrocarbons in microorganisms, these tools require large sample 

sizes and complicated pretreatment procedures (extraction and concentration) which are error-

prone and result in destroying the biological samples. As such, it is difficult to determine 

microscopic distribution and dynamic changes of hydrocarbon transport and accumulation in 

situ, not to mention that these methods only measure ensemble behaviour in microbial 

populations, ignoring cell-to-cell heterogeneity (Jin et al., 2017). One must always keep in mind 

that there is phenotypic heterogeneity in a population of cells with identical genome and that it 

can be quite broad due to epigenetic modifications, stochastic gene expression, variable mRNA 

stabilities and protein activities (Jin et al., 2017). 

 

Nonetheless, there are three main hypotheses of uptake of a substrate. They are i) 

passive diffusion; ii) passive facilitated diffusion; and iii) energy-dependent or active uptake (Jin 
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et al., 2017; Hua & Wang, 2014). Passive diffusion involves uptake of molecules without the use 

of ATP. It is the simple diffusion of molecules moving from high to low concentrations (Parker 

et al., 2018). An ATP inhibitor in solution would have no effect on this passive process. 

However, this process always requires there to be a certain higher concentration of the substrate 

in the near vicinity of the microbe, otherwise active transport would be required (Hua & Wang, 

2014). Charged molecules, or larger molecules, would need the assistance of carriers or channels 

via so-called facilitated diffusion (Parker et al., 2018). The outer membrane of Gram-negative 

bacteria will permit the diffusion of small hydrocarbons, however the corresponding role of 

Gram-positive bacterial membrane has not been reported (Hua & Wang, 2014). Gram-negative 

bacterial outer membranes contain many channels for mediating the uptake of nutrients and 

other small molecules necessary for respiration and growth (van den Berg et al., 2015). For 

example, Gram-negative Escherichia coli, has a lateral diffusion mechanism for the uptake of 

hydrophobic substrates, called the OMLCFA (outer-membrane long-chain-fatty-acid) 

transporter FadL (Hearn et al., 2009). This transporter is also present in other bacterial species, 

and its crystal structure has been visualised in Pseudomonas aeruginosa as a ß-barrel which 

creates a long hydrophobic tunnel for mediating the substrate from the extracellular 

environment through the polar lipopolysaccharide layer via a lateral opening in the barrel wall, 

into the lipid bilayer (Hearn et al., 2009). From there, the substrate diffuses into the periplasm 

where endoenzymes can begin the degradation process (Hearn et al., 2009). Organic compounds, 

such as PAHs, with low water solubility and high octanol-water partition coefficients tend to use 

this method, by partitioning into the cell wall structures, and travelling down the concentration 

gradient (Hua & Wang, 2014). There is also group translocation in which as the molecule moves 

into the cell, against the concentration gradient, it is chemically modified so it does not require 

transport against the unfavourable concentration gradient (Parker et al., 2018). Energy-

dependent, or active transport involves hydrocarbons travelling across the bacterial membrane 

via the use of ATP “pumps” (Parker et al., 2018). This is especially necessary for moving 

molecules “uphill” against their concentration gradient (Parker et al., 2018). Some hydrocarbons 

are degraded before uptake, via exoenzymes, but the majority will travel across the bacterial 

membrane to reach the cytoplasm where endoenzymes will degrade them internally (Hua & 
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Wang, 2014). The outer membrane proteins’ involvement in these energy-dependent transport 

mechanisms is poorly studied (Hua & Wang, 2014). 

 

A hydrocarbon spilled in the environment could be dissolved in the aqueous phase or 

present as hydrophobic droplets on the surface of groundwater (Hua & Wang, 2014). There are 

three modes of uptake when a hydrocarbon pollutant is in the environment: a) uptake of the 

hydrocarbon dissolved in aqueous phase; b) contact of a microbial cell with a submicron oil 

droplet; or c) direct contact with a large oil droplet [Figure 3] (Hua & Wang, 2014). The uptake 

of hydrocarbons dissolved in aqueous phase allows for water-soluble aromatics and short-chain 

hydrocarbons to be utilised (Hua & Wang, 2014). If the dissolution rate of the hydrocarbon is 

less than the growth rate of the microorganism, than the microorganism will grow well in 

solution, however if the rates are reversed, then the biodegradation potential by the microbe is 

limited (Hua & Wang, 2014). For example, about half of bacterial strains found in petroleum-

contaminated soils showed exclusive direct interfacial uptake, whereas the other half produced 

biosurfactants, indicating two main mechanisms for taking up alkanes (Hua & Wang, 2014).  

 

Figure 3: The three modes of uptake of a petroleum pollutant in aqueous phase, 
by microorganisms, from Hua & Wang (2014). 
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Surfactants are emulsifying agents that will break down the large substrate droplets into 

microdroplets. Natural surfactants, usually produced by various microorganisms, are called 

biosurfactants, and there are many various classes, such as glycolipids, lipopeptides, fatty acid, 

and polymeric biosurfactants (Kaczorek et al., 2018). Their production has been well studied 

though the uptake mechanism by the microbe is still unknown (Hua & Wang, 2014). The 

uptake of pseudo-solubilised hydrocarbons involves the production and excretion of 

biosurfactants by the microbe, and this is a very common form of uptake [Figure 4] (Hua & 

Wang, 2014). The use of biosurfactants allows for an increase in dispersion of pollutants in the 

water phase, and a desorption of contaminants from the soil matrix, ultimately increasing 

bioavailability of hydrocarbon pollutants to microbial degraders (Kaczorek et al., 2018). The 

biosurfactant is made of one or more lipophilic and hydrophilic moieties. The lipophilic moieties 

include proteins, peptides with high proportion of hydrophobic side chains of usually about 10-

18 carbons. The hydrophilic moieties include ester, hydroxyl, phosphate or carboxylate groups or 

carbohydrates. This makes the biosurfactant amphiphilic so that it can emulsify the 

hydrocarbon, enhance water solubility, decrease surface tension, increase displacement of oily 

substrates from soil particles, assist transport and translocation of insoluble substrates across 

Figure 4: The uptake of hydrophobic hydrocarbons (green hexagons) 
by microorganisms (orange rectangles), with some utilisation of 
biosurfactants (blue hexagons with black tails), from Hua & Wang 
(2014). 
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cell membranes, and help detach bacteria from oil particles after the utilisable hydrocarbon has 

been depleted (Hua & Wang, 2014).  

 

There have been numerous studies on the effectiveness of the addition of synthetic 

surfactants to solutions where microbial uptake of emulsified agents is required, in the hopes of 

improving removal and cleanup efficiency of pollutant spills (Kaczorek et al., 2018). Although 

there is some promise that these synthetic surfactants can greatly increase bioavailability of 

pollutants, it has been observed that synthetic surfactants can have too much of a toxic effect 

on the microbial membrane fluidity which undesirably causes some cellular growth inhibition 

and might cause cell rupture and death, as well as often becoming another environmental 

pollutant itself (Kaczorek et al., 2018). Therefore, the natural surfactants produced by 

biodegrading microorganisms seem to be more effective. These natural surfactants are 

advantageous due to their biodegradability, high environmental compatibility, strong surface 

activity, and lower toxicity (Kaczorek et al., 2018). The use of biosurfactants has enhanced the 

rate of biodegradation of hydrocarbons, such as the observation by Bezza & Chirwa (2017) in 

which a lipopeptidal biosurfactant produced by Bacillus cereus SPL-4 enhanced the 

bioremediation of aged PAH-contaminated soils by a microbial consortium by 86.5% 

degradation efficiency (compared to 57% efficiency without biosurfactants and nutrient 

amendments) (Kaczorek et al., 2018). These biosurfactants could even be used to assist in non-

biodegrading clean up techniques, though industrial production and implementation has yet to 

be very successful (Kaczorek et al., 2018). 

 

Different microorganisms have different affinities to hydrocarbons. Some microbes grow 

in lipid-like environments rather than aqueous environments; the microbial cell directly attaches 

to liquid hydrocarbon drops that are much bigger than the cells, so that the microorganism 

forms an agglomeration with the hydrocarbon to bring the cell in close contact (Hua & Wang, 

2014). For water-insoluble substrates, such as n-alkanes and PAHs, the hydrophobic nature of 

the bacterial cell surface plays a key role in uptake: the cells reach the oil-water interface by a 

thermal diffusion process, and then release surface-active compounds that result in formation of 

an interfacial visoelastic film which exerts control over all cell behaviour (Hua & Wang, 2014). 
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The cell’s hydrophobicity increases in the presence of biosurfactants and if the substrate is 

slightly soluble, this can promote more attachment of the cell to the oil droplets, enhancing 

alkane degradation (Hua & Wang, 2014). The biosurfactant plays a key role in this process: it 

increases the chance of direct contact between a bacterial cell and an oil droplet, and affects the 

bioavailability and biodegradation kinetics of hydrophobic pollutants by stimulatory or 

inhibitory effects dependent on the chemical characteristics of the surfactant, the pollutant, and 

the physiology of the microorganism (Hua & Wang, 2014). Surfactants must be at critical 

micellar concentration (CMC; the concentration at which micelles form): if too low, then no 

enhancement or inhibition of biodegradation is observed, and if too high, than biodegradation is 

inhibited (the substrate would remain in micellular form and not be bioavailable) (Hua & Wang, 

2014). Some microorganisms (in particular, strains of Pseudomonas) can form an agglomeration 

with the hydrocarbon to bring the cell in close contact (Hua & Wang, 2014). The cell simply 

adheres to the surface of the oil and directly transports the substrate into cells without the use 

of extracellular surfactant- or emulsifier-excretion (Hua & Wang, 2014).  

 

There are some proteins and channels that have been identified for their involvement in 

the uptake of hydrophobic molecules, despite limited research into the precise uptake 

mechanism. The COG4313 proteins form the family of OM channel proteins involved in the 

uptake of hydrophobic molecules, such as hydrocarbons (van den Berg et al., 2015). For Gram-

negative bacteria, proteins allow transport of molecules too large or too scarce to accumulate, by 

use of the TonB-dependent OM active transport system which is a ligand-specific active 

transport system that moves molecules against the concentration gradient (Hua & Wang, 2014). 

The crystal structure of such an active transport OM receptor has two distinct functional 

domains: 1) an even numbered 8-24-stranded ß-barrel spanning the OM, forming pore-like 

structures called porins, and containing large extracellular loops for ligand binding and 2) a 

globular N-terminal domain that folds into the barrel pore, inhibiting access to periplasm and 

contributing two additional loops for potential ligand binding (Hua & Wang, 2014). The 

presence of these loops could also indicate that there is also a signalling pathway between 

processes of ligand recognition and the TonB-mediated transport, whereas the blockage of the 

pore containing this channel suggests that the N-terminal domain of the protein must go 
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through a conformational change to allow ligand transport into the periplasm (Hua & Wang, 

2014). Porins allow for the passive diffusion of molecules smaller than 600 Da on a downhill 

gradient through the barrel into the periplasm, which is key for nutrient uptake (Hua & Wang, 

2014). In the Gram-negative biodegrader Pseudomonas putida F1 (PpF1), there is a channel 

coded by orf Pput2725 (van den Berg et al., 2015). Though its purpose is not yet established, 

the neighbouring gene Pput2724 and further genes nearby (Pput2727-2729) code for enzymes 

involved in monoaromatic hydrocarbon (MAH) degradation, which may suggest that Pput2725 

codes for the channel used to uptake such substances (van den Berg et al., 2015). The only OM 

protein family with an established role in hydrophobic substrate uptake is the FadL family, 

which can laterally diffuse long-chain fatty acids (LCFA) from the barrel lumen of a channel 

through the OM, bypassing the polar layer of the LPS which otherwise prevents diffusion of 

hydrophobic molecules (van den Berg et al., 2015). They can cross through via diffusion or in an 

active manner (Hua & Wang, 2014). For example, in Escherichia coli, FadL mediates passive 

diffusion of hydrophobic molecules across the OM and conformational changes to the N-terminus 

opens up the channel for such substrate diffusion (Hua & Wang, 2014). 

 

Each microorganism uses different methods to uptake necessary substrates. Yeast cells 

can utilise both direct and biosurfactant-mediated methods (Hua & Wang, 2014). Different 

microorganisms often work together in tandem through different strategies to access 

hydrocarbons (Hua & Wang, 2014). Edwards and Grbić-Galić (1992) observed that in the 

degradation of benzene, by a consortium of microorganisms from a contaminated soil site, that 

the cells appeared in close association with solid particles and with each other, allowing for a 

complex community structure able to live off electron donors and acceptors in a system that 

offers little energy. 

 

To test whether the transport of a particular substrate is induced by active transport or 

not, Hua & Wang (2014) suggests the use of 14C-labelled hydrocarbon and non-labelled 

hydrocarbon in solution with microbial degraders, and sodium azide (an oxidative 

phosphorylation uncoupler, which would reduce the uptake if active transport is occurring). If 

hydrocarbon uptake is reduced, then that would indicate that the uptake is dependent on proton 
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motive force (Hua & Wang, 2014). Other studies have suggested that substrate transport is 

related to the environmental concentration of the substrate, and as such, since energy-dependent 

mechanisms mediate the process of transport into the bacterial cells, then blocking these 

mechanisms would cause biosurfactant production to cease as well (Hua & Wang, 2014). 

Nonetheless, this all needs better and more research (Hua & Wang, 2014). 

 

3.2 Storage 

Bacteria accumulate many compounds for storage as a strategy to survive in variable 

environments, and these are called intracellular inclusions (Hua & Wang, 2014; Parker et al., 

2018; Wilkinson, 1963). Though ATP can usually reach high concentrations within cells (in the 

millimolar range), with both a high rate of ATP-dependent process, and ATP’s low stability in 

water, this concentration could be quickly depleted if not immediately replenished by glycolysis 

and oxidative phosphorylation (Bonora et al., 2012). Hence, the storage of carbon sources for 

ATP production is a necessity (Bonora et al., 2012). These intracellular inclusions can store 

excess nutrients, within cytoplasmic structures, in a polymerised form to reduce buildup of 

osmotic pressure which usually occurs during the accumulation of solutes (Parker et al., 2018). 

The most common such compounds are intracellular polysaccharides such as glycogen and 

starch, and lipids such as poly-ß-hydroxybutyrate (PHB) and triglycerides (Wilkinson, 1963; 

Bonora et al., 2012). Normally, lipids and polyglucoses act as alternative reserves, depending on 

the bacterial species, and the nature of the carbon and energy sources in the environment 

(Wilkinson, 1963). They uptake their electron-donor substrates when present in their near 

environment and oxidise them internally into fatty acids to store for when energy sources are 

low (Hua & Wang, 2014; Parker et al., 2018). There are several kinds of inclusions. Volutin (or 

metachromatic) granules store polymerised inorganic phosphate to be used in metabolism or in 

the formation of biofilms (Parker et al., 2018). Some are not used for nutrient storage, but 

rather for other mechanistic purposes: gas vacuoles for altering buoyancy, and magnetosomes 

filled with magnetic iron oxide or iron sulphide to align with the magnetic field to aid movement 

(Parker et al., 2018).  
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Hydrophobic organic chemicals (HOC), which include the hydrocarbons of environmental 

concern, can be incorporated and bioconcentrated into living tissue (Jin et al., 2017). 

Microorganisms significantly affect mobility and bioavailability of HOC in the environment via 

bioaccumulation and biotransformation (Jin et al., 2017). Oil production and processing 

generate significant portions of oily sludge, containing waste oil (40-60%), wastewater (30-90%) 

and mineral particles (5-40%) (Hoseinabadi et al., 2015). Accumulation of PHB under aerobic 

conditions occurs when a carbon source is in excess (e.g. provided from oil sludge), but when one 

or several other nutrients are limited (Hoseinabadi et al., 2015). The convection and active 

processes in the cellular cytoplasm allows for accumulation of HOC from water, when present in 

high concentrations (Jin et al., 2017). This does present a ecotoxicological concern since it can 

be biomagnified through the food chain via contaminated foodstuffs, but it also presents 

questions in regards to the processes involved in biodegradation (Jin et al., 2017). How do cells 

store extra energy and when? Is there a mechanism for ceasing uptake or redirecting to resume 

uptake? And what is the mechanism and pathway for directing the lipids to energy production? 

 

To demonstrate storage function for a compound, one must show that the products of 

the breakdown are used for some advantageous purpose by the cell in its struggle for survival 

over other organisms (Wilkinson, 1963). For example, Wilkinson (1963) reports that glycogen 

and PHB (a polysaccharide and a lipid both able to act as alternative energy reserves) provide 

intermediates for the synthesis of proteins, allowing for an increment of growth and division 

when carbon and energy sources are sporadic. Such storage mechanisms may also allow rapid 

adaptation to different environments by production of appropriate enzymes (Wilkinson, 1963). 

Again, Wilkinson (1963) gives the example that the breakdown of PHB provides energy and 

intermediates for sporulation. Such breakdowns of reserves helps preserves the cell’s viability by 

providing energy for maintenance (Wilkinson, 1963). A cell will tend to store any polymers that 

can be accumulated without decreasing its growth rate (Wilkinson, 1963). The nature of such 

polymers is dependent on the rate-limiting growth step, so upon the near environment, and the 

level of nutrients (Wilkinson, 1963). Wilkinson (1963) hypothesises that probably the rate-

limiting factor will either be the synthesis of proteins and nucleic acids when sources of carbon, 
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hydrogen, and oxygen reserves accumulate, or the primary degradative pathway of carbon and 

energy when no such specialised reserves accumulate. 

 

 Jin et al. (2017) monitored real-time bioaccumulation and efflux of HOC in 

microorganisms at single-cell level using single-molecule fluorescence microscopy (SMFM) with a 

microfluidic device and using temperature control. They used the Gram-negative Escherichia 

coli and Gram-positive Staphylococcus aureus since these are two species with distinct 

membrane structures, with the hypothesis that it will lead to different features of 

bioaccumulation. They used perylene (a five-ring PAH, C20H12) as the HOC since it has a high 

quantum yield (0.94) and an excitation spectrum in the visible-light region, making it ideal for 

FM (Jin et al., 2017). Incubation of the bacterial strains in perylene was followed by observation 

of the cellular perylene concentration (Jin et al., 2017). SMFM allows for observation of cell-to-

cell heterogeneity, which was most notable in E. coli, as well as for differentiating between living 

and dead cells via a fluorescent dye, PI (cells with a higher than threshold fluorescence were 

considered dead) (Jin et al., 2017). However, not all cells with high perylene accumulation were 

dead, which indicates heterogeneity within live cells and homogeneity within dead ones (Jin et 

al., 2017). There was a high level of heterogeneity between E. coli cells, which was attributed to 

phenotypic differences within the isogenic population and their biological processes (Jin et al., 

2017). Neither E. coli nor S. aureus have perylene degradation genes, so biodegradation was not 

a possible reason for cell-to-cell heterogeneity nor for perylene removal from the incubation 

solution (Jin et al., 2017). Jin et al., (2017) supposed the heterogeneity within E. coli cells to be 

due to epigenetic modifications, stochastic gene expression, variable mRNA stabilities, and 

protein activities. They propose E. coli to use its membrane efflux system to avoid accumulation 

too much perylene, whereas S. aureus did not have bioaccumulation correlated to survival state 

(Jin et al., 2017). In S. aureus, it was an entirely energy-independent passive process, with both 

living and dead cells having comparable perylene accumulation (Jin et al., 2017). E. coli cells 

were able to achieve steady state after about 10 minutes of incubation whereas S. aureus cells 

never reached steady state, indicating a passive trans-membrane diffusion in S. aureus cells, 

versus the membrane-efflux system active in live E. coli cells which effectively resists perylene 

accumulation (Jin et al., 2017).  
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Gram-negative bacteria have a thick polar lipopolysaccharide (LPS) layer in their OM 

which provides an effective barrier against hydrophobic molecules, but this is not the only 

aspect at play here; E. coli would then reach steady state much more slowly so there must be an 

additional mechanism: perhaps a multidrug efflux pump, known to exist in E. coli and other 

bacteria, which may play a role in the intrinsic resistance to perylene (Jin et al., 2017). Such 

transporters have multiple specificities for many relative lipophilic planar molecules (Jin et al., 

2017). To demonstrate the role of this pump, Jin et al. (2017) used the Tol C efflux pump 

knockout strain of E. coli (∆tolC) and a proton motive force (PMF) inhibitor, CCCP. Tol C is 

a common channel protein of both major and minor efflux systems, enabling interactions with 

translocase systems (Jin et al., 2017). Deletion of the tolC gene largely abolishes efflux activity 

(Jin et al., 2017). PMF is the driving force of multidrug efflux pumps like Tol C, and CCCP 

dissipates PMF thus blocking the efflux system (Jin et al., 2017). When using the knockout 

strain and CCCP, the rate of perylene accumulation was constant during incubation and was 

much lower in dead E. coli cells, indicating that there are different membrane structures in live 

and dead cells, such as that the cytoplasmic membranes of dead bacteria are partly damaged, 

and that the live cells have integrated membranes which slow accumulation of perylene 

molecules (Jin et al., 2017). However, there was still a high heterogeneity which can be 

attributed to combined phenotypic differences in cellular sensitivity to the CCCP treatment, 

individual capability of recovering from CCCP, and individual membrane efflux activity (Jin et 

al., 2017).  

 

Though only reporting the visualisation of E. coli and S. aureus, Jin et al. (2017) also 

visualised perylene accumulation by other Gram-negative (Vibrio alginolyticus, Proteus vulgaris) 

and Gram-positive (Bacillus subtilis) bacteria. B. subtilis had a similar result to S. aureus, both 

Gram-positive bacteria having high levels of perylene accumulation without reaching steady 

state during incubation (Jin et al., 2017). V. alginolyticus and P. vulgaris both excluded 

perylene completely (Jin et al., 2017). Another study observed nine different bacterial strains 

with the accumulation of phenanthrene (Stringfellow & Alvarez-Cohen, 1999). All Gram-positive 

bacteria, except Micrococcus luteus, had higher or better accumulation than Gram-negative 
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bacteria, which is consistent with (Jin et al., 2017; Stringfellow & Alvarez-Cohen, 1999). The 

observed effect is not just due to the difference in membrane structures, but more specifically 

due to the presence of the multidrug efflux systems associated with Tol C protein, driven by 

PMF (Jin et al., 2017). However, Gram-positive bacteria also have numerous membrane 

transporters for efflux of various drugs, so their inability to expel perylene is unclear and 

warrants further investigation (Jin et al., 2017). 

 

Energy reserves can be determined via a process called microbial calorimetric analysis 

which involves measuring the heat coming from carbon sources inside bacteria (Boe & Lovrien, 

1990). A rather underused tool, microbial calorimetry measures bacterial energy stores without 

breaking the cells open, and is a rapid and easy method though precision and accuracy may be 

unclear (Boe & Lovrien, 1990). Not all energy storage polymers are PHB, which would skew the 

calculations of dry weight of energy storage in the cells, since they would be of different 

molecular weights (Boe & Lovrien, 1990). However, it overall gives an easily obtained estimate 

of “heat content” in bacterial energy reserves, easily drawn on by adding oxygen (Boe & Lovrien, 

1990).  

 

If an organism is grown under nitrogen limitation, oxygen limitation, and in excess 

carbon, many accumulate storage polymers such as PHB, which can account for sometimes as 

much as 60-80% of their dry weight (Boe & Lovrien, 1990). Aerobic metabolism of glucose, by 

many bacteria, generates -305 ± 20 Kcal/mol for conversion of acetate and three CO2 molecules 

(Boe & Lovrien, 1990). 45% of glucose’s carbon forms CO2, about 16% forms acetate or ethanol, 

and the remainder remains in the cell as biomass or other intermediates (Boe & Lovrien, 1990). 

Oxygen triggers the metabolism of stored carbon, and sustains it, though different species carry 

out metabolic consumption at different rates (Boe & Lovrien, 1990). For example, Pseudomonas 

putida can proceed for up to two hours with about twenty remixing cycles, at 25˚C, whereas 

Alcaligenes eutrophus lasts about forty minutes with forty remixing cycles at 25˚C, or more if 

remixing is more spread out (such as five-minute intervals) (Boe & Lovrien, 1990). The 

estimated average heat for metabolising a PHB molecule is 200 Kcal/mol so the total heat 

measured is divided by this value, to give an estimate of how much dry weight of the cell may 
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be PHB (Boe & Lovrien, 1990). Boe & Lovrien (1990) found that about 5-50% of the dry weight 

of these cells may be PHB, depending on species, growth conditions, and carbon source, but 

calorimetric estimates need to be compared to conventional extractive-chemical degradative 

methods.  

 

There are still questions to be answered regarding energy storage and its relationship to 

metabolism. Boe & Lovrien (1990) observed that oxygen is the “trigger” but it is really just the 

ultimate electron acceptor, and part of the fuel. There could be other potential triggers or 

signals, such as uncoupling agents (i.e. dinitrophenol), that can call on glycolysis and make it 

accelerate, or other signals such as glutathione deficiency which demands restoration of ATP 

and NADPH (Boe & Lovrien, 1990). Such agents mixed with cells can amplify the effects, 

forcing cells to use extra oxygen and endogenous carbon reserves to produce large metabolic 

heats (Boe & Lovrien, 1990). Wältermann & Steinbüchel (2005) presented different kinds of 

lipids stored in prokaryotes, comparing their formations to similar structures in eukaryotes, 

however they noted many open questions which had not yet been fully answered, including: 1) 

how their synthesis and mobilization is regulated; 2) which enzymes catalyze intracellular 

mobilization and how they get access; 3) what regulates size and shape of these lipid inclusions.  

 

3.3 Aerobic Cellular Respiration 

Cellular respiration can fall into two main modes: in the presence or absence of oxygen. Both are 

important in the bioremediation of aromatic hydrocarbons since there are both aerobic and 

anaerobic bacteria and archaea with abilities involved in the processes of degradation. Bacterial 

catabolism of aromatics involves many peripheral pathways that transform the compounds into 

a limited number of common intermediates which are further processed into the central 

metabolism of the cell (Carmona et al., 2009). In aerobic respiration, oxygen is the electron 

acceptor and co-substrate for hydroxylation and oxygenolytic ring cleavage of aromatic 

hydrocarbons (catalysed by oxygenases) (Carmona et al., 2009).  

 

Aliphatic hydrocarbons are oxidised readily by a variety of bacteria and fungi (Gaudy, 

Jr. & Gaudy, 1980). The major aliphatic mode of attack is: alkane → alcohol → aldehyde → 
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fatty acid, which then undergoes ß-oxidation processes that are the same as for fatty acids 

derived from lipids (Gaudy, Jr. & Gaudy, 1980). For aromatic hydrocarbons, there are two main 

steps. An upper pathway involving enzymatic ring activation, preparing the hydrocarbon to 

enter some central intermediate pathways, followed by a lower pathway, where dearomatisation 

and ring cleavage occurs, breaking the aromatic ring of the molecule [Figure 5] (Jiménez et al., 

2004; Gaudy, Jr. & Gaudy, 1980). The conventional route involves activation of the aromatic 

ring, leading to the formation of a dihydric phenol which involves the addition of two hydroxyl 

groups (Jiménez et al., 2004). The final compounds funnel into the central metabolic systems, 

usually beginning with ß-oxidation, then entering the Krebs or TCA cycle (Jiménez et al., 2004). 

For example, benzene degradation begins with oxidation of the benzene ring by either a benzene 

dioxygenase, or a benzene monooxygenase and a phenol hydroxylase, which ultimately forms 

catechol, and then ortho or meta fission (ortho shown below; meta forms 2-hydroxymuconic 

semialdehyde) (Gaudy, Jr. & Gaudy, 1980; Rochman et al., 2017; Harayama et al., 2004). Most 

microbial benzene degraders have genes encoding for both monooxygenases and dioxygenases 

(Rochman et al., 2017). Dioxygenases are more efficient than monooxygenases, since they 

catalyze both steps of converting benzene to catechol, whereas monooxygenases must be coupled 

with a phenol hydroxylase in what is more clearly a two-step process (Rochman et al., 2017). 

This is the benzene degradation pathway with two-step ring activation and ortho fission ring 

cleavage: 𝑏𝑒𝑛𝑧𝑒𝑛𝑒	 → 	𝑐𝑖𝑠 − 1,2 − 𝑑𝑖ℎ𝑦𝑑𝑟𝑜𝑥𝑦 − 1,2 − 𝑑𝑖ℎ𝑦𝑑𝑟𝑜𝑏𝑒𝑛𝑧𝑒𝑛𝑒	 → 	𝑐𝑎𝑡𝑒𝑐ℎ𝑜𝑙	 → 	𝑐𝑖𝑠, 𝑐𝑖𝑠 −

𝑀𝑢𝑐𝑜𝑛𝑖𝑐	𝑎𝑐𝑖𝑑	 → 	ß − 𝑘𝑒𝑡𝑜𝑎𝑑𝑖𝑝𝑖𝑐	𝑎𝑐𝑖𝑑	 → 	𝑎𝑐𝑒𝑡𝑦𝑙 − 𝐶𝑜𝐴	 + 	𝑠𝑢𝑐𝑐𝑖𝑛𝑖𝑐	𝑎𝑐𝑖𝑑, which enters the TCA 

cycle (Gaudy, Jr. & Gaudy, 1980; Fritsche & Hofrichter, 2000; Ladino-Orjuela et al., 2016) . 

However, benzene also has many satellite pathways which lead to the production of benzoate or 

benzyl-CoA, before ring reduction to enter the TCA cycle (Chakraborty & Coates, 2004). Its 

main pathway is the catechol branch of the ß-ketoadipate pathway (the ortho-cleavage pathway) 

coded by cat genes (pcaD, pcaIJ, pcaF, catRBCA), and catalysed by 1,2-dioxygenase (CatA 

coded by catA gene), often in two sets, such as catBC (coded by catBC gene), two subsequent 

enzymes that make lactone transform into succinyl- and acetyl-CoA (Jiménez et al., 2004; Moat 

et al., 2002). Common benzene degrading genera include Acinetobacter, Pseudomonas, and 

Burkholderia (Jiménez et al., 2004). Phenol follows a similar pathway to benzene: 𝑝ℎ𝑒𝑛𝑜𝑙	 →

	𝑐𝑎𝑡𝑒𝑐ℎ𝑜𝑙	 → 	𝑐𝑖𝑠, 𝑐𝑖𝑠 − 𝑚𝑢𝑐𝑜𝑛𝑖𝑐	𝑎𝑐𝑖𝑑	 → 	ß − 𝑘𝑒𝑡𝑜𝑎𝑑𝑖𝑝𝑖𝑐	𝑎𝑐𝑖𝑑	 → 	𝑎𝑐𝑒𝑡𝑦𝑙 − 𝐶𝑜𝐴	 + 	𝑠𝑢𝑐𝑐𝑖𝑛𝑖𝑐	𝑎𝑐𝑖𝑑, 
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since phenol already has one hydroxyl group, so is one step closer to catechol (Neilson, 1994; 

Reardon et al., 2000). Many other aromatics degrade to benzene-like compounds which then 

enter pathways similar to benzene degradation, but benzene does not have extra substituent 

branches so its degradation process is somewhat simpler than more complex compounds 

(Jiménez et al., 2004). Toluene can undergo multiple biotransformations, but Reardon et al. 

(2000) suggests 𝑡𝑜𝑙𝑢𝑒𝑛𝑒	 → 3 −𝑚𝑒𝑡ℎ𝑦𝑙	𝑐𝑎𝑡𝑒𝑐ℎ𝑜𝑙	 → 2 − ℎ𝑦𝑑𝑟𝑜𝑥𝑦 − 6 − 𝑜𝑥𝑜 − 2,4 −

ℎ𝑒𝑝𝑡𝑎𝑑𝑖𝑒𝑛𝑜𝑎𝑡𝑒	before entering the TCA cycle as the process undergone by Pseudomonas putida 

F1. Some of the degradation processes occur very slowly, and sometimes only part of the process 

can occur (Gaudy, Jr. & Gaudy, 1980). Often, one species can only do one part of the full 

degradation process, so a varied community is required for full degradation (Gaudy, Jr. & 

Gaudy, 1980).  

 

Once the substrate has been transformed into a common intermediate, it can enter the 

further down the normal aerobic cellular respiration process, which normally begins with 

glycolysis and oxidative decarboxylation, then the TCA cycle, and finally, oxidative 

Figure 5: A schematic representation of the metabolic pathways 
of aromatic hydrocarbons by bacteria in aerobic conditions from 
Ladina-Orjuela et al. (2016). 
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phosphorylation and the electron transport chain (Parker et al., 2018). Aerobic cellular 

respiration normally begins with glycolysis, transforming a glucose molecule (the fundamental 

source of energy for most cells) into pyruvate (𝑔𝑙𝑢𝑐𝑜𝑠𝑒	 + 	2	𝑁𝐴𝐷 +	+	2	𝑃𝑖	 + 	2	𝐴𝐷𝑃	 →

	2	𝑝𝑦𝑟𝑢𝑣𝑎𝑡𝑒	 + 	2	𝑁𝐴𝐷𝐻	 + 	2	𝐴𝑇𝑃	 + 	2	𝐻 +	+	2	𝐻&𝑂	 + 	ℎ𝑒𝑎𝑡) (Parker et al., 2018). Pyruvate 

undergoes oxidative decarboxylation which oxidises the molecule into acetyl-CoA and CO2 by 

the pyruvate dehydrogenase complex (PDC) (Parker et al., 2018). Acetyl-CoA, in the presence 

of oxygen, enters the TCA citric acid cycle (also known as the citric acid cycle or Krebs cycle) 

where it undergoes a series of transformations to produce energy in the form of ATP (the overall 

equation is: 𝑎𝑐𝑒𝑡𝑦𝑙 − 𝐶𝑜𝐴	 +	𝑁𝐴𝐷' 	→ 	6	𝑁𝐴𝐷𝐻	 +	𝐶𝑂& 	+ 	𝐻&𝑂	 + 	2	𝐹𝐴𝐷𝐻& 	+ 	2	𝐴𝑇𝑃) (Parker 

et al., 2018). The NADH produced in the Krebs cycle is oxidised via oxidative phosphorylation 

and enters the electron transport chain travelling down a proton gradient to produce more ATP 

(via ATP synthase) and water (Parker et al., 2018). 

 

There are many species that have been identified as aromatic hydrocarbon degraders. 

Many belonging to the Pseudomonas genus, especially Pseudomonas putida, contain many 

dioxygenases for aerobic degradation (Parker et al., 2018). Pseudomonas sp. are the best 

understood and very commonly studied as a quintessential γ-proteobacteria since it is a 

metabolically versatile genus, very adaptable both physiologically and genetically, and found in 

a vast array of environments such as soil, freshwater, and marine ecosystems, as well as being 

associated with some plants and animals (Jiménez et al., 2004). Other species include members 

of the Rhodococcus and Acinetobacter sp. (Parker et al., 2018). 

 

There have been many developments in efficiency due to the desire to increase energy 

production by microorganisms for the purposes of industrial biotechnology (Zhou et al., 2009). 

The field of metabolic engineering has developed improvements in the microbial processes to 

gain increased product concentration, yield, and productivity of chemicals produced by such 

processes (Zhou et al., 2009). Though there has been great success, some tactics such as 

overexpression, deletion, or introduction of heterologous genes in specific metabolic pathways do 

not always achieve these targets (Zhou et al., 2009). For example, the glycolytic pathway, 

present in both eukaryotic and prokaryotic microorganisms, cannot increase its flux by 



 

 

 

29 
 

increasing genetic overexpression since the demand and supply of ATP play key roles in 

glycolysis as well as in the various cofactors (i.e. ATP/ADP, NADH/NAD, acetyl-CoA/CoA) 

(Zhou et al., 2009). ATP, in particular, is a nucleotide which can be a substrate, a product, an 

activator, or an inhibitor throughout the metabolic networks, and it is its supply and demand 

that affects active transportation, peptide folding, subunit assembly, protein relocation and 

phosphorylation, cell morphology, signal transduction, and the stress response (Zhou et al., 

2009). Since it is involved in so many pathways and in the production of almost all metabolites, 

the manipulation of the ATP supply and demand is necessary to achieve higher product 

concentration, higher productivity, higher substrate yield, expanse of substrate spectra, and an 

enhancement of resistance to harsh environmental conditions (Zhou et al., 2009). Many of these 

would be important in improving the microbial efficiency of hydrocarbon biodegradation.  

 

ATP supply in microorganisms begins in substrate-level phosphorylation and oxidative 

phosphorylation (Zhou et al., 2009). The latter’s manipulation is more efficient to regulate 

intracellular ATP concentration under aerobic conditions, since most ATP production comes 

from the oxidative phosphorylation pathway (Zhou et al., 2009). Thus for regulating ATP 

availability, one would need to manipulate NADH availability, the electron transfer chain, the 

proton gradient, F0F1-ATPase, and oxygen supply (Zhou et al., 2009). Intracellular NADH 

converts to NAD via the ETC, with oxygen as the final electron acceptor, producing lots of 

ATP (Zhou et al., 2009). Or it can be directly oxidised into water and NAD through NADH 

oxidase (Zhou et al., 2009). So manipulation of these processes can be used to manipulate 

intracellular ATP (Zhou et al., 2009).  

 

3.4 Anaerobic Cellular Respiration 

Some bacteria and archaea lack the ability to respire aerobically, and as such, utilise other 

inorganic electron acceptors that are not oxygen (Parker et al., 2018). These microbes may not 

be able to use aerobic respiration for various reasons such as: 1) lacking cytochrome oxidase 

genes, which transfer electrons to oxygen at the end of the ETC; 2) lacking genes for enzymes 

which protect against dangerous oxygen radicals (i.e. hydrogen peroxide, superoxide); 3) lacking 

sufficient oxygen to carry out aerobic respiration (Parker et al., 2018). There are many options 
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for inorganic molecules other than oxygen, such as nitrate, sulphate, iron (III), carbon dioxide, 

manganese (II), selenate, and others (Parker et al., 2018; Carmona et al., 2009). For example, 

denitrifing microbes use nitrate and nitrite as their final electron acceptors, and produce 

nitrogen gas (Parker et al., 2018). Some common anaerobic biodegraders of benzene include 

Thauera aromatica (utilises iron as electron acceptor, can tolerate other aromatics but prefers 

benzene), members of the Peptococcaceae family (utilise iron, dominate in sulphate-reducing 

conditions), and the Desulfobacteraceae family (dominate in denitrifying, sulphate-reducing, and 

methanogenic conditions; can syntrophically interact with Peptococcaceae when iron(III) is the 

electron acceptor) (van der Zaan et al., 2012; Rochman et al., 2017). Another example is the 

facultative anaerobe Thauera phenylacetica, which can utilise oxygen or nitrate (Rochman et al., 

2017). Such anaerobic respirers commonly have an intact Krebs cycle, so they can still access 

energy from NADH and FADH2, but they use an altered ETC including distinct complexes for 

electron transfer to their final electron acceptors (Parker et al., 2018). Intracellular NADH 

converts to NAD via fermentative pathways (i.e. aldehyde dehydrogenase or lactate 

dehydrogenase), so mainly through substrate-level phosphorylation (Zhou et al., 2009). In 

practice, there are smaller electrochemical gradients therefore less ATP produced during 

anaerobic respiration (Parker et al., 2018).  

Figure 6: A schematic representation of the metabolic 
pathways of aromatic hydrocarbons by bacteria in anaerobic 
conditions from Ladina-Orjuela et al. (2016). 
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During anaerobic degradation of aromatic hydrocarbons, a major strategy is the 

reductive reactions attacking the aromatic ring [Figure 6] (Carmona et al., 2009). This strategy 

is more recently discovered despite the anaerobic microbial metabolism being the most ancient 

of life processes; the genetic and biochemical bases of anaerobic degradation are not well 

established due to difficulties in routinely growing and genetically manipulating aromatic-

degrading anaerobic microbes (Carmona et al., 2009). Anaerobic pathways are far less 

understood than aerobic since the former are not as efficient, and soil allows for oxygen diffusion 

so aerobic pathways tend to be primarily used (van der Zaan et al., 2012). However, anoxic 

conditions do dominate many natural habitats and contaminated sites such that anaerobic 

biodegradation is the dominant process of natural biodegradation, despite being the less efficient 

process (Carmona et al., 2009). There is also the coexistence of multiple species to keep in mind; 

often mixtures of anaerobic and aerobic microbes, especially in water source zones where water 

circulates causing anoxic and oxic zones to mix, along with the ubiquitous microbial species (van 

der Zaan et al., 2012; Rochman et al., 2017). Local microbial communities use locally available 

electron donors (carbon sources) and acceptors to perform biodegradation rates according to 

particular redox parameters (Carmona et al., 2009). The anaerobic pathways that have best 

been observed and demonstrated are nitrate reducing, iron (III) reducing, sulphate reducing, and 

methanogenic (Chakraborty & Coates, 2004). 

 

Benzene biodegradation, in particular, has been linked with multiple inorganic electron 

acceptors: sulfate reduction, iron reduction, methanogenesis, and nitrate reduction (Burland & 

Edwards, 1999). Benzene-degrading species work in syntrophic interactions since benzene is 

degraded by a collection of various electron acceptor pathways (van der Zaan et al., 2012). 

Edwards et al. (1992) confirmed the link between BTEX biodegradation (specifically xylene and 

toluene) and sulphate reduction, and Burland & Edwards (1999) confirmed the link between 

benzene biodegradation and nitrate reduction. Edwards et al. (1992) observed in sediment 

microcosms collected from the Amoco Cadiz oil spill site that toluene and m-xylene were 

degraded more rapidly than p-xylene and o-xylene; toluene always being the preferred substrate, 

however that in the presence of more easily degradable substrates such as lactate, glucose, or 

yeast extract, hydrocarbon degradation ceased entirely until the preferred substrates were 
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consumed. Degradation would diminish when there was excessive substrate concentrations (>30 

mg/L or 300 µM), and was inhibited in the presence of free sulphide (via Na2S), but would 

increase again if the cultures were flushed with N2-CO2 and replenished with fresh medium 

(Edwards et al., 1992). Edwards et al. (1992) utilised 14C-labelled substrates to determine 

degradation rates and observed that 95-100% of the hydrocarbon was recovered as 14CO2, 

indicating that only a very small portion was assimilated into cells. They deduced that there 

were probably not optimal conditions in the lab, suggested by extremely long doubling times, 

and low cell yields, plus variable degradation rates (experiment yield was half of the theoretical 

yield), but most especially, because there was an obvious order of preference in substrate 

degradation (toluene over xylenes, lactate/glucose/yeast extract over toluene), which suggests 

that degradation of BTEX and similar contaminants at contaminated sites may be prevented 

not due to lack of appropriate organisms or enzymes, but due to presence of more readily 

degraded substrates (Edwards et al., 1992). 

 

 Burland & Edwards (1999) confirmed the link between benzene biodegradation and 

nitrate reduction using batch microcosms of soil and groundwater from two different sites and 

evaluating a variety of electron acceptors to confirm nitrate as sole electron acceptor in this 

case. One site was a decontaminated retail gasoline station in Toronto, Ontario, and the other 

was an uncontaminated fresh water swamp near Perth, Ontario (Burland & Edwards, 1999). 

Nitrate reduction is the process of converting nitrate to nitrite and then finally to ammonia or 

nitrogen gas (Burland & Edwards, 1999). Burland & Edwards (1999) observed 92-95% of initial 

benzene (14C-labelled) was recovered as CO2 and 5-8% occurred in the non-volatile fraction 

which was presumed to be biomass. Denitrification to nitrogen gas was observed through gas 

bubble formation in the solution, and was measured and determined to be stoichiometrically 

equal to nitrate consumption (Burland & Edwards, 1999). Including other electron acceptors to 

determine whether they were being used or whether nitrate was the dominant electron acceptor, 

they observed no methane production (CO2 is not utilised) (Burland & Edwards, 1999). FeS was 

present in the medium was rapidly oxidised to stoichiometric amounts of ferric iron and small 

amounts of sulphate when nitrate was added to the inoculated cultures (sulphate was not 

initially present in the culture medium), and this occurred regardless of whether benzene was 
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present or not, nor was iron and sulphate produced here re-reduced (Burland & Edwards, 1999). 

Of the various electron acceptors tested (CO2, sulphate, iron, nitrate), all were measured 

initially and after 3.38 µmol of benzene was degraded: only nitrate was significantly consumed 

(~3.6 µmol/vial) (Burland & Edwards, 1999). Nitrite accumulated in benzene-degrading 

cultures, and if nitrate reduction was slow, so was benzene degradation, and as nitrate reduced 

to nitrite, benzene degradation began to cease, indicating that nitrate is a better electron 

acceptor than nitrite, or that nitrite may be a benzene degradation inhibitor (Burland & 

Edwards, 1999). 

 

3.5 Cellular Growth 

The bacterial cellular growth cycle is well established and understood. Most bacteria replicate 

through the process of binary fission, where each cell duplicates its DNA and then cleaves in 

two, forming two identical cells (Parker et al., 2018). When there are the proper conditions, 

such as excessive energy supply or the most preferrable environmental conditions (pH, oxygen 

levels, temperature, nutrients, et cetera), then bacteria can grow comfortably, which can be 

observed with batch culture conditions in a “closed” system of a laboratory (Parker et al., 2018). 

Outside of their optimal preferred environment, they may still grow but not as efficiently. When 

a bacterial population begins to grow in a new environment, its adjustment begins with a period 

of no growth called the lag phase (Parker et al., 2018). As the cells adjust, they begin to grow 

exponentially, dividing by binary fission, in the period known as the log phase (Parker et al., 

2018). The shortest possible generation time, and specific growth conditions are all genetically 

determined, though the actual generation time will be affected by the environmental conditions 

(Parker et al., 2018). After some time, the number of cells increases such that various factors in 

the environment require the growth rate to slow. These may include accumulation of waste 

products, depletion of nutrients or oxygen, adjustment of pH or temperature due to waste 

products or other factors (Parker et al., 2018). (In an “open” system, the population may act 

differently with the introduction of factors such as a renewal of resources, or the removal of 

waste products.) Then a population will enter a stationary phase, where the growth curve 

plateaus, and the rate of new cellular growth is equal to the rate of cellular death (Parker et al., 

2018). Cells can persist in this phase for months to years. Bacteria begin a survival mode of 
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metabolism, where the synthesis of necessary proteins and nucleic acids are slowed or stalled, 

and they are not actively growing (Parker et al., 2018). If the environment becomes too toxic for 

the bacterial community, such as if the waste products are overwhelming, or the nutrients are 

exhausted, then the cells may begin to die off in exponential fashion, aptly named the death 

phase (Parker et al., 2018).  

 

Burland & Edwards (1999) determined cell yield by measuring cellular protein before and after 

degradation of a known amount of benzene. Assuming 50% of the dry cell weight is protein, they 

calculated 8.8 g of cells generated per mole of benzene degraded (Burland & Edwards, 1999). 

They estimated the fraction of electrons from benzene that would be used for cell synthesis (𝑓!) 

by converting the measured yield (g/mol) to units of electron equivalents, based on the 

McCarthy prediction method, which is based on a correlation between free energy released 

during oxidation of a substrate, and experimental cell yield (Burland & Edwards, 1999). They 

calculated 𝑓! = 0.05 = 5% of electrons in benzene were recovered as biomass which correlated 

with the 5-8% isotopic carbon recovered as the non-volatile fraction (Burland & Edwards, 1999). 

The assumed typical efficiency of electron transfer was 60% and the theoretical values of 

benzene oxidation were 0.45 when coupled with nitrate reduction to nitrogen, and 0.35 when 

coupled with nitrate reduction to nitrite (Burland & Edwards, 1999). However, the theoretical 

values were greater than the experimental value of 0.05 which indicates that the actual 

efficiency was far lower (Burland & Edwards, 1999). They hypothesised that this was due to 

suboptimal growth conditions, or the presence of inhibiting substances, or an inefficient pathway 

for benzene (Burland & Edwards, 1999).  

 

As for the stoichiometry, theoretically 6 moles of nitrate should be needed to oxidise 1 

mole of benzene (if nitrate is reduced to nitrogen), or 15 moles of nitrate if reduced to nitrite 

(Burland & Edwards, 1999). This stoichiometry does not incorporate new cell synthesis, though, 

which would require multiplying the coefficients for nitrate in  the energy equations by a 

fraction of the benzene used for energy production (𝑓( = 1 − 𝑓!), to determine the ratio of the 

amount of nitrate consumed to the amount of benzene degraded in individual culture vials at 

various enrichment stages (Burland & Edwards, 1999). For example, in the original soil culture, 
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the nitrate:benzene ratio was initially greater than the theoretical value presumably due to 

nitrate from any unknown electron donors in the soil sample (Burland & Edwards, 1999). But as 

carbon sources were depleted, the ratio stabilized to 10 moles of nitrate per mole of benzene 

(Burland & Edwards, 1999). The predicted nitrate:benzene ratio (for nitrate completely reduced 

to nitrogen gas) was 5.7 mol/mol, with the experimentally measured biomass yield of 8.8 g/mol 

(corresponding to an 𝑓( value of 0.95), and 3.3 mol/mol (for 𝑓( = 0.55) if the yield is predicted 

using the McCarthy method (Burland & Edwards, 1999). So, the observed ratio of 10 mol/mol 

is closer to the predicted ratio of benzene oxidation coupled to partial reduction of nitrate to 

nitrite (ratio should be about 14 mol/mol if 𝑓( = 0.65 and was experimentally measured to be 

9.8 mol/mol) which indicates that most of the cells’ energy is derived during the first stage of 

nitrate reduction, and only a smaller amount is derived in subsequent stages (Burland & 

Edwards, 1999). 
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Chapter 4 – Discussion 

Enouy, Walton, et al. (2021) showed that the Monod bioreaction equation can be represented as 

a three-stage serial process involving aqueous phase diffusive transport towards a spherical 

microbe, transmembrane transport, and reaction within the microbe. The transmembrane 

transport process can be further subdivided into two different scenarios: a constant rate model 

and a linear rate model. However, the three-stage process is rather simplistic. Connecting more 

considerations of mass transport, storage, and metabolic systems to the physical processes in the 

Monod model could improve its ability to fit data sets. The idea here is to expand the view of 

the Monod equation to include more processes than just internal microbial reaction. Though the 

data were able to fit fairly well within the two different scenarios, there is some deviation 

between the model and the data, as will be mentioned below, which implies that there could be 

other scenarios that better fit the data, especially as different substrate-species pairs would 

result in different degradation and growth curves. At this point, all the discussion of deviation 

between model and data from Reardon et al. (2000) is simply a visual exercise. The previous 

chapter explored detailed contributions of research to the understanding of the biological 

processes involved in biodegradation, some of which are involved in the representation of Monod 

presented by Enouy, Walton, et al. (2021), and some of which were not considered, such as any 

sort of storage capacities. This chapter will present a fit of single-substrate-depletion and 

biomass growth data from Reardon et al. (2000) using the Monod representation from Enouy, 

Walton, et al. (2021), and will discuss how the contributions explored in chapter 3 could 

embellish the Monod equation as represented by the three-stage process, to improve its fit of 

experimental data.  

 

 Enouy, Walton, et al. (2021) demonstrates that the Monod bioreaction equation can be 

derived as a special case of aqueous phase diffusive transport towards the surface of the microbe, 

and subsequent transport across its membrane in two scenarios: a constant rate model, and a 

linear rate model. The models were parameterised with benzene, toluene, and phenol depletion 

and biomass growth data from Reardon et al. (2000). The constant reaction rate model contains 

a constant transport flux characterised by constant Monod coefficients 𝐾! and µ"#$, which is 

consistent with the original interpretation of the Monod model Enouy, Walton, et al. (2021). 
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The linear reaction rate model, with its constant transport velocity, shows that 𝐾! and µ"#$ 

could be dependent on bulk concentration (Enouy, Walton, et al., 2021). In both scenarios, 𝐾! is 

dependent on 1) the physiochemical relationship of the diffusion coefficient for the substrate in 

the aqueous phase; 2) the biophysiochemical characteristic of the microbial radius; and 3) the 

microbe-specific biophysiochemical transport process (either flux or velocity) of the substrate 

(Enouy, Walton, et al., 2021). These attributes of the chemical species and of the microbial 

population together define 𝐾!, giving it an inherent substrate-species dependency (Enouy, 

Walton, et al., 2021). In this simulation, the experimental conditions must be specified, which 

involved making adjustments to the numerical code to reflect biological mechanistic 

understandings mentioned above (Enouy, Walton, et al., 2021). The empirical values of the flux 

of the substrate across the surface of the microbe, and of the transfer velocity at which the 

substrate is taken up internally, and calibration of the model indicated a normalised surface-to-

bulk-concentration ratio of approximate unity in all simulations (Enouy, Walton, et al., 2021). 

This implies that the process of biodegradation occurring in the experiments of Reardon et al. 

(2000) is not diffusion limited (Enouy, Walton, et al., 2021). The model shows that the surface 

concentration is nearly equal to bulk concentration when P. putida F1 is paired with benzene, 

toluene, and phenol as the limiting substrate (Enouy, Walton, et al., 2021). This indicates that 

the zero-sink surface condition, which is presumed by other models such as by Merchuk & 

Asenjo (1995), is not a valid assumption for the biodegradation processes, and it is expected 

that other biodegradation processes would exhibit similar kinetics (Enouy, Walton, et al., 2021). 

The verification exercise, using the data of Reardon et al. (2000), concludes that both benzene 

and toluene depletion, with their biomass growth curves, best fit with a constant reaction rate 

model, but phenol fits best with a linear reaction rate model (Enouy, Walton, et al., 2021). Each 

substrate-species pair requires unique metabolic processes given the difference in physical 

structures of substrates and in maximal yield coefficients (Enouy, Walton, et al., 2021).  

 

Each substrate depletion curve and biomass growth curve give certain conclusions about 

the model’s representation, and how best the numerical formulation fits. The benzene depletion 

and biomass growth curves [Figure 7] conclude that the constant reaction model is a better 

representation of substrate flux at the microbial surface, which then sustains the internal 
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bioreaction process (Enouy, Walton, et al., 2021). Since the normalised surface concentration 

can be approximate unity throughout the depletion curve, 𝐾! and µ"#$ can be considered 

constants (following the conventional Monod formulation), which implies transport processes are 

more than the reaction rate throughout the biodegradation process (Enouy, Walton, et al., 

2021). Once the substrate is nearly depleted, the macroscopic transport rate becomes the 

limiting process, restricting the reaction rate to match the diffusive transport rate in the 

aqueous phase (Enouy, Walton, et al., 2021). For the toluene depletion [Figure 8], the constant 

reaction model is also a better representation of substrate flux. Normalised surface concentration 

is approximately constant and unity throughout the biodegradation process, keeping both 𝐾! 

and µ"#$ as constants, again in keeping with conventional Monod formulation (Enouy, Walton, 

et al., 2021). Of the phenol depletion and biomass growth curves [Figure 9], simulations were 

conducted with constraint on growth coefficients to be consistent with the other curves. 

However, the linear reaction model appears to be the better representation of substrate flux at 

the microbial surface, therefore 𝐾! and µ"#$ are dependent on bulk substrate concentration 

(Enouy, Walton, et al., 2021). Phenol and P. putida F1 as a pair deviate from the conventional 
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Figure 7: Benzene depletion and Biomass growth Simulation - (a) Benzene depletion curve (solid line) for the 
constant reaction rate model, with corresponding biomass growth curve (dotted line); (b) Benzene depletion 
curve (solid line) for the linear reaction rate model, with corresponding biomass growth curve (dotted line). 
Squares and diamonds represent Reardon et al. (2000) experimental substrate depletion and biomass growth 
respectively. 
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Monod formulation (which assumes 𝐾! and µ"#$ are constant). Reardon et al. (2000) suggests 

the presence of an intermediary daughter product as the reason for model deviation from 

experimental results (at about t+2 d) and inferred that the degradation of the daughter product 

may compete with phenol, reducing biomass yield. Enouy, Walton, et al. (2021) hypothesize 

that the hydroxyl group on the phenol aromatic ring may inhibit or limit transmembrane 

transport, causing a low efficiency biodegradation due to the orientation of the molecule being 

crucial for contact with the transport site for uptake, since uptake transport plays a key role in 

the overall biodegradation rate. However, toluene also has a side group, though it is a methyl 

group (-CH3), so perhaps the presence of a hydroxyl group (-OH) makes a difference compared 

to a methyl group. The linear reaction rate model is superior in capturing this phenomenon 

(Enouy, Walton, et al., 2021). 

 

The costs of biodegradation and synthesis are determined by Button (1998) to be 

directly reflected in the transport and metabolic process kinetics. These combine to characterise 

cell interactions with the environment (Enouy, Walton, et al., 2021). Therefore, testing the key 
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Figure 8: Toluene depletion and Biomass growth Simulation - (a) Toluene depletion curve (solid line) for the 
constant reaction rate model, with corresponding biomass growth curve (dotted line); (b) Toluene depletion 
curve (solid line) for the linear reaction rate model, with corresponding biomass growth curve (dotted line). 
Squares and diamonds represent Reardon et al. (2000) experimental substrate depletion and biomass growth 
respectively. 
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characteristics of known hydrocarbon-degrader species is essential for developing a model to 

include multiple biomass phases. However, often experiments use a mixture of different 

microorganisms without including observations about the various contributions of each species 

(Burland & Edwards, 1999; Edwards & Grbić-Galić, 1994; Schirmer et al., 1999; Rochman et al., 

2017). Soil microbial communities often work in tandem, supporting each other, and creating 

symbiotic relationships, and there are often multiple substrates present in environmental spills, 

such that there is a preferential order of treatment by the microbial consortium, or that 

different members of the consortium maybe active under different circumstances (e.g. substrate 

concentrations, electron acceptor availability and concentrations, temperature, pH) (Reardon et 

al., 2000). 

 

Regarding cellular transport and uptake, though there are various theories about the 

mechanisms involved (passive versus active transport, involvement of biosurfactants and 

exoenzymes), there is not a lot of clarity and precision, especially due to lack of efficient and 

careful measurement tools (Hua & Wang, 2014; Jin et al., 2017). Since uptake is the first 

Figure 9: Phenol depletion and Biomass growth Simulation - (a) Phenol depletion curve (solid line) for the constant 
reaction rate model, with corresponding biomass growth curve (dotted line); (b) Phenol depletion curve (solid line) for 
the linear reaction rate model, with corresponding biomass growth curve (dotted line). Squares and diamonds 
represent Reardon et al. (2000) experimental substrate depletion and biomass growth respectively. 
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bottleneck in the biodegradation process within the microbe itself, it is essential to understand 

the various mechanisms, and how they may differ in varying environmental conditions. Hua & 

Wang (2014) state that the basic features of biosurfactants are well reported, as well as the 

uptake of dissolved droplets or uptake through direct contact to big oil droplets. They note that 

cell hydrophobicity is an important factor in influencing the physical contact between 

microorganisms and hydrocarbons, so increasing hydrophobicity could increase direct contact 

(Hua & Wang, 2014). However, further study is necessary especially in regards to how multiple 

uptake methods can occur at different times, when the microorganism is utilising specific 

hydrocarbons (Hua & Wang, 2014). And, though biosurfactants are necessary for uptake, since 

they make some hydrocarbons more bioavailable for the microorganism, there is also evidence of 

biosurfactants inhibiting biodegradation, so their overall effect requires more study (Hua & 

Wang, 2014; Kaczorek et al., 2018). Hua & Wang (2014) also state that there is limited research 

on the other key steps in how a hydrophobic hydrocarbon crosses the cell membrane, such that 

there are very few reports about the uptake of larger alkanes (C20-C30), and that active 

transport proteins are very poorly studied. Though there are some studies of OM proteins 

involved in transmembrane transport, this has mostly been focused on Gram-negative bacteria, 

leaving plenty of well-known hydrocarbons transported and biodegraded by Gram-positive 

microorganisms unstudied (Hua & Wang, 2014). Overall, further research is needed for a more 

detailed understanding of the molecular processes involved in the transmembrane transport of 

hydrocarbons, for it is a key step in the remediation of petroleum pollutions (Hua & Wang, 

2014).  

 

Enouy, Walton, et al. (2021) used the two scenarios of constant and linear rate models 

for describing the transmembrane transport. They appear very similar to the logarithmic and 

logistic kinetics curves described by Alexander (1985), who compares those two kinetics 

considerations with Monod, placing the Monod kinetics somewhat in the middle of these 

“extremes” [Figure 10]. So, the derivation of Monod by Enouy, Walton, et al. (2021) shows that 

Monod kinetics can be used to mimic logarithmic or logistic kinetics. This implies that other 
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substrate-species may be modelled with curves that deviate from Alexander (1985), and that 

transport considerations are essential to such models of microbial biodegradation.  

Regarding storage capacity, though there has been knowledge of a microbial ability to 

store energy in the form of lipid inclusions for decades, there are still details unknown. Current 

lab techniques make it difficult to visualise the formation of intracellular lipid inclusions (Jin et 

al., 2017). Measuring the metabolic capacity of lipid inclusions can either be invasive and 

destructive to cells, or else somewhat inaccurate based on the presumed lipid utilised as storage 

molecules in the method of calorimetry (Boe & Lovrien, 1990). Until better methods are found, 

or current methods are improved upon, it remains difficult to answer questions regarding the 

synthesis and regulation of lipid inclusions, the role of enzymes in their synthesis and usage, and 

other regulatory mechanistic details such as size and shape (Wältermann & Steinbüchel, 2005). 

Since there is also evidence of non-hydrocarbon-degrading microorganisms accumulating 

hydrocarbons, there needs to be greater understanding of the differences between general 

accumulation and its purpose, versus accumulation as an energy store (Jin et al., 2017). 

Especially since microorganisms are a fundamental component of the biosphere, and microbial 

Figure 10: Disappearance curves for chemicals that are 
mineralised as related to individual kinetic models from 
Alexander (1985). 
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carriers can enhance the transfer of HOCs by two orders of magnitude resulting in 

bioaccumulation and biotransformation which affects HOCs’ mobility and bioavailability (Jin et 

al., 2017). Jin et al. (2017) presented the first study of a single-cell visualisation of HOC 

accumulation. Further investigations of these mechanisms are required to build upon the current 

understanding of lipid inclusions as energy storage. 

 

In Figures 7 and 8, the biomass growth curve overshoots in the constant rate model, and 

for the linear rate model, begins too quickly and then slows down too much (Enouy, Walton, et 

al., 2021). The benzene degradation curve is slower in the linear rate model, and the toluene 

degradation curve begins too slowly in both the constant and linear rate models, and then 

speeds up too much in the linear rate model (Enouy, Walton, et al., 2021). This could be due to 

limitations in transport processes either not yet identified or not incorporated into the numerical 

model, or due to storage capabilities of P. putida F1 that would slow down metabolic processes 

and subsequent growth. In Figure 9, the phenol degradation curves undershoot in both rate 

models, and the biomass growth curves deviate greatly from the actual growth. This could be 

due to transport difficulties, as Enouy, Walton, et al. (2021) hypothesizes, or again storage 

capabilities, toxicity, or slower metabolic reaction rates on the part of P. putida F1. Future 

investigations into the processes of this species, and general microbial biodegradation processes 

are suggested to further advance the support of models like this.    

 

There is a very comprehensive understanding of the metabolic processes involved in both 

aerobic and anaerobic biodegradation of hydrocarbons, including the main metabolic pathways, 

how certain groups of hydrocarbons funnel into these pathways, and all the major steps of 

energy production (Parker et al., 2018; Carmona et al., 2009; Gaudy, Jr. & Gaudy, 1980). 

However, for the purposes of verifying a numerical model that involves these processes, it is 

necessary for laboratory experiments to have a modular mentality in terms of what is measured 

before, during, and after the experiment. Many publications presenting a biodegradation 

experiment often lack important data points for the purpose of verifying a hydrocarbon-

degrading numerical model. For the conceptualisations to gain meaningful support for the 

Monod coefficients, it is necessary to have a modular approach. Several types of data need to be 
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measured: electron donor and acceptor depletion over time, biomass change over time, and 

preferably a measure of the production of outputs or waste products. Many papers measure the 

depletion of the electron donor, as it is degraded over the course of an experiment (Dou et al., 

2010; van der Waals et al., 2018), but fewer include measures of biomass growth, or any sort of 

output or waste production (some include biomass as one measure at the beginning and one at 

the end, such as Schirmer et al. (1999); some included regular measure throughout the course of 

the experiment, such as Reardon et al. (2000)). The ideal for determining a maximal energy 

production and degradation capacity is to include as many of these measurements as possible, 

allowing for a calculation of the amount of moles consumed to yield a determinate amount of 

energy. These measurements are necessary to parameterise the model, for it to be able to 

represent specific species’ physical growth characteristics, in order to then be capable of 

representing the physical processes especially for future developments, such as incorporating the 

interactions between multiple ubiquitous soil biomasses, or a storage component, particularly 

since it is also observed that microbes have a clear preference for the easiest-to-degrade 

substrate, and are often found in symbiotic multi-species consortia. Further investigations of 

these interactions are necessary to understand how bacteria and archaea are involved in multi-

step degradation processes, and how to encourage a microbe to utilise a particular substrate in 

situ.  

 

In the Monod derivation from Enouy, Walton, et al. (2021), the interior bioreaction 

stage was considered to be a zeroth-order reaction. Consequently, the reaction process remains 

constant until one of aqueous phase diffusive transport or transmembrane transport processes 

becomes limiting (such as when oxygen is depleted). This simple mathematical concept allowed 

for the reproduction of Monod to fit the Reardon et al. (2000) data sets, especially if regarding 

the mass transport across the microbial membrane to be the limiting process: if there is no 

substrate, there can be no reaction. However, this assumption may not be correct, or may not 

always be the case. The transport rate may be very fast, but the interior metabolism may be 

slower making it the controller of the overall reaction rate. Other substrate-species pairs may be 

better modelled with first-order reaction kinetics within the volume of a microbe, where the 

reaction rate is a function of some limiting nutrient, or non-constant zero-order kinetics, where 
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the reaction rate is dependent not on a reactant concentration, but on some other step in the 

entire process, such as the transport rate, or the exterior environmental conditions. A single 

microbe has many particular conditions and nutrient requirements for optimal growth, such as 

temperature, pH, water activity, oxygen presence and concentration, and sources of energy 

(Parker et al., 2018). And a soil microbiota usually contains multiple species, living 

symbiotically, and each separate species may be necessary for completing a different portion of 

biodegradation process. So, though a zero-order reaction could represent a single substrate-

species degradation curve, there is much more complexity in upscaling to a multi-substrate 

multi-species model that would require dividing the entire process into more stages.  
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Chapter 5 – Conclusion 

For the purpose of gaining insight into its mechanistic basis, a derivation of the Monod 

bioreaction equation was presented by Enouy, Walton, et al. (2021) as a special case of aqueous 

phase diffusive transport with series of three stages: transport rate of a substrate onto the 

surface of a microbe, uptake rate by the microbe across the microbial membrane, and a rate of 

interior degradation and energy production by the microbe, with zeroth-order kinetics. Two 

scenarios were included: a constant rate model, with constant transport flux, independent of 

bulk substrate concentration; and a linear rate model, with constant transport velocity, 

dependent on bulk substrate concentration. To parameterise the derivation, the model was used 

to fit single-substrate depletion of benzene, toluene, and phenol, and biomass growth curve from 

Reardon et al. (2000). This simplistic serial derivation of Monod fit the Reardon et al. (2000) 

data quite well for the benzene and toluene data with the constant rate model, with some 

derivation of the depletion curve from the data in the linear rate model, and more derivation in 

both biomass growth curves in both models. The phenol data was less successfully fit in both 

models, but the linear rate model was the more successful. The biomass growth curve however 

was very different from the data in both models. 

 

 A literature review of the biological processes involved in the biodegradation of aromatic 

hydrocarbons was presented, including the following steps: cellular transport and uptake, energy 

storage, aerobic and anaerobic biodegradation and metabolism, and cellular growth. The aim in 

exploring these processes was to support the Monod derivation, as well as suggest ways of 

improving the fit of experimental data by including other processes as part of the serial stages 

assumed in the model. The model only included three stages, which involved cellular transport 

and interior metabolism. However, to improve the fit of experimental data, suggestions include 

cellular transport limitations regarding passive versus active transport, the inclusion of a storage 

component, breaking up the interior reaction rate to reflect the complexity of the metabolic 

system, and including variations in cellular growth speeds as the environmental conditions may 

fluctuate. Further investigations with a modelling mindset into the understanding of these 

biological processes is suggested to improve the capabilities of modelling biodegradation systems.  
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