Objective Validation of Airport Terminal Architecture using

Agent-based Simulations

by

Karam Singh Hunjan

A thesis
presented to the Univeristy of Waterloo
in fulfilment of the
thesis requirement for the degree of

Master of Architecture

Waterloo, Ontario, Canada, 2021

© Karam Singh Hunjan 2021

Authour's Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

This thesis explores how airport terminal architecture is tested before it is built. The purpose of
testing is to make sure an architectural layout aligns with the rest of the airport’s systems. The
design of a terminal is a long and expensive process that must accommodate tens of thousands
of passengers every hour, the movement of logistics, and control of security. Evaluating spaces
for that many people can be difficult to measure, which can result in architects relying on their
intuition and experience to judge the impact of a layout for daily operations without objective
validation. It is not practical for designers to build a complete airport to see how it works and
make renovations after finding aspects that have poor performance. As a result, testing airports
requires using mathematical models and simulations to validate how well different systems

work together.

Designers try to validate architectural layouts in airport terminals by using crowd simulations to
approximate passenger behaviour. Existing research in civil engineering and computer science
has shown how mathematical models can predict patterns of human activity in the built
environment on a large scale. However, these simulations have primarily focused on either
modelling passengers as a process flow or people in emergency building evacuation. As a result,
existing agent navigation does not consider how passengers use the surrounding architecture for
decision-making during daily airport interactions. When passengers enter a terminal for the first
time, they can be unaware of what they need to do or how to get there. Instead, passengers rely
on using their perception of the environment (the architecture) to inform them what to do.
However, there currently are no methods that incorporate architectural perception to validate a

building layout in these conditions.

This thesis develops an agent-based simulation to validate how well architectural layouts align
with the daily operations of an airport terminal. It quantifies the value of a spatial arrangement
as a function of people’s interactions in a given space. The model approximates human
behaviour based on statistics from existing crowd simulations. It uses spatial analysis, like the
isovist and graph theory, for agent navigation and measuring architectural conditions. The
proposal incorporates agent perception to provide feedback between people’s decision-making
and the influence of the surrounding space. The thesis calculates architectural value using
normalized passenger priorities based on typical processing and non-processing airport

domains. The success of a terminal layout is dependent on the agent’s ability to complete airport

\%

processing and fulfill their priorities. The final value of an architectural layout is determined

using statistical methods to provide a probability distribution of likely values.

The proposed agent simulation and mathematical models are built using Unity software, which
is used to perform several simulation tests in this thesis. Basic functional components of the
simulation are validated using existing crowd modelling standards. Tests are also performed to
illustrate how different agent perception and priorities influence the value of architectural
spaces. Monte Carlo simulations are created for simple terminal layouts to illustrate how
changing the floor plan of a security area affects the architectural value for departing
passengers. Finally, the architectural values of two real airport terminals are compared against
an established passenger experience survey in a basic simulation model. The results of the
testing shows that the agent simulation can differentiate between different architectural

conditions, within reason, depending on the passengers’ priorities.

vi

Acknowledgements

I would like to thank my supervisor Jonathan Enns. Thank you for your guidance throughout
the thesis process, your enthusiasm, and your patience with me as I worked through my own

thoughts.

I would like to thank my committee member John Straube. Thank you for your valuable

feedback and insightful discussions.

I would also like to acknowledge Nelson Oliveira. I am grateful for the time I spend working with
you at the GTAA, and for you taking the time to discuss my thesis with me when I started my

research.

Thank you to my parents for your love and support. Thank you to my mom for your
conversations, feedback, and encouragement. Thank you to my dad for your discussions,

thoughts, and positivity.

vii

Table of Contents

Author’s Declaration iii
Abstract v
Acknowledgements vii
List of Figures xiii
Part o Introduction 1

-

0.0 Motivation

0.1 Problem 3
0.2 Goals 3
0.3 Hypothesis 4
0.4 Expected Results 4
0.5 Thesis Structure 5
Part1 Context 7
1.0 Architectural Intuition 8

1.1 Airport Terminal Design 14

1.2 Verification and Validation 28

1.3 Probability and Statistics 40

1.4 Simulation Modelling 53
Part 2 Modelling Concepts 85
2.0 Agent-based Modelling 86

2.1 Human Perception 90

2.2 Spatial Analysis 106

2.3 Value Theory 117

X

Part 3
3.0
3.1
3.2
3.3
34
3-5

Part 4
4.0
4.1
4.2
4.3

Part 5
5.0
5.1
5.2
53
5-4

Simulation Framework
Simulation Components
Agent-related Classes

A* Pathfinding Classes
Airport Architecture Classes
Simulation Utility Classes

Assumptions and Limits

Simulation Tests

Verification and Validation Tests

Component Tests
Terminal Tests

Airport Tests

Conclusion
Results and Findings
Ideal Models
Impacts

Future Work

Summary of Conclusion

Letter of Copyright Permission
References

Appendix A

149
150
156
190
203
227
236

243
244
264
288

317

333
334
337
340
346
349

351
355
367

List of Figures

Figure Page Description
Reference

Part o: Introduction

Fig.0.0.a 2 Comparing two different iterations of a floor plan.
Drawing by author.

Part 1: Context

Fig.1.0.a 10 Floor plan of Eero Saarinen's TWA Flight Centre (1961).
Retrieved from: Fiederer, Luke. “AD Classics: TWA Flight Center / Eero
Saarinen”. ArchDaily. 2016-06-16. https://www.archdaily.com/788012/ad-
classics-twa-flight-center-eero-saarinen.

Fig.1.0.b 10 Floor plan of Eero Saarinen's Dulles International Airport main terminal building
(1962).
Cited from: Yukio Futagawa, ed. Global Architecture: TWA Terminal Building,
Kennedy Airport, New York, and Dulles International Airport, Chantilly, Virginia.
Tokyo: A.D.A. Edita Tokyo, 1973. plan, p45.
Retrieved from: Great Buildings. Dulles Airport. Accessed March 2021.
http://www.greatbuildings.com/buildings/Dulles_ Airport.html.

Fig.1.0.c 12 Section of TWA Flight Center.
Retrieved from: National Park Services. “Trans World Airline Flight Center”.
National Register of Historic Places. (September 7, 2005): Section 11, page 7.

Fig.1.0.d 12 Section of Dulles terminal building.
Cited from: Saarinen, Eero. Eero Saarinen On His Work. New Haven, CT: Yale
University Press, 1968. section drawing, p108.
Retrieved from: Great Buildings. Dulles Airport. Accessed March 2021.
http://www.greatbuildings.com/buildings/Dulles_ Airport.html.

Fig.1.1.a 17 Basic airport terminal layout.
Retrieved from: National Academies of Sciences, Engineering, and Medicine.
“Airport Passenger Terminal Planning and Design, Volume 1: Guidebook”.
Washington, DC: The National Academies Press. (2010): 173.
Sourced from: Daileda, David A. “Considerations for Selecting a Terminal
Configuration,”, FAIA, FAA White Paper.

xiii

Fig.1.1.b

Fig.1.1.c

Fig.1.1.d

Fig.1.1.e

Fig.1.1.f

Fig.1.1.g

Fig.1.1.h

Fig.1.1.

17

19

19

20

21

23

23

25

Linear terminal.

Retrieved from: National Academies of Sciences, Engineering, and Medicine.
“Airport Passenger Terminal Planning and Design, Volume 1: Guidebook”.
Washington, DC: The National Academies Press. (2010): 173.

Sourced from: Daileda, David A. “Considerations for Selecting a Terminal
Configuration,”, FAIA, FAA White Paper.

Pier terminal.

Retrieved from: National Academies of Sciences, Engineering, and Medicine.
“Airport Passenger Terminal Planning and Design, Volume 1: Guidebook”.
Washington, DC: The National Academies Press. (2010): 173.

Sourced from: Daileda, David A. “Considerations for Selecting a Terminal
Configuration,”, FAIA, FAA White Paper.

Multi-pier terminal.

Retrieved from: National Academies of Sciences, Engineering, and Medicine.
“Airport Passenger Terminal Planning and Design, Volume 1: Guidebook”.
Washington, DC: The National Academies Press. (2010): 173.

Sourced from: Daileda, David A. “Considerations for Selecting a Terminal
Configuration,”, FATA, FAA White Paper.

Satellite terminal.

Retrieved from: National Academies of Sciences, Engineering, and Medicine.
“Airport Passenger Terminal Planning and Design, Volume 1: Guidebook”.
Washington, DC: The National Academies Press. (2010): 173.

Sourced from: Daileda, David A. “Considerations for Selecting a Terminal
Configuration,”, FAIA, FAA White Paper.

Satellite terminal with Automated People Mover (APM) system.

Retrieved from: National Academies of Sciences, Engineering, and Medicine.
“Airport Passenger Terminal Planning and Design, Volume 1: Guidebook”.
Washington, DC: The National Academies Press. (2010): 173.

Sourced from: Daileda, David A. “Considerations for Selecting a Terminal
Configuration,”, FAIA, FAA White Paper.

Toronto Pearson Airport's hourly passenger movement forecasts.
Retrieved from: GTAA. “Toronto Pearson International Airport Master Plan 2017-
2037”. Greater Toronto Airports Authority. (2017): 38.

Toronto Pearson Airport's peek-hour passenger movement forecasts base on
existing and projected flight schedules.

Retrieved from: GTAA. “Toronto Pearson International Airport Master Plan 2017-
2037”. Greater Toronto Airports Authority. (2017): 36.

Experiment showing the level of service (LOS) from A, the least dense, to F, the
most crowded.

Retrieved from: Fruin, John J. Designing for Pedestrians: A Level of Service
Concept. New York, 1970. 10.

Xiv

Fig.1.2.a

Fig.1.2.b

Fig.1.3.a

Fig.1.3.b

Fig.1.3.c

Fig.1.3.d

Fig.1.3.e

Fig.1.3.f

Fig.1.3.g

31

33

43

45

45

47

47

49

49

All verification and validation techniques on a spectrum of mathematical
formality.

Retrieved from: Balci, Osman. “Validation, Verification, and Testing Techniques
Throughout the Life Cycle of a Simulation Study.” Annals of operations research
53, no. 1 (December 1994): 131.

Simulation processes showing corresponding validation processes.
Retrieved from: Robinson, Stewart. Simulation: the Practice of Model
Development and Use. Chichester, England: Wiley, (2004): 211.

Graphs illustrating the law of large numbers from random sampling of new-born
baby weights.

Retrieved from: Watkins, Joseph. An Introduction to the Science of Statistics:
From Theory to Implementation Preliminary Edition. University of Arizona:
(2016): 180.

Monte Carlo method approaches the value for it based on the fraction of random
points that fall inside the circle within a unit square.

Retrieved from: Nicoguaro. “File:Pi 30K.gif”. Wikimedia Commons. February 16,
2017. https://commons.wikimedia.org/wiki/File:Pi_30K.gif.

Graph showing of 100 random values between 0.0 and 1.0 in Excel.
Drawing by author.

Some common probability distributions as a result of a Monte Carlo simulation,
which informs statistical behaviour.
Drawing by author.

Graphs illustrating the law of large numbers from random sampling of new-born
baby weights.

Retrieved from: Watkins, Joseph. An Introduction to the Science of Statistics:
From Theory to Implementation Preliminary Edition. University of Arizona:
(2016): 185.

A Galton board is a physical example of a Monte Carlo simulation, which shows
how natural randomness can result in a normal probability distribution.
Retrieved from: Argenton, Rodrigo. “File:Galton box.jpg”. Wikimedia Commons.
December 19, 2016. https://commons.wikimedia.org/wiki/File:Galton_box.jpg.

Galton Board Concept.

Drawing by author.

Based on drawing from: Galea, Alexander. “Galton’s Peg Board and the Central
Limit Theorm”. WordPress. March 11, 2016.
https://galeascience.wordpress.com/2016/03/11/galtons-peg-board-and-the-
central-limit-theorem/.

XV

Fig.1.3.h

Fig.1.4.a

Fig.1.4.b

Fig.1.4.c

Fig.1.4.d

Fig.1.4.e

Fig.1.4.f

Fig.1.4.g

Fig.1.4.h

52

55

57

57

59

59

61

65

65

RVLS Central Limit Theorem Simulation.

Drawing by author.

Based on drawing from: Lane, David et al. “Sampling Distribution”.
Onlinestatbook.com, Rice Virtual Lab in Statistics (RVLS), Rice University.
Accessed February 2021.
https://onlinestatbook.com/stat_sim/sampling_ dist/index.html.

Graphical representation of a discrete system and a continuous system.

Retrieved from: Banks, Jerry; Carson II, John S; Nelson, Barry L; Nicol, David M.
Discrete-Event System Simulation 4th ed. Upper Saddle River, N.J: Pearson
Prentice Hall, (2005): 11.

AirTop airspace simulation.

Retrieved from: National Academies of Sciences, Engineering, and Medicine.
“Simulation Options for Airport Planning”. Washington, DC: The National
Academies Press. (2019): 17.

ARCport terminal simulation.
Screen capture from: Proulx, Christian. “Complete Terminal Simulation”.
Youtube. March 1, 2014. https://www.youtube.com/watch?v=iaXdMO67goE.

A spreadsheet model calculating the area required for security screening.
Retrieved from: National Academies of Sciences, Engineering, and Medicine.
“Airport Passenger Terminal Planning and Design, Volume 2: Spreadsheet Models
and User's Guide”. Washington, DC: The National Academies Press. (2010): 40.

Basic queuing node model.

Drawing by author.

Based on drawing from: Dt-rush-8. “Queuing Node Service Diagram”. Wikimedia
Commons. 8 December 2018.
https://commons.wikimedia.org/wiki/File:Queueing_node_service_digram.png.

The process of a simulation study.

Drawing by author.

Based on drawing from: Banks, Jerry; Carson II, John S; Nelson, Barry L; Nicol,
David M. Discrete-Event System Simulation 4th ed. Upper Saddle River, N.J:
Pearson Prentice Hall. (2005): 13.

Dense crowds in a marathon (left) can be approximated as a fluid flow.

Retrieved from: Zhou, Suiping, Dan Chen, Wentong Cai, Linbo Luo, Malcolm Low,
Feng Tian, Victor Tay, Darren Ong, and Benjamin Hamilton. “Crowd Modeling
and Simulation Technologies.” ACM Transactions on Modeling and Computer
Simulation (TOMACS) 20, no. 4 (October 1, 2010): 6.

Crowd model using particles.

Retrieved from: Zhou, Suiping, Dan Chen, Wentong Cai, Linbo Luo, Malcolm Low,
Feng Tian, Victor Tay, Darren Ong, and Benjamin Hamilton. “Crowd Modeling
and Simulation Technologies.” ACM Transactions on Modeling and Computer
Simulation (TOMACS) 20, no. 4 (October 1, 2010): 7.

Fig.1.4.1

Fig.1.4.]

Fig.1.4.k

Fig.1.4.1

Fig.1.4.m

Fig.1.4.n

Fig.1.4.0

Fig.1.4.p

Fig.1.4.q

Fig.1.4.r

67

69

71

72

72

74

74

76

76

The game Planet Coaster uses a fluid model to simulate crowds in an amusement
park.

Retrieved from: McCarthy, Owen. “Game Design Deep Dive: Creating Believable
Crowds in Planet Coaster.” Gamasutra Article, January 4, 2017.
https://www.gamasutra.com/view/news/288020/
Game_Design_Deep_Dive_Creating_believable_crowds_in_Planet_Coaster.php.

Evacuation simulation that uses perception.

Retrieved from: Liu, Z, Liu, T, Ma, M, Hsu, H-H, Ni, Z, Chai, Y. A perception-
based emotion contagion model in crowd emergent evacuation simulation.
Comput Anim Virtual Worlds. 2018; 29:e1817. p.9.

Evacuation simulation that uses social forces.

Abdelhak, Haifa; Ayesh, Aladdin; Olivier, Damien. “Cognitive Emotional Based
Architecture for Crowd Simulation”. Journal of Intelligent Computing, June 2012,
2012. Vol. 3 (2). 64.

List of established simulation tools for airport terminal analysis.

Retrieved from: National Academies of Sciences, Engineering, and Medicine.
“Simulation Options for Airport Planning”. Washington, DC: The National
Academies Press. (2019): 44.

A MassMotion simulation in Toronto Union Station.
Retrieved from: Arup. “MassMotion”. Expertise, Services, Digital. Accessed
December 2020. https://www.arup.com/expertise/services/digital/massmotion.

Typical components in a MassMotion environment.
Retrieved from: Oaysis. “MassMotion Help Guide,” July 2019. https://www.oasys-
software.com/wp-content/uploads/2019/06/MassMotion-10.0-Help-Guide.pdf.

15.

Agent feelers used to identify other agents and local targets for navigation.
Retrieved from: Oaysis. “MassMotion Help Guide,” July 2019. https://www.oasys-
software.com/wp-content/uploads/2019/06/MassMotion-10.0-Help-Guide.pdf.
290.

MassMotion displaying passenger density to show congested areas in the
concourse of Toronto Union Station.

Retrieved from: Hoy, Gregory, Erin Morrow, and Amer Shalaby. “Use of Agent-
Based Crowd Simulation to Investigate the Performance of Large-Scale
Intermodal Facilities: Case Study of Union Station in Toronto, Ontario, Canada.”
Transportation Research Record 2540, no. 1 (January 2016): 25.

Flow chart of a station ticket service counter simulation in Arena.
Created by author.

Flow chart of a plane gating simulation in Arena.
Created by author.

xvil

Fig.1.4.s 78 Flow chart of a healthcare simulation in FlexSim.
Recreated by author.

Fig.1.4.t 78 3D model of a healthcare simulation in FlexSim.
Recreated by author.

Fig.1.4.u 80 Simulation comparison between Arena, FlexSim, Quelea, and Unity.
Drawing by author.

Fig.1.4.v 81 Sample simulations and station test for Arena, FlexSim, Quelea, and Unity.
Drawing by author.

Part 2: Modelling Concepts

Fig.2.0.a 89 How agents interact with the environment.
Drawing by author.
Based on drawing from: Liu, Ao (Leo). “Dynamic Visualizations: Developing a
Framework for Crowd-Based Simulations”. M.Arch thesis, University of
Waterloo, 2020. 85.

Fig.2.1.a 91 Environments are made up of objects and processes.
Drawing by author.

Fig.2.1.b 93 Smith's (2001) ontological marks of an environment and examples in an airport.
Drawing by author.

Based on drawing from: Raubal, Martin. “Agent-Based Simulation of Human
Wayfinding: A Perceptual Model for Unfamiliar Buildings”. PhD diss., Vienna
University of Technology, October 2001. 64.

Fig.2.1.c 95 Elements of an airport classified as a substance or medium.
Drawing by author.
Based on drawing from: Raubal, Martin. “Agent-Based Simulation of Human
Wayfinding: A Perceptual Model for Unfamiliar Buildings”. PhD diss., Vienna
University of Technology, October 2001. 65.

Fig.2.1.d 95 Further categorization of airport terminal architecture.
Drawing by author.

Fig.2.1.e 99 Category of affordances in an airport and architectural elements.
Drawing by author.

Based on drawing from: Raubal, Martin. “Agent-Based Simulation of Human
Wayfinding: A Perceptual Model for Unfamiliar Buildings”. PhD diss., Vienna
University of Technology, October 2001. 68.

Fig.2.1.f 101 Gibson's representation of a person's field of view.

Retrieved from: Gibson, James J. The Ecological Approach to Visual
Perception. New York: Psychology Press, (1986): 196.

Xviil

Fig.2.2.a

Fig.2.2.b

Fig.2.2.c

Fig.2.2.d

Fig.2.2.e

Fig.2.2.f

Fig.2.2.g

Fig.2.2.h

Fig.2.2.i

Fig.2.2,j

Fig.2.2.k

Fig.2.2.1

107

107

109

109

111

111

113

113

113

113

113

115

An isovist is the area that can be seen from a single point.
Retrieved from: Arabacioglu, Burcin Cem. “Using Fuzzy Inference System for
Architectural Space Analysis.” Applied Soft Computing 10, no. 3 (2010): 927.

The three geometries of space syntax.
Retrieved from: Vaughan, Laura. “The Spatial Syntax of Urban Segregation.”
Progress in Planning 67, no. 3 (2007): 209.

Graphs showing the arrangement of connections from different rooms in a
house.

Retrieved from: Vaughan, Laura. “The Spatial Syntax of Urban Segregation.”
Progress in Planning 67, no. 3 (2007): 211.

Enclosure defines a value based on the number of surrounding walls on a scale
of 1to 4.

Retrieved from: Do, Ellen Yi-Luen, and Mark D. Gross. “Tools for Visual and
Spatial Analysis of CAD Models.” CAAD Futures 1997, 1997, 194.

Enclosure defines a value based on the number of surrounding walls on a scale
of 1to 4.

Retrieved from: Turner, Alasdair, Maria Doxa, David Osullivan, and Alan Penn.
“From Isovists to Visibility Graphs: A Methodology for the Analysis of
Architectural Space.” Environment and Planning B: Planning and Design 28, no.
1 (2001): 108.

A visibility graph, where each vertex is a point in space, and the lines are the
visible connections.

Retrieved from: Arabacioglu, Burcin Cem. “Using Fuzzy Inference System for
Architectural Space Analysis.” Applied Soft Computing 10, no. 3 (2010): 927.

An undirected graph with 5 edges and 5 vertices.
Drawing by author.

A directed graph.
Drawing by author.

A path from node v, to node v,.
Drawing by author.

A weighted graph.
Drawing by author.

Lowest cost path between node A and node B has a cost of 7.
Drawing by author.

Pathfinding solved using Dijkstra's search algorithm.

Retrieved from: Bhattacharya, Subhrajit. “File:Dijkstras progress animation.gif”.
Wikimedia Commons. April 13, 2011.
https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif.

XixX

Fig.2.2.m

Fig.2.3.a

Fig.2.3.b

Fig.2.3.c

Fig.2.3.d

Fig.2.3.e

Fig.2.3.f

Fig.2.3.g

Fig.2.3.h

Fig.2.3.i

115

120

122

124

126

128

129

129

129

132

Pathfinding solved using an A* search algorithm.

Retrieved from: Bhattacharya, Subhrajit. “File:Astar progress animation.gif”.
Wikimedia Commons. April 13, 2011.
https://en.wikipedia.org/wiki/File:Astar_progress_animation.gif.

First two architect's priorities and school floor plans.
Retrieved from: Lera, Sebastian G. “Architectural Designers’ Values and the
Evaluation of Their Designs.” Design studies 2, no. 3 (1981): 135.

Comparing utility model values with overall values for each architect.
Retrieved from: Lera, Sebastian G. “Architectural Designers’ Values and the
Evaluation of Their Designs.” Design studies 2, no. 3 (1981): 136.

Simple analytic hierarchy process structure.

Drawing by author.

Based on drawing from: Sander, Lou. “File:AHPHierarchy1.1.png”. Wikimedia
Commons. 24 February 2009.

https://commons.wikimedia.org/wiki/File: AHPHierarchy1.1.png.

Eigenvectors after a linear transformation.

Drawing by author.

Based on animation from: 3BlueiBrown. “Eigenvectors and eigenvalues |
Essence of linear algebra, chapter 14”. Youtube, September 15, 2016.
https://www.youtube.com/watch?v=PFDugoVAE-g.

Priority matrix and corresponding eigenvector for each coloured ball.
Drawing by author.

Job satisfaction priority matrix.

Retrieved from: Saaty, Thomas L. “Modeling Unstructured Decision Problems —
the Theory of Analytical Hierarchies.” Mathematics and computers in
stmulation 20, no. 3 (1978): 155.

Company attributes matrices.

Retrieved from: Saaty, Thomas L. “Modeling Unstructured Decision Problems —
the Theory of Analytical Hierarchies.” Mathematics and computers in
stmulation 20, no. 3 (1978): 155.

Company attributes eigenvectors.

Retrieved from: Saaty, Thomas L. “Modeling Unstructured Decision Problems —
the Theory of Analytical Hierarchies.” Mathematics and computers in
simulation 20, no. 3 (1978): 155.

Passenger-centred model hierarchy.
Drawing by author.

XX

Fig.2.3.j

Fig.2.3.k

Fig.2.3.1

Fig.2.3.m

Fig.2.3.n

Fig.2.3.0

132

134

137

139

143

143

Airport performance is dependant on processing domains and non-processing
domains.

Drawing by author.

Based on drawing from: Wiredja, Dedy, Vesna Popovic, and Alethea Blackler. “A
Passenger-Centred Model in Assessing Airport Service Performance.” Journal of
Modelling in Management 14, no. 2 (May 10, 2019): 504.

Airport domains indicating attributes that are influenced by architecture.
Drawing by author.

Based on drawing from: Wiredja, Dedy, Vesna Popovic, and Alethea Blackler. “A
Passenger-Centred Model in Assessing Airport Service Performance.” Journal of
Modelling in Management 14, no. 2 (May 10, 2019): 503.

Passengers standing between columns and along the walls of a platform waiting
to board a subway.

Photo by: Mentatdgt. “Photography of People at Train Station”. Pexels. August
09, 2018. https://www.pexels.com/photo/photography-of-people-at-train-
station-1311544/.

9 factors for scoring architecture, with corresponding mathematical functions.
Drawing by author.

General exponential decay function.
Drawing by author.

A piece-wise decay function for a typical passenger waiting time.
Drawing by author.

Part 3: Simulation Framework

Fig.3.0.a

Fig.3.0.b

Fig.3.1.a

Fig.3.1.b

Fig.3.1.c

Fig.3.1.d

151

155

157

159

160

161

Unity software user interface showing the scene environment models and
property toolbars.
Drawing by author.

Categories of script classes in Unity for the agent simulation.
Drawing by author.

Agent following an A* path (black line) to a local target (white wire sphere).
Image by author.

Process logic for the agent class.
Drawing by author.

Key variables for the agent class, page 1.
Drawing by author.

Key variables for the agent class, page 2.
Drawing by author.

Xx1

Fig.3.1.e

Fig.3.1.f

Fig.3.1.g

Fig.3.1.h

Fig.3.1.i

Fig.3.1j

Fig.3.1.k

Fig.3.1.1

Fig.3.1.m

Fig.3.1.n

Fig.3.1.0

Fig.3.1.p

Fig.3.1.q

Fig.3.1.r

Fig.3.1.s

162

164

165

165

167

168

169

170

172

172

174

174

177

Key methods for the agent class, page 3.
Drawing by author.

Population distribution, for age and gender.

Retrieved from: IMO. “Guidelines for Evacuation Analysis for New and Existing
Passenger Ships.” International Maritime Organization (IMO).
MSC.1/Circ.1238. (October 30, 2007): 6.

Passenger walking speeds.

Retrieved from: IMO. “Guidelines for Evacuation Analysis for New and Existing
Passenger Ships.” International Maritime Organization (IMO).
MSC.1/Circ.1238. (October 30, 2007): 8.

Samples of randomly assigned characteristics and priority matrices, page 1.
Drawing by author.

Samples of randomly assigned characteristics and priority matrices, page 2.
Drawing by author.

Process logic for the characteristics class.
Drawing by author.

Key variables for the characteristics class, page 1.
Drawing by author.

Key variables and methods for the characteristics class, page 2.
Drawing by author.

Priority local class within the characteristics class, page 3.
Drawing by author.

Agent perceives the gate sign, as shown by the blue line. The agent state is "read
sign", as illustrated by the pink colour.
Drawing by author.

Agent perceives check-in counters, as shown by the blue line. The agent state is
"go to check-in", as illustrated by the blue colour.

Drawing by author.

Process logic for the perception class, page 1.
Drawing by author.

Process logic for the perception class, page 2.
Drawing by author.

Key variables for the perception class, page 1.
Drawing by author.

Key variables for the perception class, page 2.
Drawing by author.

xxii

Fig.3.1.t 178 Key variables for the perception class, page 3.
Drawing by author.

Fig.3.1.u 179 Key methods for the perception class, page 4.
Drawing by author.

Fig.3.1.v 180 Key methods for the perception class, page 5.
Drawing by author.

Fig.3.1.w 182 Generalized construction of the field of view.
Drawing by author.
Based on drawing from: Lague, Sebastian. “Field of view visualization (E02)”.
Youtube. December 27, 2015. https://youtu.be/73Dc5JTCmKI?t=530. 8:57.

Fig.3.1.x 182 Agent in front of a wall showing their field of view.
Image by author.

Fig.3.1.y 183 Convex corners are refined by selecting a midpoint vector between a max and
min viewpoint.
Drawing by author.

Based on drawing from: Lague, Sebastian. “Field of view visualization (E02)”.
Youtube. December 27, 2015. https://youtu.be/73Dc5JTCmKI?t=1070. 17:50.

Fig.3.1.z 183 A random direction vector for wandering is selected towards the longest visible
direction, illustrated by the red line.
Image by author.
Fig.3.1.za 185 Process logic for the field of view class.
Drawing by author.
Fig.3.1.zb 186 Key variables for the field of view class, page 1.
Drawing by author.
Fig.3.1.z¢c 187 Key variables for the field of view class, page 2.
Drawing by author.
Fig.3.1.zd 188 Key methods for the field of view class, page 3.
Drawing by author.
Fig.3.1.ze 189 Key methods for the field of view class, page 4.
Drawing by author.
Fig.3.2.a 191 Simulated environments are divided into grid tiles for A* navigation.

Drawing by author.

xxiil

Fig.3.2.b

Fig.3.2.c

Fig.3.2.d

Fig.3.2.e

Fig.3.2.f

Fig.3.2.g

Fig.3.2.h

Fig.3.2.1

Fig.3.2.

Fig.3.3.a

Fig.3.3.b

Fig.3.3.c

Fig.3.3.d

Fig.3.3.e

193

192

194

195

197

198

200

201

202

204

204

206

207

208

An example of walkable and unwalkable areas from a grid environment.
Drawing by author.

Process logic for the grid class.
Drawing by author.

Key variables for the grid class, page 1.
Drawing by author.

Key variables and methods for the grid class, page 2.
Drawing by author.

Key variables for the node class, page 1.
Drawing by author.

Key methods for the node class, page 2.
Drawing by author.

Pathfinding creates a path (black line) between nodes along a tiled grid to a
target node (white wire sphere).
Drawing by author.

Lague's A* pathfinding process calculates the cost of neighbouring nodes as a
sum of its distance to the start and end nodes.

Drawing by author.

Based on drawing from: Lague, Sebastian. “A* Pathfinding (Eo1: algorithm
explanation)”. Youtube. December 16, 2014.
https://www.youtube.com/watch?v=-L-

WgKMFuhE&list=PLFt_ AvWsXlocq5Umv3pMC9SPnKjfpgeGW&index=1.

Key variables and methods for the pathfinding class.
Drawing by author.

Basic geometry used to identify spatial areas.
Drawing by author.

Spatial areas are referenced when agents move between them.
Drawing by author.

Process logic for the architecture class.
Drawing by author.

Key variables for the architecture class, page 1.
Drawing by author.

Key methods for the architecture class, page 2.
Drawing by author.

XX1V

Fig.3.3.f

Fig.3.3.g

Fig.3.3.h

Fig.3.3.i

Fig.3.3.j

Fig.3.3.k

Fig.3.3.1

Fig.3.3.m

Fig.3.3.n

Fig.3.3.0

Fig.3.3.p

Fig.3.3.q

Fig.3.3.r

Fig.3.3.s

Fig.3.4.a

210

210

211

212

214

215

216

218

220

221

223

224

225

226

229

Mlustration of interaction nodes (green) and exit nodes (red) in security
screening.
Drawing by author.

Nlustration of queue spots (blue) in a queuing line.
Drawing by author.

Process logic for the airport objects class.
Drawing by author.

Key variables and methods for the airport objects class, page 1.
Drawing by author.

A wayfinding sign illustrated with a viewpoint (blue) and two direction nodes
(red) for Gate A and Gate B.
Drawing by author.

Process logic for the signage class.
Drawing by author.

Key variables and methods for the signage class, page 1.
Drawing by author.

An example of a simulation schedule assigned in the Unity inspector properties,
using the scheduling script, with 3 arrival points and 2 departure points.

Screen capture by author.

Key variables for the scheduling class, page 1.
Drawing by author.

Key variables for the scheduling class, page 2.
Drawing by author.

Process logic for the itinerary class.
Drawing by author.

Key variables for the itinerary class, page 1.
Drawing by author.

Key variables for the itinerary class, page 2.
Drawing by author.

Key methods for the itinerary class, page 3.
Drawing by author.

Process logic for the agent spawner class.
Drawing by author.

XXV

Fig.3.4.b

Fig.3.4.c

Fig.3.4.d

Fig.3.4.e

Fig.3.4.f

Fig.3.4.g

230

231

232

233

235

235

Key variables for the agent spawner class, page 1.
Drawing by author.

Key variables for the agent spawner class, page 2.
Drawing by author.

Key methods for the agent spawner class, page 3.
Drawing by author.

Path request manager process.
Drawing by author.

Heap tree process.

Drawing by author.

Based on drawing from: Lague, Sebastian. “A* Pathfinding (Eo1: algorithm
explanation)”. Youtube. December 16, 2014.
https://www.youtube.com/watch?v=-L-
WgKMFuhE&list=PLFt_AvWsXlocq5Umv3pMC9SPnKjfpgeGW&index=1.

Field of view editor displays "handles triangles".
Drawing by author.

Part 4: Simulation Tests

Fig.4.0.a

Fig.4.0.b

Fig.4.0.c

Fig.4.0.d

Fig.4.0.e

Fig.4.0.f

Fig.4.0.g

Fig.4.0.h

245

247

248

248

249

251

252

252

IMO and NIST verification tests for evacuation simulations.
Drawing by author.

Setup and conditions for test 1.
Drawing by author.

Agent walking in corridor from entrance.
Screen capture by author.

Screen captures at time intervals during the test of one agent.
Screen capture by author.

Travel times for a sample of 50 agents is consistently 40 seconds.
Graph by author.

Setup and conditions for test 2.
Drawing by author.

Agents in the starting area.
Screen capture by author.

Agents walking around the corner.
Screen capture by author.

XXV1

Fig.4.0.1

Fig.4.0.j

Fig.4.0.k

Fig.4.0.1

Fig.4.0.m

Fig.4.0.n

Fig.4.0.0

Fig.4.0.p

Fig.4.0.q

Fig.4.0.r

Fig.4.0.s

Fig.4.1.a

Fig.4.1.b

Fig.4.1.c

Fig.4.1.d

Fig.4.1.e

253

255

256

256

257

258

258

260

261

261

262

265

266

268

268

269

Screen captures at time intervals during the test.
Screen capture by author.

Setup and conditions for test 3.
Drawing by author.

Agents walking through opening.
Screen capture by author.

Agents clumping together causes spikes in flow rate.
Screen capture by author.

Screen captures at time intervals during the test.
Screen capture by author.

Max flow rate of 1.2 p/s, below 1.33 p/s (redline), but is not maintained.
Drawing by author.

Max flow rate spiked to 1.5 p/s, above redline, despite having same conditions as
trial 11.
Drawing by author.

Setup and conditions for test 4.
Drawing by author.

Agent walking to the exit portal.
Screen capture by author.

Screen captures at time intervals during the test of one agent.
Screen capture by author.

Walking speed follow a uniform distribution, with an average of 1.28 m/s.
Graph by author.

Setup and conditions for the wayfinding test.
Drawing by author.

Agent's view at the T-junction cannot see where their gate is, and they only have
the sign to inform their decisions.

Screen capture by author.

Agent with direct navigation goes to the left.
Screen capture by author.

Agent with perception navigation follows the sign for Gate B to the right.
Screen capture by author.

A* Direct Wayfinding.
Drawing by author.

XXVil

Fig.4.1.f

Fig.4.1.g

Fig.4.1.h

Fig.4.1.i

Fig.4.1.j

Fig.4.1.k

Fig.4.1.1

Fig.4.1.m

Fig.4.1.n

Fig.4.1.0

Fig.4.1.p

Fig.4.1.q

Fig.4.1.r

Fig.4.1.s

Fig.4.1.t

Fig.4.1.u

270

271

273

275

275

276

277

279

279

279

280

280

280

282

284

284

A* Perception Wayfinding.
Drawing by author.

Comparing the distance agents travelled to Gate B using direct and perception
navigation.
Graph by author.

Setup and conditions for the visibility test.
Drawing by author.

Agent's view when they see the Narrow Gate.
Screen capture by author.

Agent's view when they see the Wide Gate.
Screen capture by author.

Screen captures as agent walks to Narrow Gate, showing the change in FOV area.
Drawing by author.

Screen captures as agent walks to Wide Gate, showing the change in FOV area.
Drawing by author.

Change in Field of View (FOV) Area.
Graph by author.

Change in Field of View (FOV) Ratio.
Graph by author.

Change in Average Visibility.
Graph by author.

Maximum Field of View Area Distribution.
Graph by author.

Field of View (FOV) Ratio Distribution When Gate Discovered.
Graph by author.

Average Visibility Distribution.
Graph by author.

Setup and conditions for the non-processing priority test.
Drawing by author.

Agents with low food priorities waiting in the gate seating area (red).
Drawing by author.

Agents with high food priorities getting food at the cafe.
Drawing by author.

Xxviii

Fig.4.1.v 285 Agent Prioritizing a Non-Processing Domain
Drawing by author.

Fig.4.1.w 286 Comparing which agents got food with each agent's priority for food availability.
Graph by author.
Fig.4.2.a 289 Setup and conditions for the terminal tests.

Drawing by author.

Fig.4.2.b 201 Floor plan of the Centre Security Layout.
Drawing by author.

Fig.4.2.c 203 Passengers in the check-in area
Screen capture by author.

Fig.4.2.d 203 Passengers in security screening.
Screen capture by author.

Fig.4.2.e 294 Passenger entering holdroom concourse before the sign.
Screen capture by author.

Fig.4.2.f 204 Passengers linger in holdroom concourse.
Screen capture by author.

Fig.4.2.g 206 Centre Security Layout.
Drawing by author.
Fig.4.2.h 297 Centre Layout Value Distribution.
Graph by author.
Fig.4.2.i 297 Centre Security Screening Scores.
Graph by author.
Fig.4.2.j 398 Floor plan of the Asymmetrical Security Layout.
Drawing by author.
Fig.4.2.k 300 Passengers wandering (light blue) between check-in isles because they do not

see the security area from left side of the check-in processor.
Screen capture by author.

Fig.4.2.1 300 Security screening has a bias for passengers checking in on the right side.
Screen capture by author.

Fig.4.2.m 302 Asymmetrical Layout Value Distribution.
Graph by author.

Fig.4.2.n 302 Centre vs. Asymmetric Comparison.
Graph by author.

XXIX

Fig.4.2.0

Fig.4.2.p

Fig.4.2.q

Fig.4.2.r

Fig.4.2.s

Fig.4.2.t

Fig.4.2.u

Fig.4.2.v

Fig.4.2.w

Fig.4.2.x

Fig.4.2.y

Fig.4.2.z

Fig.4.2.za

Fig.4.2.zb

Fig.4.2.zc

303

303

304

306

306

307

307

309

309

310

310

311

312

313

316

Asymmetrical Security Screening Scores.
Graph by author.

Centre vs. Asymmetrical Security Comparison.
Graph by author.

Floor plan of the Perpendicular Security Layout.
Drawing by author.

Passengers in the right isle of check-in looking for the security area.
Screen capture by author.

Passenger's view walking along the wall from the right cannot see any identifying
feature for security at the threshold.
Screen capture by author.

Passengers approaching from the right side (purple) recognize the security
queue sooner than passengers approaching from the left side (light blue), due to
the narrow opening.

Screen capture by author.

Perpendicular security screening area, with an exit to the left towards the
wayfinding sign.
Screen capture by author.

Perpendicular Layout Value Distribution.
Graphs by author.

Architectural Value Comparison.
Graphs by author.

Perpendicular Security Screening Scores.
Graphs by author.

All Security Comparison.
Graphs by author.

Assigned agent characteristics and random priority matrix.
Drawing by author.

Assigned agent characteristics and high security priority matrix.
Drawing by author.

Assigned agent characteristics and equal priority matrix.
Drawing by author.

Average architectural value for all nine tests.
Table by author.

XXX

Fig.4.2.zd

Fig.4.2.ze

Fig.4.2.zf

Fig.4.2.zg

Fig.4.2.zh

Fig.4.2.zi

Fig.4.3.a

Fig.4.3.b

Fig.4.3.c

Fig.4.3.d

Fig.4.3.e

Fig.4.3.f

Fig.4.3.g

Fig.4.3.h

Fig.4.3.1

Fig.4.3.j

315

315

315

316

316

316

318

319

321

322

323

325

325

326

326

328

Centre Layout Range.
Graph by author.

Asymmetrical Layout Range.
Graph by author.

Perpendicular Layout Range.
Graph by author.

Random Priority Effects.
Graph by author.

High Security Priority Effects.
Graph by author.

Equal Priority Effects.
Graph by author.

Skytrax Airport Ranking 2020.
Drawing by author.

AirHelp Airport Ranking 2019.
Drawing by author.

Setup and conditions for the airport tests.
Drawing by author.

Simulated floor plan for Changi terminal 1.
Drawing by author.

Simulated floor plan for Pearson terminal 1, international departure.
Drawing by author.

Passengers in Changi going through the check-in area.
Screen capture by author.

Passengers in Changi going through security into the retail courtyard.
Screen capture by author.

Passengers in Pearson going through the check-in area.
Screen capture by author.

Passengers in Pearson going through security.
Screen capture by author.

Changi Population Distribution.
Graph by author.

xXxx1

Fig.4.3.k 328 Pearson Population Distribution.
Graph by author.

Fig.4.3.1 329 Sample Mean Comparison of Changi and Pearson.
Graph by author.

Fig.4.3.m 329 Equivalent normal distributions for Changi (blue), N(0.802, 0.0166), and
Pearson (red), N(0.420, 0.0289), as continuous PDFs, given an infinite number
of samples.

Graph by author.

Fig.4.3.n 331 Average values for each passenger priorities.
Chart by author.

xxxil

Part o:

Introduction

This introduction describes the thesis’s motivation, problems, and intentions. The hypothesis
states that, the differences in an architectural layout for an airport terminal can be explained
using an agent simulation, if agent decision-making relies on the perception of the surrounding
environment. Part 0 also summarizes the expected results and the organization of the thesis

structure.
0.0 Motivation

The motivation for this thesis comes from two ideas. Firstly, the thesis investigates how
mathematics plays a role in the architectural design process, to model patterns and determine
quantifiable outcomes. Design is a creative process, which requires using skills and intuition to
develop new ideas. But once these ideas need to translate into the built environment, it can be
challenging to demonstrate why one layout is better than another. The interest of using
mathematics is to make logical choices during the design process. If a designer makes two
different floor plans that are created for the same purpose, is there a way to quantify the
differences between the two layouts to determine which design is better than the other
(Fig.0.0.a)? Overall, the motivation of this thesis is to propose a world in which architectural

decisions are based on mathematical analysis.

Secondly, the thesis is interested in developing a tool that allows designers to quantify
differences between architectural spaces. This involves investigating existing research from civil
engineering and computer science, which has developed ways of quantifying patterns of human
activity in the built environment. These areas of research have demonstrated that human
behaviour becomes predictable on a large scale, despite every person acting as an individual.
The results from this way of thinking have impacted the way transportation systems are
designed, which incorporates tools like crowd and traffic simulations to understand the
movement of large volumes of people over time. Could the methods that work for crowd

simulations in transport facilities be a starting point for quantifying architectural spaces?

Given two plans, can the differences between them
be analysed mathematically?

lteration A lteration B

Figure 0.0.a: Comparing two different iteration of a floor plan.

0.1 Problem

Airports are complex facilities that are expensive to build. They need to accommodate over tens
of thousands of passengers every hour, the movement of logistics, and control of security. It can
be difficult to test a terminal building for that many people and factors. Additionally, it is not
practical for designers to build a complete airport to see how it works or fix changes after finding
design issues during operations. This complexity can result in architects relying on their
intuition to judge the benefits from a design without formal testing or proper validation.
Designers try to minimize these issues by using crowd simulations to approximate human
behaviour. However, existing crowd simulations typically model passengers as a process flow, or
people in emergency evacuations. As a result, these tools do not represent how people use
architecture for decision-making for daily interactions. People are not aware of their final
destination when they enter a terminal building for the first time. They may not understand
what they need to do or how to get there. Instead, people rely on using their surroundings (the
architecture) to inform them what to do. However, there are currently no methods to validate a
building for this type of decision making. In summary, the thesis looks to address the following

problems:

1. The complexity of human behaviour creates uncertainty in design decisions, which

causes architects to rely on their intuition without proper validation.

2. Existing crowd simulations do not represent how people interact with architecture for

decision making during daily airport operations.
0.2 Goals

The goal of this thesis is to develop a mathematical model to validate an airport terminal layout
based on passenger interactions. The model quantifies a spatial arrangement as a function of
behaviour of people in that space. It approximates human behaviour based on statistics from
existing crowd simulations. It incorporates perception to provide feedback of how agents make
decisions. Architecture is quantified using spatial analysis, and it is valued using the method of
prioritization within existing airport domains. The thesis proposes a new way of scoring
architecture by combining these methods into a single index of architectural value. The success
of a floor plan is then dependant on a passenger’s ability to fulfill their priorities within a given
space. Therefore, to reach this goal, agents must be able to simulate these interactions within an

architectural environment. Specifically, the thesis looks to understand the following questions:

1. What are the minimum architectural elements that have an influence on people in a

given space?

2. What are the minimum mathematical models needed to quantify an architectural layout

as a function of user activity?
0.3 Hypothesis

Consider a simulation of an airport terminal, which contains numerous agents that represent
typical passengers. Imagine these agents are given a certain task to complete within an airport
domain, which they can only accomplish by relying on the information from their perceivable
surroundings. If these agents are given sufficient perception of the architectural environment,
then the simulation can quantify how well the terminal’s layout influenced passengers’ decision
making. As a result, this simulation could approximate an equivalent passenger interaction in a

real airport environment, based on a statistical probability.
0.4 Expected Results

The thesis attempts to create an agent-based model that can calculate architectural value using
agent perception. Firstly, the thesis should identify what aspects of architectural quantification
are missing from the design process. Secondly, it should make clear how existing mathematical
techniques and simulation tools are already capable of quantifying architectural conditions.
Finally, the model should demonstrate a convincing mathematical approach for quantifying

architectural spatial conditions.

The agent-based simulation should work as a practical tool that can illustrate basic functions of
an airport terminal. In general, it should be able to differentiate two architectural layouts based
on their accumulated architectural values. It should show what aspects of a space or airport
domain create good or bad passenger interactions. Ideally, it should analyse a given airport and
indicate the likelihood of the architecture being successful or a failure within a statistical

certainty.
0.5 Thesis Structure

This thesis is organized into five parts, excluding the introduction. Part 1 talks about the context
behind the thesis. Chapter 1.0 talks about architectural intuition and its inconsistencies. Chapter
1.1 introduces the basics of airport terminals, including the scope of design for an architect.

Chapter 1.2 gives a summary of verification and validation. This includes typical applications in

other industries and its limitations. Chapter 1.3 gives a brief summary of probability and
statistics. It shows how statistics approximates real-world patterns and describes the math
behind typical probability distributions. Chapter 1.4 introduces simulation modelling,
definitions of properties, processes, and different applications for airports. Additionally, chapter

1.4 concludes with a comparison of existing simulations.

Part 2 covers modelling concepts that the thesis identifies to be beneficial for creating an
architectural agent simulation. Chapter 2.0 begins by defining what agents are, and their
decision-making process. Chapter 2.1 introduces human perception. This talks about
categorization, agent knowledge, and visual fields of view. Chapter 2.2 summarizes the concept
of spatial analysis. This includes existing techniques and a mathematical description of graph
theory. Chapter 2.3 introduces value theory, the method of prioritization, and common airport

domains. This concludes with the thesis’s proposal of how to calculate architectural value.

Part 3 goes into detail about how the thesis creates its agent simulation. Chapter 3.0 introduces
Unity software, which is the program the thesis uses to build the simulation. It also gives a brief
description of how its scripting components work. Chapter 3.1 summarizes script classes for the
agent’s functions, perception, and decision-making. Chapter 3.2 explains how the simulated
environment and navigation work. Chapter 3.3 talks about components for airport architecture,
scheduling, and value functions. Chapter 3.4 summarizes additional script classes for
background functions. Chapter 3.5 concludes by listing the assumptions the thesis made for the

agent model, and what the limitations are for the simulation.

Part 4 goes through all the simulation testing. Chapter 4.0 conducts standard tests which follow
current simulation practices for verification and validation. Chapter 4.1 illustrates the range of
behaviour based on the new components introduced for this thesis. Chapter 4.2 goes through
basic airport terminal layouts to illustrate how the agent-model behaves in different floor plans.
Chapter 4.3 compares two existing airport terminals to see if architectural value matches a real-

world passenger survey ranking.

Part 5 discusses the results of the thesis, its impacts to architecture, and plans for future
research. Chapter 5.0 begins by summarizing the results of the simulation testing. Chapter 5.1
talks about the components for an ideal architectural agent simulation. Chapter 5.2 walks
through the impacts of simulation testing for the architectural industry. Chapter 5.3 discusses
future research topics that could expand from this thesis’s research. Finally, Chapter 5.4

summarizes the overall conclusions of the thesis.

Part 1:

Context

Part 1 begins by describing some of the limitations of intuition for architectural design. Chapter
1.1 introduces the complexity of current airport terminals and goes through the contemporary
design process. Chapter 1.2 explains about the methods of verification and validation that are
typical in other scientific disciplines. It also compares validation to existing practices in
architectural design. Chapter 1.3 gives a brief summary of probability and statistics. It describes
how statistics uses mathematical models to approximate real-world patterns. Chapter 1.4
introduces different types of simulation models and how they work in different applications.
This chapter also describes some existing simulation methods for analyzing airports. It
concludes by walking through some of the tools the thesis has considered for an architectural

agent simulation.

Chapter 1.0

Architectural Intuition

Architecture is a discipline that incorporates both technical knowledge and artistic sense in the
pursuit of creating physical spaces in the built environment. Architects make decisions about
how to organize building elements based on their knowledge as a professional. They must make
sure that a design meets project requirements set out by clients and developers for the
occupants and people involved. Currently, contemporary architectural practice is moving
towards using technical analysis to validate certain aspects of a building. Up to now, building
validation has an influence on codes, structures, services, construction, and energy usage.
However, it is still common that space planning is dependant on the interpretation of the
designer. Architects decide if a layout of spaces is functionally validated primarily based on their

professional knowledge and experience.

While space planning is an important responsibility of an architect, there is no direct approach
to scientifically or mathematically validate if a given arrangement of spaces meet the needs of a
project. The layout of spaces is fundamental to the function of a building. All other building
elements, like material, structure, and services develop around the framework of space. The risk
of unvalidated architecture is that designers who pursue unconventional layouts, or aesthetically
unique designs, claim a building is functional for the occupants without objectively checking if
that is true or not. It is not wrong for architects to make unconventional designs, or to
experiment with the aesthetics of space. However, space planning tends to move from modelling
into contract documentation as the primary evidence of design validation, which is a limiting

approach to prove how a building operates scientifically.

Architectural spaces are difficult to define because they can have soft outlines that are not
limited to conventional boundaries, like social effects. [*] A single space may be associated with
multiple functions, like multi-use spaces in apartments, or have connections that are not

physically related, like sacred spaces in religious architecture. As a result, architects can rely on

1. Arabacioglu, Burcin Cem. “Using Fuzzy Inference System for Architectural Space Analysis.” Applied
Soft Computing 10, no. 3 (2010): 926—37. https://doi.org/10.1016/j.as0c.2009.10.011. 926.

8

their intuition as the primary factor for deciding these types of layouts, since their experience

and interaction with these spaces informs how they will be used. [2]

In their research on architectural design ideas and beliefs, Holm states that architects tend to
make decisions based on their own experience, skills, and values. 3] This results in information
that is based in personal knowledge, unlike shared knowledge in scientific disciplines. 4]
Personal knowledge is difficult to disprove with objective evidence because one architect’s
knowledge might not share the same fundamental ideas as another architect, which is neither
right nor wrong. (5] Holm mentions that this inconsistency shows up in the architectural
language, where concepts like space or form do not have clear definitions, in which space can
refer to both physical and social boundaries. In addition, it is common for architectural work to
start from “scratch”, or the need to be inventive for every new project, which can disregard
existing practices or proven results. [] As a result, designers usually try to solve unconventional
situations or problems that were not there initially. Holm summarizes that these conditions
make architecture value-based rather than evidence or fact-based like other academic

disciplines. [7]
Wide Range of Airport Designs

Early examples of prominent airport architecture illustrate how a designer’s ideas can be
inconsistent. In the 1960’s, architect Eero Saarinen created two different terminals that had
contrasting design methodologies, which were examples of design flexibility and inflexibility. (8]
Both terminals were designed as international airports for two major cities on the east coast of
the United States, less than 400 km apart, built within 2 years of each other. With one architect
overseeing both designs, one would expect these terminals are built around a common

framework. However, it appears that these two terminals are arranged quite differently.

2. Arabacioglu, “Fuzzy Inference System”. 926.

3. Holm, Ivar. “Ideas and Beliefs in Architecture and Industrial Design”. (PhD thesis, Oslo School of
Architecture and Design, 2006). 282.

4. Holm “Ideas and Beliefs”. 282.

5. Holm “Ideas and Beliefs”. 282.

6. Holm “Ideas and Beliefs”. 284.

7. Holm “Ideas and Beliefs”. 284.

8. National Academies of Sciences, Engineering, and Medicine. “Airport Passenger Terminal Planning
and Design, Volume 1: Guidebook”. Washington, DC: The National Academies Press, (2010): 6-7.

9

Figure 1.0.a: Floor plan of Eero Saarinen's TWA Flight Centre (1961) has a curved concourse with a

centralized lobby, from the National Park Services, as shown by Fiederer (2016).

L:

.""'\n'ljl:?_;_-“_- . i

S S S S—

(A |
1‘|rt'r““_'mafi

e “iil

E-JE& i _J« E_

ilillll!il

m&__-g_)rxmnmm e

LI IO T | 1
| e =
oo 1

WWWWW@WW M

Figure 1.0.b: Floor plan of Eero Saarinen's Dulles International Airport main terminal building (1962)

has a linear concourse as a transition to mobile lounges, as shown by Futagawa (1973).

10

Saarinen’s first terminal in 1961 was the TWA Flight Center at John F. Kennedy International
Airport (JFK), outside New York City. The design of the terminal differs from the orthogonal
geometry of the international style at the time. [91 Instead, Saarinen went with curvilinear lines,
developing a concrete shell structure that arched over the terminal like a bird’s wings. As a work
of art, the public saw the building as innovative, beautiful, and a creative design. 0] However, as
a terminal building, it became “functionally deficient” over time due to the complexity of how
the spaces were arranged and the rigid form of the concrete structure. [*] [:2] New piers and
concourses needed to be added to accommodate the growing size of planes, like the Boeing 747.
Today, JFK has expanded significantly since the 1960’s. The TWA building is no longer used as a

terminal, and it is instead repurposed as a hotel. [13]

Saarinen’s second design, completed in 1962, was the main terminal at Dulles International
Airport (IAD), outside Washington D.C. He incorporated the building with a modular design
which was able to adapt to terminal growth overtime. The concept included the use of “mobile
lounges”, a bus-like vehicle used to shuttle people between the planes and the main terminal
building. 4 While initially useful, the maintenance cost of the lounges and the complexity of
closing-out flights early to move passengers back to the terminal, resulted in abandoning the
lounges altogether. ['5] Since then, Dulles has converted its terminals to a satellite configuration

with an underground people-mover system (automated train). 6]

Comparing the floor plans of these airports shows two different design languages. The floor plan
of TWA is a single-storey, crescent-shaped building centered around a split-level lobby space
(Fig.1.0.a). It has a central lower ticket lobby, with stairs that ascend into an upper lobby
concourse on the gates side (Fig.1.0.c). Two piers were later added to this concourse, which
extend out to the plane gates. A baggage claim concourse can be seen in the north wing of the

terminal and a parking facility in the south wing.

9. National Park Services. “Trans World Airline Flight Center”. National Register of Historic Places.
September 7, 2005. Section 7: 1.

10. National Academies, “Airport Passenger Terminal Planning and Design”. 7.

11. National Academies, “Airport Passenger Terminal Planning and Design”. 7.

12. National Park Services. “Trans World Airline Flight Center”. 8: 9-10.

13. McFadden, Robbyn. “Up, up and away at the TWA Hotel”. CBS News. May 12, 2019.
https://www.cbsnews.com/news/up-up-and-away-at-the-twa-hotel-at-jfk/.

14. National Academies, “Airport Passenger Terminal Planning and Design”. 7.

15. National Academies, “Airport Passenger Terminal Planning and Design”. 7.

16. National Academies, “Airport Passenger Terminal Planning and Design”. 7.

11

Figure 1.0.c: Section of TWA Flight Center with a split-level lobby and shell structure, from the

National Park Services, as shown by Fiederer (2016).

Figure 1.0.d: Section of Dulles terminal building with two levels and connection to the mobile lounges,

as shown by Saarinen (1968).

12

The floor plan of Dulles is a multi-storey rectilinear space with a consistent structure spacing
(Fig.1.0.b). The main level has two symmetrical halls connecting the check-in area and a linear
holdroom concourse. The holdroom is lined with stalls for the mobile lounges which are parked
perpendicularly to the building so passengers can walk straight into them. There is a T-junction
in the middle of this concourse, which connects up to the based of a control tower. The baggage

claim hall is also on a lower level below the main halls (Fig.1.0.d).

Although both terminals were made by the same architect during the same time, the plans
illustrate that they have very different ways of organizing spaces. This does not mean one design
is worse than the other; each terminal had to solve their own problems due to the nature of their
layouts. Even though they are created under similar circumstances, an architect like Saarinen
has a wide range of layout choices that might work. However, terminals still have a logical
structure that is inherent with the functions of an airport, like check-in and gate locations.

Deciding which layout best suits those functions is the challenge of architectural design.

13

Chapter 1.1

Airport Terminal Design

The thesis experiments with agent-based simulations in the context of airport terminal
architecture. The focus on airports has many benefits for this thesis because of the existing
research and available data. Contemporary airports involve many aspects of aviation, logistics,
and human wellbeing. Today, understanding the complexity of these areas involve using some
form of simulation or modelling to predict the impact to operations. [There is also well-
established research and data that analyzes passenger experience within a terminal building. [2]
Analysing architecture using agent-based simulations can build from these established
practices. Terminals also have a clear purpose for processing passengers and transporting
people to where they need to go. Fundamentally, this gives an agent simulation a well-defined
goal that is easy to model in a digital environment. The function of passenger processing can

also become a clear indicator of architectural performance.

The primary source the thesis uses to understand the airport design process is based on the
reports written by the National Academies of Sciences, Engineering, and Medicine, as part of the
Airport Cooperative Research Program (ACRP). They present guides for airport planners on the
fundamentals of airport design and operations based on standards by the FAA (Federal Aviation
Administration). 31 The ACRP procedures are considered standard practice in the United States.
141 The thesis takes these reports as representative of conditions for North American airports.
The research also considers the methods described by the GTAA (Greater Toronto Airports

Authority) in their master plan of Toronto Pearson International Airport. [5![6]

1. National Academies of Sciences, Engineering, and Medicine. “Simulation Options for Airport
Planning”. Washington, DC: The National Academies Press. (2019): 3.

2. Wiredja, Dedy, Vesna Popovic, and Alethea Blackler. “A Passenger-Centred Model in Assessing
Airport Service Performance.” Journal of Modelling in Management 14, no. 2 (May 10, 2019): 492—520.

3. National Academies of Sciences, Engineering, and Medicine. “Airport Passenger Terminal Planning
and Design, Volume 1: Guidebook”. Washington, DC: The National Academies Press, (2010): 1.

4. National Academies, “Airport Passenger Terminal Planning and Design”. 1.

5. GTAA. “Toronto Pearson International Airport Master Plan 2017-2037”, Greater Toronto Airports
Authority, (2017). 5-13.

6. GTAA. “2018 Airport Construction Code, v5.0”, Toronto Pearson International Airport, (2018). xiii.

14

Planning Process

Airports are built up of many elements like civil infrastructure, maintenance facilities, terminal
buildings, and servicing equipment. They can cost in the range of billions of dollars and require
the order of magnitude of a million square metres of space. [7! It is rare for new international
airports to be built from scratch, since it is more likely that a high-populated area is already
served by a functioning international airport. Instead, it is more common for new airport
developments to be renovations of existing facilities or expanding from existing infrastructure.
(81 Although, constructing a new airport can occur if an existing airport is over capacity, there is
open land available for a new facility, and the local authority is willing to budget the time and
resources for a new project. In other words, it is rare for airport projects to occur in the first

place, but when they do, it is important to make sure there will be use out of it.

For the terminal building alone, there are countless decisions concerning what the design scope
of the facility needs to be, including capacity for the number of flights that the airport expects to
handle, and the number of passengers expected to be on those flights. Architecturally, planners
need to consider how areas are integrated with the existing terminals, what areas are controlled
by security, and how far people need to walk. Additionally, the size of the facility itself is
dependant on many factors, which includes the number of service counters, baggage carousels,

queue lines, and gate seating.

New projects for major airports usually go through an airport authority. An airport authority is,
typically, a not-for-profit, government funded, private company that manages airport
operations. 91 Projects are managed by airport planners, who may refer to internal developers
from an airport authority, or external consultants in engineering, architecture, or urban

planning. [

In Volume 1 of Airport Terminal Planning and Design, the National Academies explains in

detail that new terminals must go through several stages of planning before reaching the design

7. Neumann, Peter. “Kosten fiir GroBflughafen steigen um 160 Millionen Euro, weil mehr Passagiere
erwartet werden: Noch nicht gebaut und schon teurer”. Berliner-Zeitung, 2008-07-10.
https://www.berliner-zeitung.de/kosten-fuer-grossflughafen-steigen-um-160-millionen-euro-weil-mehr-
passagiere-erwartet-werden-noch-nicht-gebaut-und-schon-teurer-li.6277.

8. National Academies, “Airport Passenger Terminal Planning and Design”. 1.

9. PANYNJ. “Terminal Planning Guidelines”, The Port Authority of New York and New Jersey, August
2013, https://www.fd.cvut.cz/projects/k621x1ml/dokumenty/panynj-terminal-planning-guidelines.pdf.

10. Nelson Oliveira (Project Director, Greater Toronto Airports Authority), phone conversation with
author, February 3, 2020.

15

process. '] In the first stages of a new facility, planners identify the function for domestic or
international processing, the expected number of flights, and the expected number of
passengers. Significant airport projects are planned at least a decade in advance of any actual
construction. Planning that far in advance makes it challenging to estimate how an airport will
operate decades into the future. However, planners predict how future operations will work
using statistics of current airport operations and past growth. During this stage, planners will
also communicate with relevant airline companies who may be the primary clients of the new

facility.
Terminal Building Layout

There are two main types of terminal concepts that planners can choose from, depending on the
capacity of the airport. These are centralized or decentralized terminal buildings. 21 In a
centralized terminal, all passengers and logistics are processed in one building. This maximizes
the use of shared facilities and amenities, which avoids duplicating services. It also simplifies
wayfinding for passengers, since there is only one area for arrivals and departures. 31 The
downside of a centralized facility is passengers may need to walk long distances between flights,

if they all need to pass through a single location. ['4]

Decentralized facilities are beneficial for separating different types of flights, operations, or
airlines. This includes providing security separation between domestic and international
travellers. Each building only needs to serve the passenger demand for a given travel, which can
distribute an airport’s capacity during peak operations. ['s1 The main downside of a decentralized
facility is that each building is independent. As a result, every terminal needs their own services

and amenities, which can be expensive to maintain.

A basic airport terminal is divided into two areas: landside and airside, which are separated by a
security line. Landside interfaces with public areas, whereas airside controls restricted access to
the planes. Both areas have core spaces for passenger processing. This typically includes check-
in, security, holdroom concourse, gates, immigration, and baggage claim. These areas align with
passenger flows, which are departure, arrival, or connecting. Departure flow includes check-in,

security, (sometimes immigration), holdroom, and gates. Arrival flow includes gates,

11. National Academies, “Airport Passenger Terminal Planning and Design”. 23.

12. National Academies, “Airport Passenger Terminal Planning and Design”. 171.
13. National Academies, “Airport Passenger Terminal Planning and Design”. 171.
14. National Academies, “Airport Passenger Terminal Planning and Design”. 172.
15. National Academies, “Airport Passenger Terminal Planning and Design”. 172.

16

e

"~ PROCESSOR

Figure 1.1.a: Basic airport terminal layout, as shown by National Academies (2010), sourced from

“Considerations for Selecting a Terminal Configuration,” David A. Daileda, FAIA, FAA White Paper.

Figure 1.1.b: Linear terminal, as shown by National Academies (2010), sourced from “Considerations

for Selecting a Terminal Configuration,” David A. Daileda, FAIA, FAA White Paper.

17

immigration, and baggage claim. Depending on the airport, connecting passengers may stay in
the gate concourse. However, some connecting passengers may need to go through immigration

before boarding their next flight.

A terminal can be designed in several different configurations. The most common configurations

are linear, pier, and satellite.

Linear: A basic linear configuration has a single passenger processor that is accessed by a road,
or curbside. The processor is connected directly to a gate concourse, which passes through a
security screening area. The plane gates are then evenly spaced, side-by-side, along the gate
concourse on an apron (Fig.1.1.a). [0 Passengers can access the planes either, directly from the
terminal building by a jet bridge, or remotely at-grade. For larger airports, these concourses can
be elongated to accommodate more planes. This is typically served by a corridor behind the gate

holdroom, which contains amenities (Fig.1.1.b). 7]

Pier: A pier configuration has a similar processor and security area like a linear terminal.
However, the gate concourse for a pier extends out perpendicularly, like a boat pier. This allows
planes to be served on either side of the concourse, which can extend out further to
accommodate more planes (Fig.1.1.c). 81 To reduce passenger walking distance in larger
airports, planners will include multiple piers (Fig.1.1.d). 9] These piers are either organized
parallel to each other, or radially around a centralized processor building. The spacing between

the piers is determined by the size of the planes.

Satellite: A satellite configuration separates the gate concourse from the main processor
building. The benefit of a satellite building is that planes can be parked around all sides of the
terminal. Satellite buildings are always on airside, which contains a gate concourse, holdrooms,
and amenities. This can be accessed, either above-grade or underground, by automated trains,
shuttlebuses, or walkways (Fig.1.1.e). [20] For larger airports, it is common to have multiple
linear-satellite concourses, which are linked by an automated-people mover (AMP) (train)
(Fig.1.1.f). 21 This takes advantage of the efficiency of a linear configuration and the capacity of

a satellite.

16. National Academies, “Airport Passenger Terminal Planning and Design”. 173.
17. National Academies, “Airport Passenger Terminal Planning and Design”. 174.
18. National Academies, “Airport Passenger Terminal Planning and Design”. 175-176.
19. National Academies, “Airport Passenger Terminal Planning and Design”. 177.
20. National Academies, “Airport Passenger Terminal Planning and Design”. 178.
21. National Academies, “Airport Passenger Terminal Planning and Design”. 182.

18

Figure 1.1.c: Pier terminal, as shown by National Academies (2010), sourced from “Considerations for

Selecting a Terminal Configuration,” David A. Daileda, FAIA, FAA White Paper.

Figure 1.1.d: Multi-pier terminal, as shown by National Academies (2010), sourced from

“Considerations for Selecting a Terminal Configuration,” David A. Daileda, FAIA, FAA White Paper.

19

Figure 1.1.e: Satellite terminal, as shown by National Academies (2010), sourced from “Considerations

for Selecting a Terminal Configuration,” David A. Daileda, FAIA, FAA White Paper.

20

Figure 1.1.f: Satellite terminal with an Automated People Mover (APM) system, as shown by National
Academies (2010), sourced from “Considerations for Selecting a Terminal Configuration,” David A.

Daileda, FAIA, FAA White Paper.

21

Demand Forecasting

The size of an airport terminal is based on the future forecast of passengers, cargo, and aircraft
movements. [221 These movements refer to how many planes are expected arrive and depart over
time. This indicates the number of passengers that enplane (depart) and deplane (arrive) from
those flights. Planners get this information from demand forecast data. There are two common
approaches for collecting forecast data. One option is to extrapolate past trends from the
existing facility into the future. The second option is to use national forecast data and
extrapolate based on the latest social and economic factors. (23] Travel forecasts are broken down
into daily and hourly passenger movements. The amount of airport activity fluctuates
throughout the year. So, planners account for these changes by considering the number of
passengers during the busiest time of the year. However, it is not practical to design airports to
accommodate the greatest number of passengers, since that level of activity is not consistent all

the time.
Peak Hour

The hour when an airport sees the greatest number of passenger movements is called the peak
hour. North American airports are designed according to the peak hour of an average day during
the busiest month. [24] The peak hour may not correspond to a clock hour exactly, but instead it
can be an interval of time when flights are expected to arrive and depart. Outside of the United
States, some airports are designed by considering the 9ot to 95t percentile of the busiest hour
of the year. However, it is challenging for planners to know precisely what time of year is the
busiest. The number of passengers during peak hour determines how large areas in a terminal
need to be. It also influences the number of check-in counters, security screening machines, and

length of queue lines.

For example, in 2017, Toronto Pearson Airport processed over 12 000 passengers during its
peak hour, which was around 18:00 (6:00 PM), on average (Fig.1.1.g). [25] Passengers are either
coming from arriving, departing, or connecting flights. There were about 7 000 passenger
movements departing from Pearson over the peak hour (Fig.1.1.h). As an example, planners

designing a departure hall for Pearson would want to make sure it could process at least 7 000

22. National Academies, “Airport Passenger Terminal Planning and Design”. 9.

23. National Academies, “Airport Passenger Terminal Planning and Design”. 21.

24. National Academies, “Airport Passenger Terminal Planning and Design”. 89.

25. GTAA. “Toronto Pearson International Airport Master Plan 2017-2037”, Greater Toronto Airports
Authority, (2017), 38, 56, 85.

22

20,000
18,000
16,000
14,000
12,000
10,000

8,000

6,000

Passenger Movements

4,000

2,000

2017 —2022 —2027 — 2037

A /N

S~ N\

/ /" . T\

//\//_/\/‘/\—\‘\\

7= N
/-

/ \

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Clock Hour

Figure 1.1.g: Toronto Pearson Airport's hourly passenger movement forecasts, GTAA (2017).

20177

2022

2027

2037

Peak-Hour Passenger Movement Forecasts

Enplaned/Deplaned Origin/Destination Connecting Passengers
Arr Dep Arr Dep Arr Dep
7,500 6,800 4,800 4,500 2,800 3,300
9,400 8,600 6,400 5,700 3,500 3,700
9,900 9,400 6,600 5,900 3,700 4,200
11,600 11,700 7,700 6,400 4,200 5,600

Figure 1.1.h: Toronto Pearson Airport's peak-hour passenger movement forecasts base on existing

and projected flight schedules, GTAA (2017).

23

passengers during that hour. The terminal design should function normally without having

congestion in corridors or queues that overflow into other areas.
Level of Service (LOS)

The required area for the terminal depends on the number of passengers and how many people
can comfortably fit in each area. In North America, airport planners use Level of Service (LOS)
factors to find the density of people acceptable for public spaces. LOS factors were developed in
1970 by John Fruin based on experiments conducted with crowds. [26] It describes how freely
people can walk in open paths, stairways, and queues on a scale from A to F (Fig.1.1.i). Level A is
when people have free space to walk without any obstructions. Level F is when people are
practically squished together and can barely move. To be economical with space and time, most
airports are built for a LOS factor of C, which is at least 15sqft (1.4m2) per person. Level C means
people can walk uninterrupted in any direction, but there is possibility that people need to
adjust their walking speed to avoid obstructions. This provides a balance between the size of a
space and passenger comfort levels. Planners may aim for a higher LOS like Level B during
conceptual design, knowing over time it tends to drop to Level C for final operations. [271 The
final size of the final terminal building is dependant on the required square-footage and

passenger demand.
Conceptual Planning

Once the number of aircraft movements and passengers are established, the next stage involves
creating a conceptual site plan. The site plan shows how the new terminal fits together with the
entire airport. Planners will explore different arrangements of the building based on the number
of gates, overall circulation, and expected construction costs. The best options developed from
conceptual planning are then further refined with more detail. Areas in the terminal are
measured out in CAD as simple geometry based on the space program. At this stage, planners
turn to spreadsheet models and simulations to verify demand forecasting data. [281 It is common

for planners to consult with engineering and architectural teams, who check the terminal using

26. Fruin, John J. Designing for Pedestrians: A Level of Service Concept. New York, 1970.

27. Nelson Oliveira (Project Director, Greater Toronto Airports Authority), phone conversation with
author, February 3, 2020.

28. National Academies, “Airport Passenger Terminal Planning and Design”. 28.

24

--,-..‘..- TR, ,
- '

1 'l' |
L]

i y I S A
L) 2
] Ch x
L] 1
L L

e

& GREATER THAM 3510, FT,/PED

1'?- 2535 50. FT./PED

L) 15.254Q. FT./PED

Figure 1.1.i: Experiment showing the level of service (LOS) from A, the least dense, to F, the most

crowded, Furin (1970).

25

traffic simulations and crowd modelling. 291(30] This makes sure spaces are acceptable for

passenger flow and LOS factors.
Design Process

Once planners confirm a conceptual plan, it is then brought to the architects to begin the design
process of the physical building. It is common for architectural design consultants, who were not
part of the initial planning stages, to question the form of the building and try to impose new
design ideas. 31 The focus of airport planners is to maintain the functional integrity of the
project. There are critical areas (hard points) in the airport that cannot be changed. This
includes the location of airside (aircraft stands, gates, and apron), and landside (curbside and
roadways). The location of the security line between secure areas and non-secure areas may also
be fixed. The responsibility for architects is to arrange, detail, and design elements between
these hard points. This includes arranging the layout for check-in and security, designing the

experience for retail and restaurants, and detailing waiting areas and back-of-house staff rooms.

As is common across all architectural projects, this leads into schematic design, design
development, and contract documentation. [321 It is through schematic design that the
conceptual plan is developed into a terminal building. Architects translate the areas of space
program into floor plans, verifying that terminal works with simple architectural elements like
volume and structure. In design development, the terminal is refined in more detail with form,
structure, and building systems. The terminal is also verified at this stage for building codes and
safety standards. From this point, only minor changes to the design are made. Then drawings

are prepared for construction, which leads into the final contract documentation.

The thesis considers the transition from conceptual planning into design development. Agent-
based simulations can help verify that architectural space planning aligns with the functional
integrity of the rest of the airport. Using the knowledge established in the early stages of
planning, agent modelling can verify architectural conditions align with passenger interactions

and decision-making, based on the perspective of the individual.

29. National Academies, “Airport Passenger Terminal Planning and Design”. 28.

30. Nelson Oliveira (Project Director, Greater Toronto Airports Authority), phone conversation with
author, February 3, 2020.

31. National Academies, “Airport Passenger Terminal Planning and Design”. 30.

32. National Academies, “Airport Passenger Terminal Planning and Design”. 30.

26

Summary

The context of this thesis looks at the design of airport terminals. There is established research
showing that analysis tools, like simulations, are required to understand complex systems and
predict the impact to operations. The design process involves several stages of planning and
analysis from airport planners before starting the architectural design of the terminal building.
This involves identifying the capacity of the facility and the expected number of flights and
passengers, using demand forecasting. Airport terminals are divided into two areas based on
security: landside and airside. The passenger-facing areas of a terminal building include several
core spaces like check-in concourse, security, holdroom concourse, gates, immigration, and
baggage claim hall. The size of an airport terminal is based on the expected number of aircraft
movements, during the peak-hour of operations. Aircraft movements influence the expected
number of passengers, which then decides how big areas inside the building need to be. The
exact square-footage is calculated based on the density of passengers using level-of-service
factors. This is verified using crowd modelling and traffic simulations to check for restrictions. A
balance is chosen between the economics of available space and expected processing time. After
planners put together a suitable site plan, architects begin designing and arranging spaces for
the physical building. However, architects are required to design the terminal within the hard
points established during planning, like the gates and security line. The scope of the thesis
analyzes the arrangement of these spaces using agent-modelling to verify architectural

performance, to be consistent with the planning stages.

27

Chapter 1.2

Verification and Validation

A major focus of this thesis is to increase the credibility and confidence of architectural spatial
decisions. Without proper analysis, there is no certainty in the function of a layout, or the
accuracy of a designer’s choices. ! Verification and validation (V&V) describe an objective
process that checks if a product, service, or system meets the requirements of its intended
purpose. [21 This thesis considers V&V for two conditions: the design process and the agent-
based model. Firstly, existing practices of V&V can be used to check if an architectural layout is
meeting the scope of a design project. Secondly, V&V can confirm if components in an agent-
based model are working correctly, based on simulation standards. Ideally, verification and
validation are not meant to be final checks only, but instead should be an iterative process

throughout the design cycle. 3!

Validation is formally defined by the International Organization for Standardization (ISO) as
“confirmation, through the provision of objective evidence, that the requirements for a specific
intended use or application have been fulfilled”. (4] This definition practically applies to any
application, whether it is an object or system. In general, validation ensures that the goals of a
project are achieved. It is also meant to give a user confidence that the things they are creating

will be useful.

Verification is a process that checks if models, tools, and products are working correctly,
according to a given standard or within a defined level of accuracy. 51 The process involves
comparing properties of one system against the required properties of an ideal system. (61 The
user of the model must have confidence that their models represent accurate information

according to their purpose. For example, a measuring device used to check the distance between

1. Robinson, Stewart. Simulation: the Practice of Model Development and Use. Chichester, England:
Wiley, (2004). 209.

2. Robinson. Simulation. 209.

3. Robinson. Simulation. 212.

4. IS0O. “Systems and software engineering -- System life cycle processes.” ISO/IEC/IEEE 15288:2015,
2015-05, 4.37 validation.

5. Robinson. Simulation. 209.

6. ISO. “Systems and software engineering -- System life cycle processes.” ISO/IEC/IEEE 15288:2015,
2015-05, 4.38 verification.

28

two objects that are 100 m apart, should always give the reading of 100 m whenever it is used in
that application. In this context, verification is comparable to the process of calibration, where
tools are set to an accuracy based on a given standard. If a model does not give correct
information, then the results of the system cannot be trusted. Verification is considered a subset
of the larger concept of validation. 71 Therefore, when speaking about validation in general, it

refers to both verification and validation, as a total process.
Properties

The thesis follows the information described by Robinson on verification and validation, in their
textbook on simulation tools. The definitions apply to both the architectural process and the
agent-based model. Robinson states that there are two main concepts in validation: sufficient
accuracy (tolerance), and purpose. 81 A model, tool, or system is considered validated if its

outcomes have enough accuracy and align with a given purpose.

A model is a representation of a system, and it is a way to simplify a system to help understand
how it works. For these reasons, a model should never expect to be completely accurate, or its
results taken as 100% correct. [91 Due to this uncertainty, verification and validation try to
ensure that a model has sufficient accuracy by determining if its results are within a given
tolerance. As an example, this idea is like physical tolerances in engineering and construction. A
physical dimension on a drawing might require a steel beam to be 1000 mm within a tolerance
of 5 mm. A beam might never be exactly 1000 mm due to inaccuracies in manufacturing or
material properties. Instead, a tolerance gives a range of sizes that are acceptable for
construction. A beam that falls between 995 mm and 1005 mm is validated based on the

drawing.

The level of tolerance for any model is dependant on its purpose. As a result, the specific use of a
model needs to be established before it can be validated. For example, the previous steel beam
might need to span between two columns. If the beam is too long or to short, then it will not fit
the structure. Although, the position where the beam is welded to the column could vary within
10 mm. The application of welding gives the constraints for accuracy, and the structural frame

gives the condition for validation. Accuracy is described as a range, sometimes as a percentage

7. Robinson. Simulation. 210.
8. Robinson. Simulation. 210.
9. Robinson. Simulation. 210.

29

from 0% to 100%. Whereas validation is a binary decision; a system is either acceptable or it is

not. [0l

The thesis applies these ideas to the design of architectural spaces. Tolerances can influence
physical constraints (room dimensions), functional constraints (wayfinding visibility), or social
constraints (need for amenities). In each situation, there is a range of conditions that are a valid
design, but they are limited by the application of the project. For example, an airport holdroom
concourse might require access to a concession space (purpose). The concessions are required to
be within a 5-minute walking distance from each of the gates (tolerance) and have a variety of 2
or more types of retail spaces (tolerance). A simple validation process for this condition will
check if passengers can walk between the gates and the concession spaces within 5 minutes, and
if the passengers can engage with more than 2 types of retail space. The architecture is validated
if testing shows passengers can access these areas (purpose) and perform according to the

conditions (tolerance).
Methods

Testing a system for verification and validation is related to the process of simulation analysis,
where each stage of a simulation study requires a method for validation. In their research on
verification and validation techniques, Balci explains how V&V methods can be categorized base
on mathematical formality. ! There are some systems that can be represented by a pure
mathematical relationship, like calculus. Whereas other systems can only be checked
philosophically, like if a client is happy with the results. Balci organized V&V methods into six
categories, which are, from least to most mathematical: informal, static, dynamic, symbolic,
constraint, and formal. 121 The complete list of techniques can be seen in Fig.1.2.a. Balci noted
that some techniques can fit into more than one category, like structural analysis having static
and dynamic testing. Additionally, Balci states that the formalness of the math should increase

as the system being validated becomes more complex. [3]

While Balci’s research was looking at different techniques, Robinson described verification and
validation methods within the context of a simulation process. They mention seven methods

that include: conceptual model validation, data validation, white-box validation, black-box

10. Robinson. Simulation. 210.

11. Balci, Osman. “Validation, Verification, and Testing Techniques Throughout the Life Cycle of a
Simulation Study.” Annals of operations research 53, no. 1 (December 1994): 130.

12. Balci, Osman. “Validation”. 130-131.

13. Balci, Osman. “Validation”. 130.

30

Informal

Audit
Desk Checking
Face Validation

inspections
Reviews
Turing Test
Walkthroughs

Validation, Verification, and Testing Techniques

Static Dynamic Symbolic Constraint Formal
Consistency Checking ~ Black-Box Testing Cause-Effect Graphing ~ Assertion Checking Induction
Data Flow Analysis Bottom-Up Testing Partition Analysis Boundary Analysis Inference
Graph-Based Analysis Debugging Path Analysis Inductive Assertions Lamda Calculus
Semantic Analysis Execution Monitoring ~ Symbolic Execution Logical Deduction
Structural Analysis Execution Profiling Predicate Calculus
Syntax Analysis Execution Tracing Predicate Transformation
Field Testing Proof of Correctness

Graphical Comparisons
Predictive Validation
Regression Testing
Sensitivity Analysis
Statistical Techniques
Stress Testing
Submodel Testing
Symbolic Debugging
Top-Down Testing
Visualization
White-Box Testing

Figure 1.2.a: All verification and validation techniques on a spectrum of mathematical formality, Balci

(1994).

31

validation, experimentation validation, and solution validation. 41 Each of these methods may
use one or more of the techniques described by Balci. For example, this may involve formally
checking if a simulation method outputs the correct values based on mathematics. Similarly, a
model can be visually checked to determine if it looks like it is moving correctly. A system is
considered validated when at least one of these methods is completed in parallel with a given

process, as illustrated in Fig.1.2.b.

Conceptual Model Validation: This determines if all the contexts, assumptions, and
simplifications are reasonable enough to meet the goals of the system. The method for validating
a conceptual model is dependant on project requirements and specifications. [5] A conceptual

model can be different from project to project.

Data Validation: This involves checking if both the system and the validation process itself are
using relevant information. It also confirms if the data is accurate enough to achieve the given
purpose. 61 This typically applies to all processes of design and simulation since data is involved

at every stage.

White-box Validation: Fundamental parts of a model are checked to see if they correspond to
real-world elements under similar conditions, within a given level of accuracy. This involves
studying single elements in detail, making sure each part of the model works correctly. 71 This is

like verification for the system’s parts.

Black-box Validation: The overall model is checked to determine if it properly represents the
real-world system, under similar conditions, within a given level of accuracy. This involves
studying the model’s complete operations, to confirm that all parts of the system are working

together correctly. 8]

Experimental Validation: Any process that uses experimental procedures (non-standard
practices) must provide results that are accurate enough to achieve the given purpose.
Experimental procedures must also consider the issues of removing biases from initial
conditions, controlling the duration of an experiment, replicating the procedures more than

once, and analysing the accuracy of the results. 91 In other words, when trying a new procedure,

14. Robinson. Simulation. 210-211.
15. Robinson. Simulation. 214-215.
16. Robinson. Simulation. 215.
17. Robinson. Simulation. 215.
18. Robinson. Simulation. 217.
19. Robinson. Simulation. 220.

32

Conceptual

model

Real world
(problem)

Computer
model

Solutions/
understanding

Figure 1.2.b: Simulation processes showing corresponding validation processes, Robinson (2004).

33

a good process should make it easy to learn from the outcomes of an experiment and help

identify a relevant solution to the system.

Solution Validation: This determines if the results from the model are within a given level of
accuracy, when compared to the results of the real system. This is like black-box validation,
since it looks at the system in total. Although, it only compares the value of the solution, instead
of the system components. Solution validation is only possible after an experiment finishes,
therefore the results do not affect fundamental components of a model. [2°! For this reason, it is

not meant to validate the entire system, but the solutions can give feedback to the designer.
Applications

Verification and validation are part of a scientific practice that is well established across a wide
range of industries like healthcare 2], engineering [22], building science, computer software [23],
and economics. The reason these industries use V&V is usually concerned with either human

safety or product efficiency. These types of validation do not only cover scientific experiments,
but also includes design methods that are equivalent to architectural design. The following are

some examples of how validation is used in industries today.
Pharmaceuticals:

The healthcare industry has many instances of validation practices to control the impact to
human health. Due to strict regulations, there are also instances of validation for design and
manufacturing of healthcare products, as seen in the pharmaceutical industry. The Food and
Drug Administration (FDA) is an American organization responsible for regulating food, drugs,
and medication. Specifically, the FDA established a standard Process Validation for testing the
design and manufacturing of drugs. (241 The purpose of this validation is to check if a drug has
been designed for its intended use. (251 The process looks at what type of drug it is, how it is

being manufactured, and how well the drug performs. Additionally, the process includes clinical

20. Robinson. Simulation. 221.

21. FDA. “Guideline on General Principles of Process Validation”. U.S. Department of Health and
Human Services Food and Drug Administration, FDA-2008-D-0559. Updated 2018-08-24. 1.

22 FAA. “International Validation and Domestic Certification”. Federal Aviation Administration.
Accessed November 2020.
https://www.faa.gov/aircraft/air_cert/design_approvals/rotorcraft/val_dom_ cert/.

23. ISO. “Systems and software engineering -- System life cycle processes.” ISO/IEC/IEEE
15288:2015, 2015-05, 4.38 verification.

24. FDA. “Process Validation”. 1.

25. FDA. “Process Validation”. 3.

34

trial studies, which evaluates the drug with a sample population, before allowing the medicine to
be available for the public. In addition to obvious health and safety concerns, the goal is to make
sure that the object being created does what it is supposed to do. Process validation is not just a
formal study, but is a layered scientific design process, which is repeatable, and uses analytical

data to determine the performance of the medicine, before people use it. [26]
Automotive Engineering:

In the automotive industry, validation is an integral part of the design process for vehicles and
machinery. Design validation is defined as making sure that a design meets the form and

functional requirements based on the product needs, analytical methods, or physical testing. [27]

Product needs describe the scope of vehicle to be designed, what the capacity is, the engine size,
power output, or fuel consumption. Analytical methods can involve testing components using
software tools to study stresses, strain, vibrations, temperature, and fluid flow. This may include
Finite Element Analysis (FEA) for structures and thermodynamics, Computational Fluid
Dynamics (CFD) for fluid flows, and dynamic analysis for moving components. 28] Physical
testing typically uses standards established by the Society of Automotive Engineers (SAE). [29]
This may include four-post testing for suspension systems, dyno testing for engine power

output, wind tunnel testing for aerodynamics, or on-road testing for full vehicle dynamics.

Designers will validate these systems analytically before moving into physical prototypes. This
allows systems to be solved mathematically before spending resources trying to build the full
vehicle. Once the mechanics of the theoretical system are understood, then designers have
confidence in how it translates into the physical world. Although architectural design does not
involve as much physics, mathematics can give an objective understanding of design behind

components in buildings.

26. FDA. “Process Validation”. 17.

27. EGS India. “Why, How and When do you perform Design Validation for Automotive Systems?”.
Solidworks Tech Blog. August 30, 2016. https://blogs.solidworks.com/tech/2016/08/perform-design-
validation-automotive-systems.html.

28. EGS India. “Why, How and When do you perform Design Validation for Automotive Systems?”.
Solidworks Tech Blog. August 30, 2016. https://blogs.solidworks.com/tech/2016/08/perform-design-
validation-automotive-systems.html.

29. SAE. “Browse Standards”. Society of Automotive Engineers. Accessed February 2021.
https://www.sae.org/standards.

35

Building Codes:

In the architectural industry, building codes are a common example of validation. Building
codes validate architecture for human safety, fire protection, structural integrity, accessibility,
and environmental impact. [30] Historically, building codes were created to prevent repeating
city-wide destruction, which was seen in the Great London Fire (1666) or the Great Chicago Fire
(1871). This established the need for regulations on wall spacing, materials, ventilation, and

drainage, which new constructions followed to ensure human safety.

The National Building Code of Canada (NBC) states that its standards are considered the
minimum level of performance required to achieve this type of human safety. [3:] However, the
NBC explain that building codes are not textbooks on building design and construction. Instead,
a complete building is dependant on numerous factors, which requires professional knowledge
and expertise of good design, beyond the requirement of standard building regulations. [321 A
building can be validated based on codes, but it can still function poorly for the purpose of the
project. For example, a well-built library can be validated for safety regulations but would
function poorly if it was used as a hospital, hypothetically. Therefore, building codes are a
critical piece of the architectural validation process, but there are additional design elements

that these codes do not address.
Building Science:

The field of building sciences is concerned with analyzing the physical effects on buildings. For
architecture, the focus is typically on the environmental impact of building design, which
consists of operational energy consumption, material choices, and building orientation. This
requires analyzing a wide range of subjects including thermal control, air quality, material

testing, and lighting.

Design validation in building science typically evaluates the performance of a building, based on
the energy transfer through its enclosure and mechanical systems. Industry standards for
building science in North America are established by the American Society of Heating,
Refrigerating and Air-Conditioning Engineers (ASHRAE). They are responsible for keeping

standards on testing, analyzing, and maintaining mechanical systems or other building

30. NRCC. National Building Code of Canada 2015 Volume 1. National Research Council of Canada.
(Ottawa: 2018). vi.

31. NRCC. National Building Code. vi.

32. NRCC. National Building Code. vi.

36

components. [33] For example, ANSI/ASHRAE/IES Standard 100, is a document about how to
retrofit existing buildings to achieve better energy efficiency. 34! It regulates new material
choices, refurbishing mechanical equipment, and explains how energy usage should be

calculated.

Building science shows that it is already possible to make objective design decisions in
architecture using scientific practices. If these same methods were applied to spatial
performance, then designers can validate a floor plan design based on similar metrics. In
addition to building performance as a function for energy, the thesis proposes architectural
performance in terms of physical geometry and occupant behaviour. In other words, in addition

to validating a building for its energy, buildings could also be validated for its geometry.
Limitations of Validation

According to Robinson, in their textbook on simulations, there are several problems that occur
when trying to validate a model. The thesis summarizes Robinson’s problems under six
categories: generalization, real-world equivalence, real-world interpretation, data accuracy,

time, and confidence.

Generalization: “There is no such thing as general validity”. [35] If a model is validated for one
system, it does not make it validated for another. Models are made to represent a specific
system. Therefore, validating a model only applies to the given purpose. For example, a
simulation may be validated for scheduling the number of trains to arrive at a station platform.
However, this does not mean the simulation is also validated for calculating the passenger flow
rate capacity in the station concourse. If the simulation is also being used for passenger capacity,
then there would have to be a separate validation process for that situation. It is not practical for
a model to simulate every condition in a transit terminal, due to the large amount of data and
simulation time. Instead, it is more efficient to model specific situations, or simple processes,

which also gives more confidence in the results. [36]

33. ASHRAE. “ASHRAE Standards Strategic Plan 2014-15". American Society of Heating,
Refrigerating and Air Conditioning Engineers, Inc. (July 2, 2014): 3.

34. ASHRAE. “Standard 100-2015 -- Energy Efficiency in Existing Buildings (ANSI Approved/IES Co-
sponsored)”. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. Accessed
February 2021. https://www.ashrae.org/technical-resources/bookstore/standard-100.

35. Robinson. Simulation. 213.

36. Robinson. Simulation. 213.

37

Real-world Equivalence: “There may be no real world to compare against”. [37) It is common to
create a model to predict the future behaviour of a system. However, if there is no real-world
metric to compare the results of the model to, then the model cannot be validated. For example,
an airport simulation can be validated for existing terminal operations. If the same model is
then used to simulate a new terminal building, it may not guarantee the same behaviour after

the system changes. [38]

Real-world Interpretation: “Which real world?”. [39] Each person has a different view of the
world. The expectations of one person may be completely different to someone else. For
example, a passenger waiting to pick up their baggage can feel they wait too long at the baggage
carousel. Whereas an airport baggage handler removing bags from a plane can feel like they
have very little time to fully empty the entire aircraft. Depending on which of these people we
ask to judge the efficiency of the baggage system, will result in different interpretations of the
airport’s operations. Likewise, when trying to validate a model, information that is accurate for
one person may not be representative to someone else. [4°] Choosing what perspective to use will

depend on what information a designer wants to communicate.

Data Accuracy: “Often the real-world data are inaccurate”. [41] As mention before, validation
involves comparing a model system to an equivalent system in the real-world. If a model is
conducted under the same conditions as the real-world, then it is validated if the results are the
same. However, this assumes that the real-world results are already accurate. If the data is not
accurate, then the model is validating conditions that are not correct. Additionally, assuming a
designer does get accurate real-world data, these may only be samples, which also has its own
inaccuracies and assumptions. For example, if a researcher records check-in times for
passengers over a 1-month period, this only represents one time frame. If check-in times were
recorded during a different time of the year, then the sample would have produced different
results. Statistics and can help estimate the average check-in times. Although this only provides

a probability distribution, which may not be precise enough. [42]

37. Robinson. Simulation. 213.
38. Robinson. Simulation. 213.
39. Robinson. Simulation. 213.
40. Robinson. Simulation. 213.
41. Robinson. Simulation. 213.
42. Robinson. Simulation. 214.

38

Time: “There is not enough time to verify and validate everything”. [43] Projects have a limited
time allocated for modelling and analysis. This affects all aspect from building the simulation
tool, to validation, and running experiments. The expectation for the designer is to make sure
that a model is validated for the simulation’s scope, key components have overall validation, and

experiments are conducted thoroughly. [44]

Confidence: “Confidence not validity”. [45] Ideally, validation should be binary; a model is either
validated or it is not. However, like the real-world system, it is not possible to prove 100%
validation of a model. Instead, it is more practical to consider a level of confidence. The purpose
of V&V is to show where a model is incorrect. Therefore, the more tests that a model can
complete, the more confidence that people have in the model’s output. Validation is meant to
increase the confidence of the model to a point where it can help make decisions in the design
process. If a model has proven confidence in its output, then a designer will be confident in

using it to communicate information. [46]
Summary

A goal of this thesis is to increase the confidence of architectural design decisions. Verification
and validation (V&V) are an established objective practice that checks if a system or object is
meeting requirements or expectations. The thesis considers V&V for both architectural design
and the agent simulation. Validation ensures that the goals of a project are achieved.
Verification confirms that the tools being used are giving the correct values within a given level
of accuracy. Any system can be analyzed using the properties of purpose (validation) and
tolerance (verification). Types of V&V can be categorized based on mathematical formality. This
can be as informal as a design review, physical testing, or formal mathematical logic. A thorough
validation process will involve checking data, model components, system-wide behaviour, and
experimental procedures. Validation is commonly used across a wide range of industries, which
are similar to architectural design. Other disciplines incorporate validation into the design
process using analytical studies to judge performance based on industry standards. Perfect
validation is impossible, because it depends on what parts of a system are modelled and the
information gathered from real-world data. Validation is most effective for increasing the

confidence of the model’s outputs, so that designers can rely on it to communicate information.

43. Robinson. Simulation. 214.
44. Robinson. Simulation. 214.
45. Robinson. Simulation. 214.
46. Robinson. Simulation. 214.

39

Chapter 1.3

Probability and Statistics

Statistics is the science of collecting, analyzing, and interpreting information. ™ Probability is
the science of measuring uncertainty using mathematical patterns, which is a foundation for
statistical analysis. [2 These are fundamental concepts for understanding complex systems in
scientific, engineering, financial, and social disciplines. Architecture does not commonly use
statistics to analyze designs, since design choices are not thought in terms of probability.
However, understanding statistics for this thesis is important for modelling human behaviour in

an airport, building a simulation tool, and quantifying architectural value.
Uncertainty

The purpose of having statistical methods in architecture is to make objective scientific
judgements given the uncertainty and variation of data. [3] Airports need to consider the
behaviour of hundreds of thousands of passengers over time, who are made up of a diverse
group of people, in terms of age, social, and cultural differences. Likewise, architecture deals

with the uncertainty of designing public spaces to accommodate a wide range of people.

Statistics helps approximate of a wide range of characteristics, instead of modelling a generic
type of person. This includes the uncertainty of what activities passengers are doing in an
airport, and the variation of people’s behaviours and characteristics. These properties are
difficult to predict, because they appear to occur by chance, or randomly. [41 Therefore,
simulating these systems requires using probabilistic models (stochastics) instead of a

deterministic one, [51in which random values are analyzed to understand larger patterns.

1. Walpole, Ronald E et al. Probability & Statistics for Engineers & Scientists gth ed. Boston: Prentice
Hall, 2012. 1.

2. Watkins, Joseph. An Introduction to the Science of Statistics: From Theory to Implementation
Preliminary Edition. University of Arizona: 2016. 3.

3. Evans, Michael J; Rosenthal, Jeffery S. Probability and Statistics the Science of Uncertainty Second
Edition. University of Toronto: 2009. 1.

4. Banks, Jerry; Carson II, John S; Nelson, Barry L; Nicol, David M. Discrete-Event System Simulation
4th ed. Upper Saddle River, N.J: Pearson Prentice Hall, (2005). 131.

5. Banks et al. Discrete-Event. 131.

40

Sampling

Statistics allows designers to make a connection between the people they are testing, and the
larger community they are a part of. Simulations use statistics to create an approximate model
of a human population, in which population data is usually collected through surveys or
experiments. Statistical methods only consider a small set, or random sample, of information to
predict the expected pattern of the entire system, or population. ¢l Instead of considering
millions of passengers in a terminal, it is more efficient to estimate behaviour in a random
sample of thousands of passengers. [7] Likewise, instead of considering every type of human
interaction, it is more reasonable to simulate behaviour that has a higher probability of

occurring in an airport environment, like processing or waiting.

As an example, an airport might see two different types of passengers, frequent business
travellers and elderly travellers. In general, frequent business travellers can process very quickly
and need little information about where to go in the terminal. In contrast, elderly passengers
might take longer than normal to process and may require additional guidance. Airport
simulations do not need to worry about the behaviour of a single individual. Instead, they are
only concerned with the range of behaviours that are likely to occur for each type of passenger.
As aresult, an airport model only needs to consider the probability of elderly travellers and

business travellers.

For instance, using statistics, a passenger survey in the National Academies shows that the
average processing time for business travellers is 2.8 to 3.1 minutes, with 95% confidence. (8
These times are based on recorded domestic passenger data for a specific airline in an existing
facility. In this situation, the time between 2.8 and 3.1 minutes is considered the expected
probability distribution for business traveller’s process times. Although, the exact behaviour of
these passengers is unknown, the airport knows they will only see behaviour outside this range
5% of the time. Therefore, if a new terminal design could process simulated business travellers
within this distribution, then the airport can be confident that the design is suitable for the

expected number of people.

6. Walpole, et al. Probability & Statistics. 2.

7. Walpole, et al. Probability & Statistics. 227.

8. National Academies of Sciences, Engineering, and Medicine. “Airport Passenger-Related Processing
Rates Guidebook”. Washington, DC: The National Academies Press. (2009): 38.

41

Law of Large Numbers

When dealing with uncertainty for a large population, it is useful to think of many samples over
time instead of looking at a single moment or individual. In their textbook on statistics, Watkins

shows how random sampling from a given population becomes predictable, or stable, over time.

For instance, suppose an airport wants to know the average weight of bags passengers check in
for their flight. If an airport worker chooses to randomly weigh checked-in bags, they may notice
that some bags are lighter, around 20 kg, whereas other bags are heavier, closer to 50 kg. If the
airport worker kept a running average of weights they measure, then, because of the differences
of each bag, there might be large fluctuations in the average weight at the beginning. [
However, over time, as the worker continues to weigh more bags, the running average should
expect to settle and converge to the true weight of checked-in bags. [0l Watkins explains that, in
probability theory, this is referred to as the law of large numbers. "11f there is a sequence of n

random variables X;, X, ..., X;, with the same distribution, then the average or sample mean is,

_ 1 1
n n n(1 2 n)

where X is a random variable.

Watkin conducted a number of experiments with new-born baby weights to demonstrate this
law of large numbers, as shown in Fig.1.3.a. For small values of n, the average changes rapidly
since each baby has a different weight. However, eventually, as n reaches 100 random samples,
the average converges down to a more stable value. The average weight from all experiments
settles to a similar value, despite having different initial values, since the random samples have

the same distributions.

If these experiments continued for much larger sample sizes, or as n approaches infinity, then
the probability that the difference between the sample mean and the population mean is greater
than a positive number is 0% (weak law of large numbers). [2] In other words, the probability

of the sample mean being equal to the population mean will be 100% (strong law of large

9. Watkins. Science of Statistics. 179.

10. Watkins. Science of Statistics. 179.

11. Watkins. Science of Statistics. 179.

12. Evans, Michael J; Rosenthal, Jeffery S. Probability and Statistics the Science of Uncertainty
Second Edition. University of Toronto: 2009. 206.

42

4.0
4.0

35
3.5

s/n
3.0
|
s/n
3.0
|

w Te]

o T o |

= =

N T T T T T N T T T T T
0 20 40 60 80 100 0 20 40 60 80 100

n n

o | o]

= =

w Te]

o o

s/n
3.0
|
s/n
3.0
|

25
25

2.0
2.0

0 20 40 60 80 100 0 20 40 60 80 100

Figure 1.3.a: Graphs illustrating the law of large numbers from random sampling of new-born baby

weights, Watkins (2016).

43

numbers). 31 Therefore, the more information gathered in the system, the closer it becomes to

the true value.
Monte Carlo Method

Monte Carlo method is a type of computer algorithm that uses stochastics, or random sampling
to get a numerical result in a system that is very difficult to solve analytically. [*4) Many
professional fields use this type of random sampling in computer simulations to solve numerical

problems for uncertain situations, whether it is particle physics or material testing. [5]

The basic idea of Monte Carlo partly works like a “guess-and-check” method. Given a defined
domain, input values are randomly generated and solved deterministically within the domain.
Once there are enough guesses, or samples, then the results are combined to approximate the
true solution. The method works on the principle of the law of large numbers. The more values
there are, the closer it becomes to the true value, as the number of samples approaches infinity.
A common illustration of a Monte Carlo method is through mathematical integration. Fig.1.3.b
shows a Monte Carlo approximation for the value of . The simulation randomly generates
points inside a unit square. The fraction of points that fall inside of the circle approaches /4 as

n becomes larger. 0]

The essence of a Monte Carlo method is the random variables, specifically, a random number
generator. 71 There is an entire science behind the logic of producing random variables.
Fundamentally, random variables in a computer are not truly random. Instead, random number
generators are carefully chosen deterministic models that mimic random outputs. These require
a user to input a given value, or seed. '8 Since a random number generator is deterministic, the
same seed will always produce the same output. Using different seeds produces random results.
A simple example of a random seed is using the current date and time (2021/02/23 12: 54: 24),

which provides a unique value every second.

13. Evans et al. Probability and Statistics. 211.

14. Watkins. Science of Statistics. 182.

15. D.P. Kroese, T. Taimre, Z.1. Botev. Handbook of Monte Carlo Methods. Wiley Series in Probability
and Statistics, John Wiley & Sons, New York, (2011). xvii.

16. Nicoguaro. “File:Pi 30K.gif”. Wikimedia Commons. February 16, 2017.
https://commons.wikimedia.org/wiki/File:Pi_30K.gif.

17. Kroese, et al. Handbook of Monte Carlo Methods. 9.

18. Kroese, et al. Handbook of Monte Carlo Methods. 9.

44

10000, 7~ 3.1468

2

| S
Il

1.0

0.6 0.8

Figure 1.3.b: Monte Carlo method approaches the value for i based on the fraction of random points

that fall inside the circle within a unit square, Nicoguaro (2017).

0.8
0.7
0.6
0.5
0.4
0.3
0.2
-
0

T~ O M
— -

Excel Random Values

‘ l||I‘||“I|||||I‘I|‘||‘|I||II I|||I-‘| | |||II‘|||||I|||| |||||‘I|||I‘|“I -|‘I|‘
O O NN O o SN O mm OVW OO N WO H S ™NO M WO AN W O d < N O
A N AN NN NN N OO ONMNMNNOGOWOOWO O G):a

Sample

0.9

Value

Figure 1.3.c: Graph showing 100 random values between 0.0 and 1.0 in Excel.

45

The goal is to produce an output that someone could not differentiate from a true random
distribution. [Random distributions do not normally have a recognizable pattern. There may
be clumping or voids, but it is not uniform or consistent. An example of a random distribution
created using Excel’s RAND function is illustrated in Fig.1.3.c. Additionally, there are both
theoretical and empirical checks to verify if numbers are truly random. [20] This usually involves
a wide range of statistical tests which compares outputs from a random number generator to

some known random variables.

The output from a Monte Carlo simulation will produce some type of probability distribution.
Probability distributions can either be discrete or continuous, which are also called probability
density functions (PDF). For discrete distributions, the probability is the value at a given point.
However, for a continuous distribution, or PDF, the probability is the area under the curve, or

the integral of the function, over a domain.

There are numerous types of distributions, which are classified based on the shape of the graph.
The shape also determines how the data is analysed statistically and what application it
represents. Some common distributions include normal, logarithmic, uniform, triangular,
binomial, and many others, which are illustrated in Fig.1.3.d. Typically, experimental data will
produce a discrete distribution, which is commonly graphed in a histogram. Fig.1.3.e shows a

probability distribution from a Monte Carlo simulation that approaches a normal curve.

Essentially, the true value of a population or system is unknown. These distributions illustrate a
range of values that are likely to occur based on the sample of information. Each distribution
informs which statistical methods would best match the patterns from the resulting data. This
helps narrow down possible behaviours of a system, despite the uncertainty of the larger

population.

19. Kroese, et al. Handbook of Monte Carlo Methods. 9.
20. Kroese, et al. Handbook of Monte Carlo Methods. 18.

46

Common Probability Distributions

AN AN N

Normal (Gauss) Binomia Chi-Square Exponential Uniform

AN DL

Triangle Logarithmic Beta Cumilative Poisson

Figure 1.3.d: Some common probability distributions as a result of a Monte Carlo simulation, which

informs statistical behaviour.

o
D —
—
> —
[&]
c o
(] o
=
o
(O]
p—
L
o _|
Te}
o -

[I I I I I |
1.0 1.2 14 1.6 1.8 2.0 2.2

g

Figure 1.3.e: Histogram of 1000 random Monte Carlo values estimating the area of integral, as a

binomial distribution, which approaches a normal curve, Watkins (2016).

47

Normal Distribution

A normal distribution is one of the most fundamental probability distributions in statistics
because it shows up in natural patterns and many different applications. It is generally defined

by a mean (x) and a standard deviation (o), or variance (¢2), in the equation:

1 (x — p)?
=L (E27)

where the mean (average) defines the location of the peak (highest probability), and the

standard deviation defines how spread out the curve (or data) is. [2!]

A physical example demonstrating why a normal distribution is produced from natural
phenomenon is seen in a Galton board (Fig.1.3.f). 221 This is a board filled with numerous pegs,
which small balls are dropped into. The balls bounce off these pegs and land into narrow bins
below. Due to the geometry of the pegs, a ball has a 50% chance of falling to the right or left
when it hits each peg (Fig.1.3.g). As a result, there is a chance that dropping more than one ball
into the board may not land in the same bin. Like a Monte Carlo simulation, if many balls were
dropped into the board at once, then the volume of balls in each bin forms a probability
distribution, specifically a binomial distribution. If the bins were sufficiently narrow and there
were infinitely many balls dropped into the board, then the result will become a normal

distribution.

Fundamentally, the normal distribution is important because it represents the sum of many
independent events in a complex system. Like the balls that have a chance of bouncing off the
pegs in the Galton board in different directions, passengers in an airport terminal encounter
many situations that also have a chance of going in one direction or another. Events like, if a
passenger has one bag or two bags, if a passenger chooses one airline over another, if a
passenger chooses to get something to eat, or if a passenger chooses to wait in a concourse.
Statistically speaking, passengers are just balls colliding with the pegs of daily experiences in a

Galton board airport terminal. Essentially, this can apply to any complex system.

21. Khan Academy. “Deep definition of the normal distribution”. Math, Statistics and probability,
Modelling data distributions, More on normal distributions. Accessed February 2021.
https://www.khanacademy.org/math/statistics-probability/modeling-distributions-of-data/more-on-
normal-distributions/v/introduction-to-the-normal-distribution. 4:18 - 5:40.

22, Galea, Alexander. “Galton’s Peg Board and the Central Limit Theorem”. WordPress. March 11,
2016. https://galeascience.wordpress.com/2016/03/11/galtons-peg-board-and-the-central-limit-
theorem/.

48

Figure 1.3.f: A Galton board is a physical example of a Monte Carlo simulation, which shows how

natural randomness can result in a normal probability distribution, Argenton (2016).

Galton Board Concept

Ball
./_ (Passenger)
¥ N\
50% 50%
/ \

Peg
(Architectural Condition)

Random Variable

Probability Distribution

Figure 1.3.g: When a ball hits a peg, it has a 50% chance of going to the right or left, which is

comparable to random events in the real world, based on diagram by Galea (2016), redrawn by author.

49

Central Limit Theorem

Every event in a complex system can be thought of as an independent random event. What
statistics shows is that the sum of those events, or many infinite individual experiences people
encounter everyday, will always produce a normal distribution. Even if the output from a single
event does not happen to be normally distributed, like flipping a coin heads or tails, the sum of
all the average outcomes will always approach a normal distribution. [23] This is proven

mathematically by the central limit theorem.

The central limit theorem explains how statistical methods that apply to normal distributions
will also work for any probability distribution generated from independent random variables,
even if they are not normally distributed already. This is important since any probability

distribution with independent variables can use the same mathematics.

The process involves taking sample values from an arbitrary probability distribution and
calculating the average of that sample, or the sample mean, for many trials. From the law of
large numbers, given a large enough sample size, n, and enough trials, the resulting distribution
of those sample means will be normal (Fig.1.3.h). [24] In general, given a population with a
known mean u and variance o2, if a random sample of size n from that population has a mean of

X, then the distribution will follow,

X —
Z = ,u’
ag/\n

as n — oo, which converges to a standard normal distribution N(0,1), or a normal distribution

with a mean of 0 and a variance of 1. [25]

Experimentally, the variance of the sample mean distribution ¢ can be calculated as the

variance of the original population o2 and divided by the sample size n,

,_0°
O'X =
n

23. Khan Academy. “Deep definition of the normal distribution”. 4:18 - 5:40.

24. Khan Academy. “Central Limit Theorem”. Math, AP® / College Statistics, Sampling Distributions,
Sampling Distributions of a sample mean. Accessed February 2021.
https://www.khanacademy.org/math/ap-statistics/sampling-distribution-ap/sampling-distribution-
mean/v/central-limit-theorem.

25. Walpole, et al. Probability & Statistics. 234.

50

100050
16.00
16.00

296
-0.04
-0.10

RVLS Central Limit Theorem Simulation

Parent population (can be changed with the mouse)

]

Sample Data
[
4
1

1

Distribution of Means, N=10

[
5
4
3

1

Parent population (can be changed with the mouse)

0 L
Sample Data

Distribution of Means, N=10

Parent population (can be changed with the mouse)

]

Sample Data
4

F/LLINL I L

Distribution of Means, N=10

Parent population (can be changed with the mouse)

0
Sample Data
4

(/LNLINL I

Distribution of Means, N=10

(7L LI L B 5

Clear lower 3

Normal ~

Sample:
Animated

[Fit normal

Clear lower 3

Normal -~

Sample:
Animated
5
10,000
100,000

[Fit normal

Clear lower 3

Normal

Sample:
Animated
5
10,000
100,000

I Fit normal

Clear lower 3

Normal ~

Sample:
Animated
5
10,000
100,000

[JFit normal

51

Trials: 1

Population Probability Distribution
Random Samples from Population

Number of samples; n =10

Sample Mean Distribution

Trials: 10

Trials: 50

Trials: 100 000

Figure 1.3.h: Sampling simulation
demonstrating the Central Limit
Theorem process, built by the Rice
Virtual Lab in Statistics (RVLS).

Additionally, the sample mean X will always be the same as the population mean y. (261 For most
applications, a sample size of n = 30 is enough to get a good normal approximation. (271 This
usually has a variance, or error, within 1% of a true normal curve, which is adequate for the

purpose of this thesis. [28]
Summary

Probability and statistics are the science of analysing data and measuring uncertainty using
mathematical patterns. Architectural design is not normally thought in terms of probability.
However, statistics is helpful for quantifying uncertainty and variation of data like airport
terminals which must accommodate a wide range of people. Simulating these types of systems
requires using probabilistic models because most things that are difficult to predict appear to
occur randomly. When quantifying complex systems, it is easier to consider a random sample
instead of the entire population. For example, differentiating between business and elderly
travellers can be simplified to the probability of time each type of passenger spends in an
airport. Instead of looking at the behaviour of one individual, which can fluctuate from person to
person, characteristics become more stable when considering many samples over time. Based on
the law of large numbers, if there are an infinite number of samples, the characteristics of a
system will converge to a true value. This applies to Monte Carlo methods, which uses numerous
random samples to get a numerical result for a system that is difficult to solve analytically.
Monte Carlo simulations use random number generators to provide sample values within a
given domain. The result of a Monte Carlo simulation produces some type of probability
distribution, which illustrates a range of values that are likely to occur based on the sample. A
normal distribution is the most common probability distribution because it frequently shows up
in natural patterns, which is defined by a mean and standard deviation or variance. The normal
distribution is important because it represents the sum of many independent events in any
complex system, which is shown physically in a Galton board. Statistics shows that the sum of
independent random events will always produce a normal distribution, even if events’
probabilities are not normally distributed. This is proven by the Central Limit Theorem, which
explains how the mathematics of normal distributions also apply to any probability distribution
with independent variables. Fundamentally, any random events in a complex system, like an

airport, can be quantified by probability distributions.

26. Khan Academy. “Central Limit Theorem”.
27. Walpole, et al. Probability & Statistics. 234.
28. Khan Academy. “Central Limit Theorem”.

52

Chapter 1.4

Simulation Modelling

This chapter introduces what a simulation model is, and the process for using different types of
models. The thesis’s primary understanding of simulation models is based on the work by Banks
et al. in their textbook, Discrete-Event System Simulation. They explain when it is appropriate
to use simulations, the process for simulation testing, and applications of existing tools. [This
chapter also covers what simulations are used in the design of airports, the limits of existing
tools for the purpose of architectural analysis, and what tools the thesis considers for creating an

agent-based model.
Modelling Types

A model is a representation of a system, used for the purpose of understanding how the system
works. Computer simulations are a specific type of mathematical model. [2I They are either based
on symbolic algebraic equations or physical relationships. Parabolic and exponential functions
are examples of algebraic equations, and properties like time, distance, and mass make up
physical relationships. Simulation models have three basic properties: time, randomness, and

progression.

Time: The first property of a simulation model is the influence of time. Simulations are either
static or dynamic. A static model represents a system at one point in time, which is similar to
solving a single function. An example of a static simulation is calculating how many passengers
an airplane can carry. The total number of passengers is constant and is not related to time. A
dynamic simulation represents a system over time, or specifically a time dependant function.
The number of passengers that have passed through airport security from 09:00 to 17:00 is an

example of a dynamic model.

Randomness: The second property of a simulation model is randomness. A simulation that has
no random variables is deterministic. In a deterministic model, the given inputs have known

values and will always produce the same output value. An example of a deterministic simulation

1. Banks, Jerry; Carson II, John S; Nelson, Barry L; Nicol, David M. Discrete-Event System Simulation
4th ed. Upper Saddle River, N.J: Pearson Prentice Hall, (2005). 3-9.
2. Banks et al. Discrete-Event. 11.

53

is if a train is scheduled to arrive at 07:30, it will always arrive at 07:30. By contrast, a
simulation model that has random variables is stochastic. In a stochastic model, the input values
are random, which results in random output values. For example, if trains arrive randomly
between 07:00 and 08:00, they will produce a random number of passengers in a station over
time. Since the outputs are random, the model is only an approximation of a real-world system.
Therefore, stochastic outputs use statistics, like the average number of passengers, to estimate

the actual system behaviour. [3!

Progression: The final property describes how a simulation model progresses, or changes, over
time. Simulations are either discrete or continuous (Fig.1.4.a). A discrete model, or a discrete-
event simulation, represents a system or process over fixed time steps. [41 The state of the
simulation, or the value of its variables, is static at any given time. This can describe the location
of a passenger or the number of bags on a conveyor belt. Variables in a simulation only change
when a time step occurs. For example, the location of walking passengers only updates after a
few seconds. In contrast, a continuous simulation has variables that are always changing over
time. An example of a continuous simulation is water flow in a pipe. However, continuous
systems do not always use continuous models. [5! The same is true for discrete systems. For
example, a model of water flow in a pipe can be discrete, if the value of pressure head only
updates after a given time step. Likewise, a model of a crowd can be continuous if each person is

represented as a particle in a fluid flow model.

The reason a simulation would prefer to use a discrete model or a continuous model, is
dependant on the application. In general, a discrete model can be easier to calculate than a
continuous model because a computer can update the state of a discrete model less frequently.
Continuous models rely on using differential equations to represent rates of change, whereas
discrete models can take larger constant time steps. However, this means discrete models are
only an approximation, where the accuracy of the model is depended on how small the time
steps are. Due to this approximation, analysing the results of discrete models requires using
numerical methods rather than analytical methods. [¢! This means that, instead of using
deductive reasoning (i.e. solving an equation) to find an exact solution, discrete modelling must

use trial and error to approach a solution. Increasing a simulation’s accuracy can required large

3. Banks et al. Discrete-Event. 12.
4. Banks et al. Discrete-Event. 9.

5. Banks et al. Discrete-Event. 12
6. Banks et al. Discrete-Event. 12.

54

|
|

l |

Number of customers waiting
in line or being served
" tad
Heud of water behind the dam

=)
3

Time I) Time .

Figure 1.4.a: Graphs illustrating a discrete system (left) and a continuous system, Banks et al. (2005).

55

amounts of data. Instead, simulation tests, or trial runs, can be repeated to check if results

approach a stable value over long periods of time.

The model considered for the thesis’s agent-based simulation can be described as: dynamic,
stochastic, discrete, and numerical. It exists over time, it uses random variables, it progresses in

constant time-steps, and it is solved by trial and error.
Airport Simulation Types

The design and operation of airports requires understanding the interaction of logistics,
security, and passengers in a wide range of scales. It is not practical to build a complete airport
to see how it works or fix changes after finding aspects that have poor performance. 71 As a
result, all critical areas in an airport use some form of simulation during the planning stages to
help understand how systems will perform. The architectural design process can use these

practices to better understand how existing industries quantify complex systems.

In their report on airport simulation options, the National Academies reviews a wide range of
existing tools. They explain that simulations help study airspace, airfield, terminal, and curbside
for daily operations. 8] Simulations are important during airport development for making sure
people are safe, systems work efficiently, and that the airport is profitable. Some simulation
studies include airspace traffic modelling (Fig.1.4.b), master planning, capacity-demand
forecasting, terminal passenger flow (Fig.1.4.c), curbside traffic capacity, and environmental

impact assessments. [9]

Airport simulations can be as simple as a spreadsheet stochastic analysis, or more complex
dynamic flight data simulations. 0] The complexity of a simulation is scaled based on fidelity,
which describes how closely models match a real-world system. '] A high-fidelity simulation
can model small-scale interactions, like the number of processed passengers in a given area over
time in a capacity/delay model. Whereas a low-fidelity simulation only gives a broad summary

of data, like the total number of passengers in a look-up table. The thesis’s agent-based

7. Rittel, Webber. “Dilemmas in a General Theory of Planning.” Policy sciences 4, no. 2 (June 1973):
163.

8. National Academies of Sciences, Engineering, and Medicine. “Simulation Options for Airport
Planning”. Washington, DC: The National Academies Press. (2019): 3.

9. National Academies. “Simulation Options”. 3.

10. National Academies. “Simulation Options”. 3.

11. National Academies. “Simulation Options”. 4.

56

N5 ey
antd

S
“_".a.. et

Figure 1.4.c: ARCport terminal simulation, Proulx (2014).

57

simulation expects to approach high-fidelity only if agents’ interaction with architecture

matches how people would interact in the real-world.

The National Academies mention several mathematical techniques available for planners to
model airport systems. The most common techniques include, spreadsheet models, queuing
theory, optimization techniques, Monte-Carlo simulations, and discrete-event simulations. [*2]
The inputs for these methods either use recorded data from existing operations or random
variables. A complete analysis of an airport system will typically involve all these techniques at
some stage of the design process, depending on the fidelity of the simulation. ['3] If the thesis’s
agent-based simulation wants to replicate passenger processing, it needs to understand the

benefits of each technique and when to use them.

Spreadsheet model: A table or chart that records model values and can calculate predictions
based on historical airport data. For example, a spreadsheet model can calculate the required
size of a security screening area, based on the number of queue lines and expected rate of
passengers (Fig.1.4.d). Planners can use these spreadsheets to update calculations as design

changes take place in other areas of the terminal.

Queuing theory: Uses a network of resources to illustrate a dynamic change in demand. For
example, a resource can be the number of service counters, and the demand comes from

passengers using the service counter, or resource, for check-in (Fig.1.4.€).

Optimization techniques: A method in a dynamic environment that tries to find the maximum
or minimum use of resources. Queueing models commonly use optimization to maximize the

number of active service counters.

Monte Carlo simulations: A method in statistics that selects repeated random variables from a
sample population based on a probability distribution (details in Probability and Statistics). For
example, a check-in area can simulate passenger processing by selecting a random number of

people who arrive within a given range of time.

Discrete event simulations: A process that updates system variables in small time-steps over a
given time period (as described earlier in Modelling Types). For example, this can be a
simulation of people moving through a queue line, which might update a passenger’s position

once every second.

12. National Academies. “Simulation Options”. 8.
13. National Academies. “Simulation Options”. 8.

58

1 L

2

g mgg Go To User's Input Data Values

4 CONTENTS Guide Calculated Values

5| Linked or Predetermined Values

B

7 DEMAND INPUTS OUTPUTS |

8 | Use throughput vaive from Check-in Mode! 750

9 Peak 30 min Originating Passengers from Check-In _Iinked to Check In/ Ticketing

10 | % Additional Traffic (non-passenger, employees, crew 15%

11 | Total Peak Period Security Traffic (passengers) 737

12 | Throughput Rate (Fassengers/Hour per lang) T 175

13 # of Passengers Processed/minute per lane 29]

14 | Maximum Target Wait Time (in Queue) T4»] g

15 | Minimum Required # of Screening Lanes 7 |+—| Starting Value
16 |QUEUE MODEL FOR REQUIRED SCREENING LANES -

17 |# of Screening Lanes for Queue Model Input [«]»]] Decision Value
18 [Max. Wait Time in Queue (Min.) 8.1 Adequate # of Lanes
19 EXISTING CONDITIONS

20 | Depth of Security Queue (ft) 20

21 'Width of Scanning Lane Module (2 Lanes) (ft.) 25

22 |Owerall Length of Check Paint Area (ft) 40

23 |Reconciliation Area Depth (ft) 10

24 SPACE REQUIREMENTS

25 |Security Queue Area (sq. ft) 2,250

26 |Passengers in Queue based on Queue Wait Time 212

27 |Passenger Space Required for LOS Input (sq. ft/pax) | 10.8|(Review the IATA Table)

28 |Reguired Security Gueue Area for LOS Input (sq. ft) 2,294

29 |Passenger Space with Current Dimensions (sq. ft/pax) 10.6 | More Queue Needed
30 | Total Checkpoint Area ~ables, equipment, search area (=q. ft) 5,625

31 |Total Security Screening Area (sg. ft) 7.875

32

Figure 1.4.d: A spreadsheet model calculating the area required for security screening, National

Academies (2010).

Figure 1.4.e: Basic queuing node model. There are 5 people in the Waiting Area, the Service Node A

resource is filled, Node B is busy and still has time to process, and Node C resource is available. Based on

diagram by Dt-rush-8 (2018), drawn by author.

59

Some techniques are better suited for specific applications, like optimization for the airspace, or
queuing theory for passenger processing. 4! However, each technique can be applied to any
system. For example, queuing theory can also be used to model airplanes landing, by assigning
planes runways as a resource. The thesis describes its agent-based model as a discrete-event
simulation, although a thorough test of a terminal’s architecture will involve these other

techniques as well.

An important technique to consider for this thesis is Monte-Carlo simulations. This uses
statistical uncertainty to model factors that are difficult to predict, like waiting time. [s] It
applies random input variables to account for variation in passenger demand, human behaviour,
and resource processing time. The benefit of this technique comes from simulating multiple trial

runs to approach an expected value. 6]
Simulation Process

For any simulation, Banks et al. describe the process necessary for a thorough study, which they
divide into four parts: discovery period, model building, experimentation, and implementation.
These categories are further divided into twelve steps, as illustrated in Fig. 1.4.f. 71 The thesis
sees these steps as representative of a good architectural design process, which, in addition to

the validation process, can objectify design choices.
Discovery Period:

Problem Statement: Identifying what problem the simulation is trying to solve. This is defined
by the clients, or the designers, which describes the scope of the simulation or system. The exact
nature of the problem might not be known at this stage. Therefore, it is possible to adjust the
problem statement as the simulation study progresses. [*81 For an airport, a problem statement

defines the scope, like the airspace, airfield, terminal building, or curbside. 9]

Objectives and Plan: This outlines the goals for the study, which the simulation hopes to
achieve. Firstly, this decides if simulations are an appropriate tool for the job, and secondly,

what type of simulation would be helpful for solving the problem. The plan describes what type

14. National Academies. “Simulation Options”. 8.

15. National Academies. “Simulation Options™. 8.

16. National Academies. “Simulation Options”. 8.

17. Banks et al. Discrete-Event. 12

18. Banks et al. Discrete-Event. 12

19. National Academies. “Simulation Options”. 14-15.

60

Discovery Period
y Problem

Statement

Obijective
and Plan

Model Building

Model Data
Development Collection

Model
Translation

Experimentation

Implementation .
Documentation

and Reporting

Implementation

Figure 1.4.f: The process of a simulation study, based on diagram by Banks et al. (2005), redrawn by

author.

61

of simulation is most useful, and any alternative methods that could be considered. Like any
good project management, the plan also outlines the required resources, a schedule for building

and testing, the estimated simulation-time, the overall cost, and the expected results. [2°]
Model Building:

Model Development: The plan for how the simulation model is constructed. Like any design
project, there is no instruction for building a simulation, however there are guidelines that
designers can follow. The construction process first involves selecting basic elements of the
problem to solve in a simple model. Over time, the accuracy of the results can be improved by
adding more complexity to the initial model. Designers do not need to create an exact copy of
the real system to get good results. Instead, the goal is to improve the quality until there is
confidence in the outcomes for the users and context of the problem. 211 For example, a queuing
simulation does not need to have correct animation of passengers walking, if it is only looking

for the required number of service desks.

Data Collection: Getting information that the simulation model is based on. As the complexity
of the simulation changes, the required data also changes. Data collection can take a long time,
and therefore needs dedicated time early on while the model building is getting started. The
amount of data that is needed for a simulation is dependant on the objectives of the project. For
example, a terminal queuing simulation needs to know about the number of passengers, the
amount of area for the line, and the average service time. Whereas a runway simulation needs to

know the flight times, the wind direction, and the type of aircraft.

Model Translation: The process of turning a conceptual model into a computer-recognizable
format. This includes what programs to use, or what code it is written in. Depending on the
complexity of the simulation, a model does not necessarily need to be coded. [22] For example,
curbside demand simulations can be studied using Excel spreadsheets, by keeping track of

resource allocations and random variables as values in a chart. (23

Verification: Checks if a program is working properly, as discussed in chapter 1.2. Translating a
complex system into a model always creates bugs or errors, which the user needs to check and

fix, within reason. If the variables and logic structure of a model correctly represent a system,

20. Banks et al. Discrete-Event. 13
21. Banks et al. Discrete-Event. 14
22, Banks et al. Discrete-Event. 14
23. National Academies. “Simulation Options”. 8.

62

then it is considered verified. In some cases, using common-sense judgement is enough for
verification. [24] For example, if simulated people are not walking through walls, then their

obstacle navigation is verified.

Validation: Checks if a model matches the real-world system, through the process of
calibration, as discussed in chapter 1.2. This involves repeated testing until a model has reached
an acceptable level of accuracy. [25] For example, validation of a queuing simulation checks if the
line lengths match the data collected from the real-world queue. According to the FAA, there are
no specific simulations required to validate airspace, airfield, or terminal planning. 26! However,
regardless of the tool a designer decides to use, the FAA requires a “simulation tool validation”

process step, which involves calibrating the given tool to match its related real-world data. [27]
Experimentation:

Experimental Design: The decision about how a simulation experiment is conducted and any
alternative approaches. These consider how long a simulation runs for, how many passengers
are being considered, or how many trial runs are repeated. [28] For example, a check-in
simulation can check the system for 500 passengers in one test, or 1000 passengers in another
test. These alternatives can produce different information, depending on the system, which, in

the case of a crowd simulation, is the result of the emergent behaviour.

Production Runs and Analysis: This is the process of reviewing the results and data of an
experiment. The nature of analysis depends on the model, but can involve estimating the

system’s performance using statistics, like checking variance, regression, or random sampling.

More Runs: If after an analysis of a simulated experiment, the designer must decide if the
results satisfy the objectives of the project. If a simulation has not come to a conclusive result,
then the designer must decide to perform more runs, or trials, and determine how the new runs

will be conducted to give better results.

24. Banks et al. Discrete-Event. 14-15.

25. Banks et al. Discrete-Event. 15.

26. National Academies. “Simulation Options”. 10.
27. National Academies. “Simulation Options”. 10.
28. Banks et al. Discrete-Event. 15.

63

Implementation:

Documentation and Reporting: As with any project, good documentation is important for
communicating information. With simulations, Banks et al. explain that there are two types of
documentation, one for the model, and the other for the process. [291 Model documentation is
important if designers use the simulation more than once, for multiple experiments or by other
design teams. If a user changes any simulation variables, then it will affect the results of the next
experiments. Documentation makes sure that users know the relationship between the input
variables to the output variables. Likewise, process documentation describes the work that the
designers did and the decisions they made during the experiments. Banks et al. mention that it
is better practice to have more frequent reporting than one final deadline. [3°] Finally, if any
design decision is questioned further into the project, then documentation provides a history of

those choices.

Implementation: Banks et al. state that the success of a simulation project depends on how
well the previous steps were followed, during the creation of the model and the analysis of the
system. If a designer has been part of this simulation process, and understands the
fundamentals of the model, then it is more likely that the final implementation, or operation,
gives valuable feedback. (3] Otherwise, like any project, poor design communication does not

produce good simulation results, regardless of how precise the modelling is.
Crowd Simulations

A common use of these types of models is in the application of crowd simulations. A crowd
simulation is a virtual model showing the movement, interaction, and dynamics of large
numbers of entities or people. [32] They are useful for analyzing emergent behaviour of people in
crowded areas and are commonly used to create real-time animations of groups of people in a

virtual environment.

As described in model types, there is more than one way to model a system. Depending on the
application, crowd simulations can model people as fluid flow, particles systems, or individual

agents.

29. Banks et al. Discrete-Event. 15.

30. Banks et al. Discrete-Event. 15-16.

31. Banks et al. Discrete-Event. 16.

32. Thalmann, Daniel, and Soraia Raupp Musse. Crowd Simulation. Vol. 9781447144502. London:
Springer London, 2008. VII-VIII.

64

Figure 1.4.g: Dense crowds in a marathon (left) can be approximated as a fluid flow, Zhou (2010).

Figure 1.4.h: Crowd model using particles, Zhou (2010), image colours inverted by author for clairity.

65

Fluids: Fluid models use fluid dynamics to approximate crowds of people as a flow, like water or
air. It considers the crowd as one entity instead of the behaviour of individual people. This is
best for systems involving a high volume of people in a dense group, like an evacuation or a busy
public event (Fig.1.4.g). In this case, knowing where each person is going is less important. Fluid
flow simplifies the model by estimating the overall dynamics of the crowd (not that fluid
dynamics is simpler to calculate, but that it ignores human behaviour by using an already
establish physical model). In a fluid model, if you change the density, viscosity, or velocity of the

fluid, it affects the behaviour of the crowd. (33!

Particles: Particle systems model individuals as a set of identical entities. Like fluid models,
particle systems use physics models to approximate a crowd’s movement. However, unlike a
fluid, which is continuous, particles are granular, which means they have distinct parts, (not to
be confused with discrete and continuous simulations). Each particle can model one person or
entity, although each entity is the same (Fig.1.4.h). Like a fluid, changing physical properties of
individual particles can affect the behaviour of the crowd, like mass or applied forces. Using this
approach, particle systems can realistically model typical crowd behaviour like congestion,

herding, or flocking groups. [34]

Agents: Since fluid and particle models ignore the choices of individual people, they limit the
ways of analysing human behaviour. Instead, simulations can use intelligent agents to model
people. The exact nature of an agent is described in chapter 2.0, but the key characteristic of
agents is that they can make their own decisions, independently, to achieve a goal. Each agent
has unique characteristics and responds to their surroundings or other agents over time. Even
with a simple set of rules and constraints, agents can create patterns that emerge on a global
scale. [35] Agents might have cognitive, social, and emotional properties, which closely
approximates real-world behaviour. For these reasons, crowd simulations are more likely to use
agents to model people for transport systems and building evacuation. Whereas fluid and
particle models can be more efficient for crowd visualizations, as seen in the video game Planet

Coaster (Fig.1.4.1). [30]

33. Zhou, Suiping, Dan Chen, Wentong Cai, Linbo Luo, Malcolm Low, Feng Tian, Victor Tay, Darren
Ong, and Benjamin Hamilton. “Crowd Modeling and Simulation Technologies.” ACM Transactions on
Modeling and Computer Simulation (TOMACS) 20, no. 4 (October 1, 2010): 1-35.

34. Zhou et al. “Crowd Modeling”. 6.

35. Zhou et al. “Crowd Modeling”. 6.

36. McCarthy, Owen. “Game Design Deep Dive: Creating Believable Crowds in Planet Coaster.”
Gamasutra Article, January 4, 2017.

66

Figure 1.4.i: The game Planet Coaster uses a fluid model to simulate crowds in an amusement park,

Gamasutra (2016).

67

The thesis focuses on using agents to model passengers. They provide the ability to control
where people are moving, give each person a unique goal, and provide intelligent interaction
with architecture, which would not be as easily controlled with fluid dynamics or particle

physics.
Evacuation Modelling

Crowd simulations are commonly used in architecture to test buildings for evacuations. [37 In
their textbook on crowd simulations, Thalmann et al. explain that architecture considers crowd
behaviour during forced evacuations, in interior areas or well-defined spaces. Crowd
simulations show how people exit a given area, if there is a fixed number of exits, doors, or
corridors. The goal is to figure out if people can evacuate an area in a fixed amount of time. It
also tries to find locations in a building which cause restrictions in the flow of people, preventing

them from escaping.

Over the last decades, research in evacuation simulations have become better at quantifying the
impact of human behaviour in a building. Researchers explore ways in which sociological factors
influence crowd behaviour like navigation, personality, or emotions. For example, Liu et al.
created an agent-based crowd model that uses perception, which demonstrates how emotion
changes people’s decision-making during an evacuation (Fig.1.4.j). 381 Similarly, Abdelhak et al.
developed a crowd model that uses emotions to affect agent behaviour, suggesting how people’s
behaviour changes in a panic situation (Fig.1.4.k). [39] Additionally, the simulation created by
Aschwanden et al. shows how people take different paths in public spaces because of mental
stress in dense crowds. [4°1 Xiu et al. also shows how “local navigation” from people’s perspective
resulted in more realistic crowd behaviour, instead of using “global navigation typical” of a top-

down analysis. [41]

https://www.gamasutra.com/view/news/288020/Game_ Design_Deep_Dive_ Creating_believable_crow
ds_in_Planet_Coaster.php.

37. Thalmann et al. Crowd Simulation. 5.

38. Liu, Z, Liu, T, Ma, M, Hsu, H-H, Ni, Z, Chai, Y. A perception-based emotion contagion model in
crowd emergent evacuation simulation. Comput Anim Virtual Worlds. (2018); 29:e1817.

39. Abdelhak, Haifa; Ayesh, Aladdin; Olivier, Damien. “Cognitive Emotional Based Architecture for
Crowd Simulation”. Journal of Intelligent Computing, June 2012, 2012. Vol. 3 (2), pp. 55-66.

40. Aschwanden, Gideon, Jan Halatsch, and Gerhard Schmitt. "Crowd Simulation for Urban
Planning”. Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2]
Antwerpen (Belgium) (17-20 September 2008): pp. 493-500.

41. Xie, Rong, and Yan Zhang. “Agent-Based Crowd Evacuation Modeling in Buildings.” Applied
Mechanics and Materials 411—414 (September 2013): 2639—42.

68

Figure 1.4.j: Evacuation simulation that uses perception, Liu et al (2018).

Figure 1.4.k: Evacuation simulation that uses social forces, Abdelhak et al. (2012).

69

Human emotion has a direct impact on crowd behaviour, and research like the ones above
shows it is already possible to quantify these properties. Although these simulations primarily
focus on building evacuation during an emergency, factors like emotion, stress, and local

navigation, can apply to the daily operations of passengers in an airport as well.
Existing Software

As a starting point, the thesis investigates existing discrete-event modelling software to learn
about the capabilities of current tools for airport design. The National Academies conducted a
review of the current industry standards of airport simulations for the airspace, logistic systems,
terminal building, and curbside (Fig.1.4.1). 421 Out of the list of simulations for terminal
modelling, the thesis selected three programs that had a good review for terminal design, and
that potentially had a free trial version of the software to experiment with: MassMotion, Arena,
and FlexSim. These software are also already used professionally in architectural and

engineering disciplines.
MassMotion:

MassMotion is a crowd modelling software developed by Arup, under the company Oasis. It is
one of the leading programs used in the architecture and civil industries. Designers use
MassMotion for pedestrian modelling in evacuation testing, the design of public spaces, and
transportation facilities. MassMotion models real-world environments in 3D by breaking spaces
into components that are classified based on function. 3] Some basic elements include floors,
links, stairs, portals, and barriers, which represent architectural features and circulation
(Fig.1.4.n). Architectural models of buildings can also be imported into MassMotion from other
programs. However, these models need to be converted into MassMotion’s native components

to be identifiable in the simulation.

People in MassMotion are modelled as agents. Each person is given a character profile,
scheduled tasks, behaviours, and goals. (441 They know how to navigate around components
marked as barriers. Agent navigation is based on a cost-system, which assigns a penalty based

on deviations from the shortest path. The cost of an agent’s path is based on several factors like

42. National Academies of Sciences, Engineering, and Medicine. “Simulation Options for Airport
Planning”. Washington, DC: The National Academies Press. (2019). https://doi.org/10.17226/25573.

43. Oaysis. “MassMotion Help Guide.” July 2019. [https://www.oasys-software.com/wp-
content/uploads/2019/06/MassMotion-10.0-Help-Guide.pdf]. 15.

44. Oaysis. “MassMotion Help Guide” 19.

70

License

Product

Simulation Tool Scope Licensor Support/Last
Type
Release
Check-in, security, Februa
AirTOp baggage claim, and Alirtopsoft Commercial 2 0 181“)/
customs
ArcPORT Terminal area Transoft Solutions ~ Commercial Current
Autorod Bagt,rgage handling Brooks . " c t
utoMo Sys emf,];;?:rsenger Automation/Simulg Commercia urren
CAST Terminal Checkl—in counter, Airport Research Commercial July 2017
security control Center
Baggage handling
FlexSim system, passenger FlexSim Commercial — August 2017
. flow
MassMotion Passeng;z;ermmal Oasys Software ~ Commercial Current
PAX25IM Check:m counter, Hub Performance Proprietary Current
security control
Check-in counter,
PAXSIM baggage, security, Jeppesen/Boeing Commercial Unknown
boarding, customs
SimWalk Airport Check?m counter, SIMWALK Commercial Current
security control
License T
Simulation Tool Scope Licensor Support/Last
Wi Release
Arena Terminal area Arena Simulation Commercial Sepztg {réber
ExtendSim Terminal area ExtendSim Commercial No;fgrlr;ber
PTV Vissim Terminal area PTV Group Commercial 2017
Simio Terminal area Simio Commercial July 2017

Figure 1.4.1: List of established simulation tools for airport terminal analysis, simulations selected for

this thesis are highlighed in red, National Academies (2019).

71

Figure 1.4.m: MassMotion simulation of Toronto Union Station, Arup (2020).

Figure 1.4.n: Typical components in a MassMotion environment, Oasys (2019).

72

the distance to the target, component weights, queues, and other agents. [45] While agents are
walking, their movement is also influenced by similar environmental forces. Agents move
towards local targets using “feelers”, or straight vectors, to judge the distance between their
target and surrounding objects (Fig.1.4.0). [46] If neighbouring agents are within a given range,

they can also adjust their velocity or target to avoid contact in a crowd.

MassMotion can show performance information within a given space, like crowd density, using
depth maps and heat maps. Data is displayed on the models as a colour gradient from blue
through yellow to red; where blue is low, and red is high. Heat maps, or “vision maps”, are also
used to highlight what people are looking at as they walk through a space. [471 But there is no

influence between what people see and where they walk.

MassMotion software is validated based on the International Maritime Organization (IMO) and
the National Institute of Standards (NIST) Technical Note for evacuation simulations. (48 These
standards provide 19 verification test for basic simulation components, like people walking,
crowd dynamics, and emergency situations. MassMotion is also validated based on real-world
evacuation tests and public spaces. Some of these tests include daily operations at Toronto

Union Station, and evacuation of high-rise office towers in London and New York City. [49]

In an independent study, Hoy et al. used MassMotion software to test passenger congestion of
Toronto Union Station (Fig.1.4.p). They showed how a 10% higher passenger density than
projected capacity causes severe congestion. [5°] This demonstrates that MassMotion can predict

building spatial constraints for daily operations in addition to emergency evacuation behaviour.

Overall, as a tool for architectural validation, the thesis believes MassMotion is more than
capable of quantifying architectural conditions. However, one improvement would be making
agents aware of building elements during navigation. This would allow agents to use the built
environment to inform their decisions, the same way the crowd forces and feelers are doing

already.

45. Oaysis. “MassMotion Help Guide” 289.

46. Oaysis. “MassMotion Help Guide” 290.

47. Oaysis. “MassMotion Help Guide” 263-264.

48. Arup. “The Verification and Validation of MassMotion for Evacuation Modelling.” Ove Arup &
Partners Ltd. August 10, 2015. https://www.oasys-software.com/wp-content/uploads/2017/11/The-
Verification-and-Validation-of-MassMotion-for-Evacuation-Modelling-Report.pdf. 2.

49. Arup. “Verification and Validation of MassMotion”. 22-23.

50. Hoy, Gregory, Erin Morrow, and Amer Shalaby. “Use of Agent-Based Crowd Simulation to
Investigate the Performance of Large-Scale Intermodal Facilities: Case Study of Union Station in Toronto,
Ontario, Canada.” Transportation Research Record 2540, no. 1 (January 2016): 20—29.

73

Figure 1.4.0: Agent feelers used to identify other agents and local targets for navigation, Oasys (2019).

m[OSA LOSD
“LOSB #LOSE
wLOSC mLOSF

Figure 1.4.p: MassMotion displaying passenger density to show congested areas in the concourse of

Toronto Union Station, Hoy et al. (2016).

74

Arena:

Arena is a simulation software used for modelling discrete and continuous systems. 51 It is
primarily used in civil and industrial engineering for process analysis and modelling dynamic
systems. Designers use Arena for a wide range of applications. This includes airport design,
(ground operations, baggage, passenger processing), hospital design, (patient flow, emergency
processing), supply-chain (logistics, storage), and manufacturing (assembly lines). Arena has
two methods of modelling, first a 2D hierarchical flow-chart model, and second, an object-based
3D modelling environment. Both environments are designed for visual interaction and graphical

design. It also includes statistical distributions and scheduling functions for process times.

Simulated environments are built in Arena using modules, which are 2D boxes and shapes that
represent a process, logic, or physical object. Modules can be assigned properties and statistical
data, like resource type, frequency, or process time. [521 Some common modules include sources,
sinks, decision nodes, stations, processes, and routes. This is ideal for modelling discrete
systems, like queue lines, service counters, items on conveyor belts, basic traffic flows, and other

resourced-based systems (Fig.1.4.r).

Arena organizes modules based on certain templates, which provide basic features depending on
the application. Modules can be joined together to create a sequence using routes or links.
Resources that move between modules along these lines are called flow items (Fig.1.4.q).

Depending on the application, flow items can be vehicles, people, items, or information.

Passengers in an airport terminal can be simulated in Arena by representing them as flow items
in a process network. Arena can accurately represent passenger statistics, by modelling
probability distributions based on expected process times. However, Arena cannot model free

flowing crowds since people can only move along predefined paths.

Overall, Arena is strong at modelling industrial processes. It can accurately calculate waiting
and transfer times for systems or logistics. The built-in process templates make it easy to set up
complex networks of operations, which provides a good animation of systems over long time
intervals. As a tool for architectural validation, modelling people as flow items makes it difficult
to get feedback from individual behaviour in a spatial environment. Although, influences from
the built environment can be identified from process time, travel time, and passenger

throughput.

51. Banks et al. Discrete-Event. 110.
52. Banks et al. Discrete-Event. 110.

75

\

12

Create Passengersl —

Station Hall

Route to Ticket
Queue

Station Ticket
Queue

Process Waiting
in Queue

Route To Counter
1

4

Station Counter 1) ——————

Process Buying
a Ticket

——— | Route ta Platform

Station Platform

0

4.—% Dispoge 2
7

Figure 1.4.q: Flow chart of a station ticket service counter simulation in Arena. Note the passenger

Create 1 \
/;

Station_Gone_Arou

Gate_A

Gate_B

Gate_C

Arival

_ Decide_Gating

icons move along the flow chart during the simulation. Created by author.

Route_Gate_aA

Route_Gate_B

S

oute_Go_Aroun

[
T

Route_Gate_C

plane_at_Gate_A.

]

1

Deplane_at_Gate_|

1

plane_at_Gate_f

0

4 Dispoge 1
. (|

Figure 1.4.r: Flow chart of a plane gating simulation in Arena. Includes a drawing of the gates, which

animated planes follow during the simulation. Created by author.

76

FlexSim:

FlexSim is a simulation software that can model discrete-event and continuous systems. It is
primarily used in the civil and industrial industries for simulating a wide range of applications.
This includes airports (passenger flows, baggage operations), healthcare operations (patient
flows), manufacturing processes (material handling), logistics and transport (shipment and
robotic networks). FlexSim models system behaviour using a 2D hierarchical flow-chart
structure and animates the simulation with rendered objects in a 3D environment. It also

provides common statistical distributions and scheduling functions for processing times.

The flow-chart structure allows users to create simulation behaviour like visual coding. It has
numerous components that represent objects, actions, and resources, which can be added and
connected together with graphical wires (Fig.1.4.s). FlexSim has numerous prebuilt components
which are organized based on the activity or function. Some of these components include system
functions, like sources, sinks, and decision nodes. There are also components for human
behaviour, like walking, sitting, queuing, or interacting with other people. Most behaviour in
FlexSim is resource-based. For example, if a passenger is waiting for a service counter, they

must be assigned a resource token which is provided based on the number of available counters.

The processes defined in the flow-chart are then assigned to objects in a 3D environment, which
are placed by the user (Fig.1.4.t). This includes physical objects like counters, chairs, queues,
doors, machines, conveyors, or equipment. Things that interact with these objects, or that can
move between them, are called flow items. Flow items can be people, vehicles, items, or logistic
materials. Most objects typically follow a defined path or track. However, people can also

navigate using an A* algorithm within a predefined space.

Navigation using A* provides people the shortest cost path to their target. The areas people can
walk are defined by walls. Areas can also be given higher costs to influence where people walk. If
people in FlexSim are using A* navigation, then they can also simulate crowd dynamics. FlexSim

can also produce a heat map in a space to show where people have been walking.

Overall, FlexSim can model a wide range of industrial processes, with accurate logistics
handling, timing, and movement. It has many prebuilt components that make it easy to create
complex processes, both with visual coding and with realistic models in 3D environments.
Having people navigate using A* helps simulate human movement in spaces, as a tool for
architectural validation. Although, an improvement would be to have people navigate to local

targets than to walk directly to their destination.

77

% Patient Arrives

Escort to Exam RoAm

Patient Registrgtion
v

it Wait in Registration Line
B Acquire Registration

& Acquire Clerk

t Walk to Registration

t Walk to Patient

9} Register Patient

- Release Clerk

- Release Registration

© Waiting Line
= Registration
5 Clerk

8 Acquire Exam Room

+# Escort Patient to Exam Room
<& Release Vitals RN

~—— %% Acquire Wait Area Return
Escort Patient to Wait Area
4 Release Vitals RN
& Acquire Exam Room
“# Release Wait Area Retumn
& Acquire Exam RN
#4 Escort Patient to Exam Room
& Release Exam RN

£ Wait Area Return
2 Exam RN
= Exam Room

Check Vitals

“® Acquire Vitals Station

& Acquire Vitals RN

+4 Escort Patient to Vitals
94 Check Patient Vitals
~& Release Vitals Station

— “B Acquire Waiting Area
t Walk to Waiting Area
8 Acquire Vitals Station
8 Release Waiting Area

& Waiting Area
= Vitals Station
2 Vitals RNs

MD Examinatior{

& Acquire Exam MD
4 Walk to Patient
4 Examine Patient

2 Exam MD

Staff Consulatiop

& Acquire Exam RN
<L split

4 Exam RN to Meeting Place

> Join
4 Discuss Treatment
< Release Exam RN

41 Release Exam MD
2, Decide Treatment

4 Bxam MD to Meting Place

O Office

bt

Figure 1.4.s: Flow chart of a healthcare simulation in FlexSim, based on FlexSim healthcare tutorial,

recreated by author.

Figure 1.4.t: 3D model of a healthcare simulation in FlexSim, based on FlexSim healthcare tutorial,

recreated by author.

78

Simulation Comparison

Before looking into creating a new agent simulation, the thesis initially explored using an
existing discrete simulation. Out of the previous software, only Arena and FlexSim had trial
software to experiment with. Therefore, MassMotion was not considered for this thesis. In
addition to the existing simulation, the thesis also explored Quelea, a Grasshopper plug-in for
Rhino, and Unity, a game engine. These two software have the tools necessary for making an
architectural agent simulation. A description of Arena and FlexSim was already covered, so the
following is a brief description for Quelea and Unity. A comparison between these four tools is

illustrated in Fig.1.4.u-v.
Quelea:

Quelea is an agent-based design simulation created by Alex Fischer. It is a third-party
Grasshopper plug-in for Rhino, a parametric 3D modelling software. It is used to model crowd
dynamics and flocking behaviour. It works by assigning forces and behaviours to a system of
agents to create interactions. [53 Some of these forces include following paths, attraction to other
agents, obstacle avoidance, and sensing points. It also includes common crowd dynamic
behaviour such as cohesion (moving together), separation, aligning (moving in the same
direction), and views (having a clear view in front). There are also animal flock-like behaviour

and prey-predator behaviour, such as eating and killing.
Unity:

Unity is a game engine that can create video games and other visualization applications.
Although it is primarily used in the gaming industry, Unity has applications in the architectural
and engineering construction industries for its ability to model and animate buildings during
the design process. 541 Unity allows users to built custom models and behaviours. However,
there are no prebuilt elements for an agent simulation. All behaviour must be coded in Unity
using C# (C-Sharp) scripts. Objects are created by assigning these scripts to the models, or game
objects. Unity can also render and animate custom models in real-time, as the simulation is

running, using a built-in physics model.

53. Fischer, Alex. “Quelea - Agent-Based Design for Grasshopper.” Grasshopper. Accessed December
14, 2019. https://www.grasshopper3d.com/groups/group/show?groupUrl=quelea-agent-based-design-
for-grasshopper&.

54. Unity “Architecture, Engineering & Construction.” Solutions. Accessed December 2019.
https://unity.com/solutions/architecture-engineering-construction.

79

Description

Access

Import Models?

Model File

Model Limit?

Custom Behaviour?

Simulation Comparison

>
S
1
83
A

Processing,
logistics, airports,
healthcare,
manufacturing

Models discrete
and continuous
systems, 2D flow
chart logic, 3D
modelling,
statistics, module
components, flow
items

Educational demo
Yes
3DS Max (.3ds)

Yes, between 100
to 1000 agents

Some conditional
behaviours

- Pre-built elements
for pedestrian and
traffic patterns

- Models of planes,
vehicles, people

- Animates on 2D
flow chart

- Create custom
routes and paths

- Default agent
Iosgic

- Statistic analysis

- Models follow
predefined paths,
no free roaming

- Agents logic
cannot be changed
- Poor graphics

- Disjointed 3D
modelling

- Limited demo size
- No spatial
perception or
proximity to other
agents

Processing,
logistics, airports,
healthcare,
manufacturing

Models discrete
and continuous
systems, 2D flow
chart logic, 3D
modelling,
statistics, resource
components, flow
items, A* pathing

Educational demo
Yes
3DS Max (.3ds)

Yes, 30 model
objects

Yes, but scripting is
not in demo

- Pre-built elements
for pedestrian and
traffic patterns

- Ivéodel viehicles
and people

- Floev chport
integrates with 3D
models

- Agent logic, and
A* pathing

- Statistic analysis
- Passengers
behaviours

- Models follow
predefined paths,
no free roaming

- Agents logic
cannot be changed
- Basic graphics

- Limited demo size
- No spatial
perception

- No scripts in
demo, hard to add

custom behaviour

Parametric design,
crowds, swarms

Plugin for
Grasshopper,
agent modelling,
flow digram visual
coding, real-time
rendering in Rhino
5 model space

Free complete use
Yes
Rhino 5 (.3dm)

None

Yes, using C#
scripts

- Agents avoid
obstacles and
interact with others
- Customize with
Grasshopper,
Rhino models, an
Vray rendering.

- No model size
limit

- Agent perception
of space

- No passenger

types or analysis,

rTZESf add |ogi>é from

scratch

- Focus is on design

and swarms

- No moving

vehiclles or walking
eople

f>Nopstctisﬁccl

analysis

- Computationally

heavy

Q[vy

Game
development,
virutal
visualizations

Game engine, 3D
model space, C#
script coding,
physics model,
real-time rendering

Free personal use
Yes
MotionBuilder(.fbx)

None

Yes, using C#
scripts

- Scripting allows
custom agent an
architecture
behaviour

- Animates in
model space

- Import rendered
models into scenes
- Built-in physics
model

- No model size
limit

- Must create all
models and logic
from scratch

- No passenger
behaviours

- Requires strong
knowledge of C#
- No statistical
analysis

- Cannot extract
data easily

Figure 1.4.u: Simulation comparison between Arena, FlexSim, Quelea, and Unity.

Simulation Comparison

Sample Simulation Station Simulation Test

Figure 1.4.v: Sample simulations and station test for Arena, FlexSim, Quelea, and Unity.

81

Summary

A model is a representation of a system, for the purpose of understanding how the system
works. Computer simulations are mathematical models, based in algebra or physics.
Simulations can be described by three properties, they are either static or dynamic,
deterministic or stochastic (random), and discrete or continuous. The reason to choose one
property over another depends on the application and scope of a project. There can be more
than one way to simulate the same situation. For example, water flow in a pipe could be a
continuous dynamic simulation based in physics, or it could be a discrete stochastic simulation

of pressure head.

For airports, all critical areas use simulations to understand how systems will perform. This
ensures people are safe, systems work efficiently, and that the airport is profitable. The
complexity of an airport simulation is defined by fidelity, or how close it matches the real world.
The most common simulation techniques are spreadsheet models, queuing models,
optimization, Monte Carlo, and discrete event simulations. A thorough understanding of an
airport will use all these techniques at some stage of design. A complete simulation study is
divided into four stages. This includes identifying the scope and goals, building and validating

the model, running experiments and analysing data, and finally, documenting the results.

In architecture, a common type of model is a crowd simulation, which analyzes the movement of
many people in public spaces. Crowds of people are usually modelled as a fluid flow, particle
systems, individual agents, or some combination of those. Fluid and particle models use physics
to approximate crowd dynamics, whereas agents assign individual people characteristics,
behaviours, and goals. A common application of crowd simulations in architecture is for
evacuation modelling. The purpose is to check how easily people can escape a building in an
emergency so that issues with the layout can be identified. Research in crowd modelling studies
how social and psychological factors affect human behaviour in buildings. Although these were
explored for emergency situations, factors like emotion, stress, and local navigation can also

apply to daily passengers in an airport.

Current discrete-event simulation software used in airport design include MassMotion, Arena,
and FlexSim. MassMotion is more than capable of modelling human interactions in
architectural conditions, with agents adapting to their surroundings. Arena and FlexSim are
stronger at modelling industrial applications and are more efficient at handling linear processes.

Before exploring a new simulation, the thesis experimented with Arena, FlexSim, Quelea (an

82

agent simulation in Grasshopper), and Unity (a game engine). For this thesis, FlexSim is the
best simulation option if trying to build onto an existing software. Whereas Unity is the best

simulation option if trying to build new behaviour from scratch.

83

Part 2:

Modelling Concepts

Part 2 goes through concepts that the thesis believes are necessary for creating an agent
simulation of architectural conditions. Chapter 2.0 begins by describing what an agent is, and
briefly introduces a framework for decision making. Chapter 2.1 talks about theories related to
human perception, and how people learn information from their surrounding environment.
Chapter 2.2 introduces existing theories in architectural spatial analysis. It also gives a brief
summary of the mathematics behind graph theory. Chapter 2.3 starts with a discussion of how
people value design choices based on value theory. It then introduces the method of
prioritization as a way of normalizing different human perspectives. Finally, the chapter

concludes with the thesis’s new proposed method for quantifying architectural conditions.

85

Chapter 2.0

Agent-Based Modelling

An agent-based model is a type of mathematical model that computes patterns and interactions
of individual objects within a larger system. Objects can act independently based on given rules
or constraints in an environment. If these objects have a goal and can act towards that goal by
interacting with the system, then these objects are intelligent agents. Agents differ from a
standard function, which takes in an input and produces an output regardless of its
surroundings. Instead, agents can conduct a set of operations, with a level of choice, to reach a
target state within a set amount of time. 1 The purpose of agent-based models is to re-create
small-scale interactions to predict how it affects a larger system. The behaviour of the larger
system is unknown and typically difficult to model on its own. Instead, giving an agent a simple
set of rules can result in patterns that appear across the entire system, which is called

emergence.
Agent Properties

Agent-based models classify according to the properties of the individual agents. [2] Properties
describe how an agent acts in an environment. The exact definition of each property depends on
the context of the model. In general, agents can have the following properties: autonomous,
exist over time, reactive, goal oriented, store memory, adaptive, characteristic, and

communicative.

Autonomous: Agents can exist by themselves without being dependant on outside influence.
They can take control over their actions and make their own decisions. Agents can also act

differently to other agents in the same system or under the same set of rules.

Exist Over Time: Programs can execute actions over time either as continuous functions or
discrete steps. These functions may change the environment or state of a system. However,

agents within these systems can remain as a consistent entity even though the environment

1. Franklin, Stan; Graesser, Art. "Is it an Agent, or just a Program?: A Taxonomy for Autonomous
Agents". Proceedings of the Third International Workshop on Agent Theories, Architectures, and
Languages, Springer-Verlag, 1996.

2. Franklin et al. “Is it an Agent?”. 6.

86

around them might be changing. While these changes are occurring, agents continue to be active

and only stop being active if the program ends, or they reach their target state.

Reactive: Agents can read or see things that surround them in an environment. If an agent
discovers information, they can respond to it based on predefined patterns or rules to act in a
certain way. If there are any changes in the environment, an agent can respond to those changes

within a given amount of time.

Goal-Oriented: By definition, agents have agency, which means they can have a purpose or a
goal. Agents do not only respond to outside influences, as described in reactive behaviour.
Instead, they can actively work towards a given goal or target. A purposeful agent will make
choices that will get them closer to their target. This may include ignoring irrelevant information

or changing their surroundings to make their target more accessible.

Store Memory: Agents can take in information given to them from the start or based on things
they find in their environment over time. Like a long-term memory, the agent keeps information
in a local storage which they can decide to use at any point if it becomes relevant. Agents can
store memory about their goals, abilities, or the properties of the environment. Memory is also

fundamental to an agent’s ability to learn.

Adaptive: Adding onto memory, agents can change their behaviour over time. This is
knowledge learned in the system or performing new actions that the model did not defined
initially. If an agent confronts a problem, they can record what happened to avoid repeating the

same actions again if they find themselves in the same situation.

Characteristic: Agents can have a character. Agents can take on a personality that is unique
compared to other agents in the same system. Their behaviour and actions can be dependant on
emotional states or inherited beliefs. These attributes can affect how quickly the agent moves
over time or how easily they can read information in the environment. As mentioned in adaptive

behaviour, their emotions and beliefs can also change as agents learn more information.

Communicative: Communication is the ability to send or receive information between other
agents or entities. Agent communication is important for learning information from the
environment or other agents. Additionally, communication is fundamental for creating group
dynamics. This reveals how agents can join into larger units to reach goals that would not be

possible if they were working individually.

87

Decision Making Process

Decision making in agent-based modelling refers to an agent’s behavioural choices from
environmental influences. The interpretation of an architectural environment is dependant on
how agents process information. The thesis follows the approach used by Raubal in their model
for agent-based wayfinding. They created an agent simulation that emulates human decision
making for wayfinding in an unfamiliar airport terminal. Raubal explains that agents, who do
not have previous knowledge of an environment, understand where they are going based on
spatial cognition (the ability to read a space). [3] Their research shows that an effective model
needs to incorporate a decision-making process because agents cannot rely on previously
acquired knowledge. 4! Instead, agents only rely on short term memory of information in these

situations.

Raubal discusses various models in artificial intelligence for decision making. His agent-based
model developed from a process called Sense-Plan-Act (SPA). 151 This is a fundamental
framework used in robotics to make sure a machine operates effectively. [¢] The general process
is made up of three steps: sensing, planning, and acting. In a simulation environment, this

approach must go through each step before an agent does anything.

Agents using the SPA framework start by sensing their surroundings for important information,
like obstacles, targets, or signs. This involves using sensors or other devices to provide feedback.
An agent’s ability to sense information is dependant on their level of perception. In planning,
agents decide how to respond to the information they just learned. Their choice is based on a
given strategy or function defined in the agent’s mind. Once the agent knows how they want to
respond, the final step is to take action. This step involves using effectors, or other methods, to
make the agent move or behave in a certain manner. Once the agent has completed their
actions, that completes the decision-making process. This approach repeats as many times as

necessary until the agent reaches their goal or is unable to move.

3. Raubal, Martin. “Agent-Based Simulation of Human Wayfinding: A Perceptual Model for Unfamiliar
Buildings”. (PhD diss., Vienna University of Technology, (October 2001): 17-29.

4. Raubal, Martin. “Agent-Based Simulation”. 33.

5. Raubal, Martin. “Agent-Based Simulation”. 31.

6. RobotC. “Sense Plan Act (SPA)”. Natural Language Resources — VEX Cortex. Accessed November
2020. http://cdn.robotc.net/pdfs/natural-language/hp_spa.pdf.

88

This framework for decision making is effective because it provides a linear sequence of
information that can be replicated in a computer program. [7 An approach like SPA is also well
suited for discrete-event simulations because every stage of decision making occurs in finite

steps.

SPA may be limiting if the agent-based model is a part of a more complex dynamic environment.
An agent’s surroundings may change faster than the agent can process information. This results
in agents acting against a condition that is no longer valid. Issues like this can occur in crowd
simulations with a high density of people. Quick changes to other nearby people might not
register in time for an agent to respond fast enough, causing unwanted collisions or pathfinding
blockages. More advanced simulations like Mass Motion solve these issues by creating slow-
down forces and predictive awareness. 8] This causes agents to walk slower in crowded areas so

they can avoid getting stuck and anticipate where other people are walking to avoid collisions.

Every choice an agent makes using a linear process influences the next steps they come across.
The thesis expects that this approach can show unexpected outcomes of poor design choices. If
agents encounter an issue with a building’s design, like poor wayfinding as shown in Raubal’s

research, then it impacts the agent’s behaviour further down in the simulation.

Percepts

Actions

~——— Effector

Figure 2.0.a: How agents interact with the environment, based on diagram by Liu (2020), redrawn by

author.

7. Raubal, Martin. “Agent-Based Simulation”. 31-32.
8. Oaysis. “MassMotion Help Guide,” July 2019. https://www.oasys-software.com/wp-
content/uploads/2019/06/MassMotion-10.0-Help-Guide.pdf.

89

Chapter 2.1

Human Perception

One of the goals of this thesis is to use people as a function to determine the performance of an
architectural layout. The proposal stems from the idea that, architecture is experienced from the
perspective of individual people. The effectiveness of this approach is dependant on people
being aware of their surroundings. Perception is the process of using the senses to take in
information from the environment, interpreting it, and trying to understand what it means.
Additionally, architecture is concerned with how people view spaces from their perspective. In
The Concise Townscape, Cullen explains that people’s experience of architecture is composed of
a collection of existing views and emerging views. 1 By deduction, what a person experiences,
can indicate the quality of the space around them. Overall, an effective agent must be perceptive
of their environment to provide feedback of architecture. They must be able to take in

information, interpret it, and decide how to respond.

This thesis follows the theory presented by Raubal in their model for agent-based wayfinding.
Their framework for agent perception is based on the concepts of ontology and epistemology. 2!
Ontology is the science of existence, in the context of categorization. It is concerned with
understanding the existence of entities or objects, and how different concepts are grouped
together. Epistemology refers to knowledge. It is concerned with the process of understanding
what things are, the rationality of beliefs, and the justification of ideas. The behaviour of an
agent-based model is built as a collection of decisions. Each decision depends on what is present

in a digital environment, and how it is perceived by an agent.
Ontology

The agent-based model uses ontology to understand how to categorize elements in an airport. (3!
Categories can be as broad as the nature of reality, fundamental properties, or relationships. The
reason categorization is important for this thesis, is to understand how a digital model can

compute information. Categories give models specific definitions for various objects and

1. Cullen, Gordon. The Concise Townscape. Abingdon: Routledge, 1971. 9.

2. Raubal, Martin. “Agent-Based Simulation of Human Wayfinding: A Perceptual Model for Unfamiliar
Buildings”. (PhD diss., Vienna University of Technology, October 2001). 62.

3. Raubal. “Agent-Based Simulation”. 63.

90

Theory Hierarchy Example Hierarchy

Environment Security Area

Objects X-ray machine
Metal detector
Staff

Queue

Figure 2.1.a: Environments are made up of objects and processes.

91

conditions. There needs to be defined boundaries so an agent can identify what something is,
and how to respond in different situations. For example, agents need to understand where they
can check-in their baggage, or how to identify which gate number their plane is boarding from.
In further chapters, the thesis will explain how digital perception can model imprecise
information, which would not naturally fit into a binary system. However, the first step is to

define basic elements in the agent-based model.

Ontology is rooted in theory and philosophy. In Objects in Their Environment, Smith introduces
how ontology can describe the physical environment of ordinary people. 4! They use ontology to
organize an environment into Aristotelian substances and accidents, based on people’s
behaviour. Substances refer to objects, things, and people, whereas accidents refer to qualities,
actions, and processes. [5] Using Smith’s concepts, Raubal, in his agent-model, explains how the
built environment is made from the relationship between substances (objects) and their
corresponding accidents (processes). For example, the environment of airport security is made
up of objects, (queue lines and x-ray machines), and processes, (waiting and screening), as is
illustrated in Fig.2.1.a. Queue lines serve the need for waiting, and x-ray machines serve the

need for screening.

Smith defines a list of conditions that describe spatial properties of substances and accidents.
These conditions are called ontological marks, which describe how human interactions relate to
a physical environment. [0 For example, the action of checking in baggage requires the time and
space for passengers to move bags from one area to another. Smith explains that environments
like this, take up physical space, can be divided into parts, and exist over time. [7] Raubal’s
research brings Smith’s conditions into an architectural context by relating each of these
attributes to wayfinding in an airport. [81 For the feedback of airport architecture, the thesis uses
the same approach to understand the ontological marks of a terminal environment, which is
detailed in Fig.2.1.b. This explains how people exist within an airport terminal based on
fundamental conditions. In other words, an environment exists, from a person’s perception, if it

is defined by relevant objects and processes.

4. Smith, Barry. “Objects and Their Environment”. The Life and Motion of Socio-Economic (GISDATA
8), London: Taylor and Francis, 2001, 79—97. As cited in: Raubal. “Agent-Based Simulation”. 62.

5. Smith. “Objects and Their Environment”. 81.

6. Smith. “Objects and Their Environment”. 91.

7. Smith. “Objects and Their Environment”. 91-92.

8. Raubal. “Agent-Based Simulation”. 64.

92

Ontological Marks of an Enivronment

Enivronments contains substances and accidents,
which need a “participant” substance to exist.

Environments remain consistent, but can be defined by
different participant substances at different times.

Environments are part of a natural process, and are
proportional in size with other things.

Environments have complete boundaries, where
objects can be inside or outside it.

Environments have parts that are environments,
themselves.

Environments are spatially connected, part of a larger
entity, but can be physically scattered.

Environments take up space, and can be divided into
smaller spatial or temporal segments.

Environments exist over time, but do need be identical
from begining to end.

Environments exist over time, but do not need to be
continuous.

Environments do not have punctual existance, (distinct
beginning and end), but contain punctual events

Ontological Examples in Airports

Passengers are invloved in airport process, like
check-in, screening, waiting, boarding.

Passengers remain the same, but can be checked-in or
have security clearance at different times.

Crowd dynamics exhibit emergent behvaiour based
on patterns in an airport environment.

Terminals are defined by architectural components;
people occupy inside, and planes park outside.

The text on a sign is understood in context of
wayfinding; the gate number (e.g. C3, F7) refers to a
physical location.

Restaurants exist with in a larger retail space, and are
scattered throughout the terminal.

A terminal pier takes up space, which can be divided
into individual aircaft stalls, or flight occupancy time.

A 1 year old terminal is the same terminal when it is 10
years old, but renovations can change areas inside.

A security area is always present, but may not service
people during off-hours.

The act of waiting is expected in terminals, but
passenger have a specific depature time.

Figure 2.1.b: Smith's (2001) ontological marks of an environment and examples in an airport, based

on diagram by Raubal (2001), reinterpreted by authour.

93

The physical nature of objects in an environment can be further categorized based on how
people observe each object. When a passenger reads a departure board, they are seeing coloured
lights from a metal box. The nature of that box affects how people perceive flight information
from the sign. The influence of these factors is presented by Gibson in The Ecological Approach
to Visual Perception. This describes how agents and objects in their surroundings can be

categorized based on their physical properties.

Gibson defines an environment in terms of three parts: substances, medium, and surfaces. [
Like ontological substances, Gibson’s substances refer to physical matter and solid objects.
These are usually opaque to light and are composed of heterogenous materials. (] Things like
the earth, minerals, plants, and animal matter, are examples of substances. Medium, in contrast,
refers to fluids and light. These are usually transparent to light, primarily homogeneous, and can
propagate waves. ' Water, air, gases, the atmosphere, and light are examples of mediums.
Substances usually exist within a medium and use it to move around: like fish in water, or
engines consuming air and fuel. Finally, surfaces are the boundary layers between substances
and a medium, which separate them from each other. The interaction of substances and
mediums occur through surfaces. All substances have a surface. They can absorb or reflect light,
giving substances their appearance and making them identifiable. Surfaces relate to aesthetic
properties, like texture and colour. Although, surfaces can also influence friction, durability, or
viscosity of a substance or medium. 21 The grain of wood, the “fluffiness” of clouds, and the

coarseness of rocks on a riverbank are examples of surfaces.

For this thesis, airport elements are classified according to substances and mediums, as
illustrated in Fig.2.1.c. Substances are divided into living and non-living objects. (3] In the
context of a simulation, these are agents and environmental objects, respectively. Agents in a
simulation refer to any object that has agency, awareness, and knowledge. People are substances
and they are aware of their surroundings. Therefore, passengers and airport staff would be

considered agents.

The environment can also be organized into physical and non-physical elements. The thesis

organizes architectural conditions by dividing the environment into objects (substances) and

9. Gibson, James J. The Ecological Approach to Visual Perception. New York: Psychology Press, 1986.
16.

10. Gibson. Visual Perception. 19-18.

11. Gibson. Visual Perception. 16-17.

12. Gibson. Visual Perception. 24-26.

13. Raubal. “Agent-Based Simulation”. 66.

94

Environment Environment
Agents .
Obijects Spaces
| | |
Passenger Architectural Check-in

El t
Airport ements

Staff

Security

SE/CEE Waiting

Furniture Area

Gates Retail
Equipment

Products

Figure 2.1.c: Elements of an airport classified as a substance or medium, based on diagram by Raubal

(2001), redrawn by author.

Airport Terminal Architecture

m

Stairs Corridor Hall Wl

Escalator Doorway Lounge Floor

Elevator Jet Bridge Office

Column

Moving Holdroom Window
Walkway

Queue Balcony

Storage Partition

Figure 2.1.d: Further categorization of airport terminal architecture.

95

spaces (mediums). Environmental objects include architectural components, like walls, doors,
columns, or windows. Further investigations might also address surfaces, which describe the
texture and colour of these architectural elements. Architectural spaces are categorized as a
medium. People occupy spaces and use them to move around the built environment. Spaces can
propagate waves of light, or even waves of people in a crowd. In the context of an airport,

architectural spaces are simply areas like security, holdroom concourse, or food and retail.

Fundamentally, an architectural space as an ontological environment, can only exist physically,
from a person’s perception, when defined by architectural objects related to a given process. As
mentioned, for example, passengers can perceive the environment of a security area, when it
contains objects like x-ray machines or metal detectors that they recognized to be relevant for

the security screening process.
Epistemology

Up to this point, the thesis has described how certain objects in an airport correspond to specific
processes and behaviours. But how do passengers know which objects correspond to which
behaviours? The fact that people might see a security line, and understand that they must wait
behind other people, is a result of their existing knowledge of what a queue is and how it works.
Knowledge is the understanding of things, objects, or concepts. For agents to give feedback of an
architectural environment, they must have knowledge of the areas they are interacting with.
They must understand what their goal is, and what elements in an environment will allow them
to reach their target. Agents who encounter difficulties in a building can provide feedback of

architectural conditions, if they understand what they are perceiving.

The thesis’s understanding of knowledge also develops from Raubal’s agent-based model for
wayfinding. Raubal uses Gibson’s ecological approach as a foundation for agent knowledge in
combination with cognition. [14] The framework stems from the concept of affordances as a way
of understanding how people learn information about the world. Gibson defines affordances as
the properties of an environment that have use for people, either for good or bad. [*5! In the
context of substances, affordances are the layout of surfaces and substances that show
properties of use to an observer.] Surfaces absorb and reflect light, which Gibson states,

represent what they afford. Affordances are meant to be a relationship between surfaces,

14. Raubal. “Agent-Based Simulation”. 39-47.
15. Gibson. Visual Perception. 127.
16. Raubal. “Agent-Based Simulation”. 67.

96

substances, and the people who observe them. 7] They are not inherent properties of an object,

but they are properties relative to a single person.

For example, as Raubal explains, a staircase affords people to climb it because the height of the
steps is an affordance for climbing. (8] More specifically, the height of each step, relative to the
size of a person’s leg, is at the right level for someone to lift their feet above each step. If steps on
a staircase are too high, relative to the size of a person, then they would not be able to use it.
Likewise, a chair affords people to sit because the height of the seat, relative to the size of a
person’s legs, is the right level to bend down onto it. The chair also affords support, which
people know can lift their own body weight. 91 The same is true of other objects that people sit
on, like ledges or curbs, which are not designed for sitting. Instead, people recognized that the
height of the ledge is at the right level to support their weight, which they will use if they are
tired.

As Raubal summarizes, Gibson’s theory of affordances only considers perception (what people
can see), but does not consider the thought process behind choices, or cognition. (201 This
describes how information goes from what people observe to their actions. It also considers if
this process is always consistent or if there are any errors in decision making. Gibson’s theory of
affordances also does not consider how people perceive things without looking at the

environment, such as memory. [2]

In The Design of Everyday Things, Norman suggests that affordances are the result of mental
interpretations of things, which are influenced by people’s past experiences and memory. 22 He
states that when people perceive things, their minds have to process that information before
people can take action. [231 Additionally, Raubal adds that social context, cultural background,
and personal values will influence how people process this information. [24! As a result,
affordances are not a full representation of the environment, but only represent a subjective

view from each person.

17. Raubal. “Agent-Based Simulation”. 41.

18. Raubal. “Agent-Based Simulation”. 41.

19. Norman, Donald A. The Design of Everyday Things. New York: Basic Books, A Member of the

Perseus Books Group, 2013. 11.

20. Raubal. “Agent-Based Simulation”. 42.

21. Raubal. “Agent-Based Simulation”. 42.

22, Raubal. “Agent-Based Simulation”. 43.

23. Norman. The Design of Everyday Things. 12.

24. Raubal. “Agent-Based Simulation”. 43.

97

According to Norman, the physical properties of an object that communicates affordance
information to people are called signifiers. [25] For example, a door has an affordance for people
to walk through. However, a signifier of the door’s use would be the handles, hinges, or a sign
describing which way to push/pull. [2¢] In this context, affordances are the possible interactions
between people and the door. The actions that people take are then determined by their memory

of how a door works and the signifiers that communicate how the door should be used.

In the context of an airport, Raubal developed a list of possible affordances that an adult
traveller might do while going to their gate (Fig.2.1.e). Raubal states that affordances can
correspond to three different categories, physical, social, and mental. 271 In addition to Raubal’s

wayfinding, the thesis considers this list in the context of architectural spaces.

Physical Affordances: This relates to physical properties of an object and how people can
physically interact with them. For example, people can place objects on horizontal surfaces (like
counters and tables) or hold small objects in their hands (like tickets and drink cups). [281 This
also includes how people can open doors, walk through corridors, climb stairs, and sit in chairs.
For architecture, the physical affordance of walls, partitions, and columns can divide spaces,

block views, and direct movement.

Social Affordances: This describes how people act according to social contexts, or institutional
rules. Even if something is physically possible, there are interactions that are considered socially
unacceptable, morally wrong, or illegal. 291 For example, this includes showing a passport to a
customs officer, staying within the stanchions of a queue, not walking into restricted areas, and
proper etiquette when communicating with other people. Social affordances can also be
triggered based on physical properties. The physical appearance of a customs checkpoint can
give a sense of authority (using barriers or signs) and trigger people’s memory of how security is
handled. In contrast, retail and concourse areas can also signal to people the affordance of

socializing, consumption, or relaxing.

Mental Affordances: This represents how people make decisions, which can relate to social

affordances. [3°] For example, a flight departure board can trigger people to remember their

25. Norman. The Design of Everyday Things. 13.
26. Norman. The Design of Everyday Things. 16.
27. Raubal. “Agent-Based Simulation”. 67.

28. Raubal. “Agent-Based Simulation”. 67.

29. Raubal. “Agent-Based Simulation”. 68.

30. Raubal. “Agent-Based Simulation”. 68-69.

98

Substances

Space

Doorway

Column

Architecture

Corridor

Stairs

Signage
Check-in Counter
Passport Control

Airport Staff

Decision Point

Physical

move through, access,
leave, enclose, stand

enter, ﬁo through, put
throug

go around, move
towards

move along, branch,
curve, begin, end

go up, go down, stand

go towards, stand out,
eye-catching

go to, stand in front, put
ticket, get pass
go to or through, enter

approach

pass, turn, orient

Affordances

look around, include,
spend time, wander

look through, seperate
block, divide
direct

wait

advertise, direct, inform,
follow, wayfinding

line up, check-in,
block, line up, show
passport and pass

talk to, ask, provide info
or documents, behave

look around, wait

look for, wait, expect
remember gate
remember reference
remeber path, select

pay attension

look for, recognize,
read, check

look for, remember flight
look for, remember
documents

look for, remember info

decide, search, select

Figure 2.1.e: Category of affordances in an airport and architectural elements, based on diagram by

Raubal (2001), redrawn by author.

99

flight number, gate, and departure time. Additionally, this accounts for deciding what food to

eat in a food court, what things to buy in a store, or where to sit in a waiting area.

When a person interacts with an environment or object, they will typically involve all three types
of affordances. For example, a check-in counter requires passengers to walk through the check-
in area (physical), wait in line behind others (social), remember their flight information
(mental), place documents on the counter (physical) and communicate with airport staff

(social).
Memory

Memory is a part of a person’s mind that stores, processes, and retrieves information as needed.
In a simulated environment, agents need to remember what their goals are, and the actions
needed to achieve them. Likewise, passengers in an airport need to remember where they are
and the processes they have already completed, like checking in. Memory is also an important
part of agent learning, since information gathered from past experiences can inform decisions

for future events.

To create a simulated method of how people gather information, the thesis considers Norman’s
approximate models (for memory). Norman explains how parts of human memory can be
approximated using simplified models. Although these models are not scientifically accurate,
they can still replicate the outcomes of using memory in the real world. 311 The thesis’s
conceptual model of agent memory is built-up of two parts, a long-term and a short-term

memory.
Long-Term Memory:

Long-term memory holds information that stays with the agent from the start to the end of the
agent’s existence. Agents use long-term memory to store information about their goal or

primary target, and the agent’s properties or characteristics.

Primary Target: In an airport simulation, the goal for departing passengers is to board their
flight. Since agents must navigate using their surroundings, they should be unaware of their
target location until they find it. Therefore, an agent’s long-term memory only stores the name
of the target, like a gate number (Gate B24). However, once the agent observes the location of

their gate, its physical location is also stored in their memory.

31. Norman. The Design of Everyday Things. 101.

100

Characteristics: The characteristics of an agent can describe the agent’s core beliefs and ideas,
which are not expected to change over the course of the simulation. Since they represent a
person, this can also include their name, gender, age, or other defining properties. As an agent
learns new information from the environment, there resulting actions are based on their stored

thoughts and beliefs.
Short-Term Memory:

During the agent’s journey, short-term memory only holds information temporarily, or as the
agent needs it. In this thesis, short-term memory stores information about agent state, spatial

memory, and local targets.

Norman simplifies short-term memory with the idea of having memory slots. [321 Every time a
new piece of information is observed, the information fills one of these slots. Once all the slots
are full, any new piece of information replaces the oldest memory. When an agent first enters
the environment, their short-term memory would be empty. As they experience different parts
of the environment throughout the simulation, their short-term memory fills with relevant

information.

Agent State: Agent states represent an agent’s current thoughts about how to behave. Raubal
explains that, when an agent makes an observation, they recognize some state of the
environment at a specific place and time. [331 For example, if an agent observes the entrance to a
security area, then the agent will be more attentive than if they were simply waiting by the gates.
These states represent different types of perceived affordances or interactions. [34 Essentially,
the type of state represents what type of behaviour the agent is following. This includes airport
behaviour like waiting, queuing, processing, checking in, or security screening. An agent’s state
will change every time they observe new information, which, as Raubal states, is comparable to

short-term memory. [35]

Spatial Memory: Like agent state, spatial memory describes the agent’s knowledge of where
they are. When an agent recognizes a property in an environment, they can identify the space
associated with that property. For example, if an agent recognizes a check-in counter, then the

agent learns that the counter affords picking up a boarding pass. As a result, the agent knows

32. Norman. The Design of Everyday Things. 102.
33. Raubal. “Agent-Based Simulation”. 75.
34. Raubal. “Agent-Based Simulation”. 75.
35. Raubal. “Agent-Based Simulation”. 75.

101

they must be in the check-in area. Therefore, their behaviour, or state, should align with the
expected behaviour of that space. An agent has a memory of where they are until they observe

new spatial information from the environment.

Local Targets: Local targets describe the possible affordances associated with an object or
location that an agent can currently observe. When an agent observes an object, they learn
information about the object or the associated affordances. If the object has relevant
information that is useful for the agent, then they will memorize the given affordances or actions
related to the object. [3¢] For example, after noticing a wayfinding sign, an agent might read the
sign to understand what it says. If the sign has information on it that matches where the agent is
trying to go, then the sign has an affordance for following. [37] As a result, the agent memorizes
the direction the sign is pointing, so they can follow it. Fundamentally, the direction the sign
points to is considered a local target. Once the local target is used, or consumed, then the

information may be replaced, or forgotten, from the agent’s short-term memory.
Field of View

Gibson defines the field of view for human beings as the solid edge of ambient light that can be
registered by a person’s optical system, or eyes. [381 The volume between these solid edges of
light can be represented by a section of a sphere. The sphere is defined geometrically by the
angle seen from the perspective of a person’s eyes in their head. 39! People’s view of the world is

based on the direction their eyes are looking and the posture of their head. [4o]

Gibson explains that people see the world in perspective from a single point of view. This is
approximated by projecting lines out radially from a person’s eye (Fig.2.1.f). [411 If light reflected
off surfaces reaches someone’s eyes, then those surfaces, or objects, are considered visible. Since
light travels in straight lines through spacetime, light coming from behind objects will not be

detected. As a result, these objects are not visible.

A field of view describes visual perception, which are things that a person is aware of. Things
that are not in a person’s field of view are not seen, and as a result, are not visually perceived.

Philosophically, if something is not observed, then it does not exist from the perspective of a

36. Raubal. “Agent-Based Simulation”. 75.
37. Raubal. “Agent-Based Simulation”. 75.
38. Gibson. Visual Perception. 127.
39. Gibson. Visual Perception. 127.
40. Gibson. Visual Perception. 196.
41. Gibson. Visual Perception. 196.

102

Figure 2.1.f: Gibson's representation of a person's field of view. Every surface that can be visually

perceived is a solid line. Otheruwise, it is a dashed line if it cannot be percieved, Gibson (1972).

103

person. For example, students standing in the halls outside of their classroom cannot see their
desks behind the walls of the school or a closed door. For this reason, their desks do not
technically exist, based on their visual perception. Once students enter the classroom, the desks
become visible in their field of view. As a result, they can perceive their physical existence.
Although students may expect their desks to be in the classroom before arriving, the physical
objects are not in their field of view yet. If the desks are removed from the classroom before the
students arrive, then it is no different than if they cannot see the desks behind the walls.

Students would also not be aware that there are no desks until they observe an empty space.

Fundamentally, this metaphor also applies to passengers in an airport terminal. If people are
navigating through the building and they cannot see their gate, then they are not aware of its
physical existence. Only after the location of the gate area becomes visible in a person’s field of
view, are they able to visually perceive the physical gate. The same condition applies to any
architectural feature. For example, if a designer adds windows to view outside the terminal
concourse, but no one can see it from their field of view, then the windows do not physically

exist from passengers’ visual perception of the space.

Additionally, as described by Norman, if there are no signifiers to communicate an object’s
utility, then the object’s affordances do not exist from a given observer. [42 Likewise, if an
architectural feature is not in a person’s field of view, then they cannot understand the
affordances of that space. Therefore, the field of view illustrates the elements, surfaces, or

objects that an individual can perceive.
Summary

Perception is the process of using the senses to interpret information from the environment.
People’s experience of architecture is made up of a collection of views. So, what a person
experiences can indicate the quality of those spaces. Likewise, an effective agent must be
perceptive of their environment to provide feedback of architectural conditions. The thesis
follows the work of Raubal in their research of perceptive agent wayfinding. Agent perception is
based on understanding how people identify different objects in their mind (categorization or
ontology) and understanding how people know what things are (knowledge or epistemology).
From ontology, the thesis learns that an environment exists, from a person’s perception, if it is
defined by relevant objects and processes, which are called ontological marks. Additionally,

these objects can be categorized based on how people observe them, which Gibson defines as

42. Norman. The Design of Everyday Things. 14.

104

substances (solids), mediums (fluids and light), and surfaces (layers between substances and
medium). Passengers are living substances, and architectural elements are non-living
substances. Architectural spaces that people and objects occupy are the medium. Aesthetic and
material properties are the surfaces. Fundamentally, an architectural space as an ontological
environment can only exist physically, from a person’s perception, when objects are related to a

given process within those spaces.

For agents to identify what things are, they must have knowledge of the objects they are looking
at. Agent-based knowledge develops from affordances, which models how people learn
information about the world. Affordances are the relationships between objects (Gibson’s
surfaces and substances) that have use for people, either for good or bad. Even though
affordances are inherent to the object, they are relative to each individual making the
observation. The properties of an object that communicates what they can afford to an agent are
called signifiers. When people perceive a signifier, they must process the information they see
before taking action, which is described by cognition. An agent’s social, cultural, and personal
values influence how this information is processed. Therefore, affordances are only a subjective
view of the environment. Affordances can be physical interaction with the object, social norms

associated with the object, or mental processes that are brought about by the object.

Memory is responsible for storing, processing, and retrieving perceived information. This is
simulated in an agent using simplified models for both long- and short-term memory. Long-
term memory holds an agent’s goal (primary target), and their inherent beliefs (characteristics).
Short-term memory holds behaviour tied to a given affordance (agent states), the agent’s current

location (spatial memory), and actions associated with a given affordance (local targets).

Field of view is the optical area that a person can observe, based on the reflected path of light.
Objects or elements that fall within someone’s field of view can be visually perceived. If an
element is not visible, then the person cannot perceive it, which is equivalent to the element not
existing from their perspective. If an element is not perceived, then a person cannot understand
what it affords.

105

Chapter 2.2

Spatial Analysis

Spatial analysis is the study of shape, position, size, quantity, or location of geometric features.
It describes how information is organized in topology, geography, and architectural spaces. For
this thesis, spatial analysis can help connect the behaviour of people and the quality of spaces

around them.
Methods

This section covers some of the existing methods in architecture for analysing spatial conditions.

These methods include isovist, space syntax, axial maps, enclosure, and visibility graphs.
Isovist:

One of the foundations of architectural spatial analysis is the isovist. An isovist describes the
area that can be seen from a single point, projecting out in every direction (Fig.2.2.a). This can
be illustrated in a 2D floor plan, or it can also describe a volume in 3D space. One of the first
papers on the isovist was by Benedikt in 1979, who demonstrated how an isovist can analyze
architectural and urban spaces. Benedikt explains that spaces are understood as a collection of
visible surfaces, which are framed by architectural components like walls or windows. [l They
used the isovist to represent visible space from a single point, which made it easy to compare
different quality of spaces based on a given area and perimeter. [2! An isovist can also be thought

of as the volume of space illuminated by light coming from a single point. (3

1. Do, Ellen Yi-Luen, and Mark D. Gross. “Tools for Visual and Spatial Analysis of CAD Models.” CAAD
Futures 1997, 1997, 189—202. https://doi.org/10.1007/978-94-011-5576-2_15. 3.

2. Do et al. “Spatial Analysis of CAD Models.” 3.

3. Arabacioglu, Burcin Cem. “Using Fuzzy Inference System for Architectural Space Analysis.” Applied
Soft Computing 10, no. 3 (2010): 927.

106

Figure 2.2.a: An isovist is the area that can be seen from a single point, light grey is visible and dark

grey is hidden, Arabacioglu (2010).

00
s (¥ i\g

Figure 2.2.b: The three geometries of space syntax: lines, convex space, and an isovist, Vaughan

(2007).

107

Space Syntax:

Space syntax is the study of how spaces are organized in urban conditions. This was first
published by Hillier and Hanson in their book The Social Logic of Space (1984). 4] They studied
configurations of spaces in relation to social structures in an urban context. Space syntax
analyses the nature of a built environment based on patterns related to human behaviour, like
where people live or how they travel. Although, Vaughan explains how space syntax suggests
that spaces have their own formal logic before a social context is applied. [5] Hillier and Hanson
also established methods for describing spatial configurations as physical geometries. The three
most fundamental geometries they used were lines, convex space, and the isovist (Fig.2.2.b). [6]
Lines describes the path of people’s movements. A convex space is a location that is visible from
every other point in that space, which is a property of interactive spaces. Finally, the isovist was

used to represent a person’s perspective or their field of view. [7]
Axial Maps:

Space syntax breaks down urban spaces into components to understand how they are connected
to each other. One of the ways these connections were studied was using axial maps. These
maps were a type of graph structure that simplified spaces and their connections into vertices
and edges, respectively. Edges can describe how people physically move between spaces, or they
can represent concepts like functional, social, or environmental relationships. It simplifies an
analysis without having to consider architectural dimensions like walls or doors. In Fig.2.2.c,
Vaughan shows how axial maps illustrate different connections between spaces, depending on
what room they look from. 8! In a city fabric, axial maps are useful at describing the paths that
people take and the spaces they pass through. In addition to physical movement, axial maps can

model social structures based on a network of human behaviour. [9!

4. Hillier, Bill, and Julienne Hanson. The Social Logic of Space. Cambridge: Cambridge University
Press, 1984. doi:10.1017/CB09780511597237.

5. Vaughan, Laura. “The Spatial Syntax of Urban Segregation.” Progress in Planning 67, no. 3 (2007)
208.

6. Vaughan, Laura. “Urban Segregation.” 209.

7. Vaughan, Laura. “Urban Segregation.” 209.

8. Vaughan, Laura. “The Spatial Syntax of Urban Segregation.” Progress in Planning 67, no. 3 (2007).
211.

9. Vaughan, Laura. “Urban Segregation.” 208.

108

] 1

iaverieD laiterie
grande salle vesti- bureau salle salle commune
bule
| vesti- Ddebarra.
couloir bule
L1 I
Grande Salle Outside Salle Commnue

Figure 2.2.c: Graphs showing the arrangement of connections from different rooms in a house,

Vaughan (2007), re-highlighted by author.

o
i
s
SSIE

Enclosure value

Figure 2.2.d: Enclosure defines a value based on the number of surrounding walls on a scale of 1 to 4,

Do et al. (1997).

109

Enclosure:

Enclosure is a concept published by Gross in 1977 who created a computer program for
subdividing spaces in a floor plan. The goal was to create a numerical model of how people feel
in different spatial arrangements. 01 This was calculated by assigning a score based on the
number of walls that surround a given area. For example, a square room that is closed on all
four sides would be given a value of 4, whereas a room with no walls would be given a zero
(Fig.2.2.d). The value of enclosure does not only apply to a single room but could also be
generalized to an arbitrary unit of area. This works by subdividing a floor plan into small enough

segments, or increasing the granularity, which was like an early concept of depth mapping.
Visibility Graphs:

Visibility graphs were popularized by Turner et al. in 1999 for analyzing architectural spaces. It
combines the logic of the isovist geometry and the mathematics of graph theory to understand
how different space structures affect social function.] A basic visibility graph works by
identifying the locations that can be seen from a single point. If a point in space is visible from
more than one location, then that point has higher visibility. This is equivalent to overlapping
multiple isovist geometries and adding the areas where they intersect with each other. (2]
However, Turner et al. demonstrates that, instead of using isovists, a space can be approximated
as a network of vertices in a graph, where the edges are the visible connection (Fig.2.2.e). [:3] The
resolution of the analysis depends on the size and frequency of the vertices. In addition to
representing visibility of a person at eye level, a visibility graph can be created for any height or
dimension, which can also represent volumetric space. A visualization of a visibility graph may
also be referred to as a depth map, which illustrates visibility information in a pixel grid,

typically, on a scale from black to white (Fig.2.2.1).

10. Do et al. “Spatial Analysis of CAD Models.” 4.

11. Turner, Alasdair, Maria Doxa, David Osullivan, and Alan Penn. “From Isovists to Visibility Graphs:
A Methodology for the Analysis of Architectural Space.” Environment and Planning B: Planning and
Design 28, no. 1 (2001): 104.

12. Turner et al. “From Isovists to Visibility Graphs.” 107.

13. Turner et al. “From Isovists to Visibility Graphs.” 107.

110

Figure 2.2.e: A visibility graph, where each vertex is a point in space, and the lines are the visibile

connections, Turner et al. (1999).

Figure 2.2.f: A depth map illustrating the number of connections in a visibility graph as a pixel grid.

White: most connections (high visibilty), Black: least connetions (low visibility), Arabacioglu (2010).

111

Graph Theory

Graph theory is the study of mathematical structures called graphs. These are models that can
represent networks or relationships between items. 4] Graph structures are built up of points

and connected by lines (Fig.2.2.g), which are referred to as vertices and edges.

Graph theory is an important concept for two areas in this thesis: understanding architectural
arrangements and agent navigation. As mentioned for axial maps, graph theory is useful in
architecture because it diagrams how spaces are connected together. Additionally, simulations
commonly use graph theory to simplify agent navigation. Graph structures provide a way for
simulations to differentiate between accessible or non-accessible areas, and it can be used to

calculate the shortest path between two points.

Graphs are not geometrically defined, as visualized in Fig.2.2.g. Instead, graphs are abstractly
written as a collection of connected pairs of vertices. ['5) An edge connected between two points,
v; and v,, can be denoted mathematically as the ordered pair {v;, v,}. [*0] A graph can be written
in terms of the number of vertices as a set V = {v,,v,, V3, ..., v;} or edges as aset E =

{e1, ey, €3, ...,e;}. The edges in Fig.2.2.g can be defined as {v,, v,}, {vy, v3}, {v2, v4}, {v3, 14},

{vs, vs}, (v, vs}.
Directed Graphs

In Fig.2.2.g, {v,,v,} and {v,, v, } describe the same edge. This means the relationship between v,
and v, is the same in both directions. Since all the edges have this property, the graph is
considered undirected. 7] By contrast, a graph is considered directed if the relationship between
two vertices does not go in both directions. As seen in Fig.2.2.h, the edge between v, and v, only
has a relationship in the direction {v,, v,}. If this graph was representing roads between cities,
then a directed edge would be equivalent to a one-way road, where cars can only travel in one

direction.

14. Guichard, David. An Introduction to Combinatorics and Graph Theory. Whitman College. January
30, 2020, 7.

15. Guichard. Combinatorics and Graph Theory. 7.

16. “Describing Graphs.” Computer Science, Algorithms, Graph Representation. Khan Academy.
Accessed May 2020. https://www.khanacademy.org/computing/computer-science/algorithms/graph-
representation/a/describing-graphs.

17. Khan Academy. “Describing Graphs”.

112

Figure 2.2.g: An undirected graph with 5 edges

and 5 vertices.

Figure 2.2.i: A path from node v, to node v,

Figure 2.2.j: A weighted graph.

Figure 2.2.h: A directed graph.

Figure 2.2.k: Lowest cost path between node A

and node B has a cost of 7.

113

Paths

Another attribute of graphs is called a path. Paths are made up of a collection of continuous
edges and vertices. Any vertices along a path are referred to as nodes in that path. The
movement from one node to another is called a walk. 8] This is useful for describing how
information might travel across a graph. In Fig.2.2.i, there exists a path between v, and v,. The
vertices v,, v,, v3 and v, are all nodes in that path, which forms a walk in the sequence v; —

Uy, = V3 > Uy
Weights

In the same way that a directed graph can change the relationship between two vertices, another
approach is to introduce weights. A graph is said to be weighted if its edges or vertices are given
a non-negative value. 191 A weight describes how much cost it takes to travel from one vertex to
another (Fig.2.2.j). The shortest path in a weighted graph is referred to as the lowest cost path.
The lowest cost path is the sum of the weights of all the edges (or vertices). [20] As highlighted in
Fig.2.2.k, the lowest cost path from node A to node B follows the top edges. These edges have the

weights w; = 2, w, = 2, wg = 3, giving it a total cost of w; = 7.

An example of a weighted graph is a model of roadways between cities, where weighting
represents the total travel time. A road connecting two cities that are farther apart would be
given a higher cost than a road in between two cities that are closer. Likewise, weights can be
used to represent traffic. A road with a lot of traffic can be given a higher cost than a road with
very little traffic. This concept is useful in crowd simulations for representing crowded spaces.
Areas in a building that have a lot of people can be assigned higher cost, compared to areas that
have less people. Agents in these simulations would prefer to follow the path with less people,

which is represented by the path with the lower cost.
Navigation

In most applications, agents do not have a straight line to their target. Instead, agents need to be
able to move around obstacles or other objects. Navigation is the process of searching for a path
from one location to another. Graphs can subdivide areas into distinct nodes, which navigation

algorithms use to calculate a path.

18. Wilson, Robin J. Introduction to Graph Theory 4th ed. Harlow: Longman, 1996. 3-4.
19. Wilson. Graph Theory. 39.
20. Guichard. Combinatorics and Graph Theory. 106.

114

T T T I T I T T I T T Y

S TR E X TR LR R R R R RS
Rt nbentRRRRRReRIOD
LS R S R 222 R SR E RS BFE B R
SnaBsEARERERARBR OB
$2 4200000000888 s0ss
L& & & 3 & & 5 F
-n-i:iiiiii‘ YL
i s E S X E E F R 2 E F J L & & F
 EEE R E R R RN N N T E X
S X EE ERE SR E R B " & B &
YT YT Y Ty
S S EEEE R X0 E TEE R
SnsssBnRBRBRBREBS B HOe
EEEE AR SRR E R R OEAE R NN N N
TS TR R TS EEETEIEER
R TR R XS EEREEE NN RN
L AR E R B R R S S EEEE R SR
S, T R FE E E E R R R E R R
sReRRSRBERR R R RBERER D

Figure 2.2.1: Pathfinding solved using Dijkstra's search algorithm checks all nodes for the lowest cost,

Bhattacharya (2011).

L

i B ReXel
+ s R E XN R N N AN

PRS-
t+E F E R E X E E £ K E |
T+l B EE B E R RN N E |
X EE & R & E X E R E
2 X E E X X E X RS
EEEEEREEEE S |
= X X & & & X

DO0.. T YT T T ¥ R
OO W o }
CoCeRedey
Gﬂﬂﬁﬂﬂﬂﬂﬂﬁ

EEX AT L
FE e E TR
TR EEEE
EEEEERE

00 8R

L
LR
.ﬂ
‘l
L
LR
LR |
" a
G

IZETTETE
iﬂil#l
e Eel N ¥ E

Figure 2.2.m: Pathfinding solved using an A* search algorithm uses heuristics to reduce node search

time, which, for this example, takes half as long as Dijkstra's, Bhattacharya (2011).

115

The essence of agent navigation, or pathfinding, involves selecting the lowest cost path in a
weighted graph. A common pathfinding method is Dijkstra’s search algorithm. This calculates
the shortest path by selecting neighbouring nodes that have the lowest weight cost. However,
this can take a long time to calculate if an area is divided into many hundreds of nodes
(Fig.2.2.]).

Instead of only considering a node’s weight based on environmental conditions, the search
algorithm can consider an agent’s current node position, as a second weight. This second weight
is called a heuristic, which is added to a node’s overall cost during pathfinding. The idea is used
in the method called the A* (A star) search algorithm. It works just like Dijkstra’s algorithm by
selecting the adjacent nodes with the lowest cost. However, instead of looking at all nearby
nodes, A* ignores nodes that takes a path further away from the target, which are represented by
a higher heuristic cost (Fig.2.2.m). Ultimately, this optimizes the time spent searching in a given

space.

116

Chapter 2.3

Value Theory

The intentions of this thesis are to quantify architectural arrangements in an airport terminal as
a function of human performance. To achieve this, the thesis must answer the following
questions: what architectural elements influence the value of a space, and how can these

elements be modelled mathematically to quantify an architectural performance?
Methods of Valuation

The thesis’s understanding of architectural value begins with the philosophy of instrumental
and intrinsic value, as a way of quantifying the physical environment. Instrumental value
describes things that are useful for achieving a purpose, or, informally, things that are a means
to an end. 1121 For example, a sign has instrumental value for passengers because they can use it
to find their gate. This is a common functional description of value, which is like the ideas

described for validation and agents.

In contrast, philosophers argue that things are also valuable, or good (ethically), not only
because of the results they provide. [3! Instead, things can have intrinsic value, which are
inherent qualities that are important by themselves. [41[5] For example, the courtesy shown by
airport staff can be intrinsically good behaviour, which passengers can see as valuable by itself.
Although, in Theory of Valuation, Dewey argues that intrinsic value cannot exist without a
means, or use. [®] Additionally, intrinsic value is dependant on the context of what people
(society) define as “good”. This can be different based on the beliefs of individual people. [71 For
example, the courtesy of airport staff is serving the purpose of getting passengers checked in. If

airport staff do not act courteously, then it becomes more difficult to finish checking in due to

1. Hirose, Iwao; Olson, Jonas. The Oxford Handbook of Value Theory. New York: Oxford University
Press, 2015. 14.

2. Dewey, John. Theory of Valuation. Chicago, Ill: University of Chicago Press, 1939. 26.

3. Schroeder, Mark. "Value Theory". The Stanford Encyclopedia of Philosophy (Fall 2016 Edition).
Edward N. Zalta (ed.). https://plato.stanford.edu/archives/fall2016/entries/value-theory.

4. Dewey. Valuation. 26.

5. Schroeder. "Value Theory".

6. Dewey. Valuation. 27-29.

7. Dewey. Valuation. 29-31.

117

poor communication between staff and passengers. Although courtesy is an intrinsically good
behaviour from the view of society, the level of courtesy is dependant on the context and beliefs

of individual passengers.

Meanwhile, architectural research is concerned with valuing design in both the design process
and the built environment. The thesis considers the research of Holm and their work in design
ideas and beliefs. Holm explains that architecture is evaluated on multiple levels and is
dependant on a given perspective. They generalize architecture into the following 3 levels:
aesthetics, functional, and the users. 81 These evaluations can be either judged internally within
the design process, or externally from critiques. 9! For example, an airport can be valued on the
interior design of a terminal, flight processing, or passenger experience. The value of each of
these areas will be different from the perspective of airport developers, airline companies, and
passengers. Airport developers will have higher importance on functional evaluation levels.

Whereas airline companies might focus on the user evaluation levels.

Regardless of the perspective, fundamentally, everyone’s design judgement is based on an
internal expectation or a given standard. o] A standard can simply require designs to meet
maximum and minimum conditions (like tolerance in validation). Or standards can be based on
general criteria like architectural styles, environmental consideration, function, or material and
structure.] Holm explains that these general criteria may not result in quantifiable outcomes,
or universal agreement. 21 Absolute valuation is not practical because of these imprecise
attributes of architecture. Therefore, architects do not know how closely a design meets these
expectations until feedback is given, or, as Farmer et al. writes, “until the judgement is

rendered”. [13]

Holms continues to explain that, because there is no agreement on an exact standard for valuing
architectural designs, the qualities and elements that make up a design are also variable. One

solution to this uncertainty, is to associate design elements with objective conditions or

8. Holm, Ivar. “Ideas and Beliefs in Architecture and Industrial Design”. (PhD thesis, Oslo School of
Architecture and Design, 2006). 324.

9. Collins, Peter, and William Dendy. Architectural Judgement. Montreal: McGill-Queens University
Press, 1971. 146. As cited in Holm, “Ideas and Beliefs”. 324.

10. Farmer, Ben, H. J. Louw, and Adrian. Napper. Companion to Contemporary Architectural
Thought. London; Routledge, 1993. 526. As cited in Holm, “Ideas and Beliefs”. 324.

11. Farmer, et al. Architectural Thought. 526. As cited in Holm, “Ideas and Beliefs”. 324.

12. Holm “Ideas and Beliefs”. 324.

13. Farmer et al. Architectural Thought. 526. As cited in Holm, “Ideas and Beliefs”. 324.

118

phenomena. 41 Holm discusses the work of Cuff, who explains how these objective conditions
are not inherent qualities of a building, but instead are qualities perceived by individual people.
[15] Objective conditions are like physical walls or light from a window, that people can recognize.
One interpretation of objective conditions is like Gibson’s affordances (as seen in perception).
Although, instead of being properties of things that have use for people, objective conditions are

things that people may observe, in general, but are not necessarily purposeful.

Additionally, Cuff repeats the idea that design qualities are dependant on the person making
that judgement. There are 3 levels of people who can make those evaluations: the consumer or
public, design participants, and design professionals. [**] For example, these could be
passengers, airline companies, and airport planners, respectively. Cuff defines design quality as,
ideally, having feedback from all three levels of people. ['7] Although, Cuff mentions it is difficult
getting feedback from the consumer if there is not one specific group of people representing the
public. As Holms states, this is difficult because the evaluation of a design project is dependant
on the aspects people have preference for. 81 Without knowing who the public is, there is no
context for feedback. Therefore, to understand design value, it must be known who people are

and what they consider important.

From this philosophy, the thesis begins to understand what elements influence the value of
architectural space. Holm shows that architectural value is dependant on human beliefs and
interaction. Additionally, Dewey states that the value itself is dependant on the observer’s
context. Therefore, architecture elements must be dependant on a person’s perspective, and the

context they observe them in.
Judgement-Analysis

The thesis seeks to create a mathematical function of architectural space as a function of human
activity. Since every person has their own perspective, each person in the built environment will
interpret architecture differently. To understand how to quantify these differences, the thesis

looks at the work by Lera and their research in judgment-analysis techniques for architecture.

14. Holm “Ideas and Beliefs”. 324.

15. Cuff, Dana. Architecture: the Story of Practice. Cambridge, Mass: MIT Press, 1991. 196. As cited in
Holm “Ideas and Beliefs”. 324.

16. Cuff. Architecture. 196. As cited in Holm “Ideas and Beliefs”. 325.

17. Cuff. Architecture. 196. As cited in Holm “Ideas and Beliefs”. 325.

18. Holm “Ideas and Beliefs”. 325.

119

Weighting of
attribute Sechool plan
before design Description of attribute

Architect 1

0.369 Optimize use of scarce resources
each space to offer alternative possible uses
& contiguous spaces jointly offering other
alternatives
& waste ¢liminated
* nternal circulation
® external vehicular access

0.298 Child’s scale/identification
» recognizable/different spaces
» clarity of space organization
& group identity
0112 Qutside finside relationships
® teaching extends outside
® Openness
0.074 Flexibility
& short term: daily use/activities
& mid term: changing educational approaches
#® |ong term; possible other uses {non-school 71

0074 Orientation faspect fshadowing

0.074 Access
® vehicles: car park (staff, visitors), deliveries
& pedestrians

Architect 2
0.465 Similarity of parts
0.202 Administration hierarchy not reflected in plan

arrangement
0.138 Clear, easily understandable circulation
0115 Flexibility
0.047 Light and airy {as opposed to cosy)
0.033 Simple structure/building system

cT cr

Kay

& - Clossrasm
K= Kitchen

£ - Dinengg raam

L=Library
H - Lssembly bl

Figure 2.3.a: First two architect's priorities and school floor plans, Lera (1981).

120

Lera conducted an experiment to understand how designers’ values influence their own work
and their preference between alternative design choices. 9 The experiment involved a group of
6 architects (and non-architects for comparison) designing individual floor plans of an
elementary school as part of a “judgement-analysis exercise”. [201 The architects listed out their
top 6 attributes, or priorities, for a school and ranked them based on their subjective
importance. Every architect gave different ideas they thought were important, like having
flexibility between inside and outside spaces, having clear circulation, or having good building
orientation (Fig.2.3.a). Although some qualities were similar, every architect had 6 unique

attributes of a school that were important to them.

Lera’s purpose for using a judgment-analysis technique was to assign a value to design
attributes both verbally and numerically. 2 This gives a comparison between an architect’s
school proposal and their given subjective values. All 6 school designs were analysed using a
distinct utility model based on each architect’s subjective priorities. [221 The architects also
valued all the schools based on how the overall designs achieved each attribute. [23] Lera’s
illustrations in Fig.2.3.a show the schools and priorities of the first two architects. The decimal
value beside each attribute is the calculated weight of importance according to the architect’s
ranking (see details in Prioritization section). Note that the architects do not list physical

components, like walls and windows, but instead properties and conditions.

The results of Lera’s experiment compared the design values for each architect’s overall
judgement with the values from the utility model. As the charts in Fig.2.3.b show, the utility
model is able to align closely to the overall judgement for each floor plan. Lera mentions there is
no statistical relationship, or concordance, between the architects together because they had
different design opinions. [241 However, for each architect individually, Lera shows that the

utility model matches the overall evaluation of the floor plans, given the subjective judgement.

The importance of Lera’s research is that subjective design qualities have the potential to be
quantified numerically using a method of ranking attributes, solely based on a user’s

preferences. Like the architects, agents can use a judgement analysis model to quantify the value

19. Lera, Sebastian G. “Architectural Designers’ Values and the Evaluation of Their Designs.” Design
studies 2, no. 3 (1981): 131.

20. Lera. “Architectural Designers’ Values.” 131.

21. Lera. “Architectural Designers’ Values.” 132.

22, Lera. “Architectural Designers’ Values.” 133.

23. Lera. “Architectural Designers’ Values.” 132.

24. Lera. “Architectural Designers’ Values.” 136.

121

SUBJECT 51

Similariny

)

Ergenvectors Indes

05 -~

049

a3 I~

oz =

ol |» | —
a 1

Plan [£ A a E]

SUBJECT 53

Similarity
lewel

|

: .
2 —

4 -

Eigenvector /Index

Q5 [-
0 | /
03 N
0.2 - - AN e
or N

o L S S—

Flan B c E A o £

—_—

SUBJECT 55

Similarity
level
I..

|

? -

.

a
Eigenvector/Index
0.2
0.4
0.3
0.2 =
ol

Q
Flan c o E F P g

T

SUBJECT s52

Similarity
lavel

[

Bt —

Ergerwector/ Index
05 r
04 -
0.3 B
0.2 = S

a0l o

r\ ol | I R t —

L

Plan A & s o 3 F

SUBJECT 54

Similarity

level

Eigenvactar / Index

W -

0.5 B

0.4

0.3 i

02 =

O - \""'--.. e —
I 1 i "7

o - : —

Plan A g o F [£

SUBJECT 56

Semlbanty
level

Eigenvector /index

0.5 r

o4 I

03 | P,

0.2 ..--""".‘ .

0.1 I ___‘__{;_,_.«Gr/

0 L i | . A

Plan 8 3 c o P P
Key + Overall evaluahen

A e Additive wilility model indices

Figure 2.3.b: Comparing utility model values with overall values for each architect, Lera (1981).

122

of architectural space. Therefore, the thesis must consider how architecture influences

passenger preferences in an airport (see details in Airport Domains section).
Prioritization

In Lera’s experiment, the utility model uses a method called prioritization. (25! This is an
approach established by Saaty for analysing hierarchical structures. [2¢] Prioritization is a
process of ranking things based on their subjective importance. 27 It works by comparing
different perspectives by scaling, or normalizing, subjective values of a given attribute using the

property of eigenvectors.

Saaty’s approach for analysis is like the philosophy of instrumental value. He states that people
judge the importance of an object, or activity, based on more than one factor. Each factor is a
target that an activity must fulfil, within a larger hierarchy (Fig.2.3.c). 28] For example, the
activity of boarding a plane is dependant on the factors of a boarding pass and security
clearance, within the larger hierarchy of passenger processing. The method uses weights, which

Saaty associates with priorities, to rank activities relative to each other, based on its importance.

[29]

The process involves a user comparing all possible combinations of pairs of attributes, in the
form of a matrix. [3°] It requires the user to verbally state which attributes are better than others.
(31 For each pair of attributes, the user records its importance on a scale from 1 to 9. If the
attributes have equal importance, then the user records a 1. If one attribute has a higher
importance than the other, then the value is recorded from 2 to 9, where 9 has the highest
importance. [321 For the opposite relationship, the user records the reciprocal value (1/2, 1/9,
etc.). (331 In an agent-based model, individual agents cannot verbally state what their preferences

are. Instead, priority rankings must be randomly assigned based on statistical data.

25. Lera. “Architectural Designers’ Values.” 132.

26. Saaty, Thomas L. “A Scaling Method for Priorities in Hierarchical Structures.” Journal of
mathematical psychology 15, no. 3 (1977): 234.

27. Lera. “Architectural Designers’ Values.” 132.

28. Saaty. “Scaling Method for Priorities.” 234.

29. Saaty. “Scaling Method for Priorities.” 234.

30. Lera. “Architectural Designers’ Values.” 132.

31. Lera. “Architectural Designers’ Values.” 132.

32. Saaty. “Scaling Method for Priorities.” 245-246.

33. Lera. “Architectural Designers’ Values.” 132.

123

Figure 2.3.c: Simple analytic hierarchy process structure, based on diagram by Sander (2009),

redrawn by author.

124

As Saaty generalizes, if the process compares a set of n objects in pairs based on their given
weights, then the objects can be denoted as A4, A,, ..., 4,, and the respective weights as

W1, Wy, ..., Wy, 341 The pairwise comparison can be represented in a matrix as,

A, A, A,
Ay [wi/wr wyfwy e wy/wy

A= A, Wy /Wy wa/wy e Wy /wy
ATl Wn/Wl Wn/WZ Wn/Wn

As can be seen, the matrix has symmetry. The main diagonal will always be equal to one, and the

values in the lower triangular matrix are the reciprocal values of the upper triangular matrix.

Saaty compares different priorities by using eigenvectors, a property of a matrix. Informally, an
eigenvector is a direction that does not change when a 2D space is transformed. It can be
thought of as a fixed reference point that subjective ideas can be compared to, since it does not
change from different perspectives (Fig.2.3.d). Formally, in linear algebra, eigenvectors are non-
zero vectors, whose magnitude is scaled by a factor (eigenvalue) during a linear transformation.
[351[36] If there is a vector space, 4, that undergoes a linear transformation containing a non-zero
vector u, then u is an eigenvector of 4 if A(u) is a scalar multiple of u, which is written in the

form,
A(u) = Au,

where A is a scalar in A, called the eigenvalue, or characteristic root, of w. [371(38] In a finite

dimensional space, then the above equation can be simplified to,
Au = Au,
which can be rearranged into the form, 39

(A=ADu =0,

34. Saaty. “Scaling Method for Priorities.” 235.

35. Khan Academy. “Introduction to eigenvalues and eigenvectors”. Linear Algebra, Alternative
coordinate systems, Eign-everything. https://www.khanacademy.org/math/linear-algebra/alternate-
bases/eigen-everything/v/linear-algebra-introduction-to-eigenvalues-and-eigenvectors.

36. 3Blue1Brown. “Eigenvectors and eigenvalues | Essence of linear algebra, chapter 14”. Youtube,
September 15, 2016. https://www.youtube.com/watch?v=PFDugoVAE-g.

37. Khan Academy. “Eigenvalues and eigenvectors”.

38. 3Blue1Brown. “Eigenvectors and eigenvalues”.

39. Saaty. “Scaling Method for Priorities.” 236.

125

Figure 2.3.d: Eigenvectors after

Before Transformation (”Perspective 1”)

a linear transformation, based on
animation by 3BlueiBrown (2016),

redrawn by author.

Eigenvectors:
vectors that stay on these lines

126

where I is an identity matrix (all ones on the main diagonal, and zero everywhere else). This
requires a non-zero vector, u, that makes the equation equal to a zero vector. [4°1[411 Or a vector

that stays the same after being transformed into a new perspective.

The maximum eigenvalue, A, of a priority matrix, A, determines the consistency of the subjective
judgement. [421 If there is perfect consistency across the judgment weights, then the eigenvalue
should equal the number of priorities, (1 = n). 431 Therefore, an eigenvalue provides validation

for a user’s judgement within the process of prioritization.

In Lera’s experiment, the utility model calculates the final score for each floor plan. A priority’s
final weighting, wy,, is calculated as the average of all column weights, a;;, in the matrix, as a
comparison between two priorities i and j. The given utility function is the sum of all priorities

multiplied by the design’s overall judgement, y,,, in the form, [44]

n
pP= Z Wn¥n,
n=1

where P is a composite vector, representing the final value of the floor plan. If a design has a
perfect score, the priority weights and final value of P, will equal to one. In the context of an
agent-based model, the design judgement value, y,,, must be determined from the agent’s

interaction with the environment (see details in Scoring Architecture section).

The best way to understand how this thesis uses the eigenvector process, is to go through some
examples. In their research, Saaty walks through several applications of prioritization for
economics, politics, and engineering. [45] [46] As an introduction, Saaty explains that eigenvectors
are best understood using probability, which also validates how eigenvectors give the correct
value. 471 For example, imagine there is a bag that has 6 coloured balls, with 1 blue, 2 red, and 3

green balls. The probability of picking each colour from the bagis 1/6, 2/6, and 3/6,

40. Khan Academy. “Eigenvalues and eigenvectors”.

41. 3Blue1Brown. “Eigenvectors and eigenvalues”.

42. Lera. “Architectural Designers’ Values.” 132.

43. Saaty. “Scaling Method for Priorities.” 236.

44. Lera. “Architectural Designers’ Values.” 133.

45. Saaty. “Scaling Method for Priorities.” 252-276.

46. Saaty, Thomas L. “Modeling Unstructured Decision Problems — the Theory of Analytical
Hierarchies.” Mathematics and computers in simulation 20, no. 3 (1978): 153-156.

47. Saaty. “Unstructured Decision Problems.” 153.

127

respectively. These are like the priorities of every colour. The probabilities can be written in a

priority matrix as a ratio to each other, as shown in Figure 2.3.e.

Priority Matrix ® Blue ® Red ® Green
® Blue 1 1/2 1/3
® Red 2 1 2/3
® Green 3 3/2 1
Column Ratios Eigenvectors
® Blue 1/6 0.5/3 0.33/2 0.16
® Red 2/6 1/3 0.66/2 0.33
® CGreen 3/6 1.5/3 1/2 0.50

Figure 2.3.e: Priority matrix and corresponding eigenvectors for each coloured ball.

The process involves taking the priority’s average in every column. For example, the first blue
column ratio is equal to the priority matrix weight (1) divided by the sum of the column (1 + 2 +
3), giving a ratio of 1/6 . Since the weighting is consistent, the eigenvalue of this matrix is equal
to the total number of colours (3). 48] The consistency also means that the normalized
eigenvector is equal to any of the column ratios for all colours. However, if the eigenvalue is not
equal to the number of priorities (1 # n), then the eigenvectors must be taken as the average of
all columns. The final eigenvector weights (w,,) for blue, red, and green are 0.16, 0.33, and 0.50,
respectively, which matches the probability. Note that the sum of all eigenvectors equals one,
which is a property of the weighting. As a result, the eigenvector process is the same as

normalizing the ratio of each coloured ball in the bag.

Saaty also shows how prioritization works in practical applications, with more than one layer of
hierarchy and subjective judgements. 491 For example, imagine a person having to decide
between 3 different job offers. Saaty explains that the person’s reasons for choosing a company
can be described in a priority matrix as shown in Fig.2.3.f. The attributes of each company can
also be ranked using a secondary matrix for each of the person’s 6 priorities (Fig.2.3.g). In the

primary priority matrix, Saaty calculates the eigenvalue as 2 = 6.35, and eigenvectors,

48. Saaty. “Unstructured Decision Problems.” 153.
49. Saaty. “Unstructured Decision Problems.” 153.

128

Research Growth Benefits Colleagues Location Reputation

Research 1 1 4 1 %
Growth 1 1 2 4 1 %
Benefits 1 3 1 5 3 3
Colleagues % % -_13- 1 ,% %
Location 1 1 % 1 1
Eeputation 2 2 2 3 3 1

Figure 2.3.f: Job satisfaction priority matrix, Saaty (1978). The first row says Research is as important

as Growth, 4 times more important as Colleagues, and half as important as Reputation.

Research Growth Benefits
| A B C A B C A B C
A 1 3 3 1 i 1 A 1 3 !
B 4 1 3 4 1 3 B 3 1 1
c 2 ! 1 C 5 2 1 C 3 1 1
Colleagues Location Reputation
A B C A B C A B C
A 1 1 5 A 1 1 7 1 7 9
B 3 1 7 B 1 1 7 B 1 1 5
1 1 1 1 1
¢ 5 7 I c 7 3 5 5

Figure 2.3.g: Company attributes matrices, Saaty (1978). The first row of the Research maxtrix says

the Research at Company A is only a quarter as good as Company B and half as good as Company C.

Research Growth Benefits Colleagues Location Reputation
Amax = 3.02 3.02 3.56 3.06 3 3.21
Company A 0.14 0.10 0.32 0.28 0.47 0.77
Company B 0.63 0.33 0.22 0.65 0.47 0.17

Company C 0.24 0.57 0.46 0.07 0.07 0.05

Figure 2.3.h: Company attributes eigenvectors, Saaty (1978).

129

respectively, as 0.16,0.19,0.19,0.05,0.12, and 0.30. [5°] Since A # n, the person ranking the job
attributes does not have perfect consistency in judgement. However, Saaty states that the
difference of 0.35 is within reason based on statistical analysis. [5] This process is repeated to
find the eigenvalues and eigenvectors for each attribute (Fig.2.3.h). After normalizing, the
composite vectors for each company are A = 0.40, B = 0.34, and C = 0.26. Therefore, Saaty

concludes that Company A is the best choice given this person’s priorities. [52]

With Saaty’s research, the thesis begins to answer the question of how to mathematically model
architectural performance. Holm shows that architectural value is dependant on the perspective
of individual people. Saaty and Lera demonstrate that it is possible to rank any number of
conditions, even if people do not share the same expectations. This process works because
people’s values can be normalized using eigenvectors, to compare different perspectives within
an architectural space. Therefore, the thesis concludes that a value function for architecture
must be dependant on the collective judgement of many people, like an experience survey or
product review. The final analysis of a given architectural value, then must be interpreted using

statistical analysis.
Airport Domains

There are numerous things in an airport that might be important to passengers. Saaty shows
that, regardless of what people’s expectations are, these can be normalized with a certain weight
of importance. The next issue to consider for the thesis’s agent simulation is, what aspects in an
airport are important to people, and how these aspects relate to the physical terminal building.
To understand these factors, the thesis looks to the research of Wiredja et al. and their

passenger-centred model for evaluating airport performance.

Wiredja et al.’s research begins by stating that an effective model for quantifying passenger
experience should use a weight-based indicator approach. [531 This method defines airport
service performance as a function of passenger responses. Based on this approach, Wiredja et al.
summarizes existing techniques for analysing passenger experience. Some relevant methods
they mention are, importance-performance analysis, regression analysis, common factor

approach, fuzzy multi-attribute decision making, and analytical hierarchy process

50. Saaty. “Unstructured Decision Problems.” 153.

51. Saaty. “Scaling Method for Priorities.” 252.

52. Saaty. “Unstructured Decision Problems.” 153.

53. Wiredja, Dedy; Vesna Popovic, and Alethea Blackler. “A Passenger-Centred Model in Assessing
Airport Service Performance.” Journal of Modelling in Management 14, no. 2 (May 10, 2019): 502.

130

(prioritization). [54] Overall, these methods are equivalent to the method of prioritization
described by Saaty. The basic idea involves passengers ranking every attribute within each
airport domain based on their subjective importance. [551 This is followed by assigning a weight-
based metric to compare different passenger perspectives. These methods then quantify
passenger experience using statistics to provide an overall rating for an airport. This confirms

that prioritization is a reasonable assumption for quantifying architectural value in this thesis.

Wiredja et al. explains that the overall performance of an airport, is dependant on the
performance in various sub-areas, where each sub-area has certain attributes. 56 They explain
that existing research normally defines airport performance based on one of two approaches:
service factors or airport domains. 1571 Service factors divide an airport into activities, like
screening, staff courtesy, information, comfort, or money value. Whereas airport domains
organize an airport into areas, like baggage claim, check-in, security, or retail. In their research,
Wiredja et al. mentions that most analysis models tend to focus only on the departure sequence,
but fail to represent a complete passenger experience in arrival, transit, and retail domains as
well. (58] For this reason, Wiredja et al. give a more thorough description of attributes across all
areas, by also organizing activities into processing domains and non-processing domains. [59
These categories better represent passenger experience because people tend to behave
differently between processing (queuing, checking in, etc.), and discretionary (wandering,

shopping, etc.). [60]

Wiredja et al. present a conceptual model for quantifying airport elements, which are
comparable to ontological substances as shown in Fig.2.3.i. (as described in perception). The
model has a hierarchy with four parts: airport domains, passenger-centred indicators, service

attributes, and passenger travel. (61

Airport Domains: areas in a terminal that allow for passenger activities and interaction, like a

baggage claim area.

54. Wiredja et al. “Airport Service Performance.” 496-498.
55. Wiredja et al. “Airport Service Performance.” 502.
56. Wiredja et al. “Airport Service Performance.” 500.
57. Wiredja et al. “Airport Service Performance.” 500.
58. Wiredja et al. “Airport Service Performance.” 501.
59. Wiredja et al. “Airport Service Performance.” 501.
60. Wiredja et al. “Airport Service Performance.” 501.
61. Wiredja et al. “Airport Service Performance.” 501.

131

Theory Hierarchy Example Hierarchy

Airport Domain Baggage Claim

Service Atributes Delivery Time

Secured Delivery

Figure 2.3.i: Passenger-centred model hierarchy, based on theory by Wiredja et al. (2019), drawn by

authour.

Overall Airport Service Performance

| | | | | |
Departure Transit Arrival Departure Transit Arrival

| | | | | |
Check-in Security Disembark Access Facilities Access

Security Bag Transfer Immigration Facilities Retail Facilities

Immigration Customs Retail Retail

Boarding Bag Claim

Figure 2.3.j: Airport performance is dependant on processing domains and non-processing domains,

based on diagram by Wiredja et al. (2019), redrawn by authour.

132

Passenger Indicators: service factor groups that people see as important for the airport

process, like picking up baggage.

Service Attributes: the properties passengers use to judge performance quality, like baggage

delivery time.

Passenger Travel: refers to three types of passenger flows: departure, transit, and arrival;

baggage claim would be part of arrival. [62]

An airport’s overall performance is dependant on these parts within the domains of processing
and non-processing (Fig.2.3.j). The full list of airport domains and their corresponding
attributes according to Wiredja at al. are shown in Fig.2.3.k. These aspects are important for
determining an airport’s overall passenger experience, but not every attribute is directly affected
by architecture. Out of this list of airport domains, the thesis highlights the attributes that
architecture has an influence on, based on the level of impact: direct, indirect, or minor
(Fig.2.3.k).

Direct Impact:

Firstly, any attributes that relate to queuing have a direct impact on architecture. The size of a
queue is dependant on the number of passengers. The more people an airport expects to
process, the more queuing space is required to hold those people. Fundamentally, longer queue
lines require more space, which directly affect the layout of architecture. Secondly, the efficiency
of any procedure, like boarding or baggage handling, is directly influenced by architecture. The
efficiency of a process is concerned with bottlenecks, which are the areas that might restrict
operation or movement. The longer it takes to get passengers checked in, or move bags around,
the more people accumulate in one area, which takes up space. Walls, corners, and corridors can
affect where people walk, or where equipment can move. If people and equipment are unable to
move through spaces, due to poor planning, then the efficiency of that process is negatively
affected. Thirdly, any attributes related to wayfinding are affected by architecture. The location
of signs and the readability of information is dependant on how a terminal is organized and

where people need to go.

For non-processing domains, any attributes related to variety, like retail or transit options, are
directly related to architecture. Every retail shop requires different spaces depending on the

products their selling, or the services they provide. For example, a souvenir shop might require a

62. Wiredja et al. “Airport Service Performance.” 502.

133

Airport Architecture
Domains Influence

Processing Domains

Perception of waiting time or queue length Direct
Check-in Staff courtesy or helpfulness Minor
Check-in efficiency Direct
Staff courtesy Minor
Perception of waiting time or queue length Direct
Secure feeling/thoroughness Indirect
Immigration Perception of waiting time Indirect
and customs Staff courtesy Minor
Efficiency of boarding procedure Direct
Boarding Staff courtesy Minor
Avalibility of aerobridge Direct
Staff courtesy Minor
Secure feeling/thoroughness Indirect
Perception of waiting time or queue length Direct
Baggage Availability of automatic baggage handling Direct
transfer Secured baggage Indirect
Avalibility of aerobridge Direct
The ease of finding a way out Direct
Perception of waiting time on immigration Indirect
Staff courtesy Minor
Perception of waiting time on visa on arrival Indirect
Baggage Perception of baggage delivery time Indirect
claim Secured baggage delivery Indirect
Perception of waiting time or queue length Direct
Staff courtesy Minor
Clear information of customs declaration Indirect

Security

screenin
Deptarture 9

Transit security

. screenin
Transit 9

Disembarkation

Arrival
immigration
Arrival

Customs and
quarantine

Non-Processing Domains

Options of ground transportation Direct
Perception of parking or taxi queue length Direct
Availability of money exchange or ATM Minor
Sanitary condition of restrooms Indirect
Comfort of waiting area/lounge Direct
Departure, | | Airport Facilities | | Availability of information desks Direct
Transit, and Availability of baggage trolleys Indirect
Arrival Availability of internet or Wi-Fi Indirect
Ease of connection among airport terminals Direct
Availability of accomadations/hotel Direct
Variety of shops Direct
Value for money of shops and cafe Minor
Variety of food and beverages Indirect
Perception of shopping facilities Indirect

Airport Access

Retail Area

Figure 2.3.k: Airport domains indicating attributes that are influenced by architecture, based on chart

by Wiredja (2019), redrawn by author.

134

storage area, product shelving, and space for people to browse. [031 Whereas a café requires a
kitchen, a dining hall, and logistics for garbage removal. [64] Likewise, the variety of transit
options requires space for different vehicle types. A shuttle, or bus, requires road and curbside

infrastructure. Whereas a people-mover, or train, requires railway and platform infrastructure.

[65]
Indirect Impact:

Any attributes related to perception are indirectly impacted by architecture. This includes
perception of wait times, secure feelings, or awareness of customs. Observing the number of
people in a space indicates potential wait times, but not the space itself. Architecture can give
the impression of a secure or safe environment using walls or barriers. Although, it is not that a
barrier itself is inherently secure, but the knowledge that it is part of a controlled area that

makes it secure.

Attributes related to functional amenities, like the quality of the washrooms, availability of
baggage trolleys, or access to Wi-Fi, are considered indirectly impacted by architecture. The
location and cleanliness of washrooms can affect where people go to use them. Moving through
a terminal with a trolley can present a different dynamic than just pulling a suitcase. [¢¢] There
can also be areas dedicated for internet access or required infrastructure to make Wi-Fi

available in the terminal building. [¢7]
Minor Impact:

Attributes like staff courtesy, money value, or food quality, only have a minor impact from
architecture. Airport staff can still be friendly regardless of the design of a space. Although, a
poor work environment can negatively affect staff behaviour. The appearance of an expensive
retail area can be enhanced by expressive architecture. Although expensive products, or even
expensive plane tickets, are not dependant on the layout of space. Likewise, food quality can be
enhanced by a nicely designed atmosphere, but architecture does not directly improve food

quality.

63. National Academies of Sciences, Engineering, and Medicine. “Airport Passenger Terminal
Planning and Design, Volume 1: Guidebook”. Washington, DC: The National Academies Press, (2010):
210.

64. National Academies, “Airport Passenger Terminal Planning and Design”. 210.

65. National Academies, “Airport Passenger Terminal Planning and Design”. 281.

66. National Academies, “Airport Passenger Terminal Planning and Design”. 211.

67. National Academies, “Airport Passenger Terminal Planning and Design”. 211.

135

Ideally, a thorough quantification of an airport’s architecture should consider all aspects of
passenger experience that Wiredja et al. have listed. Human behaviour can be influenced by
many factors, so it is likely all these attributes have an influence on the value of architecture.
However, attributes with minor impacts are outside the scope of this thesis’s agent model. In the
process of making the simulation, the thesis limits the airport domains to six attributes to match
the test conducted by Lera, and to simplify the digital model (details in Part 3). Specifically, to
experiment with the architectural value functions, the thesis selects six airport domains that
focus on the departure sequence. This includes three processing domains, check-in, security
screening, boarding gate availability, and three non-processing domains, waiting area

comfort, restroom facilities, and retail area.

To answer this chapter’s initial question, what architectural elements influence the value of a
space, the thesis concludes value is not only dependant on elements like walls, doors, or
columns, which was the first assumption, but, in fact, attributes corresponding to a domain.
Elements, like a wall, only have impact on architectural value, if that element is perceived by
people, while doing an activity, that they feel has importance for that activity. For example, a
wall can have positive value for passengers who are waiting for boarding, if passengers use the
area framed by that wall to linger around (Fig.2.3.1). Likewise, that same wall can have negative
value if it blocks the view of passengers trying to find their gate. Fundamentally, if people
perceive architectural elements that are part of the activities they are doing, then a value for that
architecture can be determined, whether positive or negative. If an architectural element is not

perceived, then it has no value.
Scoring Architecture

The thesis understands the value of an architectural space is dependant on human interaction.
Since every person has their own perspective, each person in the built environment will
interpret architecture differently. Therefore, a complete evaluation of architectural space must
use statistical analysis to approximate judgement from all people. Before this, the thesis must
determine how architectural elements are modelled mathematically, from each person’s
perspective. Overall, the function should calculate how easily spaces allow people to accomplish

their activities.

The thesis uses the term architectural score to mean the subjective performance of a given

activity or element, denoted as the variable y,,. The term architectural value means the overall

136

S ———
—[&/Boarding, Area

Figure 2.3.1: Passengers standing between columns and along the wall of a platform waiting to board

a subway, photo by Mentatdgt (2018).

137

performance, P, after multiplying the score with a priority weight, based on Lera’s utility

function, [68]

n
pP= Z WnYn,
n=1

The thesis proposes a function of architectural score (y,,) that depends on the purpose of the
space, the perspective of the people, how they interact with the environment, and how things
change over time, which can be categorized as purpose, perspective, interaction, and time.
These categories are divided further into 9 quantifiable factors. For any agent in a simulated
domain, the thesis defines their architectural score as a combination of one or more of the
following: priorities, task, space type, field-of-view, perception point, direction changes,

accessibility, connectivity, and time (Fig.2.3.m).
Purpose:

Priorities: Any attributes or activities that are important to a person, whether specific or broad.
In an airport, priorities are attributes of an airport domain. In general, these can be functional,
social, or aesthetic priorities, like the quickest path, a sense of community, or a modern style,
respectively. If a person’s priorities are fulfilled in a given space, then that space has

architectural value for that priority.

Task: A person’s goal, or intensions, in a given space. This is a subjective goal that is unique to
each individual. If people can complete their tasks in a space, then that space has architectural
value. However, a task is not always a priority, it can also be serving a need or a chore. It also
may be different than the original function of the space. For example, a passenger in a baggage
claim hall could be hungry, so their task is to find something to eat. Despite being by the
baggage claim, their intensions are not related to picking up bags, which may result in different
human behaviour. If a passenger cannot find food near the baggage claim, then it does not have

architectural value for that specific task.

Space Type: The space program, or the function of a space. This defines what activities people
can do, and what human behaviours are expected. If a space is being used as intended, then that
space has architectural value. For example, a check-in area is designed for people to pick up

their boarding passes, and passengers are expected to queue in line. If passengers complete

68. Lera. “Architectural Designers’ Values.” 133.

138

Eigenvector weight Binary function Binary function

Isovist area Isovist area Decay function

Normalized function Normalized function Decay function

(

/

Figure 2.3.m: 9 factors for scoring architecture, with corresponding mathematical functions.

139

these activities successfully, then the check-in area has architectural value. Additionally, space
type can also describe non-programmed spaces, like observation points or open areas for people

to linger around.
Perspective:

Field-of-view: Represents visibility, or the area that a person can perceive, through observation
or even through other senses. This is defined geometrically using an isovist. For public spaces,
the more visibility people have, the better the architectural value. More specifically, the field-of-
view is a medium people use to interact with the environment. For example, if there is an
announcement on an intercom for flight boarding, this represents the area a passenger can hear
that message from. Therefore, the locations where passengers can hear the intercom has

architectural value.

Perception Point: The location in a space where a relevant object or feature is perceived, or
understood, by a person. People gain knowledge of where they are by recognizing objects related
to a certain area. If a person takes notice of something, then it has architectural value. The
perception point shows where people learn about new information, which can also indicate
where people might change their behaviour. For example, seeing an x-ray machine tells
passengers that they are entering security screening. This may change passenger behaviour,
knowing they are about to interact with security staff. Therefore, the location where passengers

see the x-ray machine has architectural value.

Direction Changes: The number of times in a space a person changes their mind, decisions, or
trajectory. This includes either a physical change, or a mental change. The more times a person
needs to change their decisions in a space, the less architectural value it has. For example, if a
passenger is lost and needs to walk back the way they came, then this is a physical direction
change that does not have good architectural value. In contrast, if a passenger suddenly sees a
new retail store that they want to go to, then this is considered a mental change that has good
architectural value. In airport processing domains, fewer direction changes are better for both

architectural value and operations.
Interaction:

Accessibility: The ability to interact or engage with a relevant object or feature in a space. If
passengers can interact with elements related to the activity they are doing, then that element

has architectural value. As a counterexample, a passenger walking through a concourse might

140

notice a retail store on the opposite side of a glass partition, which they would like to go to.
Although they perceived the retail store through the glass, the partition prevents the passenger
from walking over to that store. Therefore, because the store is not accessible, it does not add

architectural value for that passenger.

Connectivity: The ability to move, or connect, between two spaces. This can be physical
connections or abstract connections. Spaces that are connected have architectural value. For
example, if a passenger can walk through security screening into the gate concourse, then the
security and gates are physically connected, which has architectural value. The same is true if a
passenger can look out from their gate to their plane through a glass window, then the gate and
plane are visually connected, which also has architectural value. Additionally, two security check
points on opposite ends of a terminal can be abstractly connected to the same security line, or
boarder, even though they are physically separated. This means passengers must cross through
either one of those check points to get to the gates. Since the check points form a secure boarder,

they have architectural value.
Time:

Time: The amount of time a person spends in a space or process. In an airport, this includes
flight times for departure and arrival, or processes like searching and queuing. For activities
relating to flight time, architecture has value if a passenger is on-time. For processing, time is
measured relative to a person’s expectations. For example, in their research, Wiredja et al. states
the average passenger does not want to wait in line longer than 15 minutes. [091 Therefore, if

passengers are waiting more than 15 minutes, then architectural value of that space diminishes.

For each of the 9 factors above, the thesis uses the following mathematical tools to quantify
architectural score: eigenvector weights, binary function, normalized function, isovist area, or

decay function.

Eigenvectors were described in the prioritization process, and this applies to the Priorities
factor. The difficulty of this approach is needing to create a performance score, or value
function, for every unique attribute. If a priority is vague, it can simply require the user to score
the attribute performance on a scale of 1 to 9, like priority weighting. [70] Otherwise, if the
priority can be answered by a yes/no question, then the score is calculated with a binary

function, which gives a value of either 0 or 1. Similarly, a normalized function gives a decimal

69. Wiredja et al. “Airport Service Performance.” 506.
70. Saaty. “Scaling Method for Priorities.” 245-246.

141

value between 0 and 1, like a percentage. This affects Task, Space Type, Accessibility, and
Connectivity. If a task is completed or an element was interacted with, it is given a score of one,
or some decimal value depending on the level of interaction. Otherwise, the score for that

element is zero.

The isovist area is based on the geometry of an isovist, either in 2D or 3D, to show where things
are in physical space. This applies to Field-of-view, and Perception Point. The geometry is
converted to a score based on a ratio of the area size. For example, when a person takes part in
an activity, the average area is calculated based on what a passenger sees. At the perception
point, or when a person interacts with a relevant object, then the ratio is taken between the area

at that point and the average area during the activity,

) Ay < Agyg

1, Ao = Agy

where 4, is the visible area at the perception point, and 4,4 is the average area. The ratio
measures variation. If there is a significant difference between the areas, like an open space
going into a tight space, then the visibility drops, which has a lower architectural value.
Otherwise, if the visibility remains consistent, or the area becomes bigger, then the architectural

score is one.

Understandably, the thesis’s assumption that higher visibility is better than lower visibility may
not be true for all people or conditions. A more thorough value function should consider firstly if
visibility is a person’s priority or not. Additionally, many airport immigration areas are designed
to restrict visibility from outside passengers for the security and safety of airport staff. [72]
Therefore, a better value function for immigration would make sure people cannot see into the
secure areas. A simple modification to the visibility ratio could account for all the locations in
and around immigration to not have any “perception points” that can see airport staff or their
equipment. In essence, if there is a perception point looking into secure areas, the architectural
value for that location can be given a score of zero. Likewise, this can apply to any area which

restricts visibility or public access.

A decay function is an exponential function that starts at one and decreases in value
proportional to its current value. As it tends towards infinity, the value approaches zero. This

applies to factors like Time and Direction Changes. The longer passengers are waiting, or the

71. National Academies, “Airport Passenger Terminal Planning and Design”. 217, 221, 224.

142

Figure 2.3.n: General exponential decay function.

274 LM O O 0 A) O I A
4
05] ! | | -] | []] I |- | 1
0 5 10 15 20 25 30 3 40 45 50 55 60
| | | | | | |

Figure 2.3.0: A piece-wise decay function for a typical passenger waiting time.

143

more times passengers need to retrace their steps, then the architectural score decays
exponentially to zero. The rate of decay is variable and can depend on a passenger’s mood or
characteristics. The general equation used in this thesis to calculate the score of any activity, y,,

takes the form,

-k
0= em(-52),

where t is the time (in seconds, minutes, or hours) or the number of direction changes, k is a
shifting factor (when decay starts), and A is the rate of decay, which is dependant on a person’s
characteristics (Fig.2.3.n). For example, a typical passenger waiting in a queue line, who does

not want to wait more than 15 minutes, can judge the value of time based on the following,

(t—15) t>15
ex -,

yn(t) =4 P 10
1, t<15

where t is the time in minutes, k = 15 minutes is their level of patience, and A = 10 is an
arbitrary characteristic decay factor, in which larger values mean higher tolerance (Fig.2.3.0). If
this passenger is waiting in queue for 25 minutes, then the final score would be y,, (15) = 0.37 or

37%. If the passenger is waiting less than 15 minutes, then the score is simply one.

For any element, if its architectural score is dependant on more than one of the factors above,
then the final score is taken as the average score of all factors. If a given factor has more
importance than another, like departure time for flight boarding, then they can be multiplied by
a higher weight. The architectural value of any element is calculated by multiplying a person’s
eigenvector weight, wy,, and its relative architectural score, y,. The total performance value of
any architectural space is the sum of all the products for each element or priority, from the

perspective of a single person.
Summary

The intention of this chapter was to answer the questions of what architectural elements
influence the value of a space, and how these elements can be modelled mathematically to
quantify architectural performance. The thesis gives a brief description of the philosophical
definition of value, which defines value as instrumental (useful for a purpose, i.e. a wayfinding
sign) or intrinsic (good by itself i.e. airport staff courtesy). Philosophers like Dewey argue that

things never truly have intrinsic value, since every action or object serves a purpose. They

144

explain intrinsic value is not consistent because every person has their own belief about what is

considered valuable or good, which can be different based on the beliefs of a given society.

Meanwhile, research into design values for architecture shows that, although it is common for
designers to organize elements based on function, aesthetics, or the users, there is no universal
standard for valuation. Holm states that architects do not know the value of their designs until
they are given some form of feedback. Cuff explains that architectural feedback is dependant on
the perception of individuals. Although, user feedback is difficult because there is not one type
of person representative of the entire public. Holm adds that it is difficult to value architecture
since everyone has a different perspective, and because architectural attributes involving

aesthetics or society can be imprecise.

However, experiments conducted by Lera show that subjective design values from different
architects can be compared directly through a method of ranking, despite the architects having
completely different design ideas. Lera’s research developed a utility function that can replicate
the subjective judgement from different architects. The utility function works using Saaty’s
method of prioritization, which ranks subjective attributes as a pairwise comparison in the form
of a matrix. The process normalizes design values using eigenvectors, a property of a matrix in
linear algebra that stays the same after changing perspective. The thesis walks through some of

Saaty’s examples to demonstrate how this works.

To figure out what things people find important in an airport, the thesis reviews the research of
Wiredja et al. who states that these things can be organized into processing and non-processing
domains. The thesis summarizes these domains describing which airport attributes have direct,
indirect, or minor impact from architectural choices. The attributes with the greatest impact
from architecture are part of passenger processing like queuing and wayfinding, or elements
that involve logistics like retail storage or transit infrastructure. The attributes with the least
impact involve money value, staff courtesy, or food quality. Although all airport attributes can be
affected by architectural choices to some degree, the thesis selects six attributes for the agent
simulation. Three are from processing domains, which are check-in, security screening, and gate
availability, and three from non-processing domains, which are perception of the waiting room,

restrooms, and retail areas.

The value of an architectural space depends on the purpose of the space, the perspective of the
people, how they interact with the environment, and how things change over time. The thesis

develops nine different factors based on the geometry of space and people’s interaction to

145

evaluate an architectural score. The mathematical tools for evaluating a score are unique to each
activity, which all involve normalizing factors based on the perception of a person. If a person
perceives an architectural element, or interacts with it, then that person scores a one, or some
decimal value depending on the level of interaction. Otherwise, the person scores a zero if there

was no interaction.

In summary, the process of calculating architectural value involves people ranking the
importance of attributes as their priorities, then having them walk through the architecture to
complete a task. If people encounter relevant architectural elements, they score those elements
based on how well they fulfilled their priorities. The final architectural value is a combination of

each person’s weighted priorities and their respective scores based on what they perceived.

146

Part 3:

Simulation Framework

Part 3 walks through the construction of the thesis’s agent simulation. Chapter 3.0 begins by
introducing the Unity game engine, and software components that are relevant for building the
model. The following chapters breakdown the process of specific simulation components. Each
chapter includes a process diagram showing how components work together. This is followed by
a detailed list that highlights a few of the core variables in each class. Chapter 3.1 talks about
how agents are made, their characteristics, and the perception process. Chapter 3.2 details how
the environment is modelled for agent navigation using A* pathfinding. Chapter 3.3 describes
components for airport architecture and value functions. Chapter 3.4 gives a brief summary of
utility components to help control and optimize certain aspects of the simulation. Finally,
chapter 3.5 concludes by stating all the assumptions and the limitations of the thesis’s agent-

based simulation.

149

Chapter 3.0

Unity Components

The goal of this thesis is to illustrate how architectural layouts can be analysed by perceptive
agents. To achieve this, the thesis starts by creating a simplified agent-model that builds on the
same basic principles of existing simulations. The idea is to replicate core functions, like agent
navigation, so that custom behaviour can be built on top of it. Once a basic agent is established,

then functions for architectural spatial analysis can be added.
Unity

This thesis uses Unity software to create the agent-based model. Unity is a game engine that can
create video games and other visualization applications. Although it is primarily used in the
gaming industry, Unity has applications in the architectural and engineering construction
industries for its ability to model and animate buildings during the design process. [The reason
for choosing Unity to create the agent-based model over other programs was because it is
accessible and has strong performance for visualizations. Unity allows the ability to create
custom behaviour through scripting. Custom models can be added to create 3D environments.
From its gaming background, it can easily run animations over time with real-time lighting and
rendering. Unity also has an intuitive user interface that the author was already familiar with,
therefore time spent learning the software is minimized. There is extensive documentation that
helps explain core functions when knowledge is lacking. Finally, the basic version of Unity is free

to use, which still includes core components necessary for creating the agent simulation.

In Unity, projects are made up of two main parts, one is the scene, and the other is the scripts.
The scene is a 3D environment where digital models are displayed (Fig.3.0.a). The models act as
a physical representation of the agents and the architecture while the simulation is running. The
scripts are tools that define the agent’s behaviour, animation, and general mathematical

relationships. They can be added to control objects or parts of the environment.

1. “Architecture, Engineering & Construction.” Unity. Accessed December 2019.
https://unity.com/solutions/architecture-engineering-construction.

150

L IrT— T T —
prefab [__seluct Revert Aaaly
¥ .~ Transform]
Position
Rotation

¥ Characteristics (Script)
pt Characteristics
Target 1 (1)
Target 1 (2)
» Walls
a

+vson Name
Gender

» Spawner ! Walking Speed
» RestrictedGround - » priorities
» DesirableGround Local Arch Value

Start Time
End Time

Local Target GTagetz o
1

2
Starts With Perceptic |
Processir
Path Updote Move 05—
Min Path Update Tmo2 |
Display Perception L[|
Display Path
¥ Field Of View (Script)
¥ Perception (Script)
8 U Capsule Collider
» (| ¥ Itinerary (Script)

Add Component

€ Game
[@Do[A2] @6 |Loisslays sl s6io <[scus O— 1.
1

Assets » Scripts

o Ci s C C C C. N
¥ Materials C# C# Ci# Ci Ci# C#
& Objects

i spaces Ao Agurp. Aipao_ Achiwe. Chnis. FadoN-
> & Models

v G Prefabs k. \ \
G Airport Objects (€1 (€1 (€ (€] (€3 [€3
& materile

(& Scenes Ttinerary Line Hode. Path Pathfindi. PathReq_ Percepti_

M M

Obiject Hierarchy 5 | List of C# Scripts

Scene Environme 6 | Console Erro
Obiject Properties 7 = Game Display

Project Files

Figure 3.0.a: Unity software user interface showing the scene environment models and property

toolbars.

151

Objects inside of a scene are called game objects. They can describe either physical objects or
functional components. Physical objects include anything that is visible in the world like walls,
flooring, doors, furniture, signs, and agent bodies. The functional components are objects that
are not visible in the scene but serve to hold scripts or elements of the environment. In this
simulation, this includes lighting, cameras, agent navigation, and utility scripts. If there is no

physical model associated with these elements, then they are referred to as empty game objects.
Scripts

Scripts in Unity are based in the language C# (C Sharp). This language is described as strong-
typed and object-oriented (class-based). In C#, there are three general concepts for building

information: variables, methods, and classes.

A variable is a name that holds information. Every variable can store different types of
information or data types. Strong-typed means that each type must be defined when making
new variables. [21 This is because certain types only allow specific operations. Some basic data
types are integers (int), decimal numbers or floating points (float), strings of text (string), and

conditional Booleans (bool). Examples of these variables are shown below:

int variablel = 12;
float variable2 = 34.5006f;
string variable3 = “new text”;

bool variabled = true;

Methods in C# work like functions. They are a collection of code that can be executed by calling
the method and inputting variables. [3 Methods allow information to be stored under one
function, which can be called multiple times without having to rewrite the same lines of code

repeatedly. An example of a method may be written like the following;:

2. “Types (C# Programming Guide).” C# Documentation, Microsoft, July 20, 2015. Accessed
October 2020. https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/.

3. “Methods in (C#).” C# Documentation, Microsoft, May 21, 2018. Accessed October 2020.
https://docs.microsoft.com/en-us/dotnet/csharp/methods.

152

void NewMethodl (int variableb)
{

// lines of code, given the input of an integer “variable5”

Classes in C# are a reference type that group together related variables and methods. [4] Like
methods, they are a way of organizing a collection of code that can be called repeatedly, without
having to rewrite information. Classes allow information to be shared through inheritance and
composition. This is an essential characteristic of object-oriented programming. Information is
shared by referencing the class under new variables or methods called an instance. One class
can be used by multiple objects to inherit the same properties. This is useful for agent-based
models, where unique agents, who might represent different people, are still based on

fundamental properties or classes. Examples of a class and a new class instance are below:

class Perception

{

// methods relating to perception

Perception perceptionVariablel = new Perception() ;

For example, all agents have the property of perception. A new class can be made called
Perception, which is inherited in every new instance of an agent. Each agent can have a different
level of perception, but the basic code does not need to be repeated every time. Within each

agent, a new local variable can be assigned with the Perception class properties.

Unity also has built-in classes that take care of common game operations. Some useful classes
include reference to game objects properties (GameObject), vector structures (Vector3), and
time dependant functions (Time). These classes make it easier to create agent movement in a 3D

environment by referencing pre-built classes instead of redefining basic elements.

4. “Classes (C# Programming Guide).” C# Documentation, Microsoft, August 21, 2018. Accessed
October 2020. https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-
structs/classes.

153

Agent Simulation Scripts

In this agent-based simulation, scripts are organized under four categories: agent-related, A*
pathfinding, airport architecture, and simulation utility. The categories are not required for the

function of the agent-based simulation, but they are helpful for organizing all of the behaviours.

Agent-related: This covers all components use to create the agent. These manage agent logic,
properties, characteristics, behaviour, perception, field of view, and movement. It also stores the

agent’s memory, goals, and targets.

A* Pathfinding: This represents the basics of A* (A star) navigation. It defines components for
mathematical graphs like nodes, weights, and paths. This also manages agent pathfinding in the

game space.

Airport Architecture: This stores behaviour for all objects and concepts related to airport
terminals. It includes objects like check-in counters and security screening. It controls the
scheduling for flight arrival and departure times. Additionally, it manages passenger itineraries
for boarding passes and security clearances. Finally, it also includes properties of architectural

elements and calculations for architectural value.

Simulation Utility: This represents any ancillary tools that manages environmental functions
or code optimization. This includes how agents enter and exit the simulation. It covers
optimization and management of agent pathfinding. It also controls the way objects are

displayed on screen, like the agent’s field of view.

Each category contains a collection of classes that perform a specific function, which is listed in

Fig 3.0.b. The framework for each category is explained in the following chapters.
Summary

The intension is to replicate core functions of an agent so that architectural analysis can be
added to it. The thesis uses Unity, a game engine, to create the agent simulation. Unity is useful
for illustrating 3D animations and can incorporated custom behaviour. Unity is composed of
two parts: the scene, which holds the 3D models, and the scripts, which controls the behaviour.
Scripts are based in C#, which works by organizing information into three basic layers:
variables, methods, and classes. Variables store values based on a certain data type. Methods
work like a function, which takes an input variable and produces an output. Classes provide a

way to group information based on inheritance. This allows multiple agents to reference the

154

same properties without having to repeat code. Unity also has pre-built classes, which makes
animating objects in a 3D environment easier. The thesis organizes its simulation classes into
four categories, based on the agent, pathfinding, airport architecture, and utility functions,

which are detailed in the following chapters.

Agent-related

Agent

Controls navigation, movement, and basic
properties

Characteristics

Defines human properties of the agents (age,
gender, walking speed)

Perception

Provides agent behaviour, response to the
environment, and controls decision making

Field of View !

The "isovist" or area of vision that the agent can
perceive, and is also used for navigation

Agent Spawner

Allows the agent to be created in the game world

Path Request Manager !

Controls when “Pathfinding” can recalculate a new
9
route

Field of View Editor !

Handles the display and rendering of the field of
view

Heap 1!

Optimization function used to reorganized nodes
based on weight during pathfinding

Grid 11

Defines the world space into a grid where agents
and objects can exist

Node !

Graph nodes; to make the Grid, and defines point
in an agent's path

Pathfinding !

Determines the lowest cost route between two
points (the A* algorithm)

Airport Architecture

Architecture

Defines the properties of architectural elements
(spaces, areas) and handles the scoring

Airport Objects

Defines the properties of airport objects (check-in
counter, security lines)

Signage

Defines the attributes of signs and wayfinding

Scheduling

Controls how many agents enter and exit the
simulation at a given time, location, and distribution

Itinerary

Stores the agent's tasks and memory (check-in,
procedure, and security clearances)

Figure 3.0.b: Categories of script classes in Unity for the agent simulation.

Chapter 3.1

Agent-related Classes

In the following chapters, the thesis gives a brief overview of each class’s process. This is
followed by a corresponding process flow diagram, and a detailed list showing a small selection
of core variables and methods. For this chapter, agent-related classes include agent,

characteristics, perception, and field of view.
Agent Class

The agent class controls navigation, movement, and basic properties. The thesis’s agent class
builds on the script class by Sebastian Lague called Unit, which was created as part of their
Unity game tutorial on A* Pathfinding (2016). ! Characters in Lague’s game follow a given path
to a target using the unit class and a custom A* method. The unit class can request a new path if
the target position moves while the game is running. The thesis modifies this mechanism to

create a framework for a new local target process.

The agent class process is illustrated Fig.3.1.b. The agent is initialized using Unity’s Start
method. This is activated by the agent spawner class at the beginning of the simulation, and the
agent properties, like walking speed, are provided from the characteristics class. There are three
types of navigation available for the agent, which are built on top of Lague’s unit class
framework: A* direct route, A* perception, and vector perception. The reason the thesis has
three different methods is to illustrate different navigation behaviour in various simulation
conditions. The agent class first checks if perception navigation is enabled. If it is enabled, then
the user of the simulation would have selected either A* or vector perception. If perception is

not enabled, then the user sets the simulation to direct routing.

Agents using direct routing travel to their targets by taking the cheapest cost path from the A*
method. This navigation replicates how agents walk in existing crowd simulations, like FlexSim.
Direct routing can avoid high-cost areas using A*, however, it does not consider what agents

perceive in the environment. Instead, agents follow the path exactly without deviating or

1. Lague, Sebastian. "Pathfinding/Episode 9 - smooth path 02/Assets/Scripts/Unit.cs". GitHub.
December 30, 2016. https://github.com/SebLague/Pathfinding/blob/master/Episode%209%20-
%20smooth%20path%2002/Assets/Scripts/Unit.cs.

156

Figure 3.1.a: Agent following an A* path (black line) to a local target (white wire sphere).

157

updating the pathfinding over time. Once perception is disabled, the agent class bypasses the

decision-making process.

If perception is enabled, then the default navigation is set to A* perception, in which agents
navigate to a local target using the cheapest cost path (Fig.3.1.a). This navigation process better
represents how people navigate an unfamiliar environment. People in real life move relative to
objects they observe around them and change their trajectory as they discover new information.
The process is approximated by providing agents with short-distance paths that are updated
more frequently. It requires the perception class to choose an object the agent can see in their
field of view, and then uses A* to walk towards it, avoiding high-cost areas. When the agent gets
a new local target, the agent class requests a new path from the path request manager class. If
the manager successfully finds a route to the target, then the path points are sent back to the
agent, which they begin walking along. Once the agent reaches their local target, the agent
spawner class checks if the agent is at their final destination. If the agent is at their final
destination, then the agent spawner removes the agent from the world. Otherwise, the agent

class requests a new local target from the perception class, and the process repeats.

The last navigation method uses vector perception. The process is similar to the default
perception navigation, except that it does not use A* to find the cheapest path. Instead, a
straight vector path is created between the agent and the local target to follow. Since the agent is
navigating to local targets over short distances, agent behaviour using A* and straight vectors
are equivalent. The main reason this navigation was created was to reduced pathfinding
computation in very large environments (greater than 100 m long). The precision of the thesis’s
A* navigation for large environments becomes unreliable when calculating path nodes for
intricate architectural areas, (narrow corridors causing agents getting stuck in walls). Therefore,
navigating using vector perception is more manageable for experimenting with larger airport

terminal layouts, without loosing the perception decision-making process.

In summary, the agent class handles navigation and movement. It is a modified version of
Sebastian Lague’s unit class from their Pathfinding tutorial. The thesis’s agent class has three
forms of navigation, which work in different conditions: A* direct route, A* perception, and
vector perception. A* direct route is like the navigation in FlexSim simulations, which bypasses
the perception process. A* perception, which is the default navigation, uses local targets, which
approximates how people navigate unfamiliar environments in real life. The last navigation
replaces A* with straight vectors, to reduce computation issues in large environments. However,

agent perception is still maintained.

158

Agent Class: Process

’ ™ SpawnTimer @ SetSpeed
+ Adds agent into world Sets agent walking speed

Agert Spawner » I

Class Initializes the agent Characteristics
Class

@)

Is perception enabled?

Yes No

Y vclinpercpion WalkWithDirectPath

Navigate with local targets Take shortest path to target
Perception
Class

CreatelocalTarget ([} NoPerception

Decides what the agent does, Replaces local target with
and where fo go final destination

[\
] Is navigation using A*2

No Yes

W goToRandomPoint E}-L. UpdatePath Path Request

Moves agent straight to Makes a new path Manager
destination in field of view Class

Y
OnPathFound RequestPath

Is there is a path to the target? Provides a path between the
I\ agent and the new target

Yes —I\) FollowPath

Agent follows the given path

el pathMoveUpdateThreshold
— 1

So If agent is near local target

Agent Spawner
No 5 AgentsExit Class

Is agent at final destination?
Removes agent from world

Figure 3.1.b: Process logic for the agent class.

Agent Class: Variables and Methods

Variables

IME!H#HE’IIIIIIIIIIIIIIII IiiiiiiiiiiIIIIIIIIIIIIIIIIIIIII

startTime
float
0.0 = =

endTime
float
0.0 = =

World time when the agent enters
the simulation (sec)

World time when the agent exits
the simulation (sec)

localTarget
GameObject

LocalTargets
List of GameObjects

The physical object representing
agent's target in their field of
view

A list of agent's targets, to be
used for pathfinding; holds 2
items, the old and new target

speed
float
1.0, 0.56 - 1.85

turnSpeed
float
5,0

How quickly the agent walks
(default 1 m/s)

How quickly the agent can turn to
a new direction (default 5)

isActive
bool
false, true

startsWithPerception
bool
true, false

aStar
bool
true, false

Check if the agent is moving, it
is not moving by default

Check if the agent enters the
world with perception enabled

Check if the agent is navigating
with A*

Figure 3.1.c: Key variables for the agent class, page 1.

processing
bool

true, false

processTime
float
5,0 =

15.0, 0.0 =

path
Array of Vector3

targetIndex

pathUpdateMoveThreshold
float
0.5

minPathUpdateTime
float
0.2

newCharacter
Characteristics

fov
FeildOfView

percption

Perception

itinerary

Itinerary

Check if the agent is in a
processing state, or interacting
with an object

Holds a random amount of time the
agent 1is processing for (sec),
(default 5 to 15 sec)

A collection of directions
describing the agent's path

The target number stored in the
agent's path

Agent requests a new path if its
within this distance of the final
target

How frequently a path is updated

Reference to the agnet's
characteristics class

Reference to the
view class

agent's field of

Reference to the
perception class

Reference to the
class

agent's Itinerary

Figure 3.1.d: Key variables for the agent class, page 2.

161

J
&

>
X

Iy
L
v

Methods

I!igiHHaIIIIIIIIIIIIIIIIIIIIII |IiiiiiiiiiiiIIIIIIIIIIIIIIIIIIIIIIIII

WalkWithDirectPath
void

- | NoPerception

WalkWithPerception
void

- | UpdatePath

UpdatePath
IEnumerator

LocatTarget | LocatTarget

OnPathFound
void

newPath | FollowPath

FollowPath
IEnumerator

path | position

GoToRandomPoint
IEnumerator

LocalTarget | position

Give agent a direct path to the
target

Makes the agent perceptive and
navigates with local targets,
either using A* or random vectors

Updates the agent path if the
target has moved

Determines if an agent can start
following a path

Iterates through nodes in a path
and moves the agent along the path

Repeating function that makes the
agent move without using A*
navigation

Figure 3.1.e: Key methods for the agent class, page 3.

162

Characteristics Class

The characteristics class provides each agent a unique character and manages their airport
priorities. The data used to define a passenger’s character is based on the International
Maritime Organization's (IMO) standard for evacuation simulations. When an agent is spawned
into a simulation, they are first randomly assigned a gender, either male or female. The
population composition, for age and gender, is randomly assigned based on IMO’s distribution
listed in Fig.3.1.f. (2 The gender of the agent then determines the agent’s walking speed, as listed
in Fig.3.1.g. [31 These charts also determine if the agent has a mobility impairment, which only
affects walking speed. The gender of the agent also determines the agent’s name, which is
assigned from a random list of male or female names. The name is not necessary for the agent to
function during the simulation, but the name helps keep track of which passengers scored which

values when calculating people’s priorities.

Agent priorities are randomly assigned based on six airport domains from the departure
sequence. There are three processing domains, check-in, security screening, boarding gate
availability, and three non-processing domains, waiting area comfort, restroom facilities, and
retail/food area. In the thesis’s simulation, every agent has the same six priorities. In each
character, priorities are randomly ranked on a scale of 1 to 9. Then the ranking is normalized
using the eigenvector process. The name, ranking, and value are stored in a local Priority class.
When the agent is walking through the simulation, the architectural score is accumulated in this
local class. Once the agent exits the simulation, the final score is sent to the architecture class
along with the name of that agent. Sample outputs of the characteristics class are illustrated in
Fig.3.1.h and Fig.3.1.i, which lists randomly assigned character attributes and corresponding

priority matrices.

In summary, the characteristics class defines the agent’s age, gender, walking speed, and airport
priorities. The characteristics for this thesis are based on the IMO standard for evacuation
simulations. The agent’s priorities are randomly assigned when the simulation starts, and the

values are stored in a local priority class, which are updated throughout the simulation.

2. IMO. “Guidelines for Evacuation Analysis for New and Existing Passenger Ships.” International
Maritime Organization (IMO). MSC.1/Circ.1238. October 30, 2007. 6.
3. IMO. “Guidelines for Evacuation Analysis.” 8.

163

Population groups - passengers Percentage of passengers (%)
Females younger than 30 years 7
Females 30-50 years old 7
Females older than 50 years 16
Females older than 50, mobility impaired (1) 10
Females older than 50, mobility impaired (2) 10
Males younger than 30 years 7
Males 30-50 years old 7
Males older than 50 vears 16
Males older than 50, mobility impaired (1) 10
Males older than 50, mobility impaired (2) 10
Population groups — crew Percentage of crew (%)
Crew females 50
Crew males 50

Figure 3.1.f: Population distribution, for age and gender, from the IMO standard for evacuation

simulations (2007), which are used in the characteristics class.

Walking speed on flat terrain

Population groups — passengers (e.g., corridors)

Minimum (m/s) Maximum (m/s)
Females younger than 30 years 0.93 1.55
Females 30-50 years old 0.71 1.19
Females older than 50 vears 0.56 0.94
Females older than 50, mobility impaired (1) 0.43 0.71
Females older than 50, mobility impaired (2) 0.37 0.61
Males younger than 30 vears 1.11 1.85
Males 30-50 years old 0.97 1.62
Males older than 50 years 0.84 1.4
Males older than 50, mobility impaired (1) 0.64 1.06
Males older than 50, mobility impaired (2) 0.55 0.91

Walking speed on flat terrain

Population groups — crew (e.g., corridors)

Minimum (m/s) Maximum (m/s)
Crew females 0.93 1.55
Crew males 1.11 1.85

Figure 3.1.g: Passenger walking speeds, from the IMO standard for evacuation simulations (2007),

which are used in the characteristics class.

N

Priorities

Julianna Kuster
Female

33

1.05m/s

Check-in
Security
Available Gate
Waiting Seating
Restrooms
Food/Retail
Eigenvector

Check-in
Security
Available Gate

Priorities

Waiting Seating
Restrooms

Food/Retail

N WO O 0 O
N~ © O WO O |©O
N W O N0 O
N © O O O |©
N W O NN 0 O
N N N NN N
N W -0 N O O
OO O g ;. O
N W O N 0O O
wWLowWwWw W W w
N W O N 0O O
NN N N NN

Priorities

Carlos Vito
Male

38

1.09 m/s

Check-in
Security
Wiaiting Seating
Restrooms
Food/Retail
Eigenvector

2

O
O
o)
0
i)
g
<

Check-in
Security
Available Gate

Priorities

Waiting Seating
Restrooms

Food/Retail

ol w o w N O
oo o0 00 O O
o W O W A O
A N N N b~ b
o who w N o
W W W W W
oW oow N O
© 0 o 0 o0 oo
o wlEs w N o
W W w W W
ol W o w N~ O

o 060 6o O O

Priority Variation (% min, max)

I I I I T I
-1.0 -0.8 -0.6 -04 -02 0.0 02 04 0.6 08 10

Figure 3.1.h: Samples of randomly assigned characteristics and priority matrices, page 1.

N

Priorities

Maximo Truluck
Male

24

1.31 m/s

Security
Available Gate
Waiting Seating

Restrooms
Food/Retail
Eigenvector

Check-in
Security
Available Gate

Priorities

Waiting Seating
Restrooms

Food/Retail

Priorities

Estella Souders
Female

63

0.58 m/s

Security

Available Gate
Restrooms

C
)
O
(0]
i
@)

Wiaiting Seating
Food/Retail
Eigenvector

Check-in

NN

Security

NENE K~

Priorities

Available Gate
Waiting Seating

R

O @ ool N N B~
c© ©o o © o0 . 0o

Restrooms

Food/Retail

O W o0 N N~
Ao N BN M M
O W oo N N M
N N NN NN
O W o N N M
W WL W W w
g W o N N M
G0 O &0 O O;

O W
NN

Priority Variation (% min, max)

e R PN
-1.0 -0.8 -0.6 -04 -02 0.0 02 04 0.6 08 10

Figure 3.1.i: Samples of randomly assigned characteristics and priority matrices, page 2.

Characteristics Class: Process

Assign a random rating

Agent Spawner
Class

o SerProriies

Py — Assigns agent 6 priorities

D
O

Normalizes prority values

Agent
Class

SpawnerTimer genderValue

Generates new agents Random gender spectrum

St
>

Initializes the characteristics

Give agent a gender

Nl SetAge
50|

Gives agent an age

@

Gives agent a walking speed

speed

Gives agent a name

((4

Agent walking speed

ﬁ PriorityScoring

Handles architecture priorities

* priorities

e Records overall priorities

localArchValue
| 05 |

The passenger’s valuation of
the airport architecture

Records priority scoring

Perception
CreatelocalTarget Class
Determines when the agent
scores the architecture

Architecture
Class

&

Scoring

Calculates architectual value

Figure 3.1.j: Process logic for the characteristics class.

167

Characteristics Class: Variables and Methods

Variables

maleNames
Array of strings

femaleNames
Array of strings

personName
string

genderValue
float
0.0 - 1.0

gender
string

male, female

age
float
18 - 72

walkingSpeed
float
0.56 - 1.85

walkingDisabilityl
bool
true, false

walkingDisability2
bool
true, false

Reference to random list of male
names as text

Reference to random list of female
names as text

Represents the name of the agent
or passenger

Provides a random value within the
gender spectrum

Holds the name of the type of
gender

Holds the passenger's age value

Represents the passenger's walking
speed

Condition for walking disability
type 1; based IMO standard for
evacuation simulations

Condition for walking disability
type 2; based IMO standard for
evacuation simulations

Figure 3.1.k: Key variables for the characteristics class, page 1.

priorityNames
Array of string

priorities
Priority (local class)
1 -9 and 0.0 - 1.0

localArchValue
float
0.0 - 1.0

Reference to a list of
alrport priorities

passeger

A collection of priorities
important to the passenger in the
airport and the corresponing
values

Is the passenger's score of the
airport or architecture

Methods

SetGender
void

genderValue | gender

SetName
void

gender | personName

SetAge
void
=

age, walkingDisability

SetSpeed
void
gender,

age | walkingSpeed

SetPriorities
void

priorities
PriorityScoring
void

priorities |

localArchValue

Description

Determines the agent's gender

Determines the name of the agent
based on gender

Determine the agent's age; based
on IMO number of passengers table
3.1

Determines the walking speed of
the agent; based on IMO walking
speeds table 3.4

Calculates the agent's priorities
and associated weighting

Calculates the agent's
architectural score based on the
priorities

Figure 3.1.1: Key variables and methods for the characteristics class, page 2.

169

Variable

name

string

importance
int
1 -9

eigenvector
float
0,0 =

score
float
0.0 -

Local Class: Priority

Description

The name of the priority as text

The importance value the passenger
gives the priority (on a scale of
1 to 9)

The normalized eigenvector
weighting of the priority (w)

n

The recorded score of the
perceived priority (y,)

The product of the eignvector
weight and the priority score
(P = wﬂ y!])

Figure 3.1.m: Priority local class within the characteristics class, page 3.

170

Perception Class

The perception class is like the agent’s mind, it decides what the agent does when they observe
outside information. The primary job of the perception class is to create a local target for the
agent’s navigation. Objects that the agent observes are identified and categorized in the field of
view class. Then the perception class chooses which of these objects are most relevant to the
agent and selects the actions that best suits the situation. Additionally, the perception class

manages agent behaviour states over time and controls architectural valuation.

The perception class responds based on several types of objects. The first condition is if the
agent sees their final destination. The perception class sets the local target at the destination so
the agent can walk there. If perception navigation is disabled in the agent class, then this
decision process is bypassed, and a local target is generated at the agent’s final destination from
the beginning. Once the final destination is observed, the perception class stores this location in

the agent’s memory.

The second condition is if the agent sees signage (Fig.3.1.n). Firstly, if the agent is not in front of
the sign already, the perception class makes the agent walk up to the sign so they can read it.
The act of reading the sign works by referencing the signage class that is inherent in every
wayfinding object. The perception class checks if the information from the signage class matches
the agent’s knowledge of their final destination, like an assigned gate number. If this
information is the same, the perception class sets the local target based on the vector where the
sign is pointing to. After reading the sign, agents keep a short-term memory of the direction the
sign was pointing. However, after reaching their next local target, the agent’s memory of the
signage is reset so they can learn about new information or re-read the same signage again if the

agent is lost.

The third condition is if the agent sees airport objects, or any significant elements that are part
of the terminal. This includes service counters, kiosks, devices, or seating (Fig.3.1.0). This can
also include architectural features like walls, doors, or circulation. When an agent sees an
airport object, the perception class performs two actions. The first action uses the object to
identify what type of architectural space the agent is currently standing in. In Unity, game
objects can be assigned a tag. All airport objects are tagged with the architectural space they are
a part of. For example, the screening machines are tagged with Security, and the waiting area
chairs are tagged with Gate. If the agent observes any of these objects, then the perception class

records what the tag says, which represents the current architectural space. This is helpful for

171

Figure 3.1.n: Agent perceives the gate sign, as shown by the blue line. The agent state is "read sign”, as

illustrated by the pink colour.

Figure 3.1.0: Agent perceives check-in counters, as shown by the blue line. The agent state is "go to

check-in", as illustrated by the blue colour.

172

deciding what type of behaviour the agent is expected to do in these areas. It also acts as a way
for the agent to remember where they are. The simulation assumes that if the agent can see the
object, then the agent has full knowledge of what it is and what space it represents. The second
action the perception class performs is checking the agent’s itinerary class to decide what they
need to do next. Each agent has an itinerary that provides a checklist for the tasks they need to
complete before boarding their flights. This includes actions like getting a boarding pass or
getting cleared through security. If the agent observes objects that are tied to a required task in
their itinerary, then the perception class makes the agent interact with those objects, like
walking through the screening devices for security clearance. The perception class can only
make the agents interact with these objects if it is required in their itinerary. Otherwise, the
agent will wander around them. In each situation, the perception will set the agent behaviour

state according to the action, like waiting, queuing, or processing.

Once the perception class decides which condition to interact with, the perception class then
calculates the agent’s corresponding architectural score. For example, if the score involves a
processing time, then the perception class will control when to start and stop the timer for that
action. Likewise, the perception class also controls how architectural visibility is recorded during
the process. Once the agent gets to their final destination, the perception class sends the agent’s

final architectural score to the global architecture class, which compiles all agent values.

If the perception class does not recognize a suitable local target, like signs or airport objects,
then the agent resorts to wandering around. The act of wandering works by giving the agent a
random direction to walk in, which is typically a couple metres in front of their current position.
The perception class calls the field of view class to provide a random vector within the agent’s
current perspective. It then creates a new local target at the randomly chosen location. After the
perception class makes these choices, the local target information is sent to the agent class for
navigation. This process repeats every time the agent reaches their local target, which requires

the perception class to make new choices as the surroundings change over time.

In summary, the perception class decides what the agent does. It chooses a response based on
the type of object the agent can see and records this information in memory. The perception
class updates agent states and architectural values accordingly. If the agent does not perceive

anything important, then it makes the agent wander around until it sees something new.

173

Perception Class: Process

St
>

Initializes the perception

O CreatelocalTarget

Go straight to destination Decides what agent does,
given what agent can see Field of View

Class

FindVisibleTargets

What type of obijects can the
agent recognize?

Nothing
visibleTargets RandomPointinFOV visibleSigns
© - = g

Can agent see their final
destination2

Agent wanders around Can agent see signage?

Yes Yes

E GoToTarget ": ReadSign

Agent goes to final destination | Makes agent interact with sign
Signage
Class

» signage

Destination added to memory a Follow information on the sign
aracteristics
Class

v\ ReplacelocalTarget —Tole score
Om

Set object location with B Updates agent priority score
dummy navigation target

¢ MECTTIEEE | >-o[SSCE

: Updates agent state
Calculates process time

Agent
K‘. UpdatePath Class
&

Makes a new path

Figure 3.1.p: Process logic for the perception class, page 1.

174

Perception Class: Process

Architecture
terminalSpaces Class

List of areas in the simulation

KnowledgeOfArchitecture

Agent knows where they are

by regonizing spaces .
7189 9°p [43-] spatialMemory

Agent remembers the spaces
based on the object

Yes ltinerary
" Class
Y Checklist
Can agent see objects related List of tasks to complete
to airport processing?

visibleAirportObijects
<

Completed

un

goTo
Field of View

Class Condition based on activity,

“ChecklIn”, “Security”...

Incomplete Incomplete
Incomplete

s uln -2 I

Agent chooses a counter Agent chooses a screener Agent walks through queue

Incomplete Incomplete Incomplete

. CheckinProcess
&h ™

Bag drop and boarding pass, Screening and bag check, Other activties from checklist
based on processing time based on processing time

Figure 3.1.q: Process logic for the perception class, page 2.

175

Perception Class: Variables and Methods

Variables

agent Reference to agent class
Agent

fov Reference to agent’s field of
FieldOfView view class

itinerary Reference to agent’s itinerary

Itinerary eleas

arch Reference to architecture

Architecture class

character Reference to the agent’s

. . characteristics class
Characteristics

objectRender Reference to the agent's rendering

Array of Renderers for display colouring

currentSpaces Reference to the architectural

GameObject spaces in the world

targetMemory reference to the location
ool agent's target

true, false

exitMemory reference to the location
ool agent's gate or exit

true, false

Figure 3.1.r: Key variables for the perception class, page 1.

“ ”SearchStartTime
float
0.0 = e

“ ”"SearchEndTime
float
0.0 - =

Y ”StartTime
float
0.0 — =

“ "EndTime
float
0.0 = e

“ ”StartDirChange
float
0.0 =

“ ”EndDirChange
float
0.0 = =

“ "AwareStartTime
float
0.0 — e

“ "AwareEndTime
float
0.0 = =

Time starting search,
with respect to any variable:
“check-in”, “security”

Time ending search,
with respect to any variable:
“check-in”, “security”

Time when the agent starts a
process, with respect to any
variable: “check-in”, “security”

Time when the agent ends a
process, with respect to any
variable: “check-in”, “security”

Starting number of direction
changes, with respect to any
variable: “check-in”, Y“security”,
\\gate//

Ending number of direction
changes, with respect to any
variable: “check-in”, “security”,
\\gatell

Time when the agent knows where to
find their target, with respect to
any variable: “gate”

How long since the agent got
information about their target,
with respect to any variable:
\\gate//

directionChanges
float

spatialMemory
List of strings

ratiolist
List of floats

isPerceptive
bool
true, false

Stores the number of times the
agent makes a move in a new
direction

Empty list to store agent's memory
of where they are

Empty list to store agent's
visibility

Whether or not the agent navigates
by percpetion or direct path; set
to perceptive by default

Figure 3.1.s: Key variables for the perception class, page 2.

possibleStates
List of strings

agentState
string

displayColourState
bool
true, false

colours
List of Colors

List of possible agent states as
text

The current state of the agent as
text

Toggle to display the agent in
colour states or random colours

Stores agent states as colours

wanderingColour
Color
RGB: 153, 217, 255

toCheckInColour
Color
RGB: 0, 77, 166

toSecurityColour
Color
RGB: 166, 0, 255

queuingColour
Color
RGB: 255, 217, O

processingColour
Color
RGB: 255, 128, O

readSignColour
Color
RGB: 255, 102, 255

waitingColour
Color
RGB: 255, 0, O

boardingColour
Color
RGB: 20, 115, 0

State display colour while agent
is wandering around or searching

State display colour while agent
is going to the check in area

State display colour while agent
is going to the security area

State display colour while agent
is queuing or in a line

State display colour while agent
is processing or interacting with
an object

State display colour after agent
has read a sign

State display colour while agent
is waiting

State display colour while agent
is boarding

Figure 3.1.t: Key variables for the perception class, page 3.

Methods

AddColours
void

colours | colours

ChangeColour
void

objectRender | newColour

Description

Function adds colours states to a
list

Function changes the colour of the
agent for a given state and colour
name

NoPerception
void

isPerceptive | -

Createl.ocalTarget
void

FindVisibleTargets | ReplacelocalTarget

ReplacelocalTarget
void

targetPosition | localDummy

GoToTarget
void

visibleTargets | score

Navigates agent directly to
destination, if agent is not
navigating by perception

Controls where the agent decides
to go, given what objects are
visible to the agent and what the
agent is doing

Replaces a local target position
with a dummy target in the agent’s
field of view

Sends agent to final destination,
changes state, and records a score

ReadSign
void

signage | ReplacelocalTarget

Queuing
void

newLine | ReplacelocatTarget

CheckInLine
void

newlLine | ReplaceLocatTarget

CheckInProcess
void

itinerary | score

Controls interaction with signage,
and determines how agent respond
to given information

Function handles interaction with
queue lines

Handles the selection of a
check-in counter

Handles the check-in processing,
agent states, and scoring

Figure 3.1.u: Key methods for the perception class, page 4.

9 4
A

SecurityLine
void

newLine | ReplacelocatTarget

SecurityProcess
void

itinerary | score

KnowledgeOfArchitecture
void

currentSpaces | spatialMemory

Delta
float

_start, end | finalTime

LookDirection
Vector3

_pos, _target | direction

AddVisibilityTolist
IEnumerator

ratiolList | ratiolList

AverageVisibility
float

ratiolList | average

DirectionChangeRatio
float

directionChanges | ratio

Handles the selection of a
security screener

Handles the security screening,
agent states, and scoring

Controls what the agent does when
it sees architectural elements,
and adds the architecture to
memory

Calculates how much simulation
time the agent spent doing
something given a start and end
time in seconds

Function that makes the agent look
in the direction of an object

Adds the current visibility wvalue
to a list (updated once per
second)

Determine the average visibility
values from the visibility ratio
list

Calculates the ratio of direction
changes

Figure 3.1.v: Key methods for the perception class, page 5.

180

Field of View

The field of view class is responsible for creating the isovist geometry, identifying objects that
are visible to the agent, and providing vector locations for local targets. The thesis’s field of view
class is a modified version of Lague’s class for their Unity game tutorial on Field of View
Visualizations (2015). 4] Lague’s work provides the logic of the isovist geometry, the in-game
display of the field of view, and the method for identifying visible objects. The thesis’s
contribution to the field of view class includes categorizing objects based on airport architecture,

the method for agent wandering, and the calculation of visibility area.

The field of view is based on the geometry of an isovist. Lague built the isovist from a collection
of numerous raycasts, or vectors, projected from the agent’s position (Fig.3.1.w). The location
where the vectors intersect with an object are called the viewpoints. The viewpoint vectors are
combined into thin triangles, whose vertices are defined in an array based on the triangle
number. This can be generalized for any number of raycasts. The more raycasts there are, the
more viewpoint vectors, and therefore, the more refined the agent’s field of view can be. In some
cases, convex corners of an object may not be captured properly if there are not enough
viewpoints. Lague solves this issue by performing an iterative search around an object’s corners.
The search repeatedly calculates midpoint vectors between max and min viewpoints, until the

difference between the corner and midpoint vector is within a small enough tolerance (Fig.3.1.y).

Objects within an agent’s field of view are detected based on the interaction between object
layers. In Unity, all objects can be assigned a layer, which is defined manually in the model
properties. Each type of object in the airport environment is given a unique layer. This includes
layers for targets, obstacles (walls, partitions), signage, other agents, and airport objects (kiosks,
counters, gates). The field of view class projects out raycast vectors from the agent within the
radius of the given field of view. When the simulation begins, these raycasts are sent out
repeatedly over time (around 5 raycasts per second). There are raycasts specifically looking for
each of the defined layers. If a given raycast collides with an object that has the same layer, then
that object’s information (name, position) is stored into a corresponding list for that object type.

These lists are then sent to the perception class for the agent to interpret.

A key function of this thesis’s agent model is the ability for agents to wander around if they are

lost. The act of wandering, or searching, involves repeatedly selecting random direction vectors

4. Lague, Sebastian. "Field-of-View/Episode 02/Scripts/FieldOfView.cs". GitHub. December 28, 2015.
https://github.com/SebLague/Field-of-View/blob/master/Episode%2002/Scripts/FieldOfView.cs.

181

Field of View Construction

Figure 3.1.w: Generalized construction of the field of view, based on diagram by Lague (2015),

redrawn by author.

Figure 3.1.x: Agent in front of a wall showing their field of view.

182

Corner Refinement

Figure 3.1.y: Convex corners are refined by selecting a midpoint vector between a max and min

viewpoint, based on diagram by Lague (2015), redrawn by author.

Figure 3.1.z: A random direction vector for wandering is selected towards the longest visible direction,

illustrated by the red line and sphere.

within the field of view for the agent to walk to. The function imitates wandering by firstly
selecting the longest vector in the agent’s field of view. This makes sure the agent keeps walking
to the end of a given corridor or moving towards open areas if they encounter confined spaces or
split paths. The wandering function searches for the longest vector starting from directly in front
of the agent, then alternating searching viewpoints to the right and left of straight ahead. Once
the longest vector is found, another viewpoint is randomly selected within a range greater than
or less than the longest vector. This allows agents, who may be lost, to not directly follow one
path, which is more natural of wandering. The function also naturalizes wandering by selecting
random distances to walk, ranging anywhere from one to four metres ahead (Fig.3.1.z). If an
agent encounters a dead end, then the function provides a direction vector in the opposite
direction to the wall or obstacle. Once a random direction vector is established, this is sent back

to the perception and agent classes for navigation.

The final responsibility of the field of view class is to calculate the average visibility of a given
space. The area of an isovist is approximated as a sum of viewpoint triangles. As the agent moves
throughout the simulation, the field of view class constantly updates this calculation. The
average visibility is based on the current area the agent can see divided by the maximum area
the agent observes over time. For example, if the agent moves from an open courtyard to a small
corridor, then the visibility ratio will be low. By contrast, moving from a confined area into an
open area would give a high visibility ratio, which is more desirable. As the agent encounters
different sized spaces, the field of view class updates the maximum area. The final visibility ratio
is then sent to the perception class for calculating the average visibility of a particular space, as

needed.

In summary, the field of view class is responsible for creating the isovist geometry, identifying
visible objects, and calculating the visibility. The thesis’s field of view class is based on the class
created by Lague for his Unity tutorial on field of view visualizations. The field of view geometry
is created from raycast vectors projected from the agent by combining viewpoints into a
collection of thin triangles. Objects are identified using layers, which is assigned based on the
object type, and they are detected using raycasts that are constantly projected from the agent
over time. The class also determines a random direction vector within the agent’s field of view,
to imitate wandering behaviour, if the agent does not observe any relevant objects. Finally, the
visibility of a given space is calculated based on the change in field of view area over time, which

is then sent to the perception class for final calculation.

184

Field of View Class: Process

St
>

Initializes the field of view

SetFieldOfViewDisplay FindTargetsWithDelay \/ DrawFieldOfView

Makes field of view visible Searches for objects over time Contructs field of view

v FindVisibleTargets

Looks for certain object types

AddVisibleObjectsTolList
[<€+]

Organizes object types into lists

.‘ visibleSigns "E visibleAirportObjects
-

Agnet’s final destination Signage and wayfinding Obijects related to the airport

CreatelocalTarget
Decides what the agent does,

and where to go

A o

List of projected points

Perception
Class

No Visible

Targets v RandomPointinFOV v AreaOfFOV

Agent wanders around Agent wanders around

2 ReplacelocalTarget v RatioOfFOV
Om

Navigates to random point Agent wanders around

Perception Perception 5,7 AverqgeVisibiliry

Class Class
Calculates the visibility score

Figure 3.1.za: Process logic for the field of view class.

185

<) e

Field of View Class: Variables and Methods

Variable

viewRadius
float
1.0 = =

viewAngle
float
0 - 360

Variables

Description

Radius of the agent’s field of
view

Visible angle range of the agent’s
field of view

N

NN
.

7/ o=
7

NN
w

NN
FT_'

targetMask
LayerMask

obstacleMask
LayerMask

signMask
LayerMask

agentMask
LayerMask

airportObjectsMask

LayerMask

layer assigned to targets
the agent is looking for

layer assigned to obstacles
the agent cannot walk through

Game layer assigned to signs that
the agent can read for inforamtion

Game layer assigned to other
nearby agents

Game layer assigned to airport
objects (counters, benches,
kiosks, etc.)

A A
m

visibleTargets
List of Transforms

visibleObstacles
List of Transforms

List containing targets the agent
can see

List containing obstacles the
agent can see (anything that
prevents the agent from walking)

Figure 3.1.zb: Key variables for the field of view class, page 1.

visibleSigns
List of Transforms

visibleAgents
List of Transforms

visibleAirportObjects

List of Transforms

List containing signage the agent
can see

List containing other nearby
agents that the agent can see

List containing relevant airport
objects that the agent can see

meshResolution
float
10

edgeResolvelterations

int
4

edgeDstThreshold
float
0.5

currentMaxAreaOfFOV
float
1

viewMeshFilter
ViewCastInfo

viewMesh
Mesh

viewPoints
List of Vector3

displayFieldOfView
bool
true, false

The ratio of view angle to the
number of view point lines (i.e.
160 degrees gives 1600 view
points)

The number of times the location
of the edge of an object is
refined

The distance tolerance when
finding the edge of an object

The initial field of view area
when calcualting visibility ratio
(1 m?)

Stores an in-game mesh filter for
rendering

Reference to the mesh class

List of projected points from the
agent in a field of view

Toggle for displaying the field of
view during the simulation

Figure 3.1.zc: Key variables for the field of view class, page 2.

Methods

Description

FindTargetsWithDelay Reoccruing function determines
IEnumerator when the agent searches for
objects in their field of view

delay | FindVisibleTargets

SetFieldOfViewDisplay Controls if the field of view is

void diplayed during the simulation

displayFieldOfView | -

FindVisibleTargets Manages lists for collecting

void certain visible object types

- | AddVisibleObjectsToList

<) g <] <

AddVisibleObjectsTolList Adds any type of object that is
void visible to the agent into a new

list, given the list name and
visibleObjects, objectMask | - object layer

DrawFieldOfView Constructs the field of view as a
void collection of connected triangles
between view points

viewPoints | viewMesh

MaxAreaOfFOV Determine the theoretical maximum
float field of view area

viewRadius, viewAngle |

AreaOfFOV Calculates the area of the agent's
float current field of view

viewPoints

RatioOfFOV Determines the ratio of the
void current field of view area to the
maximum area observed by the agent

AreaOfFOV | ratio

RandomPointInFOV Calcuates a random point vector in
the agent's field of view; for the

void purpose of wandering

N
M
4

newLine | ReplacelLocatTarget

ProximityDelay Function delays finding a new
point in the field of view if the
agent i1s standing too close to
_obstacle, distance | close another agent

! @

—

IEnumerator

—

Figure 3.1.zd: Key methods for the field of view class, page 3.

FindEdge
EdgeInfo (local struct)

Cast | minPoint, maxPoint

ViewCast
ViewCastInfo (local struct)
globalAngle | ViewCastInfo

DirFromAngle
Vector3

angleInDegress | Vector3

ViewCastInfo
struct
hit, point, dst, angle

EdgeInfo
struct

pointA, pointB

Function determines the edge
object in the field of view

Determines the location of a
point, if it hits an object,
a view angle

Determines the global vector
location given an angle

Local structure properties that
defines a direction vector, angle,
and if it intesects an object

Local structure properties that
defines the start and end of a
line or edge

Figure 3.1.ze: Key methods for the field of view class, page 4.

Chapter 3.2

A* Pathfinding Classes

The thesis uses an A* search algorithm to determine agent pathfinding and navigation in the
simulation environment. All of the thesis’s A* classes are based on Sebastian Lague’s Unity game
tutorial on A* Pathfinding (2016). M1[21 The key classes for A* Pathfinding are grid, node, and
pathfinding. Lague gives a thorough description of how the A* pathfinding is made. Therefore,

the following chapter gives a summary of how it applies to the thesis’s simulation process.
Grid Class

The simulated environment is built as a grid of tiles, which the agent uses to navigate. The grid
class defines these tiles as a node structure, or graph, which establishes the network for the A*
algorithm. In the Unity scene, the grid class is assigned to an empty game object. The user of the
simulation sets the node (tile) size, as a radius, and the world size as the number of tiles in the x
and y directions. For the thesis’s simulations, the node size is set to 0.1 m, which means each tile
is 20 cm wide or 25 tiles per square metre. This provides a balance between mapping intricate

architectural spaces and computation time (Fig.3.2.a).

Before the simulation starts, the user must assign environment objects to either walkable or
unwalkable layers and corresponding penalties. In most cases, walkable layers are the floor
levels and unwalkable layers are walls, columns, and partitions. Depending on the type of
equipment, airport objects are also treated as an unwalkable area, like service counters. Most
walkable regions have a penalty of zero, whereas unwalkable regions are undefined. Walkable
areas can also be assigned a higher cost penalty (magnitude of 10 to 50), which can influence

agent navigation, like restricted areas.

When the simulation is initialized, the grid class iterates through all the tiles in the world. It

determines which tiles intersect with each walkable region in the scene environment. The grid

1. Lague, Sebastian. "Pathfinding/Episode 7-smooth weights/Assets/Scripts". GitHub. December 30,
2016. https://github.com/SebLague/Pathfinding/tree/master/Episode%209%20-
%20smooth%20path%2002/Assets/Scripts.

2. Lague, Sebastian. “A* Pathfinding (Eo1: algorithm explanation)”. Youtube. December 16, 2014.
https://www.youtube.com/watch?v=-L-

WgKMFuhE&list=PLFt_ AvWsXlocq5Umv3pMC9SPnKjfpgeGW&index=1.

190

Figure 3.2.a: Simulated environments are divided into grid tiles for A* navigation. Every tile an object

touches is considered part of the object's area, even if the object dimensions are smaller.

191

class also has a function that blurs the boundary between walkable and unwalkable areas. This
results in a more naturalized walking path, which discourages agents from walking too close to
unwalkable walls or high-cost areas. Once the grid is calculated, it is then sent to a prebuilt
Unity function to be display in the scene. An example of a finished grid output can be seen in
Fig.3.2.b. The walkable (low cost) areas are in light gray, the unwalkable areas are in red (walls),
and there is a high-cost walkable area represented in black. Also note the blurring effect which

creates a dark (high cost) gradient along the perimeter of the walls.

In summary, the simulated environment is built as a collection of grid tiles. This provides a
graph node structure for the A* search algorithm. The tile, or node size, must be assigned by the
user before the simulation begins. The environment must also be assigned into walkable and
unwalkable areas, which determines where agents can navigate. Some walkable areas can be
assigned higher cost values, which can influence agent navigation. There is also a blurring effect

that naturalizes how close agents walk around walls.

Grid Class: Process

A I'_' gridSizeX, gridSizeY

IS Sets the node, or tile, size Sets the number of grid tiles

Node > “

Makes the node structure Initializes the grid

PR walkableRegions

. Builds the world grid SS==% Areas the agent can walk

.‘E-

Collection of node coordinates Soften penalty weight areas

7 CIEETEEES

Display grid files and penalty

Figure 3.2.c: Process logic for the grid class.

192

Walkable Areas -

Low Cost High Cost

Unwalkable Areas

Figure 3.2.b: An example of walkable and unwalkable areas from a grid environment.

Grid Class: Variables and Methods

Variables

displayGridGizmos Toggle to display grid during the
bool simulation

true, false

unwalkableMask Layer for objects that the agent

LayerMask cannot walk through

gridWorldSize Stores the size of the world, or
number of grid tiles in two

Vector2 dimensions

(x,y)

nodeRadius The radius size of the node, or
float grid tiles

0.1

walkableRegions Area types that the agent can walk

Array of TerrainTypes on

obstacleProximityPenalty The cost of nodes around obstacles
float
50

walkableRegionsDictionary Stores a collection of areas that
the agent can walk on

Dictionary
<key, value>

walkableMask Layer for objects that the agent

LayerMask can walk on

grid Contains coordinates of node that
Node make up the grid world

[x,V]

Figure 3.2.d: Key variables for the grid class, page 1.

nodeDiameter
float
2 x nodeRadius

gridSizeX, gridSizeY
int
0 - oo

penaltyMin, penaltyMax

int

2147483647, -2147483648

MaxSize
int

gridSizeX * gridSizeY

CreateGrid
void

gridSizeX,Y | grid

BlurPenal tyMap
void

blueSize | grid
GetNeighbours

List of Nodes
node | neighbours

NodeFromWorldPoint
Node

worldPosition | grid[x,y]

OnDrawGizmos
void

grid | -

The diameter of the node, or grid
tile

The number of grid tiles, or
nodes, in the x and y directions

The minimum and maximum values for
a walkable penalty when burring
neighbouring tiles

Methods

Method

Description

Stores the total number of tiles
in the world grid

Builds the grid based on walkable
and non walkable objects
intersecting with it

Softens the transition between
high and low pentaly areas

Determines the neighbouring tiles
given a certain node in the grid

Determines a given node in the
grid based on an object's vector
position in the world

Unity funciton that displays
objects for debugging; to display
penalty and grid depth map

TerrainType
class
terrainMask, pentaly

Local class representing different
area types and penalty values

Figure 3.2.e: Key variables and methods for the grid class, page 2.

Node Class

The node class is responsible for managing the mathematical nodes of a graph and identifying
physical points in space. The simulation uses nodes in a graph structure to build paths for
agents to follow. These types of nodes define the areas that an agent can walk. Nodes are also
used to identify the location of objects in architectural space. This includes the location of
airport objects like service counters or queues, and architectural conditions like walls or
thresholds.

Nodes are made up of two parts. The first part is the properties defined in the grid class. These
are the node world position as a direction vector (x, y, z), the co-ordinates on the grid as an
index of x and y, the walkability (if the agent can walk on the node), and the movement penalty
(to discourage agents walking). When identifying an architectural component, the number of
nodes the component intersects with represents the space that it occupies. This information is

either translated to agents as a vector location or an unwalkable area.

The second part is the costs associated for the A* pathfinding. Nodes are given three values to
determine how useful a node is for navigating to a target. These values are referred to as the G
cost, the H cost (heuristic), and the F cost. The G cost is the distance between the current node
to the starting node, and the H cost is the distance between the current node and the target
node. The F cost is the sum of the G cost and the H cost. This represents the total distance from
the start to the target node, if the path goes through the given node. When the pathfinding

function is evaluating any node, it considers both the total F cost and the movement penalty.

In summary, the node class creates node structures for mathematical graphs and physical
spaces. Nodes can represent areas an agent can walk or the location of objects in space. If nodes
are representing architectural features, then the area they occupy is translated into vector
locations. A* pathfinding uses nodes structures to evaluate paths based on a cost system. The
total cost of a node for travel is based on the distance to the start and target locations and a

movement penalty.

196

Node Class: Variables and Methods

Variables

walkalbe Checks if the agent can walk on
bool the node

true, false

worldPosition The world space vector location of
the node
Vector3

(x,¥,2)

gridX, gridY The grid position in the x and y
it directions

0 - gridSizeX,Y

movementPenalty The node's weight, based on the

int grid penalty

0 — oo

gCost Distance from the current node to

ot starting node

0 — o

The heuristic cost, or the
distance from current node to the
end node

parent Reference to a neigbouring node
Node where the new node is coming from
[x,Y]

heapIndex Reference number for where the
node is in the heap structure

Figure 3.2.f: Key variables for the node class, page 1.

197

Methods

Node Constructs a node based on given
void properties

walkable, position, grid, penalty

fCost The total node cost as a sum of
T the gCost and hCost

gCost, hCost | fCost

HeapIndex Gets and returns the heap index
int reference number

heapIndex | heapIndex

CompareTo Compares the value or cost
int difference between two nodes

nodeToCompare | compare

Figure 3.2.g: Key methods for the node class, page 2.

198

Pathfinding Class

The pathfinding class decides what route the agent must follow to reach their target.
Fundamentally, this class is the A* search algorithm, which is responsible for calculating the
lowest cost path between two points. The pathfinding class is also responsible for converting the
list of nodes from the path into vector directions, which represents co-ordinates that the agent

class can follow.

The pathfinding class begins by identifying two nodes on the grid network, one as the starting
node of the path and the other as the target node. Lague’s A* method works by sorting nodes
into two categories, open set and closed set. The open set contains nodes to be evaluated, and

the closed set contains nodes that are already evaluated. 3!

The goal of the A* method is to find the cheapest path from the starting node to the target node.
Lague explains that the A* method begins its search from the starting node, which is labelled as
the current node. The A* then checks each of the current node’s neighbours to determine which
one has the lowest total cost (F cost). The neighbour that has the lowest cost becomes the new
current node. Once the new current node is selected, then the A* checks its new neighbours to
find the next lowest cost node. This process repeats until the A* reaches the target node
(Fig.3.2.1). If two nodes have the same cost, then the A* chooses the closest node to the start
position. The A* also double checks if the node is walkable before evaluating it. If a node has a
neighbour that has already been evaluated, or is in the closed set, then the A* skips it. However,

if the A* discovers a shorter path to a node in a closed set, then it will update its F cost value.

Once the A* reaches the target node, and the node’s costs are evaluated, the pathfinding class
retraces the path back from the target node to the start node. The pathfinding class records each
of the node’s positions as a direction vector. These direction vectors are compiled into a list of
waypoints. The path request manager then sends these waypoints to the agent class as a path

structure, which the agent can start following.

In summary, the pathfinding class performs the A* search algorithm to find the lowest cost path
between the agent and its target. The A* method involves repeatedly checking neighbouring
nodes from the start node, to determine the nodes with the lowest cost path to the target. Once
the A* finds the cheapest path, the nodes are converted into vector directions, which are

compiled into a path of waypoints that is then sent to the agent to follow.

3. Lague. “Eo1: algorithm explanation”. 7:45.

199

Figure 3.2.h: Pathfinding creates a path (black line) between nodes along a tiled grid to a target node

(white wire sphere).

200

Pathfinding Class: Process

10 58 10 38
Cfelalw] ||

14 54010 44314 34
felsla] | |

10 58 10 38)20 28 48 20
HERAEASNE
14 54310 4414 34§24 2434 14§44 10
EEE NN

44 20§44 10| 48
e

G cost | distance from starting node Total cost from A to B

m G cost + H cost

. Start/End Node . Open Node . Selected Node

Figure 3.2.i: Lague's A* pathfinding process calculates the cost of neighbouring nodes as a sum of its

distance to the start and end nodes. Based on animation by Lague (2014), redrawn by author.

201

Pathfinding Class: Variables and Methods

Variables

requestManager
PathRequestManager

grid

Grid

Description

Reference to the path request
manager class

Reference to the grid class

Methods

Method

StartFindPath
void
startPos, targetPos | FindPath

FindPath
IEnumerator

startPos, targetPos | waypoints

RetracePath
Array of Vector3

startPos, targetPos | waypoints

SimplifyPath
Array of Vector3
path | waypoints

GetDistance
int
nodeA, nodeB | dst

Description

Controls when to begin looking for
a path, given a start and an end
position

The A* search algorithm;
reoccuring function that
calculates the lowest cost node
path between two point

Determines the path vectors
between two points

Resest the order and direction of
the path waypoints

Determines the world distance
between two nodes

Figure 3.2.j: Key variables and methods for the pathfinding class.

202

Chapter 3.3

Airport Architecture Classes

This chapter covers all classes related to airport architecture, which includes architecture,
airport objects, signage, scheduling, and itinerary. Since the thesis is looking at airport
terminals, these are the functions specific for the airport processes. If this simulation was used
for another building type, then there should be classes related to that building, like healthcare
procedures in a hospital. Most of the terminal building elements are created as 3D models for
the Unity scene. Therefore, the main responsibility of these classes is to manage object

properties, trigger agent processes, and functions for calculating value.
Architecture Class

The architecture class manages value calculations and holds a local class for space properties. In
the Unity scene, the architecture script is attached to an empty game object, which allows the
user to edit space properties, like program names or areas. Individual architecture elements in
the Unity scene, like building components, doors, or walls, do not need to have this script
attached to them. Instead, architectural spaces are outlined using basic Unity geometry, like
rectangles or boxes, to identify different programmed areas, such as designated security or retail
areas (Fig.3.3.a). Each geometry is attached to a given space as a reference, which is stored in
the architecture class as a list of spatial areas. This list is then sent to the perception class so that
agents can identify where they are in the airport. Whenever an agent walks through a new area,
the information about the space is recorded in the agent’s memory and updated as the

simulation progresses (Fig.3.3.b).

The architecture class is also responsible for scoring agent activities and updating the overall
value. When an agent finishes a task associated with a priority, the perception class sends the
relevant information to the architectural class to calculate a score. For most processes in this
thesis, the score is based on the accumulation of the search time, process time, average visibility,
and number of direction changes. These values are normalized using an exponential decay

function, which is scaled relative to the simulation rate. For example, Wiredja et al. state that

203

Figure 3.3.a: Basic geometry used to identify spatial areas.

Figure 3.3.b: Spatial areas are referenced when agents move between them.

204

most passengers prefer not to wait in line longer than 15 minutes, on average. Xl However, to
provide a balance between minimizing simulation run times and modelling passenger
behaviour, a scaling factor is applied to increase the rate of decay. In this case, instead of
passengers feeling impatient after 15 minutes, this is equivalent to about 15 seconds in the
simulation. Likewise, airport processes are also scaled down, so what is normally 10 minutes to
check in baggage is only about 10 seconds in the simulation. This makes sure passengers are

scoring the same value as if they were waiting in the airport for longer.

Once the scoring is calculated, the values are sent back to the agent’s characteristics class. These
scores are held by the agent until the end of the simulation. Once the agent reaches their final
destination, the agent spawner class, which controls how agents leave the simulation, records
the agent’s final score and sends this back to the architecture class. All of the agent’s scores are
then stored in a master list, which keeps updating until all passengers have left the simulation.
Once the simulation is complete, the user has the option to print this information from the
architecture class to an external text file. The text file then lists each agent’s characteristics,

priorities, and their respective architectural scores, so they can be analyzed.

In summary, the architecture class is responsible for identifying spatial areas and calculating
architectural value. The airport terminal is modelled in the Unity scene and the spaces are
highlighted using basic Unity geometry, which is stored in the architecture class as a list of
areas. The agent’s perception class can reference this list during the simulation so agents can
identify where they are in the terminal. Agent priorities are scored in the architecture class using
an exponential decay function, based on properties like process time and visibility. The decay
functions are scaled down to reduce simulation run time. This means a 10-minute process in
real life is equal to a 10-second process in the simulation when calculating a final score. Once
agents have completed the simulation, their final scores are sent back to the architecture class in
a master list. The list can be exported to a text file for analysis along with agents’ respective

characteristics.

1. Wiredja, Dedy; Vesna Popovic, and Alethea Blackler. “A Passenger-Centred Model in Assessing
Airport Service Performance.” Journal of Modelling in Management 14, no. 2 (May 10, 2019): 506.

205

Architecture Class: Process

G Creotetocltorge 9 e

Determines when the agent Initializes the architecture
scores the architecture

Percepton N Scoring terminalSpaces

Class Calculates architectual value List of areas in the simulation

localArchValue KnowledgeOfArchitecture
5 {A

The passenger’s valuation of Agent knows where they are
the airport architecture Characteristics by regonizing spaces
Class

Simulation @ ArchitectureValue Perception

. Class
Not Complete Updates architectural score

Takes the average prioritiy
value of all passengers

AgentsExit imluati
g [#.] Simluation

Removes agent from world List containing agent’s score Complete
and compiles scores who completed the simulation

OV ometion

List of agent properties
Agent Spawner

Class Simluation

Complete Input Key: “P”

l—l User press “P” on keyboard

Exportinformation

Prints architectural score and
agent information

Figure 3.3.c: Process logic for the architecture class.

206

Architecture Class: Variables and Methods

Value
float
0.0 = =

Priorities
List of floats
0.0 — =

information
List of strings

spacesLayer
LayerMask

terminalSpaces
List of Spaces
spaceName, area

Variables

Description

The overall score of the
architecture

List of the overall priority
scores of every agent who
completed the simulation

Stores each agent's properties and
characteristics as text

Physical object that represents
the extents of a spatial area

List of spaces or areas in the
airport terminal

Figure 3.3.d: Key variables for the architecture class, page 1.

207

Methods

ArchitectureValue
void

Value | Value

PriorityValue
float

Priorities | _valueAvg

Scoring
float

time, visibility, dirChanges | score

ExportInformation
void

information | -
Space

class
spaceName, area

Description

Updates the current architectural
score as the simulation is running

Calculates the architectural score
as the average of all the agent's
priorities

Calculates the score for a
completed process

Prints the current architectural
score and corresponding agent
priorities to an external text
file

Local class defines architectural
space based on a given name and
physical object representing the
area

Figure 3.3.e: Key methods for the architecture class, page 2.

208

Airport Objects Class

The airport objects class controls how agents interact with objects during a process. As
mentioned in the perception class, agents navigate in the environment by replacing the object’s
location with a local target. However, most objects, like service counters, normally involve
standing in front of the object to properly interact with it. Therefore, the main purpose of the
airport object class is to provide interaction nodes, so agents can approach a given object from a
realistic distance. Additionally, objects also have exit nodes and queue spots to help agents leave
the object or navigate through queues, respectively. Fundamentally, the airport object class is

necessary for all objects that the agent interacts with (except for signage).

Interaction nodes are represented in the Unity scene as an empty game object. The user of the
simulation manually places these nodes in front of objects, depending on the process. For
example, security metal detectors have an interaction node in front of the detector and an exit
node on the other side, which simulates agents walking through the detector during the
screening process (Fig.3.3.f). In the airport objects class, these nodes are assigned to a vector
position variable. When an agent perceives a given object, the airport objects class sends the
vector position of the interaction node to the agent’s perception class, so they can walk towards
it. Once the agent completes the corresponding process, the airport objects class then provides

the vector location for the exit node, so the agent can leave the object.

The airport objects class also manages how agents interact with queue lines. Queues are created
as a collection of waypoints along a given line. This requires the user of the simulation to
manually assign a physical line for the corresponding airport objects class. The class uses this
physical line to determine the number of available queue spots based on a given spacing
(Fig.3.3.2). Like interaction nodes, queue spots are used for agent navigation. When an agent is
in a queuing state, the airport objects class sends these queue spots to the perception class for

the agent to follow.

In summary, the airport objects class makes sure agents interact with objects from a realistic
distance. This involves placing interaction nodes and exit nodes in front of objects, for agents to
approach and leave them, respectively. The airport objects class also manages queues by
providing queue spots along a predefined line. When an agent perceives an object, the airport
objects class sends the location of the interaction nodes, exit nodes, or queue spots to the agent’s

perception class, so the agent can navigate accordingly.

209

Figure 3.3.f: Illustration of interaction nodes (green) and exit nodes (red) in security screening.

Figure 3.3.g: Illustration of queue spots (blue) in a queuing line.

210

Airport Objects Class: Process

» I o

Initializes the airport objects Class

T¥ Queveline NI Checkini o Securityli
” veveli Ii'lli'l eckinLine |||| ecurityline

Creates the queuing spots Agent chooses a counter Agent chooses a screener

g

Spot for agent to stand in line Object location for agent to
interact with, respectively

Quevuing
Agent walks through queue ' CheckInProcess X SecurityProcess
&h)

Bag drop and boarding pass, Screening and bag check,

based on processing time based on processing time
Perception
Class

Percepton %

Class Object location for agent to

leave, respectively

Figure 3.3.h: Process logic for the airport objects class.

211

Airport Objects Class: Variables and Methods

Variables

interactionNode Reference to the location an
. can interact with the object
GameObject

exitNode Reference to the location an

GameObject leaves the object

lineNode List of queue line locations
referenced in the scene

List of Transforms P

queueSpots List of queuing spots in a line
. for the agents to follow
List of Vector3

spacing Distance each agent stands from
float each other (m)

1.0

Methods

| Description

Queueline Creates the queue spot loactions

void based on a given line geometry

lineNode | queueSpots

Figure 3.3.i: Key variables and methods for the airport objects class, page 1.

212

Signage Class

The signage class is responsible for information written on signs and stores direction vectors for
agent navigation. In this thesis’s simulation, agents do not read the graphic information shown
on the physical sign; what is visible in the scene environment is only for display. Instead, sign

objects use the signage class to communicate their information to the agent’s perception class.

A signage class is attached to all objects that agents can use for wayfinding. Wayfinding objects
are designed to force agents to walk a certain direction if they need to choose between more than
one route. Before the simulation starts, the signage class requires the user to provide a
viewpoint, info names, and corresponding direction nodes for every item on the sign (Fig.3.3.j).
A viewpoint acts as a gathering point in front of the sign. The info name tells the agent what
target the sign is referring to, and the direction node is used to calculate a direction vector for
the agent’s navigation. This vector is only calculated by the signage class when the agent

interacts with the sign.

When an agent sees a sign during the simulation, the perception class calls a function to read the
sign. The first step is to move the agent to the viewpoint. Since agents may approach the sign
from different directions, the viewpoint makes sure the agent is facing the sign correctly before
reading it. As described in the perception class, the act of reading involves checking if there is an
item name in the signage class that matches the agent’s primary target. This is done by
referencing the agent’s itinerary class for a name like “Gate B”. If the sign also says, “Gate B”,
then the corresponding direction vector for “Gate B” is sent to the agent class for navigation. If
the agent is not looking for their gate, then the perception class checks if the names on the sign
matches the corresponding task in the itinerary class, like “Security Screening”. If none of the

items on the sign match the agent’s current task, then the agent continues wandering.

In summary, the signage class stores the information written on wayfinding signs and
determines the corresponding direction vector for agent navigation. Agents in this simulation
cannot read what is visually displayed on wayfinding. Instead, the signage class stores the sign’s
information, so that the agent’s perception class can read it. This information must be assigned
by the user before the simulation starts. When an agent sees a sign, they first walk to a
viewpoint, so they are in a position to read it properly. If the item names stored in the signage
class match the agent’s target or task, as defined in the itinerary class, then the corresponding

direction vector the sign is pointing to is provided to the agent for navigation.

213

Figure 3.3.j: A wayfinding sign illustrated with a viewpoint (blue) and two direction nodes (red) for

Gate A and Gate B.

214

Signage Class: Process

Perception

"— ReadSign Class

| __4
| Controls how agent responds
to information on the sign

» I

Initializes the signage Reference point in model

DirectionInformation

Is agent at the location to Sets up the vector direction
read the sign? where the sign is pointing

Yes
" ltinerary
goTo Class

Checks current itinerary
condition: “Gate”, “Security”

o ionma _____infoName ____
to viewpoint Eim

Text written on sign

"o

golo goloGate

Iltinerary
primaryTarget Class
Other activties from itinerary Sign text Name of agent’s destination
does not

match target Sign text
Sign text

motchostorgel || » [T
/1

) Vector the sign is pointing to

matches farget

ReplacelocalTarget

Navigates to given location

Figure 3.3.k: Process logic for the signage class.

215

Signage Class: Variables and Methods

Variables

Sign Array of possible directions

Array of DirectionInfo cilepleayec on @ s

viewPoint Is a physical point from where the

GameObject agent can read the sign

infoName The name displayed on the sign as

A text
string

directionNode The object representing the

GameObject location the agent navigates to

direction Holds the vector between the view
S point and possible direction of
SO travel

Methods

DirectionInformation Defines the possible directions
void agents can go from a sign

directionNode | direction

DirectionInfo Local class holds the name written
1 on the sign and the direction the
C1asSS sign is pointing

infoName, directionNode, direction

Figure 3.3.1: Key variables and methods for the signage class, page 1.

216

Scheduling Class

The scheduling class manages the location where, and frequency of, agents entering and exiting
the simulation. The user of the simulation assigns the scheduling class to an empty game object,
which requires inputting values into a corresponding property window (Fig.3.3.m). The
scheduling class determines the total number of passengers (pax) expected to run through the

simulation, either as a statistical distribution or random variables.

The scheduling class controls two types of objects, arrival points and departure points. Arrival
points spawn (generate) agents into the simulation and is the location agents begin their
journey. Departure points remove agents from the simulation and are considered the agent’s
primary target. Arrival and departure points can be assigned to any type of object in the
environment, but they are commonly represented as doorways. There can also be more than one
arrival or departure point in the simulation, but the scheduling class must assign each agent

their own arrival and departure point before the simulation begins.

Arrival points are defined by a name, a location, an arrival window, and an agent model. The
name and location of the arrival point is used by the agent spawner class to identify which
arrival point agents are generated at. The arrival window is a range of time agents can randomly
enter the simulation, which is defined by a minimum and maximum time. For example, if the
minimum and maximum times are 1 sec. and 5 sec., respectively, then an agent will randomly
spawn at the arrival point as quickly as once per second or as slowly as once every five seconds.
Finally, the agent model is a reference to the physical agent that will be generate. It is possible
for this simulation to have different kinds of agents, but there is currently only one type of agent

model.

Additionally, arrival points are typically located at the front of the terminal building. However, if
an arrival point is past a check-in area or a security line, then there are also options in the

scheduling class to provide agents with the required clearances for that area.

Departure points are similar to arrival points, which are defined by a name, a location, a
departure window, and a departure time. The name and location are identified by the agent
spawner class to remove agents from a given location. The departure window is a random range
of time when a location is accessible, like a gate that is ready for boarding, defined by a
minimum and maximum value. A departure time is randomly assigned for each departure point

based on this window. If the agent reaches the departure point before the departure time, then

217

Figure 3.3.m: An example of a simulation schedule assigned in the Unity inspector properties, using

the scheduling script, with 3 arrival points and 2 departure points.

218

they cannot exit and must wait. Only after the simulation time passes the departure time are

agents able to exit through their assigned target.

In summary, the scheduling class is responsible for the locations where agents enter and exit the
simulation, and the total number of passengers. The scheduling class defines arrival points and
departure points, which are locations agent enter and exit the simulation from, respectively.
Both arrival and departure points are assigned a time range, which determines a random
frequency of agents entering or exiting. There can be more than one arrival or departure point,
as long as the scheduling class assigns agents to these locations before the simulation starts. If
an agent reaches their departure point, which is considered their primary target, then the agent

must wait to exit until the gate’s assigned departure time.

219

Scheduling Class: Variables and Methods

Variables

Description

numberOfPax Total number of agents expected in
int the simulation, default is 100 pax
(passengers)

100, 0 = =

arrivals List of locations and conditions

Array of ArrivalPoints for agents to enter the simulation

depatures List of locations and conditions

Array of DeparturePoints for agents to exit the simulation

Local Class: ArrivalPoint

entrance the name of the location
: passengers enter from as text
string

“Entrance 1, 2,

MaxArrivalTime Maximum time range between

float passengers entering at the given
location

0.0 — e

MinArrivalTime Minimum time range between
passengers entering at the given

ez location

0.0 — =

location Reference to the physical object
(door, portal) of the arrival

Transform point

(x,y,2)

agent The type of agent model that is
GameObject spawned at the given location
Agentl

Figure 3.3.n: Key variables for the scheduling class, page 1.

- [09)

A

B
®
®
5
3

afterCheckIn
bool
true, false

afterSecurity
bool
true, false

exit
string
“Gate A, B,

MaxDepartureTime
float
0.0 = =

MinDepartureTime
float
0.0 - =

location
Transform
(X,¥,2)

departureTime
float
0.0 = =

Condition if the arrival point
after the check-in area, gives
agents relevant clearances at
start

Condition if the arrival point
after the security area, gives
agents relevant clearances at

start

Local Class: DeparturePoint

Description

The name of the location
passengers exit from as text

Maximum time range for depature
time at the given location

Minimum time range for depature
time at the given location

Reference to the physical object
(door, portal) of the departure
point

The time when the exit opens and
agents can leave the simulation

Figure 3.3.0: Key variables for the scheduling class, page 2.

221

Itinerary Class

The itinerary class manages a list of tasks in the airport for an agent to complete, like a checklist.
This acts as a person’s memory, who is keeping track of things they need to do and places they
need to go. In general, the itinerary class informs the perception class when to perform certain
actions. These actions may include getting checked in for a flight, memorizing a departure gate,

or double-checking the time.

The main function in the itinerary class is called the Checklist, which repeatedly iterates through
all the agent’s tasks to see if they are completed. The checklist primarily focuses on the
departure process, which includes, check-in, security screening, and gate boarding. Agents must

complete each process in order before they can move into the next area.

For example, the first task for the agent is to get checked in. If the agent is not checked in at the
start of the simulation, the itinerary class tells the perception class to look for a check-in
counter. Once the agent finds the check-in counter, the itinerary class memorizes the location of
their chosen line, or selected counter, which is used as a reference during the check-in process.
When the check-in process is finished, the perception class sets this as complete in the itinerary
class, which indicates the agent has checked in. After the agent is checked in, the checklist

moves to the next task in the list, which in this case would be security screening.

The same process repeats for each task the agent must complete. This involves the itinerary class
informing the perception class of what objects to look for, and the perception class letting the
itinerary know when the corresponding process is done. In addition to the departure process,
the itinerary class also manages conditions for signage, queuing, and non-processing domains.
If the agent is early to the gate, the itinerary tells the perception class to wait at the gate until it
becomes the departure time. This may result in the agent going to the retail area, using the
washrooms, or sitting in the waiting area. Otherwise, once it becomes the departure time, the

itinerary class informs the perception class to exit through the gate.

In summary, the itinerary class functions like a checklist, which informs the agent’s perception
class of what the agent should be doing. The primary checklist is the departure process, which
requires the agent to complete each task before moving into the next area. If a task is
incomplete, the itinerary class informs the perception class of what to look for. Otherwise, the
perception class will mark off each task as the agent completes it. The checklist also manages

conditions for non-processing domains, which may occur before the agent’s departure time.

222

Itinerary Class: Process

Perception
Class CreatelocalTarget > “

Decides what agent does, Initializes the ifinerary
given what agent can see

N | — Checklist

[m—

Triggers for other conditions, [— List of tasks to complete

like signage or food

Is the agent checked in2 No

clearedThroughSecurity [N o — Checklist_Checkln

Is the agent past security? Toggles check-in process

S e Checklist_Security N .i goToCheckInCounter

_ um
1 | | Toggles security process Send agent to check-in counter

Yes

e o[Chockintine
e

Send agent to security line Agent chooses a counter

S e Checklist_Gate |i| |_| Securityline Perception

Toggles gating process Agent chooses a screener Class

> departureTime Perception

Yes @ Is the gate open for departure? No Class

BN coocoe MM nesitows

Send agent to gate Agent goes to waiting area

Perception
Class

n GoToTarget Seating
3 Agent navigates fo target = Agent finds a place to sit

@ primaryTarget

Agent's assigned destination Memorizes a selected object

Figure 3.3.p: Process logic for the itinerary class.

223

Itinerary Class: Variables and Methods

Variables

primaryTarget
string
“Gate B”

depatureTime
float
0.0 =

Name of the object representing
the agent's end destination,
default is Gate B

The agent's flight departure time

boardingPass
bool
true, false

goToCheckInCounter
bool
true, false

queueForCheckIn
bool
true, false

checkedIn
bool
true, false

goToSecurity
bool
true, false

queueForSecurity
bool
true, false

clearedThroughSecurity

bool
true, false

Checks if the agent has a boarding
pass; agent has no boarding pass
by default

Triggers for the agent to go to
the check-in counter

Trigger for check-in queuing

Checks if the agent has been
checked into their flight; agent
has not checked in by default

Triggers for the agent to go to
security

Triggers for security queuing

Checks if the agent has been
cleared through security; agent
has not clear security by default

Figure 3.3.q: Key variables for the itinerary class, page 1.

goToGate
bool
true, false

inQueue
bool
true, false

hasQueued
bool
true, false

readingSign
bool
true, false

hasReadSign
bool

true, false

targetFound
bool
true, false

needToWait
bool
true, false

gettingFood
bool
true, false

gotFood
bool
true, false

Triggers for the agent to go to
their gate

Checks if the is in a queue

Checks if the has finished
queuing

Checks if the is reading a
sign

Checks if the has already
read a sign

Checks if the agent has found
their primary target

Checks if the agent needs to wait
at the gate

Triggers if agent is getting food

Checks if the agent has aready
gotten food

perception
Perception

charcter
Characteristics

Reference to the agent's
perception class

Reference to the agent's
characteristics class

chosenLine
Transform

Reference for the agent's choice
of queue line or other airport
objects

Figure 3.3.r: Key variables for the itinerary class, page 2.

Methods

Checklist Agent's list of assigned tasks,
which calls other functions based

voia on activity

- | Checklist “ ”

Checklist CheckIn Is the checklist for the airport
void check-in process

boardingPass | goToCheckInCounter

Checklist Security Is the checklist for the airport

. securit rocess
void Yy p

checkedIn | goToSecurity

Checklist Gate Is the checklist for the gating

5 r
void process

clearedThroughSecurity | goToGate

Figure 3.3.s: Key methods for the itinerary class, page 3.

226

Chapter 3.4

Simulation Utility Classes

Simulation utility classes deal with user control and help to optimize the code while the
simulation is running. This includes agent spawner, path request manager, heap, and field of
view editor. The agent spawner class is created in this thesis to manage agent generation. Path
request manager and heap are based on Lague’s A* Pathfinding (2016) tutorial [l and the field
of view editor is based on Lague’s Field of View Visualizations (2015) tutorial. [2] Lague gives a
better description of how these classes work than this thesis can explain. Therefore, this chapter

gives a brief summary of how they are used.
Agent Spawner Class

The agent spawner class controls how agents are added and removed from the simulation. A
spawner is another name for a generator or creator, which acts like a control panel for the user.
It can select different types of agent navigation and modify how fast the simulation is run. Most
options in this class are controlled by a keyboard hotkey, which the user can press at any point
during the simulation. The spawner will then automatically assign agent characteristics and

properties.

For this thesis, the user can select from three types of starting conditions. The first starting
condition spawns (generates) agents with direct navigation, which is initiated by pressing the
“D” key. This makes agents navigate straight to their target using the shortest A* path, as
described in the perception class. The second starting condition spawns agents with perceptive
navigation, which is initiated by the “E” key. The third condition starts agents walking if there
are already agent models placed in the environment, which is initiated by the “W” key. The first
two conditions assume there are no agents in the world from the beginning, and spawn new
agents at scheduled arrival points. Whereas the third condition occurs if agents are already

placed in environment and the user wants to start them moving from there. This is commonly

1. Lague, Sebastian. "Pathfinding/Episode 9 - smooth path 02/Assets/Scripts". GitHub. December 30,
2016. https://github.com/SebLague/Pathfinding/blob/master/Episode%209%20-
%20smooth%20path%2002/Assets/Scripts.

2. Lague, Sebastian. "Field-of-View/Episode 02/Editor". GitHub. December 28, 2015.
https://github.com/SebLague/Field-of-View/tree/master/Episode%2002/Editor.

227

used for validation tests based on the IMO standard for evacuation simulation, which requires a

predefined number of agents in a given space, like 20 passengers starting in one room.

While the simulation is running, the user may press the “Q” key to remove all the agents from
the world. However, this does not reset the simulation time, like the arrival and departure times.

Instead, resetting the time requires restarting the simulation.

The agent spawner class can also control the simulation time scale, or how quickly the discrete
simulation is updated. By default, the time scale is set to one, or real-time. Although the user
may press the plus (+) or minus (-) keys to increase or decrease the time scale by increments of
one, respectively. This will scale all properties of the simulation, including agent walking speeds,
processing times, and scheduled departure times. This is useful for creating time-lapses or
decreasing the simulation time of long airport processes. However, running too fast of a time

scale causes the thesis’s agents to encounter pathfinding issues, like missing waypoints.

The agent spawner class continually works in the background of the simulation. After the user
makes their selection, the spawner repeatedly adds agents at arrival points, based on the
conditions defined in the scheduling class. When an agent is spawned, the class randomly
assigns them a primary target and random characteristics. As mentioned in the scheduling class,
a primary target is assigned to each agent from the available departure points. Likewise, the
spawner calls the characteristic class to generate new agent properties based on distributions
provided by the IMO standard for evacuation simulations. Additionally, the agent spawner class
randomly assigns airport priorities within the thesis’s selected six airport domains. New agents
have an equal probability of receiving any given property, which represents a random
population. Although, the agent spawner class can also incorporate statistical data to determine

how the population is generated.

When an agent reaches their primary target, the agent spawner class is responsible for recording
their corresponding information and removing them from the simulation, like an exit checklist.
Before the agent is removed, the information stored in their characteristics class is complied
together into one string of text. This string of text contains the agent’s name, age, gender,
primary target, simulation time, overall architectural score, all priorities (in alphabetical order),
their corresponding importance, and weighting. Once this is recorded, the string is sent to the
architectural class to be stored in a master list. The process of removing the agent itself requires
making sure the physical agent model, local targets, and components are deleted from the
environment.

228

In summary, the agent spawner class is responsible for adding and removing agents from the
simulation, which is controlled by the user using keyboard hotkeys while the simulation is
running. The user can decide to spawn (generate) agents with or without perception, and can
control the simulation time scale, either a faster or slower rate, within reason. The agent
spawner class works in the background adding and removing agents at assigned locations based
on the information defined in the scheduling class. This includes assigning agent characteristics
and priorities based on a random population distribution. Once an agent reaches their target,
the spawner deletes the agent model and compiles the agent’s properties into a string of text,

which is sent to a master list in the architecture class.

Agent Spawner Class: Process

St
>

Initializes the agent spawner

SimulationControl
Q ©

Control to add or remove Modifies simulation speed

Scheduling agents from the simulation
Class

schedule] character
; "

Reference to timing and Reference to agent's properties List of current agents in the
arrival/departure locations simulation

Characteristics
Class

1@

+ Adds agents to simulation
based on scheduling

5 location
Reference to agent's target
Scheduling

Class 5 AgentsExit

Removes agent from world
Architecture and compilies final score

Class

information Priorities
@ [#ex..]

Records agent's properties List of overall agent scores

Figure 3.4.a: Process logic for the agent spawner class.

229

Agent Spawner Class: Variables and Methods

activeAgents

List of GamesObjects

perceptive
bool
true, false

Variables

Description

List of agents currently in the
world

Determines if agents navigates
with perception or direct path

schedule
Scheduling

arch
Architecture

character
Characteristics

currentSpaces
GameObject

Reference to the scheduling class

Reference to the architecture
class

Reference to agents'
characteristics classes

Reference to the architectural
spaces currently in the world

spawnedAgentCount
int
0 = o

agentCapacity

int
30

currentActiveAgents

int
true, false

Keeps track of how many agent have
entered the simulation

Maximum number of agents allowed
in the simulation at any given
time (default 30)

Records the number of agents
currently running in the
simulation

Figure 3.4.b: Key variables for the agent spawner class, page 1.

startPerceptiveAgentsKey
KeyCode
W

spawnPerceptiveAgentsKey
KeyCode
E

spawnDirectAgentsKey
KeyCode
D

removeAgentsKey
KeyCode
Q

resetTimeScaleKey
KeyCode
1

fasterTimeKey
KeyCode
+

slowerTimeKey

KeyCode

Keyboard shortcut to start agents
moving with perception who are
already in the world

Keyboard shortcut to begin adding
agents to the world with
perception

Keyboard shortcut to begin adding
agents to the world with direction
routing

Keyboard shortcut to remove all
agents currently in the world

Keyboard shortcut to reset the
time scale to one (default speed)

Keyboard shortcut to increase the
time scale by one

Keyboard shortcut to decrease the
time scale by one

Figure 3.4.c: Key variables for the agent spawner class, page 2.

231

(©

Methods

SimulationControl
void

\\1", \\+n, N _ | Time

SpawnAgents
void

“Wu, “En, \\Dn, Q7 | SpawnTimer

AgentsExit
void

activeAgents | activeAgents

SpawnTimer
IEnumerator

schedule | agents

AgentTime
float

_startTime, endTime | finalTime

Controls how fast the simulation
is running

Allow user to control adding or
removing agents from the
simulation

Removes agents from the simulation
and compilies their corresponding
architectural score

Reoccuring function controlling
how agents enter the simulation;
assigns random characteristics and
targets based on scheduling

Determines how much simulation
time the agent spent doing
something given a start and end
time in seconds

Figure 3.4.d: Key methods for the agent spawner class, page 3.

232

Path Request Manager Class

The path request manager class regulates how often agents use the A* algorithm, when there are

a lot of agents trying to navigate at the same time.

This class works like a lending library, in which the A* algorithm is a book that agents are trying
to check out from the manager. The path request manager is responsible for controlling which
agent gets to read the A* algorithm. Only one agent can check out the A* at a time. If there is
more than one agent trying to access the A* at the same time, then they must wait their turn in a

virtual queue line.

Before entering this virtual queue, agents must submit a path request to the manager class. A
path request describes where the agent is standing and where the agent wants to navigate to.
The path request manager takes these requests, one at a time, and feeds them into the A*
algorithm. If the A* was successful at finding a path, the path request is sent back to the agent as

a list of waypoints, which the agent can follow.

In summary, the A* algorithm can only be used by one agent at a time, which is a problem if
there are too many agents in the simulation. So, the path request manager class controls which
agent gets to use the algorithm. Agents must submit path requests to the manager and wait in a

virtual queue until it is their turn to use the A*.

Path Request Manager Process

Finds Local Target A* Generates Path

@ =.v.z)

o = YT . /m

B =.v..z)

Figure 3.4.e: Path request manager process.

233

Heap Class

The heap class optimizes the way nodes are sorted during pathfinding. An architectural space
that is 10 x 10 metres square can require the A* algorithm to calculate up to 250 nodes, which
can be slow. So, the heap class is meant to organize the nodes in a way that makes it easier to

compare node costs.

Heap is an abstract tree-based data structure that orders information based on its priority (cost;
not airport priorities). Instead of comparing every node in a set, heap only compares nodes that
are part of the same tree branch. Like a family tree, heap works by comparing child nodes to
parent nodes. The rule of Lague’s heap tree is that a parent node should always have a lower

cost than a child node.

When the heap function comes across a new node, it adds the node to the last tree branch as a
new child (Fig.3.4.f). Heap then checks if the child node has a lower cost than its parent on the
same branch. If the cost is higher, the child node stays where it is. If it has a lower cost, then the
child swaps with the parent’s position in the tree. Heap then continues to check further up the
tree branch to see if the child’s cost is lower than its grandparents. If the child’s cost is lower

than all its grandparents, then it becomes the top position on the tree, or the first position.

When the A* pathfinding algorithm is looking for the next lowest cost node, it only needs to take
the value of the node in this first position, which will always be the lowest cost. Therefore, heap

saves the pathfinding time from having to check all the other child nodes in the rest of the tree.

In summary, heap organizes pathfinding nodes in a tree-based structure to reduce the time it
takes to compare node costs in large architectural spaces. Heap adds new nodes to the tree as a
child node to a parent. If the child has a lower cost that its parent, then it moves up the tree. The
node at the top of the tree, or first position, is then given to the A* algorithm as the lowest cost

node in that set.

234

Heap Tree Process Example

Nodes Costs = [14, 20, 38, 48, 34, 44,10] Nodes Costs = [10, 20, 14, 48, 34, 44, 38]

parent — pathfinding
14 selects top node m

new child

hild
RN node

20 38 / 20 5
8 34 44 B0

Figure 3.4.f: Heap tree process, based on diagram by Lague (2014), drawn by authour.

Field of View Editor Class

The field of view editor class allows the agent’s field of view to be displayed during the
simulation. The editor works by using Unity’s built-in editor components called handles. As
described in the field of view class, the agent’s field of view is made up of thin triangles. Each
triangle is constructed by the agent’s viewpoints, or the locations projected rays intercept with
an object. The editor uses the handles to trace each of the triangles along every viewpoint, based
on the given angle, radius, and direction the agent is looking. The editor then assigns these
triangles a handle colour for rendering, which is then displayed by the editor while the

simulation is running.

Field of View Editor

Handles Triangles

Figure 3.4.g: Field of view editor displays "handles triangles".

235

Chapter 3.5

Simulation Assumptions and Limits

While creating this agent simulation, the thesis made numerous assumptions and
simplifications to get a working model. This includes limiting the function of the agents,
passenger behaviour, airport processes, architectural conditions, and simulation capacity. A
model of a system is only as accurate as the information the designer chooses to add to it.
Therefore, although the current state of the simulation has its limitations, it should still be

representative of basic people interacting with architectural conditions.
Agent Model
Perception:

Agents are perceptive of their environment. Any objects that fall within their field of view can be
perceived. The simulation illustrates agent’s line of sight as a 2D isovist. However, agents can
perceive elements within a 3D sphere of space around them, including wayfinding signs above
their heads.

The way agents read information assumes they have ideal vision. This means they can read
objects at the far end of a room as clearly as they can read objects right in front of them. Agents
will recognize an object the instant it falls within their line of sight. It is assumed agents can see
the entire length of the building. The simulation allows the agent’s field of view to have different
sizes of view radius and angle. So, changing the field of view can influence the location where

they perceive their surroundings.
Navigation:

Agents need to be assigned a goal and are always working towards an end target. There are
moments in the simulation when agents are wandering or waiting, but these are meant to
control agents’ movement on their way to the gates. Navigation decisions are only updated after
agents reach a local target. They cannot adjust their path after they started walking. This issue is
minimized by shortening how far agents choose to walk (less than 2 m ahead), and as a result,

increases the frequency of direction choice updates.

236

Agents can avoid walking through obstacles and other physical objects. They are aware of other
agents and slow down in crowded areas, but they can walk through other people if they become
stuck. The simulation does have functions to avoid other people, but it is disabled because of
navigation issues and simulation bugs. A better model for avoiding people can replicate Mass
Motion’s agent “feelers” (proximity detection), which forces agents to navigate around crowded

spaces.
Crowd Behaviour:

The thesis cannot model the behaviour of groups of people to the level of a proper crowd
simulation. Agents are aware of other agents in the simulation, but they can only adjust their
walking speed to avoid colliding with others. It is not capable of modelling social structures or
group dynamics. For this reason, the simulation does not consider social interaction between

agents, like a family or a group of friends who may walk together.

The simulation can only hold about 30 passengers at anytime. More people than this causes the
model to slow down considerably and lag. The simulation can continue to add more people over
time as passengers exit the terminal, as long as the number of active agents does not exceed the

given capacity.
Memory:

When agents start the simulation, it is assumed they have no knowledge of the building. they
gain knowledge of where things are from walking through the terminal. Agents can memorize
airport domains, their priorities, and architectural experience. This includes if they checked into
their flights, what their departure gate is, and how satisfied they are with conditions in the

terminal.

Agents do not remember where they have already walked, or areas they have already been
through. This allows agents to walk back the way they came if they get lost or stuck in dead-end
corridors. Passengers are restricted to walk through security before checking in and have

memory of being cleared through security after passing the checkpoint.

Agents have short term memory when reading a sign to know which direction to walk. When
passengers see a sign, they are always inclined to read it, even if they have seen it before. This

ensures agents who are lost can read the same sign again to relearn where to go.

237

Passenger Model
Characteristics:

Agents in these simulations approximate human behaviour that is typical of passengers an
airport terminal. Agents are considered passengers when they are given characteristics. In every
simulation test, the characteristics are based on the International Maritime Organization (IMO)
1238 guidelines for evacuation simulations, which is the same standard used to validate

MassMotion crowd simulations. [

Agents are given random age, gender, and walking speeds based on the probability distributions
from IMO. The simulation assumes that passengers are fully able adults, who can function
independently. Age is assigned from 18 to 75 years old. Although it is possible to assign ages
outside this range, there is no behaviour for children. Passenger walking speeds are dependant
on age and gender, but only walking speed affects crowd behaviour. The simulations only
consider male and female genders to align with the IMO guidelines. It is possible to define non-
binary genders with the existing functions, but IMO has no walking speed data associate with
this. Passengers are also given random names to help identify them, but the names do not affect

their behaviour.
Passenger Types:

All passengers are considered part of general boarding. There are no business travellers,
“frequent flyers”, or “preferred” airline customers. The primary demographics for this thesis are
passengers who do not travel often. They are more likely to rely on using their surroundings to

inform decisions, rather than relying on past experience or memory.

The differences between passengers are defined by their airport priorities. As explained in
earlier chapters, the thesis selected six common priorities in the processing and non-processing
airport domains, as described by Wiredja et al. All passengers have the same set of priorities, but
their importance is randomly assigned. The thesis assumes that a random distribution of
priorities is representative an airport population for testing. However, further research is
needed to determine if different cultures or regions place higher importance on certain airport

domains than others.

1. Arup. “The Verification and Validation of MassMotion for Evacuation Modelling.” Ove Arup &
Partners Ltd. (August 10, 2015): 2.

238

Disabilities:

Disabilities are represented in the agent model with limited scope. The simulations do consider
passengers with walking disabilities, based on the distribution listed in IMO. However, walking
disabilities only makes agents speed slower. Disabled people in this simulation do not include

equipment like walkers and wheelchairs, and they cannot be guided by social support workers.

There are no visually impaired passengers represented in these simulation tests. However, it is
possible to model a passenger with visual disabilities by restricting a passenger’s field of view to
a smaller radius. This may approximate people who have restricted vision or different levels of

perception. But further research is needed to better represent these conditions.
Non-Processing Behaviour:

Passengers can wander around the gate areas, but there are no functions for shopping or eating
in the retail and concession spaces. People can interact with food and retail counters to simulate
purchasing something. However, once the process is done, the agent returns to wandering. Most

of the time, if agents are wandering around, they are searching for their gate.

Passengers have awareness of food and washroom areas, but they do not have hunger or bladder
needs. Instead, the simulation randomly assigns passengers with a high priority for food or
washroom areas, which approximates people who are hungry or need to use the washroom.
Essentially, people who prioritize the washroom are more likely to spend time searching for a
washroom in the airport. Although, a more developed simulation should consider passengers

with changing hunger and bladder needs over time.
Airport Model

The agent simulation only considers passenger flows for the departure sequence, which includes
check-in, security screening, departure gates. Passenger flows like arrival, connecting flights,
curbside, and transit are not modelled for this thesis. Additionally, there is no modelling of the

baggage systems, service spaces, or aircraft logistics.
Processing:

All passengers follow the same procedures in check-in and security for general boarding. There
is no priority check-in lanes or priority boarding. The only variation is the time spent at service
counters or screening machines, which the simulation randomly assigns. All passengers check in

a single bag, which the are pulling with them when they enter the terminal. There is no carry-on

239

luggage or personal items. Additionally, passengers move and behave the same whether or not

they are pulling a suitcase.

Passengers can walk through queue lines to approximate waiting in line. However, the thesis
does not use resources to allocate selected counters, which is more typical of a queuing
simulation like Arena. Passengers will walk through queue lines for the security area, but do not
stop to wait in line. To account for this behaviour, a time delay factor is applied when calculating

architectural value at the end of the process.

Additionally, the simulations do not consider customer service, since there are no airport staff.
As explained in earlier chapters, customer service is related to passenger experience, but it does

not impact architectural space directly.
Flight Times:

Gates are assigned a random departure time, relative to the length of a given test. It is assumed
there is one flight departing from each gate. Flight delays are not considered in these
simulations. When the simulation reaches the assigned departure time, it is assumed every
passenger begins boarding their flights when they reach the gates. Passengers can wait at the
gate if they are early to their flight. These wait times are accounted for in the calculation of

architectural value as a random variable.
Architectural Model

The scope of the architectural environment is limited to an airport terminal or similar transit
facility. The thesis covers basic architectural features like walls, doors, and thresholds.
Transparent materials like windows are not included in these simulations. Although, the thesis
expects that transparent materials like glass would allow passengers to see into other areas but
restrict them from walking to the other side. The terminal building is limited to a single storey.
There is no vertical circulation like stairs, escalators, or elevators. Multiple floors can only be
added if navigation functions, like A*, were rewritten to consider movement in vertical direction

(y-axis variable in Unity).

The size of the terminal building is limited by the agent’s navigation. Terminal buildings bigger
than about 100 x 100 m, or 10 000 m?, becomes too laggy (slow) to simulate because of the high
number of navigation nodes to compute for the A* pathfinding. Larger terminal models can
instead disable A* pathfinding and use vector navigation. Vectors can produce equivalent

behaviour to the A* pathfinding if agents are navigating over short distances.

240

Part 4:

Simulation Tests

Part 4 goes through the tests and experiments to show how the agent simulation works. Chapter
4.0 goes through the verification and validation tests based on existing standards. Chapter 4.1
demonstrates specific components introduced by this thesis, like wayfinding, field of view, and
priorities. Chapter 4.2, experiments with a hypothetical terminal layout to show how changing
spaces and agent priorities affects architectural value. Finally, chapter 4.3 tests how the agent-
model works in an existing airport. The thesis model compares an airport with good passenger
experience to an airport that has an objectively worse passenger experience, to see if it can

replicate the same results.

243

Chapter 4.0

Verification and Validation Tests

The first set of tests concerns verification and validation of the simulation. The intension is to
use an established standard to check if basic components of the agent and environment are

working correctly. Some of these components include:

e Agents move at realistic speeds
e Agents can navigate around walls

e Agents are assigned correct characteristics

The thesis uses standardized tests from the International Maritime Organization (IMO) and the
National Institute of Standards and Technology (NIST), which are used to validate MassMotion.
1 These standards include eleven tests from IMO 1238 [2] and another eight tests from NIST
1822, [31 Their primary purpose is to evaluate if a simulation can correctly represent human
behaviour during an emergency evacuation. Since the thesis only needs to verify basic agent
movement, not all of these tests are considered. Each test covers a specific condition like
walking speed, emergency response time, crowd flow rates, group behaviours, and social
influences. To help determine which tests are relevant, the thesis organizes the IMO and NIST
tests into four categories: Architectural Conditions, Crowd Dynamics, Social Behaviour, and
Emergency Situations (4.0.a). Out of these categories, the thesis determines it has the

conditions necessary to recreate the following tests:

e IMO Test 1: Corridor Walking Speeds (Architectural)
e IMO Test 6: Rounding Corners (Architectural)

e IMO Test 4: Flow Rates (Crowds)

e IMO Test 7: Demographics (Social)

1, Arup. “The Verification and Validation of MassMotion for Evacuation Modelling.” Ove Arup &
Partners Ltd. (August 10, 2015): 2.

2. IMO. “Guidelines for Evacuation Analysis for New and Existing Passenger Ships.” International
Maritime Organization (IMO). MSC.1/Circ.1238. October 30, 2007. https://nsof.no/media/1129/imo-
msc-guidelines-for-evacuation-etc.pdf.

3. Ronchi, Enrico; Kuligowski, Erica D; Reneke, Paul A; Peacock, Richard D; Nilsson, Daniel. “The
Process of Verification and Validation of Building Fire Evacuation Models.” Technical Note (NIST TN) -
1822, (November 2013), http://dx.doi.org/10.6028 /NIST.TN.1822.

244

IMO and NIST Verification Tests

Test Name IMO NIST Tested

Speed in a corridor Test 1 Verf.2.1
Speed up a staircase Test 2 Verf.2.2
Speed down a staircase Test 3 Verf.2.2

Movement around a corner Test 6 Verf.2.3

Architectural Condition

Elevator usage Verf.2.7

Horizontal counter-flows (rooms) Verf.2.8
Group Behaviour Verf.2.9

Exit route allocation Test 10 Verf.3.1
Congestion Test 1 Verf.5.1
Maximum flow rates Test 4 Verf.5.2

Exit flow for a large room Test 9 ---

Assigned demographics Test 7 Verf.2.4

People with movement disabilities Verf.2.10

Social Influence Verf.3.2

Affiliation Verf.3.3

Pre-evacuation time distributions Verf.1.1
Reduced visibility vs walking speed Verf.2.5

Occupant incapacitation Verf.2.6

Emergency Situation

Dynamic availability of exit Verf.4.1

Figure 4.0.a: IMO and NIST verification tests for evacuation simulations, based on diagram from the

NIST 1822 (2013), redrawn by author.

245

Test 1: Corridor Walking Speeds

The first test is based on IMO 1238 Test 1 and NIST 1822 Verf.2.1. The setup and conditions are
illustrated in Fig.4.0.b. This test verifies if an agent can walk down a straight corridor at a
constant speed over a given amount of time. The test assigns the agent a walking speed of 1 m/s,
which is representative of a typical adult. (4] The geometry of the corridor is 2 m wide by

40 m long, to the inside dimensions of the walls. For this thesis’s setup, it makes sure that the
entrance and exit portals are just before and after the zero and 40 m marks, respectively, so that
agents are travelling the full 40 m distance. The test also expects to see a deterministic result,
since the walking speed and distance are a constant value. [5] This means, if the agent is

travelling at 1 m/s over a distance of 40 m, they should always complete this in 40 seconds.

The images in Fig.4.0.d illustrate the test in the agent simulation. The procedure begins with an
empty corridor. The user of the simulation starts the test by spawning (generating) an agent at
the start portal. The agent immediately begins walking down the corridor to the other end using
A* navigation (Fig.4.0.c). When the agent reaches the end of the exit portal, they are removed
from the simulation and their final time is recorded. The simulation is setup so that multiple
agents are continuously spawned every 40 seconds, to test multiple agents at once. Agents were

spaced out far enough so that they do not interfere with each other.

The final results of Test 1 are illustrated in Fig.4.0.e, which demonstrates a consistent time of 40

seconds. Therefore, this test is passed.

It was observed that agents walk directly to the target using A* navigation, since they have full
view of the exit at the other end. Out of curiosity, the thesis also experimented with other
conditions like different perception levels and walking speed. It was also observed that if agents
had a restricted field of view shorter than the 40 m corridor, then they navigated to local targets,
which they followed until the exit was in their field of view. But this had no significant change to

the agent’s travel time. The data from all trials conducted for this test are listed in Appendix A.

4. Ronchi et al (NIST). “Verification and Validation”. 8.
5. Ronchi et al (NIST). “Verification and Validation”. 8.

246

Test 1: Corridor Walking Speeds

IMO 1238 Test 1 / NIST 1822 Verif.2.1 Status: Passed

Determine if agents can move down a straight corridor and maintain a
constant speed over time.

- Corridor is 2 m wide and 40 m long
- Agent walking speed is 1 m/s

- Agents must walk from one end of the corridor to the other in 40 seconds

Floor Plan

: Entrance Portal Exit Portal :

Figure 4.0.b: Setup and conditions for test 1; the test was sucessful.

247

Figures 4.0.d: Screen captures at time intervals during the test of one agent.

248

Travel Time (s)

45

40

35

30

25

20

15

10

Test 1: Corridor Walking Speeds

10 20 30 40 50
Number of Agents

Figure 4.0.e: Travel times for a sample of 50 agents is consistently 40 seconds.

249

60

Test 2: Round Corners

The second test is based on IMO 1238 Test 6 and NIST 1822 Verf.2.3. This test verifies if agents
can navigate around a corner without walking through walls or clipping through the
environment boundaries. The geometry of the test is a left-hand 90° corner, which consists of a
2 m wide corridor and 10 m long leg segments. The setup requires 20 people to be uniformly
distributed within a starting area that is 2 x 4 m (Fig.4.0.f). The direction of travel goes from the

starting area, around the corner, to the exit portal at the end of the corridor.

In this test, agents use A* navigation and have a walking speed of 1 m/s. Agents are aware of
walls and boundaries. However, due to debugging issues with the proximity function, collisions
between agents are disabled for this test. Some of the debugging issues cause agents to walk
backwards, which is not representative of basic navigation. The thesis believes turning off agent
proximity is reasonable because the purpose of this test is only to show how agents navigate

around walls.

The test begins with agents walking from the starting area towards the corner (4.0.g). Since they
are navigating using local targets, most agents navigate to a spot in front of the inside corner.
The agents appear to bunch up together at this point, since they are walking to similar locations
(Fig.4.0.h). As they reach the corner, it appears some agents can see further down the corridor,
whereas other agents cannot. Those that can see further, start walking towards the exit. Agents
who cannot see further then take a wider path towards the outside corner. Taking the wider path
gets them in a position to see the exit portal in their periphery, which they start walking to. As
all the agents get closer to the exit, they begin to line up together since they are all navigating to
the same point. Once they reach the exit portal, the agents are removed from the simulation
(Fig.o.1).

Since the agents reached the exit portal without cutting the corner, this test is passed. The
agents can navigate through the physical environment, despite the agents clipping through each
other. The issues with agent collisions will require a better study of agent proximity to fix how

the simulation is coded.

250

Test 2: Rounding Corners

IMO 1238 Test 6 / NIST 1822 Verif.2.3 Status: Passed

Determine if agents can move around a corner without walking through
walls or boundaries

- Left-hand 90° corner, 2 m wide corridor with 10 m long legs
- Starting area is 2 m x 4 m and has 20 people, uniformly distributed

- Agents must walk around corner to exit without going through walls

Floor Plan

Exit Portal

Starting Area Direction

20 people, of Travel
uniformly distributed

Figure 4.0.f: Setup and conditions for test 2; the test was sucessful.

251

Figure 4.0.g: Agents in the starting area.

Figure 4.0.h: Agents walking around the corner.

252

Figures 4.0.i: Screen captures at time intervals during the test.

Test 3: Flow Rates

The third test is based on IMO 1238 Test 4 and NIST 1822 Verf.5.2. This test verifies how many
people can pass through a doorway over time. The concept is like an hour-glass full of sand; only
a certain amount of sand can physically pass through the glass over time, like people through a
doorway. For this test, the flow rate through the door must not exceed 1.33 people per second

(p/s) at any point, which is consistent with current evacuation research. [¢]

The layout for this test is an 8 x 5 m room, with a 1 m opening on the 5 m wall (Fig.4.0.j). The
testing population requires 100 people, who are placed in the room as the starting area. An exit
portal is placed in a threshold just beyond the opening, which forces agents to completely pass

through the doorway before exiting the simulation.

Agent walking speeds are randomly assigned based on the IMO population distribution. The
thesis’s agent simulation attempts to model crowd dynamics using an agent proximity function.
If agents are too close to each other in a crowd, then the proximity function restricts their
walking speed, until there is more space to move. However, as seen during testing, this

proximity function did not provide ideal crowd behaviour.

The test starts with 100 agents standing in the room. The first agents that exit through the
doorway are the ones standing closest to the opening (4.0.k). However, it becomes apparent that
the crowd’s movement is inconsistent. Only the agents at the front of the group move forward.
The other agents at the back of the room appear to be deadlocked behind each other. The crowd
does not fill into open areas near the doorway. Instead, the agents appear to wait until the space
directly in front of them is free. There are instances when none of the agents move because they
are standing too close to each other (Fig.4.1.m). Sometimes multiple agents move at the same

time. This results in agents clumping together, which causes spikes in the flow rate (Fig.4.0.1).

The thesis has experimented with different proximity radii and walking speeds, which is detailed
in Appendix A. It was discovered that smaller radii and slower walking speeds give the closest
flow rates to 1.33 p/s. However, the inconsistency is still an issue. Under the same conditions,
the flow rates in Trial 11 (Fig.4.0.n) and Trial 12 (Fig.4.0.0) do not maintain a constant rate.
Instead, there are spikes that still exceed 1.33 p/s. Therefore, this test failed to produce realistic
flow rates. To minimize these issues for later tests, the thesis will experiment with low density

crowds, unless a better solution for agent proximity can be solved.

6. Ronchi et al (NIST). “Verification and Validation”. 9.

254

Test 3: Flow Rates

IMO 1238 Test 4 / NIST 1822 Verif.5.2 i Failed

Determine if the number of people passing through a doorway is below a
certain capacity

-8 mx 5 mroom with a T m opening (in the 5 m wall)
- 100 people starting in the room

- Flow rate should be less than 1.33 p/s

Floor Plan

\ Exit Portal

Starting Area
100 people

Figure 4.0.j: Setup and conditions for test 3; the test was unsucessful due to people clumping together

causing inconsistent flow rates.

255

Figure 4.0.k: Agents walking through opening.

Figure 4.0.1: Agents clumping together causes spikes in flow rate.

256

Figure 4.1.m: Screen

captures at time intervals

during the test.

'f k'f £

257

Test 3: Flow Rates - Trial 11

14

1.2
V""
1)
— [}
< '
Zos
[0}
1]
o ‘V !
2 0.6 ' ‘
o | V
[N
0.4
0.2
" !
0
T O +H O «H OV 4 OV -+ OV 4 OV 4 OV 4 OV 4 O 4 OV 4 OV 4 O 1 O 1 O 1 O
Y NN NN O O NN OO0 OO0 dF N AN MO NS S N
D I B I B I I = I I = I s o |
Time (s)

Figure 4.0.n: Max flow rate of 1.2 p/s, below 1.33 p/s (redline), but is not maintained over time.

Test 3: Flow Rates - Trial 12

Flow Rate (p/s)

o O +Hd OV d VW d VU A O d
O O " d N N M N I <
R I B B I B B B B B I |

T O «4 O =+ O =« O d O « O «* O «d O
N NN NN O O NN O0 O o0

Time (s)

Figure 4.0.0: Max flow rate spiked to 1.5 p/s, above redline, despite having same conditions as trial 11

258

Test 4: Demographics

The fourth test is based on IMO 1238 Test 7 and NIST 1822 Verf.2.4. This test verifies that the
agent characteristics are correctly assigned based on the demographic distribution listed in IMO
table 3.4. The test requires a sample population of 50 people, who are males between 30 to 50
years old. Based on table 3.4, agents must be assigned a random walking speed between 0.97
and 1.62 m/s. Unlike the first corridor test, which was deterministic, this test is stochastic. This
means random input speeds will produce random output times. As a result, the test is judged on
the distribution of multiple agents. If the test is successful, then the average agent walking speed

must be around 1.295 m/s.

There are no layout requirements, so the thesis uses a 20 x 20 m square room, with a starting
portal and exit portal on opposite walls (Fig.4.0.p). The average walking speed is calculated as

the time it takes agents to travel a distance of 20 m.

The procedure for this test is similar to the first corridor test. The simulation starts with an
empty room, and an agent is spawned one at a time (Fig4.0.r). Agents immediately begin
walking once they spawn into the simulation using A* navigation. Since it is an open room,
agents can see the exit portal (Fig.4.0.q). Therefore, agents follow a straight path to the door.
Once the agent reaches the exit their time is recorded, and they are removed from the
simulation. This process is repeated for the population of 50 people, which is controlled by the
spawner utility. It automatically generates a new agent every 25 seconds, making sure they are

added after the other agents cleared the room to avoid interference.

The final result for Test 4 is illustrated in Fig.4.0.s, which illustrates the distribution of walking
speeds. As it shows, the walking speeds follow a uniform distribution and with an average of
1.28 m/s, which is within 1% of the expected value. Therefore, the agents are assigned the
correct demographics and the test is passed. The full list of trials performed for this test is

recorded in Appendix A.

259

Test 4: Demographics

IMO 1238 Test 7 / NIST 1822 Verif.2.4 S Passed

Determine if agent characteristics are assigned correctly based on the
population distribution from IMO Table 3.4

- Test a population of 50 people, male, aged 30 to 50
- Randomly distributed walking speeds between 0.97 and 1.62 m/s
- Average walking speeds need to be equal to 1.295 m/s

Floor Plan

20m

——

\ \ Exit Portal

Entrance Portal

Figure 4.0.p: Setup and conditions for test 4; the test was sucessful.

260

Figure 4.0.r: Screen captures at time intervals during the test of one agent.

261

Walking Speed (m/s)

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

10

Test 4: Demographics - Trial 4

20

30
Number of Agents

40

50

60

Figure 4.0.s: Walking speed follow a uniform distribution, with an average of 1.28 m/s.

262

Summary

In summary, this chapter explored verification and validation tests to determine if basic
components in this agent simulation are working correctly, such as speeds, boundaries, and
characteristics. The thesis used tests based on the IMO 1238 and NIST 1822 standards, which
are used to validate evacuation simulations, like MassMotion. Since these standards evaluate
emergency evacuation, the thesis selected four tests that were relevant to basic agent behaviour.
These were: 1. Corridor Walking Speeds, 2. Rounding Corners, 3. Flow Rates, and 4.
Demographics. The thesis managed to verify all conditions except for flow rates due to agent

proximity issues.

Corridor Walking Speeds verifies if agents can walk down a 40 m corridor at a constant speed of
1 m/s. The test is passed if agents can traverse the corridor in 40 seconds. The thesis ran a
sample of 50 agents with perception and A* navigation. All agents walked directly to the end of

the corridor and completed the simulation in 40 seconds. Therefore, the first test is passed.

Rounding Corners verifies if agents can navigate around a corner without walking through walls
or boundaries. The test involves 20 agents to walk from one end of the corridor, around a 90°
corner to the other end. The thesis disabled agent proximity due to navigation issues, since this
test is only concerned with agents walking through walls. During the test, agents walked closer
to the corner if they saw the exit early. Otherwise, agents took a wider path. All 20 agents walked

around the corner without going through the boundaries. Therefore, the second test is passed.

Flow Rates verifies that the number of agents walking through a 1 m doorway is limited to

1.33 m/s. The thesis’s agent proximity function models crowd behaviour by forcing agents to
slow down if they are too close to each other. Unfortunately, this caused agents to deadlock and
move only if the space directly in front was clear. Proximity issues made agent movement
inconsistent. Agents would occasionally clump together resulting in flow rate spikes. As an
effect, the flow rate through the door was not constant and exceeded 1.33 p/s after running

multiple trials. Therefore, the third test failed.

Demographics verifies if agents are assigned the correct walking speeds based on the IMO
distribution. The test required matching the average walking speed of 1.295 m/s in a population
of 50 middle-aged males. The thesis managed to match the average walking speed within 1% of

the true value. Therefore, agent demographics were correct, and the fourth test is passed.

263

Chapter 4.1

Component Tests

These tests explore new features introduced by this thesis, which existing simulations do not
typically address. The intension is to illustrate how these components affect agent behaviour in
different architectural conditions. This chapter goes through the behaviour of three key

components:

e Agent wayfinding using perception
¢ Change in visibility using field of view

e Influence of airport priorities in non-processing domains

Wayfinding Test

This test demonstrates the difference between A* direct navigation, like FlexSim simulations,
and A* perception navigation. The hypothesis is that agents navigating with perception do not
always take the shortest path like direct navigation, because they can be influenced by
information from the environment. This test is motivated by the experiments from Raubal in
their research of perceptive wayfinding in an unfamiliar environment. Raubal shows that people
who have no previous knowledge of a space must use their surroundings to inform their

decisions, which does not always follow the shortest path. [

The scenario simulates passengers trying to find their gate by navigating using the information
provided by wayfinding. The layout of this test is a square room that is 40 x 40 m, with a T-
junction in the middle of the layout (Fig.4.1.a). Agents enter the simulation at an entrance before
the T-junction and exit at one of two gates, A or B, located on the other side. The T-junction is
designed to block the agents’ view so they cannot see the gates (Fig.4.1.b). There is also a
restricted area, marked by an amber rectangle, which emulates high-cost areas in FlexSim, that

agents should avoid.

1. Raubal, Martin. “Agent-Based Simulation of Human Wayfinding: A Perceptual Model for Unfamiliar
Buildings”. (PhD diss., Vienna University of Technology, (October 2001): 17-29.

264

Wayfinding Test

Determine if the environment can influence agents using perception
navigation to take a longer path than agents using direction navigation

- 40 x 40 m space with a T-juntion that has a short and long corridor

- Entrance is before T-junction and two Gates A and B are on other side
- Wayfinding sign at T-junction points left for Gate A and right for Gate B
- High-cost area (5 x12 m) placed at end of shorter corridor

- Test 1: Agents walk to Gate B through T-junction using direct navigation

- Test 2: Agents walk to Gate B through T-junction using perception navigation

Result: Agents with perception took a longer path after reading sign

Floor Plan

High-cost area
5x12m

Wayfinding Sign

Figure 4.1.a: Setup and conditions for the wayfinding test.

265

Agents must pass through the T-junction to get to their gates. There is a wayfinding sign at the
T-junction which points to the left for Gate A and to the right for Gate B. The left path of the T-
junction is a shorter distance to both gates then the right path, which doubles-back on itself. The
hypothesis is, agents with direct navigation will always follow the shorter path to the left,
regardless of which gate they are assigned and what they observe. Whereas agents with
perception navigation will follow the sign for Gate A to the left and for Gate B to the right.
Essentially, if agents are assigned Gate B, then agents with perception navigation are more likely

to follow the sign to the right, even though it is a longer path.

The thesis demonstrates this behaviour over two experiments. The first experiment is a baseline,
which involves agents searching for Gate B using direct navigation. In the second experiment,
agents search for gate B using perception navigation. Agents are assigned the same walking

speed of 1 m/s for both experiments.

Figure 4.1.b: Agent's view at the T-junction cannot see where their gate is, and they only have the sign

to inform their decisions.

266

During the first experiment, an agent is spawned at the entrance with direct navigation. The
moment they appear at the entrance, the agent generates a complete path for itself all the way to
Gate B. The path first traces a line from the agent’s position to the T-junction. At the T-junction,
the path turns down the left corridor. Then, the path wraps around the centre wall but stays
outside of the restricted area. Finally, it traces a path around the top of the high-cost area and
goes straight to Gate B. Once the path is established, the agent begins following the path exactly,
without being influenced by the information on the sign at the T-junction (Fig.4.1.c). The agent

continues like this until it reaches Gate B, where they are removed from the simulation.

During the second experiment, an agent is spawned at the entrance with perception navigation.
When they appear at the entrance, the agent notices the T-junction and the sign above it, which
they begin walking towards. Once in front of the sign, the agent then selects a path down the
right corridor, which is the same direction the sign is pointing to for Gate B (Fig.4.1.d). The
agent follows this path down the corridor. Since the corridor doubles-back on itself, the agent
continues to walk down and around the wall, which eventually winds back towards the gates.
Once the agent reaches the end of the corridor, Gate B becomes visible. After the agent

recognizes Gate B, they walk straight towards the gate and is then removed from the simulation.

The thesis ran multiple trials of the same experiments with a population of 50 agents for both
direct and perception navigation (Fig.4.1.g). For all attempts, agents with direct navigation took
the left path, whereas agents with perception navigation took the right path. On average, the
total distance travelled for direct agents was 61.83 m. The total distance travelled for perception
agents was 102.18 m, which is over 40 m longer, on average. The data for these trials are list in
Appendix A. Therefore, agents with perception navigation can be influenced by the environment
to take a longer path than agents with direct navigation. As a result, this demonstrates agents
with perception have the ability to interact with architectural features to influence their

behaviour in a space.

267

Figure 4.1.c: Agent with direct navigation goes to the left.

Figure 4.1.d: Agent with perception navigation follows the sign for Gate B to the right.

268

A* Direct Wayfinding Figure 4.1.e:
Agent finds lowest

cost path to Gate
B.

Agent follows
path to the left,
indifferent of the

sign.

Agent follows
path around high-
cost restricted

area.

Agent reaches

Gate B.

A* Perception Wayfinding Figure 4.1.f:
Agent walks to

view sign.

Agent follows the

sign to the right.

Agent navigates

around walls.

Agent sees Gate
B and walks

towards it.

270

Agent Distance Travelled to Gate B

@ Direct Navigation ~ @ Perpcetion Navigation

120

) s % % o, e, ooo‘.
100 .".0.0 ®se *° % o goe oo'oo... %see

80

60 |00

Distance (m)

40

20

0 10 20 30 40 50
Number of Agents

Figure 4.1.g: Comparing the distance agents travelled to Gate B using direct and perception

navigation.

271

60

Visibility Test

This test demonstrates how isovist geometry can quantify the relative visibility differences
between smaller and larger architectural spaces. The hypothesis is that moving from a smaller
space into a larger one will increase an agent’s visibility. Likewise moving from a larger space
into a smaller one will reduce an agent’s visibility. Since the isovist geometry is a representation
of an agent’s field of view, then the isovist should also reflect these differences. The thesis

expects to quantify an agent’s visibility based on the change of the physical area of the isovist.

This thesis also compares relative areas using a custom metric called the Field of View (FOV)
ratio. This normalizes the total visible area relative to an agent’s maximum observed area over
time, where the maximum area is given a value of 1.0. For example, if the maximum area an
agent observed over time was 100 m? and the current visible area where the agent is standing is
60 m?, then their FOV ratio for that location would be 0.6. Additionally, if this agent later
observes an area of 150 m?, then this would be given a ratio of 1.0, the 100 m? would be

rewritten as 0.67, and the 60 m? would become 0.4.

The layout of this test is designed as a corridor that transitions between a wide section and a
narrow section (Fig.1.h). It is a 42 x 24 m U-shaped space, with a 20 m wide legand a2 m
narrow leg. There is a gate located at the end of each leg that agents can enter and exit from,
which are called the Wide Gate and Narrow Gate, respectively. There is also a transition section
between the wide and narrow corridors, which steps the width from 20 m to 9 m, and 4 m,
before dropping to 2 m. This transition was added because agents in initial tests had difficulty
finding the narrow corridor. It also provides a gradual change in visibility instead of an abrupt

change.

272

Visibility Test

Demostrate that narrow spaces result in low visibility and wide spaces result
in high visibility, relatively, based on the agent's field of view.

- 42 x 24 m U-shaped space, with a 20 m wide leg and a 2 m narrow leg
- 10 m long transition corridors that are 9 m and 4 m wide
- Test 1 (to Narrow): Agents walk from wide gate to narrow gate

- Test 2 (to Wide): Agents walk from narrow gate to wide gate

Result: Visibility value was higher towards wide space than to narrow space

Floor Plan

Narrow
Gate
Test 2

Direction

\
Test 1 N >

Direction

Figure 4.1.h: Setup and conditions for the visibility test.

273

This test is divided into two experiments. The first experiment has agents walking from the
Wide Gate to the Narrow Gate (4.1.k). The second experiment has agents walking in the opposite
direction from the Narrow Gate to the Wide Gate (4.1.1). In both experiments, agents are using
perception navigation and are assigned a walking speed of 1 m/s. The agent’s field of view is
displayed as the simulation is running. The values of the agent’s FOV area, FOV ratio, and

average visibility are recorded over time during their journey.

The first experiment spawns an agent at the Wide Gate. The agent walks down the 20 m towards
the corner of the 9 m transition space. As they get closer to the corner, their FOV area slowly
becomes smaller. When they reach the corner, the agent is able to see down the transition
corridor, which increases their field of view. After rounding the corner, the agent continues to
walk to the end of the transition space, which narrows down to 4 m wide. When the agent
reaches the corner of the 2 m narrow corridor, the agent’s field of view has become small. As the
agent looks around this corner, they can see the Narrow Gate at the end of the corridor, which
momentarily increases their field of view (Fig.4.1.i). Once the agent recognizes their destination,

they walk straight to the gate, where they are then removed from the simulation.

The second experiment spawns an agent at the Narrow Gate. The agent walks down the 2 m
corridor to the 4 m transition. Their FOV area slowly becomes smaller as they reach the first
corner. When the agent turns the corner, their field of view increases as they suddenly have a
view all the way down the transition section. The agent continues walking to the end of the
transition corridor. As they approach the corner of the wide corridor, their field of view begins to
open out into the 20 m wide space. When the agent reaches the corner of the wide corridor, they
suddenly have view of the Wide Gate (Fig.4.1.j). At this point, the agent recognizes their
destination, and walks straight to the Wide Gate, which slowly decreases the size of their field of
view as they get closer. Once the agent reaches the Wide Gate, they are removed from the

simulation.

274

Figure 4.1.i: Agent's view when they see the Narrow Gate.

Figure 4.1.j: Agent's view when they see the Wide Gate.

275

Visibility to Narrow Gate

Change in Field of View (FOV) Area (00:06)

Change in Field of View (FOV) Area (00:20)

Change in Field of View (FOV) Area (00:24)

FOV Area (m?)
-
5 8 & § 8 8 3
8 8 8 8 8 8 8

o

Change in Field of View (FOV) Area (00:48)

FOV Area (m?)
N W B oW o@ N
28 5883 3
g8 8 8 8 8 8

15
38

Time (s)

Figure 4.1.k: Screen captures as agent walks to Narrow Gate, showing the change in FOV area.

276

Visibility to Wide Gate

Change in Field of View (FOV) Area (00:06)

31

Time (s)

Change in Field of View (FOV) Area (00:14)

1 6 11 16 21 26

)

@
3
8

2

FOV Area (m

Change in Field of View (FOV) Area (00:33)

1 6 11 16 21 26 31 36 a1 46

Time (s)

Change in Field of View (FOV) Area (00:40)

1 6 11 16 21 26 31 36 a1 46 51

Time (s)

FOV Area (m?)

3
3

Figure 4.1.1: Screen captures as agent walks to Wide Gate, showing the change in FOV area.

277

The outputs of agents’ visibility in these experiments are compared in Fig.4.1.m-o. When the
agent was going to the narrow gate, their initial area was around 550 m?, whereas the initial area

of the agent going to the wide gate was only around 100 m? (Fig.4.1.m).

Both the FOV area and FOV ratio for the agent going to the Narrow Gate gradually drops
towards zero. There is a spike in visibility around 22 seconds into the journey, which is a result

of the agent seeing around a corner, but it does not get higher than the initial value (Fig.4.1.n).

The FOV area and FOV ratio for the agent going to the Wide Gate has a big jump up around 10
seconds into the journey. This is due to the agent seeing down the transition space, which was
one of the highest visibility values. This slowly drops until the agent turns the second corner to
the Wide Gate, which sees another spike. Then the ratio drops again as the agent walks towards

the gate, but still maintains a higher value than the agent in the narrow corridor.

As shown in the average visibility graph, the agent starting at the Narrow Gate had a lower
visibility than the agent starting at the Wide Gate (Fig.4.1.0). But over the transition space, the
agent going to the Wide Gate saw higher visibility over time than the other agent.

The thesis ran these experiments for multiple trials with a population of 50 agents in both
directions. The outputs of these trials area shown in Fig.4.1.p-r, which illustrate the differences.
The key value to consider is the FOV ratio when agents discovered their gate (Fig.4.1.q). Agents
going to the Wide Gate had an average ratio of 0.88 when they saw it, whereas agents going to
the Narrow Gate only had an average ratio of 0.10. This trend is similar in the average visibility,
with 0.70 for agents going to the Wide Gate and only 0.42 for agents going to the Narrow Gate
(Fig.4.1.1).

The thesis notes that the maximum observed areas are similar for both directions, which is
around 600 m?. Although, some agents walking towards the Narrow Gate saw a maximum area
as high as 1200 m? (Fig.4.1.p). This appears to be the result of some agents who doubled-back on
themselves trying to find the narrow gate, which resulted in agents seeing down both the wide
corridor and transition corridor at the same time. However, this has no significant impact, since
1200 m? is still much greater than the 100 m? observed in the narrow corridor. Data from these

trials can be seen in Appendix A.

Therefore, both the FOV ratios and the average visibilities for agents going to the Wide Gate are
higher, on average, than agents going to the Narrow Gate. This means the agent’s field of view

correctly recognizes the difference in visibility between wide and narrow architectural spaces.

278

FOV Area (m?)

FOV Ratio

Visibility Ratio

Change in Field of View (FOV) Area

= (Going to Wide Gate e GOINg to Narrow Gate

700
600
500
400
300
200
100

0

0 5 10 15 20 25 30 35 40 45 50 55
Time (s)
Figure 4.1.m: FOV area gets larger towards wide gate and smaller towards narrow gate.
Change in Field of View (FOV) Raito
= (Going to Wide Gate e GOINg to Narrow Gate

1
0.8
0.6
0.4
0.2

0

0 5 10 15 20 25 30 35 40 45 50 55
Time (s)

Figure 4.1.n: FOV ratio trends above 0.5 towards wide gate, and below 0.5 towards narrow gate.

Change in Average Visibility

e Going to Wide Gate e (G0INg to Narrow Gate

o
o

©
o

o
>

o
N

o

0 5 10 15 20 25 30 35 40 45 50 55
Time (s)

Figure 4.1.0: Over time, average visibility is greater towards wide gate than narrow gate.

279

Maximum Field of View (FOV) Area Distribution

® Going to Wide Gate ~ ® Going to Narrow Gate

1400

1200 o o0
1000
800 e (o —©
600 ® e2drc00nedeneda® Seoget00

$086288008088 00,00808000508800%g502800080800040

400

200

FOV Area (m?)

0 10 20 30 40 50
Number of Agents

60

Figure 4.1.p: Max observed FOV area is around 600 m?2 for both directions, unless agents doubled-back.

Field of View (FOV) Ratio Distribution When Gate Discovered

® Going to Wide Gate ~ ® Going to Narrow Gate

1 e00, o
e® o o .0.0. % ¢%°, ..0.0. e ® %°% %
0.8 %% ° . o ° o ® ° .
o [
£ 06 ° ° e
o
3 04
[N
0-2 L4)) 09 _o00
00500000°0,,0 0,00 %0 oo 000 04%4%%, 000%g0®
[J [1)
0 @ *—©
0 10 20 30 40 50
Number of Agents
Figure 4.1.q: FOV ratio is higher when agents see the wide gate than the narrow gate.
Average Visibility Distribution
® Going to Wide Gate @ Going to Narrow Gate
1
0.9
= 0.8
Z 07 ..o"oo’o.'..."000.’...0000000.0.0..0°0°.00000.00
G 0.6
S
0.5 o O [J
o ° 0e® oo ° 90 _o,%
e o [J
%04 0®0gg®esogee "6 s o ° *® %gee OO 0%,
g 03
< 0.2
0.1
0
0 10 20 30 40 50

Number if Agents

Figure 4.1.r: Average visibility is higher going to the wide gate than the narrow gate.

280

60

60

Non-processing Priorities Test

This test demonstrates how priorities can influence agent behaviour in non-processing airport
domains. The hypothesis is that agents who are assigned a high priority for a non-processing
domain, like food, are more likely to interact with food and retail areas in an airport than agents

who are assigned a low priority.

The scenario replicates conditions of a typical North American terminal. Seating areas are
organized linearly along one side of the facility, and food and retail spaces are placed along the

opposite side, with circulation running through the middle (Fig.4.1.s).

The layout for the test is a 30 x 30 m square space. The west side of the space is designed as a
gate holdroom, or waiting area, and the east side is dedicated to food stalls. There is one
entrance located in middle of the south wall, and one gate exit on the west wall of the holdroom.
The holdroom has three rows of 12 seats for a total of 36 seats. In the food area, there are three
equally spaced stalls that each have one service counter and a short queue stanchion. To
differentiate the stalls in the model, they are labelled as a pizza shop, a café, and a restaurant

bar. However, the food stalls are functionally the same for the test.

The test involves a population of 50 agents, whose goal is to board a flight. Their departure time
is set for 2 minutes into the simulation. Before the departure time, agents are free to interact
with the environment. In this test, agents can do one of two activities, either wait in the
holdroom or get something to eat. When agents enter the simulation, they are randomly
assigned a food priority on a scale from 1 to 9. Agents that have a food priority of 5 or higher are
expected to get something to eat. Otherwise, agents with a food priority less than 5 should wait
in the holdroom, until it is their departure time. For this test, agents are using perception
navigation and assigned a walking speed of 1 m/s. Their proximity detection is disabled for this

test, so agents may walk through each other.

281

Non-Processing Priorities Test

Show that agents with higher priority for a non-processing domain (food)
follow different behaviour than agents with a lower priority

- 30 x 30 m room, with 3 food stalls, and 3 rows of seating in waiting area
- Agents randomly assigned food priority from 1 to 9.
- Agents with food priority greater or equal to 5 should get food

- Otherwise, agents wait by seating area until a set departure time

Result: All agents with a high food priority got food before departure

Floor Plan

23 m

Wiaiting Area

oooodo
oooooo

palY |ID}RY /POO

o——o—0

(3x) Servjce
Couriter

(36x) Waiting —|
Area Seats

|
|
|
|
|
|
|
|
|
30m I
|
|
|
|
|
|
|
|
|

—N

/ (3x) Queue

Stanchion

Entrance

Figure 4.1.s: Setup and conditions for the non-processing priority test.

When the simulation starts, agents randomly enter the space every few seconds (Fig.4.1.v).
Agents going to the holdroom are coloured in red and agents going to the food area are coloured
in light green. There appears to be a similar number of agents going to each area over time.

Agents in the holdroom are waiting, so they walk over to a random seat and come to rest

(Fig.4.1.1).

Meanwhile, agents in the food area are looking for a random food stall. If an agent selects a stall,
they get in line behind the queue stanchion, which changes their colour state to yellow
(Fig.4.1.u). Then, agents walk up to the service counter to order some food, which changes their
colour state to orange. The time an agent spends at a counter is based on a random service time,
which is about 10 seconds. Once they are done getting food, the agent turns light blue and

moves away from the counter, which completes their food interaction.

After agents leave the food area, they check back to the gate area. If it is not their departure
time, then they walk over to the holdroom and join the other agents already waiting there, which
changes their colour state to red. As soon as the simulation time reaches the departure time, all
agents in the holdroom turn a dark green colour, walk over to the exit gate, and leave the

simulation. After all agents have exited, the test is complete.

The thesis ran multiple trials of this test with a population of 50 agents under similar conditions.
The results of one of these tests are illustrated in Fig.4.1.w. The graph lists each agent’s food
priority during the simulation and indicates which agents got food and which agents did not get
food. As expected, all the agents that got food have a priority of 5 or higher. This verifies that
agents who were assigned a high food priority followed the indented behaviour. This also
confirms that changing an agent’s priority of a non-processing domain can influence a
passenger’s behaviour in a simulated environment. Although the priority threshold was set to 5

for this test, this can be changed to account for different domains or passenger types.

283

Figure 4.1.t: Agents with low food priorities waiting in the gate seating area (red).

Figure 4.1.u: Agents with high food priorities getting food at the cafe (light green: going to food area,

yellow: in line, orange: at counter).

284

Agents Prioritizing a Non-Processing Domain

285

Figure 4.1.v:

Agents either go to food
area (light green agents) or

waiting area (red agents).

Agents in food area purchase
something at the counters.
Agents in seating area wait

until departure time.

Agents finished in the food
area, come back to the

seating area to wait (red).

After the scheduled departure
time (1:30), agents (dark

green) go through gate.

9
8
7
6
>
£ 5
e
a 4 e L 1
3]
2
1 [1)
0
0
Figure 4.1.w:

Agent Behaviour based on Food Priority

@ Did not get food ® Got food

10 20 30 40 50 60
Number of Agents

Comparing which agents got food with each agent's priority for food availability.

286

Summary

In summary, this chapter explored new simulation components that are proposed by this thesis,
such as perception navigation, field of view visibility, and airport priorities. The purpose of these
tests was to illustrate how they influence agent behaviour in different architectural conditions.
The conditions that were covered include wayfinding, different sized spaces, and non-processing
domains. The thesis verifies that these components model the given architectural conditions and

corresponding agent behaviours as intended.

The Wayfinding test demonstrates how agents navigating with perception do not always take the
shortest path like direct navigation, because they can be influenced by information from the
environment. The test makes agents navigate to a gate through a T-junction that had a short and
long path. The test shows that, if a wayfinding sign is placed at the T-junction and told agents to
take the longer path to the gate, then agents with perception will follow it. This result is true
since agents are not aware of the gate location and can only rely on information from the
environment to inform their decisions. This is unlike direct navigation, which always takes the

shorter path, regardless of the information on the wayfinding sign.

The Visibility test illustrates that isovist geometry, which represents an agent’s field of view, can
correctly identify the visibility difference between wide and narrow architectural spaces, relative
to each other. The test has agents walk back and forth between a wide corridor and a narrow
corridor and records the change in field of view area and relative visibility during the journeys.
Visibility is calculated as a ratio to the maximum observed area over time, where 1.0 equals the
largest area. The field of view correctly shows that moving from the wide corridor to the narrow
corridor reduces visibility. Likewise, moving from the narrow corridor to the wide corridor

increases visibility.

The Non-Processing Priorities test demonstrates how agents who are assigned a high priority for
a non-processing domain, like food, are more likely to interact with food areas in an airport than
agents who are assigned a low priority. The test simulates a typical gate with a holdroom and
food area, which requires agents to wait around in until their departure time to board their
flight. Before boarding, agents are randomly assigned a food priority on a scale of 1 to 9. It is
observed that agents with a priority of 5 or higher go get food in the food area, as defined in the
simulation model. Whereas agents with lower food priorities wait in the seating area. This
verifies that changing an agent’s priority of a non-processing domain can influence a passenger’s

behaviour in a simulated environment.

287

Chapter 4.2

Terminal Tests

This chapter explores the architectural value of a hypothetical terminal layout. Changing the
arrangement of a floor plan can influence passenger behaviour, which corresponds to the overall
architectural value. A terminal layout is tested with three different configurations for the
security area. If all else is equal, then the difference in architectural value represents the changes

from the security layout. The configurations that are explored include (Fig.4.2.a):

e Security area is aligned to the centre of check-in
e Security area is aligned asymmetrically to one side of check-in

e Security area is perpendicular relative to check-in

In addition to the physical layout, the thesis also considers how the overall architectural value is

affected by different agent priorities for each design:

e Passengers are assigned random priorities for all domains
e Passengers are assigned high priority for security

e Passengers are assigned equal priority for all domains

The following tests can be described as a Monte-Carlo simulation. Passenger behaviour is given
random variables; therefore, the output should produce a binominal distribution. Given a large

enough sample size, the distribution should approach a normal curve.

All tests have a sample size of 50 agents. Agents use perception navigation and are assigned
characteristics based on the IMO population distribution. For the first set of sets, agents are
assigned random priorities for the six pre-defined airport domains. For other priority

conditions, see Priority Range Tests later in this chapter.

The terminals are only designed with the core areas for departure as described by the National
Academies. Each layout has a basic check-in processor, security screening, and a holdroom
concourse. These spaces are laid out as a linear sequence, which passengers can only follow in

one direction. All layouts follow the same general process, as described below.

288

Terminal Tests

Purpose To see how changing the security layout affects the architectural value of a
hypothetical terminal

Conditions - 3 layouts with different security locations, as shown below
- Same check-in and holdroom areas
- Population of 50 passenger, with 3 entrances and 2 gates

- Consider range of passenger priorities: random, high security, and equal

Layouts

Centre Layout Asymmetrical Layout Perpendicular Layout

Check-in . Security . Holdroom

Figure 4.2.a: Setup and conditions for the terminal tests.

289

Passengers randomly enter the terminal, one at a time, between 1 and 5 seconds, from one of
three entrances. The check-in processor has 3 parallel islands of 12 counters each for passengers
to drop off their baggage and pick up their boarding pass. Passengers can select any counter at

random. Once checked in, passengers can make their way to security screening.

The location of security screening is based on the test. It marks the transition between secure
and non-secure areas of the terminal, or landside and airside, respectively. The security area
begins with a queue line, which is marked by stanchions. Passengers must pass through this
queue line before getting screened. Inside security screening are 6 metal detectors that flank 3
X-ray machines. Once passengers walk through any one of the metal detectors, they can make

their way to the holdroom concourse.

At the end of the security area is a wayfinding sign that marks the threshold to the holdroom
concourse. The sign points to the left for Gate A and to the right for Gate B, which are the only
two gates in the terminal. Each gate has a waiting area with 24 seats. Across from each waiting
area is a food/retail stall and a restroom, representing non-processing domains. Passengers wait
in the holdroom until the gate’s departure time, which is randomly assigned between 8 and 10

minutes into the simulation. The test ends once all passengers have left through the gates.

2090

(48x) Gate
Seating

(2x) Food/

Retail Counter

(6x) Metal (3x) X-ray

Detectors Machines

Entrance 1 * Entrance 2 \‘ Entrance 3 *

18 m 18 m

Figure 4.2.b: Floor plan of the Centre Security Layout.

201

Centre Security Layout Test

The first layout has the security area in the centre of the terminal plan. The results from this first
test provide a base value to compare to the other layout conditions. The thesis walks through
this test to illustrate the process. However, only the differences will be covered for the following
test.

The test begins with passengers entering the check-in area. Passengers tend to walk to check-in
counters near the middle of the isle, rather then at the ends, since they have clear view of the
middle counters when they first enter. After checking in, it appears most passengers have a
direct view to the centre security area from these counters. Nearly all agents walk directly to the
security queue line. In some trials, there are one or two passengers who do not notice the
security area immediately after checking in. So, these passengers will wander around the check-

in isle before noticing the security area from an adjacent isle.

Due to IMO’s assigned walking speeds, some passengers walk about three times faster than
others. If a fast passenger gets blocked by a slower passenger, then they slow down behind them.
During all the tests, it is observed that if there are many faster passengers behind one slow
passenger, then they form a train. Although this is intended behaviour, the thesis believes better

crowd dynamics should have faster passengers trying to walk around slower moving people.

Passengers enter the security queue one at a time. This triggers their security processing time.
Other passengers behind them slow down if they get too close in the line. Although passengers
do not stop in the queue line, a time delay factor is applied for security wait times based on

Wiredja et al.’s research of passenger tolerance. All passengers are able to process at the x-ray

machines and walk through the metal detectors successfully.

All passengers notice the wayfinding sign, immediately after going through the metal detectors.
As a result, they all walk towards the sign and follow the direction it is pointing. Since departure
gates are randomly assigned, a similar number of passengers walk to the left and right, to Gate A
and Gate B, respectively. Since the security area was in the centre, passengers have an equal

distance to walk for either gate.

Since the terminal concourse is small, passengers immediately recognize their gates when they
enter the holdroom. It appears passengers who have faster walking speed are the first people to
arrive at the gate, which is well ahead of the assigned departure time. As mention for the first set

of tests, agents are randomly assigned priorities. It is observed that some passengers walk over

2092

Figure 4.2.c: Passengers in the check-in area (dark blue: walking to counter, orange: processing).

Figure 4.2.d: Passengers in security screening (purple: walking to security, yellow: in queue line,

orange: processing).

293

Figure 4.2.e: Passenger entering holdroom concourse before the sign (pink: reading sign, light blue:

wandering, light green: going to food area, red: waiting in seating area).

Figure 4.2.f: Passengers linger in holdroom concourse (light blue: wandering, orange: processing,

light green: going to food area, red: waiting in seating area).

294

to the seating area to wait, whereas other people make their way to one of the nearby food stalls,
which indicates that they have higher food priorities. Once these passengers get their food, they

make their way back to the seating area in front of their gate.

All passengers successfully reach the holdroom concourse before their gate’s departure time. It
is observed that some passengers sit in seats that are already occupied by other people. But this
does not influence architectural value for this simulation. For some trials, it appears a couple of
passengers are unable to find seats, possibly due to the number of people. Although, these
passengers continue to wander around the holdroom area. This has some influence on

architectural value for this simulation since agents have gate seating as a priority.

After about 9 minutes of simulation time, it reaches the first gate’s departure time. All passenger
departing from that gate get up from the seating and make their way through the portal. Several

seconds later, the other gate opens, and the rest of the passengers exit through their portal.

For this test, all 50 passengers completed the simulation successfully. The thesis also performed
multiple trials under the same conditions to get a larger sample size. The average architectural
value from these trials for the Centre layout is 0.730, and the average security screening value is
0.615. For the moment, these numbers are just a starting point to compare with the other

layouts.

The overall binomial distribution for architectural value is illustrated in Fig.4.2.h. The
distribution shows that most passengers give an architectural value between 0.75 and 0.80.
Additionally, it can be seen that, given enough passengers, the probability distribution should
approach a normal curve. The same behaviour is true for passengers’ security scores for this
layout, which has a highest score between 0.65 and 0.70 (Fig.4.2.i). Therefore, this test produced

the expected behaviour of a Monte Carlo simulation.

295

Centre Security Layout

206

Figure 4.2.g:

Passengers in the check-in

area.

Passengers making their
way through security

screening.

Passengers in the holdroom

concourse.

Passengers going to gate

after departure time.

Centre Layout Value Distribution
30

25
20

15

10 III

S & O O D oD 5 R P D DO OO P S
S N N N N N N N N N U N N N N NN

Number of Passengers

]

RS YIK MR U S M AR N MR SN M SURDS MRS U A MRS U S MR MK A MR S U M S0
SIEPS P N PN PN PN I PN PN PN PN RPN PN PPN SN NN

Architectural Value

Figure 4.2.h: Binomial distribution for the Centre Layout approaches a normal curve with the highest

probability occurring between 0.75 and 0.80.

Centre Security Screening Scores

30

» 25

(0]

o

g 20

a

g

& 15

(o]

8 10

€

3

o .

0 I
S & O O O H N H O © & O O O O O S H
Q,op,op:» Q,x,pc»pwpfb %Qv Qv & & & N f\ch 9,q S
0%0%0%060%0%0%0%0%0%

Normalized Scores

Figure 4.2.i: Likewise, the binomial distribution for the passengers'score for security screening with

the highest probability occuring between 0.65 and 0.70.

297

(48x) Gate
Seating

Wayfinding
(2x) Food/ Gate Sign
Retail Counter

(3x) X-ray
Machines

(6x) Metal

Detectors

Entrance 1 * Entrance 2 \‘ Entrance 3 \‘

18 m 18 m

Figure 4.2.j: Floor plan of the Asymmetrical Security Layout.

208

Asymmetrical Security Layout Test

The second layout has the security screening area aligned to the right side of the terminal, which
makes the design asymmetrical. Inside the security area are identical components to the security
area in the first layout. It has the same queue stanchions, 3 X-ray machines, and 6 metal
detectors. The middle of the terminal is replaced with the same food/retail stall in the holdroom

concourse, washrooms, and implied back-of-house areas (Fig.4.2.j).

The thesis conducted this test with the same procedure as the Centre layout, so only the
differences are covered here. This test is meant to replicate a new floor plan iteration that an
architect might consider during the design phase. The idea for this test is, if the conditions are
exactly the same, and only the location of the security area is changed, then the passengers’
scores should reflect the differences in the layout. The hypothesis is the Asymmetrical security
layout should decrease the security score and reduce the overall architectural value. This is
because the security will not be visible to passengers checking in on the left side and it is a

further walking distance from Gate A.

Like the first layout, most passengers walk to the middle of the isles in the check-in area when
they enter the simulation. Except this time, it is observed that passengers who are at counters on
the left side do not have a direct view to the security area. Only passengers on the right side have
a direct view to security. When passengers on the left side finish checking in, it is observed that
more people return to a wandering state (Fig.4.2.k). These passengers end up walking around
the check-in isles searching for security. Once passengers wander around the counters to the
right side of the processor, they can recognize the entrance to the security queue. Passengers

walk directly to the security area when it becomes visible at this point (Fig.4.2.1).

After passengers make their way through security, the process becomes similar to the first layout
again. Some passengers in this layout are further away from Gate A when they leave security.
There is a wayfinding sign at the entrance to the holdroom concourse which directs people to the
left for Gate A. But it does take longer for passengers to reach Gate A in this layout, as is

expected.

One observation the thesis did not consider was the improved visibility for passengers going to
Gate B. Since security screening is right across from this gate, passengers had a much better
experience finding Gate B than they did in the first layout. Likewise, if these passengers also
checked in on the right side of the processor, then their distance travelled is significantly

shorter, and their visibility would have been a lot higher than before when they found the gate.

299

Figure 4.2.k: Passengers wandering (light blue) between check-in isles because they do not see the

security area from left side of the check-in processor.

Figure 4.2.1: Security screening has a bias for passengers checking in on the right side (purple).

300

All 50 agents completed this test successfully. Like the first test, multiple trial runs were
performed under the same conditions to increase the sample size. The average architectural
value for the Asymmetric layout is 0.721, and the average security screening value is 0.505. This
security score is about 10% lower than the first layout, mainly as a result of more passengers
wandering around. However, the average architectural value is only 1% lower, which is not a

significant change.

It is understandable that there might only be a small change in architectural value because
security screening is not the only passenger priority. Other airport domains may have had
higher priorities for some passengers. For example, there were small improvements to the gate
availability score. Passengers finding Gate B immediately was a bigger improvement than
passengers walking longer to Gate A. The values from these tests are listed in Appendix A for

further information.

The overall binomial distribution for architectural value is illustrated in Fig.4.2.m. Once again,
the distribution approaches a normal curve, given enough passengers, which is characteristic of
a Monte Carlo simulation. The architectural value has the highest probability between 0.70 and
0.75. A comparison between the architectural value distributions shows that the Asymmetrical
layout did cause a 5% decrease in the maximum probability (Fig.4.2.n). Likewise, the peak
security score is between 0.40 and 0.45, which is a 25% decrease (Fig.4.2.0). Interestingly, there
is a distribution of passengers who scored similar to the Centre layout between 0.60 and 0.70
(Fig.4.2.p). This may be coming from passengers who checked in on the right side and departed
from Gate B.

It is not important if the exact differences are measured to the nearest percentage. But what is
important is that there is a probability distribution illustrating what range of passenger scores
are likely to occur. Fundamentally, the Asymmetrical layout is more likely to give a sightly lower
performance than the Centre layout, for a large number of people. It also suggests that the
security area is most likely to impact passenger behaviour. Although these differences may be

obvious in the floor plan, the simulation provides a quantifiable comparison of this behaviour.

301

Asymmetrical Layout Value Distribution

30
(O]
oo
S 20
a
N
& 15
o
310
£
>
o l
. _— -_-
O & O O O O N H O © & O O N SO L H N H
NN N N NN A S SN bb/\/\q’%o’o"\,o

0%0%0"90%'0"90‘90%0‘90‘90%
O ™ o oV ¥ 7 o7 oF ¥ 07 o 0% ¥ oV Y ¥ P 7 P

Architectural Value

Figure 4.2.m: Binomial distribution for the Asymmetric Layout approaches a normal curve with the

highest probability occuring between 0.70 and 0.75.

Centre vs. Asymmetric Value Comparison

30
25
20
15

10

Number of Passengers

O S O O D oD 5D P DD OO SO P

.Q .0 ;N .N) r} 0’} 0’.5 ’Q'b /0? /Q.v '0<-0 '0(? ’Q¢b lg.b /Qﬁ '01 'Qib ’Qib /09 109 'N-Q
I R R S S e e A R AR N

v Q?) Qr'b Q?‘ Q'v Q<'9 Q<? Q'b Qg> Q/'\ Q/'\ Qc'b Qc'b 09 09

Architectural Value

M Centre Asymmetric

Figure 4.2.n: Comparison shows Asymmetric values (orange) has a lower distribution than Centre

values (blue).

302

Asymmetric Security Screening Scores

S PP PP P PP EL,LL LSS

30

25

20

1

[6,]

1

o

Number of Passengers

(6]

0’<o0’%’0%’0@0%0%0%0%06'0%
R R NN NN N N S NN N NN NN P NN

Normalized Scores

Figure 4.2.0: Binomial distribution for the passengers' security scores has a peak between 0.40 and

0.45. Also note the high disribution between between 0.60 and 0.70.

Centre vs. Asymmetrical Security Comparision
30
25
20
15

10

Number of Passengers

P & O O O D N H O P DD OO HE D HS
IR I S N i N i N N N N N N NN N NN
O K O O N M 0 H O © & &K @ & N N 0 &H N M

NN N N N NN N G N S N NN IR I RN RN NN

Security Score

H Centre Asymmetrical

Figure 4.2.p: Comparison shows Asymmetric secruity (orange) has a lower distribution than Centre

security (blue). Some passengers in the Asymmetrical layout did score similar to the Centre layout.

303

Perpendicular Security Layout Floor Plan

(48x) Gate
Seating

(2x) Food/ f Wayfinding

Retail Counter Gate Sign
8 m

Queve (3x) X-ray

Stanchions Machines

(6x) Metal

Detectors

Entrance 1 N Entrance 2 * Entrance 3 \‘

18 m 18 m

Figure 4.2.q: Floor plan of the Perpendicular Security Layout.

304

Perpendicular Security Layout Test

The final layout has security screening rotated 90°, in the middle of the terminal, perpendicular
to way it was placed for the first test. Like the first two tests, it includes the same queue, X-ray
machines, and metal detectors. Since the layout is perpendicular, the security area is wider than
the first two tests to provide walk-up space for passengers to approach. Passengers enter and
exit into the security area through a 8 m wide threshold. The entrance threshold aligns with the
left isle of the check-in processor and the exit threshold is in front of the seating at Gate B. The
food/retail stalls fill in the spaces adjacent to the security area, and the rest is implied as

washrooms and back-of-house areas (Fig.4.2.q).

This test is performed under the same conditions as the previous two tests. The hypothesis is the
Perpendicular layout will produce the lowest security score and architecture value out of all
three layouts. The narrow threshold should make the security area difficult for passengers to
find and the perpendicular direction may reduce the passenger’s overall visibility during

screening.

Like the other tests, passengers randomly enter the check-in processor and walk to service
counters in the middle isles. Since the entrance to security is aligned to the left isle, passengers
on the right side of the check-in area do not have any view of security. As a result, many
passengers are observed wandering around trying to find security screening during the test
(Fig.4.2.r). From the angle these passengers approach the security threshold, the back wall of
the check-in area hides the entire security area (Fig.4.2.s). When passengers approach the
threshold from the right, they cannot see any identifiable features of the space, like the queue
line. However, when passengers approach the threshold from left, are they able to see the

security queue stanchions (Fig.4.2.t).

Once passengers enter security screening, the process is the same as the other layouts. After
screening is complete, passengers must leave the area by walking to the left. There is a gate

wayfinding sign at the exit threshold, which makes navigating easier than it was for the entrance

(Fig.4.2.u).

The simulation continues until all passengers leave through their departure gate. During one
trial, there were still a couple passengers lost in the check-in area even after departure time.
These people eventually found their way through security, after walking down to the far-left end

of the processor, and managed to finish the simulation successfully, despite being late.

305

Figure 4.2.r: Passengers in the right isle of check-in looking for the security area (light blue:

wandering, dark blue: going to check-in counter).

Figure 4.2.s: Passenger's view walking along the wall from the right cannot see any identifying

feature for security at the threshold.

306

Figure 4.2.t: Passengers approaching from the right side (purple) recognize the security queue sooner

than passengers approaching from the left side (light blue), due to the narrow opening.

Figure 4.2.u: Perpendicular security screening area, with an exit to the left towards the wayfinding

sign (purple: walking to security, yellow: in queue line, orange: processing, pink: reading sign).

307

However, not all agents struggled finding the security area. Like the Asymmetrical layout, some
passengers who entered the check-in processor on the left side had a clear view into the security
area from the start. As a result, once they got through security, these passenger’s experience was

practically similar to the Centre layout test.

The results of the Perpendicular layout were as successful as the previous two tests. Once again,
multiple trial runs were performed under the same conditions to increase the sample size. The
average architectural value for the Perpendicular layout is 0.691, and the average security

screening value is 0.483. These are the lowest values of all three layouts.

The overall binomial distribution for architectural value is illustrated in Fig.4.2.v. The
architectural value has the highest probability between 0.75 and 0.80. Surprisingly, this is
similar to the Centre layout, despite having a lower average. Although this difference might be
due to the Perpendicular distribution having a higher variance. When comparing all three
layouts, the Centre layout has the highest peak distribution, followed closely by the
Perpendicular layout, and then the Asymmetric layout (Fig.4.2.w). However, all three layouts
share a similar distribution shape, which shows that most passengers had similar overall

experience for every terminal, despite the security screening differences.

The distribution of security scores for the Perpendicular layout are shown in Fig.4.2.x. The peak
scores are between 0.35 and 0.40. Although, like the Asymmetrical layout, there is a significant
distribution of passengers who scored between 0.65 and 0.70. This may be from passengers who
entered the processor on the left, which gave them a clear view into the security area. When
comparing all three layouts, the Centre layout had the highest peak distribution, which was well
ahead of the Asymmetrical layout, and then the Perpendicular layout (Fig.4.2.y). However, as
mentioned before, both the Asymmetrical layout and Perpendicular layout had a significant
distribution of people who match the Centre layout security scores. This indicates that not all

passengers had the same experience, despite walking through the same terminal design.

308

Perpendicular Layout Value Distribution

25
20

15

, __-I-II
Q

Q@b‘?@%"@é’@«"@%’c@&@

Number of Passengers
o

(6]

S E P PP S
0"0'0"0'0"’)'0‘90%6‘00‘9Q%Q%Q‘o
SHIPS P P PN PN N PN TIPS PN PN PN PN PN NP SEPS PN PN)

Architectural Value

Figure 4.2.v: Binomial distribution for the Perpendicular Layout approaches a normal curve with the

highest probability occuring between 0.75 and 0.80.

Architectural Value Comparison
30
25
20
15

10

Number of Passengers

& O KO D D D H O P DD OO D H® D H D
SIS S N N N NN o N N NN N N NN N NN
O & O O O M 0 M QO O O K © O N M 0 & N N

RN A RN AN RN N SN RN N N S RN PN NN

Architectural Value

m Centre Asymmetric Perpendicular

Figure 4.2.w: Copmaring the distribution of all layouts' architectural value.

309

Perpendicular Security Screening Scores

30
25
20

15

O l

Number of Passengers
o

6]

S H O H» O QO 5 © © & &H & & VO O O & N H O
o o o o ¥ ¥ ,Q"’ SN N NN N S NN N NS
O & O O R 0 QN © RN QO AR AR O M

SRR NN NN N AN S N NN N N NN RN RN QRN

Normalized Scores

Figure 4.2.x: Binomial distribution for the passengers' security scores has a peak between 0.35 and

0.40. Also note the high disribution between between 0.65 and 0.70.

All Security Comparison
30
25
20
15

10

Number of Passengers

5 © 2D D QOO R D H S

S N N N N NN N S N N N N N N NN NS
N I S I TS M S MRS MR MK M N M oY
> Q'b‘ Q’b‘ 0‘:) Q?) Q‘o © ’\ ’\ ‘b ‘b °) %

Security Score

m Centre Asymmetrical Perpendicular

Figure 4.2.y: Comparing all layouts' security score. Passengers in the Perpendicular layout scored the

lowest values, but similar to the Asymmetric layout. Centre layout has the highest score distribution.

310

Priority Range Tests

The previous tests used agents with randomly assigned priorities, like the passenger illustrated
in Fig.4.2.z. But what happens to the architectural value if agents are given different priority
levels? This test repeats the same experiments as before, except it compares agents for two
extreme cases. Firstly, agents who only have a priority for security, and secondly, agents who
prioritize all airport domains equally. Since the security area is the primary factor, this should

illustrate the maximum range of architectural values for these terminals.

Priorities

Name: | Damian Sjogren
Gender: | Male
Age: | 57
Speed: | 1.11 m/s

Check-in
Security
Available Gate
Waiting Seating
Restrooms
Food/Retail
Eigenvector

Check-in

w W
w W

Security
Available Gate

Wi N O
w N O

(%]
.0
=
=

o
=
o

Waiting Seating

B
(0,8 w (0] w N o
(08 (0 o o (08 (08

B

o W oo W N~ O
c© ©0 O 0o ©0o0 oo

Restrooms

Food/Retail

ol W o w N O
o o oo oo o O
o W o W AN O
AN N BN N b~ b
o W
W w
o W
W w

Priority Variation (% min, max)

-1.0 -0.8 -0.6 -0.4 -02 0.0 02 04 06 08 10

Figure 4.2.z: Assigned agent characteristics and random priority matrix.

311

High Security Priority Tests:

Agents are given a priority level of 9 for security screening and a priority level of 1 for everything
else. An example of a passenger with a high security priority is illustrated in Fig.4.2.za. For all

three layouts, passengers follow the same behaviour and patterns as described before.

Note that changing the priority levels in this simulation only affects how agents score their
experiences, but this does not change their behaviour. The one exception is passengers with a
low food priority will not go get food. Instead, passengers are given a default score for noticing

the existence of the food/retail area, like the washrooms.

As a result, all passengers with the high security priority in the holdroom concourse just wait by

the seating area. No passengers were observed wandering in the food/retail areas.

High Security Priority Characteristics
Priorities

Name: | Chloe Husain
Gender: | Female
Age: | 68
Speed: | 0.57 m/s

Security
Available Gate
Restrooms
Food/Retail
Eigenvector

Check-in
Security
Available Gate

(%]
.0
=
=

o
=
o

Waiting Seating
Restrooms

Food/Retail

Priority Variation (% min, max)

-1.0 -0.8 -0.6 -0.4 -02 0.0 02 04 06 08 10

Figure 4.2.za: Assigned agent characteristics and high security priority matrix.

312

Equal Priorities Tests:

Agents are given an equal priority level of 5 for all domains. An example of a passenger with

equal priorities is illustrated in Fig.4.2.zb. Passengers follow the same behaviour as the previous

tests.

As mentioned for high security priorities, only food/retail behaviour is affected by priority
levels. Since agents have a priority level of 5, all passengers were observed getting food, while
waiting for departure in the holdroom concourse. Otherwise, no other significant differences

were observed during these tests.

Equal Priority Characteristics

Priorities 55 5 5|55

Name: | Janyce Bananno
Gender: | Female

26

0.99 m/s

Check-in
Security
Available Gate
Waiting Seating
Restrooms
Food/Retail
Eigenvector

Check-in
Security
Available Gate

[7e]
.0
=
=

o
=
o

Waiting Seating
Restrooms

Food/Retail

(G, IRNC, IR, |G, IRNC, IR0, |

(G, NI, IS, INI(C, NG, IS,
(G, IRNC, IR, IRNC, IRNC, IR0, |

(C, NG, IS, INIC, NG, (0,
(G, IRNC, IR, INC, IDNC, IR0, |

[, IS, NI, IN{C, NG, IO, |
(G IS, IRNC, IDNC, I NC, INE, |

(G, NG, IS, IN(C, NG, IS,
(G, IRNC, IR, INC, |G, IR0, |

(C, NI, IS, IN(C, NG, (0,
(G, IRNC, IR, IRNC, IRNC, IR0, |

(G, NG, NS, INIC, NG, (0,

Priority Variation (% min, max)

-1.0 -0.8 -0.6 -04 -02 0.0 02 04 0.6 08 10

Figure 4.2.zb: Assigned agent characteristics and equal priority matrix.

313

Results:

The tests were conducted multiple times to get a sample size of 100 passengers for each
condition. Together, this produces nine combinations based on the layout and agents’ assigned

priorities. The average architectural values are listed in Fig.4.2.zc:

Priority Layout
Centre Asymmetric Perpendicular
Random 0.727 0.721 0.691
High 0.639 0.572 0.526
Equal 0.770 0.728 0.718

Figure 4.2.zc: Average architectural value for all nine tests

The test with the highest value is Centre-Equal, or when passengers had Equal priorities in the
Centre layout, which was 0.770. The test with the lowest value is Perpendicular-High, or when

passengers had High security priority in the Perpendicular layout, which was 0.526.

The distributions for architectural value are also compared. Firstly, based on layout design

(Fig.4.2.zd-zf), and secondly, based on priority type (Fig.4.2.2g-zi).

The highest architectural values occurred when passengers had Equal priorities for all domains
(Fig.4.2.zi). By contrast, the lowest architectural values occurred when passengers had High
priority for security (Fig4.2.zh). When passengers have equal priorities for all airport domains,
their scores are spread out evenly, so value is accumulated from multiple conditions. Whereas,
when passengers only have priority for one domain, their scores are dependant on a single

condition, which could lose value easily if they had a poor experience.

This is clearly demonstrated in the Perpendicular-High test. Many passengers spent time
searching for security, so their value of the architecture is influenced by this experience.
Additionally, passengers in the High tests did not prioritize other domains, like food/retail.
Therefore, they did not see the value in going to get something to eat while waiting for their
departure. If passengers do not interact with these conditions, then the conditions have no value

for the people, despite the terminal design having these amenities.

314

Centre Layout Range

Sample Size

: ©
7 o7 o7 o7 o7 o7 o7 o

Average Architectural Value

m Centre-Random ® Centre-High m Centre-Equal

Figure 4.2.zd: Centre has highest distributions overall. Equal priority is the greatest and most concentrated.

Asymmetrical Layout Range

400
350
300

N
%
o

Sample Size
N
o
o

Average Architectural Value

= Asymmetrical-Random B Asymmetrical-High B Asymmetrical-Equal

Figure 4.2.ze: Asymmetrical shows random and equal priorities are similar, and high security is lowest.

Perpendicular Layout Range

-
%
o

Sample Size

Average Architectural Value

M Perpendicular-Random B Perpendicular-High B Perpendicular-Equal

Figure 4.2.zf: Perpendicular has lowest distributions overall. High security priority gives the lowest values.

315

Random Priority Effects

Sample Size

Average Architectural Value

m Centre-Random B Asymmetrical-Random M Perpendicular-Random

Figure 4.2.zg: Random priority distributions have narrow variance. Perpendicular has the lowest values.

High Security Priority Effects

450
400
350
300
250
200
150
100

50

Sample Size

Average Architectural Value
m Centre-High ~ ® Asymmetrical-High ~ ® Perpendicular-High
Figure 4.2.zh: High security priorities has wider variance. Centre is the greatest, perpendicular is the lowest.

Equal Priority Effects

800
700
600

2 s00
(%]
[
2 400
£
8 300
200
100
0
O 3 Qo 2 © ™ v © Q g G v o
00 00 160 AN} 0"\ 0"' Qq’ AN} X4 IQ’)) ’Q‘v 0& Q'b‘ Q‘o Q‘o
2 o Q) S 92 © N & >
QQ 0‘0 Q Q’\/ N} 0’1’ Q’L Q’b 0")) 00’ Q'b‘ Qb‘ 0‘0 0‘9 Q‘q

Average Architectural Value
m Centre-Equal B Asymmetrical-Equal ® Perpendicular-Equal

Figure 4.2.zi: Equal priority distributions have little variance. Centre is the greatest and most concentrated.

316

Chapter 4.3

Airport Tests

The following test compares two existing terminals to demonstrate how the agent’s architectural
values score in a real-world airport. The intension is to compare a known airport that has a high
ranking against another airport which has a lower ranking. If the architectural value in the agent
simulation is correct, then the score for each airport should correspond to its known ranking.
The higher ranked airport should have a better architectural value than the lower ranked

airport.

The two airports that are considered in this test are Singapore Changi and Toronto Pearson,
which are the higher and lower ranked airport, respectively. Singapore Changi ranked 1t in
Skytrax’s World Airport Awards 2020 and 7t in AirHelp’s Global Airport Ranking 2019, [l while
Toronto Pearson ranked 424 and 108, respectively (Fig.4.3.a-b). [2 Both Skytrax’s and
AirHelp’s rankings are based on surveys conducted with people on their passenger experiences.
The rankings considered a wide range of factors including Accessibility, Public Transit,
Wayfinding, Check-in, Security, Immigration, Baggage, Flight Time, Staff Courtesy, Cleanliness,
and Passenger Amenities. [31l4] Although the surveys were conducted differently for each
company, they are similar enough to give confidence that Changi Airport has better passenger
experience than Pearson Airport. Since architectural value is dependant on agent perception, it

is expected that Changi has a higher architectural value than Pearson Airport.

1. “World’s Top 100 Airports 2020”. World Airport Awards, Skytrax, 2020. Accessed October 2020.
https://www.worldairportawards.com/worlds-top-100-airports-2020/.

2. “Global Airport Ranking”. AirHelp, 2019. Accessed October, 2020.
https://www.airhelp.com/en/airhelp-score/airport-ranking/.

3. “Awards Methodology”. World Airport Awards, Skytrax, 2020. Accessed October 2020.
https://www.worldairportawards.com/awards-methodology/.

4. “AirHelp Score 2019: Global Airport Rankings”. AirHelp, 2019. Accessed October 2020.
https://static.airhelp.com/pdf/2019-airport-
score/methodology_airhelp_score_2019__ global_airport_rankings-en_us.pdf.

317

SKYTRAX
World Airport Awards Winners - About v Press v Winner History v Contact ENv Q

World Airport Awards > Award Winners > World's Top 100 Airports 2020

World’'s Top 100 Airports 2020

View the rating of the world's Top 100 Airports for 2020, as voted by air travellers
around the world in the 2019/2020 World Airport Survey

The Top 100 Airport results can only be reproduced with the prior agreement of Skytrax

Singapore Changi

Tokyo Haneda

Doha Hamad

Seoul Incheon

Denver 32 2019

Haikou Meilan 41 2019

Fukuoka 67 2019

London City 26 2019

Atlanta 36 2019

Toronto Pearson 50 2019

Barcelona 43 2019

Lima 47 2019

Athens 42 2019

Quito 49 2019

Figure 4.3.a: Skytrax's Airport Ranking from 2020 has Changi as #1 and Pearson as #42, based on a

global airport survey of passenger experience, Skytrax (2021), highlighted in red by author.

318

AirHelp Airport Ranking 2019 Figure 4.3.b: AirHelp's Airport

Ranking from 2019 has Changi

Global Airport Ranking

N as #7 and Pearson as #108, based

on an average of performance
AirHelp On-Time Service Food and

Airport Score Performance Quality Shops faCl’OT‘S AirHelp (2021)

H H

- - - &
= s - v

highlighted in red by author.

Hamad International Airport

8.39 /10 83 8.5 8.5
Doha, Qatar

Tokyo International Airport

8.39/10
Tokyo, Japan

Athens International Airport

8.38/10
Athens, Greece

Afonse Pena International
Airport 8.37/10
Curitiba, Brazil

Gdansk Lech Watesa Airport
Gdansk, Poland

Moscow Sheremetyevo
International Airport
Moscow, Russia

Singapore Changi Airport

. 8.27/10
Singapore

Hyderabad Rajiv Gandhi
International Airport 8.27 /10
Hyderabad, India

Tenerife North Airport

26 /10
Tenerife, Spain 8.26

Viracopos/Campinas
International Airport 8.25/10
Campinas, Brazil

Montréal-Pierre Elliott
Trudeau International Airport 7.07/10
Montreal, Canada

Keflavik International Airport

.02 /10
Reykjavik, Iceland 7.02

Barcelona - El Prat Airport

. 7.02 /10
Barcelona, Spain

London City Airport

6.99 /10
London, United Kingdom

Seoul Incheon International
Airport 6.99 /10
Seoul, South Korea

Geneva Airport

) 6.98/10
Geneva, Switzerland

Palma de Malloreca Airport

/10
Palma de Mallorca, Spain 8.98

Toronte Pearson International
Airport 6.97 /10
Toronto, Canada

London Stansted Airport

.94 /10
London, United Kingdom 6.94

Canadian Airport

6.94 /10
Quebec, Canada

110

319

Singapore Changi Airport is the primary international airport in Singapore. It served over 60
million passengers in 2019 and is one of the busiest airports in Asia. It has 4 active terminals (1,
2, 3, and 4) and plans for a 5t terminal over the next decade. It serves as a major hub in Asia for

international flights for both passengers and cargo.

Toronto Pearson Airport is the primary international airport in southern Ontario. It served over
40 million passengers in 2019 and is the busiest airport in Canada. It has 2 active terminals (1
and 3) and serves as a major hub for international flights entering the United States providing

pre-clearance for all departing and connecting passengers.

Although Changi and Pearson are both prominent international airports, there are differences in
the way each airport is organized, how flights are handled, and what amenities they provide. The
scope for this test only focuses on the layout of essential terminal spaces relating to the pre-
departure process. It tries to minimize differences in operations and culture by only focusing on
the following key spaces: check-in, security screening, food/retail, and washrooms. This test
simulates international passengers departing from Terminal 1 for both airports. The simulation
starts when passengers enter the front doors of the terminal. The simulation ends after

passenger exit through the gate portal, which is before the concourse piers, but after security.

(Fig.4.3.c).

Due to the size of the terminals and the limited capability of the agent model, the simulation is
cut short before the piers to the gates. The length of the piers become too large for the agent
model to manage. Large models have caused the simulation to experience time lag and sluggish
performance when trying to calculate agent navigation over this distance. Ending the simulation
before agents enter this area reduces the geometry the simulation needs to consider. Since both
airports are cut off before the piers, they end at a similar point in the departure process.

Therefore, both terminal models are compared under similar conditions.

320

Airport Tests

Purpose To see if architectural value can differentiate between real-world airports
with higher and lower passenger experience ranking, relatively.

Conditions - Singapore Changi with a higher rank vs. Toronto Pearson with a lower rank
- International departure (non-USA), terminal 1, check-in and security
- Population of 50 passenger with random priorities

- Cut-off before gate piers and holdroom concourses

Terminal 1 Scope Simulated Check-in Layout

o
c
o
=
O
o
1Y
o
o
o
o
£
(%]

Toronto Pearson

o
Om 50 100

Check-in . Security . Amenities

Figure 4.3.c: Setup and conditions for the airport tests.

321

Food and
Retail Shops

(2x) Security Slgn

(12x rows) ——>
Check-in Isles
e L 1L 1

232 m

Figure 4.3.d: Simulated floor plan for Changi terminal 1.

322

. — Exitto Pier E
S5m

(6x) Metal
Detectors and
(3x) X-Ray
Machines

21m

Queue
(3x rows)

International
Check-in Isles

(3x) Entrance

Gate Sign
Security

Food and
Retail Shops

(3x rows)
Domestic

o Check-in Isles

Figure 4.3.e: Simulated floor plan for Pearson terminal 1, international departure.

323

Singapore Changi Layout

The simulated departure area of Changi terminal 1 is a symmetrical 230 m wide hall with a

centralized security screening area, which opens into a retail courtyard (Fig.3.d).

There are seven entrances evenly spaced along the south wall of the terminal. In the check-in
area, there are 12 parallel isles of counters with two additional rows in the center. Behind these
counters is a public washroom facility in the middle of the terminal. The security area is a curved
Y-junction that flanks either end of these washroom facilities. Passengers can approach security
from either side of the check-in area, since there is dedicated queuing on each side, which are

marked by signs.

After screening, the security area opens into a retail courtyard that contains numerous shops,
food stalls, and lounge areas. At the front of the courtyard is a wayfinding sign that points
passengers to the left for pier C gates and to the right for pier D gates. The simulated area ends

to the far right and left sides of the retail courtyard, which is marked by an exit portal.
Toronto Pearson Layout

The simulated departure area of Pearson terminal 1 is a 140 m segment of a circular-arced
space, which focuses on the non-US international check-in area, security screening, and

adjacent retail and food court (Fig.4.3.e).

There are 3 main entrances dedicated for international passengers along the inside radius of the
terminal. In the check-in area, there are 6 parallel isles of counters, with only the 3 rows on the
left dedicated for international flights. Beyond the check-in area is a food court and retail area
on the outside radius of the terminal, with washroom facilities along the right end of the food

court.

The security screening area sits on the left side perpendicular to the check-in isles, with a queue
marking the front. There is also signage placed between the check-in isles, directing passengers
to the left for security. After screening, the security area bends up into a narrow corridor, which
is indicated by a sign for pier gates E and F “hammerhead” concourse. The simulated area ends

at this corridor before it reaches the pier, which is marked by an exit portal.

324

Figure 4.3.8: Passengers in Changi going through security into the retail courtyard.

325

Figure 4.3.h: Passengers in Pearson going through the check-in area.

Figure 4.3.i: Passengers in Pearson going through security.

326

Results

The thesis ran multiple trials of the simulation with 100 passengers for both layouts. The
average architectural value for all passengers is 0.802 for Singapore Changi and 0.420 for
Toronto Pearson. The population distributions from these tests are illustrated in Fig.4.3.j-k. The
distribution of passengers in Changi is from 0.64 to 0.92, with most passengers scoring between
0.76 and 0.78. As for Pearson, the distribution of passengers is as low as 0.26 and as high as 0.80.
Although, most passengers were between 0.40 and 0.42. This means that passengers in Pearson
have a much wider range of experiences than Changi, which gave passengers similar

experiences.

Fig.4.3.1 compares the sample mean distribution between Changi and Pearson, which uses 1000
trials and n = 10 samples for each. This illustrates the range of values that are likely to occur in
each airport under the given conditions. The average architectural value for Changi, ranges
between 0.74 and 0.88. It approaches a normal distribution with a mean of 0.802 and a standard

deviation of 0.0166, as the following,

CCo) = 1 Cos <(x - 0.802))2
= 00teevzn P\ T\ T 0.0166 :

Whereas Pearson ranges between 0.32 and 0.54. It approaches a normal distribution with a

mean of 0.420 and a standard deviation of 0.0289, in the following form (Fig.4.3.m),

P(x) = 1 Cos ((x - 0.420))2
X 00289vzm P\ T 0.0289 '

It appears Pearson has a much lower score than Changi because of the location of the amenity
spaces, which are the retail, food, and washrooms. Most passengers in Pearson did not walk
beyond the check-in area to retail/food court. Instead, practically all passengers went straight to
security screening. Since there were no amenities in the rest of the corridor, passengers in

Pearson did not get a second chance to interact with them if it was their priority.

Additionally, passengers in Changi have a clear view of both washrooms in the center and
food/retail beyond security. Although Changi does not have any retail between check-in and
security, the retail courtyard after security is practically impossible to miss. Whereas passengers
in Pearson do not have any amenities until they reach the gate holdroom if they did not see the

food court.

327

Changi Population Distribution

P P P VAo D XD A0 ® DD PR PPN D DD D PP
09 /Q.Q ,Q.Q | .\' '.\' ’.\’ q’ ’J/) ’.,)) ,.)) | .b‘ ,Q.b‘ 'Q.b‘ ,Q(? ,Q?) 'Q.b 'Q.b /Q.b /Q/.\ ,Q/.\ ,QC.b ,Q?, ,Q(.b '09 'Qg IN.Q
I IS I S S S T I P M PR I N N P MY XN S RN P NP S

B oR R RN
N B~ OO 0 O

Number of Passengers
o N B OO B

o
o
o
o
o
o
o
o

Architectural Value

Figure 4.3.J: Population distribution for Changi gives an average value of 0.802.

Pearson Population Distribution

S S)
N B OO 00 O

Number of Passengers
=
o

O > @ A A0 O A Do © D DD D DDA A D DD O
SN o PN N N N S N N N N NN NI N NN
I O T IO
N A P S NN ? 0 ? Yt N N NP P

o N B O

Architectural Value

Figure 4.3.k: Population distribution Pearson gives an average value of 0.420, and has a wider

spread than Changi.

328

Sample Mean Comparison of Changi and Pearson

450
400
350
300

N N
(€3]
o

Frequency
o
o

150
100
50

O > @ O o O A% Va0 O N> D Vo > P AV AD D > D o O
QQ QQ QQ Q'\r Q\’ Q’L 0’\« Q’L Q’b Q") Qv Qv Qb‘ Q") 0‘9 Q‘o Q‘o QQ) 0’\ Q'\ Q‘b Q‘b ch) °) 0
’»be“b’L‘oQb“b’vva‘b’\/bQV%’»‘o%b“b
QQ 00 Q'\r Q\’ Q\’ Q’L Q’L Q’b Q"n Q") Qv QV Q% e Q<° Q‘o Qb N ’\ ’\ ch ch Q% Q% 00)

Average Architectural Value

B Changi M Pearson

Figure 4.3.1: Sample mean distributions (trials = 1000, n = 10 samples) for Changi and Pearson

illustrates the range of values each airport is likely to see.

—25

5 B — | S

0 01 02 03 04 05 06 o7 08 09 1

Figure 4.3.m: Equivalent normal distributions for Changi (blue), N(0.802, 0.0166), and Pearson

(red), N(0.420, 0.0289), as continuous PDFs, given an infinite number of samples.

329

The architectural value function is dependent on passengers’ priorities. Since food/retail and
washrooms make up two of the six priorities, it can have a large impact. The thesis believes if
agents have lower food and washroom priorities (or different priorities entirely), then the
difference between Changi and Pearson would not be as high. Fig.4.3.n breaks down
architectural value into the average values for each passenger priority. It illustrates that
passengers in Changi observed every non-processing domain (food/retail, restrooms, and

seating area). Whereas only a few passengers in Pearson came across food/retail and restrooms.

On average, Changi has better value for check-in and reaching the gate areas (exit portal). The
higher value for check-in shows that passengers maintained more consistent visibility and did
not need to wander as much as passengers in Pearson. Likewise, passengers in Changi had an
easier time heading towards the gate, since passengers in Pearson had to walk through the
narrow corridor. However, Pearson had higher value than Changi in security screening. This
may be due to security being a lot closer for passengers in Pearson. Whereas passengers took

longer to find the centralized security in Changi.

In summary, the agent simulation finds Singapore Changi has a higher average architectural
value than Toronto Pearson. This confirms the agent simulation can correctly differentiate

airports with higher and lower passenger experience ranking, respectively.

330

Average Priority Value Comparison

1
0.9

0.8

0.7

0.6

05

0.4

03

0.2 I

0.1

0 | |

Check-in Security Reaching Gate Food/Retail Restroom Seating Area
(Exit Portal)

Value

Priorities

B Changi M Pearson

Figure 4.3.n: Average values for each passenger priorities. Note for these tests, processing domains

are scored on level of interaction, whereas non-processing domains are scored if observed.

331

Part 5:

Conclusion

Part 5 discusses the results of this thesis, an ideal version of the agent simulation, impacts to the
architectural profession, and plans for future research. Chapter 5.0 begins with a summary of
the results and findings from simulation testing. Chapter 5.1 talks about the minimum
components for an ideal architectural simulation, and how the agent models could be improved.
Chapter 5.2 discusses how simulations could change the architectural design process and the
built environment. It also talks about long-term impacts and risks of relying on simulation for
design. Chapter 5.3 summarizes topics that would benefit from future research, and ideas that
could be the basis for other theses. Finally, chapter 5.4 closes with a summary of the overall

conclusions and final remarks from this thesis.

333

Chapter 5.0

Results and Findings

A major result of this thesis is the creation of a practical agent simulation for testing
architectural layouts. The thesis’s model builds from existing methods for simulating airport
terminals, like discrete-event and statistical modelling. It incorporates agent perception to
provide feedback of people’s decision making in architectural spaces, and it uses prioritization
as a way of quantifying architectural value. This is different from previous crowd simulations
that test the built environment, which either focuses on modelling people as a process flow or
modelling people’s behaviour in emergency evacuations. Agent navigation in these models
assumes people already know where they are going, which does not consider how people use the
surrounding architecture to inform their decisions. This makes it difficult to test how well an

architectural layout aligns with daily airport interactions, before the terminal building is built.

The hypothesis states that differences in a simulated architectural layout of an airport terminal
can be quantified based on agent interactions. The thesis demonstrates that this is possible if
agents are given sufficient perception of the surrounding environment, and if these agents can
only rely on their perception to complete a given task. The thesis concludes that this type of
simulation is capable of approximating real-world airport interactions, within a statistical

certainty.

The results of testing show that the thesis’s agent simulation is capable of basic agent behaviour.
It can differentiate between certain architectural layouts based on a statistical distribution.
However, the agent simulation is limited when it comes to modelling dense crowd flows, and
some airport processes, like queuing. Additionally, the architectural value of a layout can vary

significantly depending on agents’ assigned priorities and airport domains.

Tests in chapter 4.0 validated basic simulation components against an established standard for
evacuation simulations. Three out of the four tests that were conducted were successful. The
simulation was able to demonstrate that agents can walk at realistic speeds, and that agents can
navigate around walls. The simulation was unsuccessful at demonstrating exit flow rates
through a crowded doorway. Densely packed agents were seen clumping together due to

proximity issues, which caused spikes in flow rates that exceeded realistic behaviour. These

334

issues were minimized for further tests by reducing the maximum number of agents. This type
of crowd interaction could be better studied to improve agent behaviour for further

development.

Tests in chapter 4.1 demonstrated that the thesis’s perceptive agent model can be influenced in
specific architectural conditions, which is not typically explored in existing simulations. Firstly,
the thesis shows that agents who rely on perception navigation can be influenced by the
environment to take a different path than agents using direct navigation. As a result, perceptive
agents may not always take the shortest path, which can provide different architectural
experiences in the same space. The second test shows how agents can correctly differentiate the
visibility between walking into a wide space and a narrow space using their visual field of view.
This means that perceptive agents can simulate a changing spatial awareness, which provides
feedback of different geometric conditions. The third test shows how agents can follow different
behaviour in the same space, if they prioritize different things. This includes interacting with
non-processing aspects of an airport like food and retail areas. As a result, agents that have
different priorities in the same space will read the environment differently, which reflects their

interpretation of the architecture.

Tests in chapter 4.2 explored generic terminal layouts with different security screening
locations, representing possible design iterations for departing passengers. The thesis suggested
that, if only a single space was changed, and all other conditions were the same, then the
difference in agents’ architectural values would represent those layout changes. A basic terminal
was tested based on three security screening alignments: centre, asymmetrical, and
perpendicular. The thesis also considered how the terminal’s architectural value was affected by
agents’ assigned priorities: random, high security, and equal. Testing showed that the terminal’s
architectural value distribution was lower, on average, if passengers had difficulty finding the
security area, which occurred in the perpendicular layout. These differences were most
pronounced when passengers had a high security priority, since their experience of the terminal
was more dependent on that one airport domain. Overall, the range of architectural values has
greater variance when agents have random priorities than agents with equal priorities. This
indicates that, if passengers prioritize a wide range of aspects in an airport, then architectural
changes in a single area do not have a significant effect on the overall passenger interaction.
Fundamentally, passengers are more likely to see architectural value in areas that they

prioritize.

335

Tests in chapter 4.3 checked if the thesis’s simulation of architectural value could differentiate
between a good and bad airport according to an established airport ranking, relatively. The good
and bad airports were Singapore Changi and Toronto Pearson, which were ranked 1st and 4274,
respectively. The test was conducted for departing international passengers in similar areas of
each terminal building, within basic check-in, security, and retail areas. The results of testing
concluded that Singapore Changi has a higher architectural value than Toronto Pearson, on
average. Passengers in Pearson experienced a wider distribution of values than Changi, whose
passengers had more consistent interactions. The difference in value was primarily caused by
passengers in Pearson not interacting with non-processing domains, since these areas were
located on the opposite side of the terminal from the security area. Whereas all passengers in
Changi were able to interact with these domains, since its security opens directly into a retail
courtyard. If agents were assigned different priorities, the thesis believes the difference in
architectural value would not be as high. Overall, this testing showed that the thesis’s calculation
of architectural value is capable of aligning with passenger’s experience in a real airport. As a
result, this type of analysis could represent how well passengers will interact with the spaces in

any terminal design.

336

Chapter 5.1

Ideal Models

Although the thesis’s agent simulation has achieved some success, it is far from ideal and is not
sufficient enough to be used in real practice. However, the thesis has investigated several

attributes that would be beneficial for any architectural analysis tool.
Minimum Requirements

The thesis believes there are three key elements that an agent-based tool will need to better
evaluate architectural spaces. This includes realistic crowd behaviour, perception navigation,

and statistical value functions.

Crowd Behaviour: Agents in an architectural simulation need to function at least as well as
existing evacuation crowd modelling software. This includes crowd dynamics, social behaviours,
interaction with physical conditions, and possibly, behaviour for emergency situations. Crowd
dynamics can include how people behave in large groups, how people respond to congestion,
and how different flow rates propagate through a space. Social behaviours include how people
respond to other people near by, family dynamics, making sure people represent real
demographics, and a diverse range of human characteristics. Physical conditions include basic
movement in a building, movement between multiple floor levels, and interactions with objects
and equipment. Emergency situations include evacuation patterns, stress or panicked

behaviour, and dynamic choices.

Perception Navigation: Agents in the simulation must navigate with perception, instead of the
shortest path, so that agents can give feedback of architectural conditions, and secondly, to
better represent how people interact in unfamiliar buildings. The thesis explored A*
pathfinding, however, other options can include vector forces, or similar physics-based models.
Agents’ navigation needs to have some form of decision-making. People should not be modelled
as flow items or passive objects. Ultimately, the decision-making process will inform how people

read architectural conditions.

Statistical Value Functions: Objective valuation of architectural space should be based on

some form of human interaction, which uses probability and statistics to approximate uncertain

337

conditions. The thesis used prioritization, a part of the analytical hierarchy process, to quantify
passenger experiences. However, there are other multi-criteria decision analysis that use
similar mathematics or logic to make objective decisions within a complex system. These
techniques usually involve some form of ranking, weighting system, or vector analysis to
evaluate choices. Additionally, since a decision-making process has a level of uncertainty,
statistics must be used to estimate the range of values that are likely to occur. This will also help

reduce the computation if there are many architectural conditions to calculate.
Agent Model

The function of thesis’s agent model could also be improved. As shown during testing, the agent
simulation was not able to realistically model dense crowded spaces. An ideal agent should,
firstly, match real human walking speeds, and avoid walking through walls, objects, or other
agents. They should be able to detect proximity to other agents and slow down in crowded
spaces. If agents do encounter crowded areas, they should try to look for open areas to walk.
Likewise, agent navigation should be constantly updated so that they can respond appropriately
to new information. If an agent’s environment changes, their navigation should change too,

instead of blindly walking to their original target.

Additionally, not all people would respond to the same information. Agent should model how
people respond in different situations. This includes adapting behaviour to different priorities,
or human needs like hunger. People who are hungry should be more likely to get food whether it
is their priority or not. The agent model should allow people to adapt their behaviour or
priorities over time. For example, if people’s mood changes, or if they become stressed, then that
should reflect their choices. People going through an airport who are impatient may be more
likely to become stressed, and as a result, would be more critical of poor wayfinding or the lack

of amenities.

The agent model could also consider different groups of people. This includes people who travel
in large groups with families or friends, and the dynamics of staying together. This would also
affect how people are waiting in lines and occupying amenity spaces. Additionally, children and
dependants have entirely different logic in a family group. Although, this may require a

completely separate agent model specifically for simulating child behaviour.

338

Other Architectural Environments

The thesis has been focusing on the architecture of airport terminals for passenger processing.
However, there are many areas in an airport that an architect might be responsible for
designing. This may also include back-of-house offices, lounges, transit halls, baggage handling
areas, or other non-passenger facilities. The intension of this thesis was to provide a basic
illustration of the core concepts for one architectural condition, which could be expanded into

other domains or situations.

For example, a similar perceptive agent model could be made for baggage workers. This could be
used to test how these workers make decisions based on the bags they perceive while they are
moving them between aircraft. Likewise, another agent model may be used to test passenger’s
interaction in airport lounges based on the decisions they make in these areas. This type of

testing may be useful for airlines to improve passenger experience.

In addition to airports and transport facilities, the thesis believes this type of agent modelling
could be generalized for testing other building types. This would focus on buildings that deal

with a lot of people, like hospitals, schools, or community centres.

For example, the design of hospitals could use agent modelling to test patient interactions in
waiting rooms, clinics, or operations. As this thesis has shown, agents could be given knowledge
of common hospital domains, and asked to complete a healthcare checkup only using their
perception. This can indicate how well the layout of the hospital is used to complete that

checkup.

Likewise, the design of a university could use an agent model to simulate students going
between classes or interacting with university facilities. Students could be assigned different
priorities of what aspects of the university they believe is important. The simulation could then
provide a distribution of values for each university domain that students were able to engage

with.

Fundamentally, the ideal version of this thesis’s agent simulation could be reconfigured for any
building type. The agents could be reassigned different priorities, or arbitrary value functions

that correspond to new environments or tasks they need to complete.

339

Chapter 5.2

Impacts

The ideas covered in this thesis include objective design testing of architectural spaces and the
functional tool of agent simulations. These have the potential to impact two areas of
architecture: the design process and the built environment. The design process includes project
planning, testing iterations, and client interactions. The built environment describes the
construction of airport terminals and similar public facilities. In general, objective layout testing
can organize areas in a terminal closer to how passengers naturally act in an airport. Specifically,
a terminal that aligns with passengers’ intuition allows people to walk through areas without
having to question what they are doing. In the long-term, this thesis expects development of
scientific design practices, shift in the responsibilities of architects, and automating
architectural design. There is also a risk of optimizing for passenger priorities that will change in

the future, or that have unintentional effects on human well-being.
Design Process
Gathering Data:

The first impact to the design process is the influence on project planning. Before designs can
begin, airport developments will need information about the type of people in the terminal. It is
not only enough to design a terminal based on the number of aircraft movements or passenger
flow rate. In addition to these aspects, planners will need to understand what passenger
preferences are, things that people consider important, and things that people do not care about

in their airport experience. These factors will determine what simulations are testing for.

Many of these factors can be influenced by cultural backgrounds. For example, business
passengers in Asia may have more tolerance for a noisy environment, while passengers in North
America may prefer to have quiet locations to work while they are waiting. [l Although, cultural
differences cannot be generalized this way, it is important to consider what information a

simulation is using to model passenger behaviour. As mentioned, the way people behave in

1. “Can cultural differences impact passenger satisfaction?”. Analysis, Airport Technologies. Updated
December 7th, 2018. https://www.airport-technology.com/features/passenger-satisfaction-in-airports/.

340

different spaces has an impact on the performance of the architecture. Getting relevant

passenger data is a critical first step for objective testing.
Design Testing:

The second impact to the design process is the need for iteration testing. During the design
phase, a team might put together a floor plan proposal of an airport terminal. If the architects
made good design decisions, then things like the security screening area would be well spaced
out, the signage would be in visible locations, and there would be a good distribution of
amenities. To check if the layout meets design expectations, it must be validated. In addition to
checking crowd flow density and queue times, the design would also be tested for architectural

layout performance.

The thesis expects there to be a team of technical architects who would be responsible for
analyzing designs for layout performance using an agent-based tool. Designers would give their
latest terminal model to this team to assess what architectural value it has. After running
through simulations, theses architects would identify what areas of the terminal have good
spatial performance, and areas that have poor spatial performance, based on the agent
behaviour. Designers would then take back the terminal plan and adjust the layout to get a
better result from the simulation. This process continues with designers making changes to the
terminal plan, and analysts would check for validation using agent simulations. At a certain
point, designers would reach an arrangement of spaces that gives acceptable passenger
performance, at which point the design would be considered validated. Designers then can have
confidence that their latest iteration is suitable for passengers. Ultimately, the impact during the
iteration process is that designs must go through validation testing to confirm that the layout

aligns with passenger activity, before moving on to detailed design.
Client Interaction:

The third impact to the design process is the interaction with clients. Architects can use agent-
based simulations to illustrate why they made certain design decisions. When trying to sell ideas
to clients during presentations, architects using simulations have more convincing arguments
using simulation data than renders or simple animations can show. Firstly, architects can have
confidence that they validated their design against standard tests. They can show clients
quantitative numbers from testing to explain how their design compares to other concepts.
Agent-based simulations can illustrate what areas of an airport terminal are having the most

impact on passenger activity. By using an analytic approach to validate the building

341

performance, architects give more value to their work. Architects may choose to create an
unconventional layout or have an aesthetically motivated approach. These simulations can
provide confidence for their clients that the unusual design still meets the needs of the project.
Clients also have their own project goals, like improving retail spaces or improving security
areas. They can benefit from agent-based simulations by verifying how much value their current
building has, and what architectural factors can change to improve those aspects. If a simulation
of the original building got an architectural score of 40% for retail, due to passengers not
spending time in those areas, then the simulation can indicate to clients what architectural
changes can improve retail score to 80%. The greatest impact for clients is improvements for
airport operations and overall business. If business owners are expecting a certain performance

target, agent simulations can validate how the terminal impacts those business decisions.
Built Environment

The main impact to the built environment is providing people with a seamless experience. For
example, a passenger walking through a terminal may decide to get a coffee. In a well tested
terminal, a café will be there the moment they start to think about it. Layout testing may show,
after simulating 10 000 people, that majority of people also wanted to get coffee at that same
location. Therefore, a designer using this approach will make sure the terminal has good access

to a café at that location.

In general, validating a terminal design with agent-based simulations will show what
arrangement of space is most intuitive to walk through. Resulting designs will be better suited
for international passengers who are new to an airport. Agent-based validation ensures
passengers will be less confused in areas they have never experienced before. For example,
signage will be in place in locations that make sure passengers have correct information and the
given signs are relevant for where they need to go. Architects will arrange corridors, so people do
not need to weave through unintended spaces, like waiting rooms or other gates. Services like
information kiosks will be in areas that make it easier to access for people who are likely to get
lost. Food and retail spaces will be designed in locations where people are most likely to take a
break. Accessible features, like elevators or other aids, will be designed in suitable locations for
those with corresponding disabilities. Ideally, architects will design spaces to give passengers

better intuition about where things are.

Another impact to the design of terminals is how airports arrange essential areas. It is possible

to consider that validation will show passengers have better performance with a different order

342

of check-in and security. Agent simulations might conclude that if people have a high
importance for security screening, it is better to have screening as the first thing when entering a
terminal. Instead of laying out a terminal based on existing practices, planners design a terminal
that works best with passenger perception. Obviously, this is a simple example, and the design
of an airport is dependant on more than just passenger perception. However, spatial validation
can start to predict how much the architecture has an effect from these choices, based on
quantitative values. Ultimately, architects can be more precise about the value of their design

choices on essential areas in an airport.
Long-term Impact

Some long-term impacts of using agent-based simulation for architecture include shifting design
to more evidence-based practices and automating design choices. Additionally, the biggest long-
term risk of letting simulations control design decisions is optimizing for something that is

unintentionally harmful to human health and safety.
Evidence-based Practices:

In the future, architectural design will need to follow scientific practices to be effective for the
built environment. The process will include proposing a design hypothesis, and then being
required to test the design to check its performance, the same way it is done for material and
building sciences. This process will become similar to the engineering design process, which
commonly uses a scientific framework and physical analysis to prove the performance of new

systems or technology.

For buildings that see many public people, this may result in industry regulations on spatial
practices, like regulation on building evacuations and environmental impacts do now.
Additionally, this may also result in company design audits to confirm that architectural spaces

are meeting a certain spatial standard to prevent bad design practice.

Architects will be responsible for interpreting the outcomes of the simulations or similar tools.
This includes checking that building components are validated and deciding what parts of the
building need to be tested. However, this does not mean architects will stop making innovative

designs. In fact, this will only change how they approach design choices.

In the future, simulations will automate the design iteration process by optimizing layouts based
on the performance of passenger behaviour. The agent simulations could iterate through a

thousand more concepts that a single designer could explore by intuition. An architect’s time on

343

a project would shift from design exploration to design analysis. They will become responsible
for interpreting the data from the simulation trials, judging the accuracy of the outcomes, and

deciding on a final design based on the results.
Risk of Optimizing for Unknown Behaviour:

The long-term risk of relying on simulations for architectural design is optimizing for unknown
human behaviour. Optimizing for certain passenger priorities today may not be representative
of human behaviour in an airport 50 years from now. As a result, relying on purely automated
systems can result in something that is unintentionally harmful for society, if no one is there to

interpret the results.

For example, until recently, North American airports used to have dedicated smoking lounges in
terminal buildings. However, since smoking is widely seen as unhealthy and unsafe, indoor
smoking in Canada was restricted by the government. As a result, the need for smoking areas in
an airport was removed. If a hypothetical agent simulation optimized a terminal design for
smoking lounges, as a passenger priority, decades earlier, then the building would not be well

suited for current passengers today.

Fundamentally, planners could be using simulations to optimize for conditions that may be
considered unsafe, unhealthy, or socially unacceptable in the future. Some examples may
include energy usage (replacing poorly insulated enclosures and combustion building
generators), technology changes, (remote check-in, preapproved security clearances) or disease

prevention (quarantined areas, seat spacing in waiting rooms, health-check stations).

Unfortunately, there are problems that society is not aware of or has no current way of
understanding what they will be. It is difficult for computers today to predict human behaviour
far into the future and still have high confidence in the results, like psychohistory in Asimov’s
Foundation series. Additionally, the way a simulation interprets information is based on the
biases of the person who created it. Therefore, a computer’s understanding of the world can only

be as good as the models it is provided.

The risk of relying on simulations that may not be accurate is being able to identify when they
give wrong information. If a designer is not already familiar with the background of a project,
they will not be able to recognize when the simulation is wrong. The risk is designers might take
the results of the simulation as the only truth, without any further analysis or critical evaluation.

Simulations should not be relied on as a primary design tool. They are most useful when they

344

can increase a designer’s understanding of a system. The final judgement is still up to the

designer to decide how this information is used.

Avoiding these issues will involve continually re-evaluating building systems over time and
updating the latest simulation models as our understanding of social behaviour changes.
Additionally, this will require more focus on studying public spaces, and scientifically recording

information about human interactions for architectural design.

345

Chapter 5.3

Future Work

The research from this thesis could be taken in two directions. One direction is to move forward
with the agent simulation to study the automation of testing and the design process. The other
direction is to go back and re-evaluate the relationship between human behaviour and
architecture. Automation would be best explored through the creation of another architectural
software program. Whereas behavioural relationships would be best studied through real-world

experiments with people in the built environment.
Design Automation

The research from this thesis begins the discussion for automation in architectural design. The
goal of automation is to reduce the amount of time architects spend exploring design iterations.
To get a computer to automate a system, there must be a process in place, or instructions, that a
computer can follow. This thesis explores one way to model architectural performance. A
computer can use a similar model like this to optimize for a given condition. For example, if a
designer wants to optimize a building for high visibility, then they can program the computer to
maximize agent field of view in specific locations in the building. More broadly, if a client for an
airport wants to increase the passenger interaction in retail areas, then architects can program a

simulation to optimize a design for these retail areas.

Current research in automation can involve machine learning techniques. This is an artificial
system that programs, or learns, behaviour without having a user code in specific conditions.
For example, instead of an architect telling an airport simulation that an open retail area by

departure gates is better, a machine learning program can recognize that designing gates with

open retail areas gives better passenger performance.

Machine learning algorithms involve optimizing an artificial neural network, which is a graph-

like, tree-base, hierarchical structure with weights for specific system attributes. Basically, it is

like the computer’s brain, which tells the program how to behave under certain conditions. A

program learns by updating the weights in this hierarchy, after it studies training data, or

performs trial-runs. A computer recognizes what the correct behaviour is by comparing its own

output to a correct solution, which may be defined by the user initially. For example, a simple
346

machine learning program for a driverless car might have weights for steering and obstacle
proximity, and a penalty system for hitting a wall. These weights would be changed every time
the car hits a wall. A similar score and penalty system would need to be created for architectural

conditions.

Depending on the size of its neural network, a machine learning program may need to perform
millions of trial-runs. It will also require a lot of training data to optimize for a certain
behaviour. This is especially important for architecture because there are dozens of factors that
influence design choices, which requires optimizing a weight for each condition. Future agent
simulations can incorporate a machine learning algorithm that takes in the performance of the
agents (or passengers) as an input and optimizes their architectural value by modifying the walls
in a floor plan. Ideally, these simulations can begin to recognize which layout will produce

higher architectural value, or as a result, better building performance.
Architectural Influence on Human Behavior

Another critical area of research is studying how architectural choices influence human
behaviour. There is no use in optimizing for an agent behaviour if it is not representative of real-
world conditions. The thesis chose to focus on airports because there is a lot of research in
passenger experience analysis. Future architectural research may also want to continue studying

passenger experience, or even explore patient experience in healthcare facilities.

One area of focus in this thesis was understanding people’s perception of the built environment.
The thesis realizes this is not as simple as asking how a wooden wall affects people’s behaviour
compared to a concrete wall. Instead, the thesis concludes that people’s perception is unique to
the individual, and it depends on what people are doing. For example, if people are looking for
their platform in a train station, then a solid concrete wall can be a physical obstruction.
However, if people are waiting around before their train has arrived, then they may use the solid
concrete wall as a place to wait beside or lean on. Therefore, there can be different behaviours

for the same architectural feature.

Research may want to identify what behaviours are likely to occur and explore what
architectural elements relate to those behaviours. There is opportunity to explore real human
activity in actual buildings, like terminals or community centres, as a scientific study. This
research can help better understand what activities people normally do in the built environment.
It can also help identify where in a building these activities might occur, or how these activities

relate to the overall layout of the architecture.

347

Human behavioural research will also involve exploring ways of assigning a value to
architectural conditions. Valuation is important to help perform a scientific study, since
research focusing on qualitative properties of an environment can be very diverse. It is also
useful to have quantifiable data from these tests so it can be used for analysis or forecasting.
Having a ranking system can be beneficial in field-studies when comparing two completely
different observations. This thesis explored using a weight-based metric, which normalized
people’s priorities. However, there are other ranking systems that could provide similar
information, as seen in existing passenger experience surveys. The results from this kind of

research could then be used to create simulation studies of architectural environments.

348

Chapter 5.4

Summary of Conclusion

In summary, the thesis’s agent simulation can successfully differentiate between certain
architectural layouts depending on an agent’s airport priorities. The thesis believes any effective
architectural simulation must at least use existing practices from crowd modelling, incorporate
perception for agent decision making, and analyse architectural values using statistics. If
generalized enough, agent simulations can be used to test any building type, in addition to

airport terminals.

Simulations can impact architecture by providing a quantifiable value for design iterations. This
type of analysis can be effective for architects to communicate design issues or benefits to their
clients. Testing will result in more intuitive spaces, which will give people a more seamless
experience in the built environment. However, the risk of architects only relying on simulations
to create designs is not being able to recognize when they output wrong information. Without
critical evaluation, architects risk building something that becomes detrimental to people in the
long-term, as society’s needs change over time. Ultimately, the most effective use of simulations
is for clarifying uncertainty in the existing design process. This will not replace the role of the

architect; it will only change how they think about design choices.

Future work from this thesis can take two different directions. One direction is automating
agent simulations by exploring machine learning techniques to optimize architectural
conditions. The other direction is studying how human behaviour relates to certain architectural

elements, by conducting experiments with people in real-world buildings.

In conclusion, the thesis has demonstrated that architectural design can be approached
quantitatively. Continuing to learn from these established practices will provide more scientific

rigour for architecture in the future.

349

Letter of Copyright Permission

A* Pathfinding — Collection of Unity Scripts

Lague, Sebastian. "Pathfinding/Episode 10 - threading/Assets/Scripts/". GitHub. December 30,
2016. https://github.com/SebLague/Pathfinding/tree/master/Episode%2010%20-
%20threading/Assets/Scripts.

MIT License
Copyright (c) 2017 Sebastian Lague

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

351

Field-of-View — Collection of Unity Scripts

Lague, Sebastian. "Field-of-View/Episode 02/Scripts/FieldOfView.cs". GitHub. December 28,
2015. https://github.com/SebLague/Field-of-
View/blob/master/Episode%2002/Scripts/FieldOfView.cs.

MIT License
Copyright (c) 2016 Sebastian

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

352

References

3Blue1Brown. “Eigenvectors and eigenvalues | Essence of linear algebra, chapter 14”. Youtube, September
15, 2016. https://www.youtube.com/watch?v=PFDugoVAE-g.

99pi. “The White Elephant of Tel Aviv.” 99% Invisible, March 29, 2016.
https://99percentinvisible.org/episode/stop-that-bus/.

Abdelhak, Haifa; Ayesh, Aladdin; Olivier, Damien. “Cognitive Emotional Based Architecture for Crowd
Simulation”. Journal of Intelligent Computing, June 2012, 2012. Vol. 3 (2), pp. 55-66.

ABET. “Criteria for Accrediting Engineering Programs, 2019 — 2020.” ABET. Accessed June 2020.
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-
programs-2019-2020/ #definitions.

AirHelp. “AirHelp Score 2019: Global Airport Rankings”. AirHelp 2019. Accessed October 2020.
https://static.airhelp.com/pdf/2019-airport-
score/methodology_airhelp_score_2019__ global_airport_rankings-en_us.pdf.

AirHelp. “Global Airport Ranking”. AirHelp, 2019. Accessed October 2020.
https://www.airhelp.com/en/airhelp-score/airport-ranking/.

Airport Technologies. “Can cultural differences impact passenger satisfaction?”. Analysis. Updated
December 7th, 2018. https://www.airport-technology.com/features/passenger-satisfaction-in-
airports/.

Alexander, Christopher, Sara Ishikawa, and Murray Silverstein. A Pattern Language: Towns, Buildings,
Construction. New York: Oxford Univ. Pr., 1977.

Alexander, Christopher. Notes on the Synthesis of Form. Cambridge: Harvard University Press, 1964.

Arabacioglu, Burcin Cem. “Using Fuzzy Inference System for Architectural Space Analysis.” Applied Soft
Computing 10, no. 3 (2010): 926—37. https://doi.org/10.1016/j.as0¢.2009.10.011.

Arbuckle, Alex Q. “1910-1963 The Destruction of Penn Station.” Mashable, July 20, 2015.
https://mashable.com/2015/07/20/original-penn-station/#.utV4feGIPq1.

Arena. “Discrete Event Simulation Software.” Arena Simulation Software. Accessed December 2019.
https://www.arenasimulation.com/what-is-simulation/discrete-event-simulation-software.

Argenton, Rodrigo. “File:Galton box.jpg”. Wikimedia Commons. December 19, 2016.
https://commons.wikimedia.org/wiki/File:Galton_box.jpg.

Arup. “The Verification and Validation of MassMotion for Evacuation Modelling.” Ove Arup & Partners
Ltd. August 10, 2015. https://www.oasys-software.com/wp-content/uploads/2017/11/The-
Verification-and-Validation-of-MassMotion-for-Evacuation-Modelling-Report.pdf.

Aschwanden, Gideon, Jan Halatsch, and Gerhard Schmitt. "Crowd Simulation for Urban Planning”.
Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2]
Antwerpen (Belgium) (17-20 September 2008): pp. 493-500.

355

ASHRAE. “ASHRAE Standards Strategic Plan 2014-15". American Society of Heating, Refrigerating and
Air Conditioning Engineers, Inc. July 2, 2014.

ASHRAE. “Standard 100-2015 -- Energy Efficiency in Existing Buildings (ANSI Approved/IES Co-
sponsored)”. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc.
Accessed February 2021. https://www.ashrae.org/technical-resources/bookstore/standard-100.

Augé Marc. Non-Places: Introduction to the Anthropology of Supermodernity. London: Verso, 1995.

Balci, Osman. “Validation, Verification, and Testing Techniques Throughout the Life Cycle of a Simulation
Study.” Annals of operations research 53, no. 1 (December 1994): 121—-173.

Banks, Jerry; Carson II, John S; Nelson, Barry L; Nicol, David M. Discrete-Event System Simulation 4th
ed. Upper Saddle River, N.J: Pearson Prentice Hall, (2005).

Batty, Michael. Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based
Models, and Fractals. Cambridge, MA: MIT, 2007.

Belogolovsky, Vladimir. “Paul Andreu: ‘T Would Only Take On a Project If the Ideas Were Mine.
Otherwise, I Am Not Interested.".” ArchDaily. March 7, 2017.
https://www.archdaily.com/806698/paul-andreu-i-would-only-take-on-a-project-if-the-ideas-
were-mine-otherwise-i-am-not-intereste.

Bhattacharya, Subhrajit. “File:Astar progress animation.gif”. Wikimedia Commons. April 13, 2011.
https://en.wikipedia.org/wiki/File:Astar_progress_animation.gif.

Bhattacharya, Subhrajit. “File:Dijkstras progress animation.gif”. Wikimedia Commons. April 13, 2011.
https://commons.wikimedia.org/wiki/File:Dijkstras_progress_animation.gif.

Bouarfa, S, H.A.P Blom, R Curran, and M.H.C Everdij. “Agent-Based Modeling and Simulation of
Emergent Behavior in Air Transportation.” Complex adaptive systems modeling 1, no. 1 (August 15,
2013): 1-26.

Broadbent, Geoffrey. Design in Architecture; Architecture and the Human Sciences. London: John Wiley
& Sons, 1973.

Broto, Carles. Transport Facilities. Barcelona: Link Books, 2012.

Buchgeher, Georg, and Rainer Weinreich. “Continuous Software Architecture Analysis.” Agile Software
Architecture, 2014, 161—88. https://doi.org/10.1016/b978-0-12-407772-0.00006-X.

Canada Alive. “Pearson International Airport, Toronto”, Canada Alive, April 8, 2014, Accessed September
2019, https://canadaalive.wordpress.com/2014/04/08/pearson-international-airport-toronto/.

Carpo, Mario. The Second Digital Turn Design Beyond Intelligence. Cambridge, MA: The MIT Press,
(2017).

Changi Airport Singapore. “Maps: Changi Airport Singapore.” Maps | Changi Airport Singapore. Accessed
October 2019. http://www.changiairport.com/en/maps.html#17.16/1.354975/103.989599/-67.

Chatzikonstantinou, Ioannis; Sariyildiz, Sevil; Bittermann, Michael S. “Conceptual Airport Terminal
Design Using Evolutionary Computation.” In 2015 IEEE Congress on Evolutionary Computation
(CEC), 2245—2252. IEEE, 2015.

356

Choudhary, Shweta; Pipralia, Satish. “Architectural Perception for Redevelopment of Railway Termini”.
International Journal on Emerging Technologies 8(1), January 26,2017.

Chu, Mei Ling, and Kincho Law. “Computational Framework Incorporating Human Behaviors for Egress
Simulations.” Journal of Computing in Civil Engineering 27, no. 6 (November 1, 2013): 699—707.

Collins, Peter, and William Dendy. Architectural Judgement. Montreal: McGill-Queens University Press,
1971.

Cuff, Dana. Architecture: the Story of Practice. Cambridge, Mass: MIT Press, 1991.
Cullen, Gordon. The Concise Townscape. Abingdon: Routledge, 1971.

Deputy City Manager. “Union Station Revitalization Project (USRP) — Status Report.” City of Toronto,
June 18, 2020.

Designworkplan. “Airport Signage.” /designworkplan wayfinding design studio. Accessed November 26,
2019. https://www.designworkplan.com/read/airport-signage-photo-inspiration.

Dewey, John. Theory of Valuation. Chicago, Ill: University of Chicago Press, 1939.

Do, Ellen Yi-Luen, and Mark D. Gross. “Tools for Visual and Spatial Analysis of CAD Models.” CAAD
Futures 1997, 1997, 189—202. https://doi.org/10.1007/978-94-011-5576-2_15.

Dt-rush-8. “File:Queueing node service digram.png”. Wikimedia Commons. 8 December 2018.
https://commons.wikimedia.org/wiki/File:Queueing_node_service_digram.png.

Easterling, Keller. Organization Space: Landscapes, Highways, and Houses in America. Cambridge,
MA: The MIT Press, 2001.

EGS India. “Why, How and When do you perform Design Validation for Automotive Systems?”.
Solidworks Tech Blog. August 30, 2016. https://blogs.solidworks.com/tech/2016/08/perform-
design-validation-automotive-systems.html.

Evans, Michael J; Rosenthal, Jeffery S. Probability and Statistics the Science of Uncertainty Second
Edition. University of Toronto: 2009.

FAA. “Advisory Circular 150/5360-13A - Airport Terminal Planning”. APP-400, Office of Airport Planning
& Programming, Planning & Environmental Division. U.S. Department of Transportation, Federal
Aviation Administration (FAA). July 13, 2018.
https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC-150-5360-13A-Airport-
Terminal-Planning.pdf.

FAA. “Airport Design and Engineering Standards.” FAA seal, August 2019.
https://www.faa.gov/airports/engineering/design_standards/.

FDA. “Guideline on General Principles of Process Validation”. U.S. Department of Health and Human
Services Food and Drug Administration, FDA-2008-D-0559. Updated 2018-08-24.

Fiederer, Luke. “AD Classics: TWA Flight Center / Eero Saarinen”. ArchDaily. 2016-06-16.
https://www.archdaily.com/788012/ad-classics-twa-flight-center-eero-saarinen.

357

Fischer, Alex. “Quelea - Agent-Based Design for Grasshopper.” Grasshopper. Accessed December 14,
2019. https://www.grasshopper3d.com/groups/group/show?groupUrl=quelea-agent-based-
design-for-grasshopper&.

FlexSim. “FlexSim 3D Simulation Modeling Software.” FlexSim, September 13, 2017.
https://www.flexsim.com/flexsim/.

Frank, Andrew; Raper, Jonathan; Cheylan, Jean-Paul (eds.), The Life and Motion of Socio-Economic
Units. (GISDATA 8), London: Taylor and Francis, 2001.

Franklin, Stan; Graesser, Art. "Is it an Agent, or just a Program?: A Taxonomy for Autonomous Agents".
Proceedings of the Third International Workshop on Agent Theories, Architectures, and
Languages, (1996) Springer-Verlag.

Fruin, John J. Designing for Pedestrians: A Level of Service Concept. New York, 1970.
http://onlinepubs.trb.org/Onlinepubs/hrr/1971/355/355-001.pdf.

Fruin, John J. Pedestrian Planning and Design. New York: Metropolitan Association of Urban Designers
and Environmental Planners, 1971.

Galea, Alexander. “Galton’s Peg Board and the Central Limit Theorm”. WordPress. March 11, 2016.
https://galeascience.wordpress.com/2016/03/11/galtons-peg-board-and-the-central-limit-
theorem/.

Getlein, M. Living with Art. New York, NY: McGraw-Hill, (2013): p. 115.
Gibson, James J. The Ecological Approach to Visual Perception. New York: Psychology Press, 1986.

Globalphotos. “Toronto Pearson Airport Photo Gallery”. globalphotos.org. Accessed November 2019.
https://www.globalphotos.org/to-airport.htm.

Great Buildings. Dulles Airport. Accessed March 2021.
http://www.greatbuildings.com/buildings/Dulles_ Airport.html.

GTAA. “2018 Airport Construction Code, v5.0”, Toronto Pearson International Airport, GTAA, 2018,
https://tpprodednep.azureedge.net/-/media/project/pearson/content/operators-at-
pearson/construction/pdfs/airport-construction-code.pdf?modified=20190302002058.

GTAA. “Toronto Pearson”. Greater Toronto Airports Authority — GTAA, Accessed September 2019,
https://maps.torontopearson.com/.

GTAA. “Toronto Pearson International Airport Master Plan 2017-2037”, Greater Toronto Airports
Authority (GTAA), 2017, 38, 56, 85, https://tpprodcdnep.azureedge.net/-
/media/project/pearson/content/corporate/our-future/pdfs/gtaa-master-
plan.pdf?la=en&modified=20190228235920&hash=6C155E44692A278979B42F1F976A7456D7F2
D53F.

Guichard, David. An Introduction to Combinatorics and Graph Theory. Whitman College. January 30,
2020.

Guru99. “Design Verification and Validation”. Gurug9, accessed May 27, 2020,
https://www.gurugg.com/design-verification-process.html.

358

Hagtvedt, Patrick. “The Perception and Evaluation of Visual Art.” Empirical studies of the arts 26, no. 2
(July 2008): 197—218.

Hamilton, D. Kirk. “Four Levels of Evidence-Based Practice”. Healthcare Design. 3,4: 18-26.

Hanafi, Israa, Moustafa El Araby, Khalid Al Hagla, and Samer El Sayary. “Human Social Behavior in
Public Urban Spaces: Towards Higher Quality Cities.” Spaces and Flows: An International Journal
of Urban and ExtraUrban Studies 3, no. 2 (2013): 23—35. https://doi.org/10.18848/2154-
8676/cgp/v03i02/53690.

Hillier, Bill, and Julienne Hanson. The Social Logic of Space. Cambridge: Cambridge University Press,
1984. doi:10.1017/CB0O9780511597237.

Hirose, Iwao; Olson, Jonas. The Oxford Handbook of Value Theory. New York: Oxford University Press,
2015.

Hirsh, Max. Airport Urbanism Infrastructure and Mobility in Asia. Minneapolis: University of
Minnesota Press, 2016.

HOK. “HOK to Design New Transit Hub at Toronto Pearson International Airport.” HOK, February 6,
2018. https://www.hok.com/news/2018-02/hok-to-design-new-transit-hub-at-toronto-pearson-
international-airport/.

Holm, Ivar. “Ideas and Beliefs in Architecture and Industrial Design”. PhD thesis, Oslo School of
Architecture and Design, 2006.

Hoy, Gregory, Erin Morrow, and Amer Shalaby. “Use of Agent-Based Crowd Simulation to Investigate the
Performance of Large-Scale Intermodal Facilities: Case Study of Union Station in Toronto, Ontario,
Canada.” Transportation Research Record 2540, no. 1 (January 2016): 20—29.
https://doi.org/10.3141/2540-03.

Indraprastha, Aswin, and Michihiko Shinozaki. “Elaboration Model for Mapping Architectural Space.”
Journal of Asian Architecture and Building Engineering 10, no. 2 (November 2011): 351—58.
https://doi.org/10.3130/jaabe.10.351.

IMO. “Guidelines for Evacuation Analysis for New and Existing Passenger Ships.” International Maritime
Organization (IMO). MSC.1/Circ.1238. October 30, 2007. https://nsof.no/media/1129/imo-msc-
guidelines-for-evacuation-etc.pdf.

ISO. “Systems and software engineering -- System life cycle processes.” ISO/IEC/IEEE 15288:2015, 2015-
05, 4.37 validation.

Joe. “List of Random Names.” Accessed August 2020. http://www.listofrandomnames.com/.
Kepes, G. The Nature and Art of Motion. London: Studio Vista, 1967.

Khan Academy. “Central Limit Theorem”. Math, AP® / College Statistics, Sampling Distributions,
Sampling Distributions of a sample mean. Accessed February 2021.
https://www.khanacademy.org/math/ap-statistics/sampling-distribution-ap/sampling-
distribution-mean/v/central-limit-theorem.

Khan Academy. “Deep definition of the normal distribution”. Math, Statistics and probability, Modelling
data distributions, More on normal distributions. Accessed February 2021.

359

https://www.khanacademy.org/math/statistics-probability/modeling-distributions-of-data/more-
on-normal-distributions/v/introduction-to-the-normal-distribution.

Khan Academy. “Describing Graphs.” Computer Science, Algorithms, Graph Representation, Accessed
May 2020. https://www.khanacademy.org/computing/computer-science/algorithms/graph-
representation/a/describing-graphs.

Khan Academy. “Introduction to eigenvalues and eigenvectors”. Linear Algebra, Alternative coordinate
systems, Eign-everything. https://www.khanacademy.org/math/linear-algebra/alternate-
bases/eigen-everything/v/linear-algebra-introduction-to-eigenvalues-and-eigenvectors.

Khan Academy. “Representing Graphs.” Computer Science, Algorithms, Graph Representation, Accessed
May 2020. https://www.khanacademy.org/computing/computer-science/algorithms/graph-
representation/a/representing-graphs.

Kim, Giseop; Kim, Ayoung; Kim, Youngchul. “A New 3D Space Syntax Metric Based on 3D Isovist Capture
in Urban Space Using Remote Sensing Technology.” Computers, Environment and Urban Systems

74 (2019): 74—87.

Kochanski, Jakub. “GoPro Time Lapse — People at O’'Hare Airport [Terminal 3]”. YouTube. April 8, 2015.
https://www.youtube.com/watch?v=ipHebqQTDlIg.

D.P. Kroese, T. Taimre, Z.1. Botev. Handbook of Monte Carlo Methods. Wiley Series in Probability and
Statistics, John Wiley & Sons, New York, (2011).

Lague, Sebastian. "Pathfinding/Episode 7-smooth weights/Assets/Scripts". GitHub. December 30, 2016.
https://github.com/SebLague/Pathfinding/tree/master/Episode%209%20-
%20smooth%20path%2002/Assets/Scripts.

Lague, Sebastian. "Field-of-View/Episode 02/Scripts/FieldOfView.cs". GitHub. December 28, 2015.
https://github.com/SebLague/Field-of-View/blob/master/Episode%2002/Scripts/FieldOfView.cs.

Lague, Sebastian. “Field of view visualization (E02)”. Youtube. December 27, 2015.
https://www.youtube.com/watch?v=73Dc5JTCmKI.

Lane, David et al. “Sampling Distribution”. Onlinestatbook.com, Rice Virtual Lab in Statistics (RVLS),
Rice University. Accessed February 2021.
https://onlinestatbook.com/stat_sim/sampling_ dist/index.html.

Le Corbusier. Modulor I and II. Cambridge, Mass: Harvard University Press, 1980.
Lee, Peter M. Bayesian Statistics an Introduction 4th ed. Chichester, West Sussex, 2012.

Lera, Sebastian G. “Architectural Designers’ Values and the Evaluation of Their Designs.” Design studies
2, no. 3 (1981): 131—137.

Lera, Sebastian G. “Empirical and Theoretical Studies of Design Judgement: A Review.” Design studies 2,
no. 1 (1981): 19—26.

Lidwell, William, Kritina Holden, and Jill Butler. Universal Principles of Design: 125 Ways to Enhance
Usability, Influence Perception, Increase Appeal, Make Better Design Decisions, and Teach
through Design. Beverly, MA: Rockport, 2010.

360

Liu, Ao (Leo). “Dynamic Visualizations: Developing a Framework for Crowd-Based Simulations” MArch
thesis, University of Waterloo, 2020.

Liu, Z, Liu, T, Ma, M, Hsu, H-H, Ni, Z, Chai, Y. A perception-based emotion contagion model in crowd
emergent evacuation simulation. Comput Anim Virtual Worlds. 2018; 29:e1817.
https://doi.org/10.1002/cav.1817.

Markup Validation Service. “Why Validate?” Markup Validation Service. Accessed May 27, 2020,
https://validator.w3.org/docs/why.html.

Marmot, Alexi. “Architectural Determinism.” The British Journal of General Practice 52, no. 476 (March
2002): 252-53. https://bjgp.org/content/bjgp/52/476/252.full.pdf.

McCarthy, Owen. “Game Design Deep Dive: Creating Believable Crowds in Planet Coaster.” Gamasutra
Article, January 4, 2017.
https://www.gamasutra.com/view/news/288020/Game_Design_Deep_Dive_Creating_believable
_crowds_in_Planet_Coaster.php.

McElhinney, Sam. “Isovist_2.2: a basic user guide”. v1, 2018. https://isovists.org/user_guide/.

Mentatdgt. “Photography of People at Train Station”. Pexels. August 09, 2018.
https://www.pexels.com/photo/photography-of-people-at-train-station-1311544/.

Miller, G.A. “The magical number seven, plus or minus two: Some limits on our capacity for processing
information.” Psychological Review, 63(2): 81-97, doi:10.1037/h0043158.

Microsoft. “Classes (C# Programming Guide).” C# Documentation, August 21, 2018. Accessed October
2020. https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-
structs/classes.

Microsoft. “Methods in (C#).” C# Documentation, May 21, 2018. Accessed October 2020.
https://docs.microsoft.com/en-us/dotnet/csharp/methods.

Microsoft. “Types (C# Programming Guide).” C# Documentation, July 20, 2015. Accessed October 2020.
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/.

Musse, S. R., and D. Thalmann. “A Model of Human Crowd Behavior: Group Inter-Relationship and
Collision Detection Analysis.” Eurographics Computer Animation and Simulation '97. (1997). 39—
51. https://doi.org/10.1007/978-3-7091-6874-5_3.

National Academies of Sciences, Engineering, and Medicine. “Airport Passenger-Related Processing Rates
Guidebook”. Washington, DC: The National Academies Press. (2009).
https://doi.org/10.17226/22990.

National Academies of Sciences, Engineering, and Medicine. “Airport Passenger Terminal Planning and
Design, Volume 1: Guidebook”. Washington, DC: The National Academies Press. (2010).
https://doi.org/10.17226/22964.

National Academies of Sciences, Engineering, and Medicine. Airport Passenger Terminal Planning and
Design, Volume 2: Spreadsheet Models and User's Guide. Washington, DC: The National
Academies Press. (2010). https://doi.org/10.17226/14356.

361

National Academies of Sciences, Engineering, and Medicine. “Innovations for Airport Terminal
Facilities”. Washington, DC: The National Academies Press. (2008).
https://doi.org/10.17226/14219.

National Academies of Sciences, Engineering, and Medicine. “Passenger Level of Service and Spatial
Planning for Airport Terminals”. Washington, DC: The National Academies Press. (2011).
https://doi.org/10.17226/14589.

National Academies of Sciences, Engineering, and Medicine. “Simulation Options for Airport Planning”.
Washington, DC: The National Academies Press. (2019). https://doi.org/10.17226/25573.

Neumann, Peter. “Kosten fiir GroBflughafen steigen um 160 Millionen Euro, weil mehr Passagiere
erwartet werden: Noch nicht gebaut und schon teurer [Costs for major airports rise by 160 million
euros because more passengers are expected: not yet built and already more expensive]”. Berliner-
Zeitung, 2008-07-10. https://www.berliner-zeitung.de/kosten-fuer-grossflughafen-steigen-um-
160-millionen-euro-weil-mehr-passagiere-erwartet-werden-noch-nicht-gebaut-und-schon-teurer-
li.6277.

Nicoguaro. “File:Pi 30K.gif”. Wikimedia Commons. February 16, 2017.
https://commons.wikimedia.org/wiki/File:Pi_30K.gif.

Norman, Donald A. The Design of Everyday Things. New York: Basic Books, A Member of the Perseus
Books Group. (2013).

NRCC. National Building Code of Canada 2015 Volume 1. National Research Council of Canada. Ottawa,
September 28, 2018.

O'Sullivan, Feargus. “Planning the Transit Hubs of the Future.” CityLab, July 10, 2017.
https://www.citylab.com/design/2017/07/planning-the-transit-hubs-of-the-future/532905/.

Oasys. “HOK Benefits from BIM Integration of Pedestrian Simulation.” Oasys. Accessed January 2020.
https://www.oasys-software.com/case-studies/hok-benefits-bim-integration-pedestrian-
simulation/.

Oasys. “JetBlue — T5 JFK New York.” Oasys. Accessed February 2020. https://www.oasys-
software.com/case-studies/jetblue-t5-jfk-new-york/.

Oasys. “MassMotion Help Guide,” July 2019. https://www.oasys-software.com/wp-
content/uploads/2019/06/MassMotion-10.0-Help-Guide.pdf.

Ostwald, Michael. “Le Corbusier (Charles Edouard Jeanneret), The Modulor and Modulor 2 — 2 Volumes.
Basel: Birkhauser, 2000: Reviewed by Michael J. Ostwald”. Basel: Birkhduser-Verlag, April 2001.

Palisade. “Monte Carlo Simulation”. Risk. Accessed February 2021.
https://www.palisade.com/risk/monte_carlo_simulation.asp.

PANYNJ. “Terminal Planning Guidelines”, The Port Authority of New York and New Jersey, August 2013,
https://www.fd.cvut.cz/projects/k621x1ml/dokumenty/panynj-terminal-planning-guidelines.pdf.

Popovic, Vesna and Kraal, Ben and Kirk, Philip J. “Towards airport passenger experience models.”
Proceedings of 7th International Conference on Design & Emotion, October 2010, 4-7.

362

Prabhu, Frischmann. “1. Pedestrian Simulation at a Metro Station (Peak Hour).” YouTube. YouTube,
September 28, 2017. https://www.youtube.com/watch?v=nZ3pE-nlJio.

Proulx, Christian. “Complete Terminal Simulation”. Youtube. March 1, 2014.
https://www.youtube.com/watch?v=1aXdMO67goE.

Purcell, A.t. “The Relationship between Buildings and Behaviour.” Building and Environment 22, no. 3
(1987): 215—32. https://doi.org/10.1016/0360-1323(87)90010-2.

Raubal, Martin. “Agent-Based Simulation of Human Wayfinding: A Perceptual Model for Unfamiliar
Buildings”. PhD diss., Vienna University of Technology, October 2001.

Rittel, Webber. “Dilemmas in a General Theory of Planning.” Policy sciences 4, no. 2 (June 1973): 155—
169.

Robinson, Stewart. Simulation: the Practice of Model Development and Use. Chichester, England: Wiley,
(2004).

RobotC. “Sense Plan Act (SPA)”. Natural Language Resources — VEX Cortex. Accessed November 2020.
http://cdn.robotc.net/pdfs/natural-language/hp_spa.pdf.

Ronchi, Enrico; Kuligowski, Erica D; Reneke, Paul A; Peacock, Richard D; Nilsson, Daniel. “The Process
of Verification and Validation of Building Fire Evacuation Models.” Technical Note (NIST TN) -
1822, (November 2013), http://dx.doi.org/10.6028 /NIST.TN.1822.

Rosenhahn, Bodo. Human Motion: Understanding, Modeling, Capture and Animation. Dordrecht:
Springer, 2008.

Saarinen, Eero. Eero Saarinen On His Work. New Haven, CT: Yale University Press, 1968. section
drawing, p108.

Saaty, Thomas L. “A Scaling Method for Priorities in Hierarchical Structures.” Journal of mathematical
psychology 15, no. 3 (1977): 234—281.

Saaty, Thomas L. “Modeling Unstructured Decision Problems — the Theory of Analytical Hierarchies.”
Mathematics and computers in simulation 20, no. 3 (1978): 147-158.

SAE. “Browse Standards”. Society of Automotive Engineers. Accessed February 2021.
https://www.sae.org/standards.

Sander, Lou. “File:AHPHierarchy1.1.png”. Wikimedia Commons. 24 February 2009.
https://commons.wikimedia.org/wiki/File: AHPHierarchy1.1.png.

Schiphol. “Airport Maps.” Schiphol. Accessed October 31, 2019. https://www.schiphol.nl/en/airport-
maps.

Schroeder, Mark. "Value Theory". The Stanford Encyclopedia of Philosophy (Fall 2016 Edition). Edward
N. Zalta (ed.). https://plato.stanford.edu/archives/fall2016/entries/value-theory.

Skytrax. “Awards Methodology”. World Airport Awards, Skytrax, 2020. Accessed October 2020.
https://www.worldairportawards.com/awards-methodology/.

363

Skytrax “World’s Top 100 Airports 2020”. World Airport Awards, Skytrax, 2020. Accessed October 2020.
https://www.worldairportawards.com/worlds-top-100-airports-2020/.

Smith, Barry. “Objects and Their Environment”. The Life and Motion of Socio-Economic (GISDATA 8),
London: Taylor and Francis, 2001, 79—97.

Souza, Carlos Eduardo Gomes. “To cater for a passenger, you have to understand the passenger.”
International Airport Review. July 23, 2020.
https://www.internationalairportreview.com/article/119756/cater-passenger-understand-
passenger/.

Straube, J.F. High Performance Enclosures. Sommerville: Building Science Press, 2012.

Sumers, Brian. “Airport Secrets from an Architect Who Designs Them.” Skift, February 6, 2018.
https://skift.com/2018/01/03/airport-secrets-from-an-architect-who-designs-them/.

TALUMIS. “Airport; Flexsim Simulation Model.” YouTube. YouTube, January 5, 2009.
https://www.youtube.com/watch?v=Elqx3u658tg.

Thalmann, Daniel, and Soraia Raupp Musse. Crowd Simulation. Vol. 9781447144502. London: Springer
London, 2008.

Tufte, Edward R. The Visual Display of Quantitative Information. Graphics Press USA, 2001.

Turner, Alasdair, Maria Doxa, David Osullivan, and Alan Penn. “From Isovists to Visibility Graphs: A
Methodology for the Analysis of Architectural Space.” Environment and Planning B: Planning and
Design 28, no. 1 (2001): 103—21. https://doi.org/10.1068/b2684.

Tutorial Point. “Graph Theory.” Tutorials Point (I) Pvt. Ltd. 2020.

Ulrich, Roger S., Craig Zimring, Xuemei Zhu, Jennifer DuBose, Hyun-Bo Seo, Young-Seon Choi, Xiaobo
Quan, and Anjali Joseph. “A Review of the Research Literature on Evidence-Based Healthcare
Design.” HERD: Health Environments Research & Design Journal 1, no. 3 (April 2008): 61—125.
doi:10.1177/193758670800100306.

Unity. “Architecture, Engineering & Construction.” Solutions. Accessed December 2019.
https://unity.com/solutions/architecture-engineering-construction.

Urban Strategies Inc, “Pearson Connects: A Multi-Modal Platform for Prosperity”, GTAA, February 2016,
https://www.urbanstrategies.com/wp-content/uploads/2015/10/PearsonConnects_20160225.pdf

Vaughan, Laura. “The Spatial Syntax of Urban Segregation.” Progress in Planning 67, no. 3 (2007): 205—
204.

Walker, Jarret. “Keys to Great Airport Transit”. Human Transit. 2016-03-01.
https://humantransit.org/2016/03/keys-to-great-airport-transit.html.

Walpole, Ronald E. Probability & Statistics for Engineers & Scientists 9th ed. Boston: Prentice Hall, 2012.

Watkins, Joseph. An Introduction to the Science of Statistics: From Theory to Implementation
Preliminary Edition. University of Arizona: 2016.

WELL. “Concepts and Features.” WELL Certified v2, 2018. https://v2.wellcertified.com/v/en/concepts.

364

Wilson, Robin J. Introduction to Graph Theory 4th ed. Harlow: Longman, 1996.

Wired. “Airport Expert Creates the Ideal Layout for LaGuardia Airport (New York) | WIRED”. Youtube.
March 11, 2020. https://www.youtube.com/watch?v=Kil-s1XgVys.

Wiredja, Dedy, Vesna Popovic, and Alethea Blackler. “A Passenger-Centred Model in Assessing Airport
Service Performance.” Journal of Modelling in Management 14, no. 2 (May 10, 2019): 492—520.

Wiredja, Dedy; Popovic, Vesna; Blackler, Alethea. “Questionnaire Design for Airport Passenger
Experience Survey.” 6th International Association of Societies of Design Research (IASDR)
Conference. (November 2015).

Xie, Rong, and Yan Zhang. “Agent-Based Crowd Evacuation Modeling in Buildings.” Applied Mechanics
and Materials 411—414. (September 2013): 2639—42.
https://doi.org/10.4028 /www.scientific.net/amm.411-414.2639.

Yukio Futagawa, ed. Global Architecture: TWA Terminal Building, Kennedy Airport, New York, and
Dulles International Airport, Chantilly, Virginia. Tokyo: A.D.A. Edita Tokyo, 1973. plan, p45.

Zhou, Suiping, Dan Chen, Wentong Cai, Linbo Luo, Malcolm Low, Feng Tian, Victor Tay, Darren Ong,
and Benjamin Hamilton. “Crowd Modeling and Simulation Technologies.” ACM Transactions on
Modeling and Computer Simulation (TOMACS) 20, no. 4 (October 1, 2010): 1—35.

365

Appendix A

The following pages lists the simulation trials from Part 4 Simulation Tests.

367

4.0 Verification and Validation Tests

6T

8T
ydead
1) 1us8e 05 M 1581 jewiiou ver-ay | TOEOTE0C %0 00T %0 001 02T / (00T) @8ues xew | uondadiad 4¥ 1 TIuasy T-1531-0Il ssed A
Ajigesip Supjiem
npul mou ‘a1doad oot a71s sidwes | L& 80°020¢ %LT €80 %TC 9’8y 091 /02 uondadiad +v PaINGLISID OAI TIuasy T-153L-0Il (%12+) I1ed 9T
a|doad 0g azis s|dwes £1-80-020C %1 660 %L T19°0% 09T /02 uondadiad 4V pa1nqliisia Ol T3y T-¥S31-ONI (%+) ssed ST
a|doad gz azs a|dwes €1-80-020C % v0'T %t Tv'8€ 09T /0T uondadiad v painquisia ONI Tiuady T-33L-0WI (%t-) ssed vT
98e uo Juepuadap mou spaads
pasds juade ‘S|t 9 4o 3eiane ays Uey 11-80-020C %9 90°T %S L8'LE 091 /01 uondadiad +v pEINGLISIA O TIuasy T-159L-0II (%9-) 11e4 €1
11-80-020C %L 10T %L 65°6€ 09T /0T uondadad 4V T TIuady T-3531-0I (%T1-) ssed [43
OU ‘W QT 03 SNIPEJ M3IA JO p|3ly padnpai | TT-80-020C %1 10T %1 S'6E 09T /0T uondanlad 4V T Tiuasy T-33L-0WI (%T1-) ssed 1T
T1-80-020C %C 0T %C T'6€ 09T /0T uondasiad LV T JREEN T-1591-0WII (%¢-) ssed ot
193.e1 |BDO| 1X3U 31 BUISO0YD UaMIaq
sasned 3y8i|s si 22y} dduls ‘@3N0. 1931 | TT-80-020T %l 10T %T 9'6€ 09T /02 uondadiad v T Tiuasy T-3531-0WI (%T-) ssed 6
uey Ja8uo| Apysis saxey uondadiad
T1-80-020C %C [% ¥'6€ 09T /0T uondasiad LV T T3uaBy T-1591-0II (%¢-) ssed 8
100p ay3 995 p|nod Juade
uayMm uonOW BulIBpUBM OU SeM 33U} | TT-80-020C %z 20T %C L0'6€ 09T /02 uondaniad v T Tiuasy T-1531-0WI (%) ssed L
‘aLWI} 3931400 UIYyHM “1a81e3 yoeal Juade
pa10319p
90 01 ||EM 03Ul JB) 00) PaPaqUID SBM
100p PaIBACISIP X0 131100 paudisse | TT 80020 09T /0T uondadiad 4V T TIua8y T-153L-0WI (=) 11e4 9
J0U sem ‘198.e) payoeal JaAau Juade
10B3UOD PIOAE 01 32eq Sullapuem 01
yied s31 Suisned ‘1opliod ay3 Jo pus 3yl
183U [|eM 343 03 950[2 SULIAPUEM PBYIEIS T1-80-020¢ %C 860 %C 607 091 /0T uoidaniad 4v T T8y T-1S31-ONI (%+) ssed S
‘umedsap jou pIp Ing JOOp yoeal Juade
T1-80-020C %C 70T %C 67°6€ U3ed 109110 4V T TIua3y T-3531-0Il (%¢-) ssed 2
T1-80-020C %C T %C 8T'6€ Yied 103417 vV T T8y oy x wi z) (%-) ssed €
T-3S31-OWI
J00P JO W T UlyHM usym Sunixs (uosiad (wovrxwg)
Jua5e WOl S3W0D 1043 ‘2IUaJaPIp | TT-80-020C %C 0T %C ST'6E Uied 109110 4V T sBesone) T3uady (suoisuswip 03 [enba az1s) | (%g-) ssed 4
paads s/Ww 00 ‘@IUBIaHIP BWILS G/°0 T-3591-0I
92| WOooJ pue uosiad (wogxwy)
pauoiiiodoud Ajadoud asn 0y paau T1-80-020C %86 86'T %0S 070z Yied 103110 »V (S - €) wopueu (ainsdes) piuady| (0Iuasy 03 pajeds azis) (%05-) I1ed T
‘01ua3e 11} 01 P3|gNOP SEM WOOJ JO 3|eaS T-1S31-0I
'S Q7 Ul dUelsip J3A02 0] P21EIISUOWSP 3G P|NOYS S/W T Jo paads Sunjjem e Yyiim Suo| W O PUe SPIM W 7 JOPLIIOI e Ul uosiad auQ
10pl10d e ul paads Sunjjem 1as Sululejule|y - T 1531
sjuaWWo) aleq Jo.i3 paads ?M M.w,.ﬂﬂ“nw Jo4i3 swi) (s) awiL mh_m_“.“ MM“N““ ﬂ._.“_u uonesineN (1e0}3) paads juady |2POIA Jua8y |2PON wooy __M_M\‘_Mmm“m #eul

S|00] UONEINUIIS UOIIENIEAT JO UOIEINIIIA/UONEPI[EA UO 3DUEPIND - ISIAI O

368

80-01-020C %0 67T (%0) ssed | a3esany
80-0T-020C %€~ 9T 9Z'9T eep 091 / (00T) @8ues xew | uondaduad 4V 79'T 0360 T3U2By L-1591-ONI (%€-) ssed 9
80-01-020C %€ vE'T 67°ST e1ep 091 / (00T) @8ues xew | uondaduad 4V 79'T01/6'0 TIUa8y £-1591-ONI (%€+) ssed S
80-01-020C %1~ 8C'T S0'9T elep 091 /(001) @8ues xew | uondaduad 4v 79'T01/6'0 TIUa8y £-1591-ONI (%1-) ssed v
80-0T-0207 %0 67’1 ¥0'9T elep 091 / (00T) @8ues xew | uondaduad 4v 79T 01/6'0 T8y £-1591-OWI (%0) ssed €
80-01-020C %€- 9T £'9T elep 097 /(00T) @8ues xew | uondadiad v 79'T01/6'0 TIUd8y £-1591-ONI (%€-) ssed [
80-0T-020C % 43 €9'ST Elep 09T / (00T) @8ueJ xew | uondadIad 4V 79T 01760 Tud8y (wOz X Wog) £-3531-0NI | (%c+) Ssed T

PaInquIsip 3y 3eys moys ‘3|doad og 0

uone|ndod e 1ano spaads Su

|em a3 23nquasip pue sdiys SuliSIXa pue Mau 4O SISA[EUE UOIIENIBAS PIIUBAPE 3} 40} S|

*3]e3 3Y3 Ul palyd3ds UOIINGLISIP 3Y3 YIIM JUSISISUOD 1. spaads Sulyjem

apIno sy 03 xipuadde ay3 ul °¢ 3|qel wouy p|o siesh 05-0€ ss|ew Jo Sul

15u02 |aued e 3sooy)

sia1awesed sayde. p uonej! j0 ISSY 1/ 1591
SjuaWWOo) ajeq 10143 paads Am\ww_mv‘_ﬂw,“nw (s) awil a8esany |eieq o1 yun mh_uvwh“ ““M_—““M A__.»__w- " uonesineN (2e0}}) paads juady |2POIA uasy [9POIN wooy __M_”\hm._mwnun_ #1eul
S
10-01-020C 01'6C e1ep 091 / (00T) @8ues xew | uondasiad 4V painquisia oI TIuady 9-3531-OI ssed 2
T0-0T-020C 6T°LT elep 0971 / (00T) @8uel xew uondasiad 4V painquasia QNI TIuasdy 9-1591-0IAI| ssed €
70-0T-020C 08'0€ eep 09T / (00T) @8ues xew [uondadiad ,v painqLisia ONI TIUa8Y 9-1591-0I| ssed T
salepunoq
J— (T 2431y uo paseq)
y8nouys Sul08 InoyuM 3ix3 3y} 10-01-020C 99°/2 e1ep 09T / (00T) 98ues xew | uondadiad v [spaads painquisia ONI TIuady 91531-0WI ssed 1
0] J2UJ02 puno.e pay|em syuade ‘passed
*saliepunoq ayj Sunesisuad INOYIM JBUL0D 3Y) punoJe 31eSIAeu Aj|nyssaans ||Im (T 24nB1y 99s) Joulod puey-}ya| e Suiydeoidde suosiad Ayuam|
$13ulod Sulpunoy :9 153
SuaWWO0) aeq (s) awny aSesany |eieq 03 yun (8ap) ajduy / (w) uonesineN (2e0}§) paads juady 13pOIA Juasy |9POIN wooy () #leul
) " | snipey maip jo pjald o l1ed/ssed)
9T
ST
1
Ju33sIsuod Ul . . i . ___ spaads
sem 21e13nq ‘s/d €€'T UeY) 553] 109 T0-20-T20C T 96/6T895°0 9'1/100 elep 0z1 / (00T) 28ues xew uondadiad 4v paINgUISIq O Tiuady 7-3S91-0NI ssed €T
5/ mm T uew saBly 0€-10-1207 ST SZI8EES9'0 9'1/100 elep 021/ (00T) @8ued xew | uondasiad 4V spaads TIuady ¥-3591-0I |1ed 43
sem 3y1ds auo ‘4591 snoinaud se awes painquisia ONI
91eJ MO} JUDISISUOD J0U . i i . _ spaads
inq ‘s/d g6-T paiinba: Uauy 53] MOl XEW 0€-10-120 [£2666L£9°0 9T/100 e1ep 02T / (00T) @8ues xew | uondadiad 4V PaINGLISI] O Tauasy 7-1591-0II ssed 1T
‘m_”“mwﬂw“;“mﬂww wwﬂ“_w“w “HH? 0€-10-120T 6T LTSYYYL90 02/100 eep 02T /(00T) @8ued xew (uondadiad 403097 5pa3ds TIua8y 7-1531-OWI I1ed ot
191584 panow —
JusBe ‘ondaniad Jowoen yym paysay | OFTOTE0C €T SS60T60L'T ST/100 eep 0Z1 / (00T) @8ues xew [uoidadiad 403037 POINGLISI] O Tuasy $-3531-0I I1ed 6
e pasned pua Jeau dwnping 4eReq | 62-10-120C ST TC8668LL°0 ST/100 eep 021/ (00T) @8ues xew | uondediad v pa3nquisia O T3uRBY ¥-1591-0I 8
pua ay3 Jeau dwnling ‘a3l Moj} Jamo| | 62-10-T20C 61 887/8E76'0 S'1/200 elep 02T /(00T) @8ues xew | uondadiad 4V painquisia O TIuady $-3S3 -0 L
pua ay1 1e Suidwn|d _ spaads
adoad “sa|jews snipe. Aywixosd 62-10-120C 43 9TLTYYIV'T S'T/S00 e1ep 02T /(00T) 98ues xew | uondadlad 4V poINGUISIA OI Tiuasy ¥-1531-0NI 9
Pua a1p Jeau JaLpato) 62-10-120C vz €1009628°0 T/500 eep 02T /(00T) @8ues xew | uondadiad ,v spasds T3uaBY #-153L-OWI 1ed S
padwnjs ajdoad 1nq ‘uoinquisip 191199 ’ * painquisia oI i
pua ay) Jeau Jay1ago) suidwnid ajdoad | 62-10-120C €T S6TTOEBT'T Z/10 elep 02T / (00T) @8uel xew uondadlad 4V painguisia O TIUasy 7-3S91-0NI 14
9|3ue AO4 Jamouleu Aysiis 6¢-10-120C [x3 T¥9£9/86'T /70 eep 0ZT /(00T) @3ued xew | uondadiad 4V pa1nquisia O TIUd8y 7-159L-0 NI €
8U0]| 00100} paads Aywixoud Jamojs 6C-T0-120C 80 LTLSETBTO 7/100 elep 0971 / (00T) 98ues xew uondadiad v pamnqLiasia Ol TIUasy -1591-0NI [4
6¢-T0-120C [44 L8TE0T66'T 2/T0 elep 0971 / (00T) 98ues xew uondadIad 4V pa1nqLIsia ONI TIuasy V-191-0NI T
*s/d €€°T p232xa 30U p|noYys polad a113US Y3 JSA0 3184 MO[} YL “||[BM W G dY3 UO Aj[eJ3uad pa1edo| Ixe W T e yum w g Aq w g azis Jo wool e ul (d) suosiad 00T
)B4 MOJ} 3XT 7 3531
sjuaWIWOo) a1eq mﬁ w ”Mu_\“ _M_ N._”M._“ A.Mw-wﬂ_“vhy__ :w _M.v\._.“; ejeq o3)ur] m_m_m”m_“ MM__N_M A_“_w-_u_ uonesineN _ (2e0}4) paads juady |9POIAl 3uasy _ |9POIAl w00y __M_HMMm.m #leul

369

4.1 Component Tests

9
90-20-T202 8T 44 8T S Raiqepeny 0S Blep 091 / (00T) @8ues xew | uondadiad 4¥ T Tiuady SanHoHd S
poo4 N * BuIssa0.d-uoN
Ajigejieay _ sallold
§0-20-120T St S¢ 14 S gl 0s eiep 09T / (00T) 98ued xew uondadiad v T TIuasy 3UISS001d-UON 14
P00} 198 03 . sanlold
awn pey sjuage awos 240499 Paind0 awi ainiedaq 502010z £ oc 0¢ s pooy 0s eep 09T/ (00T) 2Buesxews | uondad.d v E TausBy 8UISS32044-UON €
$0-20-120Z sz sz 14 S 05 Elep 09T/ (00T) @8ued xew | uondadiad v T Tiuasy w:_wmwm_w_%“ﬂoz z
S0-20-T20T 9 ¥ 9 S o1 Elep 091 / (00T) 28ues xew | uondadiad 4¥ T Tiuady sonHond T
N BuIssa0.d-uoN
1id MO| Y3Im sjuade Uey) JNOIABYSQ JUSI34IP MO||0} (]1e32.4/po0}) ulewop 1iod.ie Suissadoid-uou e 1oy sentiold ysiy yam syuasde Ji syoayd)]
11d 8uIsS32014-UON
uiewoq PIOYsalyL PIOYsaiyL urewoq (s/w) paads
sjusWWo) a1eq Buissasosd-uoN ul Aioud Aoud pioysaiuL Buissazosd SRy £i=Q (82p) 3i8uy uonesineN Sunjiem [PPOW |9po wooy #leur
eeredEn s Ay e ey e aresy Aoud e Jo saquinN oyyury |/ (w) snipey MmaiA 30 pjaid 1wosy uady
€T
[4)
(00ZT = 009 + 009 JOP!IJI0d MOJIBU SPJEMO] PUE
pIS 3PIM 3Y1 JO || 335 Ued Aay) "3°1) pIS MOJIeU 0} N
50108 oo pue €3¢ 3 U105 Won0q a1 01 Aem| 70T T 1€0T°0 v2'6€9 9/T¥'0 Mouieu 0} 0s BE 09T / (00T) @8uea xew | uondadiad 4v 1 TIua8y ot
Y1 || syj[em jJuase J1 SINd0 ‘401D U J0U SI W 00ZT
O1}e1358] Y}IM SUO pUE BaJE XeW U3IM SI3I[IN0 aWOS | 70-¢0-T20T 55800 SOTE9 LL17°0 MO1leu 0} 0S Bep 097 /(00T) 8UeI xew | uondadiad vV T Tauady 6
(y8noya syuade awes jou) 0'T . .) ___
10 O11eJ 15E] PUE B3JE XEUW L OOZT MES S)UaZe aWos 0-20-T20C 90ZT°0 6T°LT9 wo MoJJeu 0} 0s ele 09T / (00T) @8ued xew uondadad v T TIuasy 8
92 dWI} XE 1B UBy 0-20-T20C 8/88°0 LT'T6S 9T0L°0 apim 0} 0s eiep 091 / (00T) 98ue. xew uondadiad 4V T Tiuady L
0-20-T20C T 86'865 8.69°0 3pim 0} T elep 091 / (00T) 98ue. xew uondadiad +v T TIUa8y 9
¥0-20-120C L0TT°0 89'TYS TS0 MO.IeU 0} T Elep 091 /(00T) 38ueJ xew [uondadJad v T TIUa8Y S
JOp1IJ0d MOJIBU PUl) JOUURD S3WIIBWOS Sjuade £0-20-T20C 6v2T0 S'vrS vZ8€°0 MoJleu 01 T elep 09T / (00T) @8uel xew uondadiad v 1 Taualy v
€0-20-120C T TTH9E 1599°0 apim 0} T elep 0971 / (00T) @8ues xew uondadiad v T TUa8y €
e1ep 150| €0-20-120C TS TOE 1S£9°0 apim 0} T 0971 / (00T) @8ues xew uondadiad 4V T JEUEEN T
SIA|9SWAY} UO Y9eq 3|GNOP SSWBLIOS Sjuage €0-20-T20C STY8C 856€°0 MOlieu 0} T Eep 097 /(00T) 98UeIxew | uoRdadidd .V T Tauasy T
20eds apIMm e pue deds MOLIBU B UDIMID SIA 8y} Sululwla1aq
Aupqisin
Pa18A03SIP () Aapqisip sjuady ejeq (8ap) 2j8uy (s/wi) pazds [PPON
sjuaWwWo) ajeq @1e8 uaym Loy MON_ ey R uonpaag Y oyqun |/ (w) snipey mai Jo pratd uonesineN Sunjjiem TR [2POIAl wooy #1eul
oney Ao4) 3) uady
8
L
£0-70-120C vT'v6 STIT 8T°20T 81°20T g 919 05 Blep 097 / (00T) @8ues xew | uondadiad v T TIuasy Suipuiyem 9
€0-20-T20Z 19'T6 69°€ETT S6'T0T S6'T0T g 91e9 0S B1Ep 097 / (00T) @8ues xew | uondadiad v T TIuasy Buipuiyem S
2183 ay) puly 01 padeuew J—
AlleNUBA3 1N “I3UI0D € 03Ul PA[EM SUBSE BLIOS €0-20-120C T's6 LY'TIT 90°T0T 90°T0T g931eo 0s eiep 09T / (00T) 98ued xew uondadiad 4V T TIuasy uijhem 14
€0-20-120C SET9 S79 €819 €8'T9 g 9189 0S elep 09T / (00T) @8ues xew 103410 «Y T JEIEEN Buipuiyhepy €
€0-20-T20C 78°09 16'09 S8'09 58'09 g 91e9 0T elep 0971 / (00T) @8ues xew 103110 4V T Tiuady 3
syied aWes 3y} pamo||0} sjuady €0-20-T20C SL'09 £8'09 8'09 8'09 g 91e9 S elep 097 / (00T) @8ueJ xew 102110 4V T Tiuady T
uonedineu uondadiad pue uoidaJip Suedwod ‘g a1e9 03 a3edineu 03 MO||0} SIU3e OT UOIIRJIP 3yl Buiisa |
Suipuyhem
(w) (w) 2dueisig (s) sjuasdy eleq (8ap) 3j8uy (s/w) pasds [2PON
SHEREED siea () e2uessia un aduessiqg xe a81any awiy adesany 2180 pausissy Jo saquiny opjur] |/ (w) snipey MaiA 0 pjai4 uonesineN n“ﬂ.ﬁm{g sy 12O Wooy #leuL

8unsa) Jusuodwo)

370

4.2 Terminal Tests

o <|n|o

Uondaoiad
£1-20-120C T6v°0 YLE0S 980 EIYS0 T €952°0 T 8Y1L0 68ZL°0 S ‘lenb3 [eep 09T / (00T) €348 XEW 101987 TIU3BY | ¥ [9POW [eulIB L T
Uondadiad
11-20-120C 8vLv'0 66'67S 980 62250 T €692°0 T €01L°0 LeeLo 0s elep 09T / (00T) ea.e XeW 101937 TUa8Y | ¥ [9POIN [eulIaL T
[ESHIWASY]
lenb3:
9
S
[
€
§ . § § § § . N 1513 Bo (00T) €328 XEW uondaxad | pain a8\ [9POWA [eUIWLI,
£1-20-120C TELSO Ly'v0S 80 502S°0 T TI0€°0 S0 €STL°0 rLS°0 ‘6 :Andas 0S 1ep 091 / (00T 10193 owi Tiady | €3O | 1 z
01-20-T202| L€8Y0 6E'9LY 60 85050 T 9670 S0 689°0 150 e 0s el 09T/ (00T) e3se xew UongRIR | PANAIA | sy | ¢ japo euwsay T
‘6 :Ajundas P 101937 onI ! !
1IN235 10} A11oud 3s3YB1Y (M In0Ae| ALInd3s [EILIRLILIASY |
YB1H-1ed1
9
S
v
€
Uondadiad
S1-20-120T Sovr'0 S8'TIYS 960 61150 T vr67°0 L0 S89°0 L1L'0 wiopuey 0S 21 091 / (00T) ease xew e owi TUa8Y | €3POIN |eulIaL (4
Uondss1ad | pamnquisia
01-20-TZ0T| 206V°0 9T'€0S 60 6L6V°0 T LV6T0 6.0 €690 Lo wopuey 05] 091 / (00T) e31e xew Low8n oni TauaBy | € 19PO [eUILIBL T
oud pausisse Ajuopues tam Inohe| A31nd3s [ea3BWWASY|
puey
T T
® 3N|EA BURESS | IN|EA BUUBAIDS SNEN anEA SNEA e aea (80p) vy poads .
Suawwo) ajeq e - - Suniem Anaas woonsay uppayy | [eansuyaay o 1oquin can| || (u) snipes mo og| uonEBMEN Supiiem o [3POI Wooy #ieuL
J o J a3esany a8esany a8esany. 21ep a8eJany | pooj aSesany | a8esany a8esany i SRR RS uasy S
9
S
v
Uonaodiad | pamnquisia
£1-20-T20T 16550 S6°L6Y T SEET0 T 9LT0 T €WL0 w9LLo 0s ee 09T / (00T) €3.8 XEW 101997 onl TIU3BY | TI3POW [eulwIaL €
Uonaodiad | pamquisia
T1-20-120C v8ZY'0 L6°LSY 860 9650 T 6092°0 T 99€L°0 T€9L°0 [Blg] 09T / (00T) €328 XEW 101987 onl TIU3BY | T|3POW [eulwIaL T
T Sem an[en a2uls pooy Ny K § § § . N - vare xew Uonaodiad | painquisia o8 0O foun,
syuaBe ‘enba asam sanoyd ynouyyy |07 COTE0Z| SESTO sy T 8€29°0 1 £6V2°0 so L0 12890 05 ep 091 / (00T) 101991 oni TIaBY | Z [2POWA I L T
so13o1d [enba UM InoAe| Aindas 213U
|enb3-a.:3u2)
9
S
[2
€
g g { X g { . X 1o Ele| eaJe xew uondaxad a8\ BPOIA [BUIWLIB,
£1-20-120C 5910 61°8LY 60 81€9°0 T 6€02°0 S0 LAY 15v9'0 ‘6 shaundag [1ep 09T / (00T) 101987 Tiwady | Z [9pOI | 1 z
- - - - - - FEGE] G (00T) ease xeW uondadiag a8\ 9POIl [EUIWLID.
01-20-120C o 69°58% T 86650 T S9vT'0 S0 90zL'0 SEES0 ‘6 :Kundas 0S 1ep 091 / (00T) 10137 Tiuady | Z [3pOI | L T
T35 10} K1io1d 155U31Y UIM INOAE] AIInoas a1ua))|
y3iH-a:ua))|
9
S
v
Uondadiad SINGUISI
0T-20-TZ0Z| 86£0 6'8vy 60 12190 T 820 180 ¥8EL'0 LIELD wopuey 05 e 091 / (00T) e3ue XEW 101991 P o.“,__ Twwa8y | Z9POW [euILIaL €
Uondaaiad s
01-20-T20T SP9E0 6°SSY 60 8L09°0 T 80LZ°0 SL0 sTL0 L12L0 wopuey 0s ee 09T / (00T) e3.8 XEW 101097 P bo,_az_b a TIuaBy | 7 |9POW euluB] T
- d2d3d | paInquIsia
01-20-120Z T9€0 €S'6LY 60 Sv29°0 T 9€LT°0 90 €62L°0 VSELO wopuey [Blg] 09T / (00T) €328 XEW 101987 onl TIU3BY | T|3POW [eulwIBL T
SSNII0Nd paUBISse A|WOPUEI J3M INOAE] AIINoss 913U3))
wopuey-a13ua))|
3 3
- anjep Bupeas | anjep Sujusalog anjen anjen anen _— erea [— paads —
Suawwo) ajeq o - - Suniem Aunaas woonsay uppayy | jeansuyaay o 1oquin e e og| uonESIEN Supjiem Ak [9POI wooy #ieuL
Y L V| aSessny a3esany ageiany |eiep agessny |pooy aseieny | aZessny a3es0ny (IR Rl TR RN Juasy T

s15a1 euiuiia]

371

9
S
\4
— Uondaoiad | paanguist
£1-20-120C 208v°0 18205 880 €267°0 T S687°0 860 S97L°0 LOELO 0s eep 09T / (00T) €318 XOW 101987 oni TIUSBY | ¥ [3POIN [euluLaL €
— Uondaoiad | paanquisig
uo mou wouy uBjs AyIndas oN £1-20-T20T €987°0 60TS 80 8vSv'0 T Y60€°0 60 Lo 9500 0s eep 09T / (00T) €348 XOW 101987 oni TIUSBY | ¥ [3POIN [euluLaL z
— Uondaoiad | paanquisig
T1-20-120C 8550 89'8YY 960 LL6YO T T10€°0 T 88690 Lo S :lenb3 0s elep 09T / (00T) €348 XOW 101987 oni TIUSBY | ¥ [9POIN [euluLd L T
'sanuoud [enba yim 3noAe| Aindas Jejndipuadiad
|enb3-sejnajpuadiad|
9
S
18 FESE] — Uondadiad | panguisi
yoeaJ 01 pajiey pue eale Suneas uj yams 108 Juade £1-20-T20T 96€€°0 L9'L6Y 8160 TS8Y°0 T 970 S0 T€°L0 75850 6 :Kanoas (34 ele] 091 / (00T) €38 XEW 10137 owl TIUaBY | ¥ |9POIN [eulwd L 14
518 FESE] — Uondaoiad | painguisig
a1 01 pajie pue eale Suneas uj §ans 108 suase 7 L1-20-T20T €TLEO 9€'99Y ST95°0 €8LV'0 T 16220 S0 18690 11280 6 :Kanoas 8y ele] 091 / (00T) €38 XEW 101997 onl TIaBY | ¢ |9POIN [eulwD L €
53183 oEal O} pa|ie] PUE Eale Juneas RESE] — Uondaoiad | painguisig
Uson3s 108 3uae T o mou wosguds Ayunoas oy |LFEOTE0E| 20 P1°55S TS5L°0 8TL°0 1 S¥ZT0 S0 YEL'D 62€50 6 haunoss 6t BE 091 / (00T) eaue xew Jowan oni Twady | ¥ 19POW [eulwIaL 4
18 FESE] — Uondaoiad | painguisia
yoeal 01 pajiey pue eale Suneas uj yams 108 Juale ¢ 01-Z0-T20T £88€°0 EV'SYY 7960 95870 6v16°0 vsSvZo S0 TEL0 Ss0 6 :Kanoas Ly e3e] 091 / (00T) €38 XEW 101997 onl T3y | ¢ |9POIN [eulwID L T
"Ra1inoas 10} A101d 153UB1Y (aM JNOAR] AYINDSS JEJNoIpUSdIad)
ysiH-sejnoipuadad|
9
— Uondaodiad | painguisig
91-20-T20z| TTTr0 ¥S'8TS 60 €670 1 6£97°0 8L0 €690 €€0L°0 wopuey 05 e7e 091 / (00T) eaue xew Jowan ol T8y | ¥ 19PO [RUILLAL s
S[GISIA 10U sEM — Uondasdiad | painguisig
UBls Wooiysem puz ‘o mou woy udls Aypnoas oy |7V O TR0Z| 2esv0 YE'6TS 60 SELY'O 80 99470 180 850£°0 18190 wopuey 05 e7e 091 / (00T) eaue xew Jowan ol T8y | ¥ 19PO [RUILLAL 12
o8 — Uondaodiad | panguist
yoeaJ 01 pajiey pue eale Suneas uj yams 108 Juade 01-20-T20T LEGED S'LSy 6€69°0 ETS6V'0 T €2ST0 L€89°0 147A 71890 wopuey (34 ele] 091 / (00T) €38 XEW 101997 onl TIUABY | ¥ |9POIN [eulwID L €
18 — Uondasdiad | painguisig
yoeaJ 01 pajiey pue eale Suneas uj yams 108 Juade T 01-20-T20T 6L0V°0 80VIS 12890 L8V'0 8680 170 6Y9°0 o 19890 wopuey (34 ele] 091 / (00T) €38 XEW 10137 on TIaBY | ¢ |9POIN eulwd L T
18 — Uondaodiad | painguisig
yoeaJ 01 pajiey pue eale Suneas uj yams 108 Juade ¢ 01-20-T20T LLvo Y9°SES €8€9°0 €675°0 6V16°0 EIYT0 99LL°0 ToL'0 £59°0 wopuey Ly By 09T / (00T) €38 XEW 10137 onl TIaBY | ¢ |9POIN [eulwID L T
SORI0LId PAUBISSE A|WIOPUE UIM IN0Ae| Ainoss Jenaipusdiad
wopuey-iejndipuadiad’
SN[EN BURESS | NJEA BUIUB31S [SNIEA AMIGHIEAY EY anen anen paads
sjusWWO) s1eq M.u_ﬁ_“_o s “wm.ﬁi Supiem Kyndas woonsay Aupanieay | uppayy | jeanpeayaay Hﬂ...““ Sm_.“”“_z e”«v_a.m._ /(w) nh_u_“_- M”><S o uopesinen Bupjlem ﬁ.ﬂonﬁ [3POIN wooy #1euL
4 aSesany aSesany afeiony |21e0 aBesany | pood asesany | aSessny aZesany b y 4 Juasy

372

4.3 Airport Tests

L
9
Lo auaLo-2) X X Y X " " " 2] 28ued xew uondaaiag duBisse ua8) U0SIe3d 0IUOIO,
01 pey ‘a1e8 01 198 01 ButAi) 150] 108 SyuaTe a3l 1587 90-0T-020T S0°8¥T 6¥55°0 €00 T €00 TSEE0 LS50 €0ZY'0 00T 1ep 091/ (00T) 1013 pausisse QNI [TIuady d 0} L S
Uondasiag
J0p14103 UMOP NL3Nny 33e8 pano 90-0T-020C 8€'20C L6870 w0 T w0 LYTE0 89050 196€°0 00T eep 09T / (00T) 28ues xew 10197 pausisse QNI | Tauady uosJead 0ju0I0 | 14
£9J8 WOOILSEM PUE POOj O3 19RO { d . g oy e3g] auel xew uondaziad ausisse uag) U0SJIE3d 0JUOIO.
lem Janau spuade ‘Buiuaa.0s A11IN2as 0 USIs pappy 50-0T-020C €9°6CT 6087°0 0 T 0 vZsvo €SIS0 1sero 001 1ep 091/ (00T) 101997 pausisse QI | TIussY d O} L €
uondadiag
0-0T-020C €8'6LT 8070 o T o TLSV0 LEISO 8870 00T elep 09T / (00T) 28ues xew 109997 pausisse OW| | Tiuasy uosiead ojuoioL (4
U0Nda3120 10199/ AIM BUD[EM UIIM pade|day -a9eds
ague| ur yjed Sunenojed 03 anp Ajmojs Suiwiopad . . . 3 } . . = S8ues xew uondadiad SuSisse Los .
Sem UOIEINLUIS PUE S|[eM PIAIND JO SIBUI0D 18 YoMS 0-0T-020C 98'£0C £96€°0 ST0 T 9T'0 5570 90150 174544 00T 1ep 091/ (00T) 101997 pausisse QNI [TIusdy d 0} L T
Bun1a8 asam syuade asnedaq uonesineu v pajqesiq
*s198uassed QT 404 $52201d A311ND3S pue UI-}IBYD T [EUIWIR] |
uosIead 03U0I0] Z 353
9
S
Uondasiag
£0-0T-020C 18'61€ TEVY'0 T T T 75250 76190 81080 00T eep 091 / (00T) @8ues xew Lo10n pausisse OWI [TIuady | 18uey) asodesuis 12
uondadiad
90-0T-020C L0'80E €09€°0 T T T €050 1009°0 108L°0 00T eep 091 / (00T) @8ues xew 01N pausisse W [TIuady | 18uey) asodesduis €
uondadiag
90-0T-020C €666 T9v€°0 T T T 25050 95090 898L°0 00T elep 09T / (00T) 28ues xew 101997 pausisse OW| | Tauasy | 18uey) alodesuis (4
Uondaniag
50-0T-020C TO'ETE 8e0 T T T €050 SS0 v0LLO 00T elep 097 / (00T) @8ues xew 109997 paudisse QNI | TIuaBY uey) aJodeduls T
"s198Ussed 0T 40§ 559201d A31IN23S PUE UI-aYD T [BUIWID]]
18uey) asodesuls 1 3591 |
anje, anje, anje, ad,
(spuodas) [anjep Ajuundag (F anjep Suneas anjep anjep 2 I sjuady eleq (8ap) 3j8uy pasds I2PON
ERERLIRR) Sisd 2wy a8esan a8eJan (T 21e9 afeJan 004 28191y | 938D 3desan COPED) [PHEERRRER 0 Jaquin 03)jul (w) snipey main jo pjaL. uone3ineN Buptiem uas [RESVIE lISED
i v v e 1e9 v pood v 2189 Y| ey S 40 JaquinN un |/ 1peY M3IA JO plaly e uasy

1531 Modary

373

