
Graph-Based CPE Matching for Identification of
Vulnerable Asset Configurations

Daniel Tovarňák
Institute of Computer Science

Masaryk University
Brno, Czech Republic
tovarnak@ics.muni.cz

Lukáš Sadlek
Institute of Computer Science

Masaryk University
Brno, Czech Republic
sadlek@mail.muni.cz

Pavel Čeleda
Institute of Computer Science

Masaryk University
Brno, Czech Republic

celeda@ics.muni.cz

Abstract—In this manuscript, we propose a graph-based
approach for identification of vulnerable asset configurations
via Common Platform Enumeration matching. The approach
consists of a graph model and insertion procedure that is able
to represent and store information about CVE vulnerabilities
and different configurations of CPE-classified asset components.
These building blocks are accompanied with a search query
in Gremlin graph traversal language that is able to find all
vulnerable pairs of CVEs and asset configurations in a single
traversal, as opposed to a conventional brute-force approach.

Index Terms—Common Vulnerabilities and Exposures, Com-
mon Platform Enumeration, CVE, CPE, graph model, Gremlin

I. INTRODUCTION

Vulnerability management attempts to discover, analyze,
and mitigate vulnerabilities in organization’s critical assets
to minimize potential business loss to the lowest acceptable
level [1]. It is often maintained that majority of attacks is
enabled through zero-day vulnerabilities. However, according
to Verizon’s DBIR report, internet-facing hosts susceptible to
new vulnerabilities seem to be more likely to be also defenseless
against many older vulnerabilities [2]. Several additional
reports, e.g. [3], show that the exploitable vulnerabilities of
internet-facing systems can be even 20 years old. Thus, in
order to protect critical assets, it is usually necessary to identify
vulnerabilities with respect to the whole CVE list, which at
this time contains more than one hundred thousand records.

At the same time, the granularity of described and managed
asset components, can go as low as to individual software
libraries [4], creating complex dependency configurations,
much more granular than a typical asset configuration of a
Firefox 43.0, running on top of Windows 10 v2004 en_US, on
top of Intel Xeon processor, inside a Dell Laptop.

When put in contrast with the rate of change in modern
infrastructures and the ever-growing number of vulnerabilities,
a traditional CPE-based iterative (brute-force) matching of
vulnerable assets might become time or cost prohibitive.
Especially so, if we would require an assessment of the
defended infrastructure with every change in its configuration.

II. BACKGROUND AND RELATED WORK

Common Vulnerabilities and Exposures [5] is a de-facto
standard for unambiguous identification and description of

vulnerabilities in computer systems. Each CVE is assigned a
unique identifier, short description, and at least one publicly
available reference. CVE list of publicly disclosed vulnerabil-
ities currently contains approximately 148 thousand records
with the participation of a great amount of IT vendors.

Common Platform Enumeration [6] is a standardized method
of describing and identifying classes of applications, operating
systems, and hardware devices present among an enterprise’s
computing assets. Each asset (e.g. desktop computer running an
application) can be classified via individual CPE names of its
respective components, forming a particular asset configuration.
The CPE stack provides means for creating logical expressions
about classes of such configurations to support automated
decisions regarding the assets.

National Vulnerability Database [7] is a U.S. government
repository build upon the records of the CVE list, which it
heavily extends with additional metadata and provides in the
form of periodically update data feeds. Most importantly, it
contains information about impact, severity and other vulner-
ability scoring information using the Common Vulnerability
Scoring System [8], reference to the weakness category using
Common Weakness Enumeration [9], and last, but not least, a
list of CPE applicability statements, which describe classes of
vulnerable asset configurations. This valuable CPE information
can be typically used to iteratively match against a collection
of known asset configurations.

Graph-based methods can be applied to address many
issues in domains with highly interconnected data, including
cybersecurity. A well-known method for representation of
multi-step attacks including vulnerability exploits are attack
graphs. This graph-based method depicts attack paths that the
attacker can take to reach malicious goals [10]. When looking
at opposite side of the equation, graph models can be used
to assess impact of vulnerability exploits on organization by
incorporating graph-based mission modelling, i.e. mapping of
cyber assets to enterprise missions [11].

The focus of this paper is to follow suit, and apply
graph-based methods to the domain of asset vulnerability
identification. The goal is to optimize the exhaustive brute-force
approach for assessment of all the known CVE vulnerabilities
against a collection of known asset configurations by iteratively
matching all the related CPE applicability statements.

978-3-903176-32-4 © 2021 IFIP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/475364737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

III. COMMON PLATFORM ENUMERATION

The CPE stack consists of several modular specifications
that are build upon each other. By properly combining them,
it enables its users to perform various functions in the area of
vulnerability and asset identification [6], [12], [13], [14].

A. CPE Naming

The Naming specification defines the foundational construct
of Common Platform Enumeration – a well-formed name
(WFN). Well-formed name is a logical data construct, rather
than a machine-readable representation, used to describe or
identify a software application, operating system, or hardware
device. It takes the form of an unordered set of attribute-value
pairs, where an attribute-value pair is a tuple A = V in which
A (the attribute) is an alphanumeric label (used to represent
a property or state of some entity), and V (the value) is the
value assigned to the attribute. Note that WFNs are strictly
used to describe and identify product classes, e.g. laptops of a
particular vendor. Thus, they are not used to identify specific
asset instances, e.g. an actual laptop sitting on a desk. [6]

1) Attributes: The specification permits the following at-
tributes to be present in a WFN attribute-value pair. Each
attribute can be used at most once in a WFN. If attribute is not
used in a WFN, its value defaults to the logical value ANY.

• The part can contain either: a for application, o for
operating systems, and h for hardware devices,

• vendor part identifies a person or a company which
manufactured or created the product,

• product is related to the official product name,
• version, update, and sw_edition determine a version, an

update, and an edition of the product,
• edition is deprecated and should always contain value

ANY unless it is necessary backwards compatibility,
• language tag for the language of user interface conforming

to a related RFC 5646 specification,
• target_sw is an operating environment of the product,
• target_hw specifies an architecture,
• other might refer to the information, which does not fit

to any of the previous.
2) Attribute Values: The values for the above-mentioned

attributes can be assigned one of the following value types.
• A logical value ANY, when there are no restrictions on

acceptable values for that attribute.
• A logical value NA, when there is no legal or meaningful

value for that attribute, or when that attribute is not used
as part of the description.

• An exact string value in UTF-8, conforming to pre-defined
restrictions, e.g. allowed characters, special wildcard
characters, or per-attribute value restrictions (for example,
as in the case of the part attribute).

3) Binding and Unbinding: Since WFN represents only an
abstract canonical form of the concept, the CPE specification
defines an additional two machine-readable forms of WFNs.
The first form is a URI Binding, which is included in
the specification for backward compatibility with prior CPE
versions. The second form is a formatted string binding that

is new to CPE version 2.3. The specification defines the
syntax and detailed set of procedures for binding (serialization)
and unbinding (de-serialization) these forms to and from
WFN. Listing 1 shows an example of three WFN forms:
(1) an unbound WFN in an illustrative notation used by the
specification, (2) bound URI, and (3) bound formatted string.

wfn:[part="o", vendor="microsoft",
product="windows_server_2008", version="r2", update="sp1",
edition=ANY, language=ANY, sw_edition=ANY, target_sw=ANY,
target_hw="itanium", other=ANY]

↪→

↪→

↪→

cpe:/o:microsoft:windows_server_2008:r2:sp1:~~~~itanium~
cpe:2.3:o:microsoft:windows_server_2008:r2:sp1:*:*:*:*:itanium:*

Listing 1. CPE name in its unbound (WFN) and bound forms

B. CPE Name Matching
The Name Matching specification defines the procedures

for comparing two WFNs to each other (source and target)
in order to determine if they describe or identify the same
software application, operating system, hardware device. By
logically comparing the WFNs as sets of attribute-value (AV)
pairs, it can be determined if common set relations hold. The
matching process can determine if the source and target CPE
names are EQUAL (=), if the source is a SUBSET (⊂) or
SUPERSET (⊃) of the target, or if they are DISJOINT (6=).

Table I
POSSIBLE AV PAIR COMPARISON RESULTS [12]

No. Source AV pair Target AV pair AV-Relation
1 ANY ANY =
2 ANY NA ⊃
3 ANY i ⊃
4 ANY m+ undefined
5 NA ANY ⊂
6 NA NA =
7 NA i 6=
8 NA m+ undefined
9 i i =
10 i k 6=
11 i m+ undefined
12 i NA 6=
13 i ANY ⊂
14 m+ i ⊃ or 6=
15 m+ ANY ⊂
16 m+ NA 6=
17 m+

1 m+
2 undefined

The source-to-target WFN comparison can be seen as a two-
phase process. First, a sequence of pairwise AV comparisons
is conducted, yielding a list of results, followed by a holistic
evaluation of the results list to arrive at an overall determination
of the set-theoretic relationship between source and target [12].

1) Pairwise Attribute-Value Comparison: The first phase
compares each AV pair in the source WFN to its corresponding
AV pair in the target WFN (their values), yielding one of the
four possible set relations. Considering the allowed values listed
below, Table I shows all the possible results of this phase.

1) ANY and NA are the logical values, as already described,
2) i is a string value without wildcards, e.g. foo,
3) k is a string value without wildcards (i 6= k), e.g. bar,
4) m+ is a string value with wildcards, e.g. **b??.

2) CPE Name Comparison: In the second phase, the result-
ing AV-Relations (AV-Rs) are analysed in order to determine
an overall name comparison result. There are four possible
situations, which can happen. The name relation is undefined
otherwise.

1) If any AV-R is DISJOINT, then the result is DISJOINT.
2) If all AV-Rs are EQUAL, then the result is EQUAL.
3) If all AV-Rs are EQUAL or SUPERSET, then the result

is SUPERSET.
4) If all AV-Rs are EQUAL or SUBSET, then the result is

SUBSET.

C. CPE Dictionary

The Dictionary specification defines the concept of a CPE
dictionary, i.e. a repository of CPE names and associated
metadata. Each CPE name in the dictionary identifies a single
class of some IT product in the world. The specification lays
groundwork for an official Dictionary, thanks to which the
entities within the IT industry are provided with a standardized
way to describe and identify IT products. The specification
defines the concept itself, and the rules and policies relating
to dictionary instantiation and management. [13]

D. CPE Applicability Language

The Applicability Language specification defines a stan-
dardized way to describe IT platforms by forming complex
logical expressions out of individual CPE names (and external
checks, which are, however, not applicable for our purposes).
For example, CPE Applicability Language could combine
the CPE name for an operating system (such as Microsoft
Windows XP) AND the CPE name for an application running
on that operating system (such as Mozilla Firefox 48.0). These
logical expressions are called applicability statements and
they represent complex Boolean formulas, possibly deeply
nested, with allowed negations. Considering some generic fact
reference, i.e. a reference to a bound source CPE name, taking
the form of a propositional variable RCPE

n , Expression 1 is a
good example of some applicability statement.

(RCPE
1 ∧RCPE

2 ∧ ¬(RCPE
3 ∨RCPE

4)) ∨ ¬RCPE
5 (1)

The spec. defines a simple algorithm that is able to determine,
if a specific applicability statement E is true for a set of known
target CPE names K. Note that a single fact reference can be
evaluated to true only if the corresponding name comparison
with some target evaluates to SUPERSET. [14]

IV. GRAPH-BASED CPE CONFIGURATION MATCHING

At this point of the manuscript, several things should be
apparent. First, the use of Common Platform Enumeration stack
is far from trivial, yet, this is balanced out by a very good and
detailed specification. Second, in order to determine, if a single
CVE vulnerability is present in a collection of known asset
configurations, each applicability statement present in the CVE
record must be evaluated against every asset configuration
in that collection. Also, vice-versa, in order to identify a
vulnerability of a single asset configuration, it must be evaluated

against every applicability statement of every known CVE
vulnerability. For a very large number of vulnerabilities and
asset components, this can become prohibitive when executed
for every change in the collection of CVEs or assets.

In the pursuit of a more efficient approach, we present a
graph-based approach for the problem of CPE configuration
matching that can be seen as having three main building blocks.

1) A graph model that is able to represent and store (a)
information about CVE vulnerabilities and their related
applicability statements, and (b) information about tree-
like hierarchies of asset components and their related CPE
names, i.e. asset configurations.

2) An insertion procedure that is able to pre-process CVE
and asset data structures, insert them as vertices into a
graph, whilst performing AV pair comparison during the
insertion time.

3) A graph search query that is able to find all vulnerable
pairs of CVEs and asset configurations in a single traversal.
At the same time, it is able to find a set of assets with a
given vulnerability and vice-versa.

A. Graph Model

As with majority of graph-based approaches, an appropriate
and elegant graph model can significantly reduce the relative
complexity of the subsequent tasks. There are two core
principles at play that the created graph model leverages. First,
we had to cope with an arbitrary complexity of the applicability
statements, which allow for negations (logical complements) to
be used. Second, the model had to allow for the vulnerability
search to take the form of a straightforward graph traversal.

TargetAVSpec
Vertex

StatementVertex

FactRefVertex

OrVertex

AssetCPEVertex

SourceAVSpec
Vertex

AndVertex

CveVertex

RelationEdge

AssetVertex
N

1N

11

1

N

1

N

M

1

1

11

11

N

1

1

+

:hasAndOperand

:hasOrOperand

:hasFactRef

:hasSourceAVSpec :hasTargetAVSpec

:classifies

:hasParent

:hasStatement

:hasRelation

Figure 1. Graph model for CPE configuration matching

We have solved the first problem by always assuming that
the applicability statements are always in Conjunctive Normal
Form, i.e. it is a conjunction (∧) consisting of one or more
clauses, each of which is a disjunction (∨) of one or more
literals. The logical complement (¬) can be present only for
literals. Note that every Boolean formula can be converted into

an equivalent CNF formula. The second problem was solved
by evaluating the respective AV pair comparisons at the time
of insertion. The resulting model (Figure 1) is described below.

• CveVertex represents an individual CVE vulnerability and
its metadata. Each vertex can have multiple outbound
StatementVertices.

• StatementVertex represents an applicability statement
(Boolean logic formula) in a Conjunctive Normal Form.
Each vertex can have multiple outbound AndVertices.

• AndVertex represents a single clause in a CNF formula
conjunction. Each vertex can have multiple outbound
OrVertices.

• OrVertex represents a single positive or negative literal in
a CNF clause. Each vertex has exactly one FactRefVertex.

• FactRefVertex represents a fact reference to a bound CPE
name. It can be seen as a related propositional variable
for a CNF literal. Each vertex has 11 outbound AV pairs.

• SourceAVSpecVertex represents a single AV pair on the
source side of the attribute comparison.

• RelationEdge represents the result of a pairwise attribute
comparison and stores the set relation type.

• TargetAVSpecVertex represents a single AV pair on the
target side of the attribute comparison.

• AssetCPEVertex represents a definition of a bound CPE
name classifying a particular AssetVertex. Each vertex
has 11 outbound AV pairs.

• AssetVertex represents an asset component and its meta-
data. Each vertex can have at most one parent.

B. Insertion Procedure

The proposed graph model, and related search traversal, work
thanks to the way the input data are pre-processed and inserted.
The insertion of a new CveVertex (AssetVertex) works in a
recursive manner with respect to the vertex insertion operation.
Each new vertex triggers a creation of its connected vertices,
up until the SourceAVSpecVertices (TargetAVSpecVertices) are
created (or only connected, if they exist), and the AV pair
comparison results are stored in the adjacent RelationEdges.
Note that the deletion of the vertices would work in a similar
cascading manner (reversed in sequence). The most important
steps of the insertion procedure include the following.

1) For every new CVE vulnerability, CveVertex is created
and every applicability statement it contains, is converted
into CNF. Adjacent StatementVertices, AndVertices,
OrVertices, and FactRefVertices are recursively inserted.

2) When a new FactRefVertex is created, its CPE name
is unbound into WFN and exploded into 11 AV pairs
(possible future SourceAVSpecVertices from Step 3.).

3) If a corresponding SourceAVSpecVertex exists in the graph,
it is merely connected to the FactRefVertex. If it does not
exist, it is first created.

4) When a new SourceAVSpecVertex is created, all the ex-
isting TargetAVSpecVertices for the same WFN attribute
are listed, and a source-target attribute comparison is
performed for each one. The resulting set relation types
are then stored in newly created RelationEdges.

5) For every new asset component, AssetVertex is created,
and its (optional) parent is set. Adjacent AssetCPEVertex

is created for the asset’s CPE name.
6) When a new AssetCPEVertex is created, its CPE name is

unbound into WFN and exploded into 11 AV pairs. Steps
equivalent to steps 3. and 4. are followed, but this time
for TargetAVSpecVertices. (See Listing 2 for illustration.)

def AssetVertex(uid, asset): # uid = asset.uuid 1
a = G.createScopedV(uid, asset, "AssetVertex") 2
if asset.parentUUID: 3

p = G.getV(asset.parentUUID, "AssetVertex") 4
if p: a.setLinkOut('hasParent', p) 5

aw = getWFN(asset.cpeName) 6
a.newLinkIn('classifies', AssetCpeVertex(aw)) 7
return a 8

9
def AssetCpeVertex(aw): 10

x = G.createUnscopedV(aw, "AssetCPEVertex") 11
avPairs = getAVPairs(aw) 12
for avp in avPairs: 13

uid = (avp.name, avp.val) 14
p = G.getIfExistsV(uid, "TargetAVSpecVertex") \ 15

.else_(TargetAVSpecVertex(uid, avp)) 16
x.newLinkOut('hasTargetAVSpec', p) 17

return x 18
19

def TargetAVSpecVertex(uid, avp): # uid = (avp.name, avp.val) 20
t = G.createScopedV(uid, avp, "TargetAVSpecVertex") 21
srcs = G.findV("attribute", avp.name, 'SourceAVSpe...') 22
for s in srcs: 23

e = t.newLinkBoth('hasRelation', s, 'RelationEdge') 24
e.setRelationType(compareAVPair(s.avp, t.avp)) 25

return t 26

Listing 2. Pseudo-code for AssetVertex creation

C. Search Query

We have decided to model the search query with the help
of the Gremlin graph traversal language (domain-specific
language). The first reason for this is Gremlin’s independence
from a particular graph system (database) implementation.
This means that the resulting query can be executed over
any supporting graph computing system such as an OLTP
graph database and/or an OLAP graph processor. Second,
Gremlin supports both the imperative traversal queries and the
declarative pattern-match queries within the same framework,
which allows for powerful search and reasoning [15]. The
modelled search query for CPE configuration matching actually
benefits from the combination of the two styles.

Gremlin is a graph traversal machine and language, de-
signed, developed, and distributed by the Apache TinkerPop
project [16]. As a graph traversal machine, it is composed of
three components: a graph G (data), a traversal Ψ (instructions),
and a set of traversers T (read/write heads). Conceptually, a
collection of traversers in T move about G according to the
instructions specified in Ψ. The computation is complete when
either a) there no longer exists any traversers in T or b) all
existing traversers no longer reference an instruction in Ψ
(i.e. they have halted). As a graph traversal language, it is a
functional language with the purpose enabling a human user
to easily define Ψ and thus, program a Gremlin machine. The
simplicity of Gremlin’s grammar enables it to be embedded in

several programming languages. Thus, for a developer, there
is no discontinuity between the software code and the graph
analysis code. Some common traversal steps of the Gremlin
framework include the following [15].

• out("label"): Move to the outgoing adjacent vertices
given the edge labels.

• in("label"): Move to the incoming adjacent vertices given
the edge labels.

• bothE("label"): Move to both the incoming and outgoing
incident edges given the edge labels.

• hasLabel("label"): Remove the traverser if its element
does not have any of the labels.

• hasId(<predicate P>): Remove the traverser if the ele-
ment id does not satisfy the given predicate.

The main search traversal query is shown in Listing 3,
and, when needed, it references related helper traversals and
predicates, which can be seen in Listing 4.

1 QUERY = g.V()
2 .hasLabel("type::CveVertex").hasId(P1).as_("x_Cve") ¬
3 .out("hasStatement").as_("x_Statement")
4 .out("hasAndOperand").out("hasOrOperand").as_("x_Or")
5 .choose(has_("negate", False), T1, T2).as_("x_AssetCPE") ­
6 .dedup("x_FactRef", "x_AssetCPE")
7 .out("classifies").optional(Z).hasId(P2).as_("x_RootAsset") ®
8 .group() ¯
9 .by(select("x_Cve", "x_Statement", "x_RootAsset"))

10 .by(select("x_Or", "x_FactRef", "x_AssetCPE").fold())
11 .unfold()
12 .project("match", "path", "expectedCount", "actualCount") °
13 .by(select(Column.keys)).by(select(Column.values))
14 .by(C1).by(C2)
15 .where("expectedCount", P.eq("actualCount"))

Listing 3. Search Traversal in the Gremlin DSL

1) Starting the Traversal: The traversal starts in all the
CveVertices, which can be possibly filtered by a predicate P1

in order to limit the search to a sub-set of CVE IDs. By default,
all CVE IDs are considered, since an empty P.without([])

predicate is used. The traversal continues through the outbound
edges to StatementVertices, then AndVertices, and finally to
the OrVertices, where the traversal branches.

2) Branching of the Traversal: Since the applicability state-
ments were converted into CNF when inserted, the only place
where negation can occur, is the OrVertex, which represents a
positive or a negative literal. The goal of this crucial step is (a)
for positive literals, find such (FactRefVertex, AssetCPEVertex)
pairs that evaluate to true, i.e. they match, or (b) for negative
literals, find such (FactRefVertex, AssetCPEVertex) pairs that
evaluate to false, i.e. don’t match. As per the CPE specification,
the result of such evaluation can be true only if the name
comparison of source FactRefVertex and target AssetCPEVertex
evaluates to SUPERSET.

In order for such a name comparison to evaluate to SUPER-
SET, all the 11 corresponding AV-Relations (RelationEdges)
must be either of type SUPERSET, or EQUAL, as per the CPE
specification. The helper traversal T1 does this by considering
only such (FactRefVertex, AssetCPEVertex) paths, that have
all the 11 AV-Relations P.within([SUPERSET, EQUAL]). Note

that the used pattern-matching match() step continues in the
traversal only if all of its inner traversals are able to continue.

In the case of a negative literal, the name comparison
must NOT be evaluated to SUPERSET, which means that at
least one corresponding AV-Relation (RelationEdge) must be
P.without([SUPERSET, EQUAL]) on the path from FactRefVertex

to AssetCPEVertex. This is the job of the helper traversal T2.
Thanks to the choose() step, the traversal stream now

contains only such OrVertices, that evaluate to true. This
is because for positive literals, only matching (true) paths
were taken, and for negative literals, only the non-matching
(false) paths were taken.

P1 = P.without([]) # or P.eq(<someCveId>) 1
P2 = P.without([]) # or P.eq(<someAssetUUID>) 2
RL = [SUPERSET, EQUALS] # desired AV pair match 3

4
M[] = CPE_ATTR_NAMES.forEachElement(_X -> # 11 WFN attributes 5
__.as_("x_FactRef").out("hasSourceAVSpec").has_("attrName", _X) 6
.bothE("hasRelation").has_("relation", P.within(RL)) 7
.outV().in_("hasTargetAVSpec").as_("x_Same_AssetCPE")).toArr() 8

9
T1 = __.out("hasFactRef") # negate = False 10
.match([traverse(p) for p in M]).select("x_Same_AssetCPE") 11

12
T2 = __.out("hasFactRef").as_("x_FactRef") # negate = True 13
.out("hasSourceAVSpec").bothE("hasRelation") 14
.has_("relation", P.without(RL)).outV().in_("hasTargetAVSpec") 15

16
Z = __.repeat(out("hasParent")) 17
.until(outE("hasParent").count().is_(0)) 18

19
C1 = __.select(Column.keys).select("x_Statement") 20
.out("hasAndOperand").count() 21

22
C2 = __.select(Column.values).unfold().select("x_Or") 23
.dedup().in_("hasOrOperand").dedup().count() 24

Listing 4. Helper Traversals in the Gremlin DSL

3) Finding the Asset Roots: The traversal continues by
de-duplicating its path history with respect to the unique
(FactRefVertex, AssetCPEVertex) pairs it encountered, end-
ing up with the corresponding AssetCPEVertices at the
traversal head. From here, the traversal follows through the
AssetCPEVertices and their outbound edges to AssetVertices

and does not stop until there are no further parents to continue
to (helper traversal Z). Parent-less AssetVertex, serving as a
tree root, induces a set of all the related AssetCPEVertices,
i.e. it represents an asset configuration. AssetVertices can
be filtered by the predicate P2 much like in the the case of
CveVertices and the predicate P1.

4) Grouping of the Results: At this point, the primary
graph traversal essentially stops, and the whole path history
is passed through a group().by() step. In this step, the
encountered traversal history is keyed by the n-tuple of
(CveVertex, StatementVertex, AssetVertex). Each key repre-
sents a candidate match for a particular StatementVertex

(of some CveVertex) and a particular AssetVertex root. The
value for each key is an aggregate of the encountered traver-
sal paths projected to the OrVertices, FactRefVertices, and
AssetCPEVertices.

5) Boolean Evaluation: The rest of the search traversal
represents an evaluation of a Boolean logic CNF formula. For
each grouped pair, two counts (C1, C2) are calculated. The
first helper traversal C1 represents the (expected) number of
AndVertices (operands) for each StatementVertex (conjunction)
that all must hold true, for the whole conjunction to also hold
true. The second helper traversal C2 represents the (actual)
number of AndVertices that evaluate to true, when at least one
of its OrVertices also evaluates to true. The grouped pairs are
filtered, and only such results are returned, where the number
of actual AndVertices is equal to the number of all expected
AndVertices for a given StatementVertex.

By executing the traversal QUERY, it is possible to find not only
all the vulnerable (CveVertex, StatementVertex, AssetVertex)
tuples in a single pass, but at the same time, also the
corresponding full-paths that are responsible for this fact.
This is in contrast with the iterative approach, where all the
possible combinations of applicability statements and asset
configurations must be evaluated to achieve the same result.

V. EXPERIMENTAL IMPLEMENTATION

As a part of our research we have created an open-source
experimental implementation of the proposed graph-based
CPE configuration matching approach in Java language [17].
The implementation validates the proposed concepts and
demonstrates the feasibility of the presented approach.

It leverages a Java binding of the Gremlin framework for
graph manipulation and traversal. Note that Gremlin-Java is
considered the canonical reference implementation of Gremlin,
and serves as the foundation by which all other Gremlin
language variants should emulate [16]. Our implementation
takes advantage of the Object Graph Mapping approach in
order to reduce the amount of boiler-plate code associated
with creation and manipulation of many vertex classes. An
important dependency is a CPE 2.3 Reference Implementation1,
which provides a Java API for creating, using, and matching
CPE Names. The implementation of graph-based matching
works with CVE vulnerability records in JSON, and it is fully
compatible with the JSON Schema for NVD Vulnerability Data
Feed version 1.12. It also supports the NVD extension of CPE
names that allows for the values of AV pair version to be
defined as a version range. Individual asset components are
also represented as custom JSON records.

The experimental implementation will be further developed
in order to support standalone distributed graph systems. Also,
our plan is to optimize the insertion procedure so that the
relatively costly source-target attribute comparison is executed
in a single pass, similarly to the search traversal.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a graph-based approach
for identification of vulnerable asset configurations via CPE
matching. The approach consists of a graph model and insertion
procedure that is able to represent and store information

1https://pages.nist.gov/cpe-reference-implementation/
2https://nvd.nist.gov/General/News/JSON-1-1-Vulnerability-Feed-Release

about CVE vulnerabilities and also about hierarchies of asset
components classified by CPE names, i.e. asset configurations.
This is accompanied with a graph search query in Gremlin
graph traversal language that is able to find all vulnerable pairs
of CVEs and asset configurations in a single traversal.

In the future, we plan to perform a thorough performance
evaluation of the optimized experimental implementation.
Also, since the amount of information about known CVE
vulnerabilities obtainable from public sources can be described
as adequate, we plan to focus our work on the other side of
the equation. Our plan is to research approaches for automated
asset (component) discovery and CPE classification with the
highest granularity possible. The goal is to be able to fully
assess the state of the defended assets in an automated manner.

ACKNOWLEDGEMENTS

This research was supported by the Security Research
Programme of the Czech Republic 2015–2022 (BV III/1-VS)
granted by the Ministry of the Interior of the Czech Republic
under No. VI20202022164 Advanced Security Orchestration
and Intelligent Threat Management.

REFERENCES

[1] J. Muniz, G. McIntyre, and N. AlFardan, Security Operations Center.
Cisco Press.

[2] Verizon, “2020 Data Breach Investigations Report,” Tech. Rep., 2020.
[Online]. Available: https://enterprise.verizon.com/resources/reports/dbir/

[3] “The Year 2020 Vulnerability statistics report,” Edgescan, Dublin,
Ireland, Tech. Rep., 2020. [Online]. Available: https://info.edgescan.com/
vulnerability-stats

[4] J. Williams and A. Dabirsiaghi, “The unfortunate reality of insecure
libraries,” Contrast Security, Inc., White Paper, 2014.

[5] CVE – Common Vulnerabilities and Exposures (CVE). [Online].
Available: https://cve.mitre.org/

[6] B. A. Cheikes, D. Waltermire, and K. Scarfone, “Common Platform
Enumeration: Naming Specification Version 2.3,” National Institute of
Standards and Technology, NIST IR 7695, 2011.

[7] NVD – General. [Online]. Available: https://nvd.nist.gov/general
[8] Common Vulnerability Scoring System v3.1. [Online]. Available:

https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf
[9] CWE – Common Weakness Enumeration. [Online]. Available:

https://cwe.mitre.org/
[10] X. Ou, W. F. Boyer, and M. A. McQueen, “A scalable approach to

attack graph generation,” in Proceedings of the 13th ACM Conference
on Computer and Communications Security, ser. CCS ’06. New York,
NY, USA: ACM, 2006, pp. 336–345.

[11] M. Javorník, J. Komárková, and M. Husák, “Decision support for
mission-centric cyber defence,” in Proceedings of the 14th International
Conference on Availability, Reliability and Security, ser. ARES ’19. New
York, NY, USA: ACM, 2019, pp. 34:1–34:8.

[12] M. C. Parmelee, H. Booth, D. Waltermire, and K. Scarfone, “Common
Platform Enumeration: Name Matching Specification Version 2.3,”
National Institute of Standards and Technology, NIST IR 7696, 2011.

[13] P. Cichonski, D. Waltermire, and K. Scarfone, “Common Platform
Enumeration: Dictionary Specification Version 2.3,” National Institute of
Standards and Technology, NIST IR 7697, 2011.

[14] D. Waltermire, P. Cichonski, and K. Scarfone, “Common Platform
Enumeration: Applicability Language Specification Version 2.3,” National
Institute of Standards and Technology, NIST IR 7698, 2011.

[15] M. A. Rodriguez, “The gremlin graph traversal machine and language
(invited talk),” in Proceedings of the 15th Symposium on Database
Programming Languages, ser. DBPL 2015. New York, NY, USA:
Association for Computing Machinery, 2015, p. 1–10.

[16] TinkerPop Compendium. [Online]. Available: https://tinkerpop.apache.
org/docs/3.4.6/

[17] D. Tovarňák, “Graph-Based CPE Matcher,” Mar. 2021. [Online].
Available: https://doi.org/10.5281/zenodo.4569393

