
Objective Validation of Airport Terminal Architecture using
Agent-based Simulations

by

Karam Singh Hunjan

A thesis

presented to the Univeristy of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Architecture

Waterloo, Ontario, Canada, 2021

© Karam Singh Hunjan 2021

iii

Authour's Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

v

Abstract

This thesis explores how airport terminal architecture is tested before it is built. The purpose of

testing is to make sure an architectural layout aligns with the rest of the airport’s systems. The

design of a terminal is a long and expensive process that must accommodate tens of thousands

of passengers every hour, the movement of logistics, and control of security. Evaluating spaces

for that many people can be difficult to measure, which can result in architects relying on their

intuition and experience to judge the impact of a layout for daily operations without objective

validation. It is not practical for designers to build a complete airport to see how it works and

make renovations after finding aspects that have poor performance. As a result, testing airports

requires using mathematical models and simulations to validate how well different systems

work together.

Designers try to validate architectural layouts in airport terminals by using crowd simulations to

approximate passenger behaviour. Existing research in civil engineering and computer science

has shown how mathematical models can predict patterns of human activity in the built

environment on a large scale. However, these simulations have primarily focused on either

modelling passengers as a process flow or people in emergency building evacuation. As a result,

existing agent navigation does not consider how passengers use the surrounding architecture for

decision-making during daily airport interactions. When passengers enter a terminal for the first

time, they can be unaware of what they need to do or how to get there. Instead, passengers rely

on using their perception of the environment (the architecture) to inform them what to do.

However, there currently are no methods that incorporate architectural perception to validate a

building layout in these conditions.

This thesis develops an agent-based simulation to validate how well architectural layouts align

with the daily operations of an airport terminal. It quantifies the value of a spatial arrangement

as a function of people’s interactions in a given space. The model approximates human

behaviour based on statistics from existing crowd simulations. It uses spatial analysis, like the

isovist and graph theory, for agent navigation and measuring architectural conditions. The

proposal incorporates agent perception to provide feedback between people’s decision-making

and the influence of the surrounding space. The thesis calculates architectural value using

normalized passenger priorities based on typical processing and non-processing airport

domains. The success of a terminal layout is dependent on the agent’s ability to complete airport

vi

processing and fulfill their priorities. The final value of an architectural layout is determined

using statistical methods to provide a probability distribution of likely values.

The proposed agent simulation and mathematical models are built using Unity software, which

is used to perform several simulation tests in this thesis. Basic functional components of the

simulation are validated using existing crowd modelling standards. Tests are also performed to

illustrate how different agent perception and priorities influence the value of architectural

spaces. Monte Carlo simulations are created for simple terminal layouts to illustrate how

changing the floor plan of a security area affects the architectural value for departing

passengers. Finally, the architectural values of two real airport terminals are compared against

an established passenger experience survey in a basic simulation model. The results of the

testing shows that the agent simulation can differentiate between different architectural

conditions, within reason, depending on the passengers’ priorities.

vii

Acknowledgements

I would like to thank my supervisor Jonathan Enns. Thank you for your guidance throughout

the thesis process, your enthusiasm, and your patience with me as I worked through my own

thoughts.

I would like to thank my committee member John Straube. Thank you for your valuable

feedback and insightful discussions.

I would also like to acknowledge Nelson Oliveira. I am grateful for the time I spend working with

you at the GTAA, and for you taking the time to discuss my thesis with me when I started my

research.

Thank you to my parents for your love and support. Thank you to my mom for your

conversations, feedback, and encouragement. Thank you to my dad for your discussions,

thoughts, and positivity.

ix

Table of Contents

 Author’s Declaration iii

 Abstract v

 Acknowledgements vii

 List of Figures

xiii

Part 0 Introduction 1

0.0 Motivation 1

0.1 Problem 3

0.2 Goals 3

0.3 Hypothesis 4

0.4 Expected Results 4

0.5 Thesis Structure

5

Part 1 Context 7

1.0 Architectural Intuition 8

1.1 Airport Terminal Design 14

1.2 Verification and Validation 28

1.3 Probability and Statistics 40

1.4 Simulation Modelling

53

Part 2 Modelling Concepts 85

2.0 Agent-based Modelling 86

2.1 Human Perception 90

2.2 Spatial Analysis 106

2.3 Value Theory

117

x

Part 3 Simulation Framework 149

3.0 Simulation Components 150

3.1 Agent-related Classes 156

3.2 A* Pathfinding Classes 190

3.3 Airport Architecture Classes 203

3.4 Simulation Utility Classes 227

3.5 Assumptions and Limits

236

Part 4 Simulation Tests 243

4.0 Verification and Validation Tests 244

4.1 Component Tests 264

4.2 Terminal Tests 288

4.3 Airport Tests

317

Part 5 Conclusion 333

5.0 Results and Findings 334

5.1 Ideal Models 337

5.2 Impacts 340

5.3 Future Work 346

5.4 Summary of Conclusion

349

 Letter of Copyright Permission 351

 References 355

 Appendix A 367

xiii

List of Figures

Figure Page Description
Reference

Part 0: Introduction

Fig.0.0.a 2 Comparing two different iterations of a floor plan.
Drawing by author.

Part 1: Context

Fig.1.0.a 10 Floor plan of Eero Saarinen's TWA Flight Centre (1961).
Retrieved from: Fiederer, Luke. “AD Classics: TWA Flight Center / Eero
Saarinen”. ArchDaily. 2016-06-16. https://www.archdaily.com/788012/ad-
classics-twa-flight-center-eero-saarinen.

Fig.1.0.b 10 Floor plan of Eero Saarinen's Dulles International Airport main terminal building
(1962).
Cited from: Yukio Futagawa, ed. Global Architecture: TWA Terminal Building,
Kennedy Airport, New York, and Dulles International Airport, Chantilly, Virginia.
Tokyo: A.D.A. Edita Tokyo, 1973. plan, p45.
Retrieved from: Great Buildings. Dulles Airport. Accessed March 2021.
http://www.greatbuildings.com/buildings/Dulles_Airport.html.

Fig.1.0.c 12 Section of TWA Flight Center.
Retrieved from: National Park Services. “Trans World Airline Flight Center”.
National Register of Historic Places. (September 7, 2005): Section 11, page 7.

Fig.1.0.d 12 Section of Dulles terminal building.
Cited from: Saarinen, Eero. Eero Saarinen On His Work. New Haven, CT: Yale
University Press, 1968. section drawing, p108.
Retrieved from: Great Buildings. Dulles Airport. Accessed March 2021.
http://www.greatbuildings.com/buildings/Dulles_Airport.html.

Fig.1.1.a 17 Basic airport terminal layout.
Retrieved from: National Academies of Sciences, Engineering, and Medicine.
“Airport Passenger Terminal Planning and Design, Volume 1: Guidebook”.
Washington, DC: The National Academies Press. (2010): 173.
Sourced from: Daileda, David A. “Considerations for Selecting a Terminal
Configuration,”, FAIA, FAA White Paper.

xiv

Fig.1.1.b 17 Linear terminal.
Retrieved from: National Academies of Sciences, Engineering, and Medicine.
“Airport Passenger Terminal Planning and Design, Volume 1: Guidebook”.
Washington, DC: The National Academies Press. (2010): 173.
Sourced from: Daileda, David A. “Considerations for Selecting a Terminal
Configuration,”, FAIA, FAA White Paper.

Fig.1.1.c 19 Pier terminal.
Retrieved from: National Academies of Sciences, Engineering, and Medicine.
“Airport Passenger Terminal Planning and Design, Volume 1: Guidebook”.
Washington, DC: The National Academies Press. (2010): 173.
Sourced from: Daileda, David A. “Considerations for Selecting a Terminal
Configuration,”, FAIA, FAA White Paper.

Fig.1.1.d 19 Multi-pier terminal.
Retrieved from: National Academies of Sciences, Engineering, and Medicine.
“Airport Passenger Terminal Planning and Design, Volume 1: Guidebook”.
Washington, DC: The National Academies Press. (2010): 173.
Sourced from: Daileda, David A. “Considerations for Selecting a Terminal
Configuration,”, FAIA, FAA White Paper.

Fig.1.1.e 20 Satellite terminal.
Retrieved from: National Academies of Sciences, Engineering, and Medicine.
“Airport Passenger Terminal Planning and Design, Volume 1: Guidebook”.
Washington, DC: The National Academies Press. (2010): 173.
Sourced from: Daileda, David A. “Considerations for Selecting a Terminal
Configuration,”, FAIA, FAA White Paper.

Fig.1.1.f 21 Satellite terminal with Automated People Mover (APM) system.
Retrieved from: National Academies of Sciences, Engineering, and Medicine.
“Airport Passenger Terminal Planning and Design, Volume 1: Guidebook”.
Washington, DC: The National Academies Press. (2010): 173.
Sourced from: Daileda, David A. “Considerations for Selecting a Terminal
Configuration,”, FAIA, FAA White Paper.

Fig.1.1.g 23 Toronto Pearson Airport's hourly passenger movement forecasts.
Retrieved from: GTAA. “Toronto Pearson International Airport Master Plan 2017-
2037”. Greater Toronto Airports Authority. (2017): 38.

Fig.1.1.h 23 Toronto Pearson Airport's peek-hour passenger movement forecasts base on
existing and projected flight schedules.
Retrieved from: GTAA. “Toronto Pearson International Airport Master Plan 2017-
2037”. Greater Toronto Airports Authority. (2017): 36.

Fig.1.1.i 25 Experiment showing the level of service (LOS) from A, the least dense, to F, the
most crowded.
Retrieved from: Fruin, John J. Designing for Pedestrians: A Level of Service
Concept. New York, 1970. 10.

xv

Fig.1.2.a 31 All verification and validation techniques on a spectrum of mathematical
formality.
Retrieved from: Balci, Osman. “Validation, Verification, and Testing Techniques
Throughout the Life Cycle of a Simulation Study.” Annals of operations research
53, no. 1 (December 1994): 131.

Fig.1.2.b 33 Simulation processes showing corresponding validation processes.
Retrieved from: Robinson, Stewart. Simulation: the Practice of Model
Development and Use. Chichester, England: Wiley, (2004): 211.

Fig.1.3.a 43 Graphs illustrating the law of large numbers from random sampling of new-born
baby weights.
Retrieved from: Watkins, Joseph. An Introduction to the Science of Statistics:
From Theory to Implementation Preliminary Edition. University of Arizona:
(2016): 180.

Fig.1.3.b 45 Monte Carlo method approaches the value for π based on the fraction of random
points that fall inside the circle within a unit square.
Retrieved from: Nicoguaro. “File:Pi 30K.gif”. Wikimedia Commons. February 16,
2017. https://commons.wikimedia.org/wiki/File:Pi_30K.gif.

Fig.1.3.c 45 Graph showing of 100 random values between 0.0 and 1.0 in Excel.
Drawing by author.

Fig.1.3.d 47 Some common probability distributions as a result of a Monte Carlo simulation,
which informs statistical behaviour.
Drawing by author.

Fig.1.3.e 47 Graphs illustrating the law of large numbers from random sampling of new-born
baby weights.
Retrieved from: Watkins, Joseph. An Introduction to the Science of Statistics:
From Theory to Implementation Preliminary Edition. University of Arizona:
(2016): 185.

Fig.1.3.f 49 A Galton board is a physical example of a Monte Carlo simulation, which shows
how natural randomness can result in a normal probability distribution.
Retrieved from: Argenton, Rodrigo. “File:Galton box.jpg”. Wikimedia Commons.
December 19, 2016. https://commons.wikimedia.org/wiki/File:Galton_box.jpg.

Fig.1.3.g 49 Galton Board Concept.
Drawing by author.
Based on drawing from: Galea, Alexander. “Galton’s Peg Board and the Central
Limit Theorm”. WordPress. March 11, 2016.
https://galeascience.wordpress.com/2016/03/11/galtons-peg-board-and-the-
central-limit-theorem/.

xvi

Fig.1.3.h 52 RVLS Central Limit Theorem Simulation.
Drawing by author.
Based on drawing from: Lane, David et al. “Sampling Distribution”.
Onlinestatbook.com, Rice Virtual Lab in Statistics (RVLS), Rice University.
Accessed February 2021.
https://onlinestatbook.com/stat_sim/sampling_dist/index.html.

Fig.1.4.a 55 Graphical representation of a discrete system and a continuous system.
Retrieved from: Banks, Jerry; Carson II, John S; Nelson, Barry L; Nicol, David M.
Discrete-Event System Simulation 4th ed. Upper Saddle River, N.J: Pearson
Prentice Hall, (2005): 11.

Fig.1.4.b 57 AirTop airspace simulation.
Retrieved from: National Academies of Sciences, Engineering, and Medicine.
“Simulation Options for Airport Planning”. Washington, DC: The National
Academies Press. (2019): 17.

Fig.1.4.c 57 ARCport terminal simulation.
Screen capture from: Proulx, Christian. “Complete Terminal Simulation”.
Youtube. March 1, 2014. https://www.youtube.com/watch?v=iaXdMO67g0E.

Fig.1.4.d 59 A spreadsheet model calculating the area required for security screening.
Retrieved from: National Academies of Sciences, Engineering, and Medicine.
“Airport Passenger Terminal Planning and Design, Volume 2: Spreadsheet Models
and User's Guide”. Washington, DC: The National Academies Press. (2010): 40.

Fig.1.4.e 59 Basic queuing node model.
Drawing by author.
Based on drawing from: Dt-rush-8. “Queuing Node Service Diagram”. Wikimedia
Commons. 8 December 2018.
https://commons.wikimedia.org/wiki/File:Queueing_node_service_digram.png.

Fig.1.4.f 61 The process of a simulation study.
Drawing by author.
Based on drawing from: Banks, Jerry; Carson II, John S; Nelson, Barry L; Nicol,
David M. Discrete-Event System Simulation 4th ed. Upper Saddle River, N.J:
Pearson Prentice Hall. (2005): 13.

Fig.1.4.g 65 Dense crowds in a marathon (left) can be approximated as a fluid flow.
Retrieved from: Zhou, Suiping, Dan Chen, Wentong Cai, Linbo Luo, Malcolm Low,
Feng Tian, Victor Tay, Darren Ong, and Benjamin Hamilton. “Crowd Modeling
and Simulation Technologies.” ACM Transactions on Modeling and Computer
Simulation (TOMACS) 20, no. 4 (October 1, 2010): 6.

Fig.1.4.h 65 Crowd model using particles.
Retrieved from: Zhou, Suiping, Dan Chen, Wentong Cai, Linbo Luo, Malcolm Low,
Feng Tian, Victor Tay, Darren Ong, and Benjamin Hamilton. “Crowd Modeling
and Simulation Technologies.” ACM Transactions on Modeling and Computer
Simulation (TOMACS) 20, no. 4 (October 1, 2010): 7.

xvii

Fig.1.4.i 67 The game Planet Coaster uses a fluid model to simulate crowds in an amusement
park.
Retrieved from: McCarthy, Owen. “Game Design Deep Dive: Creating Believable
Crowds in Planet Coaster.” Gamasutra Article, January 4, 2017.
https://www.gamasutra.com/view/news/288020/
Game_Design_Deep_Dive_Creating_believable_crowds_in_Planet_Coaster.php.

Fig.1.4.j 69 Evacuation simulation that uses perception.
Retrieved from: Liu, Z, Liu, T, Ma, M, Hsu, H‐H, Ni, Z, Chai, Y. A perception‐
based emotion contagion model in crowd emergent evacuation simulation.
Comput Anim Virtual Worlds. 2018; 29:e1817. p.9.

Fig.1.4.k 69 Evacuation simulation that uses social forces.
Abdelhak, Haifa; Ayesh, Aladdin; Olivier, Damien. “Cognitive Emotional Based
Architecture for Crowd Simulation”. Journal of Intelligent Computing, June 2012,
2012. Vol. 3 (2). 64.

Fig.1.4.l 71 List of established simulation tools for airport terminal analysis.
Retrieved from: National Academies of Sciences, Engineering, and Medicine.
“Simulation Options for Airport Planning”. Washington, DC: The National
Academies Press. (2019): 44.

Fig.1.4.m 72 A MassMotion simulation in Toronto Union Station.
Retrieved from: Arup. “MassMotion”. Expertise, Services, Digital. Accessed
December 2020. https://www.arup.com/expertise/services/digital/massmotion.

Fig.1.4.n 72 Typical components in a MassMotion environment.
Retrieved from: Oaysis. “MassMotion Help Guide,” July 2019. https://www.oasys-
software.com/wp-content/uploads/2019/06/MassMotion-10.0-Help-Guide.pdf.
15.

Fig.1.4.o 74 Agent feelers used to identify other agents and local targets for navigation.
Retrieved from: Oaysis. “MassMotion Help Guide,” July 2019. https://www.oasys-
software.com/wp-content/uploads/2019/06/MassMotion-10.0-Help-Guide.pdf.
290.

Fig.1.4.p 74 MassMotion displaying passenger density to show congested areas in the
concourse of Toronto Union Station.
Retrieved from: Hoy, Gregory, Erin Morrow, and Amer Shalaby. “Use of Agent-
Based Crowd Simulation to Investigate the Performance of Large-Scale
Intermodal Facilities: Case Study of Union Station in Toronto, Ontario, Canada.”
Transportation Research Record 2540, no. 1 (January 2016): 25.

Fig.1.4.q 76 Flow chart of a station ticket service counter simulation in Arena.
Created by author.

Fig.1.4.r 76 Flow chart of a plane gating simulation in Arena.
Created by author.

xviii

Fig.1.4.s 78 Flow chart of a healthcare simulation in FlexSim.
Recreated by author.

Fig.1.4.t 78 3D model of a healthcare simulation in FlexSim.
Recreated by author.

Fig.1.4.u 80 Simulation comparison between Arena, FlexSim, Quelea, and Unity.
Drawing by author.

Fig.1.4.v 81 Sample simulations and station test for Arena, FlexSim, Quelea, and Unity.
Drawing by author.

Part 2: Modelling Concepts

Fig.2.0.a 89 How agents interact with the environment.
Drawing by author.
Based on drawing from: Liu, Ao (Leo). “Dynamic Visualizations: Developing a
Framework for Crowd-Based Simulations”. M.Arch thesis, University of
Waterloo, 2020. 85.

Fig.2.1.a 91 Environments are made up of objects and processes.
Drawing by author.

Fig.2.1.b 93 Smith's (2001) ontological marks of an environment and examples in an airport.
Drawing by author.
Based on drawing from: Raubal, Martin. “Agent-Based Simulation of Human
Wayfinding: A Perceptual Model for Unfamiliar Buildings”. PhD diss., Vienna
University of Technology, October 2001. 64.

Fig.2.1.c 95 Elements of an airport classified as a substance or medium.
Drawing by author.
Based on drawing from: Raubal, Martin. “Agent-Based Simulation of Human
Wayfinding: A Perceptual Model for Unfamiliar Buildings”. PhD diss., Vienna
University of Technology, October 2001. 65.

Fig.2.1.d 95 Further categorization of airport terminal architecture.
Drawing by author.

Fig.2.1.e 99 Category of affordances in an airport and architectural elements.
Drawing by author.
Based on drawing from: Raubal, Martin. “Agent-Based Simulation of Human
Wayfinding: A Perceptual Model for Unfamiliar Buildings”. PhD diss., Vienna
University of Technology, October 2001. 68.

Fig.2.1.f 101 Gibson's representation of a person's field of view.
Retrieved from: Gibson, James J. The Ecological Approach to Visual
Perception. New York: Psychology Press, (1986): 196.

xix

Fig.2.2.a 107 An isovist is the area that can be seen from a single point.
Retrieved from: Arabacioglu, Burcin Cem. “Using Fuzzy Inference System for
Architectural Space Analysis.” Applied Soft Computing 10, no. 3 (2010): 927.

Fig.2.2.b 107 The three geometries of space syntax.
Retrieved from: Vaughan, Laura. “The Spatial Syntax of Urban Segregation.”
Progress in Planning 67, no. 3 (2007): 209.

Fig.2.2.c 109 Graphs showing the arrangement of connections from different rooms in a
house.
Retrieved from: Vaughan, Laura. “The Spatial Syntax of Urban Segregation.”
Progress in Planning 67, no. 3 (2007): 211.

Fig.2.2.d 109 Enclosure defines a value based on the number of surrounding walls on a scale
of 1 to 4.
Retrieved from: Do, Ellen Yi-Luen, and Mark D. Gross. “Tools for Visual and
Spatial Analysis of CAD Models.” CAAD Futures 1997, 1997, 194.

Fig.2.2.e 111 Enclosure defines a value based on the number of surrounding walls on a scale
of 1 to 4.
Retrieved from: Turner, Alasdair, Maria Doxa, David Osullivan, and Alan Penn.
“From Isovists to Visibility Graphs: A Methodology for the Analysis of
Architectural Space.” Environment and Planning B: Planning and Design 28, no.
1 (2001): 108.

Fig.2.2.f 111 A visibility graph, where each vertex is a point in space, and the lines are the
visible connections.
Retrieved from: Arabacioglu, Burcin Cem. “Using Fuzzy Inference System for
Architectural Space Analysis.” Applied Soft Computing 10, no. 3 (2010): 927.

Fig.2.2.g 113 An undirected graph with 5 edges and 5 vertices.
Drawing by author.

Fig.2.2.h 113 A directed graph.
Drawing by author.

Fig.2.2.i 113 A path from node 𝑣𝑣1 to node 𝑣𝑣4.
Drawing by author.

Fig.2.2.j 113 A weighted graph.
Drawing by author.

Fig.2.2.k 113 Lowest cost path between node A and node B has a cost of 7.
Drawing by author.

Fig.2.2.l 115 Pathfinding solved using Dijkstra's search algorithm.
Retrieved from: Bhattacharya, Subhrajit. “File:Dijkstras progress animation.gif”.
Wikimedia Commons. April 13, 2011.
https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif.

xx

Fig.2.2.m 115 Pathfinding solved using an A* search algorithm.
Retrieved from: Bhattacharya, Subhrajit. “File:Astar progress animation.gif”.
Wikimedia Commons. April 13, 2011.
https://en.wikipedia.org/wiki/File:Astar_progress_animation.gif.

Fig.2.3.a 120 First two architect's priorities and school floor plans.
Retrieved from: Lera, Sebastian G. “Architectural Designers’ Values and the
Evaluation of Their Designs.” Design studies 2, no. 3 (1981): 135.

Fig.2.3.b 122 Comparing utility model values with overall values for each architect.
Retrieved from: Lera, Sebastian G. “Architectural Designers’ Values and the
Evaluation of Their Designs.” Design studies 2, no. 3 (1981): 136.

Fig.2.3.c 124 Simple analytic hierarchy process structure.
Drawing by author.
Based on drawing from: Sander, Lou. “File:AHPHierarchy1.1.png”. Wikimedia
Commons. 24 February 2009.
https://commons.wikimedia.org/wiki/File:AHPHierarchy1.1.png.

Fig.2.3.d 126 Eigenvectors after a linear transformation.
Drawing by author.
Based on animation from: 3Blue1Brown. “Eigenvectors and eigenvalues |
Essence of linear algebra, chapter 14”. Youtube, September 15, 2016.
https://www.youtube.com/watch?v=PFDu9oVAE-g.

Fig.2.3.e 128 Priority matrix and corresponding eigenvector for each coloured ball.
Drawing by author.

Fig.2.3.f 129 Job satisfaction priority matrix.
Retrieved from: Saaty, Thomas L. “Modeling Unstructured Decision Problems —
the Theory of Analytical Hierarchies.” Mathematics and computers in
simulation 20, no. 3 (1978): 155.

Fig.2.3.g 129 Company attributes matrices.
Retrieved from: Saaty, Thomas L. “Modeling Unstructured Decision Problems —
the Theory of Analytical Hierarchies.” Mathematics and computers in
simulation 20, no. 3 (1978): 155.

Fig.2.3.h 129 Company attributes eigenvectors.
Retrieved from: Saaty, Thomas L. “Modeling Unstructured Decision Problems —
the Theory of Analytical Hierarchies.” Mathematics and computers in
simulation 20, no. 3 (1978): 155.

Fig.2.3.i 132 Passenger-centred model hierarchy.
Drawing by author.

xxi

Fig.2.3.j 132 Airport performance is dependant on processing domains and non-processing
domains.
Drawing by author.
Based on drawing from: Wiredja, Dedy, Vesna Popovic, and Alethea Blackler. “A
Passenger-Centred Model in Assessing Airport Service Performance.” Journal of
Modelling in Management 14, no. 2 (May 10, 2019): 504.

Fig.2.3.k 134 Airport domains indicating attributes that are influenced by architecture.
Drawing by author.
Based on drawing from: Wiredja, Dedy, Vesna Popovic, and Alethea Blackler. “A
Passenger-Centred Model in Assessing Airport Service Performance.” Journal of
Modelling in Management 14, no. 2 (May 10, 2019): 503.

Fig.2.3.l 137 Passengers standing between columns and along the walls of a platform waiting
to board a subway.
Photo by: Mentatdgt. “Photography of People at Train Station”. Pexels. August
09, 2018. https://www.pexels.com/photo/photography-of-people-at-train-
station-1311544/.

Fig.2.3.m 139 9 factors for scoring architecture, with corresponding mathematical functions.
Drawing by author.

Fig.2.3.n 143 General exponential decay function.
Drawing by author.

Fig.2.3.o 143 A piece-wise decay function for a typical passenger waiting time.
Drawing by author.

Part 3: Simulation Framework

Fig.3.0.a 151 Unity software user interface showing the scene environment models and
property toolbars.
Drawing by author.

Fig.3.0.b 155 Categories of script classes in Unity for the agent simulation.
Drawing by author.

Fig.3.1.a 157 Agent following an A* path (black line) to a local target (white wire sphere).
Image by author.

Fig.3.1.b 159 Process logic for the agent class.
Drawing by author.

Fig.3.1.c 160 Key variables for the agent class, page 1.
Drawing by author.

Fig.3.1.d 161 Key variables for the agent class, page 2.
Drawing by author.

xxii

Fig.3.1.e 162 Key methods for the agent class, page 3.
Drawing by author.

Fig.3.1.f 164 Population distribution, for age and gender.
Retrieved from: IMO. “Guidelines for Evacuation Analysis for New and Existing
Passenger Ships.” International Maritime Organization (IMO).
MSC.1/Circ.1238. (October 30, 2007): 6.

Fig.3.1.g 164 Passenger walking speeds.
Retrieved from: IMO. “Guidelines for Evacuation Analysis for New and Existing
Passenger Ships.” International Maritime Organization (IMO).
MSC.1/Circ.1238. (October 30, 2007): 8.

Fig.3.1.h 165 Samples of randomly assigned characteristics and priority matrices, page 1.
Drawing by author.

Fig.3.1.i 165 Samples of randomly assigned characteristics and priority matrices, page 2.
Drawing by author.

Fig.3.1.j 167 Process logic for the characteristics class.
Drawing by author.

Fig.3.1.k 168 Key variables for the characteristics class, page 1.
Drawing by author.

Fig.3.1.l 169 Key variables and methods for the characteristics class, page 2.
Drawing by author.

Fig.3.1.m 170 Priority local class within the characteristics class, page 3.
Drawing by author.

Fig.3.1.n 172 Agent perceives the gate sign, as shown by the blue line. The agent state is "read
sign", as illustrated by the pink colour.
Drawing by author.

Fig.3.1.o 172 Agent perceives check-in counters, as shown by the blue line. The agent state is
"go to check-in", as illustrated by the blue colour.
Drawing by author.

Fig.3.1.p 174 Process logic for the perception class, page 1.
Drawing by author.

Fig.3.1.q 174 Process logic for the perception class, page 2.
Drawing by author.

Fig.3.1.r 176 Key variables for the perception class, page 1.
Drawing by author.

Fig.3.1.s 177 Key variables for the perception class, page 2.
Drawing by author.

xxiii

Fig.3.1.t 178 Key variables for the perception class, page 3.

Drawing by author.

Fig.3.1.u 179 Key methods for the perception class, page 4.
Drawing by author.

Fig.3.1.v 180 Key methods for the perception class, page 5.
Drawing by author.

Fig.3.1.w 182 Generalized construction of the field of view.
Drawing by author.
Based on drawing from: Lague, Sebastian. “Field of view visualization (E02)”.
Youtube. December 27, 2015. https://youtu.be/73Dc5JTCmKI?t=530. 8:57.

Fig.3.1.x 182 Agent in front of a wall showing their field of view.
Image by author.

Fig.3.1.y 183 Convex corners are refined by selecting a midpoint vector between a max and
min viewpoint.
Drawing by author.
Based on drawing from: Lague, Sebastian. “Field of view visualization (E02)”.
Youtube. December 27, 2015. https://youtu.be/73Dc5JTCmKI?t=1070. 17:50.

Fig.3.1.z 183 A random direction vector for wandering is selected towards the longest visible
direction, illustrated by the red line.
Image by author.

Fig.3.1.za 185 Process logic for the field of view class.
Drawing by author.

Fig.3.1.zb 186 Key variables for the field of view class, page 1.
Drawing by author.

Fig.3.1.zc 187 Key variables for the field of view class, page 2.
Drawing by author.

Fig.3.1.zd 188 Key methods for the field of view class, page 3.
Drawing by author.

Fig.3.1.ze 189 Key methods for the field of view class, page 4.
Drawing by author.

Fig.3.2.a 191 Simulated environments are divided into grid tiles for A* navigation.
Drawing by author.

xxiv

Fig.3.2.b 193 An example of walkable and unwalkable areas from a grid environment.
Drawing by author.

Fig.3.2.c 192 Process logic for the grid class.
Drawing by author.

Fig.3.2.d 194 Key variables for the grid class, page 1.
Drawing by author.

Fig.3.2.e 195 Key variables and methods for the grid class, page 2.
Drawing by author.

Fig.3.2.f 197 Key variables for the node class, page 1.
Drawing by author.

Fig.3.2.g 198 Key methods for the node class, page 2.
Drawing by author.

Fig.3.2.h 200 Pathfinding creates a path (black line) between nodes along a tiled grid to a
target node (white wire sphere).
Drawing by author.

Fig.3.2.i 201 Lague's A* pathfinding process calculates the cost of neighbouring nodes as a
sum of its distance to the start and end nodes.
Drawing by author.
Based on drawing from: Lague, Sebastian. “A* Pathfinding (E01: algorithm
explanation)”. Youtube. December 16, 2014.
https://www.youtube.com/watch?v=-L-
WgKMFuhE&list=PLFt_AvWsXl0cq5Umv3pMC9SPnKjfp9eGW&index=1.

Fig.3.2.j 202 Key variables and methods for the pathfinding class.
Drawing by author.

Fig.3.3.a 204 Basic geometry used to identify spatial areas.
Drawing by author.

Fig.3.3.b 204 Spatial areas are referenced when agents move between them.
Drawing by author.

Fig.3.3.c 206 Process logic for the architecture class.
Drawing by author.

Fig.3.3.d 207 Key variables for the architecture class, page 1.
Drawing by author.

Fig.3.3.e 208 Key methods for the architecture class, page 2.
Drawing by author.

xxv

Fig.3.3.f 210 Illustration of interaction nodes (green) and exit nodes (red) in security
screening.
Drawing by author.

Fig.3.3.g 210 Illustration of queue spots (blue) in a queuing line.
Drawing by author.

Fig.3.3.h 211 Process logic for the airport objects class.
Drawing by author.

Fig.3.3.i 212 Key variables and methods for the airport objects class, page 1.
Drawing by author.

Fig.3.3.j 214 A wayfinding sign illustrated with a viewpoint (blue) and two direction nodes
(red) for Gate A and Gate B.
Drawing by author.

Fig.3.3.k 215 Process logic for the signage class.
Drawing by author.

Fig.3.3.l 216 Key variables and methods for the signage class, page 1.
Drawing by author.

Fig.3.3.m 218 An example of a simulation schedule assigned in the Unity inspector properties,
using the scheduling script, with 3 arrival points and 2 departure points.
Screen capture by author.

Fig.3.3.n 220 Key variables for the scheduling class, page 1.
Drawing by author.

Fig.3.3.o 221 Key variables for the scheduling class, page 2.
Drawing by author.

Fig.3.3.p 223 Process logic for the itinerary class.
Drawing by author.

Fig.3.3.q 224 Key variables for the itinerary class, page 1.
Drawing by author.

Fig.3.3.r 225 Key variables for the itinerary class, page 2.
Drawing by author.

Fig.3.3.s 226 Key methods for the itinerary class, page 3.
Drawing by author.

Fig.3.4.a 229 Process logic for the agent spawner class.
Drawing by author.

xxvi

Fig.3.4.b 230 Key variables for the agent spawner class, page 1.
Drawing by author.

Fig.3.4.c 231 Key variables for the agent spawner class, page 2.
Drawing by author.

Fig.3.4.d 232 Key methods for the agent spawner class, page 3.
Drawing by author.

Fig.3.4.e 233 Path request manager process.
Drawing by author.

Fig.3.4.f 235 Heap tree process.
Drawing by author.
Based on drawing from: Lague, Sebastian. “A* Pathfinding (E01: algorithm
explanation)”. Youtube. December 16, 2014.
https://www.youtube.com/watch?v=-L-
WgKMFuhE&list=PLFt_AvWsXl0cq5Umv3pMC9SPnKjfp9eGW&index=1.

Fig.3.4.g 235 Field of view editor displays "handles triangles".
Drawing by author.

Part 4: Simulation Tests

Fig.4.0.a 245 IMO and NIST verification tests for evacuation simulations.
Drawing by author.

Fig.4.0.b 247 Setup and conditions for test 1.
Drawing by author.

Fig.4.0.c 248 Agent walking in corridor from entrance.
Screen capture by author.

Fig.4.0.d 248 Screen captures at time intervals during the test of one agent.
Screen capture by author.

Fig.4.0.e 249 Travel times for a sample of 50 agents is consistently 40 seconds.
Graph by author.

Fig.4.0.f 251 Setup and conditions for test 2.
Drawing by author.

Fig.4.0.g 252 Agents in the starting area.
Screen capture by author.

Fig.4.0.h 252 Agents walking around the corner.
Screen capture by author.

xxvii

Fig.4.0.i 253 Screen captures at time intervals during the test.
Screen capture by author.

Fig.4.0.j 255 Setup and conditions for test 3.
Drawing by author.

Fig.4.0.k 256 Agents walking through opening.
Screen capture by author.

Fig.4.0.l 256 Agents clumping together causes spikes in flow rate.
Screen capture by author.

Fig.4.0.m 257 Screen captures at time intervals during the test.
Screen capture by author.

Fig.4.0.n 258 Max flow rate of 1.2 p/s, below 1.33 p/s (redline), but is not maintained.
Drawing by author.

Fig.4.0.o 258 Max flow rate spiked to 1.5 p/s, above redline, despite having same conditions as
trial 11.
Drawing by author.

Fig.4.0.p 260 Setup and conditions for test 4.
Drawing by author.

Fig.4.0.q 261 Agent walking to the exit portal.
Screen capture by author.

Fig.4.0.r 261 Screen captures at time intervals during the test of one agent.
Screen capture by author.

Fig.4.0.s 262 Walking speed follow a uniform distribution, with an average of 1.28 m/s.
Graph by author.

Fig.4.1.a 265 Setup and conditions for the wayfinding test.
Drawing by author.

Fig.4.1.b 266 Agent's view at the T-junction cannot see where their gate is, and they only have
the sign to inform their decisions.
Screen capture by author.

Fig.4.1.c 268 Agent with direct navigation goes to the left.
Screen capture by author.

Fig.4.1.d 268 Agent with perception navigation follows the sign for Gate B to the right.
Screen capture by author.

Fig.4.1.e 269 A* Direct Wayfinding.
Drawing by author.

xxviii

Fig.4.1.f 270 A* Perception Wayfinding.
Drawing by author.

Fig.4.1.g 271 Comparing the distance agents travelled to Gate B using direct and perception
navigation.
Graph by author.

Fig.4.1.h 273 Setup and conditions for the visibility test.
Drawing by author.

Fig.4.1.i 275 Agent's view when they see the Narrow Gate.
Screen capture by author.

Fig.4.1.j 275 Agent's view when they see the Wide Gate.
Screen capture by author.

Fig.4.1.k 276 Screen captures as agent walks to Narrow Gate, showing the change in FOV area.
Drawing by author.

Fig.4.1.l 277 Screen captures as agent walks to Wide Gate, showing the change in FOV area.
Drawing by author.

Fig.4.1.m 279 Change in Field of View (FOV) Area.
Graph by author.

Fig.4.1.n 279 Change in Field of View (FOV) Ratio.
Graph by author.

Fig.4.1.o 279 Change in Average Visibility.
Graph by author.

Fig.4.1.p 280 Maximum Field of View Area Distribution.
Graph by author.

Fig.4.1.q 280 Field of View (FOV) Ratio Distribution When Gate Discovered.
Graph by author.

Fig.4.1.r 280 Average Visibility Distribution.
Graph by author.

Fig.4.1.s 282 Setup and conditions for the non-processing priority test.
Drawing by author.

Fig.4.1.t 284 Agents with low food priorities waiting in the gate seating area (red).
Drawing by author.

Fig.4.1.u 284 Agents with high food priorities getting food at the cafe.
Drawing by author.

xxix

Fig.4.1.v 285 Agent Prioritizing a Non-Processing Domain
Drawing by author.

Fig.4.1.w 286 Comparing which agents got food with each agent's priority for food availability.
Graph by author.

Fig.4.2.a 289 Setup and conditions for the terminal tests.
Drawing by author.

Fig.4.2.b 291 Floor plan of the Centre Security Layout.
Drawing by author.

Fig.4.2.c 293 Passengers in the check-in area
Screen capture by author.

Fig.4.2.d 293 Passengers in security screening.
Screen capture by author.

Fig.4.2.e 294 Passenger entering holdroom concourse before the sign.
Screen capture by author.

Fig.4.2.f 294 Passengers linger in holdroom concourse.
Screen capture by author.

Fig.4.2.g 296 Centre Security Layout.
Drawing by author.

Fig.4.2.h 297 Centre Layout Value Distribution.
Graph by author.

Fig.4.2.i 297 Centre Security Screening Scores.
Graph by author.

Fig.4.2.j 398 Floor plan of the Asymmetrical Security Layout.
Drawing by author.

Fig.4.2.k 300 Passengers wandering (light blue) between check-in isles because they do not
see the security area from left side of the check-in processor.
Screen capture by author.

Fig.4.2.l 300 Security screening has a bias for passengers checking in on the right side.
Screen capture by author.

Fig.4.2.m 302 Asymmetrical Layout Value Distribution.
Graph by author.

Fig.4.2.n 302 Centre vs. Asymmetric Comparison.
Graph by author.

xxx

Fig.4.2.o 303 Asymmetrical Security Screening Scores.
Graph by author.

Fig.4.2.p 303 Centre vs. Asymmetrical Security Comparison.
Graph by author.

Fig.4.2.q 304 Floor plan of the Perpendicular Security Layout.
Drawing by author.

Fig.4.2.r 306 Passengers in the right isle of check-in looking for the security area.
Screen capture by author.

Fig.4.2.s 306 Passenger's view walking along the wall from the right cannot see any identifying
feature for security at the threshold.
Screen capture by author.

Fig.4.2.t 307 Passengers approaching from the right side (purple) recognize the security
queue sooner than passengers approaching from the left side (light blue), due to
the narrow opening.
Screen capture by author.

Fig.4.2.u 307 Perpendicular security screening area, with an exit to the left towards the
wayfinding sign.
Screen capture by author.

Fig.4.2.v 309 Perpendicular Layout Value Distribution.
Graphs by author.

Fig.4.2.w 309 Architectural Value Comparison.
Graphs by author.

Fig.4.2.x 310 Perpendicular Security Screening Scores.
Graphs by author.

Fig.4.2.y 310 All Security Comparison.
Graphs by author.

Fig.4.2.z 311 Assigned agent characteristics and random priority matrix.
Drawing by author.

Fig.4.2.za 312 Assigned agent characteristics and high security priority matrix.
Drawing by author.

Fig.4.2.zb 313 Assigned agent characteristics and equal priority matrix.
Drawing by author.

Fig.4.2.zc 316 Average architectural value for all nine tests.
Table by author.

xxxi

Fig.4.2.zd 315 Centre Layout Range.
Graph by author.

Fig.4.2.ze 315 Asymmetrical Layout Range.
Graph by author.

Fig.4.2.zf 315 Perpendicular Layout Range.
Graph by author.

Fig.4.2.zg 316 Random Priority Effects.
Graph by author.

Fig.4.2.zh 316 High Security Priority Effects.
Graph by author.

Fig.4.2.zi 316 Equal Priority Effects.
Graph by author.

Fig.4.3.a 318 Skytrax Airport Ranking 2020.
Drawing by author.

Fig.4.3.b 319 AirHelp Airport Ranking 2019.
Drawing by author.

Fig.4.3.c 321 Setup and conditions for the airport tests.
Drawing by author.

Fig.4.3.d 322 Simulated floor plan for Changi terminal 1.
Drawing by author.

Fig.4.3.e 323 Simulated floor plan for Pearson terminal 1, international departure.
Drawing by author.

Fig.4.3.f 325 Passengers in Changi going through the check-in area.
Screen capture by author.

Fig.4.3.g 325 Passengers in Changi going through security into the retail courtyard.
Screen capture by author.

Fig.4.3.h 326 Passengers in Pearson going through the check-in area.
Screen capture by author.

Fig.4.3.i 326 Passengers in Pearson going through security.
Screen capture by author.

Fig.4.3.j 328 Changi Population Distribution.
Graph by author.

xxxii

Fig.4.3.k 328 Pearson Population Distribution.
Graph by author.

Fig.4.3.l 329 Sample Mean Comparison of Changi and Pearson.
Graph by author.

Fig.4.3.m 329 Equivalent normal distributions for Changi (blue), N(0.802, 0.0166), and
Pearson (red), N(0.420, 0.0289), as continuous PDFs, given an infinite number
of samples.
Graph by author.

Fig.4.3.n 331 Average values for each passenger priorities.
Chart by author.

1

Part 0:

Introduction

This introduction describes the thesis’s motivation, problems, and intentions. The hypothesis

states that, the differences in an architectural layout for an airport terminal can be explained

using an agent simulation, if agent decision-making relies on the perception of the surrounding

environment. Part 0 also summarizes the expected results and the organization of the thesis

structure.

0.0 Motivation

The motivation for this thesis comes from two ideas. Firstly, the thesis investigates how

mathematics plays a role in the architectural design process, to model patterns and determine

quantifiable outcomes. Design is a creative process, which requires using skills and intuition to

develop new ideas. But once these ideas need to translate into the built environment, it can be

challenging to demonstrate why one layout is better than another. The interest of using

mathematics is to make logical choices during the design process. If a designer makes two

different floor plans that are created for the same purpose, is there a way to quantify the

differences between the two layouts to determine which design is better than the other

(Fig.0.0.a)? Overall, the motivation of this thesis is to propose a world in which architectural

decisions are based on mathematical analysis.

Secondly, the thesis is interested in developing a tool that allows designers to quantify

differences between architectural spaces. This involves investigating existing research from civil

engineering and computer science, which has developed ways of quantifying patterns of human

activity in the built environment. These areas of research have demonstrated that human

behaviour becomes predictable on a large scale, despite every person acting as an individual.

The results from this way of thinking have impacted the way transportation systems are

designed, which incorporates tools like crowd and traffic simulations to understand the

movement of large volumes of people over time. Could the methods that work for crowd

simulations in transport facilities be a starting point for quantifying architectural spaces?

2

Given two plans, can the differences between them
be analysed mathematically?

Iteration A Iteration B

a a

b

b

c

c

Figure 0.0.a: Comparing two different iteration of a floor plan.

3

0.1 Problem

Airports are complex facilities that are expensive to build. They need to accommodate over tens

of thousands of passengers every hour, the movement of logistics, and control of security. It can

be difficult to test a terminal building for that many people and factors. Additionally, it is not

practical for designers to build a complete airport to see how it works or fix changes after finding

design issues during operations. This complexity can result in architects relying on their

intuition to judge the benefits from a design without formal testing or proper validation.

Designers try to minimize these issues by using crowd simulations to approximate human

behaviour. However, existing crowd simulations typically model passengers as a process flow, or

people in emergency evacuations. As a result, these tools do not represent how people use

architecture for decision-making for daily interactions. People are not aware of their final

destination when they enter a terminal building for the first time. They may not understand

what they need to do or how to get there. Instead, people rely on using their surroundings (the

architecture) to inform them what to do. However, there are currently no methods to validate a

building for this type of decision making. In summary, the thesis looks to address the following

problems:

1. The complexity of human behaviour creates uncertainty in design decisions, which

causes architects to rely on their intuition without proper validation.

2. Existing crowd simulations do not represent how people interact with architecture for

decision making during daily airport operations.

0.2 Goals

The goal of this thesis is to develop a mathematical model to validate an airport terminal layout

based on passenger interactions. The model quantifies a spatial arrangement as a function of

behaviour of people in that space. It approximates human behaviour based on statistics from

existing crowd simulations. It incorporates perception to provide feedback of how agents make

decisions. Architecture is quantified using spatial analysis, and it is valued using the method of

prioritization within existing airport domains. The thesis proposes a new way of scoring

architecture by combining these methods into a single index of architectural value. The success

of a floor plan is then dependant on a passenger’s ability to fulfill their priorities within a given

space. Therefore, to reach this goal, agents must be able to simulate these interactions within an

architectural environment. Specifically, the thesis looks to understand the following questions:

4

1. What are the minimum architectural elements that have an influence on people in a

given space?

2. What are the minimum mathematical models needed to quantify an architectural layout

as a function of user activity?

0.3 Hypothesis

Consider a simulation of an airport terminal, which contains numerous agents that represent

typical passengers. Imagine these agents are given a certain task to complete within an airport

domain, which they can only accomplish by relying on the information from their perceivable

surroundings. If these agents are given sufficient perception of the architectural environment,

then the simulation can quantify how well the terminal’s layout influenced passengers’ decision

making. As a result, this simulation could approximate an equivalent passenger interaction in a

real airport environment, based on a statistical probability.

0.4 Expected Results

The thesis attempts to create an agent-based model that can calculate architectural value using

agent perception. Firstly, the thesis should identify what aspects of architectural quantification

are missing from the design process. Secondly, it should make clear how existing mathematical

techniques and simulation tools are already capable of quantifying architectural conditions.

Finally, the model should demonstrate a convincing mathematical approach for quantifying

architectural spatial conditions.

The agent-based simulation should work as a practical tool that can illustrate basic functions of

an airport terminal. In general, it should be able to differentiate two architectural layouts based

on their accumulated architectural values. It should show what aspects of a space or airport

domain create good or bad passenger interactions. Ideally, it should analyse a given airport and

indicate the likelihood of the architecture being successful or a failure within a statistical

certainty.

0.5 Thesis Structure

This thesis is organized into five parts, excluding the introduction. Part 1 talks about the context

behind the thesis. Chapter 1.0 talks about architectural intuition and its inconsistencies. Chapter

1.1 introduces the basics of airport terminals, including the scope of design for an architect.

Chapter 1.2 gives a summary of verification and validation. This includes typical applications in

5

other industries and its limitations. Chapter 1.3 gives a brief summary of probability and

statistics. It shows how statistics approximates real-world patterns and describes the math

behind typical probability distributions. Chapter 1.4 introduces simulation modelling,

definitions of properties, processes, and different applications for airports. Additionally, chapter

1.4 concludes with a comparison of existing simulations.

Part 2 covers modelling concepts that the thesis identifies to be beneficial for creating an

architectural agent simulation. Chapter 2.0 begins by defining what agents are, and their

decision-making process. Chapter 2.1 introduces human perception. This talks about

categorization, agent knowledge, and visual fields of view. Chapter 2.2 summarizes the concept

of spatial analysis. This includes existing techniques and a mathematical description of graph

theory. Chapter 2.3 introduces value theory, the method of prioritization, and common airport

domains. This concludes with the thesis’s proposal of how to calculate architectural value.

Part 3 goes into detail about how the thesis creates its agent simulation. Chapter 3.0 introduces

Unity software, which is the program the thesis uses to build the simulation. It also gives a brief

description of how its scripting components work. Chapter 3.1 summarizes script classes for the

agent’s functions, perception, and decision-making. Chapter 3.2 explains how the simulated

environment and navigation work. Chapter 3.3 talks about components for airport architecture,

scheduling, and value functions. Chapter 3.4 summarizes additional script classes for

background functions. Chapter 3.5 concludes by listing the assumptions the thesis made for the

agent model, and what the limitations are for the simulation.

Part 4 goes through all the simulation testing. Chapter 4.0 conducts standard tests which follow

current simulation practices for verification and validation. Chapter 4.1 illustrates the range of

behaviour based on the new components introduced for this thesis. Chapter 4.2 goes through

basic airport terminal layouts to illustrate how the agent-model behaves in different floor plans.

Chapter 4.3 compares two existing airport terminals to see if architectural value matches a real-

world passenger survey ranking.

Part 5 discusses the results of the thesis, its impacts to architecture, and plans for future

research. Chapter 5.0 begins by summarizing the results of the simulation testing. Chapter 5.1

talks about the components for an ideal architectural agent simulation. Chapter 5.2 walks

through the impacts of simulation testing for the architectural industry. Chapter 5.3 discusses

future research topics that could expand from this thesis’s research. Finally, Chapter 5.4

summarizes the overall conclusions of the thesis.

7

Part 1:

Context

Part 1 begins by describing some of the limitations of intuition for architectural design. Chapter

1.1 introduces the complexity of current airport terminals and goes through the contemporary

design process. Chapter 1.2 explains about the methods of verification and validation that are

typical in other scientific disciplines. It also compares validation to existing practices in

architectural design. Chapter 1.3 gives a brief summary of probability and statistics. It describes

how statistics uses mathematical models to approximate real-world patterns. Chapter 1.4

introduces different types of simulation models and how they work in different applications.

This chapter also describes some existing simulation methods for analyzing airports. It

concludes by walking through some of the tools the thesis has considered for an architectural

agent simulation.

8

Chapter 1.0

Architectural Intuition

Architecture is a discipline that incorporates both technical knowledge and artistic sense in the

pursuit of creating physical spaces in the built environment. Architects make decisions about

how to organize building elements based on their knowledge as a professional. They must make

sure that a design meets project requirements set out by clients and developers for the

occupants and people involved. Currently, contemporary architectural practice is moving

towards using technical analysis to validate certain aspects of a building. Up to now, building

validation has an influence on codes, structures, services, construction, and energy usage.

However, it is still common that space planning is dependant on the interpretation of the

designer. Architects decide if a layout of spaces is functionally validated primarily based on their

professional knowledge and experience.

While space planning is an important responsibility of an architect, there is no direct approach

to scientifically or mathematically validate if a given arrangement of spaces meet the needs of a

project. The layout of spaces is fundamental to the function of a building. All other building

elements, like material, structure, and services develop around the framework of space. The risk

of unvalidated architecture is that designers who pursue unconventional layouts, or aesthetically

unique designs, claim a building is functional for the occupants without objectively checking if

that is true or not. It is not wrong for architects to make unconventional designs, or to

experiment with the aesthetics of space. However, space planning tends to move from modelling

into contract documentation as the primary evidence of design validation, which is a limiting

approach to prove how a building operates scientifically.

Architectural spaces are difficult to define because they can have soft outlines that are not

limited to conventional boundaries, like social effects. [1] A single space may be associated with

multiple functions, like multi-use spaces in apartments, or have connections that are not

physically related, like sacred spaces in religious architecture. As a result, architects can rely on

1. Arabacioglu, Burcin Cem. “Using Fuzzy Inference System for Architectural Space Analysis.” Applied

Soft Computing 10, no. 3 (2010): 926–37. https://doi.org/10.1016/j.asoc.2009.10.011. 926.

9

their intuition as the primary factor for deciding these types of layouts, since their experience

and interaction with these spaces informs how they will be used. [2]

In their research on architectural design ideas and beliefs, Holm states that architects tend to

make decisions based on their own experience, skills, and values. [3] This results in information

that is based in personal knowledge, unlike shared knowledge in scientific disciplines. [4]

Personal knowledge is difficult to disprove with objective evidence because one architect’s

knowledge might not share the same fundamental ideas as another architect, which is neither

right nor wrong. [5] Holm mentions that this inconsistency shows up in the architectural

language, where concepts like space or form do not have clear definitions, in which space can

refer to both physical and social boundaries. In addition, it is common for architectural work to

start from “scratch”, or the need to be inventive for every new project, which can disregard

existing practices or proven results. [6] As a result, designers usually try to solve unconventional

situations or problems that were not there initially. Holm summarizes that these conditions

make architecture value-based rather than evidence or fact-based like other academic

disciplines. [7]

Wide Range of Airport Designs

Early examples of prominent airport architecture illustrate how a designer’s ideas can be

inconsistent. In the 1960’s, architect Eero Saarinen created two different terminals that had

contrasting design methodologies, which were examples of design flexibility and inflexibility. [8]

Both terminals were designed as international airports for two major cities on the east coast of

the United States, less than 400 𝑘𝑘𝑘𝑘 apart, built within 2 years of each other. With one architect

overseeing both designs, one would expect these terminals are built around a common

framework. However, it appears that these two terminals are arranged quite differently.

2. Arabacioglu, “Fuzzy Inference System”. 926.
3. Holm, Ivar. “Ideas and Beliefs in Architecture and Industrial Design”. (PhD thesis, Oslo School of

Architecture and Design, 2006). 282.
4. Holm “Ideas and Beliefs”. 282.
5. Holm “Ideas and Beliefs”. 282.
6. Holm “Ideas and Beliefs”. 284.
7. Holm “Ideas and Beliefs”. 284.
8. National Academies of Sciences, Engineering, and Medicine. “Airport Passenger Terminal Planning

and Design, Volume 1: Guidebook”. Washington, DC: The National Academies Press, (2010): 6-7.

10

Figure 1.0.a: Floor plan of Eero Saarinen's TWA Flight Centre (1961) has a curved concourse with a

centralized lobby, from the National Park Services, as shown by Fiederer (2016).

Figure 1.0.b: Floor plan of Eero Saarinen's Dulles International Airport main terminal building (1962)

has a linear concourse as a transition to mobile lounges, as shown by Futagawa (1973).

11

Saarinen’s first terminal in 1961 was the TWA Flight Center at John F. Kennedy International

Airport (JFK), outside New York City. The design of the terminal differs from the orthogonal

geometry of the international style at the time. [9] Instead, Saarinen went with curvilinear lines,

developing a concrete shell structure that arched over the terminal like a bird’s wings. As a work

of art, the public saw the building as innovative, beautiful, and a creative design. [10] However, as

a terminal building, it became “functionally deficient” over time due to the complexity of how

the spaces were arranged and the rigid form of the concrete structure. [11] [12] New piers and

concourses needed to be added to accommodate the growing size of planes, like the Boeing 747.

Today, JFK has expanded significantly since the 1960’s. The TWA building is no longer used as a

terminal, and it is instead repurposed as a hotel. [13]

Saarinen’s second design, completed in 1962, was the main terminal at Dulles International

Airport (IAD), outside Washington D.C. He incorporated the building with a modular design

which was able to adapt to terminal growth overtime. The concept included the use of “mobile

lounges”, a bus-like vehicle used to shuttle people between the planes and the main terminal

building. [14] While initially useful, the maintenance cost of the lounges and the complexity of

closing-out flights early to move passengers back to the terminal, resulted in abandoning the

lounges altogether. [15] Since then, Dulles has converted its terminals to a satellite configuration

with an underground people-mover system (automated train). [16]

Comparing the floor plans of these airports shows two different design languages. The floor plan

of TWA is a single-storey, crescent-shaped building centered around a split-level lobby space

(Fig.1.0.a). It has a central lower ticket lobby, with stairs that ascend into an upper lobby

concourse on the gates side (Fig.1.0.c). Two piers were later added to this concourse, which

extend out to the plane gates. A baggage claim concourse can be seen in the north wing of the

terminal and a parking facility in the south wing.

9. National Park Services. “Trans World Airline Flight Center”. National Register of Historic Places.

September 7, 2005. Section 7: 1.
10. National Academies, “Airport Passenger Terminal Planning and Design”. 7.
11. National Academies, “Airport Passenger Terminal Planning and Design”. 7.
12. National Park Services. “Trans World Airline Flight Center”. 8: 9-10.
13. McFadden, Robbyn. “Up, up and away at the TWA Hotel”. CBS News. May 12, 2019.

https://www.cbsnews.com/news/up-up-and-away-at-the-twa-hotel-at-jfk/.
14. National Academies, “Airport Passenger Terminal Planning and Design”. 7.
15. National Academies, “Airport Passenger Terminal Planning and Design”. 7.
16. National Academies, “Airport Passenger Terminal Planning and Design”. 7.

12

Figure 1.0.d: Section of Dulles terminal building with two levels and connection to the mobile lounges,

as shown by Saarinen (1968).

Figure 1.0.c: Section of TWA Flight Center with a split-level lobby and shell structure, from the

National Park Services, as shown by Fiederer (2016).

13

The floor plan of Dulles is a multi-storey rectilinear space with a consistent structure spacing

(Fig.1.0.b). The main level has two symmetrical halls connecting the check-in area and a linear

holdroom concourse. The holdroom is lined with stalls for the mobile lounges which are parked

perpendicularly to the building so passengers can walk straight into them. There is a T-junction

in the middle of this concourse, which connects up to the based of a control tower. The baggage

claim hall is also on a lower level below the main halls (Fig.1.0.d).

Although both terminals were made by the same architect during the same time, the plans

illustrate that they have very different ways of organizing spaces. This does not mean one design

is worse than the other; each terminal had to solve their own problems due to the nature of their

layouts. Even though they are created under similar circumstances, an architect like Saarinen

has a wide range of layout choices that might work. However, terminals still have a logical

structure that is inherent with the functions of an airport, like check-in and gate locations.

Deciding which layout best suits those functions is the challenge of architectural design.

14

Chapter 1.1

Airport Terminal Design

The thesis experiments with agent-based simulations in the context of airport terminal

architecture. The focus on airports has many benefits for this thesis because of the existing

research and available data. Contemporary airports involve many aspects of aviation, logistics,

and human wellbeing. Today, understanding the complexity of these areas involve using some

form of simulation or modelling to predict the impact to operations. [1] There is also well-

established research and data that analyzes passenger experience within a terminal building. [2]

Analysing architecture using agent-based simulations can build from these established

practices. Terminals also have a clear purpose for processing passengers and transporting

people to where they need to go. Fundamentally, this gives an agent simulation a well-defined

goal that is easy to model in a digital environment. The function of passenger processing can

also become a clear indicator of architectural performance.

The primary source the thesis uses to understand the airport design process is based on the

reports written by the National Academies of Sciences, Engineering, and Medicine, as part of the

Airport Cooperative Research Program (ACRP). They present guides for airport planners on the

fundamentals of airport design and operations based on standards by the FAA (Federal Aviation

Administration). [3] The ACRP procedures are considered standard practice in the United States.
[4] The thesis takes these reports as representative of conditions for North American airports.

The research also considers the methods described by the GTAA (Greater Toronto Airports

Authority) in their master plan of Toronto Pearson International Airport. [5] [6]

1. National Academies of Sciences, Engineering, and Medicine. “Simulation Options for Airport

Planning”. Washington, DC: The National Academies Press. (2019): 3.
2. Wiredja, Dedy, Vesna Popovic, and Alethea Blackler. “A Passenger-Centred Model in Assessing

Airport Service Performance.” Journal of Modelling in Management 14, no. 2 (May 10, 2019): 492–520.
3. National Academies of Sciences, Engineering, and Medicine. “Airport Passenger Terminal Planning

and Design, Volume 1: Guidebook”. Washington, DC: The National Academies Press, (2010): 1.
4. National Academies, “Airport Passenger Terminal Planning and Design”. 1.
5. GTAA. “Toronto Pearson International Airport Master Plan 2017-2037”, Greater Toronto Airports

Authority, (2017). 5-13.
6. GTAA. “2018 Airport Construction Code, v5.0”, Toronto Pearson International Airport, (2018). xiii.

15

Planning Process

Airports are built up of many elements like civil infrastructure, maintenance facilities, terminal

buildings, and servicing equipment. They can cost in the range of billions of dollars and require

the order of magnitude of a million square metres of space. [7] It is rare for new international

airports to be built from scratch, since it is more likely that a high-populated area is already

served by a functioning international airport. Instead, it is more common for new airport

developments to be renovations of existing facilities or expanding from existing infrastructure.
[8] Although, constructing a new airport can occur if an existing airport is over capacity, there is

open land available for a new facility, and the local authority is willing to budget the time and

resources for a new project. In other words, it is rare for airport projects to occur in the first

place, but when they do, it is important to make sure there will be use out of it.

For the terminal building alone, there are countless decisions concerning what the design scope

of the facility needs to be, including capacity for the number of flights that the airport expects to

handle, and the number of passengers expected to be on those flights. Architecturally, planners

need to consider how areas are integrated with the existing terminals, what areas are controlled

by security, and how far people need to walk. Additionally, the size of the facility itself is

dependant on many factors, which includes the number of service counters, baggage carousels,

queue lines, and gate seating.

New projects for major airports usually go through an airport authority. An airport authority is,

typically, a not-for-profit, government funded, private company that manages airport

operations. [9] Projects are managed by airport planners, who may refer to internal developers

from an airport authority, or external consultants in engineering, architecture, or urban

planning. [10]

In Volume 1 of Airport Terminal Planning and Design, the National Academies explains in

detail that new terminals must go through several stages of planning before reaching the design

7. Neumann, Peter. “Kosten für Großflughafen steigen um 160 Millionen Euro, weil mehr Passagiere

erwartet werden: Noch nicht gebaut und schon teurer”. Berliner-Zeitung, 2008-07-10.
https://www.berliner-zeitung.de/kosten-fuer-grossflughafen-steigen-um-160-millionen-euro-weil-mehr-
passagiere-erwartet-werden-noch-nicht-gebaut-und-schon-teurer-li.6277.

8. National Academies, “Airport Passenger Terminal Planning and Design”. 1.
9. PANYNJ. “Terminal Planning Guidelines”, The Port Authority of New York and New Jersey, August

2013, https://www.fd.cvut.cz/projects/k621x1ml/dokumenty/panynj-terminal-planning-guidelines.pdf.
10. Nelson Oliveira (Project Director, Greater Toronto Airports Authority), phone conversation with

author, February 3, 2020.

16

process. [11] In the first stages of a new facility, planners identify the function for domestic or

international processing, the expected number of flights, and the expected number of

passengers. Significant airport projects are planned at least a decade in advance of any actual

construction. Planning that far in advance makes it challenging to estimate how an airport will

operate decades into the future. However, planners predict how future operations will work

using statistics of current airport operations and past growth. During this stage, planners will

also communicate with relevant airline companies who may be the primary clients of the new

facility.

Terminal Building Layout

There are two main types of terminal concepts that planners can choose from, depending on the

capacity of the airport. These are centralized or decentralized terminal buildings. [12] In a

centralized terminal, all passengers and logistics are processed in one building. This maximizes

the use of shared facilities and amenities, which avoids duplicating services. It also simplifies

wayfinding for passengers, since there is only one area for arrivals and departures. [13] The

downside of a centralized facility is passengers may need to walk long distances between flights,

if they all need to pass through a single location. [14]

Decentralized facilities are beneficial for separating different types of flights, operations, or

airlines. This includes providing security separation between domestic and international

travellers. Each building only needs to serve the passenger demand for a given travel, which can

distribute an airport’s capacity during peak operations. [15] The main downside of a decentralized

facility is that each building is independent. As a result, every terminal needs their own services

and amenities, which can be expensive to maintain.

A basic airport terminal is divided into two areas: landside and airside, which are separated by a

security line. Landside interfaces with public areas, whereas airside controls restricted access to

the planes. Both areas have core spaces for passenger processing. This typically includes check-

in, security, holdroom concourse, gates, immigration, and baggage claim. These areas align with

passenger flows, which are departure, arrival, or connecting. Departure flow includes check-in,

security, (sometimes immigration), holdroom, and gates. Arrival flow includes gates,

11. National Academies, “Airport Passenger Terminal Planning and Design”. 23.
12. National Academies, “Airport Passenger Terminal Planning and Design”. 171.
13. National Academies, “Airport Passenger Terminal Planning and Design”. 171.
14. National Academies, “Airport Passenger Terminal Planning and Design”. 172.
15. National Academies, “Airport Passenger Terminal Planning and Design”. 172.

17

Figure 1.1.a: Basic airport terminal layout, as shown by National Academies (2010), sourced from

“Considerations for Selecting a Terminal Configuration,” David A. Daileda, FAIA, FAA White Paper.

Figure 1.1.b: Linear terminal, as shown by National Academies (2010), sourced from “Considerations

for Selecting a Terminal Configuration,” David A. Daileda, FAIA, FAA White Paper.

18

immigration, and baggage claim. Depending on the airport, connecting passengers may stay in

the gate concourse. However, some connecting passengers may need to go through immigration

before boarding their next flight.

A terminal can be designed in several different configurations. The most common configurations

are linear, pier, and satellite.

Linear: A basic linear configuration has a single passenger processor that is accessed by a road,

or curbside. The processor is connected directly to a gate concourse, which passes through a

security screening area. The plane gates are then evenly spaced, side-by-side, along the gate

concourse on an apron (Fig.1.1.a). [16] Passengers can access the planes either, directly from the

terminal building by a jet bridge, or remotely at-grade. For larger airports, these concourses can

be elongated to accommodate more planes. This is typically served by a corridor behind the gate

holdroom, which contains amenities (Fig.1.1.b). [17]

Pier: A pier configuration has a similar processor and security area like a linear terminal.

However, the gate concourse for a pier extends out perpendicularly, like a boat pier. This allows

planes to be served on either side of the concourse, which can extend out further to

accommodate more planes (Fig.1.1.c). [18] To reduce passenger walking distance in larger

airports, planners will include multiple piers (Fig.1.1.d). [19] These piers are either organized

parallel to each other, or radially around a centralized processor building. The spacing between

the piers is determined by the size of the planes.

Satellite: A satellite configuration separates the gate concourse from the main processor

building. The benefit of a satellite building is that planes can be parked around all sides of the

terminal. Satellite buildings are always on airside, which contains a gate concourse, holdrooms,

and amenities. This can be accessed, either above-grade or underground, by automated trains,

shuttlebuses, or walkways (Fig.1.1.e). [20] For larger airports, it is common to have multiple

linear-satellite concourses, which are linked by an automated-people mover (AMP) (train)

(Fig.1.1.f). [21] This takes advantage of the efficiency of a linear configuration and the capacity of

a satellite.

16. National Academies, “Airport Passenger Terminal Planning and Design”. 173.
17. National Academies, “Airport Passenger Terminal Planning and Design”. 174.
18. National Academies, “Airport Passenger Terminal Planning and Design”. 175-176.
19. National Academies, “Airport Passenger Terminal Planning and Design”. 177.
20. National Academies, “Airport Passenger Terminal Planning and Design”. 178.
21. National Academies, “Airport Passenger Terminal Planning and Design”. 182.

19

Figure 1.1.c: Pier terminal, as shown by National Academies (2010), sourced from “Considerations for

Selecting a Terminal Configuration,” David A. Daileda, FAIA, FAA White Paper.

Figure 1.1.d: Multi-pier terminal, as shown by National Academies (2010), sourced from

“Considerations for Selecting a Terminal Configuration,” David A. Daileda, FAIA, FAA White Paper.

20

Figure 1.1.e: Satellite terminal, as shown by National Academies (2010), sourced from “Considerations

for Selecting a Terminal Configuration,” David A. Daileda, FAIA, FAA White Paper.

21

Figure 1.1.f: Satellite terminal with an Automated People Mover (APM) system, as shown by National

Academies (2010), sourced from “Considerations for Selecting a Terminal Configuration,” David A.

Daileda, FAIA, FAA White Paper.

22

Demand Forecasting

The size of an airport terminal is based on the future forecast of passengers, cargo, and aircraft

movements. [22] These movements refer to how many planes are expected arrive and depart over

time. This indicates the number of passengers that enplane (depart) and deplane (arrive) from

those flights. Planners get this information from demand forecast data. There are two common

approaches for collecting forecast data. One option is to extrapolate past trends from the

existing facility into the future. The second option is to use national forecast data and

extrapolate based on the latest social and economic factors. [23] Travel forecasts are broken down

into daily and hourly passenger movements. The amount of airport activity fluctuates

throughout the year. So, planners account for these changes by considering the number of

passengers during the busiest time of the year. However, it is not practical to design airports to

accommodate the greatest number of passengers, since that level of activity is not consistent all

the time.

Peak Hour

The hour when an airport sees the greatest number of passenger movements is called the peak

hour. North American airports are designed according to the peak hour of an average day during

the busiest month. [24] The peak hour may not correspond to a clock hour exactly, but instead it

can be an interval of time when flights are expected to arrive and depart. Outside of the United

States, some airports are designed by considering the 90th to 95th percentile of the busiest hour

of the year. However, it is challenging for planners to know precisely what time of year is the

busiest. The number of passengers during peak hour determines how large areas in a terminal

need to be. It also influences the number of check-in counters, security screening machines, and

length of queue lines.

For example, in 2017, Toronto Pearson Airport processed over 12 000 passengers during its

peak hour, which was around 18:00 (6:00 PM), on average (Fig.1.1.g). [25] Passengers are either

coming from arriving, departing, or connecting flights. There were about 7 000 passenger

movements departing from Pearson over the peak hour (Fig.1.1.h). As an example, planners

designing a departure hall for Pearson would want to make sure it could process at least 7 000

22. National Academies, “Airport Passenger Terminal Planning and Design”. 9.
23. National Academies, “Airport Passenger Terminal Planning and Design”. 21.
24. National Academies, “Airport Passenger Terminal Planning and Design”. 89.
25. GTAA. “Toronto Pearson International Airport Master Plan 2017-2037”, Greater Toronto Airports

Authority, (2017), 38, 56, 85.

23

Figure 1.1.h: Toronto Pearson Airport's peak-hour passenger movement forecasts base on existing

and projected flight schedules, GTAA (2017).

Figure 1.1.g: Toronto Pearson Airport's hourly passenger movement forecasts, GTAA (2017).

24

passengers during that hour. The terminal design should function normally without having

congestion in corridors or queues that overflow into other areas.

Level of Service (LOS)

The required area for the terminal depends on the number of passengers and how many people

can comfortably fit in each area. In North America, airport planners use Level of Service (LOS)

factors to find the density of people acceptable for public spaces. LOS factors were developed in

1970 by John Fruin based on experiments conducted with crowds. [26] It describes how freely

people can walk in open paths, stairways, and queues on a scale from A to F (Fig.1.1.i). Level A is

when people have free space to walk without any obstructions. Level F is when people are

practically squished together and can barely move. To be economical with space and time, most

airports are built for a LOS factor of C, which is at least 15sqft (1.4m²) per person. Level C means

people can walk uninterrupted in any direction, but there is possibility that people need to

adjust their walking speed to avoid obstructions. This provides a balance between the size of a

space and passenger comfort levels. Planners may aim for a higher LOS like Level B during

conceptual design, knowing over time it tends to drop to Level C for final operations. [27] The

final size of the final terminal building is dependant on the required square-footage and

passenger demand.

Conceptual Planning

Once the number of aircraft movements and passengers are established, the next stage involves

creating a conceptual site plan. The site plan shows how the new terminal fits together with the

entire airport. Planners will explore different arrangements of the building based on the number

of gates, overall circulation, and expected construction costs. The best options developed from

conceptual planning are then further refined with more detail. Areas in the terminal are

measured out in CAD as simple geometry based on the space program. At this stage, planners

turn to spreadsheet models and simulations to verify demand forecasting data. [28] It is common

for planners to consult with engineering and architectural teams, who check the terminal using

26. Fruin, John J. Designing for Pedestrians: A Level of Service Concept. New York, 1970.
27. Nelson Oliveira (Project Director, Greater Toronto Airports Authority), phone conversation with

author, February 3, 2020.
28. National Academies, “Airport Passenger Terminal Planning and Design”. 28.

25

Figure 1.1.i: Experiment showing the level of service (LOS) from A, the least dense, to F, the most

crowded, Furin (1970).

26

traffic simulations and crowd modelling. [29] [30] This makes sure spaces are acceptable for

passenger flow and LOS factors.

Design Process

Once planners confirm a conceptual plan, it is then brought to the architects to begin the design

process of the physical building. It is common for architectural design consultants, who were not

part of the initial planning stages, to question the form of the building and try to impose new

design ideas. [31] The focus of airport planners is to maintain the functional integrity of the

project. There are critical areas (hard points) in the airport that cannot be changed. This

includes the location of airside (aircraft stands, gates, and apron), and landside (curbside and

roadways). The location of the security line between secure areas and non-secure areas may also

be fixed. The responsibility for architects is to arrange, detail, and design elements between

these hard points. This includes arranging the layout for check-in and security, designing the

experience for retail and restaurants, and detailing waiting areas and back-of-house staff rooms.

As is common across all architectural projects, this leads into schematic design, design

development, and contract documentation. [32] It is through schematic design that the

conceptual plan is developed into a terminal building. Architects translate the areas of space

program into floor plans, verifying that terminal works with simple architectural elements like

volume and structure. In design development, the terminal is refined in more detail with form,

structure, and building systems. The terminal is also verified at this stage for building codes and

safety standards. From this point, only minor changes to the design are made. Then drawings

are prepared for construction, which leads into the final contract documentation.

The thesis considers the transition from conceptual planning into design development. Agent-

based simulations can help verify that architectural space planning aligns with the functional

integrity of the rest of the airport. Using the knowledge established in the early stages of

planning, agent modelling can verify architectural conditions align with passenger interactions

and decision-making, based on the perspective of the individual.

29. National Academies, “Airport Passenger Terminal Planning and Design”. 28.
30. Nelson Oliveira (Project Director, Greater Toronto Airports Authority), phone conversation with

author, February 3, 2020.
31. National Academies, “Airport Passenger Terminal Planning and Design”. 30.
32. National Academies, “Airport Passenger Terminal Planning and Design”. 30.

27

Summary

The context of this thesis looks at the design of airport terminals. There is established research

showing that analysis tools, like simulations, are required to understand complex systems and

predict the impact to operations. The design process involves several stages of planning and

analysis from airport planners before starting the architectural design of the terminal building.

This involves identifying the capacity of the facility and the expected number of flights and

passengers, using demand forecasting. Airport terminals are divided into two areas based on

security: landside and airside. The passenger-facing areas of a terminal building include several

core spaces like check-in concourse, security, holdroom concourse, gates, immigration, and

baggage claim hall. The size of an airport terminal is based on the expected number of aircraft

movements, during the peak-hour of operations. Aircraft movements influence the expected

number of passengers, which then decides how big areas inside the building need to be. The

exact square-footage is calculated based on the density of passengers using level-of-service

factors. This is verified using crowd modelling and traffic simulations to check for restrictions. A

balance is chosen between the economics of available space and expected processing time. After

planners put together a suitable site plan, architects begin designing and arranging spaces for

the physical building. However, architects are required to design the terminal within the hard

points established during planning, like the gates and security line. The scope of the thesis

analyzes the arrangement of these spaces using agent-modelling to verify architectural

performance, to be consistent with the planning stages.

28

Chapter 1.2

Verification and Validation

A major focus of this thesis is to increase the credibility and confidence of architectural spatial

decisions. Without proper analysis, there is no certainty in the function of a layout, or the

accuracy of a designer’s choices. [1] Verification and validation (V&V) describe an objective

process that checks if a product, service, or system meets the requirements of its intended

purpose. [2] This thesis considers V&V for two conditions: the design process and the agent-

based model. Firstly, existing practices of V&V can be used to check if an architectural layout is

meeting the scope of a design project. Secondly, V&V can confirm if components in an agent-

based model are working correctly, based on simulation standards. Ideally, verification and

validation are not meant to be final checks only, but instead should be an iterative process

throughout the design cycle. [3]

Validation is formally defined by the International Organization for Standardization (ISO) as

“confirmation, through the provision of objective evidence, that the requirements for a specific

intended use or application have been fulfilled”. [4] This definition practically applies to any

application, whether it is an object or system. In general, validation ensures that the goals of a

project are achieved. It is also meant to give a user confidence that the things they are creating

will be useful.

Verification is a process that checks if models, tools, and products are working correctly,

according to a given standard or within a defined level of accuracy. [5] The process involves

comparing properties of one system against the required properties of an ideal system. [6] The

user of the model must have confidence that their models represent accurate information

according to their purpose. For example, a measuring device used to check the distance between

1. Robinson, Stewart. Simulation: the Practice of Model Development and Use. Chichester, England:
Wiley, (2004). 209.

2. Robinson. Simulation. 209.
3. Robinson. Simulation. 212.
4. ISO. “Systems and software engineering -- System life cycle processes.” ISO/IEC/IEEE 15288:2015,

2015-05, 4.37 validation.
5. Robinson. Simulation. 209.
6. ISO. “Systems and software engineering -- System life cycle processes.” ISO/IEC/IEEE 15288:2015,

2015-05, 4.38 verification.

29

two objects that are 100 𝑚𝑚 apart, should always give the reading of 100 𝑚𝑚 whenever it is used in

that application. In this context, verification is comparable to the process of calibration, where

tools are set to an accuracy based on a given standard. If a model does not give correct

information, then the results of the system cannot be trusted. Verification is considered a subset

of the larger concept of validation. [7] Therefore, when speaking about validation in general, it

refers to both verification and validation, as a total process.

Properties

The thesis follows the information described by Robinson on verification and validation, in their

textbook on simulation tools. The definitions apply to both the architectural process and the

agent-based model. Robinson states that there are two main concepts in validation: sufficient

accuracy (tolerance), and purpose. [8] A model, tool, or system is considered validated if its

outcomes have enough accuracy and align with a given purpose.

A model is a representation of a system, and it is a way to simplify a system to help understand

how it works. For these reasons, a model should never expect to be completely accurate, or its

results taken as 100% correct. [9] Due to this uncertainty, verification and validation try to

ensure that a model has sufficient accuracy by determining if its results are within a given

tolerance. As an example, this idea is like physical tolerances in engineering and construction. A

physical dimension on a drawing might require a steel beam to be 1000 𝑚𝑚𝑚𝑚 within a tolerance

of 5 𝑚𝑚𝑚𝑚. A beam might never be exactly 1000 𝑚𝑚𝑚𝑚 due to inaccuracies in manufacturing or

material properties. Instead, a tolerance gives a range of sizes that are acceptable for

construction. A beam that falls between 995 𝑚𝑚𝑚𝑚 and 1005 𝑚𝑚𝑚𝑚 is validated based on the

drawing.

The level of tolerance for any model is dependant on its purpose. As a result, the specific use of a

model needs to be established before it can be validated. For example, the previous steel beam

might need to span between two columns. If the beam is too long or to short, then it will not fit

the structure. Although, the position where the beam is welded to the column could vary within

10 𝑚𝑚𝑚𝑚. The application of welding gives the constraints for accuracy, and the structural frame

gives the condition for validation. Accuracy is described as a range, sometimes as a percentage

7. Robinson. Simulation. 210.
8. Robinson. Simulation. 210.
9. Robinson. Simulation. 210.

30

from 0% to 100%. Whereas validation is a binary decision; a system is either acceptable or it is

not. [10]

The thesis applies these ideas to the design of architectural spaces. Tolerances can influence

physical constraints (room dimensions), functional constraints (wayfinding visibility), or social

constraints (need for amenities). In each situation, there is a range of conditions that are a valid

design, but they are limited by the application of the project. For example, an airport holdroom

concourse might require access to a concession space (purpose). The concessions are required to

be within a 5-minute walking distance from each of the gates (tolerance) and have a variety of 2

or more types of retail spaces (tolerance). A simple validation process for this condition will

check if passengers can walk between the gates and the concession spaces within 5 minutes, and

if the passengers can engage with more than 2 types of retail space. The architecture is validated

if testing shows passengers can access these areas (purpose) and perform according to the

conditions (tolerance).

Methods

Testing a system for verification and validation is related to the process of simulation analysis,

where each stage of a simulation study requires a method for validation. In their research on

verification and validation techniques, Balci explains how V&V methods can be categorized base

on mathematical formality. [11] There are some systems that can be represented by a pure

mathematical relationship, like calculus. Whereas other systems can only be checked

philosophically, like if a client is happy with the results. Balci organized V&V methods into six

categories, which are, from least to most mathematical: informal, static, dynamic, symbolic,

constraint, and formal. [12] The complete list of techniques can be seen in Fig.1.2.a. Balci noted

that some techniques can fit into more than one category, like structural analysis having static

and dynamic testing. Additionally, Balci states that the formalness of the math should increase

as the system being validated becomes more complex. [13]

While Balci’s research was looking at different techniques, Robinson described verification and

validation methods within the context of a simulation process. They mention seven methods

that include: conceptual model validation, data validation, white-box validation, black-box

10. Robinson. Simulation. 210.
11. Balci, Osman. “Validation, Verification, and Testing Techniques Throughout the Life Cycle of a

Simulation Study.” Annals of operations research 53, no. 1 (December 1994): 130.
12. Balci, Osman. “Validation”. 130-131.
13. Balci, Osman. “Validation”. 130.

31

Figure 1.2.a: All verification and validation techniques on a spectrum of mathematical formality, Balci

(1994).

32

validation, experimentation validation, and solution validation. [14] Each of these methods may

use one or more of the techniques described by Balci. For example, this may involve formally

checking if a simulation method outputs the correct values based on mathematics. Similarly, a

model can be visually checked to determine if it looks like it is moving correctly. A system is

considered validated when at least one of these methods is completed in parallel with a given

process, as illustrated in Fig.1.2.b.

Conceptual Model Validation: This determines if all the contexts, assumptions, and

simplifications are reasonable enough to meet the goals of the system. The method for validating

a conceptual model is dependant on project requirements and specifications. [15] A conceptual

model can be different from project to project.

Data Validation: This involves checking if both the system and the validation process itself are

using relevant information. It also confirms if the data is accurate enough to achieve the given

purpose. [16] This typically applies to all processes of design and simulation since data is involved

at every stage.

White-box Validation: Fundamental parts of a model are checked to see if they correspond to

real-world elements under similar conditions, within a given level of accuracy. This involves

studying single elements in detail, making sure each part of the model works correctly. [17] This is

like verification for the system’s parts.

Black-box Validation: The overall model is checked to determine if it properly represents the

real-world system, under similar conditions, within a given level of accuracy. This involves

studying the model’s complete operations, to confirm that all parts of the system are working

together correctly. [18]

Experimental Validation: Any process that uses experimental procedures (non-standard

practices) must provide results that are accurate enough to achieve the given purpose.

Experimental procedures must also consider the issues of removing biases from initial

conditions, controlling the duration of an experiment, replicating the procedures more than

once, and analysing the accuracy of the results. [19] In other words, when trying a new procedure,

14. Robinson. Simulation. 210-211.
15. Robinson. Simulation. 214-215.
16. Robinson. Simulation. 215.
17. Robinson. Simulation. 215.
18. Robinson. Simulation. 217.
19. Robinson. Simulation. 220.

33

Figure 1.2.b: Simulation processes showing corresponding validation processes, Robinson (2004).

34

a good process should make it easy to learn from the outcomes of an experiment and help

identify a relevant solution to the system.

Solution Validation: This determines if the results from the model are within a given level of

accuracy, when compared to the results of the real system. This is like black-box validation,

since it looks at the system in total. Although, it only compares the value of the solution, instead

of the system components. Solution validation is only possible after an experiment finishes,

therefore the results do not affect fundamental components of a model. [20] For this reason, it is

not meant to validate the entire system, but the solutions can give feedback to the designer.

Applications

Verification and validation are part of a scientific practice that is well established across a wide

range of industries like healthcare [21], engineering [22], building science, computer software [23],

and economics. The reason these industries use V&V is usually concerned with either human

safety or product efficiency. These types of validation do not only cover scientific experiments,

but also includes design methods that are equivalent to architectural design. The following are

some examples of how validation is used in industries today.

Pharmaceuticals:

The healthcare industry has many instances of validation practices to control the impact to

human health. Due to strict regulations, there are also instances of validation for design and

manufacturing of healthcare products, as seen in the pharmaceutical industry. The Food and

Drug Administration (FDA) is an American organization responsible for regulating food, drugs,

and medication. Specifically, the FDA established a standard Process Validation for testing the

design and manufacturing of drugs. [24] The purpose of this validation is to check if a drug has

been designed for its intended use. [25] The process looks at what type of drug it is, how it is

being manufactured, and how well the drug performs. Additionally, the process includes clinical

20. Robinson. Simulation. 221.
21. FDA. “Guideline on General Principles of Process Validation”. U.S. Department of Health and

Human Services Food and Drug Administration, FDA-2008-D-0559. Updated 2018-08-24. 1.
22 FAA. “International Validation and Domestic Certification”. Federal Aviation Administration.

Accessed November 2020.
https://www.faa.gov/aircraft/air_cert/design_approvals/rotorcraft/val_dom_cert/.

23. ISO. “Systems and software engineering -- System life cycle processes.” ISO/IEC/IEEE
15288:2015, 2015-05, 4.38 verification.

24. FDA. “Process Validation”. 1.
25. FDA. “Process Validation”. 3.

35

trial studies, which evaluates the drug with a sample population, before allowing the medicine to

be available for the public. In addition to obvious health and safety concerns, the goal is to make

sure that the object being created does what it is supposed to do. Process validation is not just a

formal study, but is a layered scientific design process, which is repeatable, and uses analytical

data to determine the performance of the medicine, before people use it. [26]

Automotive Engineering:

In the automotive industry, validation is an integral part of the design process for vehicles and

machinery. Design validation is defined as making sure that a design meets the form and

functional requirements based on the product needs, analytical methods, or physical testing. [27]

Product needs describe the scope of vehicle to be designed, what the capacity is, the engine size,

power output, or fuel consumption. Analytical methods can involve testing components using

software tools to study stresses, strain, vibrations, temperature, and fluid flow. This may include

Finite Element Analysis (FEA) for structures and thermodynamics, Computational Fluid

Dynamics (CFD) for fluid flows, and dynamic analysis for moving components. [28] Physical

testing typically uses standards established by the Society of Automotive Engineers (SAE). [29]

This may include four-post testing for suspension systems, dyno testing for engine power

output, wind tunnel testing for aerodynamics, or on-road testing for full vehicle dynamics.

Designers will validate these systems analytically before moving into physical prototypes. This

allows systems to be solved mathematically before spending resources trying to build the full

vehicle. Once the mechanics of the theoretical system are understood, then designers have

confidence in how it translates into the physical world. Although architectural design does not

involve as much physics, mathematics can give an objective understanding of design behind

components in buildings.

26. FDA. “Process Validation”. 17.
27. EGS India. “Why, How and When do you perform Design Validation for Automotive Systems?”.

Solidworks Tech Blog. August 30, 2016. https://blogs.solidworks.com/tech/2016/08/perform-design-
validation-automotive-systems.html.

28. EGS India. “Why, How and When do you perform Design Validation for Automotive Systems?”.
Solidworks Tech Blog. August 30, 2016. https://blogs.solidworks.com/tech/2016/08/perform-design-
validation-automotive-systems.html.

29. SAE. “Browse Standards”. Society of Automotive Engineers. Accessed February 2021.
https://www.sae.org/standards.

36

Building Codes:

In the architectural industry, building codes are a common example of validation. Building

codes validate architecture for human safety, fire protection, structural integrity, accessibility,

and environmental impact. [30] Historically, building codes were created to prevent repeating

city-wide destruction, which was seen in the Great London Fire (1666) or the Great Chicago Fire

(1871). This established the need for regulations on wall spacing, materials, ventilation, and

drainage, which new constructions followed to ensure human safety.

The National Building Code of Canada (NBC) states that its standards are considered the

minimum level of performance required to achieve this type of human safety. [31] However, the

NBC explain that building codes are not textbooks on building design and construction. Instead,

a complete building is dependant on numerous factors, which requires professional knowledge

and expertise of good design, beyond the requirement of standard building regulations. [32] A

building can be validated based on codes, but it can still function poorly for the purpose of the

project. For example, a well-built library can be validated for safety regulations but would

function poorly if it was used as a hospital, hypothetically. Therefore, building codes are a

critical piece of the architectural validation process, but there are additional design elements

that these codes do not address.

Building Science:

The field of building sciences is concerned with analyzing the physical effects on buildings. For

architecture, the focus is typically on the environmental impact of building design, which

consists of operational energy consumption, material choices, and building orientation. This

requires analyzing a wide range of subjects including thermal control, air quality, material

testing, and lighting.

Design validation in building science typically evaluates the performance of a building, based on

the energy transfer through its enclosure and mechanical systems. Industry standards for

building science in North America are established by the American Society of Heating,

Refrigerating and Air-Conditioning Engineers (ASHRAE). They are responsible for keeping

standards on testing, analyzing, and maintaining mechanical systems or other building

30. NRCC. National Building Code of Canada 2015 Volume 1. National Research Council of Canada.

(Ottawa: 2018). vi.
31. NRCC. National Building Code. vi.
32. NRCC. National Building Code. vi.

37

components. [33] For example, ANSI/ASHRAE/IES Standard 100, is a document about how to

retrofit existing buildings to achieve better energy efficiency. [34] It regulates new material

choices, refurbishing mechanical equipment, and explains how energy usage should be

calculated.

Building science shows that it is already possible to make objective design decisions in

architecture using scientific practices. If these same methods were applied to spatial

performance, then designers can validate a floor plan design based on similar metrics. In

addition to building performance as a function for energy, the thesis proposes architectural

performance in terms of physical geometry and occupant behaviour. In other words, in addition

to validating a building for its energy, buildings could also be validated for its geometry.

Limitations of Validation

According to Robinson, in their textbook on simulations, there are several problems that occur

when trying to validate a model. The thesis summarizes Robinson’s problems under six

categories: generalization, real-world equivalence, real-world interpretation, data accuracy,

time, and confidence.

Generalization: “There is no such thing as general validity”. [35] If a model is validated for one

system, it does not make it validated for another. Models are made to represent a specific

system. Therefore, validating a model only applies to the given purpose. For example, a

simulation may be validated for scheduling the number of trains to arrive at a station platform.

However, this does not mean the simulation is also validated for calculating the passenger flow

rate capacity in the station concourse. If the simulation is also being used for passenger capacity,

then there would have to be a separate validation process for that situation. It is not practical for

a model to simulate every condition in a transit terminal, due to the large amount of data and

simulation time. Instead, it is more efficient to model specific situations, or simple processes,

which also gives more confidence in the results. [36]

33. ASHRAE. “ASHRAE Standards Strategic Plan 2014-15”. American Society of Heating,

Refrigerating and Air Conditioning Engineers, Inc. (July 2, 2014): 3.
34. ASHRAE. “Standard 100-2015 -- Energy Efficiency in Existing Buildings (ANSI Approved/IES Co-

sponsored)”. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. Accessed
February 2021. https://www.ashrae.org/technical-resources/bookstore/standard-100.

35. Robinson. Simulation. 213.
36. Robinson. Simulation. 213.

38

Real-world Equivalence: “There may be no real world to compare against”. [37] It is common to

create a model to predict the future behaviour of a system. However, if there is no real-world

metric to compare the results of the model to, then the model cannot be validated. For example,

an airport simulation can be validated for existing terminal operations. If the same model is

then used to simulate a new terminal building, it may not guarantee the same behaviour after

the system changes. [38]

Real-world Interpretation: “Which real world?”. [39] Each person has a different view of the

world. The expectations of one person may be completely different to someone else. For

example, a passenger waiting to pick up their baggage can feel they wait too long at the baggage

carousel. Whereas an airport baggage handler removing bags from a plane can feel like they

have very little time to fully empty the entire aircraft. Depending on which of these people we

ask to judge the efficiency of the baggage system, will result in different interpretations of the

airport’s operations. Likewise, when trying to validate a model, information that is accurate for

one person may not be representative to someone else. [40] Choosing what perspective to use will

depend on what information a designer wants to communicate.

Data Accuracy: “Often the real-world data are inaccurate”. [41] As mention before, validation

involves comparing a model system to an equivalent system in the real-world. If a model is

conducted under the same conditions as the real-world, then it is validated if the results are the

same. However, this assumes that the real-world results are already accurate. If the data is not

accurate, then the model is validating conditions that are not correct. Additionally, assuming a

designer does get accurate real-world data, these may only be samples, which also has its own

inaccuracies and assumptions. For example, if a researcher records check-in times for

passengers over a 1-month period, this only represents one time frame. If check-in times were

recorded during a different time of the year, then the sample would have produced different

results. Statistics and can help estimate the average check-in times. Although this only provides

a probability distribution, which may not be precise enough. [42]

37. Robinson. Simulation. 213.
38. Robinson. Simulation. 213.
39. Robinson. Simulation. 213.
40. Robinson. Simulation. 213.
41. Robinson. Simulation. 213.
42. Robinson. Simulation. 214.

39

Time: “There is not enough time to verify and validate everything”. [43] Projects have a limited

time allocated for modelling and analysis. This affects all aspect from building the simulation

tool, to validation, and running experiments. The expectation for the designer is to make sure

that a model is validated for the simulation’s scope, key components have overall validation, and

experiments are conducted thoroughly. [44]

Confidence: “Confidence not validity”. [45] Ideally, validation should be binary; a model is either

validated or it is not. However, like the real-world system, it is not possible to prove 100%

validation of a model. Instead, it is more practical to consider a level of confidence. The purpose

of V&V is to show where a model is incorrect. Therefore, the more tests that a model can

complete, the more confidence that people have in the model’s output. Validation is meant to

increase the confidence of the model to a point where it can help make decisions in the design

process. If a model has proven confidence in its output, then a designer will be confident in

using it to communicate information. [46]

Summary

A goal of this thesis is to increase the confidence of architectural design decisions. Verification

and validation (V&V) are an established objective practice that checks if a system or object is

meeting requirements or expectations. The thesis considers V&V for both architectural design

and the agent simulation. Validation ensures that the goals of a project are achieved.

Verification confirms that the tools being used are giving the correct values within a given level

of accuracy. Any system can be analyzed using the properties of purpose (validation) and

tolerance (verification). Types of V&V can be categorized based on mathematical formality. This

can be as informal as a design review, physical testing, or formal mathematical logic. A thorough

validation process will involve checking data, model components, system-wide behaviour, and

experimental procedures. Validation is commonly used across a wide range of industries, which

are similar to architectural design. Other disciplines incorporate validation into the design

process using analytical studies to judge performance based on industry standards. Perfect

validation is impossible, because it depends on what parts of a system are modelled and the

information gathered from real-world data. Validation is most effective for increasing the

confidence of the model’s outputs, so that designers can rely on it to communicate information.

43. Robinson. Simulation. 214.
44. Robinson. Simulation. 214.
45. Robinson. Simulation. 214.
46. Robinson. Simulation. 214.

40

Chapter 1.3

Probability and Statistics

Statistics is the science of collecting, analyzing, and interpreting information. [1] Probability is

the science of measuring uncertainty using mathematical patterns, which is a foundation for

statistical analysis. [2] These are fundamental concepts for understanding complex systems in

scientific, engineering, financial, and social disciplines. Architecture does not commonly use

statistics to analyze designs, since design choices are not thought in terms of probability.

However, understanding statistics for this thesis is important for modelling human behaviour in

an airport, building a simulation tool, and quantifying architectural value.

Uncertainty

The purpose of having statistical methods in architecture is to make objective scientific

judgements given the uncertainty and variation of data. [3] Airports need to consider the

behaviour of hundreds of thousands of passengers over time, who are made up of a diverse

group of people, in terms of age, social, and cultural differences. Likewise, architecture deals

with the uncertainty of designing public spaces to accommodate a wide range of people.

Statistics helps approximate of a wide range of characteristics, instead of modelling a generic

type of person. This includes the uncertainty of what activities passengers are doing in an

airport, and the variation of people’s behaviours and characteristics. These properties are

difficult to predict, because they appear to occur by chance, or randomly. [4] Therefore,

simulating these systems requires using probabilistic models (stochastics) instead of a

deterministic one, [5] in which random values are analyzed to understand larger patterns.

1. Walpole, Ronald E et al. Probability & Statistics for Engineers & Scientists 9th ed. Boston: Prentice
Hall, 2012. 1.

2. Watkins, Joseph. An Introduction to the Science of Statistics: From Theory to Implementation
Preliminary Edition. University of Arizona: 2016. 3.

3. Evans, Michael J; Rosenthal, Jeffery S. Probability and Statistics the Science of Uncertainty Second
Edition. University of Toronto: 2009. 1.

4. Banks, Jerry; Carson II, John S; Nelson, Barry L; Nicol, David M. Discrete-Event System Simulation
4th ed. Upper Saddle River, N.J: Pearson Prentice Hall, (2005). 131.

5. Banks et al. Discrete-Event. 131.

41

Sampling

Statistics allows designers to make a connection between the people they are testing, and the

larger community they are a part of. Simulations use statistics to create an approximate model

of a human population, in which population data is usually collected through surveys or

experiments. Statistical methods only consider a small set, or random sample, of information to

predict the expected pattern of the entire system, or population. [6] Instead of considering

millions of passengers in a terminal, it is more efficient to estimate behaviour in a random

sample of thousands of passengers. [7] Likewise, instead of considering every type of human

interaction, it is more reasonable to simulate behaviour that has a higher probability of

occurring in an airport environment, like processing or waiting.

As an example, an airport might see two different types of passengers, frequent business

travellers and elderly travellers. In general, frequent business travellers can process very quickly

and need little information about where to go in the terminal. In contrast, elderly passengers

might take longer than normal to process and may require additional guidance. Airport

simulations do not need to worry about the behaviour of a single individual. Instead, they are

only concerned with the range of behaviours that are likely to occur for each type of passenger.

As a result, an airport model only needs to consider the probability of elderly travellers and

business travellers.

For instance, using statistics, a passenger survey in the National Academies shows that the

average processing time for business travellers is 2.8 to 3.1 minutes, with 95% confidence. [8]

These times are based on recorded domestic passenger data for a specific airline in an existing

facility. In this situation, the time between 2.8 and 3.1 minutes is considered the expected

probability distribution for business traveller’s process times. Although, the exact behaviour of

these passengers is unknown, the airport knows they will only see behaviour outside this range

5% of the time. Therefore, if a new terminal design could process simulated business travellers

within this distribution, then the airport can be confident that the design is suitable for the

expected number of people.

6. Walpole, et al. Probability & Statistics. 2.
7. Walpole, et al. Probability & Statistics. 227.
8. National Academies of Sciences, Engineering, and Medicine. “Airport Passenger-Related Processing

Rates Guidebook”. Washington, DC: The National Academies Press. (2009): 38.

42

Law of Large Numbers

When dealing with uncertainty for a large population, it is useful to think of many samples over

time instead of looking at a single moment or individual. In their textbook on statistics, Watkins

shows how random sampling from a given population becomes predictable, or stable, over time.

For instance, suppose an airport wants to know the average weight of bags passengers check in

for their flight. If an airport worker chooses to randomly weigh checked-in bags, they may notice

that some bags are lighter, around 20 𝑘𝑘𝑘𝑘, whereas other bags are heavier, closer to 50 𝑘𝑘𝑘𝑘. If the

airport worker kept a running average of weights they measure, then, because of the differences

of each bag, there might be large fluctuations in the average weight at the beginning. [9]

However, over time, as the worker continues to weigh more bags, the running average should

expect to settle and converge to the true weight of checked-in bags. [10] Watkins explains that, in

probability theory, this is referred to as the law of large numbers. [11] If there is a sequence of 𝑛𝑛

random variables 𝑋𝑋1, 𝑋𝑋2, … , 𝑋𝑋𝑛𝑛 with the same distribution, then the average or sample mean is,

𝑋̅𝑋 = 1
𝑛𝑛 𝑆𝑆𝑛𝑛 = 1

𝑛𝑛 (𝑋𝑋1 + 𝑋𝑋2 + ⋯ + 𝑋𝑋𝑛𝑛),

where 𝑋̅𝑋 is a random variable.

Watkin conducted a number of experiments with new-born baby weights to demonstrate this

law of large numbers, as shown in Fig.1.3.a. For small values of 𝑛𝑛, the average changes rapidly

since each baby has a different weight. However, eventually, as 𝑛𝑛 reaches 100 random samples,

the average converges down to a more stable value. The average weight from all experiments

settles to a similar value, despite having different initial values, since the random samples have

the same distributions.

If these experiments continued for much larger sample sizes, or as 𝑛𝑛 approaches infinity, then

the probability that the difference between the sample mean and the population mean is greater

than a positive number is 0% (weak law of large numbers). [12] In other words, the probability

of the sample mean being equal to the population mean will be 100% (strong law of large

9. Watkins. Science of Statistics. 179.
10. Watkins. Science of Statistics. 179.
11. Watkins. Science of Statistics. 179.
12. Evans, Michael J; Rosenthal, Jeffery S. Probability and Statistics the Science of Uncertainty

Second Edition. University of Toronto: 2009. 206.

43

Figure 1.3.a: Graphs illustrating the law of large numbers from random sampling of new-born baby

weights, Watkins (2016).

44

numbers). [13] Therefore, the more information gathered in the system, the closer it becomes to

the true value.

Monte Carlo Method

Monte Carlo method is a type of computer algorithm that uses stochastics, or random sampling

to get a numerical result in a system that is very difficult to solve analytically. [14] Many

professional fields use this type of random sampling in computer simulations to solve numerical

problems for uncertain situations, whether it is particle physics or material testing. [15]

The basic idea of Monte Carlo partly works like a “guess-and-check” method. Given a defined

domain, input values are randomly generated and solved deterministically within the domain.

Once there are enough guesses, or samples, then the results are combined to approximate the

true solution. The method works on the principle of the law of large numbers. The more values

there are, the closer it becomes to the true value, as the number of samples approaches infinity.

A common illustration of a Monte Carlo method is through mathematical integration. Fig.1.3.b

shows a Monte Carlo approximation for the value of 𝜋𝜋. The simulation randomly generates

points inside a unit square. The fraction of points that fall inside of the circle approaches 𝜋𝜋/4 as

𝑛𝑛 becomes larger. [16]

The essence of a Monte Carlo method is the random variables, specifically, a random number

generator. [17] There is an entire science behind the logic of producing random variables.

Fundamentally, random variables in a computer are not truly random. Instead, random number

generators are carefully chosen deterministic models that mimic random outputs. These require

a user to input a given value, or seed. [18] Since a random number generator is deterministic, the

same seed will always produce the same output. Using different seeds produces random results.

A simple example of a random seed is using the current date and time (2021/02/23 12: 54: 24),

which provides a unique value every second.

13. Evans et al. Probability and Statistics. 211.
14. Watkins. Science of Statistics. 182.
15. D.P. Kroese, T. Taimre, Z.I. Botev. Handbook of Monte Carlo Methods. Wiley Series in Probability

and Statistics, John Wiley & Sons, New York, (2011). xvii.
16. Nicoguaro. “File:Pi 30K.gif”. Wikimedia Commons. February 16, 2017.

https://commons.wikimedia.org/wiki/File:Pi_30K.gif.
17. Kroese, et al. Handbook of Monte Carlo Methods. 9.
18. Kroese, et al. Handbook of Monte Carlo Methods. 9.

45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

Va
lu

e

Sample

Excel Random Values

Figure 1.3.c: Graph showing 100 random values between 0.0 and 1.0 in Excel.

Figure 1.3.b: Monte Carlo method approaches the value for π based on the fraction of random points

that fall inside the circle within a unit square, Nicoguaro (2017).

46

The goal is to produce an output that someone could not differentiate from a true random

distribution. [19] Random distributions do not normally have a recognizable pattern. There may

be clumping or voids, but it is not uniform or consistent. An example of a random distribution

created using Excel’s 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 function is illustrated in Fig.1.3.c. Additionally, there are both

theoretical and empirical checks to verify if numbers are truly random. [20] This usually involves

a wide range of statistical tests which compares outputs from a random number generator to

some known random variables.

The output from a Monte Carlo simulation will produce some type of probability distribution.

Probability distributions can either be discrete or continuous, which are also called probability

density functions (PDF). For discrete distributions, the probability is the value at a given point.

However, for a continuous distribution, or PDF, the probability is the area under the curve, or

the integral of the function, over a domain.

There are numerous types of distributions, which are classified based on the shape of the graph.

The shape also determines how the data is analysed statistically and what application it

represents. Some common distributions include normal, logarithmic, uniform, triangular,

binomial, and many others, which are illustrated in Fig.1.3.d. Typically, experimental data will

produce a discrete distribution, which is commonly graphed in a histogram. Fig.1.3.e shows a

probability distribution from a Monte Carlo simulation that approaches a normal curve.

Essentially, the true value of a population or system is unknown. These distributions illustrate a

range of values that are likely to occur based on the sample of information. Each distribution

informs which statistical methods would best match the patterns from the resulting data. This

helps narrow down possible behaviours of a system, despite the uncertainty of the larger

population.

19. Kroese, et al. Handbook of Monte Carlo Methods. 9.
20. Kroese, et al. Handbook of Monte Carlo Methods. 18.

47

Figure 1.3.e: Histogram of 1000 random Monte Carlo values estimating the area of integral, as a

binomial distribution, which approaches a normal curve, Watkins (2016).

Figure 1.3.d: Some common probability distributions as a result of a Monte Carlo simulation, which

informs statistical behaviour.

Common Probability Distributions

Normal (Gauss) Binomial Chi-Square Exponential Uniform

Logarithmic Beta Cumilative PoissonTriangle

48

Normal Distribution

A normal distribution is one of the most fundamental probability distributions in statistics

because it shows up in natural patterns and many different applications. It is generally defined

by a mean (𝜇𝜇) and a standard deviation (𝜎𝜎), or variance (𝜎𝜎2), in the equation:

𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎√2𝜋𝜋

exp(−
(𝑥𝑥 − 𝜇𝜇)2
2𝜎𝜎2),

where the mean (average) defines the location of the peak (highest probability), and the

standard deviation defines how spread out the curve (or data) is. [21]

A physical example demonstrating why a normal distribution is produced from natural

phenomenon is seen in a Galton board (Fig.1.3.f). [22] This is a board filled with numerous pegs,

which small balls are dropped into. The balls bounce off these pegs and land into narrow bins

below. Due to the geometry of the pegs, a ball has a 50% chance of falling to the right or left

when it hits each peg (Fig.1.3.g). As a result, there is a chance that dropping more than one ball

into the board may not land in the same bin. Like a Monte Carlo simulation, if many balls were

dropped into the board at once, then the volume of balls in each bin forms a probability

distribution, specifically a binomial distribution. If the bins were sufficiently narrow and there

were infinitely many balls dropped into the board, then the result will become a normal

distribution.

Fundamentally, the normal distribution is important because it represents the sum of many

independent events in a complex system. Like the balls that have a chance of bouncing off the

pegs in the Galton board in different directions, passengers in an airport terminal encounter

many situations that also have a chance of going in one direction or another. Events like, if a

passenger has one bag or two bags, if a passenger chooses one airline over another, if a

passenger chooses to get something to eat, or if a passenger chooses to wait in a concourse.

Statistically speaking, passengers are just balls colliding with the pegs of daily experiences in a

Galton board airport terminal. Essentially, this can apply to any complex system.

21. Khan Academy. “Deep definition of the normal distribution”. Math, Statistics and probability,

Modelling data distributions, More on normal distributions. Accessed February 2021.
https://www.khanacademy.org/math/statistics-probability/modeling-distributions-of-data/more-on-
normal-distributions/v/introduction-to-the-normal-distribution. 4:18 - 5:40.

22. Galea, Alexander. “Galton’s Peg Board and the Central Limit Theorem”. WordPress. March 11,
2016. https://galeascience.wordpress.com/2016/03/11/galtons-peg-board-and-the-central-limit-
theorem/.

49

Figure 1.3.f: A Galton board is a physical example of a Monte Carlo simulation, which shows how

natural randomness can result in a normal probability distribution, Argenton (2016).

Figure 1.3.g: When a ball hits a peg, it has a 50% chance of going to the right or left, which is

comparable to random events in the real world, based on diagram by Galea (2016), redrawn by author.

Galton Board Concept

50% 50%
Random Variable

Probability Distribution

Ball
(Passenger)

Peg
(Architectural Condition)

50

Central Limit Theorem

Every event in a complex system can be thought of as an independent random event. What

statistics shows is that the sum of those events, or many infinite individual experiences people

encounter everyday, will always produce a normal distribution. Even if the output from a single

event does not happen to be normally distributed, like flipping a coin heads or tails, the sum of

all the average outcomes will always approach a normal distribution. [23] This is proven

mathematically by the central limit theorem.

The central limit theorem explains how statistical methods that apply to normal distributions

will also work for any probability distribution generated from independent random variables,

even if they are not normally distributed already. This is important since any probability

distribution with independent variables can use the same mathematics.

The process involves taking sample values from an arbitrary probability distribution and

calculating the average of that sample, or the sample mean, for many trials. From the law of

large numbers, given a large enough sample size, 𝑛𝑛, and enough trials, the resulting distribution

of those sample means will be normal (Fig.1.3.h). [24] In general, given a population with a

known mean 𝜇𝜇 and variance 𝜎𝜎2, if a random sample of size 𝑛𝑛 from that population has a mean of

𝑋̅𝑋, then the distribution will follow,

𝑍𝑍 = 𝑋̅𝑋 − 𝜇𝜇
𝜎𝜎/ √𝑛𝑛

,

as 𝑛𝑛 → ∞, which converges to a standard normal distribution 𝑁𝑁(0,1), or a normal distribution

with a mean of 0 and a variance of 1. [25]

Experimentally, the variance of the sample mean distribution 𝜎𝜎𝑋̅𝑋
2 can be calculated as the

variance of the original population 𝜎𝜎2 and divided by the sample size 𝑛𝑛,

𝜎𝜎𝑋̅𝑋
2 = 𝜎𝜎2

𝑛𝑛 .

23. Khan Academy. “Deep definition of the normal distribution”. 4:18 - 5:40.
24. Khan Academy. “Central Limit Theorem”. Math, AP® / College Statistics, Sampling Distributions,

Sampling Distributions of a sample mean. Accessed February 2021.
https://www.khanacademy.org/math/ap-statistics/sampling-distribution-ap/sampling-distribution-
mean/v/central-limit-theorem.

25. Walpole, et al. Probability & Statistics. 234.

51

RVLS Central Limit Theorem Simulation

 Trials: 1

 Trials: 10

 Trials: 50

 Trials: 100 000

Population Probability Distribution

Random Samples from Population

Sample Mean Distribution

Number of samples; n = 10

Figure 1.3.h: Sampling simulation

demonstrating the Central Limit

Theorem process, built by the Rice

Virtual Lab in Statistics (RVLS).

52

Additionally, the sample mean 𝑋̅𝑋 will always be the same as the population mean 𝜇𝜇. [26] For most

applications, a sample size of 𝑛𝑛 ≥ 30 is enough to get a good normal approximation. [27] This

usually has a variance, or error, within 1% of a true normal curve, which is adequate for the

purpose of this thesis. [28]

Summary

Probability and statistics are the science of analysing data and measuring uncertainty using

mathematical patterns. Architectural design is not normally thought in terms of probability.

However, statistics is helpful for quantifying uncertainty and variation of data like airport

terminals which must accommodate a wide range of people. Simulating these types of systems

requires using probabilistic models because most things that are difficult to predict appear to

occur randomly. When quantifying complex systems, it is easier to consider a random sample

instead of the entire population. For example, differentiating between business and elderly

travellers can be simplified to the probability of time each type of passenger spends in an

airport. Instead of looking at the behaviour of one individual, which can fluctuate from person to

person, characteristics become more stable when considering many samples over time. Based on

the law of large numbers, if there are an infinite number of samples, the characteristics of a

system will converge to a true value. This applies to Monte Carlo methods, which uses numerous

random samples to get a numerical result for a system that is difficult to solve analytically.

Monte Carlo simulations use random number generators to provide sample values within a

given domain. The result of a Monte Carlo simulation produces some type of probability

distribution, which illustrates a range of values that are likely to occur based on the sample. A

normal distribution is the most common probability distribution because it frequently shows up

in natural patterns, which is defined by a mean and standard deviation or variance. The normal

distribution is important because it represents the sum of many independent events in any

complex system, which is shown physically in a Galton board. Statistics shows that the sum of

independent random events will always produce a normal distribution, even if events’

probabilities are not normally distributed. This is proven by the Central Limit Theorem, which

explains how the mathematics of normal distributions also apply to any probability distribution

with independent variables. Fundamentally, any random events in a complex system, like an

airport, can be quantified by probability distributions.

26. Khan Academy. “Central Limit Theorem”.
27. Walpole, et al. Probability & Statistics. 234.
28. Khan Academy. “Central Limit Theorem”.

53

Chapter 1.4

Simulation Modelling

This chapter introduces what a simulation model is, and the process for using different types of

models. The thesis’s primary understanding of simulation models is based on the work by Banks

et al. in their textbook, Discrete-Event System Simulation. They explain when it is appropriate

to use simulations, the process for simulation testing, and applications of existing tools. [1] This

chapter also covers what simulations are used in the design of airports, the limits of existing

tools for the purpose of architectural analysis, and what tools the thesis considers for creating an

agent-based model.

Modelling Types

A model is a representation of a system, used for the purpose of understanding how the system

works. Computer simulations are a specific type of mathematical model. [2] They are either based

on symbolic algebraic equations or physical relationships. Parabolic and exponential functions

are examples of algebraic equations, and properties like time, distance, and mass make up

physical relationships. Simulation models have three basic properties: time, randomness, and

progression.

Time: The first property of a simulation model is the influence of time. Simulations are either

static or dynamic. A static model represents a system at one point in time, which is similar to

solving a single function. An example of a static simulation is calculating how many passengers

an airplane can carry. The total number of passengers is constant and is not related to time. A

dynamic simulation represents a system over time, or specifically a time dependant function.

The number of passengers that have passed through airport security from 09:00 to 17:00 is an

example of a dynamic model.

Randomness: The second property of a simulation model is randomness. A simulation that has

no random variables is deterministic. In a deterministic model, the given inputs have known

values and will always produce the same output value. An example of a deterministic simulation

1. Banks, Jerry; Carson II, John S; Nelson, Barry L; Nicol, David M. Discrete-Event System Simulation

4th ed. Upper Saddle River, N.J: Pearson Prentice Hall, (2005). 3-9.
2. Banks et al. Discrete-Event. 11.

54

is if a train is scheduled to arrive at 07:30, it will always arrive at 07:30. By contrast, a

simulation model that has random variables is stochastic. In a stochastic model, the input values

are random, which results in random output values. For example, if trains arrive randomly

between 07:00 and 08:00, they will produce a random number of passengers in a station over

time. Since the outputs are random, the model is only an approximation of a real-world system.

Therefore, stochastic outputs use statistics, like the average number of passengers, to estimate

the actual system behaviour. [3]

Progression: The final property describes how a simulation model progresses, or changes, over

time. Simulations are either discrete or continuous (Fig.1.4.a). A discrete model, or a discrete-

event simulation, represents a system or process over fixed time steps. [4] The state of the

simulation, or the value of its variables, is static at any given time. This can describe the location

of a passenger or the number of bags on a conveyor belt. Variables in a simulation only change

when a time step occurs. For example, the location of walking passengers only updates after a

few seconds. In contrast, a continuous simulation has variables that are always changing over

time. An example of a continuous simulation is water flow in a pipe. However, continuous

systems do not always use continuous models. [5] The same is true for discrete systems. For

example, a model of water flow in a pipe can be discrete, if the value of pressure head only

updates after a given time step. Likewise, a model of a crowd can be continuous if each person is

represented as a particle in a fluid flow model.

The reason a simulation would prefer to use a discrete model or a continuous model, is

dependant on the application. In general, a discrete model can be easier to calculate than a

continuous model because a computer can update the state of a discrete model less frequently.

Continuous models rely on using differential equations to represent rates of change, whereas

discrete models can take larger constant time steps. However, this means discrete models are

only an approximation, where the accuracy of the model is depended on how small the time

steps are. Due to this approximation, analysing the results of discrete models requires using

numerical methods rather than analytical methods. [6] This means that, instead of using

deductive reasoning (i.e. solving an equation) to find an exact solution, discrete modelling must

use trial and error to approach a solution. Increasing a simulation’s accuracy can required large

3. Banks et al. Discrete-Event. 12.
4. Banks et al. Discrete-Event. 9.
5. Banks et al. Discrete-Event. 12
6. Banks et al. Discrete-Event. 12.

55

Figure 1.4.a: Graphs illustrating a discrete system (left) and a continuous system, Banks et al. (2005).

56

amounts of data. Instead, simulation tests, or trial runs, can be repeated to check if results

approach a stable value over long periods of time.

The model considered for the thesis’s agent-based simulation can be described as: dynamic,

stochastic, discrete, and numerical. It exists over time, it uses random variables, it progresses in

constant time-steps, and it is solved by trial and error.

Airport Simulation Types

The design and operation of airports requires understanding the interaction of logistics,

security, and passengers in a wide range of scales. It is not practical to build a complete airport

to see how it works or fix changes after finding aspects that have poor performance. [7] As a

result, all critical areas in an airport use some form of simulation during the planning stages to

help understand how systems will perform. The architectural design process can use these

practices to better understand how existing industries quantify complex systems.

In their report on airport simulation options, the National Academies reviews a wide range of

existing tools. They explain that simulations help study airspace, airfield, terminal, and curbside

for daily operations. [8] Simulations are important during airport development for making sure

people are safe, systems work efficiently, and that the airport is profitable. Some simulation

studies include airspace traffic modelling (Fig.1.4.b), master planning, capacity-demand

forecasting, terminal passenger flow (Fig.1.4.c), curbside traffic capacity, and environmental

impact assessments. [9]

Airport simulations can be as simple as a spreadsheet stochastic analysis, or more complex

dynamic flight data simulations. [10] The complexity of a simulation is scaled based on fidelity,

which describes how closely models match a real-world system. [11] A high-fidelity simulation

can model small-scale interactions, like the number of processed passengers in a given area over

time in a capacity/delay model. Whereas a low-fidelity simulation only gives a broad summary

of data, like the total number of passengers in a look-up table. The thesis’s agent-based

7. Rittel, Webber. “Dilemmas in a General Theory of Planning.” Policy sciences 4, no. 2 (June 1973):

163.
8. National Academies of Sciences, Engineering, and Medicine. “Simulation Options for Airport

Planning”. Washington, DC: The National Academies Press. (2019): 3.
9. National Academies. “Simulation Options”. 3.
10. National Academies. “Simulation Options”. 3.
11. National Academies. “Simulation Options”. 4.

57

Figure 1.4.b: AirTop airspace simulation, National Academies (2005), sourced from AirTopSoft.

Figure 1.4.c: ARCport terminal simulation, Proulx (2014).

58

simulation expects to approach high-fidelity only if agents’ interaction with architecture

matches how people would interact in the real-world.

The National Academies mention several mathematical techniques available for planners to

model airport systems. The most common techniques include, spreadsheet models, queuing

theory, optimization techniques, Monte-Carlo simulations, and discrete-event simulations. [12]

The inputs for these methods either use recorded data from existing operations or random

variables. A complete analysis of an airport system will typically involve all these techniques at

some stage of the design process, depending on the fidelity of the simulation. [13] If the thesis’s

agent-based simulation wants to replicate passenger processing, it needs to understand the

benefits of each technique and when to use them.

Spreadsheet model: A table or chart that records model values and can calculate predictions

based on historical airport data. For example, a spreadsheet model can calculate the required

size of a security screening area, based on the number of queue lines and expected rate of

passengers (Fig.1.4.d). Planners can use these spreadsheets to update calculations as design

changes take place in other areas of the terminal.

Queuing theory: Uses a network of resources to illustrate a dynamic change in demand. For

example, a resource can be the number of service counters, and the demand comes from

passengers using the service counter, or resource, for check-in (Fig.1.4.e).

Optimization techniques: A method in a dynamic environment that tries to find the maximum

or minimum use of resources. Queueing models commonly use optimization to maximize the

number of active service counters.

Monte Carlo simulations: A method in statistics that selects repeated random variables from a

sample population based on a probability distribution (details in Probability and Statistics). For

example, a check-in area can simulate passenger processing by selecting a random number of

people who arrive within a given range of time.

Discrete event simulations: A process that updates system variables in small time-steps over a

given time period (as described earlier in Modelling Types). For example, this can be a

simulation of people moving through a queue line, which might update a passenger’s position

once every second.

12. National Academies. “Simulation Options”. 8.
13. National Academies. “Simulation Options”. 8.

59

Figure 1.4.d: A spreadsheet model calculating the area required for security screening, National

Academies (2010).

Figure 1.4.e: Basic queuing node model. There are 5 people in the Waiting Area, the Service Node A

resource is filled, Node B is busy and still has time to process, and Node C resource is available. Based on

diagram by Dt-rush-8 (2018), drawn by author.

Waiting Area Service Node B

Service Node A

Service Node C

Arrivals Departure

60

Some techniques are better suited for specific applications, like optimization for the airspace, or

queuing theory for passenger processing. [14] However, each technique can be applied to any

system. For example, queuing theory can also be used to model airplanes landing, by assigning

planes runways as a resource. The thesis describes its agent-based model as a discrete-event

simulation, although a thorough test of a terminal’s architecture will involve these other

techniques as well.

An important technique to consider for this thesis is Monte-Carlo simulations. This uses

statistical uncertainty to model factors that are difficult to predict, like waiting time. [15] It

applies random input variables to account for variation in passenger demand, human behaviour,

and resource processing time. The benefit of this technique comes from simulating multiple trial

runs to approach an expected value. [16]

Simulation Process

For any simulation, Banks et al. describe the process necessary for a thorough study, which they

divide into four parts: discovery period, model building, experimentation, and implementation.

These categories are further divided into twelve steps, as illustrated in Fig. 1.4.f. [17] The thesis

sees these steps as representative of a good architectural design process, which, in addition to

the validation process, can objectify design choices.

Discovery Period:

Problem Statement: Identifying what problem the simulation is trying to solve. This is defined

by the clients, or the designers, which describes the scope of the simulation or system. The exact

nature of the problem might not be known at this stage. Therefore, it is possible to adjust the

problem statement as the simulation study progresses. [18] For an airport, a problem statement

defines the scope, like the airspace, airfield, terminal building, or curbside. [19]

Objectives and Plan: This outlines the goals for the study, which the simulation hopes to

achieve. Firstly, this decides if simulations are an appropriate tool for the job, and secondly,

what type of simulation would be helpful for solving the problem. The plan describes what type

14. National Academies. “Simulation Options”. 8.
15. National Academies. “Simulation Options”. 8.
16. National Academies. “Simulation Options”. 8.
17. Banks et al. Discrete-Event. 12
18. Banks et al. Discrete-Event. 12
19. National Academies. “Simulation Options”. 14-15.

61

Figure 1.4.f: The process of a simulation study, based on diagram by Banks et al. (2005), redrawn by

author.

Problem
Statement

Objective
and Plan

Discovery Period

Model Building

Experimentation

Implementation

More Runs

Implementation

Model
Development

Data
Collection

Model
Translation

Experimental
Design

Production Runs
and Analysis

Documentation
and Reporting

Verification

Validation

No

No
Yes

Yes

No

No

Yes Yes

62

of simulation is most useful, and any alternative methods that could be considered. Like any

good project management, the plan also outlines the required resources, a schedule for building

and testing, the estimated simulation-time, the overall cost, and the expected results. [20]

Model Building:

Model Development: The plan for how the simulation model is constructed. Like any design

project, there is no instruction for building a simulation, however there are guidelines that

designers can follow. The construction process first involves selecting basic elements of the

problem to solve in a simple model. Over time, the accuracy of the results can be improved by

adding more complexity to the initial model. Designers do not need to create an exact copy of

the real system to get good results. Instead, the goal is to improve the quality until there is

confidence in the outcomes for the users and context of the problem. [21] For example, a queuing

simulation does not need to have correct animation of passengers walking, if it is only looking

for the required number of service desks.

Data Collection: Getting information that the simulation model is based on. As the complexity

of the simulation changes, the required data also changes. Data collection can take a long time,

and therefore needs dedicated time early on while the model building is getting started. The

amount of data that is needed for a simulation is dependant on the objectives of the project. For

example, a terminal queuing simulation needs to know about the number of passengers, the

amount of area for the line, and the average service time. Whereas a runway simulation needs to

know the flight times, the wind direction, and the type of aircraft.

Model Translation: The process of turning a conceptual model into a computer-recognizable

format. This includes what programs to use, or what code it is written in. Depending on the

complexity of the simulation, a model does not necessarily need to be coded. [22] For example,

curbside demand simulations can be studied using Excel spreadsheets, by keeping track of

resource allocations and random variables as values in a chart. [23]

Verification: Checks if a program is working properly, as discussed in chapter 1.2. Translating a

complex system into a model always creates bugs or errors, which the user needs to check and

fix, within reason. If the variables and logic structure of a model correctly represent a system,

20. Banks et al. Discrete-Event. 13
21. Banks et al. Discrete-Event. 14
22. Banks et al. Discrete-Event. 14
23. National Academies. “Simulation Options”. 8.

63

then it is considered verified. In some cases, using common-sense judgement is enough for

verification. [24] For example, if simulated people are not walking through walls, then their

obstacle navigation is verified.

Validation: Checks if a model matches the real-world system, through the process of

calibration, as discussed in chapter 1.2. This involves repeated testing until a model has reached

an acceptable level of accuracy. [25] For example, validation of a queuing simulation checks if the

line lengths match the data collected from the real-world queue. According to the FAA, there are

no specific simulations required to validate airspace, airfield, or terminal planning. [26] However,

regardless of the tool a designer decides to use, the FAA requires a “simulation tool validation”

process step, which involves calibrating the given tool to match its related real-world data. [27]

Experimentation:

Experimental Design: The decision about how a simulation experiment is conducted and any

alternative approaches. These consider how long a simulation runs for, how many passengers

are being considered, or how many trial runs are repeated. [28] For example, a check-in

simulation can check the system for 500 passengers in one test, or 1000 passengers in another

test. These alternatives can produce different information, depending on the system, which, in

the case of a crowd simulation, is the result of the emergent behaviour.

Production Runs and Analysis: This is the process of reviewing the results and data of an

experiment. The nature of analysis depends on the model, but can involve estimating the

system’s performance using statistics, like checking variance, regression, or random sampling.

More Runs: If after an analysis of a simulated experiment, the designer must decide if the

results satisfy the objectives of the project. If a simulation has not come to a conclusive result,

then the designer must decide to perform more runs, or trials, and determine how the new runs

will be conducted to give better results.

24. Banks et al. Discrete-Event. 14-15.
25. Banks et al. Discrete-Event. 15.
26. National Academies. “Simulation Options”. 10.
27. National Academies. “Simulation Options”. 10.
28. Banks et al. Discrete-Event. 15.

64

Implementation:

Documentation and Reporting: As with any project, good documentation is important for

communicating information. With simulations, Banks et al. explain that there are two types of

documentation, one for the model, and the other for the process. [29] Model documentation is

important if designers use the simulation more than once, for multiple experiments or by other

design teams. If a user changes any simulation variables, then it will affect the results of the next

experiments. Documentation makes sure that users know the relationship between the input

variables to the output variables. Likewise, process documentation describes the work that the

designers did and the decisions they made during the experiments. Banks et al. mention that it

is better practice to have more frequent reporting than one final deadline. [30] Finally, if any

design decision is questioned further into the project, then documentation provides a history of

those choices.

Implementation: Banks et al. state that the success of a simulation project depends on how

well the previous steps were followed, during the creation of the model and the analysis of the

system. If a designer has been part of this simulation process, and understands the

fundamentals of the model, then it is more likely that the final implementation, or operation,

gives valuable feedback. [31] Otherwise, like any project, poor design communication does not

produce good simulation results, regardless of how precise the modelling is.

Crowd Simulations

A common use of these types of models is in the application of crowd simulations. A crowd

simulation is a virtual model showing the movement, interaction, and dynamics of large

numbers of entities or people. [32] They are useful for analyzing emergent behaviour of people in

crowded areas and are commonly used to create real-time animations of groups of people in a

virtual environment.

As described in model types, there is more than one way to model a system. Depending on the

application, crowd simulations can model people as fluid flow, particles systems, or individual

agents.

29. Banks et al. Discrete-Event. 15.
30. Banks et al. Discrete-Event. 15-16.
31. Banks et al. Discrete-Event. 16.
32. Thalmann, Daniel, and Soraia Raupp Musse. Crowd Simulation. Vol. 9781447144502. London:

Springer London, 2008. VII-VIII.

65

Figure 1.4.h: Crowd model using particles, Zhou (2010), image colours inverted by author for clairity.

Figure 1.4.g: Dense crowds in a marathon (left) can be approximated as a fluid flow, Zhou (2010).

66

Fluids: Fluid models use fluid dynamics to approximate crowds of people as a flow, like water or

air. It considers the crowd as one entity instead of the behaviour of individual people. This is

best for systems involving a high volume of people in a dense group, like an evacuation or a busy

public event (Fig.1.4.g). In this case, knowing where each person is going is less important. Fluid

flow simplifies the model by estimating the overall dynamics of the crowd (not that fluid

dynamics is simpler to calculate, but that it ignores human behaviour by using an already

establish physical model). In a fluid model, if you change the density, viscosity, or velocity of the

fluid, it affects the behaviour of the crowd. [33]

Particles: Particle systems model individuals as a set of identical entities. Like fluid models,

particle systems use physics models to approximate a crowd’s movement. However, unlike a

fluid, which is continuous, particles are granular, which means they have distinct parts, (not to

be confused with discrete and continuous simulations). Each particle can model one person or

entity, although each entity is the same (Fig.1.4.h). Like a fluid, changing physical properties of

individual particles can affect the behaviour of the crowd, like mass or applied forces. Using this

approach, particle systems can realistically model typical crowd behaviour like congestion,

herding, or flocking groups. [34]

Agents: Since fluid and particle models ignore the choices of individual people, they limit the

ways of analysing human behaviour. Instead, simulations can use intelligent agents to model

people. The exact nature of an agent is described in chapter 2.0, but the key characteristic of

agents is that they can make their own decisions, independently, to achieve a goal. Each agent

has unique characteristics and responds to their surroundings or other agents over time. Even

with a simple set of rules and constraints, agents can create patterns that emerge on a global

scale. [35] Agents might have cognitive, social, and emotional properties, which closely

approximates real-world behaviour. For these reasons, crowd simulations are more likely to use

agents to model people for transport systems and building evacuation. Whereas fluid and

particle models can be more efficient for crowd visualizations, as seen in the video game Planet

Coaster (Fig.1.4.i). [36]

33. Zhou, Suiping, Dan Chen, Wentong Cai, Linbo Luo, Malcolm Low, Feng Tian, Victor Tay, Darren

Ong, and Benjamin Hamilton. “Crowd Modeling and Simulation Technologies.” ACM Transactions on
Modeling and Computer Simulation (TOMACS) 20, no. 4 (October 1, 2010): 1–35.

34. Zhou et al. “Crowd Modeling”. 6.
35. Zhou et al. “Crowd Modeling”. 6.
36. McCarthy, Owen. “Game Design Deep Dive: Creating Believable Crowds in Planet Coaster.”

Gamasutra Article, January 4, 2017.

67

Figure 1.4.i: The game Planet Coaster uses a fluid model to simulate crowds in an amusement park,

Gamasutra (2016).

68

The thesis focuses on using agents to model passengers. They provide the ability to control

where people are moving, give each person a unique goal, and provide intelligent interaction

with architecture, which would not be as easily controlled with fluid dynamics or particle

physics.

Evacuation Modelling

Crowd simulations are commonly used in architecture to test buildings for evacuations. [37] In

their textbook on crowd simulations, Thalmann et al. explain that architecture considers crowd

behaviour during forced evacuations, in interior areas or well-defined spaces. Crowd

simulations show how people exit a given area, if there is a fixed number of exits, doors, or

corridors. The goal is to figure out if people can evacuate an area in a fixed amount of time. It

also tries to find locations in a building which cause restrictions in the flow of people, preventing

them from escaping.

Over the last decades, research in evacuation simulations have become better at quantifying the

impact of human behaviour in a building. Researchers explore ways in which sociological factors

influence crowd behaviour like navigation, personality, or emotions. For example, Liu et al.

created an agent-based crowd model that uses perception, which demonstrates how emotion

changes people’s decision-making during an evacuation (Fig.1.4.j). [38] Similarly, Abdelhak et al.

developed a crowd model that uses emotions to affect agent behaviour, suggesting how people’s

behaviour changes in a panic situation (Fig.1.4.k). [39] Additionally, the simulation created by

Aschwanden et al. shows how people take different paths in public spaces because of mental

stress in dense crowds. [40] Xiu et al. also shows how “local navigation” from people’s perspective

resulted in more realistic crowd behaviour, instead of using “global navigation typical” of a top-

down analysis. [41]

https://www.gamasutra.com/view/news/288020/Game_Design_Deep_Dive_Creating_believable_crow
ds_in_Planet_Coaster.php.

37. Thalmann et al. Crowd Simulation. 5.
38. Liu, Z, Liu, T, Ma, M, Hsu, H‐H, Ni, Z, Chai, Y. A perception‐based emotion contagion model in

crowd emergent evacuation simulation. Comput Anim Virtual Worlds. (2018); 29:e1817.
39. Abdelhak, Haifa; Ayesh, Aladdin; Olivier, Damien. “Cognitive Emotional Based Architecture for

Crowd Simulation”. Journal of Intelligent Computing, June 2012, 2012. Vol. 3 (2), pp. 55-66.
40. Aschwanden, Gideon, Jan Halatsch, and Gerhard Schmitt. "Crowd Simulation for Urban

Planning”. Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2]
Antwerpen (Belgium) (17-20 September 2008): pp. 493-500.

41. Xie, Rong, and Yan Zhang. “Agent-Based Crowd Evacuation Modeling in Buildings.” Applied
Mechanics and Materials 411–414 (September 2013): 2639–42.

69

Figure 1.4.j: Evacuation simulation that uses perception, Liu et al (2018).

Figure 1.4.k: Evacuation simulation that uses social forces, Abdelhak et al. (2012).

70

Human emotion has a direct impact on crowd behaviour, and research like the ones above

shows it is already possible to quantify these properties. Although these simulations primarily

focus on building evacuation during an emergency, factors like emotion, stress, and local

navigation, can apply to the daily operations of passengers in an airport as well.

Existing Software

As a starting point, the thesis investigates existing discrete-event modelling software to learn

about the capabilities of current tools for airport design. The National Academies conducted a

review of the current industry standards of airport simulations for the airspace, logistic systems,

terminal building, and curbside (Fig.1.4.l). [42] Out of the list of simulations for terminal

modelling, the thesis selected three programs that had a good review for terminal design, and

that potentially had a free trial version of the software to experiment with: MassMotion, Arena,

and FlexSim. These software are also already used professionally in architectural and

engineering disciplines.

MassMotion:

MassMotion is a crowd modelling software developed by Arup, under the company Oasis. It is

one of the leading programs used in the architecture and civil industries. Designers use

MassMotion for pedestrian modelling in evacuation testing, the design of public spaces, and

transportation facilities. MassMotion models real-world environments in 3D by breaking spaces

into components that are classified based on function. [43] Some basic elements include floors,

links, stairs, portals, and barriers, which represent architectural features and circulation

(Fig.1.4.n). Architectural models of buildings can also be imported into MassMotion from other

programs. However, these models need to be converted into MassMotion’s native components

to be identifiable in the simulation.

People in MassMotion are modelled as agents. Each person is given a character profile,

scheduled tasks, behaviours, and goals. [44] They know how to navigate around components

marked as barriers. Agent navigation is based on a cost-system, which assigns a penalty based

on deviations from the shortest path. The cost of an agent’s path is based on several factors like

42. National Academies of Sciences, Engineering, and Medicine. “Simulation Options for Airport

Planning”. Washington, DC: The National Academies Press. (2019). https://doi.org/10.17226/25573.
43. Oaysis. “MassMotion Help Guide.” July 2019. [https://www.oasys-software.com/wp-

content/uploads/2019/06/MassMotion-10.0-Help-Guide.pdf]. 15.
44. Oaysis. “MassMotion Help Guide” 19.

71

Figure 1.4.l: List of established simulation tools for airport terminal analysis, simulations selected for

this thesis are highlighed in red, National Academies (2019).

72

Figure 1.4.m: MassMotion simulation of Toronto Union Station, Arup (2020).

Figure 1.4.n: Typical components in a MassMotion environment, Oasys (2019).

73

the distance to the target, component weights, queues, and other agents. [45] While agents are

walking, their movement is also influenced by similar environmental forces. Agents move

towards local targets using “feelers”, or straight vectors, to judge the distance between their

target and surrounding objects (Fig.1.4.o). [46] If neighbouring agents are within a given range,

they can also adjust their velocity or target to avoid contact in a crowd.

MassMotion can show performance information within a given space, like crowd density, using

depth maps and heat maps. Data is displayed on the models as a colour gradient from blue

through yellow to red; where blue is low, and red is high. Heat maps, or “vision maps”, are also

used to highlight what people are looking at as they walk through a space. [47] But there is no

influence between what people see and where they walk.

MassMotion software is validated based on the International Maritime Organization (IMO) and

the National Institute of Standards (NIST) Technical Note for evacuation simulations. [48] These

standards provide 19 verification test for basic simulation components, like people walking,

crowd dynamics, and emergency situations. MassMotion is also validated based on real-world

evacuation tests and public spaces. Some of these tests include daily operations at Toronto

Union Station, and evacuation of high-rise office towers in London and New York City. [49]

In an independent study, Hoy et al. used MassMotion software to test passenger congestion of

Toronto Union Station (Fig.1.4.p). They showed how a 10% higher passenger density than

projected capacity causes severe congestion. [50] This demonstrates that MassMotion can predict

building spatial constraints for daily operations in addition to emergency evacuation behaviour.

Overall, as a tool for architectural validation, the thesis believes MassMotion is more than

capable of quantifying architectural conditions. However, one improvement would be making

agents aware of building elements during navigation. This would allow agents to use the built

environment to inform their decisions, the same way the crowd forces and feelers are doing

already.

45. Oaysis. “MassMotion Help Guide” 289.
46. Oaysis. “MassMotion Help Guide” 290.
47. Oaysis. “MassMotion Help Guide” 263-264.
48. Arup. “The Verification and Validation of MassMotion for Evacuation Modelling.” Ove Arup &

Partners Ltd. August 10, 2015. https://www.oasys-software.com/wp-content/uploads/2017/11/The-
Verification-and-Validation-of-MassMotion-for-Evacuation-Modelling-Report.pdf. 2.

49. Arup. “Verification and Validation of MassMotion”. 22-23.
50. Hoy, Gregory, Erin Morrow, and Amer Shalaby. “Use of Agent-Based Crowd Simulation to

Investigate the Performance of Large-Scale Intermodal Facilities: Case Study of Union Station in Toronto,
Ontario, Canada.” Transportation Research Record 2540, no. 1 (January 2016): 20–29.

74

Figure 1.4.o: Agent feelers used to identify other agents and local targets for navigation, Oasys (2019).

Figure 1.4.p: MassMotion displaying passenger density to show congested areas in the concourse of

Toronto Union Station, Hoy et al. (2016).

75

Arena:

Arena is a simulation software used for modelling discrete and continuous systems. [51] It is

primarily used in civil and industrial engineering for process analysis and modelling dynamic

systems. Designers use Arena for a wide range of applications. This includes airport design,

(ground operations, baggage, passenger processing), hospital design, (patient flow, emergency

processing), supply-chain (logistics, storage), and manufacturing (assembly lines). Arena has

two methods of modelling, first a 2D hierarchical flow-chart model, and second, an object-based

3D modelling environment. Both environments are designed for visual interaction and graphical

design. It also includes statistical distributions and scheduling functions for process times.

Simulated environments are built in Arena using modules, which are 2D boxes and shapes that

represent a process, logic, or physical object. Modules can be assigned properties and statistical

data, like resource type, frequency, or process time. [52] Some common modules include sources,

sinks, decision nodes, stations, processes, and routes. This is ideal for modelling discrete

systems, like queue lines, service counters, items on conveyor belts, basic traffic flows, and other

resourced-based systems (Fig.1.4.r).

Arena organizes modules based on certain templates, which provide basic features depending on

the application. Modules can be joined together to create a sequence using routes or links.

Resources that move between modules along these lines are called flow items (Fig.1.4.q).

Depending on the application, flow items can be vehicles, people, items, or information.

Passengers in an airport terminal can be simulated in Arena by representing them as flow items

in a process network. Arena can accurately represent passenger statistics, by modelling

probability distributions based on expected process times. However, Arena cannot model free

flowing crowds since people can only move along predefined paths.

Overall, Arena is strong at modelling industrial processes. It can accurately calculate waiting

and transfer times for systems or logistics. The built-in process templates make it easy to set up

complex networks of operations, which provides a good animation of systems over long time

intervals. As a tool for architectural validation, modelling people as flow items makes it difficult

to get feedback from individual behaviour in a spatial environment. Although, influences from

the built environment can be identified from process time, travel time, and passenger

throughput.

51. Banks et al. Discrete-Event. 110.
52. Banks et al. Discrete-Event. 110.

76

Figure 1.4.q: Flow chart of a station ticket service counter simulation in Arena. Note the passenger

icons move along the flow chart during the simulation. Created by author.

Figure 1.4.r: Flow chart of a plane gating simulation in Arena. Includes a drawing of the gates, which

animated planes follow during the simulation. Created by author.

77

FlexSim:

FlexSim is a simulation software that can model discrete-event and continuous systems. It is

primarily used in the civil and industrial industries for simulating a wide range of applications.

This includes airports (passenger flows, baggage operations), healthcare operations (patient

flows), manufacturing processes (material handling), logistics and transport (shipment and

robotic networks). FlexSim models system behaviour using a 2D hierarchical flow-chart

structure and animates the simulation with rendered objects in a 3D environment. It also

provides common statistical distributions and scheduling functions for processing times.

The flow-chart structure allows users to create simulation behaviour like visual coding. It has

numerous components that represent objects, actions, and resources, which can be added and

connected together with graphical wires (Fig.1.4.s). FlexSim has numerous prebuilt components

which are organized based on the activity or function. Some of these components include system

functions, like sources, sinks, and decision nodes. There are also components for human

behaviour, like walking, sitting, queuing, or interacting with other people. Most behaviour in

FlexSim is resource-based. For example, if a passenger is waiting for a service counter, they

must be assigned a resource token which is provided based on the number of available counters.

The processes defined in the flow-chart are then assigned to objects in a 3D environment, which

are placed by the user (Fig.1.4.t). This includes physical objects like counters, chairs, queues,

doors, machines, conveyors, or equipment. Things that interact with these objects, or that can

move between them, are called flow items. Flow items can be people, vehicles, items, or logistic

materials. Most objects typically follow a defined path or track. However, people can also

navigate using an A* algorithm within a predefined space.

Navigation using A* provides people the shortest cost path to their target. The areas people can

walk are defined by walls. Areas can also be given higher costs to influence where people walk. If

people in FlexSim are using A* navigation, then they can also simulate crowd dynamics. FlexSim

can also produce a heat map in a space to show where people have been walking.

Overall, FlexSim can model a wide range of industrial processes, with accurate logistics

handling, timing, and movement. It has many prebuilt components that make it easy to create

complex processes, both with visual coding and with realistic models in 3D environments.

Having people navigate using A* helps simulate human movement in spaces, as a tool for

architectural validation. Although, an improvement would be to have people navigate to local

targets than to walk directly to their destination.

78

Figure 1.4.s: Flow chart of a healthcare simulation in FlexSim, based on FlexSim healthcare tutorial,

recreated by author.

Figure 1.4.t: 3D model of a healthcare simulation in FlexSim, based on FlexSim healthcare tutorial,

recreated by author.

79

Simulation Comparison

Before looking into creating a new agent simulation, the thesis initially explored using an

existing discrete simulation. Out of the previous software, only Arena and FlexSim had trial

software to experiment with. Therefore, MassMotion was not considered for this thesis. In

addition to the existing simulation, the thesis also explored Quelea, a Grasshopper plug-in for

Rhino, and Unity, a game engine. These two software have the tools necessary for making an

architectural agent simulation. A description of Arena and FlexSim was already covered, so the

following is a brief description for Quelea and Unity. A comparison between these four tools is

illustrated in Fig.1.4.u-v.

Quelea:

Quelea is an agent-based design simulation created by Alex Fischer. It is a third-party

Grasshopper plug-in for Rhino, a parametric 3D modelling software. It is used to model crowd

dynamics and flocking behaviour. It works by assigning forces and behaviours to a system of

agents to create interactions. [53] Some of these forces include following paths, attraction to other

agents, obstacle avoidance, and sensing points. It also includes common crowd dynamic

behaviour such as cohesion (moving together), separation, aligning (moving in the same

direction), and views (having a clear view in front). There are also animal flock-like behaviour

and prey-predator behaviour, such as eating and killing.

Unity:

Unity is a game engine that can create video games and other visualization applications.

Although it is primarily used in the gaming industry, Unity has applications in the architectural

and engineering construction industries for its ability to model and animate buildings during

the design process. [54] Unity allows users to built custom models and behaviours. However,

there are no prebuilt elements for an agent simulation. All behaviour must be coded in Unity

using C# (C-Sharp) scripts. Objects are created by assigning these scripts to the models, or game

objects. Unity can also render and animate custom models in real-time, as the simulation is

running, using a built-in physics model.

53. Fischer, Alex. “Quelea - Agent-Based Design for Grasshopper.” Grasshopper. Accessed December

14, 2019. https://www.grasshopper3d.com/groups/group/show?groupUrl=quelea-agent-based-design-
for-grasshopper&.

54. Unity “Architecture, Engineering & Construction.” Solutions. Accessed December 2019.
https://unity.com/solutions/architecture-engineering-construction.

80

Arena FlexSim Quelea Unity

Simulation Comparison

Scope
Processing,
logistics, airports,
healthcare,
manufacturing

Processing,
logistics, airports,
healthcare,
manufacturing

Parametric design,
crowds, swarms

Game
development,
virutal
visualizations

Access Educational demo Educational demo Free complete use Free personal use

Model File 3DS Max (.3ds) 3DS Max (.3ds) Rhino 5 (.3dm) MotionBuilder(.fbx)

Import Models? Yes Yes Yes Yes

Model Limit? Yes, between 100
to 1000 agents

Yes, 30 model
objects

None None

Custom Behaviour? Some conditional
behaviours

Yes, but scripting is
not in demo

Yes, using C#
scripts

Yes, using C#
scripts

Description

Pros

Models discrete
and continuous
systems, 2D flow
chart logic, 3D
modelling,
statistics, module
components, flow
items

Models discrete
and continuous
systems, 2D flow
chart logic, 3D
modelling,
statistics, resource
components, flow
items, A* pathing

Plugin for
Grasshopper,
agent modelling,
flow digram visual
coding, real-time
rendering in Rhino
5 model space

Game engine, 3D
model space, C#
script coding,
physics model,
real-time rendering

- Pre-built elements
for pedestrian and
traffic patterns
- Models of planes,
vehicles, people
- Animates on 2D
flow chart
- Create custom
routes and paths
- Default agent
logic
- Statistic analysis

- Pre-built elements
for pedestrian and
traffic patterns
- Model vehicles
and people
- Flow chart
integrates with 3D
models
- Agent logic, and
A* pathing
- Statistic analysis
- Passengers
behaviours

- Agents avoid
obstacles and
interact with others
- Customize with
Grasshopper,
Rhino models, and
Vray rendering.
- No model size
limit
- Agent perception
of space

- Scripting allows
custom agent and
architecture
behaviour
- Animates in
model space
- Import rendered
models into scenes
- Built-in physics
model
- No model size
limit

Cons

- Models follow
predefined paths,
no free roaming
- Agents logic
cannot be changed
- Poor graphics
- Disjointed 3D
modelling
- Limited demo size
- No spatial
perception or
proximity to other
agents

- Models follow
predefined paths,
no free roaming
- Agents logic
cannot be changed
- Basic graphics
- Limited demo size
- No spatial
perception
- No scripts in
demo, hard to add
custom behaviour

- No passenger
types or analysis,
must add logic from
scratch
- Focus is on design
and swarms
- No moving
vehicles or walking
people
- No statistical
analysis
- Computationally
heavy

- Must create all
models and logic
from scratch
- No passenger
behaviours
- Requires strong
knowledge of C#
- No statistical
analysis
- Cannot extract
data easily

Figure 1.4.u: Simulation comparison between Arena, FlexSim, Quelea, and Unity.

81

Sample Simulation Station Simulation Test

Arena

FlexSim

Quelea

Unity

Simulation Comparison

Figure 1.4.v: Sample simulations and station test for Arena, FlexSim, Quelea, and Unity.

82

Summary

A model is a representation of a system, for the purpose of understanding how the system

works. Computer simulations are mathematical models, based in algebra or physics.

Simulations can be described by three properties, they are either static or dynamic,

deterministic or stochastic (random), and discrete or continuous. The reason to choose one

property over another depends on the application and scope of a project. There can be more

than one way to simulate the same situation. For example, water flow in a pipe could be a

continuous dynamic simulation based in physics, or it could be a discrete stochastic simulation

of pressure head.

For airports, all critical areas use simulations to understand how systems will perform. This

ensures people are safe, systems work efficiently, and that the airport is profitable. The

complexity of an airport simulation is defined by fidelity, or how close it matches the real world.

The most common simulation techniques are spreadsheet models, queuing models,

optimization, Monte Carlo, and discrete event simulations. A thorough understanding of an

airport will use all these techniques at some stage of design. A complete simulation study is

divided into four stages. This includes identifying the scope and goals, building and validating

the model, running experiments and analysing data, and finally, documenting the results.

In architecture, a common type of model is a crowd simulation, which analyzes the movement of

many people in public spaces. Crowds of people are usually modelled as a fluid flow, particle

systems, individual agents, or some combination of those. Fluid and particle models use physics

to approximate crowd dynamics, whereas agents assign individual people characteristics,

behaviours, and goals. A common application of crowd simulations in architecture is for

evacuation modelling. The purpose is to check how easily people can escape a building in an

emergency so that issues with the layout can be identified. Research in crowd modelling studies

how social and psychological factors affect human behaviour in buildings. Although these were

explored for emergency situations, factors like emotion, stress, and local navigation can also

apply to daily passengers in an airport.

Current discrete-event simulation software used in airport design include MassMotion, Arena,

and FlexSim. MassMotion is more than capable of modelling human interactions in

architectural conditions, with agents adapting to their surroundings. Arena and FlexSim are

stronger at modelling industrial applications and are more efficient at handling linear processes.

Before exploring a new simulation, the thesis experimented with Arena, FlexSim, Quelea (an

83

agent simulation in Grasshopper), and Unity (a game engine). For this thesis, FlexSim is the

best simulation option if trying to build onto an existing software. Whereas Unity is the best

simulation option if trying to build new behaviour from scratch.

85

Part 2:

Modelling Concepts

Part 2 goes through concepts that the thesis believes are necessary for creating an agent

simulation of architectural conditions. Chapter 2.0 begins by describing what an agent is, and

briefly introduces a framework for decision making. Chapter 2.1 talks about theories related to

human perception, and how people learn information from their surrounding environment.

Chapter 2.2 introduces existing theories in architectural spatial analysis. It also gives a brief

summary of the mathematics behind graph theory. Chapter 2.3 starts with a discussion of how

people value design choices based on value theory. It then introduces the method of

prioritization as a way of normalizing different human perspectives. Finally, the chapter

concludes with the thesis’s new proposed method for quantifying architectural conditions.

86

Chapter 2.0

Agent-Based Modelling

An agent-based model is a type of mathematical model that computes patterns and interactions

of individual objects within a larger system. Objects can act independently based on given rules

or constraints in an environment. If these objects have a goal and can act towards that goal by

interacting with the system, then these objects are intelligent agents. Agents differ from a

standard function, which takes in an input and produces an output regardless of its

surroundings. Instead, agents can conduct a set of operations, with a level of choice, to reach a

target state within a set amount of time. [1] The purpose of agent-based models is to re-create

small-scale interactions to predict how it affects a larger system. The behaviour of the larger

system is unknown and typically difficult to model on its own. Instead, giving an agent a simple

set of rules can result in patterns that appear across the entire system, which is called

emergence.

Agent Properties

Agent-based models classify according to the properties of the individual agents. [2] Properties

describe how an agent acts in an environment. The exact definition of each property depends on

the context of the model. In general, agents can have the following properties: autonomous,

exist over time, reactive, goal oriented, store memory, adaptive, characteristic, and

communicative.

Autonomous: Agents can exist by themselves without being dependant on outside influence.

They can take control over their actions and make their own decisions. Agents can also act

differently to other agents in the same system or under the same set of rules.

Exist Over Time: Programs can execute actions over time either as continuous functions or

discrete steps. These functions may change the environment or state of a system. However,

agents within these systems can remain as a consistent entity even though the environment

1. Franklin, Stan; Graesser, Art. "Is it an Agent, or just a Program?: A Taxonomy for Autonomous
Agents". Proceedings of the Third International Workshop on Agent Theories, Architectures, and
Languages, Springer-Verlag, 1996.

2. Franklin et al. “Is it an Agent?”. 6.

87

around them might be changing. While these changes are occurring, agents continue to be active

and only stop being active if the program ends, or they reach their target state.

Reactive: Agents can read or see things that surround them in an environment. If an agent

discovers information, they can respond to it based on predefined patterns or rules to act in a

certain way. If there are any changes in the environment, an agent can respond to those changes

within a given amount of time.

Goal-Oriented: By definition, agents have agency, which means they can have a purpose or a

goal. Agents do not only respond to outside influences, as described in reactive behaviour.

Instead, they can actively work towards a given goal or target. A purposeful agent will make

choices that will get them closer to their target. This may include ignoring irrelevant information

or changing their surroundings to make their target more accessible.

Store Memory: Agents can take in information given to them from the start or based on things

they find in their environment over time. Like a long-term memory, the agent keeps information

in a local storage which they can decide to use at any point if it becomes relevant. Agents can

store memory about their goals, abilities, or the properties of the environment. Memory is also

fundamental to an agent’s ability to learn.

Adaptive: Adding onto memory, agents can change their behaviour over time. This is

knowledge learned in the system or performing new actions that the model did not defined

initially. If an agent confronts a problem, they can record what happened to avoid repeating the

same actions again if they find themselves in the same situation.

Characteristic: Agents can have a character. Agents can take on a personality that is unique

compared to other agents in the same system. Their behaviour and actions can be dependant on

emotional states or inherited beliefs. These attributes can affect how quickly the agent moves

over time or how easily they can read information in the environment. As mentioned in adaptive

behaviour, their emotions and beliefs can also change as agents learn more information.

Communicative: Communication is the ability to send or receive information between other

agents or entities. Agent communication is important for learning information from the

environment or other agents. Additionally, communication is fundamental for creating group

dynamics. This reveals how agents can join into larger units to reach goals that would not be

possible if they were working individually.

88

Decision Making Process

Decision making in agent-based modelling refers to an agent’s behavioural choices from

environmental influences. The interpretation of an architectural environment is dependant on

how agents process information. The thesis follows the approach used by Raubal in their model

for agent-based wayfinding. They created an agent simulation that emulates human decision

making for wayfinding in an unfamiliar airport terminal. Raubal explains that agents, who do

not have previous knowledge of an environment, understand where they are going based on

spatial cognition (the ability to read a space). [3] Their research shows that an effective model

needs to incorporate a decision-making process because agents cannot rely on previously

acquired knowledge. [4] Instead, agents only rely on short term memory of information in these

situations.

Raubal discusses various models in artificial intelligence for decision making. His agent-based

model developed from a process called Sense-Plan-Act (SPA). [5] This is a fundamental

framework used in robotics to make sure a machine operates effectively. [6] The general process

is made up of three steps: sensing, planning, and acting. In a simulation environment, this

approach must go through each step before an agent does anything.

Agents using the SPA framework start by sensing their surroundings for important information,

like obstacles, targets, or signs. This involves using sensors or other devices to provide feedback.

An agent’s ability to sense information is dependant on their level of perception. In planning,

agents decide how to respond to the information they just learned. Their choice is based on a

given strategy or function defined in the agent’s mind. Once the agent knows how they want to

respond, the final step is to take action. This step involves using effectors, or other methods, to

make the agent move or behave in a certain manner. Once the agent has completed their

actions, that completes the decision-making process. This approach repeats as many times as

necessary until the agent reaches their goal or is unable to move.

3. Raubal, Martin. “Agent-Based Simulation of Human Wayfinding: A Perceptual Model for Unfamiliar
Buildings”. (PhD diss., Vienna University of Technology, (October 2001): 17-29.

4. Raubal, Martin. “Agent-Based Simulation”. 33.
5. Raubal, Martin. “Agent-Based Simulation”. 31.
6. RobotC. “Sense Plan Act (SPA)”. Natural Language Resources – VEX Cortex. Accessed November

2020. http://cdn.robotc.net/pdfs/natural-language/hp_spa.pdf.

89

This framework for decision making is effective because it provides a linear sequence of

information that can be replicated in a computer program. [7] An approach like SPA is also well

suited for discrete-event simulations because every stage of decision making occurs in finite

steps.

SPA may be limiting if the agent-based model is a part of a more complex dynamic environment.

An agent’s surroundings may change faster than the agent can process information. This results

in agents acting against a condition that is no longer valid. Issues like this can occur in crowd

simulations with a high density of people. Quick changes to other nearby people might not

register in time for an agent to respond fast enough, causing unwanted collisions or pathfinding

blockages. More advanced simulations like Mass Motion solve these issues by creating slow-

down forces and predictive awareness. [8] This causes agents to walk slower in crowded areas so

they can avoid getting stuck and anticipate where other people are walking to avoid collisions.

Every choice an agent makes using a linear process influences the next steps they come across.

The thesis expects that this approach can show unexpected outcomes of poor design choices. If

agents encounter an issue with a building’s design, like poor wayfinding as shown in Raubal’s

research, then it impacts the agent’s behaviour further down in the simulation.

7. Raubal, Martin. “Agent-Based Simulation”. 31-32.
8. Oaysis. “MassMotion Help Guide,” July 2019. https://www.oasys-software.com/wp-

content/uploads/2019/06/MassMotion-10.0-Help-Guide.pdf.

Figure 2.0.a: How agents interact with the environment, based on diagram by Liu (2020), redrawn by

author.

Environment

Percepts

Actions

Agent

Mind

Sensor

Effector

90

Chapter 2.1

Human Perception

One of the goals of this thesis is to use people as a function to determine the performance of an

architectural layout. The proposal stems from the idea that, architecture is experienced from the

perspective of individual people. The effectiveness of this approach is dependant on people

being aware of their surroundings. Perception is the process of using the senses to take in

information from the environment, interpreting it, and trying to understand what it means.

Additionally, architecture is concerned with how people view spaces from their perspective. In

The Concise Townscape, Cullen explains that people’s experience of architecture is composed of

a collection of existing views and emerging views. [1] By deduction, what a person experiences,

can indicate the quality of the space around them. Overall, an effective agent must be perceptive

of their environment to provide feedback of architecture. They must be able to take in

information, interpret it, and decide how to respond.

This thesis follows the theory presented by Raubal in their model for agent-based wayfinding.

Their framework for agent perception is based on the concepts of ontology and epistemology. [2]

Ontology is the science of existence, in the context of categorization. It is concerned with

understanding the existence of entities or objects, and how different concepts are grouped

together. Epistemology refers to knowledge. It is concerned with the process of understanding

what things are, the rationality of beliefs, and the justification of ideas. The behaviour of an

agent-based model is built as a collection of decisions. Each decision depends on what is present

in a digital environment, and how it is perceived by an agent.

Ontology

The agent-based model uses ontology to understand how to categorize elements in an airport. [3]

Categories can be as broad as the nature of reality, fundamental properties, or relationships. The

reason categorization is important for this thesis, is to understand how a digital model can

compute information. Categories give models specific definitions for various objects and

1. Cullen, Gordon. The Concise Townscape. Abingdon: Routledge, 1971. 9.
2. Raubal, Martin. “Agent-Based Simulation of Human Wayfinding: A Perceptual Model for Unfamiliar

Buildings”. (PhD diss., Vienna University of Technology, October 2001). 62.
3. Raubal. “Agent-Based Simulation”. 63.

91

Figure 2.1.a: Environments are made up of objects and processes.

Objects

Process

Environment

X-ray machine

Metal detector

Staff

Queue

Screening

Security Area

Theory Hierarchy Example Hierarchy

92

conditions. There needs to be defined boundaries so an agent can identify what something is,

and how to respond in different situations. For example, agents need to understand where they

can check-in their baggage, or how to identify which gate number their plane is boarding from.

In further chapters, the thesis will explain how digital perception can model imprecise

information, which would not naturally fit into a binary system. However, the first step is to

define basic elements in the agent-based model.

Ontology is rooted in theory and philosophy. In Objects in Their Environment, Smith introduces

how ontology can describe the physical environment of ordinary people. [4] They use ontology to

organize an environment into Aristotelian substances and accidents, based on people’s

behaviour. Substances refer to objects, things, and people, whereas accidents refer to qualities,

actions, and processes. [5] Using Smith’s concepts, Raubal, in his agent-model, explains how the

built environment is made from the relationship between substances (objects) and their

corresponding accidents (processes). For example, the environment of airport security is made

up of objects, (queue lines and x-ray machines), and processes, (waiting and screening), as is

illustrated in Fig.2.1.a. Queue lines serve the need for waiting, and x-ray machines serve the

need for screening.

Smith defines a list of conditions that describe spatial properties of substances and accidents.

These conditions are called ontological marks, which describe how human interactions relate to

a physical environment. [6] For example, the action of checking in baggage requires the time and

space for passengers to move bags from one area to another. Smith explains that environments

like this, take up physical space, can be divided into parts, and exist over time. [7] Raubal’s

research brings Smith’s conditions into an architectural context by relating each of these

attributes to wayfinding in an airport. [8] For the feedback of airport architecture, the thesis uses

the same approach to understand the ontological marks of a terminal environment, which is

detailed in Fig.2.1.b. This explains how people exist within an airport terminal based on

fundamental conditions. In other words, an environment exists, from a person’s perception, if it

is defined by relevant objects and processes.

4. Smith, Barry. “Objects and Their Environment”. The Life and Motion of Socio-Economic (GISDATA

8), London: Taylor and Francis, 2001, 79–97. As cited in: Raubal. “Agent-Based Simulation”. 62.
5. Smith. “Objects and Their Environment”. 81.
6. Smith. “Objects and Their Environment”. 91.
7. Smith. “Objects and Their Environment”. 91-92.
8. Raubal. “Agent-Based Simulation”. 64.

93

Enivronments contains substances and accidents,
which need a “participant” substance to exist.

Passengers are invloved in airport process, like
check-in, screening, waiting, boarding.

Passengers remain the same, but can be checked-in or
have security clearance at different times.

Crowd dynamics exhibit emergent behvaiour based
on patterns in an airport environment.

Terminals are defined by architectural components;
people occupy inside, and planes park outside.

Restaurants exist with in a larger retail space, and are
scattered throughout the terminal.

A terminal pier takes up space, which can be divided
into individual aircaft stalls, or flight occupancy time.

A security area is always present, but may not service
people during off-hours.

The text on a sign is understood in context of
wayfinding; the gate number (e.g. C3, F7) refers to a

physical location.

A 1 year old terminal is the same terminal when it is 10
years old, but renovations can change areas inside.

Environments remain consistent, but can be defined by
different participant substances at different times.

Environments are part of a natural process, and are
proportional in size with other things.

Environments have parts that are environments,
themselves.

Environments are spatially connected, part of a larger
entity, but can be physically scattered.

Environments take up space, and can be divided into
smaller spatial or temporal segments.

Environments exist over time, but do need be identical
from begining to end.

The act of waiting is expected in terminals, but
passenger have a specific depature time.

Environments do not have punctual existance, (distinct
beginning and end), but contain punctual events

Environments exist over time, but do not need to be
continuous.

Environments have complete boundaries, where
objects can be inside or outside it.

Ontological Marks of an Enivronment Ontological Examples in Airports

Figure 2.1.b: Smith's (2001) ontological marks of an environment and examples in an airport, based

on diagram by Raubal (2001), reinterpreted by authour.

94

The physical nature of objects in an environment can be further categorized based on how

people observe each object. When a passenger reads a departure board, they are seeing coloured

lights from a metal box. The nature of that box affects how people perceive flight information

from the sign. The influence of these factors is presented by Gibson in The Ecological Approach

to Visual Perception. This describes how agents and objects in their surroundings can be

categorized based on their physical properties.

Gibson defines an environment in terms of three parts: substances, medium, and surfaces. [9]

Like ontological substances, Gibson’s substances refer to physical matter and solid objects.

These are usually opaque to light and are composed of heterogenous materials. [10] Things like

the earth, minerals, plants, and animal matter, are examples of substances. Medium, in contrast,

refers to fluids and light. These are usually transparent to light, primarily homogeneous, and can

propagate waves. [11] Water, air, gases, the atmosphere, and light are examples of mediums.

Substances usually exist within a medium and use it to move around: like fish in water, or

engines consuming air and fuel. Finally, surfaces are the boundary layers between substances

and a medium, which separate them from each other. The interaction of substances and

mediums occur through surfaces. All substances have a surface. They can absorb or reflect light,

giving substances their appearance and making them identifiable. Surfaces relate to aesthetic

properties, like texture and colour. Although, surfaces can also influence friction, durability, or

viscosity of a substance or medium. [12] The grain of wood, the “fluffiness” of clouds, and the

coarseness of rocks on a riverbank are examples of surfaces.

For this thesis, airport elements are classified according to substances and mediums, as

illustrated in Fig.2.1.c. Substances are divided into living and non-living objects. [13] In the

context of a simulation, these are agents and environmental objects, respectively. Agents in a

simulation refer to any object that has agency, awareness, and knowledge. People are substances

and they are aware of their surroundings. Therefore, passengers and airport staff would be

considered agents.

The environment can also be organized into physical and non-physical elements. The thesis

organizes architectural conditions by dividing the environment into objects (substances) and

9. Gibson, James J. The Ecological Approach to Visual Perception. New York: Psychology Press, 1986.

16.
10. Gibson. Visual Perception. 19-18.
11. Gibson. Visual Perception. 16-17.
12. Gibson. Visual Perception. 24-26.
13. Raubal. “Agent-Based Simulation”. 66.

95

Figure 2.1.c: Elements of an airport classified as a substance or medium, based on diagram by Raubal

(2001), redrawn by author.

Figure 2.1.d: Further categorization of airport terminal architecture.

Substance Medium

Agents

Passenger Check-in

Security

Retail

...

...

...

Gates

Signage

Equipment

Furniture

Products

Airport
Staff

Architectural
Elements

Waiting
Area

Environment
Objects

Environment
Spaces

Airport Terminal Architecture

Spaces Components

Stairs

Escalator

Elevator

...

Hall

Lounge

Office

Holdroom

Queue

Storage

...

Wall

Floor

Column

Window

Balcony

Partition

...

Corridor

Doorway

Jet Bridge

...

Moving
Walkway

Horizontal
Circulation

Vertical
Circulation

96

spaces (mediums). Environmental objects include architectural components, like walls, doors,

columns, or windows. Further investigations might also address surfaces, which describe the

texture and colour of these architectural elements. Architectural spaces are categorized as a

medium. People occupy spaces and use them to move around the built environment. Spaces can

propagate waves of light, or even waves of people in a crowd. In the context of an airport,

architectural spaces are simply areas like security, holdroom concourse, or food and retail.

Fundamentally, an architectural space as an ontological environment, can only exist physically,

from a person’s perception, when defined by architectural objects related to a given process. As

mentioned, for example, passengers can perceive the environment of a security area, when it

contains objects like x-ray machines or metal detectors that they recognized to be relevant for

the security screening process.

Epistemology

Up to this point, the thesis has described how certain objects in an airport correspond to specific

processes and behaviours. But how do passengers know which objects correspond to which

behaviours? The fact that people might see a security line, and understand that they must wait

behind other people, is a result of their existing knowledge of what a queue is and how it works.

Knowledge is the understanding of things, objects, or concepts. For agents to give feedback of an

architectural environment, they must have knowledge of the areas they are interacting with.

They must understand what their goal is, and what elements in an environment will allow them

to reach their target. Agents who encounter difficulties in a building can provide feedback of

architectural conditions, if they understand what they are perceiving.

The thesis’s understanding of knowledge also develops from Raubal’s agent-based model for

wayfinding. Raubal uses Gibson’s ecological approach as a foundation for agent knowledge in

combination with cognition. [14] The framework stems from the concept of affordances as a way

of understanding how people learn information about the world. Gibson defines affordances as

the properties of an environment that have use for people, either for good or bad. [15] In the

context of substances, affordances are the layout of surfaces and substances that show

properties of use to an observer. [16] Surfaces absorb and reflect light, which Gibson states,

represent what they afford. Affordances are meant to be a relationship between surfaces,

14. Raubal. “Agent-Based Simulation”. 39-47.
15. Gibson. Visual Perception. 127.
16. Raubal. “Agent-Based Simulation”. 67.

97

substances, and the people who observe them. [17] They are not inherent properties of an object,

but they are properties relative to a single person.

For example, as Raubal explains, a staircase affords people to climb it because the height of the

steps is an affordance for climbing. [18] More specifically, the height of each step, relative to the

size of a person’s leg, is at the right level for someone to lift their feet above each step. If steps on

a staircase are too high, relative to the size of a person, then they would not be able to use it.

Likewise, a chair affords people to sit because the height of the seat, relative to the size of a

person’s legs, is the right level to bend down onto it. The chair also affords support, which

people know can lift their own body weight. [19] The same is true of other objects that people sit

on, like ledges or curbs, which are not designed for sitting. Instead, people recognized that the

height of the ledge is at the right level to support their weight, which they will use if they are

tired.

As Raubal summarizes, Gibson’s theory of affordances only considers perception (what people

can see), but does not consider the thought process behind choices, or cognition. [20] This

describes how information goes from what people observe to their actions. It also considers if

this process is always consistent or if there are any errors in decision making. Gibson’s theory of

affordances also does not consider how people perceive things without looking at the

environment, such as memory. [21]

In The Design of Everyday Things, Norman suggests that affordances are the result of mental

interpretations of things, which are influenced by people’s past experiences and memory. [22] He

states that when people perceive things, their minds have to process that information before

people can take action. [23] Additionally, Raubal adds that social context, cultural background,

and personal values will influence how people process this information. [24] As a result,

affordances are not a full representation of the environment, but only represent a subjective

view from each person.

17. Raubal. “Agent-Based Simulation”. 41.
18. Raubal. “Agent-Based Simulation”. 41.
19. Norman, Donald A. The Design of Everyday Things. New York: Basic Books, A Member of the

Perseus Books Group, 2013. 11.
20. Raubal. “Agent-Based Simulation”. 42.
21. Raubal. “Agent-Based Simulation”. 42.
22. Raubal. “Agent-Based Simulation”. 43.
23. Norman. The Design of Everyday Things. 12.
24. Raubal. “Agent-Based Simulation”. 43.

98

According to Norman, the physical properties of an object that communicates affordance

information to people are called signifiers. [25] For example, a door has an affordance for people

to walk through. However, a signifier of the door’s use would be the handles, hinges, or a sign

describing which way to push/pull. [26] In this context, affordances are the possible interactions

between people and the door. The actions that people take are then determined by their memory

of how a door works and the signifiers that communicate how the door should be used.

In the context of an airport, Raubal developed a list of possible affordances that an adult

traveller might do while going to their gate (Fig.2.1.e). Raubal states that affordances can

correspond to three different categories, physical, social, and mental. [27] In addition to Raubal’s

wayfinding, the thesis considers this list in the context of architectural spaces.

Physical Affordances: This relates to physical properties of an object and how people can

physically interact with them. For example, people can place objects on horizontal surfaces (like

counters and tables) or hold small objects in their hands (like tickets and drink cups). [28] This

also includes how people can open doors, walk through corridors, climb stairs, and sit in chairs.

For architecture, the physical affordance of walls, partitions, and columns can divide spaces,

block views, and direct movement.

Social Affordances: This describes how people act according to social contexts, or institutional

rules. Even if something is physically possible, there are interactions that are considered socially

unacceptable, morally wrong, or illegal. [29] For example, this includes showing a passport to a

customs officer, staying within the stanchions of a queue, not walking into restricted areas, and

proper etiquette when communicating with other people. Social affordances can also be

triggered based on physical properties. The physical appearance of a customs checkpoint can

give a sense of authority (using barriers or signs) and trigger people’s memory of how security is

handled. In contrast, retail and concourse areas can also signal to people the affordance of

socializing, consumption, or relaxing.

Mental Affordances: This represents how people make decisions, which can relate to social

affordances. [30] For example, a flight departure board can trigger people to remember their

25. Norman. The Design of Everyday Things. 13.
26. Norman. The Design of Everyday Things. 16.
27. Raubal. “Agent-Based Simulation”. 67.
28. Raubal. “Agent-Based Simulation”. 67.
29. Raubal. “Agent-Based Simulation”. 68.
30. Raubal. “Agent-Based Simulation”. 68-69.

99

Affordances

Substances Physical Social Mental

A
rc

hi
te

ct
ur

e
A

irp
or

t

Space move through, access,
leave, enclose, stand

look around, include,
spend time, wander

look for, wait, expect

Doorway enter, go through, put
through

look through, seperate remember gate

Signage go towards, stand out,
eye-catching

advertise, direct, inform,
follow, wayfinding

look for, recognize,
read, check

Passport Control go to or through, enter block, line up, show
passport and pass

look for, remember
documents

Decision Point pass, turn, orient look around, wait decide, search, select

Corridor move along, branch,
curve, begin, end

direct remeber path, select

Column go around, move
towards

block, divide remember reference

Stairs go up, go down, stand wait pay attension

Check-in Counter go to, stand in front, put
ticket, get pass

line up, check-in, look for, remember flight

Airport Staff approach talk to, ask, provide info
or documents, behave

look for, remember info

Figure 2.1.e: Category of affordances in an airport and architectural elements, based on diagram by

Raubal (2001), redrawn by author.

100

flight number, gate, and departure time. Additionally, this accounts for deciding what food to

eat in a food court, what things to buy in a store, or where to sit in a waiting area.

When a person interacts with an environment or object, they will typically involve all three types

of affordances. For example, a check-in counter requires passengers to walk through the check-

in area (physical), wait in line behind others (social), remember their flight information

(mental), place documents on the counter (physical) and communicate with airport staff

(social).

Memory

Memory is a part of a person’s mind that stores, processes, and retrieves information as needed.

In a simulated environment, agents need to remember what their goals are, and the actions

needed to achieve them. Likewise, passengers in an airport need to remember where they are

and the processes they have already completed, like checking in. Memory is also an important

part of agent learning, since information gathered from past experiences can inform decisions

for future events.

To create a simulated method of how people gather information, the thesis considers Norman’s

approximate models (for memory). Norman explains how parts of human memory can be

approximated using simplified models. Although these models are not scientifically accurate,

they can still replicate the outcomes of using memory in the real world. [31] The thesis’s

conceptual model of agent memory is built-up of two parts, a long-term and a short-term

memory.

Long-Term Memory:

Long-term memory holds information that stays with the agent from the start to the end of the

agent’s existence. Agents use long-term memory to store information about their goal or

primary target, and the agent’s properties or characteristics.

Primary Target: In an airport simulation, the goal for departing passengers is to board their

flight. Since agents must navigate using their surroundings, they should be unaware of their

target location until they find it. Therefore, an agent’s long-term memory only stores the name

of the target, like a gate number (Gate B24). However, once the agent observes the location of

their gate, its physical location is also stored in their memory.

31. Norman. The Design of Everyday Things. 101.

101

Characteristics: The characteristics of an agent can describe the agent’s core beliefs and ideas,

which are not expected to change over the course of the simulation. Since they represent a

person, this can also include their name, gender, age, or other defining properties. As an agent

learns new information from the environment, there resulting actions are based on their stored

thoughts and beliefs.

Short-Term Memory:

During the agent’s journey, short-term memory only holds information temporarily, or as the

agent needs it. In this thesis, short-term memory stores information about agent state, spatial

memory, and local targets.

Norman simplifies short-term memory with the idea of having memory slots. [32] Every time a

new piece of information is observed, the information fills one of these slots. Once all the slots

are full, any new piece of information replaces the oldest memory. When an agent first enters

the environment, their short-term memory would be empty. As they experience different parts

of the environment throughout the simulation, their short-term memory fills with relevant

information.

Agent State: Agent states represent an agent’s current thoughts about how to behave. Raubal

explains that, when an agent makes an observation, they recognize some state of the

environment at a specific place and time. [33] For example, if an agent observes the entrance to a

security area, then the agent will be more attentive than if they were simply waiting by the gates.

These states represent different types of perceived affordances or interactions. [34] Essentially,

the type of state represents what type of behaviour the agent is following. This includes airport

behaviour like waiting, queuing, processing, checking in, or security screening. An agent’s state

will change every time they observe new information, which, as Raubal states, is comparable to

short-term memory. [35]

Spatial Memory: Like agent state, spatial memory describes the agent’s knowledge of where

they are. When an agent recognizes a property in an environment, they can identify the space

associated with that property. For example, if an agent recognizes a check-in counter, then the

agent learns that the counter affords picking up a boarding pass. As a result, the agent knows

32. Norman. The Design of Everyday Things. 102.
33. Raubal. “Agent-Based Simulation”. 75.
34. Raubal. “Agent-Based Simulation”. 75.
35. Raubal. “Agent-Based Simulation”. 75.

102

they must be in the check-in area. Therefore, their behaviour, or state, should align with the

expected behaviour of that space. An agent has a memory of where they are until they observe

new spatial information from the environment.

Local Targets: Local targets describe the possible affordances associated with an object or

location that an agent can currently observe. When an agent observes an object, they learn

information about the object or the associated affordances. If the object has relevant

information that is useful for the agent, then they will memorize the given affordances or actions

related to the object. [36] For example, after noticing a wayfinding sign, an agent might read the

sign to understand what it says. If the sign has information on it that matches where the agent is

trying to go, then the sign has an affordance for following. [37] As a result, the agent memorizes

the direction the sign is pointing, so they can follow it. Fundamentally, the direction the sign

points to is considered a local target. Once the local target is used, or consumed, then the

information may be replaced, or forgotten, from the agent’s short-term memory.

Field of View

Gibson defines the field of view for human beings as the solid edge of ambient light that can be

registered by a person’s optical system, or eyes. [38] The volume between these solid edges of

light can be represented by a section of a sphere. The sphere is defined geometrically by the

angle seen from the perspective of a person’s eyes in their head. [39] People’s view of the world is

based on the direction their eyes are looking and the posture of their head. [40]

Gibson explains that people see the world in perspective from a single point of view. This is

approximated by projecting lines out radially from a person’s eye (Fig.2.1.f). [41] If light reflected

off surfaces reaches someone’s eyes, then those surfaces, or objects, are considered visible. Since

light travels in straight lines through spacetime, light coming from behind objects will not be

detected. As a result, these objects are not visible.

A field of view describes visual perception, which are things that a person is aware of. Things

that are not in a person’s field of view are not seen, and as a result, are not visually perceived.

Philosophically, if something is not observed, then it does not exist from the perspective of a

36. Raubal. “Agent-Based Simulation”. 75.
37. Raubal. “Agent-Based Simulation”. 75.
38. Gibson. Visual Perception. 127.
39. Gibson. Visual Perception. 127.
40. Gibson. Visual Perception. 196.
41. Gibson. Visual Perception. 196.

103

Figure 2.1.f: Gibson's representation of a person's field of view. Every surface that can be visually

perceived is a solid line. Otherwise, it is a dashed line if it cannot be percieved, Gibson (1972).

104

person. For example, students standing in the halls outside of their classroom cannot see their

desks behind the walls of the school or a closed door. For this reason, their desks do not

technically exist, based on their visual perception. Once students enter the classroom, the desks

become visible in their field of view. As a result, they can perceive their physical existence.

Although students may expect their desks to be in the classroom before arriving, the physical

objects are not in their field of view yet. If the desks are removed from the classroom before the

students arrive, then it is no different than if they cannot see the desks behind the walls.

Students would also not be aware that there are no desks until they observe an empty space.

Fundamentally, this metaphor also applies to passengers in an airport terminal. If people are

navigating through the building and they cannot see their gate, then they are not aware of its

physical existence. Only after the location of the gate area becomes visible in a person’s field of

view, are they able to visually perceive the physical gate. The same condition applies to any

architectural feature. For example, if a designer adds windows to view outside the terminal

concourse, but no one can see it from their field of view, then the windows do not physically

exist from passengers’ visual perception of the space.

Additionally, as described by Norman, if there are no signifiers to communicate an object’s

utility, then the object’s affordances do not exist from a given observer. [42] Likewise, if an

architectural feature is not in a person’s field of view, then they cannot understand the

affordances of that space. Therefore, the field of view illustrates the elements, surfaces, or

objects that an individual can perceive.

Summary

Perception is the process of using the senses to interpret information from the environment.

People’s experience of architecture is made up of a collection of views. So, what a person

experiences can indicate the quality of those spaces. Likewise, an effective agent must be

perceptive of their environment to provide feedback of architectural conditions. The thesis

follows the work of Raubal in their research of perceptive agent wayfinding. Agent perception is

based on understanding how people identify different objects in their mind (categorization or

ontology) and understanding how people know what things are (knowledge or epistemology).

From ontology, the thesis learns that an environment exists, from a person’s perception, if it is

defined by relevant objects and processes, which are called ontological marks. Additionally,

these objects can be categorized based on how people observe them, which Gibson defines as

42. Norman. The Design of Everyday Things. 14.

105

substances (solids), mediums (fluids and light), and surfaces (layers between substances and

medium). Passengers are living substances, and architectural elements are non-living

substances. Architectural spaces that people and objects occupy are the medium. Aesthetic and

material properties are the surfaces. Fundamentally, an architectural space as an ontological

environment can only exist physically, from a person’s perception, when objects are related to a

given process within those spaces.

For agents to identify what things are, they must have knowledge of the objects they are looking

at. Agent-based knowledge develops from affordances, which models how people learn

information about the world. Affordances are the relationships between objects (Gibson’s

surfaces and substances) that have use for people, either for good or bad. Even though

affordances are inherent to the object, they are relative to each individual making the

observation. The properties of an object that communicates what they can afford to an agent are

called signifiers. When people perceive a signifier, they must process the information they see

before taking action, which is described by cognition. An agent’s social, cultural, and personal

values influence how this information is processed. Therefore, affordances are only a subjective

view of the environment. Affordances can be physical interaction with the object, social norms

associated with the object, or mental processes that are brought about by the object.

Memory is responsible for storing, processing, and retrieving perceived information. This is

simulated in an agent using simplified models for both long- and short-term memory. Long-

term memory holds an agent’s goal (primary target), and their inherent beliefs (characteristics).

Short-term memory holds behaviour tied to a given affordance (agent states), the agent’s current

location (spatial memory), and actions associated with a given affordance (local targets).

Field of view is the optical area that a person can observe, based on the reflected path of light.

Objects or elements that fall within someone’s field of view can be visually perceived. If an

element is not visible, then the person cannot perceive it, which is equivalent to the element not

existing from their perspective. If an element is not perceived, then a person cannot understand

what it affords.

106

Chapter 2.2

Spatial Analysis

Spatial analysis is the study of shape, position, size, quantity, or location of geometric features.

It describes how information is organized in topology, geography, and architectural spaces. For

this thesis, spatial analysis can help connect the behaviour of people and the quality of spaces

around them.

Methods

This section covers some of the existing methods in architecture for analysing spatial conditions.

These methods include isovist, space syntax, axial maps, enclosure, and visibility graphs.

Isovist:

One of the foundations of architectural spatial analysis is the isovist. An isovist describes the

area that can be seen from a single point, projecting out in every direction (Fig.2.2.a). This can

be illustrated in a 2D floor plan, or it can also describe a volume in 3D space. One of the first

papers on the isovist was by Benedikt in 1979, who demonstrated how an isovist can analyze

architectural and urban spaces. Benedikt explains that spaces are understood as a collection of

visible surfaces, which are framed by architectural components like walls or windows. [1] They

used the isovist to represent visible space from a single point, which made it easy to compare

different quality of spaces based on a given area and perimeter. [2] An isovist can also be thought

of as the volume of space illuminated by light coming from a single point. [3]

1. Do, Ellen Yi-Luen, and Mark D. Gross. “Tools for Visual and Spatial Analysis of CAD Models.” CAAD
Futures 1997, 1997, 189–202. https://doi.org/10.1007/978-94-011-5576-2_15. 3.

2. Do et al. “Spatial Analysis of CAD Models.” 3.
3. Arabacioglu, Burcin Cem. “Using Fuzzy Inference System for Architectural Space Analysis.” Applied

Soft Computing 10, no. 3 (2010): 927.

107

Figure 2.2.a: An isovist is the area that can be seen from a single point, light grey is visible and dark

grey is hidden, Arabacioglu (2010).

Figure 2.2.b: The three geometries of space syntax: lines, convex space, and an isovist, Vaughan

(2007).

108

Space Syntax:

Space syntax is the study of how spaces are organized in urban conditions. This was first

published by Hillier and Hanson in their book The Social Logic of Space (1984). [4] They studied

configurations of spaces in relation to social structures in an urban context. Space syntax

analyses the nature of a built environment based on patterns related to human behaviour, like

where people live or how they travel. Although, Vaughan explains how space syntax suggests

that spaces have their own formal logic before a social context is applied. [5] Hillier and Hanson

also established methods for describing spatial configurations as physical geometries. The three

most fundamental geometries they used were lines, convex space, and the isovist (Fig.2.2.b). [6]

Lines describes the path of people’s movements. A convex space is a location that is visible from

every other point in that space, which is a property of interactive spaces. Finally, the isovist was

used to represent a person’s perspective or their field of view. [7]

Axial Maps:

Space syntax breaks down urban spaces into components to understand how they are connected

to each other. One of the ways these connections were studied was using axial maps. These

maps were a type of graph structure that simplified spaces and their connections into vertices

and edges, respectively. Edges can describe how people physically move between spaces, or they

can represent concepts like functional, social, or environmental relationships. It simplifies an

analysis without having to consider architectural dimensions like walls or doors. In Fig.2.2.c,

Vaughan shows how axial maps illustrate different connections between spaces, depending on

what room they look from. [8] In a city fabric, axial maps are useful at describing the paths that

people take and the spaces they pass through. In addition to physical movement, axial maps can

model social structures based on a network of human behaviour. [9]

4. Hillier, Bill, and Julienne Hanson. The Social Logic of Space. Cambridge: Cambridge University
Press, 1984. doi:10.1017/CBO9780511597237.

5. Vaughan, Laura. “The Spatial Syntax of Urban Segregation.” Progress in Planning 67, no. 3 (2007)
208.

6. Vaughan, Laura. “Urban Segregation.” 209.
7. Vaughan, Laura. “Urban Segregation.” 209.
8. Vaughan, Laura. “The Spatial Syntax of Urban Segregation.” Progress in Planning 67, no. 3 (2007).

211.
9. Vaughan, Laura. “Urban Segregation.” 208.

109

Figure 2.2.d: Enclosure defines a value based on the number of surrounding walls on a scale of 1 to 4,

Do et al. (1997).

Figure 2.2.c: Graphs showing the arrangement of connections from different rooms in a house,

Vaughan (2007), re-highlighted by author.

Grande Salle Outside Salle Commnue

110

Enclosure:

Enclosure is a concept published by Gross in 1977 who created a computer program for

subdividing spaces in a floor plan. The goal was to create a numerical model of how people feel

in different spatial arrangements. [10] This was calculated by assigning a score based on the

number of walls that surround a given area. For example, a square room that is closed on all

four sides would be given a value of 4, whereas a room with no walls would be given a zero

(Fig.2.2.d). The value of enclosure does not only apply to a single room but could also be

generalized to an arbitrary unit of area. This works by subdividing a floor plan into small enough

segments, or increasing the granularity, which was like an early concept of depth mapping.

Visibility Graphs:

Visibility graphs were popularized by Turner et al. in 1999 for analyzing architectural spaces. It

combines the logic of the isovist geometry and the mathematics of graph theory to understand

how different space structures affect social function. [11] A basic visibility graph works by

identifying the locations that can be seen from a single point. If a point in space is visible from

more than one location, then that point has higher visibility. This is equivalent to overlapping

multiple isovist geometries and adding the areas where they intersect with each other. [12]

However, Turner et al. demonstrates that, instead of using isovists, a space can be approximated

as a network of vertices in a graph, where the edges are the visible connection (Fig.2.2.e). [13] The

resolution of the analysis depends on the size and frequency of the vertices. In addition to

representing visibility of a person at eye level, a visibility graph can be created for any height or

dimension, which can also represent volumetric space. A visualization of a visibility graph may

also be referred to as a depth map, which illustrates visibility information in a pixel grid,

typically, on a scale from black to white (Fig.2.2.f).

10. Do et al. “Spatial Analysis of CAD Models.” 4.
11. Turner, Alasdair, Maria Doxa, David Osullivan, and Alan Penn. “From Isovists to Visibility Graphs:

A Methodology for the Analysis of Architectural Space.” Environment and Planning B: Planning and
Design 28, no. 1 (2001): 104.

12. Turner et al. “From Isovists to Visibility Graphs.” 107.
13. Turner et al. “From Isovists to Visibility Graphs.” 107.

111

Figure 2.2.e: A visibility graph, where each vertex is a point in space, and the lines are the visibile

connections, Turner et al. (1999).

Figure 2.2.f: A depth map illustrating the number of connections in a visibility graph as a pixel grid.

White: most connections (high visibilty), Black: least connetions (low visibility), Arabacioglu (2010).

112

Graph Theory

Graph theory is the study of mathematical structures called graphs. These are models that can

represent networks or relationships between items. [14] Graph structures are built up of points

and connected by lines (Fig.2.2.g), which are referred to as vertices and edges.

Graph theory is an important concept for two areas in this thesis: understanding architectural

arrangements and agent navigation. As mentioned for axial maps, graph theory is useful in

architecture because it diagrams how spaces are connected together. Additionally, simulations

commonly use graph theory to simplify agent navigation. Graph structures provide a way for

simulations to differentiate between accessible or non-accessible areas, and it can be used to

calculate the shortest path between two points.

Graphs are not geometrically defined, as visualized in Fig.2.2.g. Instead, graphs are abstractly

written as a collection of connected pairs of vertices. [15] An edge connected between two points,

𝑣𝑣1 and 𝑣𝑣2, can be denoted mathematically as the ordered pair {𝑣𝑣1, 𝑣𝑣2}. [16] A graph can be written

in terms of the number of vertices as a set 𝑉𝑉 = {𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑖𝑖} or edges as a set 𝐸𝐸 =
{𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3,… , 𝑒𝑒𝑖𝑖}. The edges in Fig.2.2.g can be defined as {𝑣𝑣1, 𝑣𝑣2}, {𝑣𝑣2, 𝑣𝑣3}, {𝑣𝑣2, 𝑣𝑣4}, {𝑣𝑣3, 𝑣𝑣4},
{𝑣𝑣3, 𝑣𝑣5}, {𝑣𝑣4, 𝑣𝑣5}.

Directed Graphs

In Fig.2.2.g, {𝑣𝑣1, 𝑣𝑣2} and {𝑣𝑣2, 𝑣𝑣1} describe the same edge. This means the relationship between 𝑣𝑣1

and 𝑣𝑣2 is the same in both directions. Since all the edges have this property, the graph is

considered undirected. [17] By contrast, a graph is considered directed if the relationship between

two vertices does not go in both directions. As seen in Fig.2.2.h, the edge between 𝑣𝑣1 and 𝑣𝑣2 only

has a relationship in the direction {𝑣𝑣1, 𝑣𝑣2}. If this graph was representing roads between cities,

then a directed edge would be equivalent to a one-way road, where cars can only travel in one

direction.

14. Guichard, David. An Introduction to Combinatorics and Graph Theory. Whitman College. January
30, 2020, 7.

15. Guichard. Combinatorics and Graph Theory. 7.
16. “Describing Graphs.” Computer Science, Algorithms, Graph Representation. Khan Academy.

Accessed May 2020. https://www.khanacademy.org/computing/computer-science/algorithms/graph-
representation/a/describing-graphs.

17. Khan Academy. “Describing Graphs”.

113

Figure 2.2.g: An undirected graph with 5 edges

and 5 vertices.

Figure 2.2.i: A path from node v1 to node v4.

Figure 2.2.j: A weighted graph. Figure 2.2.k: Lowest cost path between node A

and node B has a cost of 7.

Figure 2.2.h: A directed graph.

114

Paths

Another attribute of graphs is called a path. Paths are made up of a collection of continuous

edges and vertices. Any vertices along a path are referred to as nodes in that path. The

movement from one node to another is called a walk. [18] This is useful for describing how

information might travel across a graph. In Fig.2.2.i, there exists a path between 𝑣𝑣1 and 𝑣𝑣4. The

vertices 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3 and 𝑣𝑣4 are all nodes in that path, which forms a walk in the sequence 𝑣𝑣1 →
𝑣𝑣2 → 𝑣𝑣3 → 𝑣𝑣4.

Weights

In the same way that a directed graph can change the relationship between two vertices, another

approach is to introduce weights. A graph is said to be weighted if its edges or vertices are given

a non-negative value. [19] A weight describes how much cost it takes to travel from one vertex to

another (Fig.2.2.j). The shortest path in a weighted graph is referred to as the lowest cost path.

The lowest cost path is the sum of the weights of all the edges (or vertices). [20] As highlighted in

Fig.2.2.k, the lowest cost path from node 𝐴𝐴 to node 𝐵𝐵 follows the top edges. These edges have the

weights 𝑤𝑤1 = 2, 𝑤𝑤2 = 2, 𝑤𝑤3 = 3, giving it a total cost of 𝑤𝑤𝑇𝑇 = 7.

An example of a weighted graph is a model of roadways between cities, where weighting

represents the total travel time. A road connecting two cities that are farther apart would be

given a higher cost than a road in between two cities that are closer. Likewise, weights can be

used to represent traffic. A road with a lot of traffic can be given a higher cost than a road with

very little traffic. This concept is useful in crowd simulations for representing crowded spaces.

Areas in a building that have a lot of people can be assigned higher cost, compared to areas that

have less people. Agents in these simulations would prefer to follow the path with less people,

which is represented by the path with the lower cost.

Navigation

In most applications, agents do not have a straight line to their target. Instead, agents need to be

able to move around obstacles or other objects. Navigation is the process of searching for a path

from one location to another. Graphs can subdivide areas into distinct nodes, which navigation

algorithms use to calculate a path.

18. Wilson, Robin J. Introduction to Graph Theory 4th ed. Harlow: Longman, 1996. 3-4.
19. Wilson. Graph Theory. 39.
20. Guichard. Combinatorics and Graph Theory. 106.

115

Figure 2.2.m: Pathfinding solved using an A* search algorithm uses heuristics to reduce node search

time, which, for this example, takes half as long as Dijkstra's, Bhattacharya (2011).

Figure 2.2.l: Pathfinding solved using Dijkstra's search algorithm checks all nodes for the lowest cost,

Bhattacharya (2011).

116

The essence of agent navigation, or pathfinding, involves selecting the lowest cost path in a

weighted graph. A common pathfinding method is Dijkstra’s search algorithm. This calculates

the shortest path by selecting neighbouring nodes that have the lowest weight cost. However,

this can take a long time to calculate if an area is divided into many hundreds of nodes

(Fig.2.2.l).

Instead of only considering a node’s weight based on environmental conditions, the search

algorithm can consider an agent’s current node position, as a second weight. This second weight

is called a heuristic, which is added to a node’s overall cost during pathfinding. The idea is used

in the method called the A* (A star) search algorithm. It works just like Dijkstra’s algorithm by

selecting the adjacent nodes with the lowest cost. However, instead of looking at all nearby

nodes, A* ignores nodes that takes a path further away from the target, which are represented by

a higher heuristic cost (Fig.2.2.m). Ultimately, this optimizes the time spent searching in a given

space.

117

Chapter 2.3

Value Theory

The intentions of this thesis are to quantify architectural arrangements in an airport terminal as

a function of human performance. To achieve this, the thesis must answer the following

questions: what architectural elements influence the value of a space, and how can these

elements be modelled mathematically to quantify an architectural performance?

Methods of Valuation

The thesis’s understanding of architectural value begins with the philosophy of instrumental

and intrinsic value, as a way of quantifying the physical environment. Instrumental value

describes things that are useful for achieving a purpose, or, informally, things that are a means

to an end. [1] [2] For example, a sign has instrumental value for passengers because they can use it

to find their gate. This is a common functional description of value, which is like the ideas

described for validation and agents.

In contrast, philosophers argue that things are also valuable, or good (ethically), not only

because of the results they provide. [3] Instead, things can have intrinsic value, which are

inherent qualities that are important by themselves. [4] [5] For example, the courtesy shown by

airport staff can be intrinsically good behaviour, which passengers can see as valuable by itself.

Although, in Theory of Valuation, Dewey argues that intrinsic value cannot exist without a

means, or use. [6] Additionally, intrinsic value is dependant on the context of what people

(society) define as “good”. This can be different based on the beliefs of individual people. [7] For

example, the courtesy of airport staff is serving the purpose of getting passengers checked in. If

airport staff do not act courteously, then it becomes more difficult to finish checking in due to

1. Hirose, Iwao; Olson, Jonas. The Oxford Handbook of Value Theory. New York: Oxford University

Press, 2015. 14.
2. Dewey, John. Theory of Valuation. Chicago, Ill: University of Chicago Press, 1939. 26.
3. Schroeder, Mark. "Value Theory". The Stanford Encyclopedia of Philosophy (Fall 2016 Edition).

Edward N. Zalta (ed.). https://plato.stanford.edu/archives/fall2016/entries/value-theory.
4. Dewey. Valuation. 26.
5. Schroeder. "Value Theory".
6. Dewey. Valuation. 27-29.
7. Dewey. Valuation. 29-31.

118

poor communication between staff and passengers. Although courtesy is an intrinsically good

behaviour from the view of society, the level of courtesy is dependant on the context and beliefs

of individual passengers.

Meanwhile, architectural research is concerned with valuing design in both the design process

and the built environment. The thesis considers the research of Holm and their work in design

ideas and beliefs. Holm explains that architecture is evaluated on multiple levels and is

dependant on a given perspective. They generalize architecture into the following 3 levels:

aesthetics, functional, and the users. [8] These evaluations can be either judged internally within

the design process, or externally from critiques. [9] For example, an airport can be valued on the

interior design of a terminal, flight processing, or passenger experience. The value of each of

these areas will be different from the perspective of airport developers, airline companies, and

passengers. Airport developers will have higher importance on functional evaluation levels.

Whereas airline companies might focus on the user evaluation levels.

Regardless of the perspective, fundamentally, everyone’s design judgement is based on an

internal expectation or a given standard. [10] A standard can simply require designs to meet

maximum and minimum conditions (like tolerance in validation). Or standards can be based on

general criteria like architectural styles, environmental consideration, function, or material and

structure. [11] Holm explains that these general criteria may not result in quantifiable outcomes,

or universal agreement. [12] Absolute valuation is not practical because of these imprecise

attributes of architecture. Therefore, architects do not know how closely a design meets these

expectations until feedback is given, or, as Farmer et al. writes, “until the judgement is

rendered”. [13]

Holms continues to explain that, because there is no agreement on an exact standard for valuing

architectural designs, the qualities and elements that make up a design are also variable. One

solution to this uncertainty, is to associate design elements with objective conditions or

8. Holm, Ivar. “Ideas and Beliefs in Architecture and Industrial Design”. (PhD thesis, Oslo School of

Architecture and Design, 2006). 324.
9. Collins, Peter, and William Dendy. Architectural Judgement. Montreal: McGill-Queens University

Press, 1971. 146. As cited in Holm, “Ideas and Beliefs”. 324.
10. Farmer, Ben, H. J. Louw, and Adrian. Napper. Companion to Contemporary Architectural

Thought. London; Routledge, 1993. 526. As cited in Holm, “Ideas and Beliefs”. 324.
11. Farmer, et al. Architectural Thought. 526. As cited in Holm, “Ideas and Beliefs”. 324.
12. Holm “Ideas and Beliefs”. 324.
13. Farmer et al. Architectural Thought. 526. As cited in Holm, “Ideas and Beliefs”. 324.

119

phenomena. [14] Holm discusses the work of Cuff, who explains how these objective conditions

are not inherent qualities of a building, but instead are qualities perceived by individual people.
[15] Objective conditions are like physical walls or light from a window, that people can recognize.

One interpretation of objective conditions is like Gibson’s affordances (as seen in perception).

Although, instead of being properties of things that have use for people, objective conditions are

things that people may observe, in general, but are not necessarily purposeful.

Additionally, Cuff repeats the idea that design qualities are dependant on the person making

that judgement. There are 3 levels of people who can make those evaluations: the consumer or

public, design participants, and design professionals. [16] For example, these could be

passengers, airline companies, and airport planners, respectively. Cuff defines design quality as,

ideally, having feedback from all three levels of people. [17] Although, Cuff mentions it is difficult

getting feedback from the consumer if there is not one specific group of people representing the

public. As Holms states, this is difficult because the evaluation of a design project is dependant

on the aspects people have preference for. [18] Without knowing who the public is, there is no

context for feedback. Therefore, to understand design value, it must be known who people are

and what they consider important.

From this philosophy, the thesis begins to understand what elements influence the value of

architectural space. Holm shows that architectural value is dependant on human beliefs and

interaction. Additionally, Dewey states that the value itself is dependant on the observer’s

context. Therefore, architecture elements must be dependant on a person’s perspective, and the

context they observe them in.

Judgement-Analysis

The thesis seeks to create a mathematical function of architectural space as a function of human

activity. Since every person has their own perspective, each person in the built environment will

interpret architecture differently. To understand how to quantify these differences, the thesis

looks at the work by Lera and their research in judgment-analysis techniques for architecture.

14. Holm “Ideas and Beliefs”. 324.
15. Cuff, Dana. Architecture: the Story of Practice. Cambridge, Mass: MIT Press, 1991. 196. As cited in

Holm “Ideas and Beliefs”. 324.
16. Cuff. Architecture. 196. As cited in Holm “Ideas and Beliefs”. 325.
17. Cuff. Architecture. 196. As cited in Holm “Ideas and Beliefs”. 325.
18. Holm “Ideas and Beliefs”. 325.

120

Figure 2.3.a: First two architect's priorities and school floor plans, Lera (1981).

121

Lera conducted an experiment to understand how designers’ values influence their own work

and their preference between alternative design choices. [19] The experiment involved a group of

6 architects (and non-architects for comparison) designing individual floor plans of an

elementary school as part of a “judgement-analysis exercise”. [20] The architects listed out their

top 6 attributes, or priorities, for a school and ranked them based on their subjective

importance. Every architect gave different ideas they thought were important, like having

flexibility between inside and outside spaces, having clear circulation, or having good building

orientation (Fig.2.3.a). Although some qualities were similar, every architect had 6 unique

attributes of a school that were important to them.

Lera’s purpose for using a judgment-analysis technique was to assign a value to design

attributes both verbally and numerically. [21] This gives a comparison between an architect’s

school proposal and their given subjective values. All 6 school designs were analysed using a

distinct utility model based on each architect’s subjective priorities. [22] The architects also

valued all the schools based on how the overall designs achieved each attribute. [23] Lera’s

illustrations in Fig.2.3.a show the schools and priorities of the first two architects. The decimal

value beside each attribute is the calculated weight of importance according to the architect’s

ranking (see details in Prioritization section). Note that the architects do not list physical

components, like walls and windows, but instead properties and conditions.

The results of Lera’s experiment compared the design values for each architect’s overall

judgement with the values from the utility model. As the charts in Fig.2.3.b show, the utility

model is able to align closely to the overall judgement for each floor plan. Lera mentions there is

no statistical relationship, or concordance, between the architects together because they had

different design opinions. [24] However, for each architect individually, Lera shows that the

utility model matches the overall evaluation of the floor plans, given the subjective judgement.

The importance of Lera’s research is that subjective design qualities have the potential to be

quantified numerically using a method of ranking attributes, solely based on a user’s

preferences. Like the architects, agents can use a judgement analysis model to quantify the value

19. Lera, Sebastian G. “Architectural Designers’ Values and the Evaluation of Their Designs.” Design

studies 2, no. 3 (1981): 131.
20. Lera. “Architectural Designers’ Values.” 131.
21. Lera. “Architectural Designers’ Values.” 132.
22. Lera. “Architectural Designers’ Values.” 133.
23. Lera. “Architectural Designers’ Values.” 132.
24. Lera. “Architectural Designers’ Values.” 136.

122

Figure 2.3.b: Comparing utility model values with overall values for each architect, Lera (1981).

123

of architectural space. Therefore, the thesis must consider how architecture influences

passenger preferences in an airport (see details in Airport Domains section).

Prioritization

In Lera’s experiment, the utility model uses a method called prioritization. [25] This is an

approach established by Saaty for analysing hierarchical structures. [26] Prioritization is a

process of ranking things based on their subjective importance. [27] It works by comparing

different perspectives by scaling, or normalizing, subjective values of a given attribute using the

property of eigenvectors.

Saaty’s approach for analysis is like the philosophy of instrumental value. He states that people

judge the importance of an object, or activity, based on more than one factor. Each factor is a

target that an activity must fulfil, within a larger hierarchy (Fig.2.3.c). [28] For example, the

activity of boarding a plane is dependant on the factors of a boarding pass and security

clearance, within the larger hierarchy of passenger processing. The method uses weights, which

Saaty associates with priorities, to rank activities relative to each other, based on its importance.
[29]

The process involves a user comparing all possible combinations of pairs of attributes, in the

form of a matrix. [30] It requires the user to verbally state which attributes are better than others.
[31] For each pair of attributes, the user records its importance on a scale from 1 to 9. If the

attributes have equal importance, then the user records a 1. If one attribute has a higher

importance than the other, then the value is recorded from 2 to 9, where 9 has the highest

importance. [32] For the opposite relationship, the user records the reciprocal value (1/2, 1/9,

etc.). [33] In an agent-based model, individual agents cannot verbally state what their preferences

are. Instead, priority rankings must be randomly assigned based on statistical data.

25. Lera. “Architectural Designers’ Values.” 132.
26. Saaty, Thomas L. “A Scaling Method for Priorities in Hierarchical Structures.” Journal of

mathematical psychology 15, no. 3 (1977): 234.
27. Lera. “Architectural Designers’ Values.” 132.
28. Saaty. “Scaling Method for Priorities.” 234.
29. Saaty. “Scaling Method for Priorities.” 234.
30. Lera. “Architectural Designers’ Values.” 132.
31. Lera. “Architectural Designers’ Values.” 132.
32. Saaty. “Scaling Method for Priorities.” 245-246.
33. Lera. “Architectural Designers’ Values.” 132.

124

Factor 1

0.25

Factor 2

0.25

Goal

1.00

Property 2

0.33

Property 1

0.33

Property 3

0.33

Factor 3

0.25

Factor 4

0.25

Figure 2.3.c: Simple analytic hierarchy process structure, based on diagram by Sander (2009),

redrawn by author.

125

As Saaty generalizes, if the process compares a set of 𝑛𝑛 objects in pairs based on their given

weights, then the objects can be denoted as 𝐴𝐴1, 𝐴𝐴2, … , 𝐴𝐴𝑛𝑛 and the respective weights as

𝑤𝑤1, 𝑤𝑤2, … , 𝑤𝑤𝑛𝑛. [34] The pairwise comparison can be represented in a matrix as,

𝐴𝐴 =

 𝐴𝐴1 𝐴𝐴2 ⋯ 𝐴𝐴𝑛𝑛
𝐴𝐴1
𝐴𝐴2
⋮

𝐴𝐴𝑛𝑛

[
𝑤𝑤1/𝑤𝑤1 𝑤𝑤1/𝑤𝑤2 ⋯ 𝑤𝑤1/𝑤𝑤𝑛𝑛
𝑤𝑤2/𝑤𝑤1 𝑤𝑤2/𝑤𝑤2 ⋯ 𝑤𝑤2/𝑤𝑤𝑛𝑛

⋮ ⋮ ⋮
𝑤𝑤𝑛𝑛/𝑤𝑤1 𝑤𝑤𝑛𝑛/𝑤𝑤2 ⋯ 𝑤𝑤𝑛𝑛/𝑤𝑤𝑛𝑛

]

As can be seen, the matrix has symmetry. The main diagonal will always be equal to one, and the

values in the lower triangular matrix are the reciprocal values of the upper triangular matrix.

Saaty compares different priorities by using eigenvectors, a property of a matrix. Informally, an

eigenvector is a direction that does not change when a 2D space is transformed. It can be

thought of as a fixed reference point that subjective ideas can be compared to, since it does not

change from different perspectives (Fig.2.3.d). Formally, in linear algebra, eigenvectors are non-

zero vectors, whose magnitude is scaled by a factor (eigenvalue) during a linear transformation.
[35] [36] If there is a vector space, 𝐴𝐴, that undergoes a linear transformation containing a non-zero

vector 𝒖𝒖, then 𝒖𝒖 is an eigenvector of 𝐴𝐴 if 𝐴𝐴(𝒖𝒖) is a scalar multiple of 𝒖𝒖, which is written in the

form,

𝐴𝐴(𝒖𝒖) = 𝜆𝜆𝒖𝒖,

where 𝜆𝜆 is a scalar in 𝐴𝐴, called the eigenvalue, or characteristic root, of 𝒖𝒖. [37] [38] In a finite

dimensional space, then the above equation can be simplified to,

𝐴𝐴𝒖𝒖 = 𝜆𝜆𝒖𝒖,

which can be rearranged into the form, [39]

(𝐴𝐴 − 𝜆𝜆𝜆𝜆)𝒖𝒖 = 𝟎𝟎,

34. Saaty. “Scaling Method for Priorities.” 235.
35. Khan Academy. “Introduction to eigenvalues and eigenvectors”. Linear Algebra, Alternative

coordinate systems, Eign-everything. https://www.khanacademy.org/math/linear-algebra/alternate-
bases/eigen-everything/v/linear-algebra-introduction-to-eigenvalues-and-eigenvectors.

36. 3Blue1Brown. “Eigenvectors and eigenvalues | Essence of linear algebra, chapter 14”. Youtube,
September 15, 2016. https://www.youtube.com/watch?v=PFDu9oVAE-g.

37. Khan Academy. “Eigenvalues and eigenvectors”.
38. 3Blue1Brown. “Eigenvectors and eigenvalues”.
39. Saaty. “Scaling Method for Priorities.” 236.

126

Before Transformation (”Perspective 1”)

After Transformation (”Perspective 2”)

Eigenvectors:
vectors that stay on these lines

Figure 2.3.d: Eigenvectors after

a linear transformation, based on

animation by 3Blue1Brown (2016),

redrawn by author.

127

where 𝐼𝐼 is an identity matrix (all ones on the main diagonal, and zero everywhere else). This

requires a non-zero vector, 𝒖𝒖, that makes the equation equal to a zero vector. [40] [41] Or a vector

that stays the same after being transformed into a new perspective.

The maximum eigenvalue, 𝜆𝜆, of a priority matrix, 𝐴𝐴, determines the consistency of the subjective

judgement. [42] If there is perfect consistency across the judgment weights, then the eigenvalue

should equal the number of priorities, (𝜆𝜆 = 𝑛𝑛). [43] Therefore, an eigenvalue provides validation

for a user’s judgement within the process of prioritization.

In Lera’s experiment, the utility model calculates the final score for each floor plan. A priority’s

final weighting, 𝑤𝑤𝑛𝑛, is calculated as the average of all column weights, 𝑎𝑎𝑖𝑖𝑖𝑖, in the matrix, as a

comparison between two priorities 𝑖𝑖 and 𝑗𝑗. The given utility function is the sum of all priorities

multiplied by the design’s overall judgement, 𝑦𝑦𝑛𝑛, in the form, [44]

𝑃𝑃 = ∑ 𝑤𝑤𝑛𝑛𝑦𝑦𝑛𝑛,
𝑛𝑛

𝑛𝑛=1

where 𝑃𝑃 is a composite vector, representing the final value of the floor plan. If a design has a

perfect score, the priority weights and final value of 𝑃𝑃, will equal to one. In the context of an

agent-based model, the design judgement value, 𝑦𝑦𝑛𝑛, must be determined from the agent’s

interaction with the environment (see details in Scoring Architecture section).

The best way to understand how this thesis uses the eigenvector process, is to go through some

examples. In their research, Saaty walks through several applications of prioritization for

economics, politics, and engineering. [45] [46] As an introduction, Saaty explains that eigenvectors

are best understood using probability, which also validates how eigenvectors give the correct

value. [47] For example, imagine there is a bag that has 6 coloured balls, with 1 blue, 2 red, and 3

green balls. The probability of picking each colour from the bag is 1/6 , 2/6, and 3/6,

40. Khan Academy. “Eigenvalues and eigenvectors”.
41. 3Blue1Brown. “Eigenvectors and eigenvalues”.
42. Lera. “Architectural Designers’ Values.” 132.
43. Saaty. “Scaling Method for Priorities.” 236.
44. Lera. “Architectural Designers’ Values.” 133.
45. Saaty. “Scaling Method for Priorities.” 252-276.
46. Saaty, Thomas L. “Modeling Unstructured Decision Problems — the Theory of Analytical

Hierarchies.” Mathematics and computers in simulation 20, no. 3 (1978): 153-156.
47. Saaty. “Unstructured Decision Problems.” 153.

128

respectively. These are like the priorities of every colour. The probabilities can be written in a

priority matrix as a ratio to each other, as shown in Figure 2.3.e.

Priority Matrix Blue Red Green

Blue 1 1/2 1/3

Red 2 1 2/3

Green 3 3/2 1

Column Ratios Eigenvectors

Blue 1/6 0.5/3 0.33/2 𝟎𝟎. 𝟏𝟏𝟔̅𝟔

Red 2/6 1/3 0.66/2 𝟎𝟎. 𝟑𝟑𝟑𝟑̅̅̅̅

Green 3/6 1.5/3 1/2 𝟎𝟎. 𝟓𝟓𝟓𝟓

Figure 2.3.e: Priority matrix and corresponding eigenvectors for each coloured ball.

The process involves taking the priority’s average in every column. For example, the first blue

column ratio is equal to the priority matrix weight (1) divided by the sum of the column (1 + 2 +
3), giving a ratio of 1/6 . Since the weighting is consistent, the eigenvalue of this matrix is equal

to the total number of colours (3). [48] The consistency also means that the normalized

eigenvector is equal to any of the column ratios for all colours. However, if the eigenvalue is not

equal to the number of priorities (𝜆𝜆 ≠ 𝑛𝑛), then the eigenvectors must be taken as the average of

all columns. The final eigenvector weights (𝑤𝑤𝑛𝑛) for blue, red, and green are 0.16̅, 0. 33̅̅̅̅ , and 0.50,

respectively, which matches the probability. Note that the sum of all eigenvectors equals one,

which is a property of the weighting. As a result, the eigenvector process is the same as

normalizing the ratio of each coloured ball in the bag.

Saaty also shows how prioritization works in practical applications, with more than one layer of

hierarchy and subjective judgements. [49] For example, imagine a person having to decide

between 3 different job offers. Saaty explains that the person’s reasons for choosing a company

can be described in a priority matrix as shown in Fig.2.3.f. The attributes of each company can

also be ranked using a secondary matrix for each of the person’s 6 priorities (Fig.2.3.g). In the

primary priority matrix, Saaty calculates the eigenvalue as 𝜆𝜆 = 6.35, and eigenvectors,

48. Saaty. “Unstructured Decision Problems.” 153.
49. Saaty. “Unstructured Decision Problems.” 153.

129

Figure 2.3.f: Job satisfaction priority matrix, Saaty (1978). The first row says Research is as important

as Growth, 4 times more important as Colleagues, and half as important as Reputation.

Figure 2.3.g: Company attributes matrices, Saaty (1978). The first row of the Research maxtrix says

the Research at Company A is only a quarter as good as Company B and half as good as Company C.

Figure 2.3.h: Company attributes eigenvectors, Saaty (1978).

130

respectively, as 0.16, 0.19, 0.19, 0.05, 0.12, and 0.30. [50] Since 𝜆𝜆 ≠ 𝑛𝑛, the person ranking the job

attributes does not have perfect consistency in judgement. However, Saaty states that the

difference of 0.35 is within reason based on statistical analysis. [51] This process is repeated to

find the eigenvalues and eigenvectors for each attribute (Fig.2.3.h). After normalizing, the

composite vectors for each company are 𝐴𝐴 = 0.40, 𝐵𝐵 = 0.34, and 𝐶𝐶 = 0.26. Therefore, Saaty

concludes that Company A is the best choice given this person’s priorities. [52]

With Saaty’s research, the thesis begins to answer the question of how to mathematically model

architectural performance. Holm shows that architectural value is dependant on the perspective

of individual people. Saaty and Lera demonstrate that it is possible to rank any number of

conditions, even if people do not share the same expectations. This process works because

people’s values can be normalized using eigenvectors, to compare different perspectives within

an architectural space. Therefore, the thesis concludes that a value function for architecture

must be dependant on the collective judgement of many people, like an experience survey or

product review. The final analysis of a given architectural value, then must be interpreted using

statistical analysis.

Airport Domains

There are numerous things in an airport that might be important to passengers. Saaty shows

that, regardless of what people’s expectations are, these can be normalized with a certain weight

of importance. The next issue to consider for the thesis’s agent simulation is, what aspects in an

airport are important to people, and how these aspects relate to the physical terminal building.

To understand these factors, the thesis looks to the research of Wiredja et al. and their

passenger-centred model for evaluating airport performance.

Wiredja et al.’s research begins by stating that an effective model for quantifying passenger

experience should use a weight-based indicator approach. [53] This method defines airport

service performance as a function of passenger responses. Based on this approach, Wiredja et al.

summarizes existing techniques for analysing passenger experience. Some relevant methods

they mention are, importance-performance analysis, regression analysis, common factor

approach, fuzzy multi-attribute decision making, and analytical hierarchy process

50. Saaty. “Unstructured Decision Problems.” 153.
51. Saaty. “Scaling Method for Priorities.” 252.
52. Saaty. “Unstructured Decision Problems.” 153.
53. Wiredja, Dedy; Vesna Popovic, and Alethea Blackler. “A Passenger-Centred Model in Assessing

Airport Service Performance.” Journal of Modelling in Management 14, no. 2 (May 10, 2019): 502.

131

(prioritization). [54] Overall, these methods are equivalent to the method of prioritization

described by Saaty. The basic idea involves passengers ranking every attribute within each

airport domain based on their subjective importance. [55] This is followed by assigning a weight-

based metric to compare different passenger perspectives. These methods then quantify

passenger experience using statistics to provide an overall rating for an airport. This confirms

that prioritization is a reasonable assumption for quantifying architectural value in this thesis.

Wiredja et al. explains that the overall performance of an airport, is dependant on the

performance in various sub-areas, where each sub-area has certain attributes. [56] They explain

that existing research normally defines airport performance based on one of two approaches:

service factors or airport domains. [57] Service factors divide an airport into activities, like

screening, staff courtesy, information, comfort, or money value. Whereas airport domains

organize an airport into areas, like baggage claim, check-in, security, or retail. In their research,

Wiredja et al. mentions that most analysis models tend to focus only on the departure sequence,

but fail to represent a complete passenger experience in arrival, transit, and retail domains as

well. [58] For this reason, Wiredja et al. give a more thorough description of attributes across all

areas, by also organizing activities into processing domains and non-processing domains. [59]

These categories better represent passenger experience because people tend to behave

differently between processing (queuing, checking in, etc.), and discretionary (wandering,

shopping, etc.). [60]

Wiredja et al. present a conceptual model for quantifying airport elements, which are

comparable to ontological substances as shown in Fig.2.3.i. (as described in perception). The

model has a hierarchy with four parts: airport domains, passenger-centred indicators, service

attributes, and passenger travel. [61]

Airport Domains: areas in a terminal that allow for passenger activities and interaction, like a

baggage claim area.

54. Wiredja et al. “Airport Service Performance.” 496-498.
55. Wiredja et al. “Airport Service Performance.” 502.
56. Wiredja et al. “Airport Service Performance.” 500.
57. Wiredja et al. “Airport Service Performance.” 500.
58. Wiredja et al. “Airport Service Performance.” 501.
59. Wiredja et al. “Airport Service Performance.” 501.
60. Wiredja et al. “Airport Service Performance.” 501.
61. Wiredja et al. “Airport Service Performance.” 501.

132

Theory Hierarchy Example Hierarchy

Service Atributes

Passenger Indicators

Airport Domain

Passenger Travel Arrival

Delivery Time

Secured Delivery

Picking up Bags

Baggage Claim

Overall Airport Service Performance

Arrival

Processing Domains

Check-in

Security

Immigration

Boarding

Disembark

Immigration

Customs

Bag Claim

Security

Bag Transfer

TransitDeparture Arrival

Non-Processing Domains

Access

Facilities

Retail

Access

Facilities

Retail

Facilities

Retail

TransitDeparture

Figure 2.3.i: Passenger-centred model hierarchy, based on theory by Wiredja et al. (2019), drawn by

authour.

Figure 2.3.j: Airport performance is dependant on processing domains and non-processing domains,

based on diagram by Wiredja et al. (2019), redrawn by authour.

133

Passenger Indicators: service factor groups that people see as important for the airport

process, like picking up baggage.

Service Attributes: the properties passengers use to judge performance quality, like baggage

delivery time.

Passenger Travel: refers to three types of passenger flows: departure, transit, and arrival;

baggage claim would be part of arrival. [62]

An airport’s overall performance is dependant on these parts within the domains of processing

and non-processing (Fig.2.3.j). The full list of airport domains and their corresponding

attributes according to Wiredja at al. are shown in Fig.2.3.k. These aspects are important for

determining an airport’s overall passenger experience, but not every attribute is directly affected

by architecture. Out of this list of airport domains, the thesis highlights the attributes that

architecture has an influence on, based on the level of impact: direct, indirect, or minor

(Fig.2.3.k).

Direct Impact:

Firstly, any attributes that relate to queuing have a direct impact on architecture. The size of a

queue is dependant on the number of passengers. The more people an airport expects to

process, the more queuing space is required to hold those people. Fundamentally, longer queue

lines require more space, which directly affect the layout of architecture. Secondly, the efficiency

of any procedure, like boarding or baggage handling, is directly influenced by architecture. The

efficiency of a process is concerned with bottlenecks, which are the areas that might restrict

operation or movement. The longer it takes to get passengers checked in, or move bags around,

the more people accumulate in one area, which takes up space. Walls, corners, and corridors can

affect where people walk, or where equipment can move. If people and equipment are unable to

move through spaces, due to poor planning, then the efficiency of that process is negatively

affected. Thirdly, any attributes related to wayfinding are affected by architecture. The location

of signs and the readability of information is dependant on how a terminal is organized and

where people need to go.

For non-processing domains, any attributes related to variety, like retail or transit options, are

directly related to architecture. Every retail shop requires different spaces depending on the

products their selling, or the services they provide. For example, a souvenir shop might require a

62. Wiredja et al. “Airport Service Performance.” 502.

134

Attributes

Perception of waiting time or queue length
Minor

Minor

Minor

Minor

Minor

Minor

Minor

Minor

Minor

Direct

Direct
Direct

Direct
Direct

Direct
Direct
Direct

Direct
Indirect

Indirect

Indirect

Indirect

Indirect
Indirect
Indirect

Indirect

Indirect

Indirect
Indirect

Indirect
Indirect

Indirect

Direct

Direct

Direct

Direct
Direct

Direct
Direct

Direct

Deptarture

Transit

Arrival

Staff courtesy or helpfulness

Options of ground transportation
Perception of parking or taxi queue length
Availability of money exchange or ATM
Sanitary condition of restrooms
Comfort of waiting area/lounge
Availability of information desks
Availability of baggage trolleys
Availability of internet or Wi-Fi
Ease of connection among airport terminals

Variety of shops
Availability of accomadations/hotel

Value for money of shops and cafe
Variety of food and beverages
Perception of shopping facilities

Check-in efficiency
Staff courtesy
Perception of waiting time or queue length
Secure feeling/thoroughness
Perception of waiting time
Staff courtesy
Efficiency of boarding procedure
Staff courtesy
Avalibility of aerobridge
Staff courtesy
Secure feeling/thoroughness
Perception of waiting time or queue length
Availability of automatic baggage handling
Secured baggage
Avalibility of aerobridge
The ease of finding a way out
Perception of waiting time on immigration
Staff courtesy
Perception of waiting time on visa on arrival
Perception of baggage delivery time
Secured baggage delivery
Perception of waiting time or queue length
Staff courtesy
Clear information of customs declaration

Check-in

Airport Access

Retail Area

Airport FacilitiesDeparture,
Transit, and

Arrival

Security
screening

Arrival
immigration

Customs and
quarantine

Boarding

Transit security
screening

Immigration
and customs

Baggage
transfer

Baggage
claim

Disembarkation

Architecture
Influence

Airport
Domains

Passenger
Travel

Processing Domains

Non-Processing Domains

Figure 2.3.k: Airport domains indicating attributes that are influenced by architecture, based on chart

by Wiredja (2019), redrawn by author.

135

storage area, product shelving, and space for people to browse. [63] Whereas a café requires a

kitchen, a dining hall, and logistics for garbage removal. [64] Likewise, the variety of transit

options requires space for different vehicle types. A shuttle, or bus, requires road and curbside

infrastructure. Whereas a people-mover, or train, requires railway and platform infrastructure.
[65]

Indirect Impact:

Any attributes related to perception are indirectly impacted by architecture. This includes

perception of wait times, secure feelings, or awareness of customs. Observing the number of

people in a space indicates potential wait times, but not the space itself. Architecture can give

the impression of a secure or safe environment using walls or barriers. Although, it is not that a

barrier itself is inherently secure, but the knowledge that it is part of a controlled area that

makes it secure.

Attributes related to functional amenities, like the quality of the washrooms, availability of

baggage trolleys, or access to Wi-Fi, are considered indirectly impacted by architecture. The

location and cleanliness of washrooms can affect where people go to use them. Moving through

a terminal with a trolley can present a different dynamic than just pulling a suitcase. [66] There

can also be areas dedicated for internet access or required infrastructure to make Wi-Fi

available in the terminal building. [67]

Minor Impact:

Attributes like staff courtesy, money value, or food quality, only have a minor impact from

architecture. Airport staff can still be friendly regardless of the design of a space. Although, a

poor work environment can negatively affect staff behaviour. The appearance of an expensive

retail area can be enhanced by expressive architecture. Although expensive products, or even

expensive plane tickets, are not dependant on the layout of space. Likewise, food quality can be

enhanced by a nicely designed atmosphere, but architecture does not directly improve food

quality.

63. National Academies of Sciences, Engineering, and Medicine. “Airport Passenger Terminal

Planning and Design, Volume 1: Guidebook”. Washington, DC: The National Academies Press, (2010):
210.

64. National Academies, “Airport Passenger Terminal Planning and Design”. 210.
65. National Academies, “Airport Passenger Terminal Planning and Design”. 281.
66. National Academies, “Airport Passenger Terminal Planning and Design”. 211.
67. National Academies, “Airport Passenger Terminal Planning and Design”. 211.

136

Ideally, a thorough quantification of an airport’s architecture should consider all aspects of

passenger experience that Wiredja et al. have listed. Human behaviour can be influenced by

many factors, so it is likely all these attributes have an influence on the value of architecture.

However, attributes with minor impacts are outside the scope of this thesis’s agent model. In the

process of making the simulation, the thesis limits the airport domains to six attributes to match

the test conducted by Lera, and to simplify the digital model (details in Part 3). Specifically, to

experiment with the architectural value functions, the thesis selects six airport domains that

focus on the departure sequence. This includes three processing domains, check-in, security

screening, boarding gate availability, and three non-processing domains, waiting area

comfort, restroom facilities, and retail area.

To answer this chapter’s initial question, what architectural elements influence the value of a

space, the thesis concludes value is not only dependant on elements like walls, doors, or

columns, which was the first assumption, but, in fact, attributes corresponding to a domain.

Elements, like a wall, only have impact on architectural value, if that element is perceived by

people, while doing an activity, that they feel has importance for that activity. For example, a

wall can have positive value for passengers who are waiting for boarding, if passengers use the

area framed by that wall to linger around (Fig.2.3.l). Likewise, that same wall can have negative

value if it blocks the view of passengers trying to find their gate. Fundamentally, if people

perceive architectural elements that are part of the activities they are doing, then a value for that

architecture can be determined, whether positive or negative. If an architectural element is not

perceived, then it has no value.

Scoring Architecture

The thesis understands the value of an architectural space is dependant on human interaction.

Since every person has their own perspective, each person in the built environment will

interpret architecture differently. Therefore, a complete evaluation of architectural space must

use statistical analysis to approximate judgement from all people. Before this, the thesis must

determine how architectural elements are modelled mathematically, from each person’s

perspective. Overall, the function should calculate how easily spaces allow people to accomplish

their activities.

The thesis uses the term architectural score to mean the subjective performance of a given

activity or element, denoted as the variable 𝑦𝑦𝑛𝑛. The term architectural value means the overall

137

Figure 2.3.l: Passengers standing between columns and along the wall of a platform waiting to board

a subway, photo by Mentatdgt (2018).

138

performance, 𝑃𝑃, after multiplying the score with a priority weight, based on Lera’s utility

function, [68]

𝑃𝑃 = ∑𝑤𝑤𝑛𝑛𝑦𝑦𝑛𝑛,
𝑛𝑛

𝑛𝑛=1

The thesis proposes a function of architectural score (𝑦𝑦𝑛𝑛) that depends on the purpose of the

space, the perspective of the people, how they interact with the environment, and how things

change over time, which can be categorized as purpose, perspective, interaction, and time.

These categories are divided further into 9 quantifiable factors. For any agent in a simulated

domain, the thesis defines their architectural score as a combination of one or more of the

following: priorities, task, space type, field-of-view, perception point, direction changes,

accessibility, connectivity, and time (Fig.2.3.m).

Purpose:

Priorities: Any attributes or activities that are important to a person, whether specific or broad.

In an airport, priorities are attributes of an airport domain. In general, these can be functional,

social, or aesthetic priorities, like the quickest path, a sense of community, or a modern style,

respectively. If a person’s priorities are fulfilled in a given space, then that space has

architectural value for that priority.

Task: A person’s goal, or intensions, in a given space. This is a subjective goal that is unique to

each individual. If people can complete their tasks in a space, then that space has architectural

value. However, a task is not always a priority, it can also be serving a need or a chore. It also

may be different than the original function of the space. For example, a passenger in a baggage

claim hall could be hungry, so their task is to find something to eat. Despite being by the

baggage claim, their intensions are not related to picking up bags, which may result in different

human behaviour. If a passenger cannot find food near the baggage claim, then it does not have

architectural value for that specific task.

Space Type: The space program, or the function of a space. This defines what activities people

can do, and what human behaviours are expected. If a space is being used as intended, then that

space has architectural value. For example, a check-in area is designed for people to pick up

their boarding passes, and passengers are expected to queue in line. If passengers complete

68. Lera. “Architectural Designers’ Values.” 133.

139

Figure 2.3.m: 9 factors for scoring architecture, with corresponding mathematical functions.

Priorities Task Space Type

Field-of-view Perception Point Direction Changes

Connectivity TimeAccessibility

Eigenvector weight Binary function Binary function

Isovist area Isovist area Decay function

Normalized function Normalized function Decay function

a
b
...

0.24
0.07

...

a
b
...

1.
2.
3.

A

1

2

3

B

C

00:00

D

140

these activities successfully, then the check-in area has architectural value. Additionally, space

type can also describe non-programmed spaces, like observation points or open areas for people

to linger around.

Perspective:

Field-of-view: Represents visibility, or the area that a person can perceive, through observation

or even through other senses. This is defined geometrically using an isovist. For public spaces,

the more visibility people have, the better the architectural value. More specifically, the field-of-

view is a medium people use to interact with the environment. For example, if there is an

announcement on an intercom for flight boarding, this represents the area a passenger can hear

that message from. Therefore, the locations where passengers can hear the intercom has

architectural value.

Perception Point: The location in a space where a relevant object or feature is perceived, or

understood, by a person. People gain knowledge of where they are by recognizing objects related

to a certain area. If a person takes notice of something, then it has architectural value. The

perception point shows where people learn about new information, which can also indicate

where people might change their behaviour. For example, seeing an x-ray machine tells

passengers that they are entering security screening. This may change passenger behaviour,

knowing they are about to interact with security staff. Therefore, the location where passengers

see the x-ray machine has architectural value.

Direction Changes: The number of times in a space a person changes their mind, decisions, or

trajectory. This includes either a physical change, or a mental change. The more times a person

needs to change their decisions in a space, the less architectural value it has. For example, if a

passenger is lost and needs to walk back the way they came, then this is a physical direction

change that does not have good architectural value. In contrast, if a passenger suddenly sees a

new retail store that they want to go to, then this is considered a mental change that has good

architectural value. In airport processing domains, fewer direction changes are better for both

architectural value and operations.

Interaction:

Accessibility: The ability to interact or engage with a relevant object or feature in a space. If

passengers can interact with elements related to the activity they are doing, then that element

has architectural value. As a counterexample, a passenger walking through a concourse might

141

notice a retail store on the opposite side of a glass partition, which they would like to go to.

Although they perceived the retail store through the glass, the partition prevents the passenger

from walking over to that store. Therefore, because the store is not accessible, it does not add

architectural value for that passenger.

Connectivity: The ability to move, or connect, between two spaces. This can be physical

connections or abstract connections. Spaces that are connected have architectural value. For

example, if a passenger can walk through security screening into the gate concourse, then the

security and gates are physically connected, which has architectural value. The same is true if a

passenger can look out from their gate to their plane through a glass window, then the gate and

plane are visually connected, which also has architectural value. Additionally, two security check

points on opposite ends of a terminal can be abstractly connected to the same security line, or

boarder, even though they are physically separated. This means passengers must cross through

either one of those check points to get to the gates. Since the check points form a secure boarder,

they have architectural value.

Time:

Time: The amount of time a person spends in a space or process. In an airport, this includes

flight times for departure and arrival, or processes like searching and queuing. For activities

relating to flight time, architecture has value if a passenger is on-time. For processing, time is

measured relative to a person’s expectations. For example, in their research, Wiredja et al. states

the average passenger does not want to wait in line longer than 15 minutes. [69] Therefore, if

passengers are waiting more than 15 minutes, then architectural value of that space diminishes.

For each of the 9 factors above, the thesis uses the following mathematical tools to quantify

architectural score: eigenvector weights, binary function, normalized function, isovist area, or

decay function.

Eigenvectors were described in the prioritization process, and this applies to the Priorities

factor. The difficulty of this approach is needing to create a performance score, or value

function, for every unique attribute. If a priority is vague, it can simply require the user to score

the attribute performance on a scale of 1 to 9, like priority weighting. [70] Otherwise, if the

priority can be answered by a yes/no question, then the score is calculated with a binary

function, which gives a value of either 0 or 1. Similarly, a normalized function gives a decimal

69. Wiredja et al. “Airport Service Performance.” 506.
70. Saaty. “Scaling Method for Priorities.” 245-246.

142

value between 0 and 1, like a percentage. This affects Task, Space Type, Accessibility, and

Connectivity. If a task is completed or an element was interacted with, it is given a score of one,

or some decimal value depending on the level of interaction. Otherwise, the score for that

element is zero.

The isovist area is based on the geometry of an isovist, either in 2D or 3D, to show where things

are in physical space. This applies to Field-of-view, and Perception Point. The geometry is

converted to a score based on a ratio of the area size. For example, when a person takes part in

an activity, the average area is calculated based on what a passenger sees. At the perception

point, or when a person interacts with a relevant object, then the ratio is taken between the area

at that point and the average area during the activity,

𝑦𝑦𝑛𝑛 = { 𝐴𝐴0
𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎

, 𝐴𝐴0 < 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎

1 , 𝐴𝐴0 ≥ 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎

where 𝐴𝐴0 is the visible area at the perception point, and 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 is the average area. The ratio

measures variation. If there is a significant difference between the areas, like an open space

going into a tight space, then the visibility drops, which has a lower architectural value.

Otherwise, if the visibility remains consistent, or the area becomes bigger, then the architectural

score is one.

Understandably, the thesis’s assumption that higher visibility is better than lower visibility may

not be true for all people or conditions. A more thorough value function should consider firstly if

visibility is a person’s priority or not. Additionally, many airport immigration areas are designed

to restrict visibility from outside passengers for the security and safety of airport staff. [71]

Therefore, a better value function for immigration would make sure people cannot see into the

secure areas. A simple modification to the visibility ratio could account for all the locations in

and around immigration to not have any “perception points” that can see airport staff or their

equipment. In essence, if there is a perception point looking into secure areas, the architectural

value for that location can be given a score of zero. Likewise, this can apply to any area which

restricts visibility or public access.

A decay function is an exponential function that starts at one and decreases in value

proportional to its current value. As it tends towards infinity, the value approaches zero. This

applies to factors like Time and Direction Changes. The longer passengers are waiting, or the

71. National Academies, “Airport Passenger Terminal Planning and Design”. 217, 221, 224.

143

Figure 2.3.n: General exponential decay function.

Figure 2.3.o: A piece-wise decay function for a typical passenger waiting time.

yn

yn

t

t (min)

144

more times passengers need to retrace their steps, then the architectural score decays

exponentially to zero. The rate of decay is variable and can depend on a passenger’s mood or

characteristics. The general equation used in this thesis to calculate the score of any activity, 𝑦𝑦𝑛𝑛,

takes the form,

𝑦𝑦𝑛𝑛(𝑡𝑡) = exp (−
(𝑡𝑡 − 𝑘𝑘)

𝜆𝜆) ,

where 𝑡𝑡 is the time (in seconds, minutes, or hours) or the number of direction changes, 𝑘𝑘 is a

shifting factor (when decay starts), and 𝜆𝜆 is the rate of decay, which is dependant on a person’s

characteristics (Fig.2.3.n). For example, a typical passenger waiting in a queue line, who does

not want to wait more than 15 minutes, can judge the value of time based on the following,

𝑦𝑦𝑛𝑛(𝑡𝑡) = { exp (−
(𝑡𝑡 − 15)

10) , 𝑡𝑡 > 15

 1 , 𝑡𝑡 ≤ 15

where 𝑡𝑡 is the time in minutes, 𝑘𝑘 = 15 minutes is their level of patience, and 𝜆𝜆 = 10 is an

arbitrary characteristic decay factor, in which larger values mean higher tolerance (Fig.2.3.o). If

this passenger is waiting in queue for 25 minutes, then the final score would be 𝑦𝑦𝑛𝑛(15) = 0.37 or

37%. If the passenger is waiting less than 15 minutes, then the score is simply one.

For any element, if its architectural score is dependant on more than one of the factors above,

then the final score is taken as the average score of all factors. If a given factor has more

importance than another, like departure time for flight boarding, then they can be multiplied by

a higher weight. The architectural value of any element is calculated by multiplying a person’s

eigenvector weight, 𝑤𝑤𝑛𝑛, and its relative architectural score, 𝑦𝑦𝑛𝑛. The total performance value of

any architectural space is the sum of all the products for each element or priority, from the

perspective of a single person.

Summary

The intention of this chapter was to answer the questions of what architectural elements

influence the value of a space, and how these elements can be modelled mathematically to

quantify architectural performance. The thesis gives a brief description of the philosophical

definition of value, which defines value as instrumental (useful for a purpose, i.e. a wayfinding

sign) or intrinsic (good by itself i.e. airport staff courtesy). Philosophers like Dewey argue that

things never truly have intrinsic value, since every action or object serves a purpose. They

145

explain intrinsic value is not consistent because every person has their own belief about what is

considered valuable or good, which can be different based on the beliefs of a given society.

Meanwhile, research into design values for architecture shows that, although it is common for

designers to organize elements based on function, aesthetics, or the users, there is no universal

standard for valuation. Holm states that architects do not know the value of their designs until

they are given some form of feedback. Cuff explains that architectural feedback is dependant on

the perception of individuals. Although, user feedback is difficult because there is not one type

of person representative of the entire public. Holm adds that it is difficult to value architecture

since everyone has a different perspective, and because architectural attributes involving

aesthetics or society can be imprecise.

However, experiments conducted by Lera show that subjective design values from different

architects can be compared directly through a method of ranking, despite the architects having

completely different design ideas. Lera’s research developed a utility function that can replicate

the subjective judgement from different architects. The utility function works using Saaty’s

method of prioritization, which ranks subjective attributes as a pairwise comparison in the form

of a matrix. The process normalizes design values using eigenvectors, a property of a matrix in

linear algebra that stays the same after changing perspective. The thesis walks through some of

Saaty’s examples to demonstrate how this works.

To figure out what things people find important in an airport, the thesis reviews the research of

Wiredja et al. who states that these things can be organized into processing and non-processing

domains. The thesis summarizes these domains describing which airport attributes have direct,

indirect, or minor impact from architectural choices. The attributes with the greatest impact

from architecture are part of passenger processing like queuing and wayfinding, or elements

that involve logistics like retail storage or transit infrastructure. The attributes with the least

impact involve money value, staff courtesy, or food quality. Although all airport attributes can be

affected by architectural choices to some degree, the thesis selects six attributes for the agent

simulation. Three are from processing domains, which are check-in, security screening, and gate

availability, and three from non-processing domains, which are perception of the waiting room,

restrooms, and retail areas.

The value of an architectural space depends on the purpose of the space, the perspective of the

people, how they interact with the environment, and how things change over time. The thesis

develops nine different factors based on the geometry of space and people’s interaction to

146

evaluate an architectural score. The mathematical tools for evaluating a score are unique to each

activity, which all involve normalizing factors based on the perception of a person. If a person

perceives an architectural element, or interacts with it, then that person scores a one, or some

decimal value depending on the level of interaction. Otherwise, the person scores a zero if there

was no interaction.

In summary, the process of calculating architectural value involves people ranking the

importance of attributes as their priorities, then having them walk through the architecture to

complete a task. If people encounter relevant architectural elements, they score those elements

based on how well they fulfilled their priorities. The final architectural value is a combination of

each person’s weighted priorities and their respective scores based on what they perceived.

149

Part 3:

Simulation Framework

Part 3 walks through the construction of the thesis’s agent simulation. Chapter 3.0 begins by

introducing the Unity game engine, and software components that are relevant for building the

model. The following chapters breakdown the process of specific simulation components. Each

chapter includes a process diagram showing how components work together. This is followed by

a detailed list that highlights a few of the core variables in each class. Chapter 3.1 talks about

how agents are made, their characteristics, and the perception process. Chapter 3.2 details how

the environment is modelled for agent navigation using A* pathfinding. Chapter 3.3 describes

components for airport architecture and value functions. Chapter 3.4 gives a brief summary of

utility components to help control and optimize certain aspects of the simulation. Finally,

chapter 3.5 concludes by stating all the assumptions and the limitations of the thesis’s agent-

based simulation.

150

Chapter 3.0

Unity Components

The goal of this thesis is to illustrate how architectural layouts can be analysed by perceptive

agents. To achieve this, the thesis starts by creating a simplified agent-model that builds on the

same basic principles of existing simulations. The idea is to replicate core functions, like agent

navigation, so that custom behaviour can be built on top of it. Once a basic agent is established,

then functions for architectural spatial analysis can be added.

Unity

This thesis uses Unity software to create the agent-based model. Unity is a game engine that can

create video games and other visualization applications. Although it is primarily used in the

gaming industry, Unity has applications in the architectural and engineering construction

industries for its ability to model and animate buildings during the design process. [1] The reason

for choosing Unity to create the agent-based model over other programs was because it is

accessible and has strong performance for visualizations. Unity allows the ability to create

custom behaviour through scripting. Custom models can be added to create 3D environments.

From its gaming background, it can easily run animations over time with real-time lighting and

rendering. Unity also has an intuitive user interface that the author was already familiar with,

therefore time spent learning the software is minimized. There is extensive documentation that

helps explain core functions when knowledge is lacking. Finally, the basic version of Unity is free

to use, which still includes core components necessary for creating the agent simulation.

In Unity, projects are made up of two main parts, one is the scene, and the other is the scripts.

The scene is a 3D environment where digital models are displayed (Fig.3.0.a). The models act as

a physical representation of the agents and the architecture while the simulation is running. The

scripts are tools that define the agent’s behaviour, animation, and general mathematical

relationships. They can be added to control objects or parts of the environment.

1. “Architecture, Engineering & Construction.” Unity. Accessed December 2019.
https://unity.com/solutions/architecture-engineering-construction.

151

Figure 3.0.a: Unity software user interface showing the scene environment models and property

toolbars.

Object Hierarchy

Project Files

2

1

Game DisplayObject Properties

6

5 List of C# Scripts

Console Errors

4

3

Scene Environment

7

4 5 6 7

3
21

152

Objects inside of a scene are called game objects. They can describe either physical objects or

functional components. Physical objects include anything that is visible in the world like walls,

flooring, doors, furniture, signs, and agent bodies. The functional components are objects that

are not visible in the scene but serve to hold scripts or elements of the environment. In this

simulation, this includes lighting, cameras, agent navigation, and utility scripts. If there is no

physical model associated with these elements, then they are referred to as empty game objects.

Scripts

Scripts in Unity are based in the language C# (C Sharp). This language is described as strong-

typed and object-oriented (class-based). In C#, there are three general concepts for building

information: variables, methods, and classes.

A variable is a name that holds information. Every variable can store different types of

information or data types. Strong-typed means that each type must be defined when making

new variables. [2] This is because certain types only allow specific operations. Some basic data

types are integers (int), decimal numbers or floating points (float), strings of text (string), and

conditional Booleans (bool). Examples of these variables are shown below:

int variable1 = 12;

 float variable2 = 34.506f;

 string variable3 = “new text”;

 bool variable4 = true;

Methods in C# work like functions. They are a collection of code that can be executed by calling

the method and inputting variables. [3] Methods allow information to be stored under one

function, which can be called multiple times without having to rewrite the same lines of code

repeatedly. An example of a method may be written like the following:

2. “Types (C# Programming Guide).” C# Documentation, Microsoft, July 20, 2015. Accessed
October 2020. https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/.

3. “Methods in (C#).” C# Documentation, Microsoft, May 21, 2018. Accessed October 2020.
https://docs.microsoft.com/en-us/dotnet/csharp/methods.

153

 void NewMethod1(int variable5)

{

 // lines of code, given the input of an integer “variable5”

}

Classes in C# are a reference type that group together related variables and methods. [4] Like

methods, they are a way of organizing a collection of code that can be called repeatedly, without

having to rewrite information. Classes allow information to be shared through inheritance and

composition. This is an essential characteristic of object-oriented programming. Information is

shared by referencing the class under new variables or methods called an instance. One class

can be used by multiple objects to inherit the same properties. This is useful for agent-based

models, where unique agents, who might represent different people, are still based on

fundamental properties or classes. Examples of a class and a new class instance are below:

 class Perception

{

 // methods relating to perception

}

Perception perceptionVariable1 = new Perception();

For example, all agents have the property of perception. A new class can be made called

Perception, which is inherited in every new instance of an agent. Each agent can have a different

level of perception, but the basic code does not need to be repeated every time. Within each

agent, a new local variable can be assigned with the Perception class properties.

Unity also has built-in classes that take care of common game operations. Some useful classes

include reference to game objects properties (GameObject), vector structures (Vector3), and

time dependant functions (Time). These classes make it easier to create agent movement in a 3D

environment by referencing pre-built classes instead of redefining basic elements.

4. “Classes (C# Programming Guide).” C# Documentation, Microsoft, August 21, 2018. Accessed
October 2020. https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-
structs/classes.

154

Agent Simulation Scripts

In this agent-based simulation, scripts are organized under four categories: agent-related, A*

pathfinding, airport architecture, and simulation utility. The categories are not required for the

function of the agent-based simulation, but they are helpful for organizing all of the behaviours.

Agent-related: This covers all components use to create the agent. These manage agent logic,

properties, characteristics, behaviour, perception, field of view, and movement. It also stores the

agent’s memory, goals, and targets.

A* Pathfinding: This represents the basics of A* (A star) navigation. It defines components for

mathematical graphs like nodes, weights, and paths. This also manages agent pathfinding in the

game space.

Airport Architecture: This stores behaviour for all objects and concepts related to airport

terminals. It includes objects like check-in counters and security screening. It controls the

scheduling for flight arrival and departure times. Additionally, it manages passenger itineraries

for boarding passes and security clearances. Finally, it also includes properties of architectural

elements and calculations for architectural value.

Simulation Utility: This represents any ancillary tools that manages environmental functions

or code optimization. This includes how agents enter and exit the simulation. It covers

optimization and management of agent pathfinding. It also controls the way objects are

displayed on screen, like the agent’s field of view.

Each category contains a collection of classes that perform a specific function, which is listed in

Fig 3.0.b. The framework for each category is explained in the following chapters.

Summary

The intension is to replicate core functions of an agent so that architectural analysis can be

added to it. The thesis uses Unity, a game engine, to create the agent simulation. Unity is useful

for illustrating 3D animations and can incorporated custom behaviour. Unity is composed of

two parts: the scene, which holds the 3D models, and the scripts, which controls the behaviour.

Scripts are based in C#, which works by organizing information into three basic layers:

variables, methods, and classes. Variables store values based on a certain data type. Methods

work like a function, which takes an input variable and produces an output. Classes provide a

way to group information based on inheritance. This allows multiple agents to reference the

155

Agent-related

Script Classes

Agent
Controls navigation, movement, and basic

properties

Characteristics
Defines human properties of the agents (age,

gender, walking speed)

Perception
Provides agent behaviour, response to the
environment, and controls decision making

Field of View [i]

The "isovist" or area of vision that the agent can
perceive, and is also used for navigation

Simulation Utility

Agent Spawner
Allows the agent to be created in the game world

Path Request Manager [i]

Controls when “Pathfinding” can recalculate a new
route

Field of View Editor [i]

Handles the display and rendering of the field of
view

Heap [i]

Optimization function used to reorganized nodes
based on weight during pathfinding

A* Pathfinding

Grid [i]

Defines the world space into a grid where agents
and objects can exist

Node [i]

Graph nodes; to make the Grid, and defines point
in an agent's path

Pathfinding [i]

Determines the lowest cost route between two
points (the A* algorithm)

Airport Architecture

Architecture
Defines the properties of architectural elements

(spaces, areas) and handles the scoring

Airport Objects
Defines the properties of airport objects (check-in

counter, security lines)

Signage
Defines the attributes of signs and wayfinding

Scheduling
Controls how many agents enter and exit the

simulation at a given time, location, and distribution

Itinerary
Stores the agent's tasks and memory (check-in,

procedure, and security clearances)

Figure 3.0.b: Categories of script classes in Unity for the agent simulation.

same properties without having to repeat code. Unity also has pre-built classes, which makes

animating objects in a 3D environment easier. The thesis organizes its simulation classes into

four categories, based on the agent, pathfinding, airport architecture, and utility functions,

which are detailed in the following chapters.

156

Chapter 3.1

Agent-related Classes

In the following chapters, the thesis gives a brief overview of each class’s process. This is

followed by a corresponding process flow diagram, and a detailed list showing a small selection

of core variables and methods. For this chapter, agent-related classes include agent,

characteristics, perception, and field of view.

Agent Class

The agent class controls navigation, movement, and basic properties. The thesis’s agent class

builds on the script class by Sebastian Lague called Unit, which was created as part of their

Unity game tutorial on A* Pathfinding (2016). [1] Characters in Lague’s game follow a given path

to a target using the unit class and a custom A* method. The unit class can request a new path if

the target position moves while the game is running. The thesis modifies this mechanism to

create a framework for a new local target process.

The agent class process is illustrated Fig.3.1.b. The agent is initialized using Unity’s Start

method. This is activated by the agent spawner class at the beginning of the simulation, and the

agent properties, like walking speed, are provided from the characteristics class. There are three

types of navigation available for the agent, which are built on top of Lague’s unit class

framework: A* direct route, A* perception, and vector perception. The reason the thesis has

three different methods is to illustrate different navigation behaviour in various simulation

conditions. The agent class first checks if perception navigation is enabled. If it is enabled, then

the user of the simulation would have selected either A* or vector perception. If perception is

not enabled, then the user sets the simulation to direct routing.

Agents using direct routing travel to their targets by taking the cheapest cost path from the A*

method. This navigation replicates how agents walk in existing crowd simulations, like FlexSim.

Direct routing can avoid high-cost areas using A*, however, it does not consider what agents

perceive in the environment. Instead, agents follow the path exactly without deviating or

1. Lague, Sebastian. "Pathfinding/Episode 9 - smooth path 02/Assets/Scripts/Unit.cs". GitHub.

December 30, 2016. https://github.com/SebLague/Pathfinding/blob/master/Episode%209%20-
%20smooth%20path%2002/Assets/Scripts/Unit.cs.

157

Figure 3.1.a: Agent following an A* path (black line) to a local target (white wire sphere).

158

updating the pathfinding over time. Once perception is disabled, the agent class bypasses the

decision-making process.

If perception is enabled, then the default navigation is set to A* perception, in which agents

navigate to a local target using the cheapest cost path (Fig.3.1.a). This navigation process better

represents how people navigate an unfamiliar environment. People in real life move relative to

objects they observe around them and change their trajectory as they discover new information.

The process is approximated by providing agents with short-distance paths that are updated

more frequently. It requires the perception class to choose an object the agent can see in their

field of view, and then uses A* to walk towards it, avoiding high-cost areas. When the agent gets

a new local target, the agent class requests a new path from the path request manager class. If

the manager successfully finds a route to the target, then the path points are sent back to the

agent, which they begin walking along. Once the agent reaches their local target, the agent

spawner class checks if the agent is at their final destination. If the agent is at their final

destination, then the agent spawner removes the agent from the world. Otherwise, the agent

class requests a new local target from the perception class, and the process repeats.

The last navigation method uses vector perception. The process is similar to the default

perception navigation, except that it does not use A* to find the cheapest path. Instead, a

straight vector path is created between the agent and the local target to follow. Since the agent is

navigating to local targets over short distances, agent behaviour using A* and straight vectors

are equivalent. The main reason this navigation was created was to reduced pathfinding

computation in very large environments (greater than 100 m long). The precision of the thesis’s

A* navigation for large environments becomes unreliable when calculating path nodes for

intricate architectural areas, (narrow corridors causing agents getting stuck in walls). Therefore,

navigating using vector perception is more manageable for experimenting with larger airport

terminal layouts, without loosing the perception decision-making process.

In summary, the agent class handles navigation and movement. It is a modified version of

Sebastian Lague’s unit class from their Pathfinding tutorial. The thesis’s agent class has three

forms of navigation, which work in different conditions: A* direct route, A* perception, and

vector perception. A* direct route is like the navigation in FlexSim simulations, which bypasses

the perception process. A* perception, which is the default navigation, uses local targets, which

approximates how people navigate unfamiliar environments in real life. The last navigation

replaces A* with straight vectors, to reduce computation issues in large environments. However,

agent perception is still maintained.

159

Figure 3.1.b: Process logic for the agent class.

Agent Class: Process

Yes No

Perception
Class

Start
Initializes the agent

startsWithPerception
Is perception enabled?

WalkWithDirectPath
Take shortest path to target

WalkWithPerception
Navigate with local targets

CreateLocalTarget
Decides what the agent does,

and where to go

NoPerception
Replaces local target with

final destination

RequestPath
Provides a path between the

agent and the new target

AgentsExit
Is agent at final destination?
Removes agent from world

SetSpeed
Sets agent walking speed

SpawnTimer
Adds agent into world

No

No

Yes

Yes

aStar
Is navigation using A*?

goToRandomPoint
Moves agent straight to

destination in field of view

UpdatePath
Makes a new path

OnPathFound
Is there is a path to the target?

FollowPath
Agent follows the given path

pathMoveUpdateThreshold

If agent is near local target

Path Request
Manager
Class

Characteristics
Class

Agent Spawner
Class

N

Y

Agent Spawner
Class

160

Figure 3.1.c: Key variables for the agent class, page 1.

Agent Class: Variables and Methods

startTime

0.0 - ∞

World time when the agent enters
the simulation (sec)float

Variable

Values

Description
Type

endTime

0.0 - ∞

World time when the agent exits
the simulation (sec)float

localTarget

-

The physical object representing
agent's target in their field of
viewGameObject

LocalTargets

-

A list of agent's targets, to be
used for pathfinding; holds 2
items, the old and new targetList of GameObjects

speed

1.0, 0.56 - 1.85

How quickly the agent walks
(default 1 m/s)float

turnSpeed

5.0

How quickly the agent can turn to
a new direction (default 5)float

isActive

false, true

Check if the agent is moving, it
is not moving by defaultbool

startsWithPerception

true, false

Check if the agent enters the
world with perception enabledbool

aStar

true, false

Check if the agent is navigating
with A*bool

Variables

161

Figure 3.1.d: Key variables for the agent class, page 2.

processing

true, false

Check if the agent is in a
processing state, or interacting
with an objectbool

processTime

5.0 - 15.0, 0.0 - ∞

Holds a random amount of time the
agent is processing for (sec),
(default 5 to 15 sec)float

path

-

A collection of directions
describing the agent's pathArray of Vector3

targetIndex

0 - ∞

The target number stored in the
agent's pathint

pathUpdateMoveThreshold

0.5

Agent requests a new path if its
within this distance of the final
targetfloat

minPathUpdateTime

0.2

How frequently a path is updated
float

newCharacter

-

Reference to the agnet's
characteristics classCharacteristics

fov

-

Reference to the agent's field of
view classFeildOfView

percption

-

Reference to the agent's
perception classPerception

itinerary

-

Reference to the agent's Itinerary
classItinerary

162

Figure 3.1.e: Key methods for the agent class, page 3.

GoToRandomPoint

LocalTarget | position

Repeating function that makes the
agent move without using A*
navigationIEnumerator

Method Description
Type

WalkWithDirectPath

- | NoPerception

Give agent a direct path to the
targetvoid

WalkWithPerception

- | UpdatePath

Makes the agent perceptive and
navigates with local targets,
either using A* or random vectorsvoid

Input | Output

OnPathFound

newPath | FollowPath

Determines if an agent can start
following a pathvoid

UpdatePath

LocatTarget | LocatTarget

Updates the agent path if the
target has movedIEnumerator

FollowPath

path | position

Iterates through nodes in a path
and moves the agent along the pathIEnumerator

Methods

163

Characteristics Class

The characteristics class provides each agent a unique character and manages their airport

priorities. The data used to define a passenger’s character is based on the International

Maritime Organization's (IMO) standard for evacuation simulations. When an agent is spawned

into a simulation, they are first randomly assigned a gender, either male or female. The

population composition, for age and gender, is randomly assigned based on IMO’s distribution

listed in Fig.3.1.f. [2] The gender of the agent then determines the agent’s walking speed, as listed

in Fig.3.1.g. [3] These charts also determine if the agent has a mobility impairment, which only

affects walking speed. The gender of the agent also determines the agent’s name, which is

assigned from a random list of male or female names. The name is not necessary for the agent to

function during the simulation, but the name helps keep track of which passengers scored which

values when calculating people’s priorities.

Agent priorities are randomly assigned based on six airport domains from the departure

sequence. There are three processing domains, check-in, security screening, boarding gate

availability, and three non-processing domains, waiting area comfort, restroom facilities, and

retail/food area. In the thesis’s simulation, every agent has the same six priorities. In each

character, priorities are randomly ranked on a scale of 1 to 9. Then the ranking is normalized

using the eigenvector process. The name, ranking, and value are stored in a local Priority class.

When the agent is walking through the simulation, the architectural score is accumulated in this

local class. Once the agent exits the simulation, the final score is sent to the architecture class

along with the name of that agent. Sample outputs of the characteristics class are illustrated in

Fig.3.1.h and Fig.3.1.i, which lists randomly assigned character attributes and corresponding

priority matrices.

In summary, the characteristics class defines the agent’s age, gender, walking speed, and airport

priorities. The characteristics for this thesis are based on the IMO standard for evacuation

simulations. The agent’s priorities are randomly assigned when the simulation starts, and the

values are stored in a local priority class, which are updated throughout the simulation.

2. IMO. “Guidelines for Evacuation Analysis for New and Existing Passenger Ships.” International

Maritime Organization (IMO). MSC.1/Circ.1238. October 30, 2007. 6.
3. IMO. “Guidelines for Evacuation Analysis.” 8.

164

Figure 3.1.g: Passenger walking speeds, from the IMO standard for evacuation simulations (2007),

which are used in the characteristics class.

Figure 3.1.f: Population distribution, for age and gender, from the IMO standard for evacuation

simulations (2007), which are used in the characteristics class.

165

Figure 3.1.h: Samples of randomly assigned characteristics and priority matrices, page 1.

Check-in

Security

Available Gate

Waiting Seating

Restrooms

Food/Retail

C
he

ck
-in

Ei
ge

nv
ec

to
r

Se
cu

rit
y

A
va

ila
bl

e
G

at
e

W
ai

tin
g

Se
at

in
g

Re
str

oo
m

s

Fo
od

/
Re

ta
il

9
9

9
9

9
9

9
9

7
9

5
9

7
9

5
9

3
9

2
9

3
9

2
9

9
7

9
7

9
5

9
5

7
7

5
7

7
5

5
5

3
7

2
7

3
5

2
5

9
3

9
3

9
2

9
2

7
3

5
3

7
2

5
2

3
3

2
3

3
2

2
2

9

9 9 7 5 3 2

9

7

5

3

2

0.26

0.26

0.20

0.14

0.09

0.06

Check-in

Name: Carlos Vito

Male

38

1.09 m/s

Gender:

Age:

Speed:

Pr
io

rit
ie

s

Priorities

Name: Julianna Kuster

Female

33

1.05 m/s

Gender:

Age:

Speed:

Pr
io

rit
ie

s

Priorities

Security

Available Gate

Waiting Seating

Restrooms

Food/Retail

C
he

ck
-in

Ei
ge

nv
ec

to
r

Se
cu

rit
y

A
va

ila
bl

e
G

at
e

W
ai

tin
g

Se
at

in
g

Re
str

oo
m

s

Fo
od

/
Re

ta
il

6
6

4
6

6
4

4
4

3
6

8
6

3
4

8
4

3
6

6
6

3
4

6
4

6
3

4
3

6
8

4
8

3
3

8
3

3
8

8
8

3
3

6
3

3
8

6
8

6
3

4
3

6
6

4
6

3
3

8
3

3
6

8
6

3
3

6
3

3
6

6
6

6

6 4 3 8 3 6

4

3

8

3

6

0.20

0.13

0.10

0.26

0.10

0.20

Priority Variation (% min, max)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

166

Figure 3.1.i: Samples of randomly assigned characteristics and priority matrices, page 2.

Check-in

Name: Maximo Truluck

Male

24

1.31 m/s

Gender:

Age:

Speed:

Pr
io

rit
ie

s

Priorities

Security

Available Gate

Waiting Seating

Restrooms

Food/Retail

C
he

ck
-in

Ei
ge

nv
ec

to
r

Se
cu

rit
y

A
va

ila
bl

e
G

at
e

W
ai

tin
g

Se
at

in
g

Re
str

oo
m

s

Fo
od

/
Re

ta
il

1
1

8
1

1
8

8
8

4
1

5
1

4
8

5
8

4
1

6
1

4
8

6
8

1
4

8
4

1
5

8
5

4
4

5
4

4
5

5
5

4
4

6
4

4
5

6
5

1
4

8
4

1
6

8
6

4
4

5
4

4
6

5
6

4
4

6
4

4
6

6
6

1

1 8 4 5 4 6

8

4

5

4

6

0.03

0.29

0.14

0.18

0.14

0.21

Check-in

Name: Estella Souders

Female

63

0.58 m/s

Gender:

Age:

Speed:

Pr
io

rit
ie

s

Priorities

Security

Available Gate

Waiting Seating

Restrooms

Food/Retail

C
he

ck
-in

Ei
ge

nv
ec

to
r

Se
cu

rit
y

A
va

ila
bl

e
G

at
e

W
ai

tin
g

Se
at

in
g

Re
str

oo
m

s

Fo
od

/
Re

ta
il

4
4

7
4

4
7

7
7

2
4

8
4

2
7

8
7

3
4

5
4

3
7

5
7

4
2

7
2

4
8

7
8

2
2

8
2

2
8

8
8

3
2

5
2

3
8

5
8

4
3

7
3

4
5

7
5

2
3

8
3

2
5

8
5

3
3

5
3

3
5

5
5

4

4 7 2 8 3 5

7

2

8

3

5

0.13

0.24

0.07

0.28

0.10

0.17

Priority Variation (% min, max)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

167

Figure 3.1.j: Process logic for the characteristics class.

Characteristics Class: Process

Perception
Class

Architecture
Class

Start
Initializes the characteristics

SetAge
Gives agent an age

SetPriorities
Assigns agent 6 priorities

SetGender
Give agent a gender

SpawnerTimer
Generates new agents

SetSpeed
Gives agent a walking speed

eigenvector
Normalizes prority values

PriorityScoring
Handles architecture priorities

scoring
Records priority scoring

priorities
Records overall priorities

SetName
Gives agent a name

speed
Agent walking speed

CreateLocalTarget
Determines when the agent

scores the architecture

importance
Assign a random rating

genderValue
Random gender spectrum

Agent
Class

Agent Spawner
Class

localArchValue
The passenger’s valuation of

the airport architecture

Scoring
Calculates architectual value

168

Figure 3.1.k: Key variables for the characteristics class, page 1.

personName

-

Represents the name of the agent
or passengerstring

genderValue

0.0 - 1.0

Provides a random value within the
gender spectrumfloat

gender

male, female

Holds the name of the type of
genderstring

age

18 - 72

Holds the passenger's age value
float

walkingSpeed

0.56 - 1.85

Represents the passenger's walking
speedfloat

walkingDisability1

true, false

Condition for walking disability
type 1; based IMO standard for
evacuation simulationsbool

walkingDisability2

true, false

Condition for walking disability
type 2; based IMO standard for
evacuation simulationsbool

Characteristics Class: Variables and Methods

maleNames

-

Reference to random list of male
names as textArray of strings

Variable

Values

Description
Type

femaleNames

-

Reference to random list of female
names as textArray of strings

Variables

169

priorityNames

-

Reference to a list of passeger
airport prioritiesArray of string

Method Description
Type

priorities

1 - 9 and 0.0 - 1.0

A collection of priorities
important to the passenger in the
airport and the corresponing
values

Priority (local class)

localArchValue

0.0 - 1.0

Is the passenger's score of the
airport or architecturefloat

SetPriorities

- | priorities

Calculates the agent's priorities
and associated weightingvoid

PriorityScoring

priorities | localArchValue

Calculates the agent's
architectural score based on the
prioritiesvoid

SetGender

genderValue | gender

Determines the agent's gender
void

SetName

gender | personName

Determines the name of the agent
based on gendervoid

Input | Output

SetSpeed

gender, age | walkingSpeed

Determines the walking speed of
the agent; based on IMO walking
speeds table 3.4void

SetAge

- | age, walkingDisability

Determine the agent's age; based
on IMO number of passengers table
3.1void

Methods

Figure 3.1.l: Key variables and methods for the characteristics class, page 2.

170

Figure 3.1.m: Priority local class within the characteristics class, page 3.

eigenvector

0.0 - 1.0

The normalized eigenvector
weighting of the priority (w

n
)float

score

0.0 - 1.0

The recorded score of the
perceived priority (y

n
)float

Value

0.0 - 1.0

The product of the eignvector
weight and the priority score
(P = w

n
y
n
)float

name

-

The name of the priority as text
string

Variable

Values

Description
Type

importance

1 - 9

The importance value the passenger
gives the priority (on a scale of
1 to 9)int

Local Class: Priority

171

Perception Class

The perception class is like the agent’s mind, it decides what the agent does when they observe

outside information. The primary job of the perception class is to create a local target for the

agent’s navigation. Objects that the agent observes are identified and categorized in the field of

view class. Then the perception class chooses which of these objects are most relevant to the

agent and selects the actions that best suits the situation. Additionally, the perception class

manages agent behaviour states over time and controls architectural valuation.

The perception class responds based on several types of objects. The first condition is if the

agent sees their final destination. The perception class sets the local target at the destination so

the agent can walk there. If perception navigation is disabled in the agent class, then this

decision process is bypassed, and a local target is generated at the agent’s final destination from

the beginning. Once the final destination is observed, the perception class stores this location in

the agent’s memory.

The second condition is if the agent sees signage (Fig.3.1.n). Firstly, if the agent is not in front of

the sign already, the perception class makes the agent walk up to the sign so they can read it.

The act of reading the sign works by referencing the signage class that is inherent in every

wayfinding object. The perception class checks if the information from the signage class matches

the agent’s knowledge of their final destination, like an assigned gate number. If this

information is the same, the perception class sets the local target based on the vector where the

sign is pointing to. After reading the sign, agents keep a short-term memory of the direction the

sign was pointing. However, after reaching their next local target, the agent’s memory of the

signage is reset so they can learn about new information or re-read the same signage again if the

agent is lost.

The third condition is if the agent sees airport objects, or any significant elements that are part

of the terminal. This includes service counters, kiosks, devices, or seating (Fig.3.1.o). This can

also include architectural features like walls, doors, or circulation. When an agent sees an

airport object, the perception class performs two actions. The first action uses the object to

identify what type of architectural space the agent is currently standing in. In Unity, game

objects can be assigned a tag. All airport objects are tagged with the architectural space they are

a part of. For example, the screening machines are tagged with Security, and the waiting area

chairs are tagged with Gate. If the agent observes any of these objects, then the perception class

records what the tag says, which represents the current architectural space. This is helpful for

172

Figure 3.1.n: Agent perceives the gate sign, as shown by the blue line. The agent state is "read sign", as

illustrated by the pink colour.

Figure 3.1.o: Agent perceives check-in counters, as shown by the blue line. The agent state is "go to

check-in", as illustrated by the blue colour.

173

deciding what type of behaviour the agent is expected to do in these areas. It also acts as a way

for the agent to remember where they are. The simulation assumes that if the agent can see the

object, then the agent has full knowledge of what it is and what space it represents. The second

action the perception class performs is checking the agent’s itinerary class to decide what they

need to do next. Each agent has an itinerary that provides a checklist for the tasks they need to

complete before boarding their flights. This includes actions like getting a boarding pass or

getting cleared through security. If the agent observes objects that are tied to a required task in

their itinerary, then the perception class makes the agent interact with those objects, like

walking through the screening devices for security clearance. The perception class can only

make the agents interact with these objects if it is required in their itinerary. Otherwise, the

agent will wander around them. In each situation, the perception will set the agent behaviour

state according to the action, like waiting, queuing, or processing.

Once the perception class decides which condition to interact with, the perception class then

calculates the agent’s corresponding architectural score. For example, if the score involves a

processing time, then the perception class will control when to start and stop the timer for that

action. Likewise, the perception class also controls how architectural visibility is recorded during

the process. Once the agent gets to their final destination, the perception class sends the agent’s

final architectural score to the global architecture class, which compiles all agent values.

If the perception class does not recognize a suitable local target, like signs or airport objects,

then the agent resorts to wandering around. The act of wandering works by giving the agent a

random direction to walk in, which is typically a couple metres in front of their current position.

The perception class calls the field of view class to provide a random vector within the agent’s

current perspective. It then creates a new local target at the randomly chosen location. After the

perception class makes these choices, the local target information is sent to the agent class for

navigation. This process repeats every time the agent reaches their local target, which requires

the perception class to make new choices as the surroundings change over time.

In summary, the perception class decides what the agent does. It chooses a response based on

the type of object the agent can see and records this information in memory. The perception

class updates agent states and architectural values accordingly. If the agent does not perceive

anything important, then it makes the agent wander around until it sees something new.

174

Figure 3.1.p: Process logic for the perception class, page 1.

Perception Class: Process

Start
Initializes the perception

FindVisibleTargets
What type of objects can the

agent recognize?

visibleTargets
Can agent see their final

destination?

visibleSigns
Can agent see signage?

RandomPointInFOV
Agent wanders around

CreateLocalTarget
Decides what agent does,
given what agent can see

GoToTarget
Agent goes to final destination

targetMemory
Destination added to memory

score
Updates agent priority score

ReplaceLocalTarget
Set object location with

dummy navigation target

NoPerception
Go straight to destination

Yes

1

Yes

Nothing

2

3

b

a

ReadSign
Makes agent interact with sign

UpdatePath
Makes a new path

signage
Follow information on the sign

ChangeColour
Updates agent state

Delta
Calculates process time

Field of View
Class

Agent
Class

Characteristics
Class

Signage
Class

c

c

175

Figure 3.1.q: Process logic for the perception class, page 2.

Perception Class: Process

visibleAirportObjects
Can agent see objects related

to airport processing?

Yes
Y

Completed

Incomplete

Incomplete Incomplete

Incomplete
Incomplete

Incomplete

3

b

a

CheckInLine
Agent chooses a counter

SecurityLine
Agent chooses a screener

SecurityProcess
Screening and bag check,
based on processing time

CheckInProcess
Bag drop and boarding pass,

based on processing time

Checklist
List of tasks to complete

goTo“ ”
Condition based on activity,

“CheckIn”, “Security”...

Field of View
Class

Queuing
Agent walks through queue

spatialMemory
Agent remembers the spaces

based on the object

KnowledgeOfArchitecture
Agent knows where they are

by regonizing spaces

...
Other activties from checklist

Itinerary
Class

b

terminalSpaces
List of areas in the simulation

Architecture
Class

176

Perception Class: Variables and Methods

agent

-

Reference to the agent class
Agent

Variable

Values

Description
Type

fov

-

Reference to the agent’s field of
view classFieldOfView

itinerary

-

Reference to the agent’s itinerary
classItinerary

arch

-

Reference to the architecture
classArchitecture

character

-

Reference to the agent’s
characteristics classCharacteristics

objectRender

-

Reference to the agent's rendering
for display colouringArray of Renderers

currentSpaces

-

Reference to the architectural
spaces in the worldGameObject

targetMemory

true, false

Memory reference to the location
of the agent's targetbool

exitMemory

true, false

Memory reference to the location
of the agent's gate or exitbool

Variables

Figure 3.1.r: Key variables for the perception class, page 1.

177

“ ”SearchStartTime

0.0 - ∞

Time starting search,
with respect to any variable:
“check-in”, “security”float

“ ”SearchEndTime

0.0 - ∞

Time ending search,
with respect to any variable:
“check-in”, “security”float

“ ”StartTime

0.0 - ∞

Time when the agent starts a
process, with respect to any
variable: “check-in”, “security”float

“ ”EndTime

0.0 - ∞

Time when the agent ends a
process, with respect to any
variable: “check-in”, “security”float

“ ”StartDirChange

0.0 - ∞

Starting number of direction
changes, with respect to any
variable: “check-in”, “security”,
“gate”

float

“ ”EndDirChange

0.0 - ∞

Ending number of direction
changes, with respect to any
variable: “check-in”, “security”,
“gate”

float

“ ”AwareStartTime

0.0 - ∞

Time when the agent knows where to
find their target, with respect to
any variable: “gate”float

“ ”AwareEndTime

0.0 - ∞

How long since the agent got
information about their target,
with respect to any variable:
“gate”

float

spatialMemory

-

Empty list to store agent's memory
of where they areList of strings

ratioList

-

Empty list to store agent's
visibilityList of floats

isPerceptive

true, false

Whether or not the agent navigates
by percpetion or direct path; set
to perceptive by defaultbool

directionChanges

-

Stores the number of times the
agent makes a move in a new
directionfloat

Figure 3.1.s: Key variables for the perception class, page 2.

178

wanderingColour

RGB: 153, 217, 255

State display colour while agent
is wandering around or searchingColor

toCheckInColour

RGB: 0, 77, 166

State display colour while agent
is going to the check in areaColor

toSecurityColour

RGB: 166, 0, 255

State display colour while agent
is going to the security areaColor

queuingColour

RGB: 255, 217, 0

State display colour while agent
is queuing or in a lineColor

readSignColour

RGB: 255, 102, 255

State display colour after agent
has read a signColor

waitingColour

RGB: 255, 0, 0

State display colour while agent
is waitingColor

processingColour

RGB: 255, 128, 0

State display colour while agent
is processing or interacting with
an objectColor

possibleStates

-

List of possible agent states as
textList of strings

agentState

-

The current state of the agent as
textstring

displayColourState

true, false

Toggle to display the agent in
colour states or random coloursbool

colours

-

Stores agent states as colours
List of Colors

boardingColour

RGB: 20, 115, 0

State display colour while agent
is boardingColor

Figure 3.1.t: Key variables for the perception class, page 3.

179

Figure 3.1.u: Key methods for the perception class, page 4.

GoToTarget

visibleTargets | score

Sends agent to final destination,
changes state, and records a scorevoid

Method Description
Type

AddColours

colours | colours

Function adds colours states to a
listvoid

ChangeColour

objectRender | newColour

Function changes the colour of the
agent for a given state and colour
namevoid

Input | Output

CreateLocalTarget

FindVisibleTargets | ReplaceLocalTarget

Controls where the agent decides
to go, given what objects are
visible to the agent and what the
agent is doing

void

NoPerception

isPerceptive | -

Navigates agent directly to
destination, if agent is not
navigating by perceptionvoid

ReplaceLocalTarget

targetPosition | localDummy

Replaces a local target position
with a dummy target in the agent’s
field of viewvoid

Methods

ReadSign

signage | ReplaceLocalTarget

Controls interaction with signage,
and determines how agent respond
to given informationvoid

Queuing

newLine | ReplaceLocatTarget

Function handles interaction with
queue linesvoid

CheckInProcess Handles the check-in processing,
agent states, and scoringvoid

CheckInLine Handles the selection of a
check-in countervoid

newLine | ReplaceLocatTarget

itinerary | score

180

SecurityLine Handles the selection of a
security screenervoid

SecurityProcess

itinerary | score

Handles the security screening,
agent states, and scoringvoid

Delta

_start, _end | finalTime

Calculates how much simulation
time the agent spent doing
something given a start and end
time in seconds

float

LookDirection

_pos, _target | _direction

Function that makes the agent look
in the direction of an objectVector3

KnowledgeOfArchitecture

currentSpaces | spatialMemory

Controls what the agent does when
it sees architectural elements,
and adds the architecture to
memory

void

AddVisibilityToList

ratioList | ratioList

Adds the current visibility value
to a list (updated once per
second)IEnumerator

AverageVisibility

ratioList | average

Determine the average visibility
values from the visibility ratio
listfloat

DirectionChangeRatio

directionChanges | ratio

Calculates the ratio of direction
changesfloat

newLine | ReplaceLocatTarget

Figure 3.1.v: Key methods for the perception class, page 5.

181

Field of View

The field of view class is responsible for creating the isovist geometry, identifying objects that

are visible to the agent, and providing vector locations for local targets. The thesis’s field of view

class is a modified version of Lague’s class for their Unity game tutorial on Field of View

Visualizations (2015). [4] Lague’s work provides the logic of the isovist geometry, the in-game

display of the field of view, and the method for identifying visible objects. The thesis’s

contribution to the field of view class includes categorizing objects based on airport architecture,

the method for agent wandering, and the calculation of visibility area.

The field of view is based on the geometry of an isovist. Lague built the isovist from a collection

of numerous raycasts, or vectors, projected from the agent’s position (Fig.3.1.w). The location

where the vectors intersect with an object are called the viewpoints. The viewpoint vectors are

combined into thin triangles, whose vertices are defined in an array based on the triangle

number. This can be generalized for any number of raycasts. The more raycasts there are, the

more viewpoint vectors, and therefore, the more refined the agent’s field of view can be. In some

cases, convex corners of an object may not be captured properly if there are not enough

viewpoints. Lague solves this issue by performing an iterative search around an object’s corners.

The search repeatedly calculates midpoint vectors between max and min viewpoints, until the

difference between the corner and midpoint vector is within a small enough tolerance (Fig.3.1.y).

Objects within an agent’s field of view are detected based on the interaction between object

layers. In Unity, all objects can be assigned a layer, which is defined manually in the model

properties. Each type of object in the airport environment is given a unique layer. This includes

layers for targets, obstacles (walls, partitions), signage, other agents, and airport objects (kiosks,

counters, gates). The field of view class projects out raycast vectors from the agent within the

radius of the given field of view. When the simulation begins, these raycasts are sent out

repeatedly over time (around 5 raycasts per second). There are raycasts specifically looking for

each of the defined layers. If a given raycast collides with an object that has the same layer, then

that object’s information (name, position) is stored into a corresponding list for that object type.

These lists are then sent to the perception class for the agent to interpret.

A key function of this thesis’s agent model is the ability for agents to wander around if they are

lost. The act of wandering, or searching, involves repeatedly selecting random direction vectors

4. Lague, Sebastian. "Field-of-View/Episode 02/Scripts/FieldOfView.cs". GitHub. December 28, 2015.

https://github.com/SebLague/Field-of-View/blob/master/Episode%2002/Scripts/FieldOfView.cs.

182

Field of View Construction

Raycasts GeneralizedViewpoints

1

0

na b c

n+1 n+22 3
4

0

Figure 3.1.w: Generalized construction of the field of view, based on diagram by Lague (2015),

redrawn by author.

Figure 3.1.x: Agent in front of a wall showing their field of view.

183

Figure 3.1.y: Convex corners are refined by selecting a midpoint vector between a max and min

viewpoint, based on diagram by Lague (2015), redrawn by author.

Figure 3.1.z: A random direction vector for wandering is selected towards the longest visible direction,

illustrated by the red line and sphere.

min
max

Corner Refinement

184

within the field of view for the agent to walk to. The function imitates wandering by firstly

selecting the longest vector in the agent’s field of view. This makes sure the agent keeps walking

to the end of a given corridor or moving towards open areas if they encounter confined spaces or

split paths. The wandering function searches for the longest vector starting from directly in front

of the agent, then alternating searching viewpoints to the right and left of straight ahead. Once

the longest vector is found, another viewpoint is randomly selected within a range greater than

or less than the longest vector. This allows agents, who may be lost, to not directly follow one

path, which is more natural of wandering. The function also naturalizes wandering by selecting

random distances to walk, ranging anywhere from one to four metres ahead (Fig.3.1.z). If an

agent encounters a dead end, then the function provides a direction vector in the opposite

direction to the wall or obstacle. Once a random direction vector is established, this is sent back

to the perception and agent classes for navigation.

The final responsibility of the field of view class is to calculate the average visibility of a given

space. The area of an isovist is approximated as a sum of viewpoint triangles. As the agent moves

throughout the simulation, the field of view class constantly updates this calculation. The

average visibility is based on the current area the agent can see divided by the maximum area

the agent observes over time. For example, if the agent moves from an open courtyard to a small

corridor, then the visibility ratio will be low. By contrast, moving from a confined area into an

open area would give a high visibility ratio, which is more desirable. As the agent encounters

different sized spaces, the field of view class updates the maximum area. The final visibility ratio

is then sent to the perception class for calculating the average visibility of a particular space, as

needed.

In summary, the field of view class is responsible for creating the isovist geometry, identifying

visible objects, and calculating the visibility. The thesis’s field of view class is based on the class

created by Lague for his Unity tutorial on field of view visualizations. The field of view geometry

is created from raycast vectors projected from the agent by combining viewpoints into a

collection of thin triangles. Objects are identified using layers, which is assigned based on the

object type, and they are detected using raycasts that are constantly projected from the agent

over time. The class also determines a random direction vector within the agent’s field of view,

to imitate wandering behaviour, if the agent does not observe any relevant objects. Finally, the

visibility of a given space is calculated based on the change in field of view area over time, which

is then sent to the perception class for final calculation.

185

Field of View Class: Process

Start
Initializes the field of view

FindVisibleTargets
Looks for certain object types

FindTargetsWithDelay
Searches for objects over time

AddVisibleObjectsToList
Organizes object types into lists

DrawFieldOfView
Contructs field of view

SetFieldOfViewDisplay
Makes field of view visible

RandomPointInFOV
Agent wanders around

viewPoints
List of projected points

CreateLocalTarget
Decides what the agent does,

and where to go

Perception
Class

RatioOfFOV
Agent wanders around

AreaOfFOV
Agent wanders around

AverageVisibility
Calculates the visibility score

visibleTargets
Agnet’s final destination

visibleSigns
Signage and wayfinding

visibleAirportObjects
Objects related to the airport

a

a

Perception
Class

Perception
Class

ReplaceLocalTarget
Navigates to random point

No Visible
Targets

Figure 3.1.za: Process logic for the field of view class.

186

Field of View Class: Variables and Methods

viewRadius

1.0 - ∞

Radius of the agent’s field of
viewfloat

Variable

Values

Description
Type

viewAngle

0 - 360

Visible angle range of the agent’s
field of viewfloat

targetMask

-

Game layer assigned to targets
that the agent is looking forLayerMask

obstacleMask

-

Game layer assigned to obstacles
that the agent cannot walk throughLayerMask

signMask

-

Game layer assigned to signs that
the agent can read for inforamtionLayerMask

agentMask

-

Game layer assigned to other
nearby agentsLayerMask

airportObjectsMask

-

Game layer assigned to airport
objects (counters, benches,
kiosks, etc.)LayerMask

visibleTargets

-

List containing targets the agent
can seeList of Transforms

visibleObstacles

-

List containing obstacles the
agent can see (anything that
prevents the agent from walking)List of Transforms

Variables

Figure 3.1.zb: Key variables for the field of view class, page 1.

187

Figure 3.1.zc: Key variables for the field of view class, page 2.

visibleSigns

-

List containing signage the agent
can seeList of Transforms

visibleAgents

-

List containing other nearby
agents that the agent can seeList of Transforms

visibleAirportObjects

-

List containing relevant airport
objects that the agent can seeList of Transforms

meshResolution

10

The ratio of view angle to the
number of view point lines (i.e.
160 degrees gives 1600 view
points)

float

edgeResolveIterations

4

The number of times the location
of the edge of an object is
refinedint

edgeDstThreshold

0.5

The distance tolerance when
finding the edge of an objectfloat

currentMaxAreaOfFOV

1

The initial field of view area
when calcualting visibility ratio
(1 m²)float

viewMeshFilter

-

Stores an in-game mesh filter for
renderingViewCastInfo

displayFieldOfView

true, false

Toggle for displaying the field of
view during the simulationbool

viewMesh

-

Reference to the mesh class
Mesh

viewPoints

-

List of projected points from the
agent in a field of viewList of Vector3

188

MaxAreaOfFOV

viewRadius, viewAngle | area

Determine the theoretical maximum
field of view areafloat

Method Description
Type

FindTargetsWithDelay

delay | FindVisibleTargets

Reoccruing function determines
when the agent searches for
objects in their field of viewIEnumerator

SetFieldOfViewDisplay

displayFieldOfView | -

Controls if the field of view is
diplayed during the simulationvoid

Input | Output

AddVisibleObjectsToList

visibleObjects, objectMask | -

Adds any type of object that is
visible to the agent into a new
list, given the list name and
object layer

void

FindVisibleTargets

- | AddVisibleObjectsToList

Manages lists for collecting
certain visible object typesvoid

DrawFieldOfView

viewPoints | viewMesh

Constructs the field of view as a
collection of connected triangles
between view pointsvoid

Methods

AreaOfFOV

viewPoints | area

Calculates the area of the agent's
current field of viewfloat

RatioOfFOV

AreaOfFOV | ratio

Determines the ratio of the
current field of view area to the
maximum area observed by the agentvoid

ProximityDelay Function delays finding a new
point in the field of view if the
agent is standing too close to
another agent

IEnumerator

RandomPointInFOV Calcuates a random point vector in
the agent's field of view; for the
purpose of wanderingvoid

newLine | ReplaceLocatTarget

_obstacle, _distance | _close

Figure 3.1.zd: Key methods for the field of view class, page 3.

189

FindEdge Function determines the edge of an
object in the field of viewEdgeInfo (local struct)

ViewCast

globalAngle | ViewCastInfo

Determines the location of a view
point, if it hits an object, given
a view angleViewCastInfo (local struct)

DirFromAngle

angleInDegress | Vector3

Determines the global vector
location given an angleVector3

minViewCast, maxViewCast | minPoint, maxPoint

ViewCastInfo

hit, point, dst, angle

Local structure properties that
defines a direction vector, angle,
and if it intesects an objectstruct

EdgeInfo Local structure properties that
defines the start and end of a
line or edgestruct

pointA, pointB

Figure 3.1.ze: Key methods for the field of view class, page 4.

190

Chapter 3.2

A* Pathfinding Classes

The thesis uses an A* search algorithm to determine agent pathfinding and navigation in the

simulation environment. All of the thesis’s A* classes are based on Sebastian Lague’s Unity game

tutorial on A* Pathfinding (2016). [1] [2] The key classes for A* Pathfinding are grid, node, and

pathfinding. Lague gives a thorough description of how the A* pathfinding is made. Therefore,

the following chapter gives a summary of how it applies to the thesis’s simulation process.

Grid Class

The simulated environment is built as a grid of tiles, which the agent uses to navigate. The grid

class defines these tiles as a node structure, or graph, which establishes the network for the A*

algorithm. In the Unity scene, the grid class is assigned to an empty game object. The user of the

simulation sets the node (tile) size, as a radius, and the world size as the number of tiles in the x

and y directions. For the thesis’s simulations, the node size is set to 0.1 𝑚𝑚, which means each tile

is 20 𝑐𝑐𝑐𝑐 wide or 25 tiles per square metre. This provides a balance between mapping intricate

architectural spaces and computation time (Fig.3.2.a).

Before the simulation starts, the user must assign environment objects to either walkable or

unwalkable layers and corresponding penalties. In most cases, walkable layers are the floor

levels and unwalkable layers are walls, columns, and partitions. Depending on the type of

equipment, airport objects are also treated as an unwalkable area, like service counters. Most

walkable regions have a penalty of zero, whereas unwalkable regions are undefined. Walkable

areas can also be assigned a higher cost penalty (magnitude of 10 to 50), which can influence

agent navigation, like restricted areas.

When the simulation is initialized, the grid class iterates through all the tiles in the world. It

determines which tiles intersect with each walkable region in the scene environment. The grid

1. Lague, Sebastian. "Pathfinding/Episode 7 - smooth weights/Assets/Scripts". GitHub. December 30,
2016. https://github.com/SebLague/Pathfinding/tree/master/Episode%209%20-
%20smooth%20path%2002/Assets/Scripts.

2. Lague, Sebastian. “A* Pathfinding (E01: algorithm explanation)”. Youtube. December 16, 2014.
https://www.youtube.com/watch?v=-L-
WgKMFuhE&list=PLFt_AvWsXl0cq5Umv3pMC9SPnKjfp9eGW&index=1.

191

Figure 3.2.a: Simulated environments are divided into grid tiles for A* navigation. Every tile an object

touches is considered part of the object's area, even if the object dimensions are smaller.

192

class also has a function that blurs the boundary between walkable and unwalkable areas. This

results in a more naturalized walking path, which discourages agents from walking too close to

unwalkable walls or high-cost areas. Once the grid is calculated, it is then sent to a prebuilt

Unity function to be display in the scene. An example of a finished grid output can be seen in

Fig.3.2.b. The walkable (low cost) areas are in light gray, the unwalkable areas are in red (walls),

and there is a high-cost walkable area represented in black. Also note the blurring effect which

creates a dark (high cost) gradient along the perimeter of the walls.

In summary, the simulated environment is built as a collection of grid tiles. This provides a

graph node structure for the A* search algorithm. The tile, or node size, must be assigned by the

user before the simulation begins. The environment must also be assigned into walkable and

unwalkable areas, which determines where agents can navigate. Some walkable areas can be

assigned higher cost values, which can influence agent navigation. There is also a blurring effect

that naturalizes how close agents walk around walls.

Grid Class: Process

Start
Initializes the grid

nodeRadius
Sets the node, or tile, size

gridSizeX, gridSizeY
Sets the number of grid tiles

walkableRegions
Areas the agent can walk

CreateGrid
Builds the world grid

BlurPenaltyMap
Soften penalty weight areas

grid
Collection of node coordinates

OnDrawGizmos
Display grid tiles and penalty

Node
Makes the node structure

Node
Class

Figure 3.2.c: Process logic for the grid class.

193

Unwalkable Areas

Walkable Areas

High CostLow Cost

Figure 3.2.b: An example of walkable and unwalkable areas from a grid environment.

194

Grid Class: Variables and Methods

displayGridGizmos

true, false

Toggle to display grid during the
simulationbool

Variable

Values

Description
Type

unwalkableMask

-

Layer for objects that the agent
cannot walk throughLayerMask

gridWorldSize

(x,y)

Stores the size of the world, or
number of grid tiles in two
dimensionsVector2

nodeRadius

0.1

The radius size of the node, or
grid tilesfloat

walkableRegions

-

Area types that the agent can walk
onArray of TerrainTypes

obstacleProximityPenalty

50

The cost of nodes around obstacles
float

walkableRegionsDictionary

<key, value>

Stores a collection of areas that
the agent can walk onDictionary

walkableMask

-

Layer for objects that the agent
can walk onLayerMask

grid

[x,y]

Contains coordinates of node that
make up the grid worldNode

Variables

Figure 3.2.d: Key variables for the grid class, page 1.

195

nodeDiameter

2 x nodeRadius

The diameter of the node, or grid
tilefloat

gridSizeX, gridSizeY

0 - ∞

The number of grid tiles, or
nodes, in the x and y directionsint

penaltyMin, penaltyMax

2147483647, -2147483648

The minimum and maximum values for
a walkable penalty when burring
neighbouring tilesint

Method Description
Type

NodeFromWorldPoint

worldPosition | grid[x,y]

Determines a given node in the
grid based on an object's vector
position in the worldNode

OnDrawGizmos

grid | -

Unity funciton that displays
objects for debugging; to display
penalty and grid depth mapvoid

MaxSize

gridSizeX * gridSizeY

Stores the total number of tiles
in the world gridint

CreateGrid

gridSizeX,Y | grid

Builds the grid based on walkable
and non walkable objects
intersecting with itvoid

Input | Output

GetNeighbours

node | neighbours

Determines the neighbouring tiles
given a certain node in the gridList of Nodes

BlurPenaltyMap

blueSize | grid

Softens the transition between
high and low pentaly areasvoid

Methods

TerrainType

terrainMask, pentaly

Local class representing different
area types and penalty valuesclass

Figure 3.2.e: Key variables and methods for the grid class, page 2.

196

Node Class

The node class is responsible for managing the mathematical nodes of a graph and identifying

physical points in space. The simulation uses nodes in a graph structure to build paths for

agents to follow. These types of nodes define the areas that an agent can walk. Nodes are also

used to identify the location of objects in architectural space. This includes the location of

airport objects like service counters or queues, and architectural conditions like walls or

thresholds.

Nodes are made up of two parts. The first part is the properties defined in the grid class. These

are the node world position as a direction vector (𝑥𝑥, 𝑦𝑦, 𝑧𝑧), the co-ordinates on the grid as an

index of 𝑥𝑥 and 𝑦𝑦, the walkability (if the agent can walk on the node), and the movement penalty

(to discourage agents walking). When identifying an architectural component, the number of

nodes the component intersects with represents the space that it occupies. This information is

either translated to agents as a vector location or an unwalkable area.

The second part is the costs associated for the A* pathfinding. Nodes are given three values to

determine how useful a node is for navigating to a target. These values are referred to as the G

cost, the H cost (heuristic), and the F cost. The G cost is the distance between the current node

to the starting node, and the H cost is the distance between the current node and the target

node. The F cost is the sum of the G cost and the H cost. This represents the total distance from

the start to the target node, if the path goes through the given node. When the pathfinding

function is evaluating any node, it considers both the total F cost and the movement penalty.

In summary, the node class creates node structures for mathematical graphs and physical

spaces. Nodes can represent areas an agent can walk or the location of objects in space. If nodes

are representing architectural features, then the area they occupy is translated into vector

locations. A* pathfinding uses nodes structures to evaluate paths based on a cost system. The

total cost of a node for travel is based on the distance to the start and target locations and a

movement penalty.

197

Node Class: Variables and Methods

walkalbe

true, false

Checks if the agent can walk on
the nodebool

Variable

Values

Description
Type

worldPosition

(x,y,z)

The world space vector location of
the nodeVector3

gridX, gridY

0 - gridSizeX,Y

The grid position in the x and y
directionsint

movementPenalty

0 - ∞

The node's weight, based on the
grid penaltyint

gCost

0 - ∞

Distance from the current node to
starting nodeint

hCost

0 - ∞

The heuristic cost, or the
distance from current node to the
end nodeint

parent

[x,y]

Reference to a neigbouring node
where the new node is coming fromNode

heapIndex

0 - ∞

Reference number for where the
node is in the heap structureint

Variables

Figure 3.2.f: Key variables for the node class, page 1.

198

Method Description
Type

Node

walkable, position, grid, penalty

Constructs a node based on given
propertiesvoid

fCost

gCost, hCost | fCost

The total node cost as a sum of
the gCost and hCostint

Input | Output

CompareTo

nodeToCompare | compare

Compares the value or cost
difference between two nodesint

HeapIndex

heapIndex | heapIndex

Gets and returns the heap index
reference numberint

Methods

Figure 3.2.g: Key methods for the node class, page 2.

199

Pathfinding Class

The pathfinding class decides what route the agent must follow to reach their target.

Fundamentally, this class is the A* search algorithm, which is responsible for calculating the

lowest cost path between two points. The pathfinding class is also responsible for converting the

list of nodes from the path into vector directions, which represents co-ordinates that the agent

class can follow.

The pathfinding class begins by identifying two nodes on the grid network, one as the starting

node of the path and the other as the target node. Lague’s A* method works by sorting nodes

into two categories, open set and closed set. The open set contains nodes to be evaluated, and

the closed set contains nodes that are already evaluated. [3]

The goal of the A* method is to find the cheapest path from the starting node to the target node.

Lague explains that the A* method begins its search from the starting node, which is labelled as

the current node. The A* then checks each of the current node’s neighbours to determine which

one has the lowest total cost (F cost). The neighbour that has the lowest cost becomes the new

current node. Once the new current node is selected, then the A* checks its new neighbours to

find the next lowest cost node. This process repeats until the A* reaches the target node

(Fig.3.2.i). If two nodes have the same cost, then the A* chooses the closest node to the start

position. The A* also double checks if the node is walkable before evaluating it. If a node has a

neighbour that has already been evaluated, or is in the closed set, then the A* skips it. However,

if the A* discovers a shorter path to a node in a closed set, then it will update its F cost value.

Once the A* reaches the target node, and the node’s costs are evaluated, the pathfinding class

retraces the path back from the target node to the start node. The pathfinding class records each

of the node’s positions as a direction vector. These direction vectors are compiled into a list of

waypoints. The path request manager then sends these waypoints to the agent class as a path

structure, which the agent can start following.

In summary, the pathfinding class performs the A* search algorithm to find the lowest cost path

between the agent and its target. The A* method involves repeatedly checking neighbouring

nodes from the start node, to determine the nodes with the lowest cost path to the target. Once

the A* finds the cheapest path, the nodes are converted into vector directions, which are

compiled into a path of waypoints that is then sent to the agent to follow.

3. Lague. “E01: algorithm explanation”. 7:45.

200

Figure 3.2.h: Pathfinding creates a path (black line) between nodes along a tiled grid to a target node

(white wire sphere).

201

End Result

First Step

Pathfinding Class: Process

A68
10 58

68
14 54

54
10 44

48
14 34

48
10 38

B

A68
10 58

68
14 54

54
10 44

48
14 34

48
10 38

48
20 28

54
30 24

48
24 24

64
44 20

48
34 14

54
44 10

68
48 20

54
44 10

48
48 0

G cost

Start/End Node

Total cost from A to B:

48H cost

F cost

distance from starting node

distance from end node

G cost + H cost

F
G H

Open Node Selected Node

Figure 3.2.i: Lague's A* pathfinding process calculates the cost of neighbouring nodes as a sum of its

distance to the start and end nodes. Based on animation by Lague (2014), redrawn by author.

202

Pathfinding Class: Variables and Methods

requestManager

-

Reference to the path request
manager classPathRequestManager

Variable

Values

Description
Type

grid Reference to the grid class
Grid

Variables

Method Description
Type

GetDistance

nodeA, nodeB | dst

Determines the world distance
between two nodesint

StartFindPath

startPos, targetPos | FindPath

Controls when to begin looking for
a path, given a start and an end
positionvoid

FindPath

startPos, targetPos | waypoints

The A* search algorithm;
reoccuring function that
calculates the lowest cost node
path between two point

IEnumerator

Input | Output

SimplifyPath

path | waypoints

Resest the order and direction of
the path waypointsArray of Vector3

RetracePath Determines the path vectors
between two pointsArray of Vector3

Methods

-

startPos, targetPos | waypoints

Figure 3.2.j: Key variables and methods for the pathfinding class.

203

Chapter 3.3

Airport Architecture Classes

This chapter covers all classes related to airport architecture, which includes architecture,

airport objects, signage, scheduling, and itinerary. Since the thesis is looking at airport

terminals, these are the functions specific for the airport processes. If this simulation was used

for another building type, then there should be classes related to that building, like healthcare

procedures in a hospital. Most of the terminal building elements are created as 3D models for

the Unity scene. Therefore, the main responsibility of these classes is to manage object

properties, trigger agent processes, and functions for calculating value.

Architecture Class

The architecture class manages value calculations and holds a local class for space properties. In

the Unity scene, the architecture script is attached to an empty game object, which allows the

user to edit space properties, like program names or areas. Individual architecture elements in

the Unity scene, like building components, doors, or walls, do not need to have this script

attached to them. Instead, architectural spaces are outlined using basic Unity geometry, like

rectangles or boxes, to identify different programmed areas, such as designated security or retail

areas (Fig.3.3.a). Each geometry is attached to a given space as a reference, which is stored in

the architecture class as a list of spatial areas. This list is then sent to the perception class so that

agents can identify where they are in the airport. Whenever an agent walks through a new area,

the information about the space is recorded in the agent’s memory and updated as the

simulation progresses (Fig.3.3.b).

The architecture class is also responsible for scoring agent activities and updating the overall

value. When an agent finishes a task associated with a priority, the perception class sends the

relevant information to the architectural class to calculate a score. For most processes in this

thesis, the score is based on the accumulation of the search time, process time, average visibility,

and number of direction changes. These values are normalized using an exponential decay

function, which is scaled relative to the simulation rate. For example, Wiredja et al. state that

204

Figure 3.3.a: Basic geometry used to identify spatial areas.

Figure 3.3.b: Spatial areas are referenced when agents move between them.

205

most passengers prefer not to wait in line longer than 15 minutes, on average. [1] However, to

provide a balance between minimizing simulation run times and modelling passenger

behaviour, a scaling factor is applied to increase the rate of decay. In this case, instead of

passengers feeling impatient after 15 minutes, this is equivalent to about 15 seconds in the

simulation. Likewise, airport processes are also scaled down, so what is normally 10 minutes to

check in baggage is only about 10 seconds in the simulation. This makes sure passengers are

scoring the same value as if they were waiting in the airport for longer.

Once the scoring is calculated, the values are sent back to the agent’s characteristics class. These

scores are held by the agent until the end of the simulation. Once the agent reaches their final

destination, the agent spawner class, which controls how agents leave the simulation, records

the agent’s final score and sends this back to the architecture class. All of the agent’s scores are

then stored in a master list, which keeps updating until all passengers have left the simulation.

Once the simulation is complete, the user has the option to print this information from the

architecture class to an external text file. The text file then lists each agent’s characteristics,

priorities, and their respective architectural scores, so they can be analyzed.

In summary, the architecture class is responsible for identifying spatial areas and calculating

architectural value. The airport terminal is modelled in the Unity scene and the spaces are

highlighted using basic Unity geometry, which is stored in the architecture class as a list of

areas. The agent’s perception class can reference this list during the simulation so agents can

identify where they are in the terminal. Agent priorities are scored in the architecture class using

an exponential decay function, based on properties like process time and visibility. The decay

functions are scaled down to reduce simulation run time. This means a 10-minute process in

real life is equal to a 10-second process in the simulation when calculating a final score. Once

agents have completed the simulation, their final scores are sent back to the architecture class in

a master list. The list can be exported to a text file for analysis along with agents’ respective

characteristics.

1. Wiredja, Dedy; Vesna Popovic, and Alethea Blackler. “A Passenger-Centred Model in Assessing

Airport Service Performance.” Journal of Modelling in Management 14, no. 2 (May 10, 2019): 506.

206

Architecture Class: Process

Simulation
Not Complete

Simluation
Complete

Simluation
Complete

Start
Initializes the architecture

ArchitectureValue
Updates architectural score

information
List of agent properties

ExportInformation
Prints architectural score and

agent information

Input Key: “P”
User press “P” on keyboard

PriorityValue
Takes the average prioritiy

value of all passengers

Priorities
List containing agent’s score

who completed the simulation

Perception
Class

AgentsExit
Removes agent from world

and compiles scores

Agent Spawner
Class

Characteristics
Class

localArchValue
The passenger’s valuation of

the airport architecture

CreateLocalTarget
Determines when the agent

scores the architecture

Scoring
Calculates architectual value

terminalSpaces
List of areas in the simulation

KnowledgeOfArchitecture
Agent knows where they are

by regonizing spaces

Perception
Class

Figure 3.3.c: Process logic for the architecture class.

207

Architecture Class: Variables and Methods

Value

0.0 - ∞

The overall score of the
architecturefloat

Variable

Values

Description
Type

Priorities

0.0 - ∞

List of the overall priority
scores of every agent who
completed the simulationList of floats

information

-

Stores each agent's properties and
characteristics as textList of strings

spacesLayer

-

Physical object that represents
the extents of a spatial areaLayerMask

terminalSpaces

spaceName, area

List of spaces or areas in the
airport terminalList of Spaces

Variables

Figure 3.3.d: Key variables for the architecture class, page 1.

208

Method Description
Type

ArchitectureValue

Value | Value

Updates the current architectural
score as the simulation is runningvoid

PriorityValue

Priorities | _valueAvg

Calculates the architectural score
as the average of all the agent's
prioritiesfloat

Input | Output

ExportInformation

information | -

Prints the current architectural
score and corresponding agent
priorities to an external text
file

void

Scoring

time, visibility, dirChanges | score

Calculates the score for a
completed processfloat

Space

spaceName, area

Local class defines architectural
space based on a given name and
physical object representing the
area

class

Methods

Figure 3.3.e: Key methods for the architecture class, page 2.

209

Airport Objects Class

The airport objects class controls how agents interact with objects during a process. As

mentioned in the perception class, agents navigate in the environment by replacing the object’s

location with a local target. However, most objects, like service counters, normally involve

standing in front of the object to properly interact with it. Therefore, the main purpose of the

airport object class is to provide interaction nodes, so agents can approach a given object from a

realistic distance. Additionally, objects also have exit nodes and queue spots to help agents leave

the object or navigate through queues, respectively. Fundamentally, the airport object class is

necessary for all objects that the agent interacts with (except for signage).

Interaction nodes are represented in the Unity scene as an empty game object. The user of the

simulation manually places these nodes in front of objects, depending on the process. For

example, security metal detectors have an interaction node in front of the detector and an exit

node on the other side, which simulates agents walking through the detector during the

screening process (Fig.3.3.f). In the airport objects class, these nodes are assigned to a vector

position variable. When an agent perceives a given object, the airport objects class sends the

vector position of the interaction node to the agent’s perception class, so they can walk towards

it. Once the agent completes the corresponding process, the airport objects class then provides

the vector location for the exit node, so the agent can leave the object.

The airport objects class also manages how agents interact with queue lines. Queues are created

as a collection of waypoints along a given line. This requires the user of the simulation to

manually assign a physical line for the corresponding airport objects class. The class uses this

physical line to determine the number of available queue spots based on a given spacing

(Fig.3.3.g). Like interaction nodes, queue spots are used for agent navigation. When an agent is

in a queuing state, the airport objects class sends these queue spots to the perception class for

the agent to follow.

In summary, the airport objects class makes sure agents interact with objects from a realistic

distance. This involves placing interaction nodes and exit nodes in front of objects, for agents to

approach and leave them, respectively. The airport objects class also manages queues by

providing queue spots along a predefined line. When an agent perceives an object, the airport

objects class sends the location of the interaction nodes, exit nodes, or queue spots to the agent’s

perception class, so the agent can navigate accordingly.

210

Figure 3.3.f: Illustration of interaction nodes (green) and exit nodes (red) in security screening.

Figure 3.3.g: Illustration of queue spots (blue) in a queuing line.

211

Figure 3.3.h: Process logic for the airport objects class.

Airport Objects Class: Process

Start
Initializes the airport objects

queueSpots
Spot for agent to stand in line

QueueLine
Creates the queuing spots

interactionNode
Object location for agent to

interact with, respectively

exitNode
Object location for agent to

leave, respectively

CheckInLine
Agent chooses a counter

SecurityLine
Agent chooses a screener

SecurityProcess
Screening and bag check,
based on processing time

CheckInProcess
Bag drop and boarding pass,

based on processing time

Queuing
Agent walks through queue

Perception
Class

Perception
Class

Perception
Class

212

Figure 3.3.i: Key variables and methods for the airport objects class, page 1.

Airport Objects Class: Variables and Methods

interactionNode

-

Reference to the location an agent
can interact with the objectGameObject

Variable

Values

Description
Type

exitNode

-

Reference to the location an agent
leaves the objectGameObject

lineNode

-

List of queue line locations to be
referenced in the scene
environmentList of Transforms

queueSpots

-

List of queuing spots in a line
for the agents to followList of Vector3

spacing

1.0

Distance each agent stands from
each other (m)float

Variables

Method Description
Type

QueueLine

lineNode | queueSpots

Creates the queue spot loactions
based on a given line geometryvoid

Input | Output

Methods

213

Signage Class

The signage class is responsible for information written on signs and stores direction vectors for

agent navigation. In this thesis’s simulation, agents do not read the graphic information shown

on the physical sign; what is visible in the scene environment is only for display. Instead, sign

objects use the signage class to communicate their information to the agent’s perception class.

A signage class is attached to all objects that agents can use for wayfinding. Wayfinding objects

are designed to force agents to walk a certain direction if they need to choose between more than

one route. Before the simulation starts, the signage class requires the user to provide a

viewpoint, info names, and corresponding direction nodes for every item on the sign (Fig.3.3.j).

A viewpoint acts as a gathering point in front of the sign. The info name tells the agent what

target the sign is referring to, and the direction node is used to calculate a direction vector for

the agent’s navigation. This vector is only calculated by the signage class when the agent

interacts with the sign.

When an agent sees a sign during the simulation, the perception class calls a function to read the

sign. The first step is to move the agent to the viewpoint. Since agents may approach the sign

from different directions, the viewpoint makes sure the agent is facing the sign correctly before

reading it. As described in the perception class, the act of reading involves checking if there is an

item name in the signage class that matches the agent’s primary target. This is done by

referencing the agent’s itinerary class for a name like “Gate B”. If the sign also says, “Gate B”,

then the corresponding direction vector for “Gate B” is sent to the agent class for navigation. If

the agent is not looking for their gate, then the perception class checks if the names on the sign

matches the corresponding task in the itinerary class, like “Security Screening”. If none of the

items on the sign match the agent’s current task, then the agent continues wandering.

In summary, the signage class stores the information written on wayfinding signs and

determines the corresponding direction vector for agent navigation. Agents in this simulation

cannot read what is visually displayed on wayfinding. Instead, the signage class stores the sign’s

information, so that the agent’s perception class can read it. This information must be assigned

by the user before the simulation starts. When an agent sees a sign, they first walk to a

viewpoint, so they are in a position to read it properly. If the item names stored in the signage

class match the agent’s target or task, as defined in the itinerary class, then the corresponding

direction vector the sign is pointing to is provided to the agent for navigation.

214

Figure 3.3.j: A wayfinding sign illustrated with a viewpoint (blue) and two direction nodes (red) for

Gate A and Gate B.

215

Signage Class: Process

Start
Initializes the signage

ReadSign
Controls how agent responds

to information on the sign

goTo“ ”
Checks current itinerary

condition: “Gate”, “Security”

DirectionInformation
Sets up the vector direction
where the sign is pointing

primaryTarget
Name of agent’s destination

infoName
Text written on sign

direction
Vector the sign is pointing to

directionNode
Reference point in model

viewPoint
Is agent at the location to

read the sign?

goToGate

Sign text
does not

match target

Yes

goTo” “

Sign text
matches targetSign text

matches target

No, sends agent
to viewpoint

ReplaceLocalTarget
Navigates to given location

...
Other activties from itinerary

Perception
Class

Itinerary
Class

Itinerary
Class

Figure 3.3.k: Process logic for the signage class.

216

Signage Class: Variables and Methods

Sign

-

Array of possible directions
displayed on a signArray of DirectionInfo

Variable

Values

Description
Type

viewPoint

-

Is a physical point from where the
agent can read the signGameObject

Variables

infoName

-

The name displayed on the sign as
textstring

directionNode

-

The object representing the
location the agent navigates toGameObject

Method Description
Type

DirectionInformation

directionNode | direction

Defines the possible directions
agents can go from a signvoid

DirectionInfo

infoName, directionNode, direction

Local class holds the name written
on the sign and the direction the
sign is pointingclass

Input | Output

Methods

direction

-

Holds the vector between the view
point and possible direction of
travelVector3

Figure 3.3.l: Key variables and methods for the signage class, page 1.

217

Scheduling Class

The scheduling class manages the location where, and frequency of, agents entering and exiting

the simulation. The user of the simulation assigns the scheduling class to an empty game object,

which requires inputting values into a corresponding property window (Fig.3.3.m). The

scheduling class determines the total number of passengers (pax) expected to run through the

simulation, either as a statistical distribution or random variables.

The scheduling class controls two types of objects, arrival points and departure points. Arrival

points spawn (generate) agents into the simulation and is the location agents begin their

journey. Departure points remove agents from the simulation and are considered the agent’s

primary target. Arrival and departure points can be assigned to any type of object in the

environment, but they are commonly represented as doorways. There can also be more than one

arrival or departure point in the simulation, but the scheduling class must assign each agent

their own arrival and departure point before the simulation begins.

Arrival points are defined by a name, a location, an arrival window, and an agent model. The

name and location of the arrival point is used by the agent spawner class to identify which

arrival point agents are generated at. The arrival window is a range of time agents can randomly

enter the simulation, which is defined by a minimum and maximum time. For example, if the

minimum and maximum times are 1 sec. and 5 sec., respectively, then an agent will randomly

spawn at the arrival point as quickly as once per second or as slowly as once every five seconds.

Finally, the agent model is a reference to the physical agent that will be generate. It is possible

for this simulation to have different kinds of agents, but there is currently only one type of agent

model.

Additionally, arrival points are typically located at the front of the terminal building. However, if

an arrival point is past a check-in area or a security line, then there are also options in the

scheduling class to provide agents with the required clearances for that area.

Departure points are similar to arrival points, which are defined by a name, a location, a

departure window, and a departure time. The name and location are identified by the agent

spawner class to remove agents from a given location. The departure window is a random range

of time when a location is accessible, like a gate that is ready for boarding, defined by a

minimum and maximum value. A departure time is randomly assigned for each departure point

based on this window. If the agent reaches the departure point before the departure time, then

218

Figure 3.3.m: An example of a simulation schedule assigned in the Unity inspector properties, using

the scheduling script, with 3 arrival points and 2 departure points.

219

they cannot exit and must wait. Only after the simulation time passes the departure time are

agents able to exit through their assigned target.

In summary, the scheduling class is responsible for the locations where agents enter and exit the

simulation, and the total number of passengers. The scheduling class defines arrival points and

departure points, which are locations agent enter and exit the simulation from, respectively.

Both arrival and departure points are assigned a time range, which determines a random

frequency of agents entering or exiting. There can be more than one arrival or departure point,

as long as the scheduling class assigns agents to these locations before the simulation starts. If

an agent reaches their departure point, which is considered their primary target, then the agent

must wait to exit until the gate’s assigned departure time.

220

Scheduling Class: Variables and Methods

numberOfPax

100, 0 - ∞

Total number of agents expected in
the simulation, default is 100 pax
(passengers)int

Variable

Values

Description
Type

arrivals

-

List of locations and conditions
for agents to enter the simulationArray of ArrivalPoints

depatures

-

List of locations and conditions
for agents to exit the simulationArray of DeparturePoints

Variables

Variable

Values

Description
Type

Local Class: ArrivalPoint

MinArrivalTime

0.0 - ∞

Minimum time range between
passengers entering at the given
locationfloat

location

(x,y,z)

Reference to the physical object
(door, portal) of the arrival
pointTransform

agent

Agent1

The type of agent model that is
spawned at the given locationGameObject

entrance

“Entrance 1, 2, ...”

the name of the location
passengers enter from as textstring

MaxArrivalTime

0.0 - ∞

Maximum time range between
passengers entering at the given
locationfloat

Figure 3.3.n: Key variables for the scheduling class, page 1.

221

Figure 3.3.o: Key variables for the scheduling class, page 2.

afterCheckIn

true, false

Condition if the arrival point is
after the check-in area, gives
agents relevant clearances at
start

bool

afterSecurity

true, false

Condition if the arrival point is
after the security area, gives
agents relevant clearances at
start

bool

Variable

Values

Description
Type

Local Class: DeparturePoint

departureTime

0.0 - ∞

The time when the exit opens and
agents can leave the simulationfloat

exit

“Gate A, B, ...”

The name of the location
passengers exit from as textstring

location

(x,y,z)

Reference to the physical object
(door, portal) of the departure
pointTransform

MinDepartureTime

0.0 - ∞

Minimum time range for depature
time at the given locationfloat

MaxDepartureTime

0.0 - ∞

Maximum time range for depature
time at the given locationfloat

222

Itinerary Class

The itinerary class manages a list of tasks in the airport for an agent to complete, like a checklist.

This acts as a person’s memory, who is keeping track of things they need to do and places they

need to go. In general, the itinerary class informs the perception class when to perform certain

actions. These actions may include getting checked in for a flight, memorizing a departure gate,

or double-checking the time.

The main function in the itinerary class is called the Checklist, which repeatedly iterates through

all the agent’s tasks to see if they are completed. The checklist primarily focuses on the

departure process, which includes, check-in, security screening, and gate boarding. Agents must

complete each process in order before they can move into the next area.

For example, the first task for the agent is to get checked in. If the agent is not checked in at the

start of the simulation, the itinerary class tells the perception class to look for a check-in

counter. Once the agent finds the check-in counter, the itinerary class memorizes the location of

their chosen line, or selected counter, which is used as a reference during the check-in process.

When the check-in process is finished, the perception class sets this as complete in the itinerary

class, which indicates the agent has checked in. After the agent is checked in, the checklist

moves to the next task in the list, which in this case would be security screening.

The same process repeats for each task the agent must complete. This involves the itinerary class

informing the perception class of what objects to look for, and the perception class letting the

itinerary know when the corresponding process is done. In addition to the departure process,

the itinerary class also manages conditions for signage, queuing, and non-processing domains.

If the agent is early to the gate, the itinerary tells the perception class to wait at the gate until it

becomes the departure time. This may result in the agent going to the retail area, using the

washrooms, or sitting in the waiting area. Otherwise, once it becomes the departure time, the

itinerary class informs the perception class to exit through the gate.

In summary, the itinerary class functions like a checklist, which informs the agent’s perception

class of what the agent should be doing. The primary checklist is the departure process, which

requires the agent to complete each task before moving into the next area. If a task is

incomplete, the itinerary class informs the perception class of what to look for. Otherwise, the

perception class will mark off each task as the agent completes it. The checklist also manages

conditions for non-processing domains, which may occur before the agent’s departure time.

223

Figure 3.3.p: Process logic for the itinerary class.

Itinerary Class: Process

Start
Initializes the itinerary

Checklist
List of tasks to complete

checkedIn
Is the agent checked in?

clearedThroughSecurity
Is the agent past security?

Checklist_Gate
Toggles gating process

Checklist_Security
Toggles security process

Checklist_CheckIn
Toggles check-in process

goToCheckInCounter
Send agent to check-in counter

departureTime
Is the gate open for departure?

primaryTarget
Agent’s assigned destination

chosenLine
Memorizes a selected object

...
Triggers for other conditions,

like signage or food

needToWait
Agent goes to waiting area

goToGate
Send agent to gate

Seating
Agent finds a place to sit

GoToTarget
Agent navigates to target

CheckInLine
Agent chooses a counter

goToSecurity
Send agent to security line

SecurityLine
Agent chooses a screener

CreateLocalTarget
Decides what agent does,
given what agent can see

Perception
Class

Perception
Class

Perception
Class

Perception
Class

No

No

Yes

No
Yes

Yes

224

Itinerary Class: Variables and Methods

primaryTarget

“Gate B”

Name of the object representing
the agent's end destination,
default is Gate Bstring

Variable

Values

Description
Type

depatureTime

0.0 - ∞

The agent's flight departure time
float

boardingPass

true, false

Checks if the agent has a boarding
pass; agent has no boarding pass
by defaultbool

goToCheckInCounter

true, false

Triggers for the agent to go to
the check-in counterbool

queueForCheckIn

true, false

Trigger for check-in queuing
bool

Variables

checkedIn

true, false

Checks if the agent has been
checked into their flight; agent
has not checked in by defaultbool

goToSecurity

true, false

Triggers for the agent to go to
securitybool

queueForSecurity

true, false

Triggers for security queuing
bool

clearedThroughSecurity

true, false

Checks if the agent has been
cleared through security; agent
has not clear security by defaultbool

Figure 3.3.q: Key variables for the itinerary class, page 1.

225

Figure 3.3.r: Key variables for the itinerary class, page 2.

goToGate

true, false

Triggers for the agent to go to
their gatebool

inQueue

true, false

Checks if the agent is in a queue
bool

hasQueued

true, false

Checks if the agent has finished
queuingbool

hasReadSign

true, false

Checks if the agent has already
read a signbool

targetFound

true, false

Checks if the agent has found
their primary targetbool

perception

-

Reference to the agent's
perception classPerception

chosenLine

-

Reference for the agent's choice
of queue line or other airport
objectsTransform

charcter

-

Reference to the agent's
characteristics classCharacteristics

readingSign

true, false

Checks if the agent is reading a
signbool

gettingFood

true, false

Triggers if agent is getting food
bool

gotFood

true, false

Checks if the agent has aready
gotten foodbool

needToWait

true, false

Checks if the agent needs to wait
at the gatebool

226

Method Description
Type

Checklist

- | Checklist_“ ”

Agent's list of assigned tasks,
which calls other functions based
on activityvoid

Checklist_CheckIn

boardingPass | goToCheckInCounter

Is the checklist for the airport
check-in processvoid

Input | Output

Checklist_Gate

clearedThroughSecurity | goToGate

Is the checklist for the gating
processvoid

Checklist_Security

checkedIn | goToSecurity

Is the checklist for the airport
security processvoid

Methods

Figure 3.3.s: Key methods for the itinerary class, page 3.

227

Chapter 3.4

Simulation Utility Classes

Simulation utility classes deal with user control and help to optimize the code while the

simulation is running. This includes agent spawner, path request manager, heap, and field of

view editor. The agent spawner class is created in this thesis to manage agent generation. Path

request manager and heap are based on Lague’s A* Pathfinding (2016) tutorial [1] and the field

of view editor is based on Lague’s Field of View Visualizations (2015) tutorial. [2] Lague gives a

better description of how these classes work than this thesis can explain. Therefore, this chapter

gives a brief summary of how they are used.

Agent Spawner Class

The agent spawner class controls how agents are added and removed from the simulation. A

spawner is another name for a generator or creator, which acts like a control panel for the user.

It can select different types of agent navigation and modify how fast the simulation is run. Most

options in this class are controlled by a keyboard hotkey, which the user can press at any point

during the simulation. The spawner will then automatically assign agent characteristics and

properties.

For this thesis, the user can select from three types of starting conditions. The first starting

condition spawns (generates) agents with direct navigation, which is initiated by pressing the

“D” key. This makes agents navigate straight to their target using the shortest A* path, as

described in the perception class. The second starting condition spawns agents with perceptive

navigation, which is initiated by the “E” key. The third condition starts agents walking if there

are already agent models placed in the environment, which is initiated by the “W” key. The first

two conditions assume there are no agents in the world from the beginning, and spawn new

agents at scheduled arrival points. Whereas the third condition occurs if agents are already

placed in environment and the user wants to start them moving from there. This is commonly

1. Lague, Sebastian. "Pathfinding/Episode 9 - smooth path 02/Assets/Scripts". GitHub. December 30,

2016. https://github.com/SebLague/Pathfinding/blob/master/Episode%209%20-
%20smooth%20path%2002/Assets/Scripts.

2. Lague, Sebastian. "Field-of-View/Episode 02/Editor". GitHub. December 28, 2015.
https://github.com/SebLague/Field-of-View/tree/master/Episode%2002/Editor.

228

used for validation tests based on the IMO standard for evacuation simulation, which requires a

predefined number of agents in a given space, like 20 passengers starting in one room.

While the simulation is running, the user may press the “Q” key to remove all the agents from

the world. However, this does not reset the simulation time, like the arrival and departure times.

Instead, resetting the time requires restarting the simulation.

The agent spawner class can also control the simulation time scale, or how quickly the discrete

simulation is updated. By default, the time scale is set to one, or real-time. Although the user

may press the plus (+) or minus (-) keys to increase or decrease the time scale by increments of

one, respectively. This will scale all properties of the simulation, including agent walking speeds,

processing times, and scheduled departure times. This is useful for creating time-lapses or

decreasing the simulation time of long airport processes. However, running too fast of a time

scale causes the thesis’s agents to encounter pathfinding issues, like missing waypoints.

The agent spawner class continually works in the background of the simulation. After the user

makes their selection, the spawner repeatedly adds agents at arrival points, based on the

conditions defined in the scheduling class. When an agent is spawned, the class randomly

assigns them a primary target and random characteristics. As mentioned in the scheduling class,

a primary target is assigned to each agent from the available departure points. Likewise, the

spawner calls the characteristic class to generate new agent properties based on distributions

provided by the IMO standard for evacuation simulations. Additionally, the agent spawner class

randomly assigns airport priorities within the thesis’s selected six airport domains. New agents

have an equal probability of receiving any given property, which represents a random

population. Although, the agent spawner class can also incorporate statistical data to determine

how the population is generated.

When an agent reaches their primary target, the agent spawner class is responsible for recording

their corresponding information and removing them from the simulation, like an exit checklist.

Before the agent is removed, the information stored in their characteristics class is complied

together into one string of text. This string of text contains the agent’s name, age, gender,

primary target, simulation time, overall architectural score, all priorities (in alphabetical order),

their corresponding importance, and weighting. Once this is recorded, the string is sent to the

architectural class to be stored in a master list. The process of removing the agent itself requires

making sure the physical agent model, local targets, and components are deleted from the

environment.

229

In summary, the agent spawner class is responsible for adding and removing agents from the

simulation, which is controlled by the user using keyboard hotkeys while the simulation is

running. The user can decide to spawn (generate) agents with or without perception, and can

control the simulation time scale, either a faster or slower rate, within reason. The agent

spawner class works in the background adding and removing agents at assigned locations based

on the information defined in the scheduling class. This includes assigning agent characteristics

and priorities based on a random population distribution. Once an agent reaches their target,

the spawner deletes the agent model and compiles the agent’s properties into a string of text,

which is sent to a master list in the architecture class.

Agent Spawner Class: Process

Start
Initializes the agent spawner

SpawnAgents
Control to add or remove
agents from the simulation

SpawnTimer
Adds agents to simulation

based on scheduling

AgentsExit
Removes agent from world
and compilies final score

SimulationControl
Modifies simulation speed

location
Reference to agent’s target

schedule
Reference to timing and

arrival/departure locations

character
Reference to agent’s properties

information
Records agent’s properties

Priorities
List of overall agent scores

Scheduling
Class

activeAgents
List of current agents in the

simulation

a

aScheduling
Class

Architecture
Class

Characteristics
Class

Figure 3.4.a: Process logic for the agent spawner class.

230

Agent Spawner Class: Variables and Methods

activeAgents

-

List of agents currently in the
worldList of GamesObjects

Variable

Values

Description
Type

schedule

-

Reference to the scheduling class
Scheduling

arch

-

Reference to the architecture
classArchitecture

character

-

Reference to agents'
characteristics classesCharacteristics

currentSpaces

-

Reference to the architectural
spaces currently in the worldGameObject

perceptive

true, false

Determines if agents navigates
with perception or direct pathbool

spawnedAgentCount

0 - ∞

Keeps track of how many agent have
entered the simulationint

agentCapacity

30

Maximum number of agents allowed
in the simulation at any given
time (default 30)int

currentActiveAgents

true, false

Records the number of agents
currently running in the
simulationint

Variables

Figure 3.4.b: Key variables for the agent spawner class, page 1.

231

startPerceptiveAgentsKey

W

Keyboard shortcut to start agents
moving with perception who are
already in the worldKeyCode

spawnPerceptiveAgentsKey

E

Keyboard shortcut to begin adding
agents to the world with
perceptionKeyCode

spawnDirectAgentsKey

D

Keyboard shortcut to begin adding
agents to the world with direction
routingKeyCode

removeAgentsKey

Q

Keyboard shortcut to remove all
agents currently in the worldKeyCode

resetTimeScaleKey

1

Keyboard shortcut to reset the
time scale to one (default speed)KeyCode

fasterTimeKey

+

Keyboard shortcut to increase the
time scale by oneKeyCode

slowerTimeKey

-

Keyboard shortcut to decrease the
time scale by oneKeyCode

W

E

D

Q

1

Figure 3.4.c: Key variables for the agent spawner class, page 2.

232

Figure 3.4.d: Key methods for the agent spawner class, page 3.

Method Description
Type

SimulationControl

“1”, “+”, “-” | Time

Controls how fast the simulation
is runningvoid

SpawnAgents

“W”, “E”, “D”, “Q” | SpawnTimer

Allow user to control adding or
removing agents from the
simulationvoid

Input | Output

SpawnTimer

schedule | agents

Reoccuring function controlling
how agents enter the simulation;
assigns random characteristics and
targets based on scheduling

IEnumerator

AgentsExit

activeAgents | activeAgents

Removes agents from the simulation
and compilies their corresponding
architectural scorevoid

AgentTime

_startTime, endTime | finalTime

Determines how much simulation
time the agent spent doing
something given a start and end
time in seconds

float

Methods

233

Path Request Manager Class

The path request manager class regulates how often agents use the A* algorithm, when there are

a lot of agents trying to navigate at the same time.

This class works like a lending library, in which the A* algorithm is a book that agents are trying

to check out from the manager. The path request manager is responsible for controlling which

agent gets to read the A* algorithm. Only one agent can check out the A* at a time. If there is

more than one agent trying to access the A* at the same time, then they must wait their turn in a

virtual queue line.

Before entering this virtual queue, agents must submit a path request to the manager class. A

path request describes where the agent is standing and where the agent wants to navigate to.

The path request manager takes these requests, one at a time, and feeds them into the A*

algorithm. If the A* was successful at finding a path, the path request is sent back to the agent as

a list of waypoints, which the agent can follow.

In summary, the A* algorithm can only be used by one agent at a time, which is a problem if

there are too many agents in the simulation. So, the path request manager class controls which

agent gets to use the algorithm. Agents must submit path requests to the manager and wait in a

virtual queue until it is their turn to use the A*.

Figure 3.4.e: Path request manager process.

Path Request Manager Process

Finds Local Target Creates Path Request

(x1,y1,z1)

(x2,y2,z2)

Waits in Queue A* Generates Path

234

Heap Class

The heap class optimizes the way nodes are sorted during pathfinding. An architectural space

that is 10 x 10 metres square can require the A* algorithm to calculate up to 250 nodes, which

can be slow. So, the heap class is meant to organize the nodes in a way that makes it easier to

compare node costs.

Heap is an abstract tree-based data structure that orders information based on its priority (cost;

not airport priorities). Instead of comparing every node in a set, heap only compares nodes that

are part of the same tree branch. Like a family tree, heap works by comparing child nodes to

parent nodes. The rule of Lague’s heap tree is that a parent node should always have a lower

cost than a child node.

When the heap function comes across a new node, it adds the node to the last tree branch as a

new child (Fig.3.4.f). Heap then checks if the child node has a lower cost than its parent on the

same branch. If the cost is higher, the child node stays where it is. If it has a lower cost, then the

child swaps with the parent’s position in the tree. Heap then continues to check further up the

tree branch to see if the child’s cost is lower than its grandparents. If the child’s cost is lower

than all its grandparents, then it becomes the top position on the tree, or the first position.

When the A* pathfinding algorithm is looking for the next lowest cost node, it only needs to take

the value of the node in this first position, which will always be the lowest cost. Therefore, heap

saves the pathfinding time from having to check all the other child nodes in the rest of the tree.

In summary, heap organizes pathfinding nodes in a tree-based structure to reduce the time it

takes to compare node costs in large architectural spaces. Heap adds new nodes to the tree as a

child node to a parent. If the child has a lower cost that its parent, then it moves up the tree. The

node at the top of the tree, or first position, is then given to the A* algorithm as the lowest cost

node in that set.

235

Field of View Editor Class

The field of view editor class allows the agent’s field of view to be displayed during the

simulation. The editor works by using Unity’s built-in editor components called handles. As

described in the field of view class, the agent’s field of view is made up of thin triangles. Each

triangle is constructed by the agent’s viewpoints, or the locations projected rays intercept with

an object. The editor uses the handles to trace each of the triangles along every viewpoint, based

on the given angle, radius, and direction the agent is looking. The editor then assigns these

triangles a handle colour for rendering, which is then displayed by the editor while the

simulation is running.

Heap Tree Process Example

drop

 raise

 raise

drop

Nodes Costs = [10, 20, 14, 48, 34, 44, 38]

10

20

48 34 44

14

38

Nodes Costs = [14, 20, 38, 48, 34, 44,10]

new child
node

parent pathfinding
selects top node

child

14

20

48 34 44 10

38

Field of View Editor

Viewpoint Triangles Handles Triangles

Figure 3.4.f: Heap tree process, based on diagram by Lague (2014), drawn by authour.

Figure 3.4.g: Field of view editor displays "handles triangles".

236

Chapter 3.5

Simulation Assumptions and Limits

While creating this agent simulation, the thesis made numerous assumptions and

simplifications to get a working model. This includes limiting the function of the agents,

passenger behaviour, airport processes, architectural conditions, and simulation capacity. A

model of a system is only as accurate as the information the designer chooses to add to it.

Therefore, although the current state of the simulation has its limitations, it should still be

representative of basic people interacting with architectural conditions.

Agent Model

Perception:

Agents are perceptive of their environment. Any objects that fall within their field of view can be

perceived. The simulation illustrates agent’s line of sight as a 2D isovist. However, agents can

perceive elements within a 3D sphere of space around them, including wayfinding signs above

their heads.

The way agents read information assumes they have ideal vision. This means they can read

objects at the far end of a room as clearly as they can read objects right in front of them. Agents

will recognize an object the instant it falls within their line of sight. It is assumed agents can see

the entire length of the building. The simulation allows the agent’s field of view to have different

sizes of view radius and angle. So, changing the field of view can influence the location where

they perceive their surroundings.

Navigation:

Agents need to be assigned a goal and are always working towards an end target. There are

moments in the simulation when agents are wandering or waiting, but these are meant to

control agents’ movement on their way to the gates. Navigation decisions are only updated after

agents reach a local target. They cannot adjust their path after they started walking. This issue is

minimized by shortening how far agents choose to walk (less than 2 𝑚𝑚 ahead), and as a result,

increases the frequency of direction choice updates.

237

Agents can avoid walking through obstacles and other physical objects. They are aware of other

agents and slow down in crowded areas, but they can walk through other people if they become

stuck. The simulation does have functions to avoid other people, but it is disabled because of

navigation issues and simulation bugs. A better model for avoiding people can replicate Mass

Motion’s agent “feelers” (proximity detection), which forces agents to navigate around crowded

spaces.

Crowd Behaviour:

The thesis cannot model the behaviour of groups of people to the level of a proper crowd

simulation. Agents are aware of other agents in the simulation, but they can only adjust their

walking speed to avoid colliding with others. It is not capable of modelling social structures or

group dynamics. For this reason, the simulation does not consider social interaction between

agents, like a family or a group of friends who may walk together.

The simulation can only hold about 30 passengers at anytime. More people than this causes the

model to slow down considerably and lag. The simulation can continue to add more people over

time as passengers exit the terminal, as long as the number of active agents does not exceed the

given capacity.

Memory:

When agents start the simulation, it is assumed they have no knowledge of the building. they

gain knowledge of where things are from walking through the terminal. Agents can memorize

airport domains, their priorities, and architectural experience. This includes if they checked into

their flights, what their departure gate is, and how satisfied they are with conditions in the

terminal.

Agents do not remember where they have already walked, or areas they have already been

through. This allows agents to walk back the way they came if they get lost or stuck in dead-end

corridors. Passengers are restricted to walk through security before checking in and have

memory of being cleared through security after passing the checkpoint.

Agents have short term memory when reading a sign to know which direction to walk. When

passengers see a sign, they are always inclined to read it, even if they have seen it before. This

ensures agents who are lost can read the same sign again to relearn where to go.

238

Passenger Model

Characteristics:

Agents in these simulations approximate human behaviour that is typical of passengers an

airport terminal. Agents are considered passengers when they are given characteristics. In every

simulation test, the characteristics are based on the International Maritime Organization (IMO)

1238 guidelines for evacuation simulations, which is the same standard used to validate

MassMotion crowd simulations. [1]

Agents are given random age, gender, and walking speeds based on the probability distributions

from IMO. The simulation assumes that passengers are fully able adults, who can function

independently. Age is assigned from 18 to 75 years old. Although it is possible to assign ages

outside this range, there is no behaviour for children. Passenger walking speeds are dependant

on age and gender, but only walking speed affects crowd behaviour. The simulations only

consider male and female genders to align with the IMO guidelines. It is possible to define non-

binary genders with the existing functions, but IMO has no walking speed data associate with

this. Passengers are also given random names to help identify them, but the names do not affect

their behaviour.

Passenger Types:

All passengers are considered part of general boarding. There are no business travellers,

“frequent flyers”, or “preferred” airline customers. The primary demographics for this thesis are

passengers who do not travel often. They are more likely to rely on using their surroundings to

inform decisions, rather than relying on past experience or memory.

The differences between passengers are defined by their airport priorities. As explained in

earlier chapters, the thesis selected six common priorities in the processing and non-processing

airport domains, as described by Wiredja et al. All passengers have the same set of priorities, but

their importance is randomly assigned. The thesis assumes that a random distribution of

priorities is representative an airport population for testing. However, further research is

needed to determine if different cultures or regions place higher importance on certain airport

domains than others.

1. Arup. “The Verification and Validation of MassMotion for Evacuation Modelling.” Ove Arup &
Partners Ltd. (August 10, 2015): 2.

239

Disabilities:

Disabilities are represented in the agent model with limited scope. The simulations do consider

passengers with walking disabilities, based on the distribution listed in IMO. However, walking

disabilities only makes agents speed slower. Disabled people in this simulation do not include

equipment like walkers and wheelchairs, and they cannot be guided by social support workers.

There are no visually impaired passengers represented in these simulation tests. However, it is

possible to model a passenger with visual disabilities by restricting a passenger’s field of view to

a smaller radius. This may approximate people who have restricted vision or different levels of

perception. But further research is needed to better represent these conditions.

Non-Processing Behaviour:

Passengers can wander around the gate areas, but there are no functions for shopping or eating

in the retail and concession spaces. People can interact with food and retail counters to simulate

purchasing something. However, once the process is done, the agent returns to wandering. Most

of the time, if agents are wandering around, they are searching for their gate.

Passengers have awareness of food and washroom areas, but they do not have hunger or bladder

needs. Instead, the simulation randomly assigns passengers with a high priority for food or

washroom areas, which approximates people who are hungry or need to use the washroom.

Essentially, people who prioritize the washroom are more likely to spend time searching for a

washroom in the airport. Although, a more developed simulation should consider passengers

with changing hunger and bladder needs over time.

Airport Model

The agent simulation only considers passenger flows for the departure sequence, which includes

check-in, security screening, departure gates. Passenger flows like arrival, connecting flights,

curbside, and transit are not modelled for this thesis. Additionally, there is no modelling of the

baggage systems, service spaces, or aircraft logistics.

Processing:

All passengers follow the same procedures in check-in and security for general boarding. There

is no priority check-in lanes or priority boarding. The only variation is the time spent at service

counters or screening machines, which the simulation randomly assigns. All passengers check in

a single bag, which the are pulling with them when they enter the terminal. There is no carry-on

240

luggage or personal items. Additionally, passengers move and behave the same whether or not

they are pulling a suitcase.

Passengers can walk through queue lines to approximate waiting in line. However, the thesis

does not use resources to allocate selected counters, which is more typical of a queuing

simulation like Arena. Passengers will walk through queue lines for the security area, but do not

stop to wait in line. To account for this behaviour, a time delay factor is applied when calculating

architectural value at the end of the process.

Additionally, the simulations do not consider customer service, since there are no airport staff.

As explained in earlier chapters, customer service is related to passenger experience, but it does

not impact architectural space directly.

Flight Times:

Gates are assigned a random departure time, relative to the length of a given test. It is assumed

there is one flight departing from each gate. Flight delays are not considered in these

simulations. When the simulation reaches the assigned departure time, it is assumed every

passenger begins boarding their flights when they reach the gates. Passengers can wait at the

gate if they are early to their flight. These wait times are accounted for in the calculation of

architectural value as a random variable.

Architectural Model

The scope of the architectural environment is limited to an airport terminal or similar transit

facility. The thesis covers basic architectural features like walls, doors, and thresholds.

Transparent materials like windows are not included in these simulations. Although, the thesis

expects that transparent materials like glass would allow passengers to see into other areas but

restrict them from walking to the other side. The terminal building is limited to a single storey.

There is no vertical circulation like stairs, escalators, or elevators. Multiple floors can only be

added if navigation functions, like A*, were rewritten to consider movement in vertical direction

(y-axis variable in Unity).

The size of the terminal building is limited by the agent’s navigation. Terminal buildings bigger

than about 100 x 100 𝑚𝑚, or 10 000 𝑚𝑚2, becomes too laggy (slow) to simulate because of the high

number of navigation nodes to compute for the A* pathfinding. Larger terminal models can

instead disable A* pathfinding and use vector navigation. Vectors can produce equivalent

behaviour to the A* pathfinding if agents are navigating over short distances.

243

Part 4:

Simulation Tests

Part 4 goes through the tests and experiments to show how the agent simulation works. Chapter

4.0 goes through the verification and validation tests based on existing standards. Chapter 4.1

demonstrates specific components introduced by this thesis, like wayfinding, field of view, and

priorities. Chapter 4.2, experiments with a hypothetical terminal layout to show how changing

spaces and agent priorities affects architectural value. Finally, chapter 4.3 tests how the agent-

model works in an existing airport. The thesis model compares an airport with good passenger

experience to an airport that has an objectively worse passenger experience, to see if it can

replicate the same results.

244

Chapter 4.0

Verification and Validation Tests

The first set of tests concerns verification and validation of the simulation. The intension is to

use an established standard to check if basic components of the agent and environment are

working correctly. Some of these components include:

• Agents move at realistic speeds

• Agents can navigate around walls

• Agents are assigned correct characteristics

The thesis uses standardized tests from the International Maritime Organization (IMO) and the

National Institute of Standards and Technology (NIST), which are used to validate MassMotion.
[1] These standards include eleven tests from IMO 1238 [2] and another eight tests from NIST

1822. [3] Their primary purpose is to evaluate if a simulation can correctly represent human

behaviour during an emergency evacuation. Since the thesis only needs to verify basic agent

movement, not all of these tests are considered. Each test covers a specific condition like

walking speed, emergency response time, crowd flow rates, group behaviours, and social

influences. To help determine which tests are relevant, the thesis organizes the IMO and NIST

tests into four categories: Architectural Conditions, Crowd Dynamics, Social Behaviour, and

Emergency Situations (4.0.a). Out of these categories, the thesis determines it has the

conditions necessary to recreate the following tests:

• IMO Test 1: Corridor Walking Speeds (Architectural)

• IMO Test 6: Rounding Corners (Architectural)

• IMO Test 4: Flow Rates (Crowds)

• IMO Test 7: Demographics (Social)

1. Arup. “The Verification and Validation of MassMotion for Evacuation Modelling.” Ove Arup &
Partners Ltd. (August 10, 2015): 2.

2. IMO. “Guidelines for Evacuation Analysis for New and Existing Passenger Ships.” International
Maritime Organization (IMO). MSC.1/Circ.1238. October 30, 2007. https://nsof.no/media/1129/imo-
msc-guidelines-for-evacuation-etc.pdf.

3. Ronchi, Enrico; Kuligowski, Erica D; Reneke, Paul A; Peacock, Richard D; Nilsson, Daniel. “The
Process of Verification and Validation of Building Fire Evacuation Models.” Technical Note (NIST TN) -
1822, (November 2013), http://dx.doi.org/10.6028/NIST.TN.1822.

245

Test Name NISTIMO Tested

Pre-evacuation time distributions

A
rc

hi
te

ct
ur

al
 C

on
di

tio
n

Cr
ow

d
D

yn
am

ic
s

Em
er

ge
nc

y
Si

tu
at

io
n

So
ci

al
 B

eh
av

io
ur

Speed in a corridor

Test 5 Verf.1.1

Test 1 Verf.2.1

Test 2 Verf.2.2

Test 3 Verf.2.2

No

IMO and NIST Verification Tests

Yes

Speed up a staircase No

Speed down a staircase No

--- Verf.2.5

--- Verf.2.6

Reduced visibility vs walking speed No

Occupant incapacitation No

--- Verf.2.7

Test 8 Verf.2.8

Elevator usage No

Horizontal counter-flows (rooms) No

--- Verf.2.9

--- Verf.2.10

Group Behaviour No

People with movement disabilities No

No

No

Test 10 Verf.3.1

--- Verf.3.2

Exit route allocation

Social Influence

No

No

--- Verf.3.3

--- Verf.4.1

Affiliation

Dynamic availability of exit

No

Yes

Test 11 Verf.5.1

Test 4 Verf.5.2

Congestion

NoTest 9 ---Exit flow for a large room

Maximum flow rates

Test 6 Verf.2.3

Test 7 Verf.2.4

Movement around a corner Yes

Assigned demographics Yes

Figure 4.0.a: IMO and NIST verification tests for evacuation simulations, based on diagram from the

NIST 1822 (2013), redrawn by author.

246

Test 1: Corridor Walking Speeds

The first test is based on IMO 1238 Test 1 and NIST 1822 Verf.2.1. The setup and conditions are

illustrated in Fig.4.0.b. This test verifies if an agent can walk down a straight corridor at a

constant speed over a given amount of time. The test assigns the agent a walking speed of 1 𝑚𝑚/𝑠𝑠,

which is representative of a typical adult. [4] The geometry of the corridor is 2 𝑚𝑚 wide by

40 𝑚𝑚 long, to the inside dimensions of the walls. For this thesis’s setup, it makes sure that the

entrance and exit portals are just before and after the zero and 40 𝑚𝑚 marks, respectively, so that

agents are travelling the full 40 𝑚𝑚 distance. The test also expects to see a deterministic result,

since the walking speed and distance are a constant value. [5] This means, if the agent is

travelling at 1 𝑚𝑚/𝑠𝑠 over a distance of 40 𝑚𝑚, they should always complete this in 40 seconds.

The images in Fig.4.0.d illustrate the test in the agent simulation. The procedure begins with an

empty corridor. The user of the simulation starts the test by spawning (generating) an agent at

the start portal. The agent immediately begins walking down the corridor to the other end using

A* navigation (Fig.4.0.c). When the agent reaches the end of the exit portal, they are removed

from the simulation and their final time is recorded. The simulation is setup so that multiple

agents are continuously spawned every 40 seconds, to test multiple agents at once. Agents were

spaced out far enough so that they do not interfere with each other.

The final results of Test 1 are illustrated in Fig.4.0.e, which demonstrates a consistent time of 40

seconds. Therefore, this test is passed.

It was observed that agents walk directly to the target using A* navigation, since they have full

view of the exit at the other end. Out of curiosity, the thesis also experimented with other

conditions like different perception levels and walking speed. It was also observed that if agents

had a restricted field of view shorter than the 40 𝑚𝑚 corridor, then they navigated to local targets,

which they followed until the exit was in their field of view. But this had no significant change to

the agent’s travel time. The data from all trials conducted for this test are listed in Appendix A.

4. Ronchi et al (NIST). “Verification and Validation”. 8.
5. Ronchi et al (NIST). “Verification and Validation”. 8.

247

IMO 1238 Test 1 / NIST 1822 Verif.2.1Standard

Test 1: Corridor Walking Speeds

- Corridor is 2 m wide and 40 m long

- Agent walking speed is 1 m/s

- Agents must walk from one end of the corridor to the other in 40 seconds

40 m

Entrance Portal

Purpose Determine if agents can move down a straight corridor and maintain a
constant speed over time.

Floor Plan

Status:

Conditions

2 m

Exit Portal

Passed

Figure 4.0.b: Setup and conditions for test 1; the test was sucessful.

248

Figure 4.0.c: Agent walking in corridor from entrance.

Figures 4.0.d: Screen captures at time intervals during the test of one agent.

00:04

00:17

00:28

00:39

249

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60

Tr
av

el
 T

im
e

(s
)

Number of Agents

Test 1: Corridor Walking Speeds

Figure 4.0.e: Travel times for a sample of 50 agents is consistently 40 seconds.

250

Test 2: Round Corners

The second test is based on IMO 1238 Test 6 and NIST 1822 Verf.2.3. This test verifies if agents

can navigate around a corner without walking through walls or clipping through the

environment boundaries. The geometry of the test is a left-hand 90° corner, which consists of a

2 𝑚𝑚 wide corridor and 10 𝑚𝑚 long leg segments. The setup requires 20 people to be uniformly

distributed within a starting area that is 2 x 4 𝑚𝑚 (Fig.4.0.f). The direction of travel goes from the

starting area, around the corner, to the exit portal at the end of the corridor.

In this test, agents use A* navigation and have a walking speed of 1 𝑚𝑚/𝑠𝑠. Agents are aware of

walls and boundaries. However, due to debugging issues with the proximity function, collisions

between agents are disabled for this test. Some of the debugging issues cause agents to walk

backwards, which is not representative of basic navigation. The thesis believes turning off agent

proximity is reasonable because the purpose of this test is only to show how agents navigate

around walls.

The test begins with agents walking from the starting area towards the corner (4.0.g). Since they

are navigating using local targets, most agents navigate to a spot in front of the inside corner.

The agents appear to bunch up together at this point, since they are walking to similar locations

(Fig.4.0.h). As they reach the corner, it appears some agents can see further down the corridor,

whereas other agents cannot. Those that can see further, start walking towards the exit. Agents

who cannot see further then take a wider path towards the outside corner. Taking the wider path

gets them in a position to see the exit portal in their periphery, which they start walking to. As

all the agents get closer to the exit, they begin to line up together since they are all navigating to

the same point. Once they reach the exit portal, the agents are removed from the simulation

(Fig.0.i).

Since the agents reached the exit portal without cutting the corner, this test is passed. The

agents can navigate through the physical environment, despite the agents clipping through each

other. The issues with agent collisions will require a better study of agent proximity to fix how

the simulation is coded.

251

2 m

10 m

IMO 1238 Test 6 / NIST 1822 Verif.2.3Standard

Test 2: Rounding Corners

- Left-hand 90° corner, 2 m wide corridor with 10 m long legs

- Starting area is 2 m x 4 m and has 20 people, uniformly distributed

- Agents must walk around corner to exit without going through walls

Purpose Determine if agents can move around a corner without walking through
walls or boundaries

Floor Plan

Status:

Conditions

4 m

2 m10 m

Passed

Starting Area
20 people,

uniformly distributed

Exit Portal

Direction
of Travel

Figure 4.0.f: Setup and conditions for test 2; the test was sucessful.

252

Figure 4.0.g: Agents in the starting area.

Figure 4.0.h: Agents walking around the corner.

253

Figures 4.0.i: Screen captures at time intervals during the test.

00:00

00:08

00:13

00:04

00:11

00:18

254

Test 3: Flow Rates

The third test is based on IMO 1238 Test 4 and NIST 1822 Verf.5.2. This test verifies how many

people can pass through a doorway over time. The concept is like an hour-glass full of sand; only

a certain amount of sand can physically pass through the glass over time, like people through a

doorway. For this test, the flow rate through the door must not exceed 1.33 people per second

(p/s) at any point, which is consistent with current evacuation research. [6]

The layout for this test is an 8 x 5 𝑚𝑚 room, with a 1 𝑚𝑚 opening on the 5 𝑚𝑚 wall (Fig.4.0.j). The

testing population requires 100 people, who are placed in the room as the starting area. An exit

portal is placed in a threshold just beyond the opening, which forces agents to completely pass

through the doorway before exiting the simulation.

Agent walking speeds are randomly assigned based on the IMO population distribution. The

thesis’s agent simulation attempts to model crowd dynamics using an agent proximity function.

If agents are too close to each other in a crowd, then the proximity function restricts their

walking speed, until there is more space to move. However, as seen during testing, this

proximity function did not provide ideal crowd behaviour.

The test starts with 100 agents standing in the room. The first agents that exit through the

doorway are the ones standing closest to the opening (4.0.k). However, it becomes apparent that

the crowd’s movement is inconsistent. Only the agents at the front of the group move forward.

The other agents at the back of the room appear to be deadlocked behind each other. The crowd

does not fill into open areas near the doorway. Instead, the agents appear to wait until the space

directly in front of them is free. There are instances when none of the agents move because they

are standing too close to each other (Fig.4.1.m). Sometimes multiple agents move at the same

time. This results in agents clumping together, which causes spikes in the flow rate (Fig.4.0.l).

The thesis has experimented with different proximity radii and walking speeds, which is detailed

in Appendix A. It was discovered that smaller radii and slower walking speeds give the closest

flow rates to 1.33 p/s. However, the inconsistency is still an issue. Under the same conditions,

the flow rates in Trial 11 (Fig.4.0.n) and Trial 12 (Fig.4.0.o) do not maintain a constant rate.

Instead, there are spikes that still exceed 1.33 p/s. Therefore, this test failed to produce realistic

flow rates. To minimize these issues for later tests, the thesis will experiment with low density

crowds, unless a better solution for agent proximity can be solved.

6. Ronchi et al (NIST). “Verification and Validation”. 9.

255

5 m

1 m
Opening

IMO 1238 Test 4 / NIST 1822 Verif.5.2Standard

Test 3: Flow Rates

- 8 m x 5 m room with a 1 m opening (in the 5 m wall)

- 100 people starting in the room

- Flow rate should be less than 1.33 p/s

Purpose Determine if the number of people passing through a doorway is below a
certain capacity

Floor Plan

Status:

Conditions

8 m

Failed

Exit Portal

Starting Area
100 people

Figure 4.0.j: Setup and conditions for test 3; the test was unsucessful due to people clumping together

causing inconsistent flow rates.

256

Figure 4.0.k: Agents walking through opening.

Figure 4.0.l: Agents clumping together causes spikes in flow rate.

257

00:00

01:12

00:16

02:15

Figure 4.1.m: Screen

captures at time intervals

during the test.

258

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

Fl
ow

 R
at

e
(p

/s
)

Time (s)

Test 3: Flow Rates - Trial 11

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

Fl
ow

 R
at

e
(p

/s
)

Time (s)

Test 3: Flow Rates - Trial 12

Figure 4.0.n: Max flow rate of 1.2 p/s, below 1.33 p/s (redline), but is not maintained over time.

Figure 4.0.o: Max flow rate spiked to 1.5 p/s, above redline, despite having same conditions as trial 11

259

Test 4: Demographics

The fourth test is based on IMO 1238 Test 7 and NIST 1822 Verf.2.4. This test verifies that the

agent characteristics are correctly assigned based on the demographic distribution listed in IMO

table 3.4. The test requires a sample population of 50 people, who are males between 30 to 50

years old. Based on table 3.4, agents must be assigned a random walking speed between 0.97

and 1.62 𝑚𝑚/𝑠𝑠. Unlike the first corridor test, which was deterministic, this test is stochastic. This

means random input speeds will produce random output times. As a result, the test is judged on

the distribution of multiple agents. If the test is successful, then the average agent walking speed

must be around 1.295 𝑚𝑚/𝑠𝑠.

There are no layout requirements, so the thesis uses a 20 x 20 m square room, with a starting

portal and exit portal on opposite walls (Fig.4.0.p). The average walking speed is calculated as

the time it takes agents to travel a distance of 20 𝑚𝑚.

The procedure for this test is similar to the first corridor test. The simulation starts with an

empty room, and an agent is spawned one at a time (Fig4.0.r). Agents immediately begin

walking once they spawn into the simulation using A* navigation. Since it is an open room,

agents can see the exit portal (Fig.4.0.q). Therefore, agents follow a straight path to the door.

Once the agent reaches the exit their time is recorded, and they are removed from the

simulation. This process is repeated for the population of 50 people, which is controlled by the

spawner utility. It automatically generates a new agent every 25 seconds, making sure they are

added after the other agents cleared the room to avoid interference.

The final result for Test 4 is illustrated in Fig.4.0.s, which illustrates the distribution of walking

speeds. As it shows, the walking speeds follow a uniform distribution and with an average of

1.28 𝑚𝑚/𝑠𝑠, which is within 1% of the expected value. Therefore, the agents are assigned the

correct demographics and the test is passed. The full list of trials performed for this test is

recorded in Appendix A.

260

Figure 4.0.p: Setup and conditions for test 4; the test was sucessful.

20 m

IMO 1238 Test 7 / NIST 1822 Verif.2.4Standard

Test 4: Demographics

- Test a population of 50 people, male, aged 30 to 50

- Average walking speeds need to be equal to 1.295 m/s

- Randomly distributed walking speeds between 0.97 and 1.62 m/s

Purpose Determine if agent characteristics are assigned correctly based on the
population distribution from IMO Table 3.4

Floor Plan

Status:

Conditions

Passed

Exit PortalEntrance Portal

20 m

261

Figure 4.0.q: Agent walking to the exit portal.

Figure 4.0.r: Screen captures at time intervals during the test of one agent.

00:01

00:14

00:07

00:19

262

Figure 4.0.s: Walking speed follow a uniform distribution, with an average of 1.28 m/s.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60

W
al

ki
ng

 S
pe

ed
 (m

/s
)

Number of Agents

Test 4: Demographics - Trial 4

263

Summary

In summary, this chapter explored verification and validation tests to determine if basic

components in this agent simulation are working correctly, such as speeds, boundaries, and

characteristics. The thesis used tests based on the IMO 1238 and NIST 1822 standards, which

are used to validate evacuation simulations, like MassMotion. Since these standards evaluate

emergency evacuation, the thesis selected four tests that were relevant to basic agent behaviour.

These were: 1. Corridor Walking Speeds, 2. Rounding Corners, 3. Flow Rates, and 4.

Demographics. The thesis managed to verify all conditions except for flow rates due to agent

proximity issues.

Corridor Walking Speeds verifies if agents can walk down a 40 𝑚𝑚 corridor at a constant speed of

1 𝑚𝑚/𝑠𝑠. The test is passed if agents can traverse the corridor in 40 seconds. The thesis ran a

sample of 50 agents with perception and A* navigation. All agents walked directly to the end of

the corridor and completed the simulation in 40 seconds. Therefore, the first test is passed.

Rounding Corners verifies if agents can navigate around a corner without walking through walls

or boundaries. The test involves 20 agents to walk from one end of the corridor, around a 90°

corner to the other end. The thesis disabled agent proximity due to navigation issues, since this

test is only concerned with agents walking through walls. During the test, agents walked closer

to the corner if they saw the exit early. Otherwise, agents took a wider path. All 20 agents walked

around the corner without going through the boundaries. Therefore, the second test is passed.

Flow Rates verifies that the number of agents walking through a 1 𝑚𝑚 doorway is limited to

1.33 𝑚𝑚/𝑠𝑠. The thesis’s agent proximity function models crowd behaviour by forcing agents to

slow down if they are too close to each other. Unfortunately, this caused agents to deadlock and

move only if the space directly in front was clear. Proximity issues made agent movement

inconsistent. Agents would occasionally clump together resulting in flow rate spikes. As an

effect, the flow rate through the door was not constant and exceeded 1.33 𝑝𝑝/𝑠𝑠 after running

multiple trials. Therefore, the third test failed.

Demographics verifies if agents are assigned the correct walking speeds based on the IMO

distribution. The test required matching the average walking speed of 1.295 𝑚𝑚/𝑠𝑠 in a population

of 50 middle-aged males. The thesis managed to match the average walking speed within 1% of

the true value. Therefore, agent demographics were correct, and the fourth test is passed.

264

Chapter 4.1

Component Tests

These tests explore new features introduced by this thesis, which existing simulations do not

typically address. The intension is to illustrate how these components affect agent behaviour in

different architectural conditions. This chapter goes through the behaviour of three key

components:

• Agent wayfinding using perception

• Change in visibility using field of view

• Influence of airport priorities in non-processing domains

Wayfinding Test

This test demonstrates the difference between A* direct navigation, like FlexSim simulations,

and A* perception navigation. The hypothesis is that agents navigating with perception do not

always take the shortest path like direct navigation, because they can be influenced by

information from the environment. This test is motivated by the experiments from Raubal in

their research of perceptive wayfinding in an unfamiliar environment. Raubal shows that people

who have no previous knowledge of a space must use their surroundings to inform their

decisions, which does not always follow the shortest path. [1]

The scenario simulates passengers trying to find their gate by navigating using the information

provided by wayfinding. The layout of this test is a square room that is 40 x 40 𝑚𝑚, with a T-

junction in the middle of the layout (Fig.4.1.a). Agents enter the simulation at an entrance before

the T-junction and exit at one of two gates, A or B, located on the other side. The T-junction is

designed to block the agents’ view so they cannot see the gates (Fig.4.1.b). There is also a

restricted area, marked by an amber rectangle, which emulates high-cost areas in FlexSim, that

agents should avoid.

1. Raubal, Martin. “Agent-Based Simulation of Human Wayfinding: A Perceptual Model for Unfamiliar

Buildings”. (PhD diss., Vienna University of Technology, (October 2001): 17-29.

265

Wayfinding Test

- 40 x 40 m space with a T-juntion that has a short and long corridor

- Entrance is before T-junction and two Gates A and B are on other side

- High-cost area (5 x12 m) placed at end of shorter corridor

- Test 1: Agents walk to Gate B through T-junction using direct navigation

- Test 2: Agents walk to Gate B through T-junction using perception navigation

- Wayfinding sign at T-junction points left for Gate A and right for Gate B

Purpose Determine if the environment can influence agents using perception
navigation to take a longer path than agents using direction navigation

Floor Plan

Conditions

Gate A

Entrance

Gate B

Result:

7 m

7 m

7 m

7 m

6 m 7 m

High-cost area
5 x 12 m

Wayfinding Sign
(< A | B >)

7 m

40 m

28 m12 m

16 m 8 m

Agents with perception took a longer path after reading sign

Figure 4.1.a: Setup and conditions for the wayfinding test.

266

Agents must pass through the T-junction to get to their gates. There is a wayfinding sign at the

T-junction which points to the left for Gate A and to the right for Gate B. The left path of the T-

junction is a shorter distance to both gates then the right path, which doubles-back on itself. The

hypothesis is, agents with direct navigation will always follow the shorter path to the left,

regardless of which gate they are assigned and what they observe. Whereas agents with

perception navigation will follow the sign for Gate A to the left and for Gate B to the right.

Essentially, if agents are assigned Gate B, then agents with perception navigation are more likely

to follow the sign to the right, even though it is a longer path.

The thesis demonstrates this behaviour over two experiments. The first experiment is a baseline,

which involves agents searching for Gate B using direct navigation. In the second experiment,

agents search for gate B using perception navigation. Agents are assigned the same walking

speed of 1 𝑚𝑚/𝑠𝑠 for both experiments.

Figure 4.1.b: Agent's view at the T-junction cannot see where their gate is, and they only have the sign

to inform their decisions.

267

During the first experiment, an agent is spawned at the entrance with direct navigation. The

moment they appear at the entrance, the agent generates a complete path for itself all the way to

Gate B. The path first traces a line from the agent’s position to the T-junction. At the T-junction,

the path turns down the left corridor. Then, the path wraps around the centre wall but stays

outside of the restricted area. Finally, it traces a path around the top of the high-cost area and

goes straight to Gate B. Once the path is established, the agent begins following the path exactly,

without being influenced by the information on the sign at the T-junction (Fig.4.1.c). The agent

continues like this until it reaches Gate B, where they are removed from the simulation.

During the second experiment, an agent is spawned at the entrance with perception navigation.

When they appear at the entrance, the agent notices the T-junction and the sign above it, which

they begin walking towards. Once in front of the sign, the agent then selects a path down the

right corridor, which is the same direction the sign is pointing to for Gate B (Fig.4.1.d). The

agent follows this path down the corridor. Since the corridor doubles-back on itself, the agent

continues to walk down and around the wall, which eventually winds back towards the gates.

Once the agent reaches the end of the corridor, Gate B becomes visible. After the agent

recognizes Gate B, they walk straight towards the gate and is then removed from the simulation.

The thesis ran multiple trials of the same experiments with a population of 50 agents for both

direct and perception navigation (Fig.4.1.g). For all attempts, agents with direct navigation took

the left path, whereas agents with perception navigation took the right path. On average, the

total distance travelled for direct agents was 61.83 𝑚𝑚. The total distance travelled for perception

agents was 102.18 𝑚𝑚, which is over 40 𝑚𝑚 longer, on average. The data for these trials are list in

Appendix A. Therefore, agents with perception navigation can be influenced by the environment

to take a longer path than agents with direct navigation. As a result, this demonstrates agents

with perception have the ability to interact with architectural features to influence their

behaviour in a space.

268

Figure 4.1.c: Agent with direct navigation goes to the left.

Figure 4.1.d: Agent with perception navigation follows the sign for Gate B to the right.

269

Figure 4.1.e:A* Direct Wayfinding

00:07

00:22

00:37

00:56

Agent finds lowest

cost path to Gate

B.

Agent follows

path to the left,

indifferent of the

sign.

Agent follows

path around high-

cost restricted

area.

Agent reaches

Gate B.

270

Figure 4.1.f:A* Perception Wayfinding

00:14

00:20

00:47

01:22

Agent walks to

view sign.

Agent follows the

sign to the right.

Agent navigates

around walls.

Agent sees Gate

B and walks

towards it.

271

0

20

40

60

80

100

120

0 10 20 30 40 50 60

Di
st

an
ce

 (m
)

Number of Agents

Agent Distance Travelled to Gate B
Direct Navigation Perpcetion Navigation

Figure 4.1.g: Comparing the distance agents travelled to Gate B using direct and perception

navigation.

272

Visibility Test

This test demonstrates how isovist geometry can quantify the relative visibility differences

between smaller and larger architectural spaces. The hypothesis is that moving from a smaller

space into a larger one will increase an agent’s visibility. Likewise moving from a larger space

into a smaller one will reduce an agent’s visibility. Since the isovist geometry is a representation

of an agent’s field of view, then the isovist should also reflect these differences. The thesis

expects to quantify an agent’s visibility based on the change of the physical area of the isovist.

This thesis also compares relative areas using a custom metric called the Field of View (FOV)

ratio. This normalizes the total visible area relative to an agent’s maximum observed area over

time, where the maximum area is given a value of 1.0. For example, if the maximum area an

agent observed over time was 100 𝑚𝑚² and the current visible area where the agent is standing is

60 𝑚𝑚², then their FOV ratio for that location would be 0.6. Additionally, if this agent later

observes an area of 150 𝑚𝑚², then this would be given a ratio of 1.0, the 100 𝑚𝑚² would be

rewritten as 0.67, and the 60 𝑚𝑚² would become 0.4.

The layout of this test is designed as a corridor that transitions between a wide section and a

narrow section (Fig.1.h). It is a 42 x 24 𝑚𝑚 U-shaped space, with a 20 𝑚𝑚 wide leg and a 2 𝑚𝑚

narrow leg. There is a gate located at the end of each leg that agents can enter and exit from,

which are called the Wide Gate and Narrow Gate, respectively. There is also a transition section

between the wide and narrow corridors, which steps the width from 20 𝑚𝑚 to 9 𝑚𝑚, and 4 𝑚𝑚,

before dropping to 2 𝑚𝑚. This transition was added because agents in initial tests had difficulty

finding the narrow corridor. It also provides a gradual change in visibility instead of an abrupt

change.

273

Visibility Test

- 42 x 24 m U-shaped space, with a 20 m wide leg and a 2 m narrow leg

- 10 m long transition corridors that are 9 m and 4 m wide

- Test 1 (to Narrow): Agents walk from wide gate to narrow gate

- Test 2 (to Wide): Agents walk from narrow gate to wide gate

Purpose Demostrate that narrow spaces result in low visibility and wide spaces result
in high visibility, relatively, based on the agent’s field of view.

Floor Plan

Conditions

Result:

24 m
10 m

Visibility value was higher towards wide space than to narrow space

Test 1
Direction

Test 2
Direction

30 m 12 m

20 m

5 m

4 m

2 m
Wide
Gate

Narrow
Gate

Figure 4.1.h: Setup and conditions for the visibility test.

274

This test is divided into two experiments. The first experiment has agents walking from the

Wide Gate to the Narrow Gate (4.1.k). The second experiment has agents walking in the opposite

direction from the Narrow Gate to the Wide Gate (4.1.l). In both experiments, agents are using

perception navigation and are assigned a walking speed of 1 𝑚𝑚/𝑠𝑠. The agent’s field of view is

displayed as the simulation is running. The values of the agent’s FOV area, FOV ratio, and

average visibility are recorded over time during their journey.

The first experiment spawns an agent at the Wide Gate. The agent walks down the 20 𝑚𝑚 towards

the corner of the 9 𝑚𝑚 transition space. As they get closer to the corner, their FOV area slowly

becomes smaller. When they reach the corner, the agent is able to see down the transition

corridor, which increases their field of view. After rounding the corner, the agent continues to

walk to the end of the transition space, which narrows down to 4 𝑚𝑚 wide. When the agent

reaches the corner of the 2 𝑚𝑚 narrow corridor, the agent’s field of view has become small. As the

agent looks around this corner, they can see the Narrow Gate at the end of the corridor, which

momentarily increases their field of view (Fig.4.1.i). Once the agent recognizes their destination,

they walk straight to the gate, where they are then removed from the simulation.

The second experiment spawns an agent at the Narrow Gate. The agent walks down the 2 𝑚𝑚

corridor to the 4 𝑚𝑚 transition. Their FOV area slowly becomes smaller as they reach the first

corner. When the agent turns the corner, their field of view increases as they suddenly have a

view all the way down the transition section. The agent continues walking to the end of the

transition corridor. As they approach the corner of the wide corridor, their field of view begins to

open out into the 20 𝑚𝑚 wide space. When the agent reaches the corner of the wide corridor, they

suddenly have view of the Wide Gate (Fig.4.1.j). At this point, the agent recognizes their

destination, and walks straight to the Wide Gate, which slowly decreases the size of their field of

view as they get closer. Once the agent reaches the Wide Gate, they are removed from the

simulation.

275

Figure 4.1.i: Agent's view when they see the Narrow Gate.

Figure 4.1.j: Agent's view when they see the Wide Gate.

276

Visibility to Narrow Gate

00:06

00:20

00:24

00:48

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40 45 50 55

FO
V

Ar
ea

 (m
²)

Time (s)

Change in Field of View (FOV) Area (00:06)

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40 45 50 55

FO
V

Ar
ea

 (m
²)

Time (s)

Change in Field of View (FOV) Area (00:20)

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40 45 50 55

FO
V

Ar
ea

 (m
²)

Time (s)

Change in Field of View (FOV) Area (00:24)

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40 45 50 55

FO
V

Ar
ea

 (m
²)

Time (s)

Change in Field of View (FOV) Area (00:48)

Figure 4.1.k: Screen captures as agent walks to Narrow Gate, showing the change in FOV area.

277

Visibility to Wide Gate

0

100

200

300

400

500

600

700

1 6 11 16 21 26 31 36 41 46 51 56

FO
V

Ar
ea

 (m
²)

Time (s)

Change in Field of View (FOV) Area (00:06)

00:06

00:14

00:33

00:40

0

100

200

300

400

500

600

700

1 6 11 16 21 26 31 36 41 46 51 56

FO
V

Ar
ea

 (m
²)

Time (s)

Change in Field of View (FOV) Area (00:33)

0

100

200

300

400

500

600

700

1 6 11 16 21 26 31 36 41 46 51 56

FO
V

Ar
ea

 (m
²)

Time (s)

Change in Field of View (FOV) Area (00:14)

0

100

200

300

400

500

600

700

1 6 11 16 21 26 31 36 41 46 51 56

FO
V

Ar
ea

 (m
²)

Time (s)

Change in Field of View (FOV) Area (00:40)

Figure 4.1.l: Screen captures as agent walks to Wide Gate, showing the change in FOV area.

278

The outputs of agents’ visibility in these experiments are compared in Fig.4.1.m-o. When the

agent was going to the narrow gate, their initial area was around 550 𝑚𝑚², whereas the initial area

of the agent going to the wide gate was only around 100 𝑚𝑚² (Fig.4.1.m).

Both the FOV area and FOV ratio for the agent going to the Narrow Gate gradually drops

towards zero. There is a spike in visibility around 22 seconds into the journey, which is a result

of the agent seeing around a corner, but it does not get higher than the initial value (Fig.4.1.n).

The FOV area and FOV ratio for the agent going to the Wide Gate has a big jump up around 10

seconds into the journey. This is due to the agent seeing down the transition space, which was

one of the highest visibility values. This slowly drops until the agent turns the second corner to

the Wide Gate, which sees another spike. Then the ratio drops again as the agent walks towards

the gate, but still maintains a higher value than the agent in the narrow corridor.

As shown in the average visibility graph, the agent starting at the Narrow Gate had a lower

visibility than the agent starting at the Wide Gate (Fig.4.1.o). But over the transition space, the

agent going to the Wide Gate saw higher visibility over time than the other agent.

The thesis ran these experiments for multiple trials with a population of 50 agents in both

directions. The outputs of these trials area shown in Fig.4.1.p-r, which illustrate the differences.

The key value to consider is the FOV ratio when agents discovered their gate (Fig.4.1.q). Agents

going to the Wide Gate had an average ratio of 0.88 when they saw it, whereas agents going to

the Narrow Gate only had an average ratio of 0.10. This trend is similar in the average visibility,

with 0.70 for agents going to the Wide Gate and only 0.42 for agents going to the Narrow Gate

(Fig.4.1.r).

The thesis notes that the maximum observed areas are similar for both directions, which is

around 600 𝑚𝑚². Although, some agents walking towards the Narrow Gate saw a maximum area

as high as 1200 𝑚𝑚² (Fig.4.1.p). This appears to be the result of some agents who doubled-back on

themselves trying to find the narrow gate, which resulted in agents seeing down both the wide

corridor and transition corridor at the same time. However, this has no significant impact, since

1200 𝑚𝑚² is still much greater than the 100 𝑚𝑚² observed in the narrow corridor. Data from these

trials can be seen in Appendix A.

Therefore, both the FOV ratios and the average visibilities for agents going to the Wide Gate are

higher, on average, than agents going to the Narrow Gate. This means the agent’s field of view

correctly recognizes the difference in visibility between wide and narrow architectural spaces.

279

0
100
200
300
400
500
600
700

0 5 10 15 20 25 30 35 40 45 50 55

FO
V

Ar
ea

 (m
²)

Time (s)

Change in Field of View (FOV) Area

Going to Wide Gate Going to Narrow Gate

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50 55

FO
V

Ra
tio

Time (s)

Change in Field of View (FOV) Raito

Going to Wide Gate Going to Narrow Gate

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50 55

Vi
sib

ili
ty

 R
at

io

Time (s)

Change in Average Visibility

Going to Wide Gate Going to Narrow Gate

Figure 4.1.o: Over time, average visibility is greater towards wide gate than narrow gate.

Figure 4.1.n: FOV ratio trends above 0.5 towards wide gate, and below 0.5 towards narrow gate.

Figure 4.1.m: FOV area gets larger towards wide gate and smaller towards narrow gate.

280

0
200
400
600
800

1000
1200
1400

0 10 20 30 40 50 60

FO
V

Ar
ea

 (m
²)

Number of Agents

Maximum Field of View (FOV) Area Distribution

Going to Wide Gate Going to Narrow Gate

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

FO
V

Ra
tio

Number of Agents

Field of View (FOV) Ratio Distribution When Gate Discovered

Going to Wide Gate Going to Narrow Gate

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60

Av
er

ag
e

Vi
sib

ili
ty

Number if Agents

Average Visibility Distribution

Going to Wide Gate Going to Narrow Gate

Figure 4.1.r: Average visibility is higher going to the wide gate than the narrow gate.

Figure 4.1.q: FOV ratio is higher when agents see the wide gate than the narrow gate.

Figure 4.1.p: Max observed FOV area is around 600 m² for both directions, unless agents doubled-back.

281

Non-processing Priorities Test

This test demonstrates how priorities can influence agent behaviour in non-processing airport

domains. The hypothesis is that agents who are assigned a high priority for a non-processing

domain, like food, are more likely to interact with food and retail areas in an airport than agents

who are assigned a low priority.

The scenario replicates conditions of a typical North American terminal. Seating areas are

organized linearly along one side of the facility, and food and retail spaces are placed along the

opposite side, with circulation running through the middle (Fig.4.1.s).

The layout for the test is a 30 x 30 𝑚𝑚 square space. The west side of the space is designed as a

gate holdroom, or waiting area, and the east side is dedicated to food stalls. There is one

entrance located in middle of the south wall, and one gate exit on the west wall of the holdroom.

The holdroom has three rows of 12 seats for a total of 36 seats. In the food area, there are three

equally spaced stalls that each have one service counter and a short queue stanchion. To

differentiate the stalls in the model, they are labelled as a pizza shop, a café, and a restaurant

bar. However, the food stalls are functionally the same for the test.

The test involves a population of 50 agents, whose goal is to board a flight. Their departure time

is set for 2 minutes into the simulation. Before the departure time, agents are free to interact

with the environment. In this test, agents can do one of two activities, either wait in the

holdroom or get something to eat. When agents enter the simulation, they are randomly

assigned a food priority on a scale from 1 to 9. Agents that have a food priority of 5 or higher are

expected to get something to eat. Otherwise, agents with a food priority less than 5 should wait

in the holdroom, until it is their departure time. For this test, agents are using perception

navigation and assigned a walking speed of 1 𝑚𝑚/𝑠𝑠. Their proximity detection is disabled for this

test, so agents may walk through each other.

282

Non-Processing Priorities Test

- 30 x 30 m room, with 3 food stalls, and 3 rows of seating in waiting area

- Agents randomly assigned food priority from 1 to 9.

- Agents with food priority greater or equal to 5 should get food

- Otherwise, agents wait by seating area until a set departure time

Purpose Show that agents with higher priority for a non-processing domain (food)
follow different behaviour than agents with a lower priority

Floor Plan

Conditions

Result: All agents with a high food priority got food before departure

(36x) Waiting
Area Seats

Exit
Gate

Entrance

30 m

23 m
1 m

2 m 6 m

EQ.

EQ.

EQ.

(3x) Queue
Stanchion

(3x) Service
Counter

W
ai

tin
g

A
re

a Food/
Retail A

rea

Figure 4.1.s: Setup and conditions for the non-processing priority test.

283

When the simulation starts, agents randomly enter the space every few seconds (Fig.4.1.v).

Agents going to the holdroom are coloured in red and agents going to the food area are coloured

in light green. There appears to be a similar number of agents going to each area over time.

Agents in the holdroom are waiting, so they walk over to a random seat and come to rest

(Fig.4.1.t).

Meanwhile, agents in the food area are looking for a random food stall. If an agent selects a stall,

they get in line behind the queue stanchion, which changes their colour state to yellow

(Fig.4.1.u). Then, agents walk up to the service counter to order some food, which changes their

colour state to orange. The time an agent spends at a counter is based on a random service time,

which is about 10 seconds. Once they are done getting food, the agent turns light blue and

moves away from the counter, which completes their food interaction.

After agents leave the food area, they check back to the gate area. If it is not their departure

time, then they walk over to the holdroom and join the other agents already waiting there, which

changes their colour state to red. As soon as the simulation time reaches the departure time, all

agents in the holdroom turn a dark green colour, walk over to the exit gate, and leave the

simulation. After all agents have exited, the test is complete.

The thesis ran multiple trials of this test with a population of 50 agents under similar conditions.

The results of one of these tests are illustrated in Fig.4.1.w. The graph lists each agent’s food

priority during the simulation and indicates which agents got food and which agents did not get

food. As expected, all the agents that got food have a priority of 5 or higher. This verifies that

agents who were assigned a high food priority followed the indented behaviour. This also

confirms that changing an agent’s priority of a non-processing domain can influence a

passenger’s behaviour in a simulated environment. Although the priority threshold was set to 5

for this test, this can be changed to account for different domains or passenger types.

284

Figure 4.1.u: Agents with high food priorities getting food at the cafe (light green: going to food area,

yellow: in line, orange: at counter).

Figure 4.1.t: Agents with low food priorities waiting in the gate seating area (red).

285

Agents Prioritizing a Non-Processing Domain

00:13

00:45

01:14

01:35

Figure 4.1.v:

Agents either go to food

area (light green agents) or

waiting area (red agents).

Agents in food area purchase

something at the counters.

Agents in seating area wait

until departure time.

Agents finished in the food

area, come back to the

seating area to wait (red).

After the scheduled departure

time (1:30), agents (dark

green) go through gate.

286

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60

Pr
io

rit
y

Number of Agents

Agent Behaviour based on Food Priority
Did not get food Got food

Figure 4.1.w: Comparing which agents got food with each agent's priority for food availability.

287

Summary

In summary, this chapter explored new simulation components that are proposed by this thesis,

such as perception navigation, field of view visibility, and airport priorities. The purpose of these

tests was to illustrate how they influence agent behaviour in different architectural conditions.

The conditions that were covered include wayfinding, different sized spaces, and non-processing

domains. The thesis verifies that these components model the given architectural conditions and

corresponding agent behaviours as intended.

The Wayfinding test demonstrates how agents navigating with perception do not always take the

shortest path like direct navigation, because they can be influenced by information from the

environment. The test makes agents navigate to a gate through a T-junction that had a short and

long path. The test shows that, if a wayfinding sign is placed at the T-junction and told agents to

take the longer path to the gate, then agents with perception will follow it. This result is true

since agents are not aware of the gate location and can only rely on information from the

environment to inform their decisions. This is unlike direct navigation, which always takes the

shorter path, regardless of the information on the wayfinding sign.

The Visibility test illustrates that isovist geometry, which represents an agent’s field of view, can

correctly identify the visibility difference between wide and narrow architectural spaces, relative

to each other. The test has agents walk back and forth between a wide corridor and a narrow

corridor and records the change in field of view area and relative visibility during the journeys.

Visibility is calculated as a ratio to the maximum observed area over time, where 1.0 equals the

largest area. The field of view correctly shows that moving from the wide corridor to the narrow

corridor reduces visibility. Likewise, moving from the narrow corridor to the wide corridor

increases visibility.

The Non-Processing Priorities test demonstrates how agents who are assigned a high priority for

a non-processing domain, like food, are more likely to interact with food areas in an airport than

agents who are assigned a low priority. The test simulates a typical gate with a holdroom and

food area, which requires agents to wait around in until their departure time to board their

flight. Before boarding, agents are randomly assigned a food priority on a scale of 1 to 9. It is

observed that agents with a priority of 5 or higher go get food in the food area, as defined in the

simulation model. Whereas agents with lower food priorities wait in the seating area. This

verifies that changing an agent’s priority of a non-processing domain can influence a passenger’s

behaviour in a simulated environment.

288

Chapter 4.2

Terminal Tests

This chapter explores the architectural value of a hypothetical terminal layout. Changing the

arrangement of a floor plan can influence passenger behaviour, which corresponds to the overall

architectural value. A terminal layout is tested with three different configurations for the

security area. If all else is equal, then the difference in architectural value represents the changes

from the security layout. The configurations that are explored include (Fig.4.2.a):

• Security area is aligned to the centre of check-in

• Security area is aligned asymmetrically to one side of check-in

• Security area is perpendicular relative to check-in

In addition to the physical layout, the thesis also considers how the overall architectural value is

affected by different agent priorities for each design:

• Passengers are assigned random priorities for all domains

• Passengers are assigned high priority for security

• Passengers are assigned equal priority for all domains

The following tests can be described as a Monte-Carlo simulation. Passenger behaviour is given

random variables; therefore, the output should produce a binominal distribution. Given a large

enough sample size, the distribution should approach a normal curve.

All tests have a sample size of 50 agents. Agents use perception navigation and are assigned

characteristics based on the IMO population distribution. For the first set of sets, agents are

assigned random priorities for the six pre-defined airport domains. For other priority

conditions, see Priority Range Tests later in this chapter.

The terminals are only designed with the core areas for departure as described by the National

Academies. Each layout has a basic check-in processor, security screening, and a holdroom

concourse. These spaces are laid out as a linear sequence, which passengers can only follow in

one direction. All layouts follow the same general process, as described below.

289

Terminal Tests

- 3 layouts with different security locations, as shown below

- Same check-in and holdroom areas

- Consider range of passenger priorities: random, high security, and equal

- Population of 50 passenger, with 3 entrances and 2 gates

Purpose To see how changing the security layout affects the architectural value of a
hypothetical terminal

Layouts

Conditions

HoldroomSecurityCheck-in

Centre Layout Asymmetrical Layout Perpendicular Layout

Figure 4.2.a: Setup and conditions for the terminal tests.

290

Passengers randomly enter the terminal, one at a time, between 1 and 5 seconds, from one of

three entrances. The check-in processor has 3 parallel islands of 12 counters each for passengers

to drop off their baggage and pick up their boarding pass. Passengers can select any counter at

random. Once checked in, passengers can make their way to security screening.

The location of security screening is based on the test. It marks the transition between secure

and non-secure areas of the terminal, or landside and airside, respectively. The security area

begins with a queue line, which is marked by stanchions. Passengers must pass through this

queue line before getting screened. Inside security screening are 6 metal detectors that flank 3

X-ray machines. Once passengers walk through any one of the metal detectors, they can make

their way to the holdroom concourse.

At the end of the security area is a wayfinding sign that marks the threshold to the holdroom

concourse. The sign points to the left for Gate A and to the right for Gate B, which are the only

two gates in the terminal. Each gate has a waiting area with 24 seats. Across from each waiting

area is a food/retail stall and a restroom, representing non-processing domains. Passengers wait

in the holdroom until the gate’s departure time, which is randomly assigned between 8 and 10

minutes into the simulation. The test ends once all passengers have left through the gates.

291

Centre Security Layout Floor Plan

Entrance 1 Entrance 2 Entrance 3

12 m 12 m18 m18 m

15 m

10 m

10 m

8.7 m

9.7 m

16.6 m

Queue
Stanchions

(6x) Metal
Detectors

(36x)
Check-in
Couners

Gate A

Wayfinding
Gate Sign

(2x) Food/
Retail Counter

(48x) Gate
Seating

(3x) X-ray
Machines

Gate B

8.5 m 11 m

18 m

11 m 8.5 m

Figure 4.2.b: Floor plan of the Centre Security Layout.

292

Centre Security Layout Test

The first layout has the security area in the centre of the terminal plan. The results from this first

test provide a base value to compare to the other layout conditions. The thesis walks through

this test to illustrate the process. However, only the differences will be covered for the following

test.

The test begins with passengers entering the check-in area. Passengers tend to walk to check-in

counters near the middle of the isle, rather then at the ends, since they have clear view of the

middle counters when they first enter. After checking in, it appears most passengers have a

direct view to the centre security area from these counters. Nearly all agents walk directly to the

security queue line. In some trials, there are one or two passengers who do not notice the

security area immediately after checking in. So, these passengers will wander around the check-

in isle before noticing the security area from an adjacent isle.

Due to IMO’s assigned walking speeds, some passengers walk about three times faster than

others. If a fast passenger gets blocked by a slower passenger, then they slow down behind them.

During all the tests, it is observed that if there are many faster passengers behind one slow

passenger, then they form a train. Although this is intended behaviour, the thesis believes better

crowd dynamics should have faster passengers trying to walk around slower moving people.

Passengers enter the security queue one at a time. This triggers their security processing time.

Other passengers behind them slow down if they get too close in the line. Although passengers

do not stop in the queue line, a time delay factor is applied for security wait times based on

Wiredja et al.’s research of passenger tolerance. All passengers are able to process at the x-ray

machines and walk through the metal detectors successfully.

All passengers notice the wayfinding sign, immediately after going through the metal detectors.

As a result, they all walk towards the sign and follow the direction it is pointing. Since departure

gates are randomly assigned, a similar number of passengers walk to the left and right, to Gate A

and Gate B, respectively. Since the security area was in the centre, passengers have an equal

distance to walk for either gate.

Since the terminal concourse is small, passengers immediately recognize their gates when they

enter the holdroom. It appears passengers who have faster walking speed are the first people to

arrive at the gate, which is well ahead of the assigned departure time. As mention for the first set

of tests, agents are randomly assigned priorities. It is observed that some passengers walk over

293

Figure 4.2.c: Passengers in the check-in area (dark blue: walking to counter, orange: processing).

Figure 4.2.d: Passengers in security screening (purple: walking to security, yellow: in queue line,

orange: processing).

294

Figure 4.2.e: Passenger entering holdroom concourse before the sign (pink: reading sign, light blue:

wandering, light green: going to food area, red: waiting in seating area).

Figure 4.2.f: Passengers linger in holdroom concourse (light blue: wandering, orange: processing,

light green: going to food area, red: waiting in seating area).

295

to the seating area to wait, whereas other people make their way to one of the nearby food stalls,

which indicates that they have higher food priorities. Once these passengers get their food, they

make their way back to the seating area in front of their gate.

All passengers successfully reach the holdroom concourse before their gate’s departure time. It

is observed that some passengers sit in seats that are already occupied by other people. But this

does not influence architectural value for this simulation. For some trials, it appears a couple of

passengers are unable to find seats, possibly due to the number of people. Although, these

passengers continue to wander around the holdroom area. This has some influence on

architectural value for this simulation since agents have gate seating as a priority.

After about 9 minutes of simulation time, it reaches the first gate’s departure time. All passenger

departing from that gate get up from the seating and make their way through the portal. Several

seconds later, the other gate opens, and the rest of the passengers exit through their portal.

For this test, all 50 passengers completed the simulation successfully. The thesis also performed

multiple trials under the same conditions to get a larger sample size. The average architectural

value from these trials for the Centre layout is 0.730, and the average security screening value is

0.615. For the moment, these numbers are just a starting point to compare with the other

layouts.

The overall binomial distribution for architectural value is illustrated in Fig.4.2.h. The

distribution shows that most passengers give an architectural value between 0.75 and 0.80.

Additionally, it can be seen that, given enough passengers, the probability distribution should

approach a normal curve. The same behaviour is true for passengers’ security scores for this

layout, which has a highest score between 0.65 and 0.70 (Fig.4.2.i). Therefore, this test produced

the expected behaviour of a Monte Carlo simulation.

296

Centre Security Layout

01:04

03:18

05:54

08:34

Figure 4.2.g:

Passengers in the check-in

area.

Passengers making their

way through security

screening.

Passengers in the holdroom

concourse.

Passengers going to gate

after departure time.

297

0

5

10

15

20

25

30
Nu

m
be

r o
f P

as
se

ng
er

s

Architectural Value

Centre Layout Value Distribution

0

5

10

15

20

25

30

Nu
m

be
r o

f P
as

se
ng

er
s

Normalized Scores

Centre Security Screening Scores

Figure 4.2.i: Likewise, the binomial distribution for the passengers' score for security screening with

the highest probability occuring between 0.65 and 0.70.

Figure 4.2.h: Binomial distribution for the Centre Layout approaches a normal curve with the highest

probability occurring between 0.75 and 0.80.

298

Asymmetrical Security Layout Floor Plan

Entrance 1 Entrance 2 Entrance 3

12 m 12 m18 m18 m

15 m

10 m

10 m

8.7 m

9.7 m

16.6 m (36x)
Check-in
Couners

Gate A

(2x) Food/
Retail Counter

(48x) Gate
Seating Gate B

Wayfinding
Gate Sign

8.5 m 11 m 11 m 8.5 m

Queue
Stanchions

(6x) Metal
Detectors

(3x) X-ray
Machines

18 m

Figure 4.2.j: Floor plan of the Asymmetrical Security Layout.

299

Asymmetrical Security Layout Test

The second layout has the security screening area aligned to the right side of the terminal, which

makes the design asymmetrical. Inside the security area are identical components to the security

area in the first layout. It has the same queue stanchions, 3 X-ray machines, and 6 metal

detectors. The middle of the terminal is replaced with the same food/retail stall in the holdroom

concourse, washrooms, and implied back-of-house areas (Fig.4.2.j).

The thesis conducted this test with the same procedure as the Centre layout, so only the

differences are covered here. This test is meant to replicate a new floor plan iteration that an

architect might consider during the design phase. The idea for this test is, if the conditions are

exactly the same, and only the location of the security area is changed, then the passengers’

scores should reflect the differences in the layout. The hypothesis is the Asymmetrical security

layout should decrease the security score and reduce the overall architectural value. This is

because the security will not be visible to passengers checking in on the left side and it is a

further walking distance from Gate A.

Like the first layout, most passengers walk to the middle of the isles in the check-in area when

they enter the simulation. Except this time, it is observed that passengers who are at counters on

the left side do not have a direct view to the security area. Only passengers on the right side have

a direct view to security. When passengers on the left side finish checking in, it is observed that

more people return to a wandering state (Fig.4.2.k). These passengers end up walking around

the check-in isles searching for security. Once passengers wander around the counters to the

right side of the processor, they can recognize the entrance to the security queue. Passengers

walk directly to the security area when it becomes visible at this point (Fig.4.2.l).

After passengers make their way through security, the process becomes similar to the first layout

again. Some passengers in this layout are further away from Gate A when they leave security.

There is a wayfinding sign at the entrance to the holdroom concourse which directs people to the

left for Gate A. But it does take longer for passengers to reach Gate A in this layout, as is

expected.

One observation the thesis did not consider was the improved visibility for passengers going to

Gate B. Since security screening is right across from this gate, passengers had a much better

experience finding Gate B than they did in the first layout. Likewise, if these passengers also

checked in on the right side of the processor, then their distance travelled is significantly

shorter, and their visibility would have been a lot higher than before when they found the gate.

300

Figure 4.2.k: Passengers wandering (light blue) between check-in isles because they do not see the

security area from left side of the check-in processor.

Figure 4.2.l: Security screening has a bias for passengers checking in on the right side (purple).

301

All 50 agents completed this test successfully. Like the first test, multiple trial runs were

performed under the same conditions to increase the sample size. The average architectural

value for the Asymmetric layout is 0.721, and the average security screening value is 0.505. This

security score is about 10% lower than the first layout, mainly as a result of more passengers

wandering around. However, the average architectural value is only 1% lower, which is not a

significant change.

It is understandable that there might only be a small change in architectural value because

security screening is not the only passenger priority. Other airport domains may have had

higher priorities for some passengers. For example, there were small improvements to the gate

availability score. Passengers finding Gate B immediately was a bigger improvement than

passengers walking longer to Gate A. The values from these tests are listed in Appendix A for

further information.

The overall binomial distribution for architectural value is illustrated in Fig.4.2.m. Once again,

the distribution approaches a normal curve, given enough passengers, which is characteristic of

a Monte Carlo simulation. The architectural value has the highest probability between 0.70 and

0.75. A comparison between the architectural value distributions shows that the Asymmetrical

layout did cause a 5% decrease in the maximum probability (Fig.4.2.n). Likewise, the peak

security score is between 0.40 and 0.45, which is a 25% decrease (Fig.4.2.o). Interestingly, there

is a distribution of passengers who scored similar to the Centre layout between 0.60 and 0.70

(Fig.4.2.p). This may be coming from passengers who checked in on the right side and departed

from Gate B.

It is not important if the exact differences are measured to the nearest percentage. But what is

important is that there is a probability distribution illustrating what range of passenger scores

are likely to occur. Fundamentally, the Asymmetrical layout is more likely to give a sightly lower

performance than the Centre layout, for a large number of people. It also suggests that the

security area is most likely to impact passenger behaviour. Although these differences may be

obvious in the floor plan, the simulation provides a quantifiable comparison of this behaviour.

302

0

5

10

15

20

25

30
Nu

m
be

r o
f P

as
se

ng
er

s

Architectural Value

Asymmetrical Layout Value Distribution

0

5

10

15

20

25

30

Nu
m

be
r o

f P
as

se
ng

er
s

Architectural Value

Centre vs. Asymmetric Value Comparison

Centre Asymmetric

Figure 4.2.n: Comparison shows Asymmetric values (orange) has a lower distribution than Centre

values (blue).

Figure 4.2.m: Binomial distribution for the Asymmetric Layout approaches a normal curve with the

highest probability occuring between 0.70 and 0.75.

303

0

5

10

15

20

25

30
Nu

m
be

r o
f P

as
se

ng
er

s

Normalized Scores

Asymmetric Security Screening Scores

0

5

10

15

20

25

30

Nu
m

be
r o

f P
as

se
ng

er
s

Security Score

Centre vs. Asymmetrical Security Comparision

Centre Asymmetrical

Figure 4.2.p: Comparison shows Asymmetric secruity (orange) has a lower distribution than Centre

security (blue). Some passengers in the Asymmetrical layout did score similar to the Centre layout.

Figure 4.2.o: Binomial distribution for the passengers' security scores has a peak between 0.40 and

0.45. Also note the high disribution between between 0.60 and 0.70.

304

Perpendicular Security Layout Floor Plan

Entrance 1 Entrance 2 Entrance 3

12 m 12 m18 m18 m

15 m

10 m

10 m

8.7 m

9.7 m

16.6 m (36x)
Check-in
Couners

Gate A
(48x) Gate
Seating Gate B

8.5 m 11 m 11 m 8.5 m

(2x) Food/
Retail Counter

(6x) Metal
Detectors

(3x) X-ray
Machines

Queue
Stanchions

8 m

8 m

Wayfinding
Gate Sign

Figure 4.2.q: Floor plan of the Perpendicular Security Layout.

305

Perpendicular Security Layout Test

The final layout has security screening rotated 90°, in the middle of the terminal, perpendicular

to way it was placed for the first test. Like the first two tests, it includes the same queue, X-ray

machines, and metal detectors. Since the layout is perpendicular, the security area is wider than

the first two tests to provide walk-up space for passengers to approach. Passengers enter and

exit into the security area through a 8 𝑚𝑚 wide threshold. The entrance threshold aligns with the

left isle of the check-in processor and the exit threshold is in front of the seating at Gate B. The

food/retail stalls fill in the spaces adjacent to the security area, and the rest is implied as

washrooms and back-of-house areas (Fig.4.2.q).

This test is performed under the same conditions as the previous two tests. The hypothesis is the

Perpendicular layout will produce the lowest security score and architecture value out of all

three layouts. The narrow threshold should make the security area difficult for passengers to

find and the perpendicular direction may reduce the passenger’s overall visibility during

screening.

Like the other tests, passengers randomly enter the check-in processor and walk to service

counters in the middle isles. Since the entrance to security is aligned to the left isle, passengers

on the right side of the check-in area do not have any view of security. As a result, many

passengers are observed wandering around trying to find security screening during the test

(Fig.4.2.r). From the angle these passengers approach the security threshold, the back wall of

the check-in area hides the entire security area (Fig.4.2.s). When passengers approach the

threshold from the right, they cannot see any identifiable features of the space, like the queue

line. However, when passengers approach the threshold from left, are they able to see the

security queue stanchions (Fig.4.2.t).

Once passengers enter security screening, the process is the same as the other layouts. After

screening is complete, passengers must leave the area by walking to the left. There is a gate

wayfinding sign at the exit threshold, which makes navigating easier than it was for the entrance

(Fig.4.2.u).

The simulation continues until all passengers leave through their departure gate. During one

trial, there were still a couple passengers lost in the check-in area even after departure time.

These people eventually found their way through security, after walking down to the far-left end

of the processor, and managed to finish the simulation successfully, despite being late.

306

Figure 4.2.s: Passenger's view walking along the wall from the right cannot see any identifying

feature for security at the threshold.

Figure 4.2.r: Passengers in the right isle of check-in looking for the security area (light blue:

wandering, dark blue: going to check-in counter).

307

Figure 4.2.t: Passengers approaching from the right side (purple) recognize the security queue sooner

than passengers approaching from the left side (light blue), due to the narrow opening.

Figure 4.2.u: Perpendicular security screening area, with an exit to the left towards the wayfinding

sign (purple: walking to security, yellow: in queue line, orange: processing, pink: reading sign).

308

However, not all agents struggled finding the security area. Like the Asymmetrical layout, some

passengers who entered the check-in processor on the left side had a clear view into the security

area from the start. As a result, once they got through security, these passenger’s experience was

practically similar to the Centre layout test.

The results of the Perpendicular layout were as successful as the previous two tests. Once again,

multiple trial runs were performed under the same conditions to increase the sample size. The

average architectural value for the Perpendicular layout is 0.691, and the average security

screening value is 0.483. These are the lowest values of all three layouts.

The overall binomial distribution for architectural value is illustrated in Fig.4.2.v. The

architectural value has the highest probability between 0.75 and 0.80. Surprisingly, this is

similar to the Centre layout, despite having a lower average. Although this difference might be

due to the Perpendicular distribution having a higher variance. When comparing all three

layouts, the Centre layout has the highest peak distribution, followed closely by the

Perpendicular layout, and then the Asymmetric layout (Fig.4.2.w). However, all three layouts

share a similar distribution shape, which shows that most passengers had similar overall

experience for every terminal, despite the security screening differences.

The distribution of security scores for the Perpendicular layout are shown in Fig.4.2.x. The peak

scores are between 0.35 and 0.40. Although, like the Asymmetrical layout, there is a significant

distribution of passengers who scored between 0.65 and 0.70. This may be from passengers who

entered the processor on the left, which gave them a clear view into the security area. When

comparing all three layouts, the Centre layout had the highest peak distribution, which was well

ahead of the Asymmetrical layout, and then the Perpendicular layout (Fig.4.2.y). However, as

mentioned before, both the Asymmetrical layout and Perpendicular layout had a significant

distribution of people who match the Centre layout security scores. This indicates that not all

passengers had the same experience, despite walking through the same terminal design.

309

0

5

10

15

20

25
Nu

m
be

r o
f P

as
se

ng
er

s

Architectural Value

Perpendicular Layout Value Distribution

0

5

10

15

20

25

30

Nu
m

be
r o

f P
as

se
ng

er
s

Architectural Value

Architectural Value Comparison

Centre Asymmetric Perpendicular

Figure 4.2.w: Copmaring the distribution of all layouts' architectural value.

Figure 4.2.v: Binomial distribution for the Perpendicular Layout approaches a normal curve with the

highest probability occuring between 0.75 and 0.80.

310

0

5

10

15

20

25

30
Nu

m
be

r o
f P

as
se

ng
er

s

Normalized Scores

Perpendicular Security Screening Scores

0

5

10

15

20

25

30

Nu
m

be
r o

f P
as

se
ng

er
s

Security Score

All Security Comparison

Centre Asymmetrical Perpendicular

Figure 4.2.y: Comparing all layouts' security score. Passengers in the Perpendicular layout scored the

lowest values, but similar to the Asymmetric layout. Centre layout has the highest score distribution.

Figure 4.2.x: Binomial distribution for the passengers' security scores has a peak between 0.35 and

0.40. Also note the high disribution between between 0.65 and 0.70.

311

Priority Range Tests

The previous tests used agents with randomly assigned priorities, like the passenger illustrated

in Fig.4.2.z. But what happens to the architectural value if agents are given different priority

levels? This test repeats the same experiments as before, except it compares agents for two

extreme cases. Firstly, agents who only have a priority for security, and secondly, agents who

prioritize all airport domains equally. Since the security area is the primary factor, this should

illustrate the maximum range of architectural values for these terminals.

Random Priority Characteristics

Priority Variation (% min, max)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Check-in

Name: Damian Sjogren

Male

57

1.11 m/s

Gender:

Age:

Speed:

Pr
io

rit
ie

s

Priorities

Security

Available Gate

Waiting Seating

Restrooms

Food/Retail

C
he

ck
-in

Ei
ge

nv
ec

to
r

Se
cu

rit
y

A
va

ila
bl

e
G

at
e

W
ai

tin
g

Se
at

in
g

Re
str

oo
m

s

Fo
od

/
Re

ta
il

6
6

4
6

6
4

4
4

3
6

8
6

3
4

8
4

3
6

6
6

3
4

6
4

6
3

4
3

6
8

4
8

3
3

8
3

3
8

8
8

3
3

6
3

3
8

6
8

6
3

4
3

6
6

4
6

3
3

8
3

3
6

8
6

3
3

6
3

3
6

6
6

6

6 4 3 8 3 6

4

3

8

3

6

0.20

0.13

0.10

0.26

0.10

0.20

Figure 4.2.z: Assigned agent characteristics and random priority matrix.

312

High Security Priority Tests:

Agents are given a priority level of 9 for security screening and a priority level of 1 for everything

else. An example of a passenger with a high security priority is illustrated in Fig.4.2.za. For all

three layouts, passengers follow the same behaviour and patterns as described before.

Note that changing the priority levels in this simulation only affects how agents score their

experiences, but this does not change their behaviour. The one exception is passengers with a

low food priority will not go get food. Instead, passengers are given a default score for noticing

the existence of the food/retail area, like the washrooms.

As a result, all passengers with the high security priority in the holdroom concourse just wait by

the seating area. No passengers were observed wandering in the food/retail areas.

Check-in

Security

Available Gate

Waiting Seating

Restrooms

Food/Retail

C
he

ck
-in

Ei
ge

nv
ec

to
r

Se
cu

rit
y

A
va

ila
bl

e
G

at
e

W
ai

tin
g

Se
at

in
g

Re
str

oo
m

s

Fo
od

/
Re

ta
il

1
1

9
1

1
9

9
9

1
1

1
1

1
9

1
9

1
1

1
1

1
9

1
9

1
1

9
1

1
1

9
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

9
1

1
1

9
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

1 9 1 1 1 1

9

1

1

1

1

0.07

0.64

0.07

0.07

0.07

0.07

Name: Chloe Husain

Female

68

0.57 m/s

Gender:

Age:

Speed:

Pr
io

rit
ie

s

Priorities

High Security Priority Characteristics

Priority Variation (% min, max)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.2.za: Assigned agent characteristics and high security priority matrix.

313

Equal Priorities Tests:

Agents are given an equal priority level of 5 for all domains. An example of a passenger with

equal priorities is illustrated in Fig.4.2.zb. Passengers follow the same behaviour as the previous

tests.

As mentioned for high security priorities, only food/retail behaviour is affected by priority

levels. Since agents have a priority level of 5, all passengers were observed getting food, while

waiting for departure in the holdroom concourse. Otherwise, no other significant differences

were observed during these tests.

Check-in

Security

Available Gate

Waiting Seating

Restrooms

Food/Retail

C
he

ck
-in

Ei
ge

nv
ec

to
r

Se
cu

rit
y

A
va

ila
bl

e
G

at
e

W
ai

tin
g

Se
at

in
g

Re
str

oo
m

s

Fo
od

/
Re

ta
il

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5

5 5 5 5 5 5

5

5

5

5

5

0.17

0.17

0.17

0.17

0.17

0.17

Name: Janyce Bananno

Female

26

0.99 m/s

Gender:

Age:

Speed:

Pr
io

rit
ie

s

Priorities

Equal Priority Characteristics

Priority Variation (% min, max)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.2.zb: Assigned agent characteristics and equal priority matrix.

314

Results:

The tests were conducted multiple times to get a sample size of 100 passengers for each

condition. Together, this produces nine combinations based on the layout and agents’ assigned

priorities. The average architectural values are listed in Fig.4.2.zc:

Priority Layout

 Centre Asymmetric Perpendicular

Random 0.727 0.721 0.691

High 0.639 0.572 0.526

Equal 0.770 0.728 0.718

Figure 4.2.zc: Average architectural value for all nine tests

The test with the highest value is Centre-Equal, or when passengers had Equal priorities in the

Centre layout, which was 0.770. The test with the lowest value is Perpendicular-High, or when

passengers had High security priority in the Perpendicular layout, which was 0.526.

The distributions for architectural value are also compared. Firstly, based on layout design

(Fig.4.2.zd-zf), and secondly, based on priority type (Fig.4.2.zg-zi).

The highest architectural values occurred when passengers had Equal priorities for all domains

(Fig.4.2.zi). By contrast, the lowest architectural values occurred when passengers had High

priority for security (Fig4.2.zh). When passengers have equal priorities for all airport domains,

their scores are spread out evenly, so value is accumulated from multiple conditions. Whereas,

when passengers only have priority for one domain, their scores are dependant on a single

condition, which could lose value easily if they had a poor experience.

This is clearly demonstrated in the Perpendicular-High test. Many passengers spent time

searching for security, so their value of the architecture is influenced by this experience.

Additionally, passengers in the High tests did not prioritize other domains, like food/retail.

Therefore, they did not see the value in going to get something to eat while waiting for their

departure. If passengers do not interact with these conditions, then the conditions have no value

for the people, despite the terminal design having these amenities.

315

0
100
200
300
400
500
600
700
800

Sa
m

pl
e

Si
ze

Average Architectural Value

Centre Layout Range

Centre-Random Centre-High Centre-Equal

0
50

100
150
200
250
300
350
400

Sa
m

pl
e

Si
ze

Average Architectural Value

Asymmetrical Layout Range

Asymmetrical-Random Asymmetrical-High Asymmetrical-Equal

0

50

100

150

200

250

300

Sa
m

pl
e

Si
ze

Average Architectural Value

Perpendicular Layout Range

Perpendicular-Random Perpendicular-High Perpendicular-Equal

Figure 4.2.zf: Perpendicular has lowest distributions overall. High security priority gives the lowest values.

Figure 4.2.zd: Centre has highest distributions overall. Equal priority is the greatest and most concentrated.

Figure 4.2.ze: Asymmetrical shows random and equal priorities are similar, and high security is lowest.

316

0

50

100

150

200

250

300

350

Sa
m

pl
e

Si
ze

Average Architectural Value

Random Priority Effects

Centre-Random Asymmetrical-Random Perpendicular-Random

0
50

100
150
200
250
300
350
400
450

Sa
m

pl
e

Si
ze

Average Architectural Value

High Security Priority Effects

Centre-High Asymmetrical-High Perpendicular-High

0

100

200

300

400

500

600

700

800

Sa
m

pl
e

Si
ze

Average Architectural Value

Equal Priority Effects

Centre-Equal Asymmetrical-Equal Perpendicular-Equal

Figure 4.2.zg: Random priority distributions have narrow variance. Perpendicular has the lowest values.

Figure 4.2.zh: High security priorities has wider variance. Centre is the greatest, perpendicular is the lowest.

Figure 4.2.zi: Equal priority distributions have little variance. Centre is the greatest and most concentrated.

317

Chapter 4.3

Airport Tests

The following test compares two existing terminals to demonstrate how the agent’s architectural

values score in a real-world airport. The intension is to compare a known airport that has a high

ranking against another airport which has a lower ranking. If the architectural value in the agent

simulation is correct, then the score for each airport should correspond to its known ranking.

The higher ranked airport should have a better architectural value than the lower ranked

airport.

The two airports that are considered in this test are Singapore Changi and Toronto Pearson,

which are the higher and lower ranked airport, respectively. Singapore Changi ranked 1st in

Skytrax’s World Airport Awards 2020 and 7th in AirHelp’s Global Airport Ranking 2019, [1] while

Toronto Pearson ranked 42rd and 108th, respectively (Fig.4.3.a-b). [2] Both Skytrax’s and

AirHelp’s rankings are based on surveys conducted with people on their passenger experiences.

The rankings considered a wide range of factors including Accessibility, Public Transit,

Wayfinding, Check-in, Security, Immigration, Baggage, Flight Time, Staff Courtesy, Cleanliness,

and Passenger Amenities. [3][4] Although the surveys were conducted differently for each

company, they are similar enough to give confidence that Changi Airport has better passenger

experience than Pearson Airport. Since architectural value is dependant on agent perception, it

is expected that Changi has a higher architectural value than Pearson Airport.

1. “World’s Top 100 Airports 2020”. World Airport Awards, Skytrax, 2020. Accessed October 2020.

https://www.worldairportawards.com/worlds-top-100-airports-2020/.
2. “Global Airport Ranking”. AirHelp, 2019. Accessed October, 2020.

https://www.airhelp.com/en/airhelp-score/airport-ranking/.
3. “Awards Methodology”. World Airport Awards, Skytrax, 2020. Accessed October 2020.

https://www.worldairportawards.com/awards-methodology/.
4. “AirHelp Score 2019: Global Airport Rankings”. AirHelp, 2019. Accessed October 2020.

https://static.airhelp.com/pdf/2019-airport-
score/methodology_airhelp_score_2019__global_airport_rankings-en_us.pdf.

318

Skytrax Airport Ranking 2020

Figure 4.3.a: Skytrax's Airport Ranking from 2020 has Changi as #1 and Pearson as #42, based on a

global airport survey of passenger experience, Skytrax (2021), highlighted in red by author.

319

AirHelp Airport Ranking 2019 Figure 4.3.b: AirHelp's Airport

Ranking from 2019 has Changi

as #7 and Pearson as #108, based

on an average of performance

factors, AirHelp (2021),

highlighted in red by author.

320

Singapore Changi Airport is the primary international airport in Singapore. It served over 60

million passengers in 2019 and is one of the busiest airports in Asia. It has 4 active terminals (1,

2, 3, and 4) and plans for a 5th terminal over the next decade. It serves as a major hub in Asia for

international flights for both passengers and cargo.

Toronto Pearson Airport is the primary international airport in southern Ontario. It served over

40 million passengers in 2019 and is the busiest airport in Canada. It has 2 active terminals (1

and 3) and serves as a major hub for international flights entering the United States providing

pre-clearance for all departing and connecting passengers.

Although Changi and Pearson are both prominent international airports, there are differences in

the way each airport is organized, how flights are handled, and what amenities they provide. The

scope for this test only focuses on the layout of essential terminal spaces relating to the pre-

departure process. It tries to minimize differences in operations and culture by only focusing on

the following key spaces: check-in, security screening, food/retail, and washrooms. This test

simulates international passengers departing from Terminal 1 for both airports. The simulation

starts when passengers enter the front doors of the terminal. The simulation ends after

passenger exit through the gate portal, which is before the concourse piers, but after security.

(Fig.4.3.c).

Due to the size of the terminals and the limited capability of the agent model, the simulation is

cut short before the piers to the gates. The length of the piers become too large for the agent

model to manage. Large models have caused the simulation to experience time lag and sluggish

performance when trying to calculate agent navigation over this distance. Ending the simulation

before agents enter this area reduces the geometry the simulation needs to consider. Since both

airports are cut off before the piers, they end at a similar point in the departure process.

Therefore, both terminal models are compared under similar conditions.

321

Airport Tests

- Singapore Changi with a higher rank vs. Toronto Pearson with a lower rank

- International departure (non-USA), terminal 1, check-in and security

- Cut-off before gate piers and holdroom concourses

- Population of 50 passenger with random priorities

Purpose To see if architectural value can differentiate between real-world airports
with higher and lower passenger experience ranking, relatively.

Terminal 1 Scope Simulated Check-in Layout

To
ro

nt
o

Pe
ar

so
n

Si
ng

ap
or

e
Ch

an
gi

Conditions

0m 50 100

0m 50 100

AmenitiesSecurityCheck-in

0mN 200

0mN 200

Figure 4.3.c: Setup and conditions for the airport tests.

322

Singapore Changi Terminal 1 Check-in Floor Plan

53 m

38 m

55 m

(2x) Queue

(12x) Metal Detectors

(2x) Security Sign

Gate Sign

(6x) X-Ray Machines

Food and
Retail Shops

232 m

40 m

 (7x) Entrance

 (12x rows)
Check-in Isles

Restrooms

Exit to Pier DExit to Pier C

0m 50 100

Figure 4.3.d: Simulated floor plan for Changi terminal 1.

323

Toronto Pearson International (non-US) Check-in Floor Plan

Restrooms

0m 50 100

67 m

23 m

10 mR193 m

144 m
39°

21m

5 m

 (3x) Entrance

Queue

 (3x rows)
International

Check-in Isles
 (3x rows)
Domestic
Check-in Isles

Food and
Retail Shops

Exit to Pier E

Gate Sign

Security
Sign(6x) Metal

Detectors and
(3x) X-Ray
Machines

Figure 4.3.e: Simulated floor plan for Pearson terminal 1, international departure.

324

Singapore Changi Layout

The simulated departure area of Changi terminal 1 is a symmetrical 230 𝑚𝑚 wide hall with a

centralized security screening area, which opens into a retail courtyard (Fig.3.d).

There are seven entrances evenly spaced along the south wall of the terminal. In the check-in

area, there are 12 parallel isles of counters with two additional rows in the center. Behind these

counters is a public washroom facility in the middle of the terminal. The security area is a curved

Y-junction that flanks either end of these washroom facilities. Passengers can approach security

from either side of the check-in area, since there is dedicated queuing on each side, which are

marked by signs.

After screening, the security area opens into a retail courtyard that contains numerous shops,

food stalls, and lounge areas. At the front of the courtyard is a wayfinding sign that points

passengers to the left for pier C gates and to the right for pier D gates. The simulated area ends

to the far right and left sides of the retail courtyard, which is marked by an exit portal.

Toronto Pearson Layout

The simulated departure area of Pearson terminal 1 is a 140 𝑚𝑚 segment of a circular-arced

space, which focuses on the non-US international check-in area, security screening, and

adjacent retail and food court (Fig.4.3.e).

There are 3 main entrances dedicated for international passengers along the inside radius of the

terminal. In the check-in area, there are 6 parallel isles of counters, with only the 3 rows on the

left dedicated for international flights. Beyond the check-in area is a food court and retail area

on the outside radius of the terminal, with washroom facilities along the right end of the food

court.

The security screening area sits on the left side perpendicular to the check-in isles, with a queue

marking the front. There is also signage placed between the check-in isles, directing passengers

to the left for security. After screening, the security area bends up into a narrow corridor, which

is indicated by a sign for pier gates E and F “hammerhead” concourse. The simulated area ends

at this corridor before it reaches the pier, which is marked by an exit portal.

325

Figure 4.3.f: Passengers in Changi going through the check-in area.

Figure 4.3.g: Passengers in Changi going through security into the retail courtyard.

326

Figure 4.3.h: Passengers in Pearson going through the check-in area.

Figure 4.3.i: Passengers in Pearson going through security.

327

Results

The thesis ran multiple trials of the simulation with 100 passengers for both layouts. The

average architectural value for all passengers is 0.802 for Singapore Changi and 0.420 for

Toronto Pearson. The population distributions from these tests are illustrated in Fig.4.3.j-k. The

distribution of passengers in Changi is from 0.64 to 0.92, with most passengers scoring between

0.76 and 0.78. As for Pearson, the distribution of passengers is as low as 0.26 and as high as 0.80.

Although, most passengers were between 0.40 and 0.42. This means that passengers in Pearson

have a much wider range of experiences than Changi, which gave passengers similar

experiences.

Fig.4.3.l compares the sample mean distribution between Changi and Pearson, which uses 1000

trials and 𝑛𝑛 = 10 samples for each. This illustrates the range of values that are likely to occur in

each airport under the given conditions. The average architectural value for Changi, ranges

between 0.74 and 0.88. It approaches a normal distribution with a mean of 0.802 and a standard

deviation of 0.0166, as the following,

𝐶𝐶(𝑥𝑥) = 1
0.0166√2π

exp(−0.5(
(𝑥𝑥 − 0.802)
0.0166)

2
).

Whereas Pearson ranges between 0.32 and 0.54. It approaches a normal distribution with a

mean of 0.420 and a standard deviation of 0.0289, in the following form (Fig.4.3.m),

𝑃𝑃(𝑥𝑥) = 1
0.0289√2π

exp (−0.5(
(𝑥𝑥 − 0.420)
0.0289)

2
) .

It appears Pearson has a much lower score than Changi because of the location of the amenity

spaces, which are the retail, food, and washrooms. Most passengers in Pearson did not walk

beyond the check-in area to retail/food court. Instead, practically all passengers went straight to

security screening. Since there were no amenities in the rest of the corridor, passengers in

Pearson did not get a second chance to interact with them if it was their priority.

Additionally, passengers in Changi have a clear view of both washrooms in the center and

food/retail beyond security. Although Changi does not have any retail between check-in and

security, the retail courtyard after security is practically impossible to miss. Whereas passengers

in Pearson do not have any amenities until they reach the gate holdroom if they did not see the

food court.

328

0
2
4
6
8

10
12
14
16
18
20

Nu
m

be
r o

f P
as

se
ng

er
s

Architectural Value

Changi Population Distribution

0

2

4

6

8

10

12

14

16

18

20

Nu
m

be
r o

f P
as

se
ng

er
s

Architectural Value

Pearson Population Distribution

Figure 4.3.k: Population distribution Pearson gives an average value of 0.420, and has a wider

spread than Changi.

Figure 4.3.j: Population distribution for Changi gives an average value of 0.802.

329

0
50

100
150
200
250
300
350
400
450

Fr
eq

ue
nc

y

Average Architectural Value

Sample Mean Comparison of Changi and Pearson

Changi Pearson

Figure 4.3.l: Sample mean distributions (trials = 1000, n = 10 samples) for Changi and Pearson

illustrates the range of values each airport is likely to see.

Figure 4.3.m: Equivalent normal distributions for Changi (blue), N(0.802, 0.0166), and Pearson

(red), N(0.420, 0.0289), as continuous PDFs, given an infinite number of samples.

330

The architectural value function is dependent on passengers’ priorities. Since food/retail and

washrooms make up two of the six priorities, it can have a large impact. The thesis believes if

agents have lower food and washroom priorities (or different priorities entirely), then the

difference between Changi and Pearson would not be as high. Fig.4.3.n breaks down

architectural value into the average values for each passenger priority. It illustrates that

passengers in Changi observed every non-processing domain (food/retail, restrooms, and

seating area). Whereas only a few passengers in Pearson came across food/retail and restrooms.

On average, Changi has better value for check-in and reaching the gate areas (exit portal). The

higher value for check-in shows that passengers maintained more consistent visibility and did

not need to wander as much as passengers in Pearson. Likewise, passengers in Changi had an

easier time heading towards the gate, since passengers in Pearson had to walk through the

narrow corridor. However, Pearson had higher value than Changi in security screening. This

may be due to security being a lot closer for passengers in Pearson. Whereas passengers took

longer to find the centralized security in Changi.

In summary, the agent simulation finds Singapore Changi has a higher average architectural

value than Toronto Pearson. This confirms the agent simulation can correctly differentiate

airports with higher and lower passenger experience ranking, respectively.

331

Figure 4.3.n: Average values for each passenger priorities. Note for these tests, processing domains

are scored on level of interaction, whereas non-processing domains are scored if observed.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Check-in Security Reaching Gate
(Exit Portal)

Food/Retail Restroom Seating Area

Va
lu

e

Priorities

Average Priority Value Comparison

Changi Pearson

333

Part 5:

Conclusion

Part 5 discusses the results of this thesis, an ideal version of the agent simulation, impacts to the

architectural profession, and plans for future research. Chapter 5.0 begins with a summary of

the results and findings from simulation testing. Chapter 5.1 talks about the minimum

components for an ideal architectural simulation, and how the agent models could be improved.

Chapter 5.2 discusses how simulations could change the architectural design process and the

built environment. It also talks about long-term impacts and risks of relying on simulation for

design. Chapter 5.3 summarizes topics that would benefit from future research, and ideas that

could be the basis for other theses. Finally, chapter 5.4 closes with a summary of the overall

conclusions and final remarks from this thesis.

334

Chapter 5.0

Results and Findings

 A major result of this thesis is the creation of a practical agent simulation for testing

architectural layouts. The thesis’s model builds from existing methods for simulating airport

terminals, like discrete-event and statistical modelling. It incorporates agent perception to

provide feedback of people’s decision making in architectural spaces, and it uses prioritization

as a way of quantifying architectural value. This is different from previous crowd simulations

that test the built environment, which either focuses on modelling people as a process flow or

modelling people’s behaviour in emergency evacuations. Agent navigation in these models

assumes people already know where they are going, which does not consider how people use the

surrounding architecture to inform their decisions. This makes it difficult to test how well an

architectural layout aligns with daily airport interactions, before the terminal building is built.

The hypothesis states that differences in a simulated architectural layout of an airport terminal

can be quantified based on agent interactions. The thesis demonstrates that this is possible if

agents are given sufficient perception of the surrounding environment, and if these agents can

only rely on their perception to complete a given task. The thesis concludes that this type of

simulation is capable of approximating real-world airport interactions, within a statistical

certainty.

The results of testing show that the thesis’s agent simulation is capable of basic agent behaviour.

It can differentiate between certain architectural layouts based on a statistical distribution.

However, the agent simulation is limited when it comes to modelling dense crowd flows, and

some airport processes, like queuing. Additionally, the architectural value of a layout can vary

significantly depending on agents’ assigned priorities and airport domains.

Tests in chapter 4.0 validated basic simulation components against an established standard for

evacuation simulations. Three out of the four tests that were conducted were successful. The

simulation was able to demonstrate that agents can walk at realistic speeds, and that agents can

navigate around walls. The simulation was unsuccessful at demonstrating exit flow rates

through a crowded doorway. Densely packed agents were seen clumping together due to

proximity issues, which caused spikes in flow rates that exceeded realistic behaviour. These

335

issues were minimized for further tests by reducing the maximum number of agents. This type

of crowd interaction could be better studied to improve agent behaviour for further

development.

Tests in chapter 4.1 demonstrated that the thesis’s perceptive agent model can be influenced in

specific architectural conditions, which is not typically explored in existing simulations. Firstly,

the thesis shows that agents who rely on perception navigation can be influenced by the

environment to take a different path than agents using direct navigation. As a result, perceptive

agents may not always take the shortest path, which can provide different architectural

experiences in the same space. The second test shows how agents can correctly differentiate the

visibility between walking into a wide space and a narrow space using their visual field of view.

This means that perceptive agents can simulate a changing spatial awareness, which provides

feedback of different geometric conditions. The third test shows how agents can follow different

behaviour in the same space, if they prioritize different things. This includes interacting with

non-processing aspects of an airport like food and retail areas. As a result, agents that have

different priorities in the same space will read the environment differently, which reflects their

interpretation of the architecture.

Tests in chapter 4.2 explored generic terminal layouts with different security screening

locations, representing possible design iterations for departing passengers. The thesis suggested

that, if only a single space was changed, and all other conditions were the same, then the

difference in agents’ architectural values would represent those layout changes. A basic terminal

was tested based on three security screening alignments: centre, asymmetrical, and

perpendicular. The thesis also considered how the terminal’s architectural value was affected by

agents’ assigned priorities: random, high security, and equal. Testing showed that the terminal’s

architectural value distribution was lower, on average, if passengers had difficulty finding the

security area, which occurred in the perpendicular layout. These differences were most

pronounced when passengers had a high security priority, since their experience of the terminal

was more dependent on that one airport domain. Overall, the range of architectural values has

greater variance when agents have random priorities than agents with equal priorities. This

indicates that, if passengers prioritize a wide range of aspects in an airport, then architectural

changes in a single area do not have a significant effect on the overall passenger interaction.

Fundamentally, passengers are more likely to see architectural value in areas that they

prioritize.

336

Tests in chapter 4.3 checked if the thesis’s simulation of architectural value could differentiate

between a good and bad airport according to an established airport ranking, relatively. The good

and bad airports were Singapore Changi and Toronto Pearson, which were ranked 1st and 42rd,

respectively. The test was conducted for departing international passengers in similar areas of

each terminal building, within basic check-in, security, and retail areas. The results of testing

concluded that Singapore Changi has a higher architectural value than Toronto Pearson, on

average. Passengers in Pearson experienced a wider distribution of values than Changi, whose

passengers had more consistent interactions. The difference in value was primarily caused by

passengers in Pearson not interacting with non-processing domains, since these areas were

located on the opposite side of the terminal from the security area. Whereas all passengers in

Changi were able to interact with these domains, since its security opens directly into a retail

courtyard. If agents were assigned different priorities, the thesis believes the difference in

architectural value would not be as high. Overall, this testing showed that the thesis’s calculation

of architectural value is capable of aligning with passenger’s experience in a real airport. As a

result, this type of analysis could represent how well passengers will interact with the spaces in

any terminal design.

337

Chapter 5.1

Ideal Models

Although the thesis’s agent simulation has achieved some success, it is far from ideal and is not

sufficient enough to be used in real practice. However, the thesis has investigated several

attributes that would be beneficial for any architectural analysis tool.

Minimum Requirements

The thesis believes there are three key elements that an agent-based tool will need to better

evaluate architectural spaces. This includes realistic crowd behaviour, perception navigation,

and statistical value functions.

Crowd Behaviour: Agents in an architectural simulation need to function at least as well as

existing evacuation crowd modelling software. This includes crowd dynamics, social behaviours,

interaction with physical conditions, and possibly, behaviour for emergency situations. Crowd

dynamics can include how people behave in large groups, how people respond to congestion,

and how different flow rates propagate through a space. Social behaviours include how people

respond to other people near by, family dynamics, making sure people represent real

demographics, and a diverse range of human characteristics. Physical conditions include basic

movement in a building, movement between multiple floor levels, and interactions with objects

and equipment. Emergency situations include evacuation patterns, stress or panicked

behaviour, and dynamic choices.

Perception Navigation: Agents in the simulation must navigate with perception, instead of the

shortest path, so that agents can give feedback of architectural conditions, and secondly, to

better represent how people interact in unfamiliar buildings. The thesis explored A*

pathfinding, however, other options can include vector forces, or similar physics-based models.

Agents’ navigation needs to have some form of decision-making. People should not be modelled

as flow items or passive objects. Ultimately, the decision-making process will inform how people

read architectural conditions.

Statistical Value Functions: Objective valuation of architectural space should be based on

some form of human interaction, which uses probability and statistics to approximate uncertain

338

conditions. The thesis used prioritization, a part of the analytical hierarchy process, to quantify

passenger experiences. However, there are other multi-criteria decision analysis that use

similar mathematics or logic to make objective decisions within a complex system. These

techniques usually involve some form of ranking, weighting system, or vector analysis to

evaluate choices. Additionally, since a decision-making process has a level of uncertainty,

statistics must be used to estimate the range of values that are likely to occur. This will also help

reduce the computation if there are many architectural conditions to calculate.

Agent Model

The function of thesis’s agent model could also be improved. As shown during testing, the agent

simulation was not able to realistically model dense crowded spaces. An ideal agent should,

firstly, match real human walking speeds, and avoid walking through walls, objects, or other

agents. They should be able to detect proximity to other agents and slow down in crowded

spaces. If agents do encounter crowded areas, they should try to look for open areas to walk.

Likewise, agent navigation should be constantly updated so that they can respond appropriately

to new information. If an agent’s environment changes, their navigation should change too,

instead of blindly walking to their original target.

Additionally, not all people would respond to the same information. Agent should model how

people respond in different situations. This includes adapting behaviour to different priorities,

or human needs like hunger. People who are hungry should be more likely to get food whether it

is their priority or not. The agent model should allow people to adapt their behaviour or

priorities over time. For example, if people’s mood changes, or if they become stressed, then that

should reflect their choices. People going through an airport who are impatient may be more

likely to become stressed, and as a result, would be more critical of poor wayfinding or the lack

of amenities.

The agent model could also consider different groups of people. This includes people who travel

in large groups with families or friends, and the dynamics of staying together. This would also

affect how people are waiting in lines and occupying amenity spaces. Additionally, children and

dependants have entirely different logic in a family group. Although, this may require a

completely separate agent model specifically for simulating child behaviour.

339

Other Architectural Environments

The thesis has been focusing on the architecture of airport terminals for passenger processing.

However, there are many areas in an airport that an architect might be responsible for

designing. This may also include back-of-house offices, lounges, transit halls, baggage handling

areas, or other non-passenger facilities. The intension of this thesis was to provide a basic

illustration of the core concepts for one architectural condition, which could be expanded into

other domains or situations.

For example, a similar perceptive agent model could be made for baggage workers. This could be

used to test how these workers make decisions based on the bags they perceive while they are

moving them between aircraft. Likewise, another agent model may be used to test passenger’s

interaction in airport lounges based on the decisions they make in these areas. This type of

testing may be useful for airlines to improve passenger experience.

In addition to airports and transport facilities, the thesis believes this type of agent modelling

could be generalized for testing other building types. This would focus on buildings that deal

with a lot of people, like hospitals, schools, or community centres.

For example, the design of hospitals could use agent modelling to test patient interactions in

waiting rooms, clinics, or operations. As this thesis has shown, agents could be given knowledge

of common hospital domains, and asked to complete a healthcare checkup only using their

perception. This can indicate how well the layout of the hospital is used to complete that

checkup.

Likewise, the design of a university could use an agent model to simulate students going

between classes or interacting with university facilities. Students could be assigned different

priorities of what aspects of the university they believe is important. The simulation could then

provide a distribution of values for each university domain that students were able to engage

with.

Fundamentally, the ideal version of this thesis’s agent simulation could be reconfigured for any

building type. The agents could be reassigned different priorities, or arbitrary value functions

that correspond to new environments or tasks they need to complete.

340

Chapter 5.2

Impacts

The ideas covered in this thesis include objective design testing of architectural spaces and the

functional tool of agent simulations. These have the potential to impact two areas of

architecture: the design process and the built environment. The design process includes project

planning, testing iterations, and client interactions. The built environment describes the

construction of airport terminals and similar public facilities. In general, objective layout testing

can organize areas in a terminal closer to how passengers naturally act in an airport. Specifically,

a terminal that aligns with passengers’ intuition allows people to walk through areas without

having to question what they are doing. In the long-term, this thesis expects development of

scientific design practices, shift in the responsibilities of architects, and automating

architectural design. There is also a risk of optimizing for passenger priorities that will change in

the future, or that have unintentional effects on human well-being.

Design Process

Gathering Data:

The first impact to the design process is the influence on project planning. Before designs can

begin, airport developments will need information about the type of people in the terminal. It is

not only enough to design a terminal based on the number of aircraft movements or passenger

flow rate. In addition to these aspects, planners will need to understand what passenger

preferences are, things that people consider important, and things that people do not care about

in their airport experience. These factors will determine what simulations are testing for.

Many of these factors can be influenced by cultural backgrounds. For example, business

passengers in Asia may have more tolerance for a noisy environment, while passengers in North

America may prefer to have quiet locations to work while they are waiting. [1] Although, cultural

differences cannot be generalized this way, it is important to consider what information a

simulation is using to model passenger behaviour. As mentioned, the way people behave in

1. “Can cultural differences impact passenger satisfaction?”. Analysis, Airport Technologies. Updated

December 7th, 2018. https://www.airport-technology.com/features/passenger-satisfaction-in-airports/.

341

different spaces has an impact on the performance of the architecture. Getting relevant

passenger data is a critical first step for objective testing.

Design Testing:

The second impact to the design process is the need for iteration testing. During the design

phase, a team might put together a floor plan proposal of an airport terminal. If the architects

made good design decisions, then things like the security screening area would be well spaced

out, the signage would be in visible locations, and there would be a good distribution of

amenities. To check if the layout meets design expectations, it must be validated. In addition to

checking crowd flow density and queue times, the design would also be tested for architectural

layout performance.

The thesis expects there to be a team of technical architects who would be responsible for

analyzing designs for layout performance using an agent-based tool. Designers would give their

latest terminal model to this team to assess what architectural value it has. After running

through simulations, theses architects would identify what areas of the terminal have good

spatial performance, and areas that have poor spatial performance, based on the agent

behaviour. Designers would then take back the terminal plan and adjust the layout to get a

better result from the simulation. This process continues with designers making changes to the

terminal plan, and analysts would check for validation using agent simulations. At a certain

point, designers would reach an arrangement of spaces that gives acceptable passenger

performance, at which point the design would be considered validated. Designers then can have

confidence that their latest iteration is suitable for passengers. Ultimately, the impact during the

iteration process is that designs must go through validation testing to confirm that the layout

aligns with passenger activity, before moving on to detailed design.

Client Interaction:

The third impact to the design process is the interaction with clients. Architects can use agent-

based simulations to illustrate why they made certain design decisions. When trying to sell ideas

to clients during presentations, architects using simulations have more convincing arguments

using simulation data than renders or simple animations can show. Firstly, architects can have

confidence that they validated their design against standard tests. They can show clients

quantitative numbers from testing to explain how their design compares to other concepts.

Agent-based simulations can illustrate what areas of an airport terminal are having the most

impact on passenger activity. By using an analytic approach to validate the building

342

performance, architects give more value to their work. Architects may choose to create an

unconventional layout or have an aesthetically motivated approach. These simulations can

provide confidence for their clients that the unusual design still meets the needs of the project.

Clients also have their own project goals, like improving retail spaces or improving security

areas. They can benefit from agent-based simulations by verifying how much value their current

building has, and what architectural factors can change to improve those aspects. If a simulation

of the original building got an architectural score of 40% for retail, due to passengers not

spending time in those areas, then the simulation can indicate to clients what architectural

changes can improve retail score to 80%. The greatest impact for clients is improvements for

airport operations and overall business. If business owners are expecting a certain performance

target, agent simulations can validate how the terminal impacts those business decisions.

Built Environment

The main impact to the built environment is providing people with a seamless experience. For

example, a passenger walking through a terminal may decide to get a coffee. In a well tested

terminal, a café will be there the moment they start to think about it. Layout testing may show,

after simulating 10 000 people, that majority of people also wanted to get coffee at that same

location. Therefore, a designer using this approach will make sure the terminal has good access

to a café at that location.

In general, validating a terminal design with agent-based simulations will show what

arrangement of space is most intuitive to walk through. Resulting designs will be better suited

for international passengers who are new to an airport. Agent-based validation ensures

passengers will be less confused in areas they have never experienced before. For example,

signage will be in place in locations that make sure passengers have correct information and the

given signs are relevant for where they need to go. Architects will arrange corridors, so people do

not need to weave through unintended spaces, like waiting rooms or other gates. Services like

information kiosks will be in areas that make it easier to access for people who are likely to get

lost. Food and retail spaces will be designed in locations where people are most likely to take a

break. Accessible features, like elevators or other aids, will be designed in suitable locations for

those with corresponding disabilities. Ideally, architects will design spaces to give passengers

better intuition about where things are.

Another impact to the design of terminals is how airports arrange essential areas. It is possible

to consider that validation will show passengers have better performance with a different order

343

of check-in and security. Agent simulations might conclude that if people have a high

importance for security screening, it is better to have screening as the first thing when entering a

terminal. Instead of laying out a terminal based on existing practices, planners design a terminal

that works best with passenger perception. Obviously, this is a simple example, and the design

of an airport is dependant on more than just passenger perception. However, spatial validation

can start to predict how much the architecture has an effect from these choices, based on

quantitative values. Ultimately, architects can be more precise about the value of their design

choices on essential areas in an airport.

Long-term Impact

Some long-term impacts of using agent-based simulation for architecture include shifting design

to more evidence-based practices and automating design choices. Additionally, the biggest long-

term risk of letting simulations control design decisions is optimizing for something that is

unintentionally harmful to human health and safety.

Evidence-based Practices:

In the future, architectural design will need to follow scientific practices to be effective for the

built environment. The process will include proposing a design hypothesis, and then being

required to test the design to check its performance, the same way it is done for material and

building sciences. This process will become similar to the engineering design process, which

commonly uses a scientific framework and physical analysis to prove the performance of new

systems or technology.

For buildings that see many public people, this may result in industry regulations on spatial

practices, like regulation on building evacuations and environmental impacts do now.

Additionally, this may also result in company design audits to confirm that architectural spaces

are meeting a certain spatial standard to prevent bad design practice.

Architects will be responsible for interpreting the outcomes of the simulations or similar tools.

This includes checking that building components are validated and deciding what parts of the

building need to be tested. However, this does not mean architects will stop making innovative

designs. In fact, this will only change how they approach design choices.

In the future, simulations will automate the design iteration process by optimizing layouts based

on the performance of passenger behaviour. The agent simulations could iterate through a

thousand more concepts that a single designer could explore by intuition. An architect’s time on

344

a project would shift from design exploration to design analysis. They will become responsible

for interpreting the data from the simulation trials, judging the accuracy of the outcomes, and

deciding on a final design based on the results.

Risk of Optimizing for Unknown Behaviour:

The long-term risk of relying on simulations for architectural design is optimizing for unknown

human behaviour. Optimizing for certain passenger priorities today may not be representative

of human behaviour in an airport 50 years from now. As a result, relying on purely automated

systems can result in something that is unintentionally harmful for society, if no one is there to

interpret the results.

For example, until recently, North American airports used to have dedicated smoking lounges in

terminal buildings. However, since smoking is widely seen as unhealthy and unsafe, indoor

smoking in Canada was restricted by the government. As a result, the need for smoking areas in

an airport was removed. If a hypothetical agent simulation optimized a terminal design for

smoking lounges, as a passenger priority, decades earlier, then the building would not be well

suited for current passengers today.

Fundamentally, planners could be using simulations to optimize for conditions that may be

considered unsafe, unhealthy, or socially unacceptable in the future. Some examples may

include energy usage (replacing poorly insulated enclosures and combustion building

generators), technology changes, (remote check-in, preapproved security clearances) or disease

prevention (quarantined areas, seat spacing in waiting rooms, health-check stations).

Unfortunately, there are problems that society is not aware of or has no current way of

understanding what they will be. It is difficult for computers today to predict human behaviour

far into the future and still have high confidence in the results, like psychohistory in Asimov’s

Foundation series. Additionally, the way a simulation interprets information is based on the

biases of the person who created it. Therefore, a computer’s understanding of the world can only

be as good as the models it is provided.

The risk of relying on simulations that may not be accurate is being able to identify when they

give wrong information. If a designer is not already familiar with the background of a project,

they will not be able to recognize when the simulation is wrong. The risk is designers might take

the results of the simulation as the only truth, without any further analysis or critical evaluation.

Simulations should not be relied on as a primary design tool. They are most useful when they

345

can increase a designer’s understanding of a system. The final judgement is still up to the

designer to decide how this information is used.

Avoiding these issues will involve continually re-evaluating building systems over time and

updating the latest simulation models as our understanding of social behaviour changes.

Additionally, this will require more focus on studying public spaces, and scientifically recording

information about human interactions for architectural design.

346

Chapter 5.3

Future Work

The research from this thesis could be taken in two directions. One direction is to move forward

with the agent simulation to study the automation of testing and the design process. The other

direction is to go back and re-evaluate the relationship between human behaviour and

architecture. Automation would be best explored through the creation of another architectural

software program. Whereas behavioural relationships would be best studied through real-world

experiments with people in the built environment.

Design Automation

The research from this thesis begins the discussion for automation in architectural design. The

goal of automation is to reduce the amount of time architects spend exploring design iterations.

To get a computer to automate a system, there must be a process in place, or instructions, that a

computer can follow. This thesis explores one way to model architectural performance. A

computer can use a similar model like this to optimize for a given condition. For example, if a

designer wants to optimize a building for high visibility, then they can program the computer to

maximize agent field of view in specific locations in the building. More broadly, if a client for an

airport wants to increase the passenger interaction in retail areas, then architects can program a

simulation to optimize a design for these retail areas.

Current research in automation can involve machine learning techniques. This is an artificial

system that programs, or learns, behaviour without having a user code in specific conditions.

For example, instead of an architect telling an airport simulation that an open retail area by

departure gates is better, a machine learning program can recognize that designing gates with

open retail areas gives better passenger performance.

Machine learning algorithms involve optimizing an artificial neural network, which is a graph-

like, tree-base, hierarchical structure with weights for specific system attributes. Basically, it is

like the computer’s brain, which tells the program how to behave under certain conditions. A

program learns by updating the weights in this hierarchy, after it studies training data, or

performs trial-runs. A computer recognizes what the correct behaviour is by comparing its own

output to a correct solution, which may be defined by the user initially. For example, a simple

347

machine learning program for a driverless car might have weights for steering and obstacle

proximity, and a penalty system for hitting a wall. These weights would be changed every time

the car hits a wall. A similar score and penalty system would need to be created for architectural

conditions.

Depending on the size of its neural network, a machine learning program may need to perform

millions of trial-runs. It will also require a lot of training data to optimize for a certain

behaviour. This is especially important for architecture because there are dozens of factors that

influence design choices, which requires optimizing a weight for each condition. Future agent

simulations can incorporate a machine learning algorithm that takes in the performance of the

agents (or passengers) as an input and optimizes their architectural value by modifying the walls

in a floor plan. Ideally, these simulations can begin to recognize which layout will produce

higher architectural value, or as a result, better building performance.

Architectural Influence on Human Behavior

Another critical area of research is studying how architectural choices influence human

behaviour. There is no use in optimizing for an agent behaviour if it is not representative of real-

world conditions. The thesis chose to focus on airports because there is a lot of research in

passenger experience analysis. Future architectural research may also want to continue studying

passenger experience, or even explore patient experience in healthcare facilities.

One area of focus in this thesis was understanding people’s perception of the built environment.

The thesis realizes this is not as simple as asking how a wooden wall affects people’s behaviour

compared to a concrete wall. Instead, the thesis concludes that people’s perception is unique to

the individual, and it depends on what people are doing. For example, if people are looking for

their platform in a train station, then a solid concrete wall can be a physical obstruction.

However, if people are waiting around before their train has arrived, then they may use the solid

concrete wall as a place to wait beside or lean on. Therefore, there can be different behaviours

for the same architectural feature.

Research may want to identify what behaviours are likely to occur and explore what

architectural elements relate to those behaviours. There is opportunity to explore real human

activity in actual buildings, like terminals or community centres, as a scientific study. This

research can help better understand what activities people normally do in the built environment.

It can also help identify where in a building these activities might occur, or how these activities

relate to the overall layout of the architecture.

348

Human behavioural research will also involve exploring ways of assigning a value to

architectural conditions. Valuation is important to help perform a scientific study, since

research focusing on qualitative properties of an environment can be very diverse. It is also

useful to have quantifiable data from these tests so it can be used for analysis or forecasting.

Having a ranking system can be beneficial in field-studies when comparing two completely

different observations. This thesis explored using a weight-based metric, which normalized

people’s priorities. However, there are other ranking systems that could provide similar

information, as seen in existing passenger experience surveys. The results from this kind of

research could then be used to create simulation studies of architectural environments.

349

Chapter 5.4

Summary of Conclusion

In summary, the thesis’s agent simulation can successfully differentiate between certain

architectural layouts depending on an agent’s airport priorities. The thesis believes any effective

architectural simulation must at least use existing practices from crowd modelling, incorporate

perception for agent decision making, and analyse architectural values using statistics. If

generalized enough, agent simulations can be used to test any building type, in addition to

airport terminals.

Simulations can impact architecture by providing a quantifiable value for design iterations. This

type of analysis can be effective for architects to communicate design issues or benefits to their

clients. Testing will result in more intuitive spaces, which will give people a more seamless

experience in the built environment. However, the risk of architects only relying on simulations

to create designs is not being able to recognize when they output wrong information. Without

critical evaluation, architects risk building something that becomes detrimental to people in the

long-term, as society’s needs change over time. Ultimately, the most effective use of simulations

is for clarifying uncertainty in the existing design process. This will not replace the role of the

architect; it will only change how they think about design choices.

Future work from this thesis can take two different directions. One direction is automating

agent simulations by exploring machine learning techniques to optimize architectural

conditions. The other direction is studying how human behaviour relates to certain architectural

elements, by conducting experiments with people in real-world buildings.

In conclusion, the thesis has demonstrated that architectural design can be approached

quantitatively. Continuing to learn from these established practices will provide more scientific

rigour for architecture in the future.

351

Letter of Copyright Permission

A* Pathfinding – Collection of Unity Scripts

Lague, Sebastian. "Pathfinding/Episode 10 - threading/Assets/Scripts/". GitHub. December 30,
2016. https://github.com/SebLague/Pathfinding/tree/master/Episode%2010%20-
%20threading/Assets/Scripts.

MIT License

Copyright (c) 2017 Sebastian Lague

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

352

Field-of-View – Collection of Unity Scripts

Lague, Sebastian. "Field-of-View/Episode 02/Scripts/FieldOfView.cs". GitHub. December 28,
2015. https://github.com/SebLague/Field-of-
View/blob/master/Episode%2002/Scripts/FieldOfView.cs.

MIT License

Copyright (c) 2016 Sebastian

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

355

References

3Blue1Brown. “Eigenvectors and eigenvalues | Essence of linear algebra, chapter 14”. Youtube, September
15, 2016. https://www.youtube.com/watch?v=PFDu9oVAE-g.

99pi. “The White Elephant of Tel Aviv.” 99% Invisible, March 29, 2016.
https://99percentinvisible.org/episode/stop-that-bus/.

Abdelhak, Haifa; Ayesh, Aladdin; Olivier, Damien. “Cognitive Emotional Based Architecture for Crowd
Simulation”. Journal of Intelligent Computing, June 2012, 2012. Vol. 3 (2), pp. 55-66.

ABET. “Criteria for Accrediting Engineering Programs, 2019 – 2020.” ABET. Accessed June 2020.
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-
programs-2019-2020/#definitions.

AirHelp. “AirHelp Score 2019: Global Airport Rankings”. AirHelp 2019. Accessed October 2020.
https://static.airhelp.com/pdf/2019-airport-
score/methodology_airhelp_score_2019__global_airport_rankings-en_us.pdf.

AirHelp. “Global Airport Ranking”. AirHelp, 2019. Accessed October 2020.
https://www.airhelp.com/en/airhelp-score/airport-ranking/.

Airport Technologies. “Can cultural differences impact passenger satisfaction?”. Analysis. Updated
December 7th, 2018. https://www.airport-technology.com/features/passenger-satisfaction-in-
airports/.

Alexander, Christopher, Sara Ishikawa, and Murray Silverstein. A Pattern Language: Towns, Buildings,
Construction. New York: Oxford Univ. Pr., 1977.

Alexander, Christopher. Notes on the Synthesis of Form. Cambridge: Harvard University Press, 1964.

Arabacioglu, Burcin Cem. “Using Fuzzy Inference System for Architectural Space Analysis.” Applied Soft
Computing 10, no. 3 (2010): 926–37. https://doi.org/10.1016/j.asoc.2009.10.011.

Arbuckle, Alex Q. “1910-1963 The Destruction of Penn Station.” Mashable, July 20, 2015.
https://mashable.com/2015/07/20/original-penn-station/#.utV4feGIPq1.

Arena. “Discrete Event Simulation Software.” Arena Simulation Software. Accessed December 2019.
https://www.arenasimulation.com/what-is-simulation/discrete-event-simulation-software.

Argenton, Rodrigo. “File:Galton box.jpg”. Wikimedia Commons. December 19, 2016.
https://commons.wikimedia.org/wiki/File:Galton_box.jpg.

Arup. “The Verification and Validation of MassMotion for Evacuation Modelling.” Ove Arup & Partners
Ltd. August 10, 2015. https://www.oasys-software.com/wp-content/uploads/2017/11/The-
Verification-and-Validation-of-MassMotion-for-Evacuation-Modelling-Report.pdf.

Aschwanden, Gideon, Jan Halatsch, and Gerhard Schmitt. "Crowd Simulation for Urban Planning”.
Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2]
Antwerpen (Belgium) (17-20 September 2008): pp. 493-500.

356

ASHRAE. “ASHRAE Standards Strategic Plan 2014-15”. American Society of Heating, Refrigerating and
Air Conditioning Engineers, Inc. July 2, 2014.

ASHRAE. “Standard 100-2015 -- Energy Efficiency in Existing Buildings (ANSI Approved/IES Co-
sponsored)”. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc.
Accessed February 2021. https://www.ashrae.org/technical-resources/bookstore/standard-100.

Augé Marc. Non-Places: Introduction to the Anthropology of Supermodernity. London: Verso, 1995.

Balci, Osman. “Validation, Verification, and Testing Techniques Throughout the Life Cycle of a Simulation
Study.” Annals of operations research 53, no. 1 (December 1994): 121–173.

Banks, Jerry; Carson II, John S; Nelson, Barry L; Nicol, David M. Discrete-Event System Simulation 4th
ed. Upper Saddle River, N.J: Pearson Prentice Hall, (2005).

Batty, Michael. Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based
Models, and Fractals. Cambridge, MA: MIT, 2007.

Belogolovsky, Vladimir. “Paul Andreu: ‘I Would Only Take On a Project If the Ideas Were Mine.
Otherwise, I Am Not Interested.".” ArchDaily. March 7, 2017.
https://www.archdaily.com/806698/paul-andreu-i-would-only-take-on-a-project-if-the-ideas-
were-mine-otherwise-i-am-not-intereste.

Bhattacharya, Subhrajit. “File:Astar progress animation.gif”. Wikimedia Commons. April 13, 2011.
https://en.wikipedia.org/wiki/File:Astar_progress_animation.gif.

Bhattacharya, Subhrajit. “File:Dijkstras progress animation.gif”. Wikimedia Commons. April 13, 2011.
https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif.

Bouarfa, S, H.A.P Blom, R Curran, and M.H.C Everdij. “Agent-Based Modeling and Simulation of
Emergent Behavior in Air Transportation.” Complex adaptive systems modeling 1, no. 1 (August 15,
2013): 1–26.

Broadbent, Geoffrey. Design in Architecture; Architecture and the Human Sciences. London: John Wiley
& Sons, 1973.

Broto, Carles. Transport Facilities. Barcelona: Link Books, 2012.

Buchgeher, Georg, and Rainer Weinreich. “Continuous Software Architecture Analysis.” Agile Software
Architecture, 2014, 161–88. https://doi.org/10.1016/b978-0-12-407772-0.00006-x.

Canada Alive. “Pearson International Airport, Toronto”, Canada Alive, April 8, 2014, Accessed September
2019, https://canadaalive.wordpress.com/2014/04/08/pearson-international-airport-toronto/.

Carpo, Mario. The Second Digital Turn Design Beyond Intelligence. Cambridge, MA: The MIT Press,
(2017).

Changi Airport Singapore. “Maps: Changi Airport Singapore.” Maps | Changi Airport Singapore. Accessed
October 2019. http://www.changiairport.com/en/maps.html#17.16/1.354975/103.989599/-67.

Chatzikonstantinou, Ioannis; Sariyildiz, Sevil; Bittermann, Michael S. “Conceptual Airport Terminal
Design Using Evolutionary Computation.” In 2015 IEEE Congress on Evolutionary Computation
(CEC), 2245–2252. IEEE, 2015.

357

Choudhary, Shweta; Pipralia, Satish. “Architectural Perception for Redevelopment of Railway Termini”.
International Journal on Emerging Technologies 8(1), January 26,2017.

Chu, Mei Ling, and Kincho Law. “Computational Framework Incorporating Human Behaviors for Egress
Simulations.” Journal of Computing in Civil Engineering 27, no. 6 (November 1, 2013): 699–707.

Collins, Peter, and William Dendy. Architectural Judgement. Montreal: McGill-Queens University Press,
1971.

Cuff, Dana. Architecture: the Story of Practice. Cambridge, Mass: MIT Press, 1991.

Cullen, Gordon. The Concise Townscape. Abingdon: Routledge, 1971.

Deputy City Manager. “Union Station Revitalization Project (USRP) – Status Report.” City of Toronto,
June 18, 2020.

Designworkplan. “Airport Signage.” /designworkplan wayfinding design studio. Accessed November 26,
2019. https://www.designworkplan.com/read/airport-signage-photo-inspiration.

Dewey, John. Theory of Valuation. Chicago, Ill: University of Chicago Press, 1939.

Do, Ellen Yi-Luen, and Mark D. Gross. “Tools for Visual and Spatial Analysis of CAD Models.” CAAD
Futures 1997, 1997, 189–202. https://doi.org/10.1007/978-94-011-5576-2_15.

Dt-rush-8. “File:Queueing node service digram.png”. Wikimedia Commons. 8 December 2018.
https://commons.wikimedia.org/wiki/File:Queueing_node_service_digram.png.

Easterling, Keller. Organization Space: Landscapes, Highways, and Houses in America. Cambridge,
MA: The MIT Press, 2001.

EGS India. “Why, How and When do you perform Design Validation for Automotive Systems?”.
Solidworks Tech Blog. August 30, 2016. https://blogs.solidworks.com/tech/2016/08/perform-
design-validation-automotive-systems.html.

Evans, Michael J; Rosenthal, Jeffery S. Probability and Statistics the Science of Uncertainty Second
Edition. University of Toronto: 2009.

FAA. “Advisory Circular 150/5360-13A - Airport Terminal Planning”. APP-400, Office of Airport Planning
& Programming, Planning & Environmental Division. U.S. Department of Transportation, Federal
Aviation Administration (FAA). July 13, 2018.
https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC-150-5360-13A-Airport-
Terminal-Planning.pdf.

FAA. “Airport Design and Engineering Standards.” FAA seal, August 2019.
https://www.faa.gov/airports/engineering/design_standards/.

FDA. “Guideline on General Principles of Process Validation”. U.S. Department of Health and Human
Services Food and Drug Administration, FDA-2008-D-0559. Updated 2018-08-24.

Fiederer, Luke. “AD Classics: TWA Flight Center / Eero Saarinen”. ArchDaily. 2016-06-16.
https://www.archdaily.com/788012/ad-classics-twa-flight-center-eero-saarinen.

358

Fischer, Alex. “Quelea - Agent-Based Design for Grasshopper.” Grasshopper. Accessed December 14,
2019. https://www.grasshopper3d.com/groups/group/show?groupUrl=quelea-agent-based-
design-for-grasshopper&.

FlexSim. “FlexSim 3D Simulation Modeling Software.” FlexSim, September 13, 2017.
https://www.flexsim.com/flexsim/.

Frank, Andrew; Raper, Jonathan; Cheylan, Jean-Paul (eds.), The Life and Motion of Socio-Economic
Units. (GISDATA 8), London: Taylor and Francis, 2001.

Franklin, Stan; Graesser, Art. "Is it an Agent, or just a Program?: A Taxonomy for Autonomous Agents".
Proceedings of the Third International Workshop on Agent Theories, Architectures, and
Languages, (1996) Springer-Verlag.

Fruin, John J. Designing for Pedestrians: A Level of Service Concept. New York, 1970.
http://onlinepubs.trb.org/Onlinepubs/hrr/1971/355/355-001.pdf.

Fruin, John J. Pedestrian Planning and Design. New York: Metropolitan Association of Urban Designers
and Environmental Planners, 1971.

Galea, Alexander. “Galton’s Peg Board and the Central Limit Theorm”. WordPress. March 11, 2016.
https://galeascience.wordpress.com/2016/03/11/galtons-peg-board-and-the-central-limit-
theorem/.

Getlein, M. Living with Art. New York, NY: McGraw-Hill, (2013): p. 115.

Gibson, James J. The Ecological Approach to Visual Perception. New York: Psychology Press, 1986.

Globalphotos. “Toronto Pearson Airport Photo Gallery”. globalphotos.org. Accessed November 2019.
https://www.globalphotos.org/to-airport.htm.

Great Buildings. Dulles Airport. Accessed March 2021.
http://www.greatbuildings.com/buildings/Dulles_Airport.html.

GTAA. “2018 Airport Construction Code, v5.0”, Toronto Pearson International Airport, GTAA, 2018,
https://tpprodcdnep.azureedge.net/-/media/project/pearson/content/operators-at-
pearson/construction/pdfs/airport-construction-code.pdf?modified=20190302002058.

GTAA. “Toronto Pearson”. Greater Toronto Airports Authority – GTAA, Accessed September 2019,
https://maps.torontopearson.com/.

GTAA. “Toronto Pearson International Airport Master Plan 2017-2037”, Greater Toronto Airports
Authority (GTAA), 2017, 38, 56, 85, https://tpprodcdnep.azureedge.net/-
/media/project/pearson/content/corporate/our-future/pdfs/gtaa-master-
plan.pdf?la=en&modified=20190228235920&hash=6C155E44692A278979B42F1F976A7456D7F2
D53F.

Guichard, David. An Introduction to Combinatorics and Graph Theory. Whitman College. January 30,
2020.

Guru99. “Design Verification and Validation”. Guru99, accessed May 27, 2020,
https://www.guru99.com/design-verification-process.html.

359

Hagtvedt, Patrick. “The Perception and Evaluation of Visual Art.” Empirical studies of the arts 26, no. 2
(July 2008): 197–218.

Hamilton, D. Kirk. “Four Levels of Evidence-Based Practice”. Healthcare Design. 3,4: 18-26.

Hanafi, Israa, Moustafa El Araby, Khalid Al Hagla, and Samer El Sayary. “Human Social Behavior in
Public Urban Spaces: Towards Higher Quality Cities.” Spaces and Flows: An International Journal
of Urban and ExtraUrban Studies 3, no. 2 (2013): 23–35. https://doi.org/10.18848/2154-
8676/cgp/v03i02/53690.

Hillier, Bill, and Julienne Hanson. The Social Logic of Space. Cambridge: Cambridge University Press,
1984. doi:10.1017/CBO9780511597237.

Hirose, Iwao; Olson, Jonas. The Oxford Handbook of Value Theory. New York: Oxford University Press,
2015.

Hirsh, Max. Airport Urbanism Infrastructure and Mobility in Asia. Minneapolis: University of
Minnesota Press, 2016.

HOK. “HOK to Design New Transit Hub at Toronto Pearson International Airport.” HOK, February 6,
2018. https://www.hok.com/news/2018-02/hok-to-design-new-transit-hub-at-toronto-pearson-
international-airport/.

Holm, Ivar. “Ideas and Beliefs in Architecture and Industrial Design”. PhD thesis, Oslo School of
Architecture and Design, 2006.

Hoy, Gregory, Erin Morrow, and Amer Shalaby. “Use of Agent-Based Crowd Simulation to Investigate the
Performance of Large-Scale Intermodal Facilities: Case Study of Union Station in Toronto, Ontario,
Canada.” Transportation Research Record 2540, no. 1 (January 2016): 20–29.
https://doi.org/10.3141/2540-03.

Indraprastha, Aswin, and Michihiko Shinozaki. “Elaboration Model for Mapping Architectural Space.”
Journal of Asian Architecture and Building Engineering 10, no. 2 (November 2011): 351–58.
https://doi.org/10.3130/jaabe.10.351.

IMO. “Guidelines for Evacuation Analysis for New and Existing Passenger Ships.” International Maritime
Organization (IMO). MSC.1/Circ.1238. October 30, 2007. https://nsof.no/media/1129/imo-msc-
guidelines-for-evacuation-etc.pdf.

ISO. “Systems and software engineering -- System life cycle processes.” ISO/IEC/IEEE 15288:2015, 2015-
05, 4.37 validation.

Joe. “List of Random Names.” Accessed August 2020. http://www.listofrandomnames.com/.

Kepes, G. The Nature and Art of Motion. London: Studio Vista, 1967.

Khan Academy. “Central Limit Theorem”. Math, AP® / College Statistics, Sampling Distributions,
Sampling Distributions of a sample mean. Accessed February 2021.
https://www.khanacademy.org/math/ap-statistics/sampling-distribution-ap/sampling-
distribution-mean/v/central-limit-theorem.

Khan Academy. “Deep definition of the normal distribution”. Math, Statistics and probability, Modelling
data distributions, More on normal distributions. Accessed February 2021.

360

https://www.khanacademy.org/math/statistics-probability/modeling-distributions-of-data/more-
on-normal-distributions/v/introduction-to-the-normal-distribution.

Khan Academy. “Describing Graphs.” Computer Science, Algorithms, Graph Representation, Accessed
May 2020. https://www.khanacademy.org/computing/computer-science/algorithms/graph-
representation/a/describing-graphs.

Khan Academy. “Introduction to eigenvalues and eigenvectors”. Linear Algebra, Alternative coordinate
systems, Eign-everything. https://www.khanacademy.org/math/linear-algebra/alternate-
bases/eigen-everything/v/linear-algebra-introduction-to-eigenvalues-and-eigenvectors.

Khan Academy. “Representing Graphs.” Computer Science, Algorithms, Graph Representation, Accessed
May 2020. https://www.khanacademy.org/computing/computer-science/algorithms/graph-
representation/a/representing-graphs.

Kim, Giseop; Kim, Ayoung; Kim, Youngchul. “A New 3D Space Syntax Metric Based on 3D Isovist Capture
in Urban Space Using Remote Sensing Technology.” Computers, Environment and Urban Systems
74 (2019): 74–87.

Kochanski, Jakub. “GoPro Time Lapse – People at O’Hare Airport [Terminal 3]”. YouTube. April 8, 2015.
https://www.youtube.com/watch?v=ipHebqQTDlg.

D.P. Kroese, T. Taimre, Z.I. Botev. Handbook of Monte Carlo Methods. Wiley Series in Probability and
Statistics, John Wiley & Sons, New York, (2011).

Lague, Sebastian. "Pathfinding/Episode 7 - smooth weights/Assets/Scripts". GitHub. December 30, 2016.
https://github.com/SebLague/Pathfinding/tree/master/Episode%209%20-
%20smooth%20path%2002/Assets/Scripts.

Lague, Sebastian. "Field-of-View/Episode 02/Scripts/FieldOfView.cs". GitHub. December 28, 2015.
https://github.com/SebLague/Field-of-View/blob/master/Episode%2002/Scripts/FieldOfView.cs.

Lague, Sebastian. “Field of view visualization (E02)”. Youtube. December 27, 2015.
https://www.youtube.com/watch?v=73Dc5JTCmKI.

Lane, David et al. “Sampling Distribution”. Onlinestatbook.com, Rice Virtual Lab in Statistics (RVLS),
Rice University. Accessed February 2021.
https://onlinestatbook.com/stat_sim/sampling_dist/index.html.

Le Corbusier. Modulor I and II. Cambridge, Mass: Harvard University Press, 1980.

Lee, Peter M. Bayesian Statistics an Introduction 4th ed. Chichester, West Sussex, 2012.

Lera, Sebastian G. “Architectural Designers’ Values and the Evaluation of Their Designs.” Design studies
2, no. 3 (1981): 131–137.

Lera, Sebastian G. “Empirical and Theoretical Studies of Design Judgement: A Review.” Design studies 2,
no. 1 (1981): 19–26.

Lidwell, William, Kritina Holden, and Jill Butler. Universal Principles of Design: 125 Ways to Enhance
Usability, Influence Perception, Increase Appeal, Make Better Design Decisions, and Teach
through Design. Beverly, MA: Rockport, 2010.

361

Liu, Ao (Leo). “Dynamic Visualizations: Developing a Framework for Crowd-Based Simulations” MArch
thesis, University of Waterloo, 2020.

Liu, Z, Liu, T, Ma, M, Hsu, H‐H, Ni, Z, Chai, Y. A perception‐based emotion contagion model in crowd
emergent evacuation simulation. Comput Anim Virtual Worlds. 2018; 29:e1817.
https://doi.org/10.1002/cav.1817.

Markup Validation Service. “Why Validate?” Markup Validation Service. Accessed May 27, 2020,
https://validator.w3.org/docs/why.html.

Marmot, Alexi. “Architectural Determinism.” The British Journal of General Practice 52, no. 476 (March
2002): 252–53. https://bjgp.org/content/bjgp/52/476/252.full.pdf.

McCarthy, Owen. “Game Design Deep Dive: Creating Believable Crowds in Planet Coaster.” Gamasutra
Article, January 4, 2017.
https://www.gamasutra.com/view/news/288020/Game_Design_Deep_Dive_Creating_believable
_crowds_in_Planet_Coaster.php.

McElhinney, Sam. “Isovist_2.2: a basic user guide”. v1, 2018. https://isovists.org/user_guide/.

Mentatdgt. “Photography of People at Train Station”. Pexels. August 09, 2018.
https://www.pexels.com/photo/photography-of-people-at-train-station-1311544/.

Miller, G.A. “The magical number seven, plus or minus two: Some limits on our capacity for processing
information.” Psychological Review, 63(2): 81-97, doi:10.1037/h0043158.

Microsoft. “Classes (C# Programming Guide).” C# Documentation, August 21, 2018. Accessed October
2020. https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-
structs/classes.

Microsoft. “Methods in (C#).” C# Documentation, May 21, 2018. Accessed October 2020.
https://docs.microsoft.com/en-us/dotnet/csharp/methods.

Microsoft. “Types (C# Programming Guide).” C# Documentation, July 20, 2015. Accessed October 2020.
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/.

Musse, S. R., and D. Thalmann. “A Model of Human Crowd Behavior: Group Inter-Relationship and
Collision Detection Analysis.” Eurographics Computer Animation and Simulation ’97. (1997). 39–
51. https://doi.org/10.1007/978-3-7091-6874-5_3.

National Academies of Sciences, Engineering, and Medicine. “Airport Passenger-Related Processing Rates
Guidebook”. Washington, DC: The National Academies Press. (2009).
https://doi.org/10.17226/22990.

National Academies of Sciences, Engineering, and Medicine. “Airport Passenger Terminal Planning and
Design, Volume 1: Guidebook”. Washington, DC: The National Academies Press. (2010).
https://doi.org/10.17226/22964.

National Academies of Sciences, Engineering, and Medicine. Airport Passenger Terminal Planning and
Design, Volume 2: Spreadsheet Models and User's Guide. Washington, DC: The National
Academies Press. (2010). https://doi.org/10.17226/14356.

362

National Academies of Sciences, Engineering, and Medicine. “Innovations for Airport Terminal
Facilities”. Washington, DC: The National Academies Press. (2008).
https://doi.org/10.17226/14219.

National Academies of Sciences, Engineering, and Medicine. “Passenger Level of Service and Spatial
Planning for Airport Terminals”. Washington, DC: The National Academies Press. (2011).
https://doi.org/10.17226/14589.

National Academies of Sciences, Engineering, and Medicine. “Simulation Options for Airport Planning”.
Washington, DC: The National Academies Press. (2019). https://doi.org/10.17226/25573.

Neumann, Peter. “Kosten für Großflughafen steigen um 160 Millionen Euro, weil mehr Passagiere
erwartet werden: Noch nicht gebaut und schon teurer [Costs for major airports rise by 160 million
euros because more passengers are expected: not yet built and already more expensive]”. Berliner-
Zeitung, 2008-07-10. https://www.berliner-zeitung.de/kosten-fuer-grossflughafen-steigen-um-
160-millionen-euro-weil-mehr-passagiere-erwartet-werden-noch-nicht-gebaut-und-schon-teurer-
li.6277.

Nicoguaro. “File:Pi 30K.gif”. Wikimedia Commons. February 16, 2017.
https://commons.wikimedia.org/wiki/File:Pi_30K.gif.

Norman, Donald A. The Design of Everyday Things. New York: Basic Books, A Member of the Perseus
Books Group. (2013).

NRCC. National Building Code of Canada 2015 Volume 1. National Research Council of Canada. Ottawa,
September 28, 2018.

O'Sullivan, Feargus. “Planning the Transit Hubs of the Future.” CityLab, July 10, 2017.
https://www.citylab.com/design/2017/07/planning-the-transit-hubs-of-the-future/532905/.

Oasys. “HOK Benefits from BIM Integration of Pedestrian Simulation.” Oasys. Accessed January 2020.
https://www.oasys-software.com/case-studies/hok-benefits-bim-integration-pedestrian-
simulation/.

Oasys. “JetBlue – T5 JFK New York.” Oasys. Accessed February 2020. https://www.oasys-
software.com/case-studies/jetblue-t5-jfk-new-york/.

Oasys. “MassMotion Help Guide,” July 2019. https://www.oasys-software.com/wp-
content/uploads/2019/06/MassMotion-10.0-Help-Guide.pdf.

Ostwald, Michael. “Le Corbusier (Charles Edouard Jeanneret), The Modulor and Modulor 2 – 2 Volumes.
Basel: Birkhäuser, 2000: Reviewed by Michael J. Ostwald”. Basel: Birkhäuser-Verlag, April 2001.

Palisade. “Monte Carlo Simulation”. Risk. Accessed February 2021.
https://www.palisade.com/risk/monte_carlo_simulation.asp.

PANYNJ. “Terminal Planning Guidelines”, The Port Authority of New York and New Jersey, August 2013,
https://www.fd.cvut.cz/projects/k621x1ml/dokumenty/panynj-terminal-planning-guidelines.pdf.

Popovic, Vesna and Kraal, Ben and Kirk, Philip J. “Towards airport passenger experience models.”
Proceedings of 7th International Conference on Design & Emotion, October 2010, 4‐7.

363

Prabhu, Frischmann. “1. Pedestrian Simulation at a Metro Station (Peak Hour).” YouTube. YouTube,
September 28, 2017. https://www.youtube.com/watch?v=nZ3pE-nIJio.

Proulx, Christian. “Complete Terminal Simulation”. Youtube. March 1, 2014.
https://www.youtube.com/watch?v=iaXdMO67g0E.

Purcell, A.t. “The Relationship between Buildings and Behaviour.” Building and Environment 22, no. 3
(1987): 215–32. https://doi.org/10.1016/0360-1323(87)90010-2.

Raubal, Martin. “Agent-Based Simulation of Human Wayfinding: A Perceptual Model for Unfamiliar
Buildings”. PhD diss., Vienna University of Technology, October 2001.

Rittel, Webber. “Dilemmas in a General Theory of Planning.” Policy sciences 4, no. 2 (June 1973): 155–
169.

Robinson, Stewart. Simulation: the Practice of Model Development and Use. Chichester, England: Wiley,
(2004).

RobotC. “Sense Plan Act (SPA)”. Natural Language Resources – VEX Cortex. Accessed November 2020.
http://cdn.robotc.net/pdfs/natural-language/hp_spa.pdf.

Ronchi, Enrico; Kuligowski, Erica D; Reneke, Paul A; Peacock, Richard D; Nilsson, Daniel. “The Process
of Verification and Validation of Building Fire Evacuation Models.” Technical Note (NIST TN) -
1822, (November 2013), http://dx.doi.org/10.6028/NIST.TN.1822.

Rosenhahn, Bodo. Human Motion: Understanding, Modeling, Capture and Animation. Dordrecht:
Springer, 2008.

Saarinen, Eero. Eero Saarinen On His Work. New Haven, CT: Yale University Press, 1968. section
drawing, p108.

Saaty, Thomas L. “A Scaling Method for Priorities in Hierarchical Structures.” Journal of mathematical
psychology 15, no. 3 (1977): 234–281.

Saaty, Thomas L. “Modeling Unstructured Decision Problems — the Theory of Analytical Hierarchies.”
Mathematics and computers in simulation 20, no. 3 (1978): 147–158.

SAE. “Browse Standards”. Society of Automotive Engineers. Accessed February 2021.
https://www.sae.org/standards.

Sander, Lou. “File:AHPHierarchy1.1.png”. Wikimedia Commons. 24 February 2009.
https://commons.wikimedia.org/wiki/File:AHPHierarchy1.1.png.

Schiphol. “Airport Maps.” Schiphol. Accessed October 31, 2019. https://www.schiphol.nl/en/airport-
maps.

Schroeder, Mark. "Value Theory". The Stanford Encyclopedia of Philosophy (Fall 2016 Edition). Edward
N. Zalta (ed.). https://plato.stanford.edu/archives/fall2016/entries/value-theory.

Skytrax. “Awards Methodology”. World Airport Awards, Skytrax, 2020. Accessed October 2020.
https://www.worldairportawards.com/awards-methodology/.

364

Skytrax “World’s Top 100 Airports 2020”. World Airport Awards, Skytrax, 2020. Accessed October 2020.
https://www.worldairportawards.com/worlds-top-100-airports-2020/.

Smith, Barry. “Objects and Their Environment”. The Life and Motion of Socio-Economic (GISDATA 8),
London: Taylor and Francis, 2001, 79–97.

Souza, Carlos Eduardo Gomes. “To cater for a passenger, you have to understand the passenger.”
International Airport Review. July 23, 2020.
https://www.internationalairportreview.com/article/119756/cater-passenger-understand-
passenger/.

Straube, J.F. High Performance Enclosures. Sommerville: Building Science Press, 2012.

Sumers, Brian. “Airport Secrets from an Architect Who Designs Them.” Skift, February 6, 2018.
https://skift.com/2018/01/03/airport-secrets-from-an-architect-who-designs-them/.

TALUMIS. “Airport; Flexsim Simulation Model.” YouTube. YouTube, January 5, 2009.
https://www.youtube.com/watch?v=Elqx3u658tg.

Thalmann, Daniel, and Soraia Raupp Musse. Crowd Simulation. Vol. 9781447144502. London: Springer
London, 2008.

Tufte, Edward R. The Visual Display of Quantitative Information. Graphics Press USA, 2001.

Turner, Alasdair, Maria Doxa, David Osullivan, and Alan Penn. “From Isovists to Visibility Graphs: A
Methodology for the Analysis of Architectural Space.” Environment and Planning B: Planning and
Design 28, no. 1 (2001): 103–21. https://doi.org/10.1068/b2684.

Tutorial Point. “Graph Theory.” Tutorials Point (I) Pvt. Ltd. 2020.

Ulrich, Roger S., Craig Zimring, Xuemei Zhu, Jennifer DuBose, Hyun-Bo Seo, Young-Seon Choi, Xiaobo
Quan, and Anjali Joseph. “A Review of the Research Literature on Evidence-Based Healthcare
Design.” HERD: Health Environments Research & Design Journal 1, no. 3 (April 2008): 61–125.
doi:10.1177/193758670800100306.

Unity. “Architecture, Engineering & Construction.” Solutions. Accessed December 2019.
https://unity.com/solutions/architecture-engineering-construction.

Urban Strategies Inc, “Pearson Connects: A Multi-Modal Platform for Prosperity”, GTAA, February 2016,
https://www.urbanstrategies.com/wp-content/uploads/2015/10/PearsonConnects_20160225.pdf

Vaughan, Laura. “The Spatial Syntax of Urban Segregation.” Progress in Planning 67, no. 3 (2007): 205–
294.

Walker, Jarret. “Keys to Great Airport Transit”. Human Transit. 2016-03-01.
https://humantransit.org/2016/03/keys-to-great-airport-transit.html.

Walpole, Ronald E. Probability & Statistics for Engineers & Scientists 9th ed. Boston: Prentice Hall, 2012.

Watkins, Joseph. An Introduction to the Science of Statistics: From Theory to Implementation
Preliminary Edition. University of Arizona: 2016.

WELL. “Concepts and Features.” WELL Certified v2, 2018. https://v2.wellcertified.com/v/en/concepts.

365

Wilson, Robin J. Introduction to Graph Theory 4th ed. Harlow: Longman, 1996.

Wired. “Airport Expert Creates the Ideal Layout for LaGuardia Airport (New York) | WIRED”. Youtube.
March 11, 2020. https://www.youtube.com/watch?v=Kil-slXgVys.

Wiredja, Dedy, Vesna Popovic, and Alethea Blackler. “A Passenger-Centred Model in Assessing Airport
Service Performance.” Journal of Modelling in Management 14, no. 2 (May 10, 2019): 492–520.

Wiredja, Dedy; Popovic, Vesna; Blackler, Alethea. “Questionnaire Design for Airport Passenger
Experience Survey.” 6th International Association of Societies of Design Research (IASDR)
Conference. (November 2015).

Xie, Rong, and Yan Zhang. “Agent-Based Crowd Evacuation Modeling in Buildings.” Applied Mechanics
and Materials 411–414. (September 2013): 2639–42.
https://doi.org/10.4028/www.scientific.net/amm.411-414.2639.

Yukio Futagawa, ed. Global Architecture: TWA Terminal Building, Kennedy Airport, New York, and
Dulles International Airport, Chantilly, Virginia. Tokyo: A.D.A. Edita Tokyo, 1973. plan, p45.

Zhou, Suiping, Dan Chen, Wentong Cai, Linbo Luo, Malcolm Low, Feng Tian, Victor Tay, Darren Ong,
and Benjamin Hamilton. “Crowd Modeling and Simulation Technologies.” ACM Transactions on
Modeling and Computer Simulation (TOMACS) 20, no. 4 (October 1, 2010): 1–35.

367

Appendix A

The following pages lists the simulation trials from Part 4 Simulation Tests.

368

Tr
ia

l #
Pa

ss
/F

ai
l

(e
rr

or
)

Ro
om

 M
od

el
Ag

en
t M

od
el

Ag
en

t S
pe

ed
 (f

lo
at

)
N

av
ig

at
io

n
Fi

el
d

of
 V

ie
w

 R
ad

iu
s

(m
) /

 A
ng

le
 (d

eg
)

Ti
m

e
(s

)
Ti

m
e

Er
ro

r
Av

er
ag

e
Sp

ee
d

(m
/s

)
Sp

ee
d

Er
ro

r
Da

te
Co

m
m

en
ts

1
Fa

il
(-5

0%
)

IM
O

-T
es

t-
1

(s
ize

 s
ca

le
d

to
 A

ge
nt

0)
(4

 m
 x

 8
0

m
)

Ag
en

t0
 (c

ap
su

le
)

ra
nd

om
 (3

 -
5)

A*
 D

ire
ct

 P
at

h

20
.2

0
50

%
1.

98
98

%
20

20
-0

8-
11

Sc
al

e
of

 ro
om

 w
as

 d
ou

bl
ed

 to
 fi

t a
ge

nt
0,

ne

ed
 to

 u
se

 p
ro

pe
rly

 p
ro

po
rt

io
ne

d
pe

rs
on

 a
nd

 ro
om

 s
ize

2
Pa

ss
 (-

2%
)

IM
O

-T
es

t-
1

(s
ize

 e
qu

al
 to

 d
im

en
sio

ns
)

(2
 m

 x
 4

0
m

)

Ag
en

t1
 (a

ve
ra

ge

pe
rs

on
)

1
A*

 D
ire

ct
 P

at
h

39

.2
5

2%
1.

02
2%

20
20

-0
8-

11
0.

75
 s

 ti
m

e
di

ffe
re

nc
e,

 0
.0

2
m

/s
 s

pe
ed

di

ffe
re

nc
e,

 e
rr

or
 c

om
es

 fr
om

 a
ge

nt

ex
iti

ng
 w

he
n

w
ith

in
 1

 m
 o

f d
oo

r

3
Pa

ss
 (-

2%
)

IM
O

-T
es

t-
1

(2
 m

 x
 4

0
m

)
Ag

en
t1

1
A*

 D
ire

ct
 P

at
h

39

.1
8

2%
1.

02
2%

20
20

-0
8-

11

4
Pa

ss
 (-

2%
)

IM
O

-T
es

t-
1

Ag
en

t1
1

A*
 D

ire
ct

 P
at

h

39
.2

9
2%

1.
02

2%
20

20
-0

8-
11

5
Pa

ss
 (+

2%
)

IM
O

-T
es

t-1
Ag

en
t1

1
A*

 P
er

ce
pt

io
n

20
 /

16
0

40
.9

2%
0.

98
2%

20
20

-0
8-

11

ag
en

t r
ea

ch
 d

oo
r b

ut
 d

id
 n

ot
 d

es
pa

w
n,

st

ar
te

d
w

an
de

rin
g

cl
os

e
to

 th
e

w
al

l n
ea

r
th

e
en

d
of

 th
e

co
rr

id
or

, c
au

sin
g

its
 p

at
h

to
 w

an
de

rin
g

ba
ck

 to
 a

vo
id

 c
on

ta
ct

6
Fa

il
(--

-)
IM

O
-T

es
t-

1
Ag

en
t1

1
A*

 P
er

ce
pt

io
n

20
 /

16
0

20
20

-0
8-

11

ag
en

t n
ev

er
 re

ac
he

d
ta

rg
et

, w
as

 n
ot

as

si
gn

ed
 c

or
re

ct
 e

xi
t,

di
sc

ov
er

ed
 d

oo
r

w
as

 e
m

be
de

d
to

o
fa

r i
nt

o
w

al
l t

o
be

de

te
ct

ed

7
Pa

ss
 (-

2%
)

IM
O

-T
es

t-1
Ag

en
t1

1
A*

 P
er

ce
pt

io
n

20
 /

16
0

39
.0

7
2%

1.
02

2%
20

20
-0

8-
11

ag
en

t r
ea

ch
 ta

rg
et

, w
ith

in
 c

or
re

ct
 ti

m
e,

th

er
e

w
as

 n
o

w
an

de
rin

g
m

ot
io

n
w

he
n

ag
en

t c
ou

ld
 se

e
th

e
do

or
8

Pa
ss

 (-
2%

)
IM

O
-T

es
t-

1
Ag

en
t1

1
A*

 P
er

ce
pt

io
n

20
 /

16
0

39
.4

2%
1.

02
2%

20
20

-0
8-

11

9
Pa

ss
 (-

1%
)

IM
O

-T
es

t-1
Ag

en
t1

1
A*

 P
er

ce
pt

io
n

20
 /

16
0

39
.6

1%
1.

01
1%

20
20

-0
8-

11
pe

rc
ep

tio
n

ta
ke

s s
lig

ht
ly

 lo
ng

er
 th

an

di
re

ct
 ro

ut
e,

 s
in

ce
 th

er
e

is
sli

gh
t p

au
se

s
be

tw
ee

n
ch

oo
sin

g
th

e
ne

xt
 lo

ca
l t

ar
ge

t
10

Pa
ss

 (-
2%

)
IM

O
-T

es
t-

1
Ag

en
t1

1
A*

 P
er

ce
pt

io
n

20
 /

16
0

39
.2

2%
1.

02
2%

20
20

-0
8-

11
11

Pa
ss

 (-
1%

)
IM

O
-T

es
t-

1
Ag

en
t1

1
A*

 P
er

ce
pt

io
n

10
 /

16
0

39
.5

1%
1.

01
1%

20
20

-0
8-

11
re

du
ce

d
fie

ld
 o

f v
ie

w
 ra

di
us

 to
 1

0
m

, n
o

12
Pa

ss
 (-

1%
)

IM
O

-T
es

t-
1

Ag
en

t1
1

A*
 P

er
ce

pt
io

n
10

 /
16

0
39

.5
9

1%
1.

01
1%

20
20

-0
8-

11

13
Fa

il
(-6

%
)

IM
O

-T
es

t-
1

Ag
en

t1
IM

O
 D

ist
rib

ut
ed

Sp

ee
ds

A*
 P

er
ce

pt
io

n
10

 /
16

0
37

.8
7

5%
1.

06
6%

20
20

-0
8-

11
Ra

n
th

e
av

er
ag

e
of

 6
 tr

ia
ls

, a
ge

nt
 sp

ee
d

no
w

 d
ep

en
da

nt
 o

n
ag

e
14

Pa
ss

 (-
4%

)
IM

O
-T

es
t-

1
Ag

en
t1

IM
O

 D
ist

rib
ut

ed

A*
 P

er
ce

pt
io

n
10

 /
16

0
38

.4
1

4%
1.

04
4%

20
20

-0
8-

13
Sa

m
pl

e
si

ze
 2

5
pe

op
le

15
Pa

ss
 (+

2%
)

IM
O

-T
es

t-
1

Ag
en

t1
IM

O
 D

ist
rib

ut
ed

A*

 P
er

ce
pt

io
n

20
 /

16
0

40
.6

1
2%

0.
99

1%
20

20
-0

8-
13

Sa
m

pl
e

si
ze

 5
0

pe
op

le

16
Fa

il
(+

21
%

)
IM

O
-T

es
t-

1
Ag

en
t1

IM
O

 D
ist

rib
ut

ed

Sp
ee

ds
 (i

nc
lu

di
ng

A*

 P
er

ce
pt

io
n

20
 /

16
0

48
.2

6
21

%
0.

83
17

%
20

20
-0

8-
21

Sa
m

pl
e

si
ze

 1
00

 p
eo

pl
e,

 n
ow

 in
cl

ud
in

g
w

al
ki

ng
 d

isa
bi

lit
y

17
Pa

ss
IM

O
-T

es
t-

1
Ag

en
t1

1
A*

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
20

40
.0

2
0%

1.
00

0%
20

21
-0

2-
01

Re
-r

an
 n

or
m

al
 te

st
 w

ith
 5

0
ag

en
t f

or

gr
ap

h
18 19

IM
O

 M
SC

 -
Gu

id
an

ce
 o

n
Va

lid
at

io
n/

Ve
rif

ic
at

io
n

of
 E

va
cu

at
io

n
Si

m
ul

at
io

n
To

ol
s

Te
st

 1
 -

M
ai

nt
ai

ni
ng

 se
t w

al
ki

ng
 sp

ee
d

in
 a

 c
or

rid
or

O
ne

 p
er

so
n

in
 a

 c
or

rid
or

 2
 m

 w
id

e
an

d
40

 m
 lo

ng
 w

ith
 a

 w
al

ki
ng

 s
pe

ed
 o

f 1
 m

/s
 s

ho
ul

d
be

 d
em

on
st

ra
te

d
to

 c
ov

er
 th

is
di

st
an

ce
 in

 4
0

s.

4.0 Verification and Validation Tests

369

Tr
ia

l #
Pa

ss
/F

ai
l

(e
rr

or
)

Ro
om

 M
od

el
Ag

en
t M

od
el

Ag
en

t S
pe

ed
 (f

lo
at

)
N

av
ig

at
io

n
Fi

el
d

of
 V

ie
w

 R
ad

iu
s

(m
) /

 A
ng

le
 (d

eg
)

Li
nk

 to
 D

at
a

Pr
ox

im
ity

 S
pe

ed

(m
/s

) /
 R

ad
iu

s (
m

)
Th

eo
re

tic
al

Fl

ow
 (p

/s
)

M
ax

 F
lo

w

Ra
te

 (p
/s

)
D

at
e

Co
m

m
en

ts

1
Fa

il
IM

O
-T

es
t-

4
Ag

en
t1

IM
O

 D
ist

rib
ut

ed

A*
 P

er
ce

pt
io

n
m

ax
 ra

ng
e

(1
00

) /
 1

60
da

ta
0.

2
/ 2

1.
99

20
31

87
4.

2
20

21
-0

1-
29

2
Fa

il
IM

O
-T

es
t-

4
Ag

en
t1

IM
O

 D
ist

rib
ut

ed

A*
 P

er
ce

pt
io

n
m

ax
 ra

ng
e

(1
00

) /
 1

60
da

ta
0.

01
 /

2
0.

28
13

57
27

0.
8

20
21

-0
1-

29
slo

w
er

 p
ro

xi
m

ity
 sp

ee
d

to
ok

 to
o

lo
ng

3
Fa

il
IM

O
-T

es
t-

4
Ag

en
t1

IM
O

 D
ist

rib
ut

ed

A*
 P

er
ce

pt
io

n
m

ax
 ra

ng
e

(1
00

) /
 1

20
da

ta
0.

2
/ 2

1.
98

76
76

41
3.

2
20

21
-0

1-
29

Sl
ig

ht
ly

 n
ar

ro
w

er
 F

O
V

an
gl

e
4

Fa
il

IM
O

-T
es

t-
4

Ag
en

t1
IM

O
 D

ist
rib

ut
ed

A*

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
20

da
ta

0.
1

/ 2
1.

18
30

11
95

2.
3

20
21

-0
1-

29
pe

op
le

 c
lu

m
pi

ng
 to

ge
th

er
 n

ea
r t

he
 e

nd

5
Fa

il
IM

O
-T

es
t-

4
Ag

en
t1

IM
O

 D
ist

rib
ut

ed

Sp
ee

ds
A*

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
20

da
ta

0.
05

 /
2

0.
82

96
00

13
2.

4
20

21
-0

1-
29

 b
et

te
r d

ist
rib

ut
io

n,
 b

ut
 p

eo
pl

e
cl

um
pe

d
to

ge
th

er
 n

ea
r t

he
 e

nd

6
Fa

il
IM

O
-T

es
t-

4
Ag

en
t1

IM
O

 D
ist

rib
ut

ed

Sp
ee

ds
A*

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
20

da
ta

0.
05

 /
1.

5
1.

41
44

27
16

3.
5

20
21

-0
1-

29
pr

ox
im

ity
 ra

di
us

 sm
al

le
r,

pe
op

le

cl
um

pi
ng

 a
t t

he
 e

nd
7

Fa
il

IM
O

-T
es

t-
4

Ag
en

t1
IM

O
 D

ist
rib

ut
ed

A*

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
20

da
ta

0.
02

 /
1.

5
0.

92
38

72
88

1.
9

20
21

-0
1-

29
lo

w
er

 fl
ow

 ra
te

, b
ut

 ju
m

p
ne

ar
 th

e
en

d
8

Fa
il

IM
O

-T
es

t-
4

Ag
en

t1
IM

O
 D

ist
rib

ut
ed

A*

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
20

da
ta

0.
01

 /
1.

5
0.

77
89

98
21

1.
5

20
21

-0
1-

29
be

tt
er

, b
ut

 c
lu

m
p

ne
ar

 e
nd

 c
au

se
d

a

9
Fa

il
IM

O
-T

es
t-

4
Ag

en
t1

IM
O

 D
ist

rib
ut

ed

Sp
ee

ds
Ve

ct
or

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
20

da
ta

0.
01

 /
1.

5
1.

70
91

09
55

2.
3

20
21

-0
1-

30
Te

st
ed

 w
ith

 v
ec

to
r p

er
ce

pt
io

n,
 a

ge
nt

m

ov
ed

 fa
st

er

10
Fa

il
IM

O
-T

es
t-

4
Ag

en
t1

IM
O

 D
ist

rib
ut

ed

Sp
ee

ds
Ve

ct
or

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
20

da
ta

0.
01

 /
2.

0
0.

67
44

45
27

2.
9

20
21

-0
1-

30
Ag

en
ts

 d
ea

dl
oc

ke
d

ne
ar

 th
e

be
gi

nn
ig

,
th

en
 b

un
ch

ed
 to

ge
th

er
 n

ea
r e

nd

11
Pa

ss
IM

O
-T

es
t-

4
Ag

en
t1

IM
O

 D
ist

rib
ut

ed

Sp
ee

ds
A*

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
20

da
ta

0.
01

 /
1.

6
0.

63
79

99
23

1.
2

20
21

-0
1-

30
M

ax
 fl

ow
 le

ss
 th

en
 re

qu
ire

d
1.

33
 p

/s
, b

ut

no
t c

on
sis

te
nt

 fl
ow

 ra
te

12
Fa

il
IM

O
-T

es
t-

4
Ag

en
t1

IM
O

 D
ist

rib
ut

ed

Sp
ee

ds
A*

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
20

da
ta

0.
01

 /
1.

6
0.

65
33

81
25

1.
5

20
21

-0
1-

30
Sa

m
e

as
 p

re
vi

ou
s t

es
t,

on
e

sp
ik

e
w

as

hi
ge

r t
ha

n
1.

33
 p

/s

13
Pa

ss
IM

O
-T

es
t-

4
Ag

en
t1

IM
O

 D
ist

rib
ut

ed

Sp
ee

ds
A*

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
20

da
ta

0.
01

 /
1.

6
0.

56
81

97
96

1.
1

20
21

-0
2-

01
G

ot
 le

ss
 th

an
 1

.3
3

p/
s,

 b
ut

 ra
te

 w
as

in

co
ns

ist
en

t
14 15 16

Tr
ia

l #
Pa

ss
/F

ai
l

(e
rr

or
)

Ro
om

 M
od

el
Ag

en
t M

od
el

Ag
en

t S
pe

ed
 (f

lo
at

)
N

av
ig

at
io

n
Fi

el
d

of
 V

ie
w

 R
ad

iu
s

(m
) /

 A
ng

le
 (d

eg
)

Li
nk

 to
 D

at
a

Av
er

ag
e

Ti
m

e
(s

)
D

at
e

Co
m

m
en

ts

1
Pa

ss
IM

O
-T

es
t-

6
(B

as
ed

 o
n

fig
ur

e
1)

Ag
en

t1
IM

O
 D

ist
rib

ut
ed

 S
pe

ed
s

A*
 P

er
ce

pt
io

n
m

ax
 ra

ng
e

(1
00

) /
 1

60
da

ta
27

.6
6

20
20

-1
0-

01
Pa

ss
ed

, a
ge

nt
s w

al
ke

d
ar

ou
nd

 c
or

ne
r t

o
th

e
ex

it
w

ith
ou

t g
oi

ng
 th

ro
ug

h
bo

un
da

rie
s

2
Pa

ss
IM

O
-T

es
t-

6
Ag

en
t1

IM
O

 D
ist

rib
ut

ed

A*
 P

er
ce

pt
io

n
m

ax
 ra

ng
e

(1
00

) /
 1

60
da

ta
30

.8
0

20
20

-1
0-

01
3

Pa
ss

IM
O

-T
es

t-
6

Ag
en

t1
IM

O
 D

ist
rib

ut
ed

A*

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
60

da
ta

27
.2

9
20

20
-1

0-
01

4
Pa

ss
IM

O
-T

es
t-

6
Ag

en
t1

IM
O

 D
ist

rib
ut

ed

A*
 P

er
ce

pt
io

n
m

ax
 ra

ng
e

(1
00

) /
 1

60
da

ta
29

.1
0

20
20

-1
0-

01
5

Tr
ia

l #
Pa

ss
/F

ai
l

(e
rr

or
)

Ro
om

 M
od

el
Ag

en
t M

od
el

Ag
en

t S
pe

ed
 (f

lo
at

)
N

av
ig

at
io

n
Fi

el
d

of
 V

ie
w

 R
ad

iu
s

(m
) /

 A
ng

le
 (d

eg
)

Li
nk

 to
 D

at
a

Av
er

ag
e

Ti
m

e
(s

)
Av

er
ag

e
Sp

ee
d

(m
/s

)
Sp

ee
d

Er
ro

r
D

at
e

Co
m

m
en

ts

1
Pa

ss
 (+

2%
)

IM
O

-T
es

t-
7

(2
0m

 x
 2

0m
)

Ag
en

t1
0.

97
 to

 1
.6

2
A*

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
60

da
ta

15
.6

3
1.

32
2%

20
20

-1
0-

08
2

Pa
ss

 (-
3%

)
IM

O
-T

es
t-

7
Ag

en
t1

0.
97

 to
 1

.6
2

A*
 P

er
ce

pt
io

n
m

ax
 ra

ng
e

(1
00

) /
 1

60
da

ta
16

.4
3

1.
26

-3
%

20
20

-1
0-

08
3

Pa
ss

 (0
%

)
IM

O
-T

es
t-

7
Ag

en
t1

0.
97

 to
 1

.6
2

A*
 P

er
ce

pt
io

n
m

ax
 ra

ng
e

(1
00

) /
 1

60
da

ta
16

.0
4

1.
29

0%
20

20
-1

0-
08

4
Pa

ss
 (-

1%
)

IM
O

-T
es

t-
7

Ag
en

t1
0.

97
 to

 1
.6

2
A*

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
60

da
ta

16
.0

5
1.

28
-1

%
20

20
-1

0-
08

5
Pa

ss
 (+

3%
)

IM
O

-T
es

t-
7

Ag
en

t1
0.

97
 to

 1
.6

2
A*

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
60

da
ta

15
.2

9
1.

34
3%

20
20

-1
0-

08
6

Pa
ss

 (-
3%

)
IM

O
-T

es
t-

7
Ag

en
t1

0.
97

 to
 1

.6
2

A*
 P

er
ce

pt
io

n
m

ax
 ra

ng
e

(1
00

) /
 1

60
da

ta
16

.2
6

1.
26

-3
%

20
20

-1
0-

08

Av
er

ag
e

Pa
ss

 (0
%

)
1.

29
0%

20
20

-1
0-

08

Te
st

 4
: E

xi
t f

lo
w

 ra
te

10
0

pe
rs

on
s (

p)
 in

 a
 ro

om
 o

f s
ize

 8
 m

 b
y

5
m

 w
ith

 a
 1

 m
 e

xi
t l

oc
at

ed
 c

en
tr

al
ly

 o
n

th
e

5
m

 w
al

l.
Th

e
flo

w
 ra

te
 o

ve
r t

he
 e

nt
ire

 p
er

io
d

sh
ou

ld
 n

ot
 e

xc
ee

d
1.

33
 p

/s
.

Ch
oo

se
 a

 p
an

el
 c

on
sis

tin
g

of
 m

al
es

 3
0-

50
 y

ea
rs

 o
ld

 fr
om

 ta
bl

e
3.

4
in

 th
e

ap
pe

nd
ix

 to
 th

e
G

ui
de

lin
es

 fo
r t

he
 a

dv
an

ce
d

ev
ac

ua
tio

n
an

al
ys

is
of

 n
ew

 a
nd

 e
xi

st
in

g
sh

ip
s a

nd
 d

ist
rib

ut
e

th
e

w
al

ki
ng

 sp
ee

ds
 o

ve
r a

 p
op

ul
at

io
n

of
 5

0
pe

op
le

. S
ho

w
 th

at
 th

e
di

st
rib

ut
ed

w

al
ki

ng
 sp

ee
ds

 a
re

 c
on

sis
te

nt
 w

ith
 th

e
di

st
rib

ut
io

n
sp

ec
ifi

ed
 in

 th
e

ta
bl

e.

Te
st

 6
: R

ou
nd

in
g

co
rn

er
s

Te
st

 7
: A

ss
ig

nm
en

t o
f p

op
ul

at
io

n
de

om
gr

ap
hi

cs
 p

ar
am

et
er

s

Tw
en

ty
 p

er
so

ns
 a

pp
ro

ac
hi

ng
 a

 le
ft

-h
an

d
co

rn
er

 (s
ee

 fi
gu

re
 1

) w
ill

 su
cc

es
sf

ul
ly

 n
av

ig
at

e
ar

ou
nd

 th
e

co
rn

er
 w

ith
ou

t p
en

et
ra

tin
g

th
e

bo
un

da
rie

s.

370

Co
m

po
ne

nt
 T

es
tin

g

Tr
ia

l #
Ro

om
 M

od
el

Ag
en

t
M

od
el

Ag
en

t
W

al
ki

ng

Sp
ee

d
(m

/s
)

N
av

ig
at

io
n

Fi
el

d
of

 V
ie

w
 R

ad
iu

s (
m

) /

An
gl

e
(d

eg
)

Li
nk

 to

Da
ta

N
um

be
r o

f
Ag

en
ts

As
si

gn
ed

 G
at

e
Av

er
ag

e
Ti

m
e

(s
)

Av
er

ge

Di
st

an
ce

 (m
)

M
ax

 D
is

ta
nc

e
(m

)
M

in
 D

is
ta

nc
e

(m
)

Da
te

Co
m

m
en

ts

W
ay

fin
di

ng

1
W

ay
fin

di
ng

Ag
en

t1
1

A*
 D

ire
ct

m
ax

 ra
ng

e
(1

00
) /

 1
60

da
ta

5
Ga

te
 B

60
.8

60
.8

60
.8

3
60

.7
5

20
21

-0
2-

03
Ag

en
ts

 fo
llo

w
ed

 th
e

sa
m

e
pa

th
s

2
W

ay
fin

di
ng

Ag
en

t1
1

A*
 D

ire
ct

m
ax

 ra
ng

e
(1

00
) /

 1
60

da
ta

10
Ga

te
 B

60
.8

5
60

.8
5

60
.9

1
60

.8
2

20
21

-0
2-

03
3

W
ay

fin
di

ng
Ag

en
t1

1
A*

 D
ire

ct
m

ax
 ra

ng
e

(1
00

) /
 1

60
da

ta
50

Ga
te

 B
61

.8
3

61
.8

3
62

.5
61

.3
5

20
21

-0
2-

03

4
W

ay
fin

di
ng

Ag
en

t1
1

A*
 P

er
ce

pt
io

n
m

ax
 ra

ng
e

(1
00

) /
 1

60
da

ta
50

Ga
te

 B
10

1.
06

10
1.

06
11

1.
47

95
.1

20
21

-0
2-

03
So

m
e

ag
en

ts
 w

al
ke

d
in

to
 a

 c
or

ne
r,

bu
t e

ve
nt

ua
lly

m

an
ag

ed
 to

 fi
nd

 th
e

ga
te

5
W

ay
fin

di
ng

Ag
en

t1
1

A*
 P

er
ce

pt
io

n
m

ax
 ra

ng
e

(1
00

) /
 1

60
da

ta
50

Ga
te

 B
10

1.
95

10
1.

95
11

3.
69

92
.6

7
20

21
-0

2-
03

6
W

ay
fin

di
ng

Ag
en

t1
1

A*
 P

er
ce

pt
io

n
m

ax
 ra

ng
e

(1
00

) /
 1

60
da

ta
50

Ga
te

 B
10

2.
18

10
2.

18
11

1.
5

94
.1

4
20

21
-0

2-
03

7 8

Tr
ia

l #
Ro

om
 M

od
el

Ag
en

t
M

od
el

Ag
en

t
W

al
ki

ng

Sp
ee

d
(m

/s
)

N
av

ig
at

io
n

Fi
el

d
of

 V
ie

w
 R

ad
iu

s (
m

) /

An
gl

e
(d

eg
)

Li
nk

 to

Da
ta

N
um

be
r o

f
Ag

en
ts

Di
re

ct
io

n
Av

er
ag

e
Vi

si
bi

lit
y

M
ax

 F
O

V
Ar

ea

(m
²)

FO
V

Ra
tio

w

he
n

ga
te

di

sc
ov

er
ed

Da
te

Co
m

m
en

ts

Vi
si

bi
lit

y 1
Vi

sib
ili

ty
 (v

er
.1

)
Ag

en
t1

1
A*

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
60

da
ta

1
to

 n
ar

ro
w

0.
39

58
28

4.
15

20
21

-0
2-

03
ag

en
ts

 so
m

et
im

es
 d

ou
bl

e
ba

ck
 o

n
th

em
se

lv
es

2
Vi

sib
ili

ty
 (v

er
.1

)
Ag

en
t1

1
A*

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
60

1
to

 w
id

e
0.

67
51

30
1.

51
20

21
-0

2-
03

lo
st

 d
at

a
3

Vi
sib

ili
ty

 (v
er

.2
)

Ag
en

t1
1

A*
 P

er
ce

pt
io

n
m

ax
 ra

ng
e

(1
00

) /
 1

60
da

ta
1

to
 w

id
e

0.
66

51
36

4.
21

1
20

21
-0

2-
03

4
Vi

sib
ili

ty
 (v

er
.2

)
Ag

en
t1

1
A*

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
60

da
ta

1
to

 n
ar

ro
w

0.
38

24
54

4.
5

0.
12

49
20

21
-0

2-
03

ag
en

ts
 so

m
et

im
es

 c
an

no
t f

in
d

na
rr

ow
 c

or
rid

or
5

Vi
sib

ili
ty

 (v
er

.3
)

Ag
en

t1
1

A*
 P

er
ce

pt
io

n
m

ax
 ra

ng
e

(1
00

) /
 1

60
da

ta
1

to
 n

ar
ro

w
0.

41
52

54
2.

68
0.

11
07

20
21

-0
2-

04
6

Vi
sib

ili
ty

 (v
er

.3
)

Ag
en

t1
1

A*
 P

er
ce

pt
io

n
m

ax
 ra

ng
e

(1
00

) /
 1

60
da

ta
1

to
 w

id
e

0.
69

78
59

8.
98

1
20

21
-0

2-
04

7
Vi

sib
ili

ty
 (v

er
.3

)
Ag

en
t1

1
A*

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
60

da
ta

50
to

 w
id

e
0.

70
16

59
1.

27
0.

88
78

20
21

-0
2-

04
Ra

n
at

 3
x

tim
e

sc
al

e

8
Vi

sib
ili

ty
 (v

er
.3

)
Ag

en
t1

1
A*

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
60

da
ta

50
to

 n
ar

ro
w

0.
42

61
7.

19
0.

12
06

20
21

-0
2-

04
so

m
e

ag
en

ts
 sa

w
 1

20
0

m
² m

ax
 a

re
a

an
d

la
st

 ra
tio

 o
f

1.
0,

 (n
ot

 sa
m

e
ag

en
ts

 th
ou

gh
)

9
Vi

sib
ili

ty
 (v

er
.3

)
Ag

en
t1

1
A*

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
60

da
ta

50
to

 n
ar

ro
w

0.
41

77
63

1.
05

0.
08

55
20

21
-0

2-
04

so
m

e
ou

tli
er

s w
ith

 m
ax

 a
re

a
an

d
on

e
w

ith
 la

st
 ra

tio

10
Vi

sib
ili

ty
 (v

er
.3

)
Ag

en
t1

1
A*

 P
er

ce
pt

io
n

m
ax

 ra
ng

e
(1

00
) /

 1
60

da
ta

50
to

 n
ar

ro
w

0.
41

76
63

9.
24

0.
10

31
20

21
-0

2-
04

12
00

 m
² i

s n
ot

 a
n

er
ro

r,
oc

cu
rs

 if
 a

ge
nt

 w
al

ks
 a

ll
th

e
w

ay
 to

 th
e

bo
tt

om
 c

or
ne

r i
n

w
id

e
ar

ea
 a

nd
 lo

ok
 a

cr
os

s
to

 n
ar

ro
w

 si
de

 (i
.e

. t
he

y
ca

n
se

e
al

l o
f t

he
 w

id
e

sid
e

an
d

to
w

ar
ds

 n
ar

ro
w

 c
or

rid
or

 6
00

 +
 6

00
 =

 1
20

0)
12 13

Tr
ia

l #
Ro

om
 M

od
el

Ag
en

t
M

od
el

Ag
en

t
W

al
ki

ng

Sp
ee

d
(m

/s
)

N
av

ig
at

io
n

Fi
el

d
of

 V
ie

w
 R

ad
iu

s (
m

) /

An
gl

e
(d

eg
)

Li
nk

 to

Da
ta

N
um

be
r o

f
Ag

en
ts

N
on

-
pr

oc
es

si
ng

Do

m
ai

n

Pr
io

rit
y

Th
re

sh
ol

d

Ag
en

ts
 A

bo
ve

Pr

io
rit

y
Th

re
sh

ol
d

Ag
en

ts
 B

el
ow

Pr

io
rit

y
Th

re
sh

ol
d

Ag
en

ts
 P

ar
tic

ip
at

ed

in
 N

on
-p

ro
ce

ss
in

g
Do

m
ai

n
Da

te
Co

m
m

en
ts

N
on

-P
ro

ce
ss

in
g

Pr
io

rit
ie

s

1
N

on
-P

ro
ce

ss
in

g
Pr

io
rit

ie
s

Ag
en

t1
1

A*
 P

er
ce

pt
io

n
m

ax
 ra

ng
e

(1
00

) /
 1

60
da

ta
10

Fo
od

Av

ai
la

bi
lit

y
5

6
4

6
20

21
-0

2-
05

2
N

on
-P

ro
ce

ss
in

g
Pr

io
rit

ie
s

Ag
en

t1
1

A*
 P

er
ce

pt
io

n
m

ax
 ra

ng
e

(1
00

) /
 1

60
da

ta
50

Fo
od

Av

ai
la

bi
lit

y
5

25
25

25
20

21
-0

2-
05

3
N

on
-P

ro
ce

ss
in

g
Pr

io
rit

ie
s

Ag
en

t1
1

A*
 P

er
ce

pt
io

n
m

ax
 ra

ng
e

(1
00

) /
 1

60
da

ta
50

Fo
od

Av

ai
la

bi
lit

y
5

30
20

23
20

21
-0

2-
05

De
pa

rt
ur

e
tim

e
oc

cu
re

d
be

fo
re

 so
m

e
ag

en
ts

 h
ad

 ti
m

e
to

 g
et

 fo
od

4
N

on
-P

ro
ce

ss
in

g
Pr

io
rit

ie
s

Ag
en

t1
1

A*
 P

er
ce

pt
io

n
m

ax
 ra

ng
e

(1
00

) /
 1

60
da

ta
50

Fo
od

Av

ai
la

bi
lit

y
5

25
25

25
20

21
-0

2-
05

5
N

on
-P

ro
ce

ss
in

g
Pr

io
rit

ie
s

Ag
en

t1
1

A*
 P

er
ce

pt
io

n
m

ax
 ra

ng
e

(1
00

) /
 1

60
da

ta
50

Fo
od

Av

ai
la

bi
lit

y
5

28
22

28
20

21
-0

2-
06

6

Te
st

in
g

th
e

di
re

ct
io

n
10

 a
ge

nt
s f

ol
lo

w
 to

 n
av

ig
at

e
to

 G
at

e
B,

 c
om

pa
rin

g
di

re
ct

io
n

an
d

pe
rc

ep
tio

n
na

vi
ga

tio
n

De
te

rm
in

in
g

th
e

vi
sii

bi
lty

 m
ov

in
g

be
tw

ee
n

a
na

rr
ow

 sp
ac

e
an

d
a

w
id

e
sp

ac
e

Ch
ec

ks
 if

 a
ge

nt
s w

ith
 h

ig
h

pr
io

rit
ie

s f
or

 a
 n

on
-p

ro
ce

ss
in

g
ai

rp
or

t d
om

ai
n

(fo
od

/r
et

ai
l)

fo
llo

w
 d

iff
er

en
t b

eh
av

io
ur

 th
an

 a
ge

nt
s w

ith
 lo

w
 p

rio
rt

ie
s

4.1 Component Tests

371

Tr
ia

l #
Ro

om
 M

od
el

Ag
en

t
M

od
el

Ag
en

t
W

al
ki

ng

Sp
ee

d
N

av
ig

at
io

n
Fi

el
d

of
 V

ie
w

 R
ad

iu
s (

m
) /

An

gl
e

(d
eg

)
Li

nk
 to

Da

ta
N

um
be

r o
f

Ag
en

ts
As

sg
in

ed

Pr
io

rit
ie

s

Av
er

ag
e

Ar
ch

ite
ct

ur
al

Va

lu
e

Av
er

ag
e

Ch
ec

k
In

Va

lu
e

Av
er

ag
e

Fo
od

Av

ai
lib

ili
ty

Va

lu
e

Av
er

ag
e

Ga
te

Av

ai
lib

ili
ty

Va

lu
e

Av
er

ag
e

Re
st

ro
om

Av

ai
lib

ili
ty

 V
al

ue

Av
er

ag
e

Se
cu

rit
y

Sc
re

en
in

g
Va

lu
e

Av
er

ag
e

W
ai

tin
g

Se
at

in
g

Va
lu

e

Av
er

ag
e

Ti
m

e
(s

)
Av

er
ag

e
Vi

sib
ili

ty
Da

te
Co

m
m

en
ts

1
Te

rm
in

al
 M

od
el

 2
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rc

ep
tio

n
m

ax
 a

re
a

(1
00

) /
 1

60
da

ta
50

Ra
nd

om
0.

73
54

0.
72

93
0.

76
0.

27
36

1
0.

62
45

0.
92

47
9.

53
0.

36
22

20
21

-0
2-

10

2
Te

rm
in

al
 M

od
el

 2
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rc

ep
tio

n
m

ax
 a

re
a

(1
00

) /
 1

60
da

ta
50

Ra
nd

om
0.

72
17

0.
71

52
0.

75
0.

27
08

1
0.

60
78

0.
9

45
5.

9
0.

36
45

20
21

-0
2-

10

3
Te

rm
in

al
 M

od
el

 2
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rc

ep
tio

n
m

ax
 a

re
a

(1
00

) /
 1

60
da

ta
50

Ra
nd

om
0.

73
17

0.
73

84
0.

81
0.

24
8

1
0.

61
27

0.
92

44
8.

9
0.

39
8

20
21

-0
2-

10

4 5 6 1
Te

rm
in

al
 M

od
el

 2
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rc

ep
tio

n
m

ax
 a

re
a

(1
00

) /
 1

60
da

ta
50

Se
cu

rit
y:

 9
,

El
se

: 1
0.

63
35

0.
72

06
0.

5
0.

24
65

1
0.

59
98

1
48

5.
69

0.
14

21
20

21
-0

2-
10

2
Te

rm
in

al
 M

od
el

 2
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rc

ep
tio

n
m

ax
 a

re
a

(1
00

) /
 1

60
da

ta
50

Se
cu

rit
y:

 9
,

El
se

: 1
0.

64
51

0.
74

0.
5

0.
20

39
1

0.
63

18
0.

9
47

8.
19

0.
16

52
20

21
-0

2-
17

3 4 5 6 1
Te

rm
in

al
 M

od
el

 2
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rp

ce
tio

n
m

ax
 a

re
a

(1
00

) /
 1

60
da

ta
50

Eq
ua

l:
1

0.
68

71
0.

74
42

0.
5

0.
24

93
1

0.
62

38
1

48
7.

72
0.

15
25

20
21

-0
2-

10
Al

th
ou

gh
 p

rio
rit

ie
s

w
er

e
eq

ua
l,

ag
en

ts
 d

id
 n

ot
 g

et

fo
od

 s
in

ce
 v

al
ue

 w
as

 1

2
Te

rm
in

al
 M

od
el

 2
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rp

ce
tio

n
m

ax
 a

re
a

(1
00

) /
 1

60
da

ta
50

Eq
ua

l:
5

0.
76

32
0.

73
66

1
0.

26
09

1
0.

59
64

0.
98

45
7.

97
0.

42
84

20
21

-0
2-

11

3
Te

rm
in

al
 M

od
el

 2
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rp

ce
tio

n
m

ax
 a

re
a

(1
00

) /
 1

60
da

ta
50

Eq
ua

l:
5

0.
77

62
0.

74
63

1
0.

27
62

1
0.

63
35

1
49

7.
95

0.
55

97
20

21
-0

2-
17

4 5 6

Tr
ia

l #
Ro

om
 M

od
el

Ag
en

t
M

od
el

Ag
en

t
W

al
ki

ng

Sp
ee

d
N

av
ig

at
io

n
Fi

el
d

of
 V

ie
w

 R
ad

iu
s (

m
) /

An

gl
e

(d
eg

)
Li

nk
 to

Da

ta
N

um
be

r o
f

Ag
en

ts
As

sg
in

ed

Pr
io

rit
ie

s

Av
er

ag
e

Ar
ch

ite
ct

ur
al

Va

lu
e

Av
er

ag
e

Ch
ec

k
In

Va

lu
e

Av
er

ag
e

Fo
od

Av

ai
lib

ili
ty

Va

lu
e

Av
er

ag
e

Ga
te

Av

ai
lib

ili
ty

Va

lu
e

Av
er

ag
e

Re
st

ro
om

Av

ai
lib

ili
ty

 V
al

ue

Av
er

ag
e

Se
cu

rit
y

Sc
re

en
in

g
Va

lu
e

Av
er

ag
e

W
ai

tin
g

Se
at

in
g

Va
lu

e

Av
er

ag
e

Ti
m

e
(s

)
Av

er
ag

e
Vi

sib
ili

ty
Da

te
Co

m
m

en
ts

1
Te

rm
in

al
 M

od
el

 3
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rc

ep
tio

n
m

ax
 a

re
a

(1
00

) /
 1

60
da

ta
50

Ra
nd

om
0.

72
42

0.
69

3
0.

79
0.

29
47

1
0.

49
79

0.
9

50
3.

26
0.

49
02

20
21

-0
2-

10

2
Te

rm
in

al
 M

od
el

 3
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rc

ep
tio

n
m

ax
 a

re
a

(1
00

) /
 1

60
da

ta
50

Ra
nd

om
0.

71
7

0.
68

5
0.

74
0.

29
44

1
0.

51
19

0.
96

54
1.

85
0.

44
05

20
21

-0
2-

15

3 4 5 6 1
Te

rm
in

al
 M

od
el

 3
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rc

ep
tio

n
m

ax
 a

re
a

(1
00

) /
 1

60
da

ta
50

Se
cu

rit
y:

 9
,

El
se

: 1
0.

57
0.

68
9

0.
5

0.
29

76
1

0.
50

58
0.

94
47

6.
39

0.
48

37
20

21
-0

2-
10

2
Te

rm
in

al
 M

od
el

 3
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rc

ep
tio

n
m

ax
 a

re
a

(1
00

) /
 1

60
da

ta
50

Se
cu

rit
y:

 9
,

El
se

: 1
0.

57
44

0.
71

53
0.

5
0.

30
11

1
0.

52
05

0.
84

50
4.

47
0.

57
31

20
21

-0
2-

17

3 4 5 6 1
Te

rm
in

al
 M

od
el

 4
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rc

ep
tio

n
m

ax
 a

re
a

(1
00

) /
 1

60
da

ta
50

Eq
ua

l:
5

0.
72

77
0.

71
03

1
0.

26
93

1
0.

52
29

0.
86

54
9.

99
0.

47
48

20
21

-0
2-

11

2
Te

rm
in

al
 M

od
el

 4
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rc

ep
tio

n
m

ax
 a

re
a

(1
00

) /
 1

60
da

ta
50

Eq
ua

l:
5

0.
72

89
0.

71
48

1
0.

25
63

1
0.

54
13

0.
86

50
3.

74
0.

44
91

20
21

-0
2-

17

3 4 5 6

Te
rm

in
al

 T
es

ts

Ce
nt

re
-R

an
do

m
Ce

nt
re

 se
cu

rit
y

la
yo

ut
 w

th
 ra

nd
om

ly
 a

ss
ig

ne
d

pr
io

rit
ie

s

Ce
nt

re
-H

ig
h

Ce
nt

re
 se

cu
rit

y
la

yo
ut

 w
th

 h
ig

he
st

 p
rio

rit
y

fo
r s

ec
ur

ity

Ce
nt

re
-E

qu
al

Ce
nt

re
 se

cu
rit

y
la

yo
ut

 w
th

 e
qu

al
 p

rio
rit

ie
s

As
ym

m
et

ric
al

-R
an

do
m

As
ym

m
et

ric
al

 s
ec

ur
ity

 la
yo

ut
 w

th
 ra

nd
om

ly
 a

ss
ig

ne
d

pr
io

rit
ie

s

As
ym

m
et

ric
al

-H
ig

h
As

ym
m

et
ric

al
 s

ec
ur

ity
 la

yo
ut

 w
th

 h
ig

he
st

 p
rio

rit
y

fo
r s

ec
ur

ity

As
ym

m
et

ric
al

-E
qu

al
As

ym
m

et
ric

al
 s

ec
ur

ity
 la

yo
ut

 w
th

 e
qu

al
 p

rio
rit

ie
s

4.2 Terminal Tests

372

Tr
ia

l #
Ro

om
 M

od
el

Ag
en

t
M

od
el

Ag
en

t
W

al
ki

ng

Sp
ee

d
N

av
ig

at
io

n
Fi

el
d

of
 V

ie
w

 R
ad

iu
s (

m
) /

An

gl
e

(d
eg

)
Li

nk
 to

Da

ta
N

um
be

r o
f

Ag
en

ts
As

sg
in

ed

Pr
io

rit
ie

s

Av
er

ag
e

Ar
ch

ite
ct

ur
al

Va

lu
e

Av
er

ag
e

Ch
ec

k
In

Va

lu
e

Av
er

ag
e

Fo
od

Av

ai
lib

ili
ty

Va

lu
e

Av
er

ag
e

Ga
te

Av

ai
lib

ili
ty

Va

lu
e

Av
er

ag
e

Re
st

ro
om

Av

ai
lib

ili
ty

 V
al

ue

Av
er

ag
e

Se
cu

rit
y

Sc
re

en
in

g
Va

lu
e

Av
er

ag
e

W
ai

tin
g

Se
at

in
g

Va
lu

e

Av
er

ag
e

Ti
m

e
(s

)
Av

er
ag

e
Vi

sib
ili

ty
Da

te
Co

m
m

en
ts

1
Te

rm
in

al
 M

od
el

 4
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rp

ce
pt

io
n

m
ax

 a
re

a
(1

00
) /

 1
60

da
ta

47
Ra

nd
om

0.
65

7
0.

70
1

0.
77

66
0.

24
13

0.
91

49
0.

52
93

0.
63

83
53

5.
64

0.
47

27
20

21
-0

2-
10

3
ag

en
t g

ot
 st

uc
k

in
 se

at
in

g
ar

ea
 a

nd
 fa

ile
d

to
 re

ac
h

ga
te

s

2
Te

rm
in

al
 M

od
el

 4
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rp

ce
pt

io
n

m
ax

 a
re

a
(1

00
) /

 1
60

da
ta

49
Ra

nd
om

0.
63

67
0.

71
72

0.
64

29
0.

21
71

0.
89

8
0.

48
7

0.
63

27
51

4.
08

0.
40

79
20

21
-0

2-
10

1
ag

en
t g

ot
 st

uc
k

in
 se

at
in

g
ar

ea
 a

nd
 fa

ile
d

to
 re

ac
h

ga
te

s

3
Te

rm
in

al
 M

od
el

 4
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rp

ce
pt

io
n

m
ax

 a
re

a
(1

00
) /

 1
60

da
ta

49
Ra

nd
om

0.
65

12
0.

71
4

0.
68

37
0.

25
23

1
0.

49
51

3
0.

69
39

45
7.

52
0.

39
37

20
21

-0
2-

10
1

ag
en

t g
ot

 st
uc

k
in

 se
at

in
g

ar
ea

 a
nd

 fa
ile

d
to

 re
ac

h
ga

te
s

4
Te

rm
in

al
 M

od
el

 4
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rp

ce
pt

io
n

m
ax

 a
re

a
(1

00
) /

 1
60

da
ta

50
Ra

nd
om

0.
67

87
0.

70
58

0.
81

0.
27

66
0.

78
0.

47
35

0.
92

52
9.

34
0.

45
22

20
21

-0
2-

16
N

o
se

cu
rit

y
sig

n
fr

om
 n

ow
 o

n;
 2

nd
 w

as
hr

oo
m

 si
gn

w

as
 n

ot
 v

isi
bl

e

5
Te

rm
in

al
 M

od
el

 4
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rp

ce
pt

io
n

m
ax

 a
re

a
(1

00
) /

 1
60

da
ta

50
Ra

nd
om

0.
70

33
0.

69
34

0.
78

0.
26

39
1

0.
49

3
0.

9
51

8.
54

0.
42

12
20

21
-0

2-
16

6 1
Te

rm
in

al
 M

od
el

 4
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rc

ep
tio

n
m

ax
 a

re
a

(1
00

) /
 1

60
da

ta
47

Se
cu

rit
y:

 9
,

El
se

: 1
0.

55
0.

73
2

0.
5

0.
24

54
0.

91
49

0.
48

56
0.

93
62

44
5.

43
0.

38
87

20
21

-0
2-

10
3

ag
en

t g
ot

 st
uc

k
in

 se
at

in
g

ar
ea

 a
nd

 fa
ile

d
to

 re
ac

h
ga

te
s

2
Te

rm
in

al
 M

od
el

 4
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rc

ep
tio

n
m

ax
 a

re
a

(1
00

) /
 1

60
da

ta
49

Se
cu

rit
y:

 9
,

El
se

: 1
0.

53
29

0.
73

4
0.

5
0.

22
45

1
0.

47
18

0.
75

51
55

5.
14

0.
42

32
20

21
-0

2-
17

N
o

se
cu

rit
y

sig
nf

ro
m

 n
ow

 o
n;

 1
 a

ge
nt

 g
ot

 st
uc

k
in

se

at
in

g
ar

ea
 a

nd
 fa

ile
d

to
 re

ac
h

ga
te

s

3
Te

rm
in

al
 M

od
el

 4
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rc

ep
tio

n
m

ax
 a

re
a

(1
00

) /
 1

60
da

ta
48

Se
cu

rit
y:

 9
,

El
se

: 1
0.

52
11

0.
69

81
0.

5
0.

22
91

1
0.

47
83

0.
56

25
46

6.
36

0.
37

23
20

21
-0

2-
17

2
ag

en
ts

 g
ot

 st
uc

k
in

 se
at

in
g

ar
ea

 a
nd

 fa
ile

d
to

 re
ac

h
ga

te
s

4
Te

rm
in

al
 M

od
el

 4
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rc

ep
tio

n
m

ax
 a

re
a

(1
00

) /
 1

60
da

ta
49

Se
cu

rit
y:

 9
,

El
se

: 1
0.

55
52

0.
72

31
0.

5
0.

26
4

1
0.

48
51

0.
91

84
49

7.
67

0.
33

96
20

21
-0

2-
17

1
ag

en
t g

ot
 st

uc
k

in
 se

at
in

g
ar

ea
 a

nd
 fa

ile
d

to
 re

ac
h

ga
te

s
5 6 1

Te
rm

in
al

 M
od

el
 4

Ag
en

t1
IM

O

Di
st

rib
ut

ed
Ve

ct
or

Pe

rc
ep

tio
n

m
ax

 a
re

a
(1

00
) /

 1
60

da
ta

50
Eq

ua
l:

5
0.

74
42

0.
69

88
1

0.
30

11
1

0.
49

77
0.

96
44

8.
68

0.
55

52
20

21
-0

2-
11

2
Te

rm
in

al
 M

od
el

 4
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rc

ep
tio

n
m

ax
 a

re
a

(1
00

) /
 1

60
da

ta
50

Eq
ua

l:
5

0.
70

56
0.

72
12

0.
9

0.
30

94
1

0.
45

48
0.

84
51

0.
9

0.
48

63
20

21
-0

2-
17

N
o

se
cu

rit
y

si
gn

 fr
om

 n
ow

 o
n

3
Te

rm
in

al
 M

od
el

 4
Ag

en
t1

IM
O

Di

st
rib

ut
ed

Ve
ct

or

Pe
rc

ep
tio

n
m

ax
 a

re
a

(1
00

) /
 1

60
da

ta
50

Eq
ua

l:
5

0.
73

07
0.

72
65

0.
98

0.
28

95
1

0.
49

23
0.

88
50

2.
81

0.
48

02
20

21
-0

2-
17

4 5 6

Pe
rp

en
di

cu
la

r-
Eq

ua
l

Pe
rp

en
di

cu
la

r s
ec

ur
ity

 la
yo

ut
 w

th
 e

qu
al

 p
rio

rit
ie

s

Pe
rp

en
di

cu
la

r-
Ra

nd
om

Pe
rp

en
di

cu
la

r s
ec

ur
ity

 la
yo

ut
 w

th
 ra

nd
om

ly
 a

ss
ig

ne
d

pr
io

rit
ie

s

Pe
rp

en
di

cu
la

r-
Hi

gh
Pe

rp
en

di
cu

la
r s

ec
ur

ity
 la

yo
ut

 w
th

 h
ig

he
st

 p
rio

rit
y

fo
r s

ec
ur

ity

373

Tr
ia

l #
Ro

om
 M

od
el

Ag
en

t
M

od
el

Ag
en

t
W

al
ki

ng

Sp
ee

d
N

av
ig

at
io

n
Fi

el
d

of
 V

ie
w

 R
ad

iu
s

(m
) /

An

gl
e

(d
eg

)
Li

nk
 to

D

at
a

N
um

be
r o

f
Ag

en
ts

Av
er

ag
e

Ar
ch

ite
ct

ur
al

Va

lu
e

Av
er

ag
e

Ch
ec

k
In

Va

lu
e

Av
er

ag
e

G
at

e
Va

lu
e

Av
er

ag
e

Fo
od

Va

lu
e

Av
er

ag
e

G
at

e
Se

at
in

g
Va

lu
e

Av
er

ag
e

Re
st

ro
om

Va

lu
e

Av
er

ag
e

Se
cu

rit
y

Va
lu

e
Av

er
ag

e
Ti

m
e

(S
ec

on
ds

)
D

at
e

Co
m

m
en

ts

1
Si

ng
ap

or
e

Ch
an

gi
Ag

en
t1

IM
O

 a
ss

ig
ne

d
Ve

ct
or

Pe

rc
ep

tio
n

m
ax

 ra
ng

e
(1

00
) /

 1
60

da
ta

10
0

0.
77

04
0.

55
0.

50
3

1
1

1
0.

38
22

31
3.

01
20

20
-1

0-
05

2
Si

ng
ap

or
e

Ch
an

gi
Ag

en
t1

IM
O

 a
ss

ig
ne

d
Ve

ct
or

Pe

rc
ep

tio
n

m
ax

 ra
ng

e
(1

00
) /

 1
60

da
ta

10
0

0.
78

58
0.

60
56

0.
50

52
1

1
1

0.
34

61
29

9.
93

20
20

-1
0-

06

3
Si

ng
ap

or
e

Ch
an

gi
Ag

en
t1

IM
O

 a
ss

ig
ne

d
Ve

ct
or

Pe

rc
ep

tio
n

m
ax

 ra
ng

e
(1

00
) /

 1
60

da
ta

10
0

0.
78

01
0.

60
01

0.
50

3
1

1
1

0.
36

03
30

8.
07

20
20

-1
0-

06

4
Si

ng
ap

or
e

Ch
an

gi
Ag

en
t1

IM
O

 a
ss

ig
ne

d
Ve

ct
or

Pe

rc
ep

tio
n

m
ax

 ra
ng

e
(1

00
) /

 1
60

da
ta

10
0

0.
80

18
0.

67
92

0.
52

52
1

1
1

0.
44

31
31

9.
81

20
20

-1
0-

07

5 6 1
To

ro
nt

o
Pe

ar
so

n
Ag

en
t1

IM
O

 a
ss

ig
ne

d
Ve

ct
or

Pe

rc
ep

tio
n

m
ax

 ra
ng

e
(1

00
) /

 1
60

da
ta

10
0

0.
45

24
0.

51
06

0.
45

52
0.

16
1

0.
15

0.
39

67
20

7.
86

20
20

-1
0-

04

Di
sa

bl
ed

 A
*

na
vi

ga
tio

n
be

ca
us

e
ag

en
ts

 w
er

e
ge

tt
in

g
st

uc
k

at
 c

or
ne

rs
 o

f c
ur

ve
d

w
al

ls
an

d
si

m
ul

at
io

n
w

as

pe
rf

or
m

in
g

slo
w

ly
 d

ue
 to

 c
al

cu
la

tin
g

pa
th

 in
 la

rg
e

sp
ac

e.
 R

ep
la

ce
d

w
ith

 w
al

ki
ng

 w
ith

 v
ec

to
r p

er
ce

pt
io

n

2
To

ro
nt

o
Pe

ar
so

n
Ag

en
t1

IM
O

 a
ss

ig
ne

d
Ve

ct
or

Pe

rc
ep

tio
n

m
ax

 ra
ng

e
(1

00
) /

 1
60

da
ta

10
0

0.
48

82
0.

51
37

0.
45

71
0.

24
1

0.
24

0.
40

82
17

9.
83

20
20

-1
0-

04

3
To

ro
nt

o
Pe

ar
so

n
Ag

en
t1

IM
O

 a
ss

ig
ne

d
Ve

ct
or

Pe

rc
ep

tio
n

m
ax

 ra
ng

e
(1

00
) /

 1
60

da
ta

10
0

0.
42

51
0.

51
53

0.
45

24
0

1
0

0.
48

09
12

9.
53

20
20

-1
0-

05
Ad

de
d

sig
n

to
 se

cu
rit

y
sc

re
en

in
g,

 a
ge

nt
s n

ev
er

 w
al

k
ov

er
 to

 fo
od

 a
nd

 w
as

hr
oo

m
 a

re
a

4
To

ro
nt

o
Pe

ar
so

n
Ag

en
t1

IM
O

 a
ss

ig
ne

d
Ve

ct
or

Pe

rc
ep

tio
n

m
ax

 ra
ng

e
(1

00
) /

 1
60

da
ta

10
0

0.
39

61
0.

50
68

0.
31

47
0.

02
1

0.
02

0.
48

97
20

2.
38

20
20

-1
0-

06
M

ov
ed

 g
at

e
fu

th
ur

 d
ow

n
co

rr
id

or

5
To

ro
nt

o
Pe

ar
so

n
Ag

en
t1

IM
O

 a
ss

ig
ne

d
Ve

ct
or

Pe

rc
ep

tio
n

m
ax

 ra
ng

e
(1

00
) /

 1
60

da
ta

10
0

0.
42

03
0.

57
4

0.
33

51
0.

03
1

0.
03

0.
55

49
24

8.
05

20
20

-1
0-

06
La

st
 th

re
e

ag
en

ts
 g

ot
 lo

st
 tr

yi
ng

 to
 g

et
 to

 g
at

e,
 h

ad
 to

re

-o
rie

nt
 th

em
6 7

Te
st

 1
: S

in
ga

po
re

 C
ha

ng
i

Te
rm

in
al

 1
 c

he
ck

-in
 a

nd
 se

cu
rit

y
pr

oc
es

s f
or

 1
00

 p
as

se
ng

er
s.

Te
st

 2
: T

or
on

to
 P

ea
rs

on
Te

rm
in

al
 1

 c
he

ck
-in

 a
nd

 se
cu

rit
y

pr
oc

es
s f

or
 1

00
 p

as
se

ng
er

s.

Ai
rp

or
t T

es
t

4.3 Airport Tests

