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Abstract 

Globally, photosynthesis (A) and autotrophic respiration (R) are the two largest 

physiological processes responsible for CO2 flux. Coastal wetland ecosystems are responsible for 

some of the highest rates of C sequestration. Marsh grass and mangrove habitats responsible for 

this service are important in supporting biodiversity and preventing shoreline erosion, yet little is 

known about how this vegetation will respond physiologically to effects of climate and global 

change. In the first chapter a warming experiment was used to determine whether a C4 marsh 

grass (Spartina alterniflora) and a C3 mangrove (Avicennia germinans) acclimate leaf R to 

seasonal changes in temperature and experimental warming, and whether variation in leaf N 

(proxy for enzyme concentrations) explains temperature acclimation patterns in both species. In 

the second chapter a long-term fertilization experiment was conducted to determine whether 

Avicennia alters parameters of A and R over time in response to nutrient enrichment of nitrogen 

(N) or phosphorus (P), and whether the response to pulse enrichment of nutrients is temporary or 

leaves a legacy effect. In chapter 1, Avicennia generally increased respiratory capacity as growth 

temperatures increased, but Spartina acclimated to warmer temperatures by reducing respiratory 

capacity. Although temperature acclimation of R differed between Spartina and Avicennia, 

changes in Nmass explained temperature acclimation patterns in both species. In chapter 2, N 

addition increased R capacity (Rmass25), CO2 assimilation (Asat), and the maximum rate of Rubisco 

carboxylation (Vcmax). The effects of N addition on photosynthesis were short-lived, but the 

effect of N addition on leaf R  was consistent over time, indicating a possible legacy effect of R 

but not A. This thesis provides new insight into temperature controls of leaf R in marsh and 

mangrove species, which may aid predictions of CO2 fluxes from coastal wetlands. This research 
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also improves our understanding of the short- and potentially long-term impacts of N and P 

enrichment on mangrove physiology.



Introduction 

Vegetated coastal ecosystems are plant communities that exist at the intersection of ocean and 

land. These communities are composed of plant species that tolerate both tidal inundation and 

fluctuating salinity. At higher latitudes of North America where climate is temperate, vegetated 

coastal communities are comprised of mostly marsh grasses including Spartina alterniflora 

(smooth cordgrass) and Spartina patens (saltmeadow cordgrass) and a small number of forb and 

shrub species. In the subtropics and tropics, coastal vegetative communities are made up of a 

variety of halophytic mangrove species including Avicennia germinans (black mangrove) 

Rhizophora mangle (red mangrove), and Laguncularia racemosa (white mangrove). The ecotone 

represents a highly productive coastal wetland transitional zone where the southern limit of 

temperate saltmarsh habitat converges with the northern limit of tropical mangrove habitat.  

Temperature, especially minimum winter temperatures, are a key determinant of the location of 

the marsh-mangrove ecotone (Osland et al. 2013; Cavanaugh et al. 2014, 2015; Saintilan et al. 

2019). 

Coastal vegetation serves as the primary habitat for a number of aquatic and terrestrial 

organisms. Coastal birds utilize these habitats as a food source, building material, and rookeries. 

Many economically important fish species of recreational or commercial importance utilize tidal 

marshes through different stages of development (Mumby et al. 2004; Johnson & Swenarton 

2016). Finger lakes of intercoastal waterways have calm waters and are an ideal location for 

juvenile fish to feed and grow before spending their adult life at sea. In summer months, fish, 

crabs, and snails use the shade from marsh grasses and mangroves to stay cool. This shading also 

reduces the amount of evaporation that occurs underneath plant canopies which decreases 

salinity and enables further vegetative recruitment (Peterson & Bell 2018).  
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Coastal vegetation also serves as an important defense against the impacts of sea level 

rise (SLR). Coastal vegetation plays an important role in stabilizing sediments so that suspended 

solids become fixed in soils rather than entering the water column (Wieski et al 2010; Doughty et 

al. 2017). This fixation is referred to as soil accretion and is an important driver of wetland 

elevation gain (Coldren et al. 2016; Coldren et al. 2019). Specific accretion rates of marsh and 

mangrove communities vary in different regions of the world but are correlated with sediment 

availability. Vegetative growth and root production also increases C inputs belowground which 

can increase C storage and wetland elevation. If the rate of accretion and elevation gain is rapid 

enough to keep pace with the rate of SLR, coastal vegetation may limit the loss of coastline from 

SLR (Morris et al. 2002; Cahoon et al. 2020; Chapman et al. 2021). These habitats also alleviate 

the impacts of storms and excessive boat traffic by dissipating wave energy and reducing erosion 

of wetland soils (Guannel et al. 2016). All coastal vegetation plays a role in reducing erosion 

caused by wave action, although there is evidence that mangrove habitats are more effective at 

attenuating waves in shorter distances than marsh habitat (Doughty et al. 2017).  

These systems also act as natural filters that purify water entering estuaries (Mitsch and 

Gosselink 2008). As water enters the coastal wetland through river tributaries, groundwater 

movement, and overland flow is slowed by the physical resistance imparted by wetland 

vegetation (Morgan et al. 2009). Suspended sediments are then deposited in layers on the soil 

surface, simultaneously increasing elevation and adding nutrients to an extremely nutrient-

limited ecosystem. The ability of these systems to filter nutrients also improves water quality and 

protects coastal economies from harmful algal blooms (HAB’s) (Barbier et al. 2011). Reduction 

of HAB’s promotes healthy growth of submerged vegetative communities (e.g. seagrasses) that 

would otherwise be shaded out by surface algal blooms. When all the goods and services 
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provided by vegetated coastal ecosystems are accounted for, models estimate that these 

vegetated coastal wetlands have an annual economic value of $10,000-$20,000 per hectare 

(Kirwan and Megonigal, 2013). 

Coastal vegetative ecosystems also play an important role in the global C cycle. At the 

global scale these ecosystems deposit a similar amount of C belowground as terrestrial forests, 

despite covering just 3% of the area of terrestrial forests (Lugo & Snedeker 1974, Bouillon et al. 

2008, Duarte et al. 2013). On average, marsh and mangrove ecosystems store more carbon per 

unit area (593 Mg C ha−1 and 956 Mg C ha-1, respectively) than many tropical rainforests (241 

Mg C ha−1) (Donato et al. 2011; Alongi et al. 2014). Coastal vegetation is an effective carbon 

sink for several reasons. First, like terrestrial plants, coastal vegetation sequesters C within living 

biomass (e.g., leaves, roots, woody material) and non-living biomass (e.g., leaf litter and dead 

wood) (Duarte et al. 2005, 2013; Mcleod et al. 2011). However, unlike terrestrial soils, mangrove 

and salt marsh sediments accrete vertically in response to sea level rise which effectively 

eliminates C saturation (McLeod et al. 2011). This vertical accretion in combination with 

anaerobic wetland soils creates an environment of burial and slow turnover. For example, it has 

been estimated that coastal vegetation sequesters C much longer (centuries vs. millennia) than 

the world’s most productive tropical rainforests (Chambers et al. 2001; McLeod et al. 2011; 

Alongi et al. 2014; Alongi and Mukhopadhyay 2015).  

In many locations throughout the planet, habitat destruction, environmental degradation, 

and climate change are threatening or altering the health and function of these valuable coastal 

ecosystems (Friess et al. 2019). For example, 25 to 50% of global mangrove extent is estimated 

to have been lost over the last 50 years due to habitat conversion and degradation (Valiela et al. 

2001, Alongi 2002). In a number of locations (United States, Australia) climate warming is 
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contributing to a reduction in freeze events at mangrove range limits, facilitating poleward 

movement of mangroves into saltmarsh habitat (Cavanaugh et al. 2014, Kelleway et al., 2017; 

Osland et al., 2013; 2016a; Perry & Mendelssohn, 2009; Saintilan et al., 2014; Feller et al. 2017). 

The encroachment of mangroves is fundamentally altering the structure and function of these 

ecosystems (Doughty et al. 2016, others). There is also uncertainty about whether, or for how 

long, marsh and mangrove ecosystems can gain elevation to keep pace with SLR (Friess et al. 

2019, Lovelock et al. 2015, Schuerch et al. 2018). Marsh equilibrium models (MEMs) originally 

created to assess vulnerability of coastal marshes to SLR have recently been adjusted to include 

predictions for mangrove forests susceptibility to rising seas (Cahoon et al. 2020). These models 

predict that by 2100 marsh ecosystems will be lost under a business-as-usual SLR forecast 

(Morris et al. 2002, 2016). A key conservation solution for SLR is ‘marsh migration’ which 

would allow for salt marshes and mangrove forests to build vertically along a natural elevation 

gradient, thus sustaining their ecosystem service functions under SLR scenarios (Schuerch et al. 

2018).  

In addition to SLR, coastal ecosystems are threatened by other aspects of global change. 

Global mean temperatures are expected to rise 1–4°C by 2050, with the amount of warming 

varying among regions (IPCC 2013, Ciais et al. 2013). Warmer temperatures could alter rates of 

C uptake, use and storage in coastal wetlands, with implications for climate-carbon cycle 

feedbacks (Atwood et al. 2017). However, there is considerable uncertainty about temperature 

controls of C cycling processes over space and time in coastal wetlands (Duarte 2017, Adame et 

al. 2018). This uncertainty stems from several sources including but not limited to: 1) limited 

data on leaf CO2 fluxes in relation to seasonal or latitudinal variation in temperature for marsh 

and mangrove species in tropical and subtropical climates, 2) Climate warming impacts on leaf 
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photosynthetic or respiratory processes in tropical and subtropical marsh-mangrove ecosystems 

are virtually unknown, and 3) Marsh and mangrove species capacity for ‘thermal acclimation’ of 

leaf physiology remain understudied and difficult to predict (Aspinwall et al. 2021), despite the 

importance of thermal acclimation in modifying the temperature response of wetland C cycling 

processes. New work is needed to address these uncertainties and improve our quantitative and 

predictive understanding of coastal C cycling responses to temperature, potential feedbacks 

between temperature and C cycling, and the representation of these processes in earth system 

models (ESMs) that predict future climate. 

Human activities have also resulted in large and persistent nutrient inputs into coastal 

habitats resulting in eutrophication and harmful cyanobacteria blooms. These events are 

increasingly frequent, creating hypoxic conditions which negatively impact the natural 

biodiversity of coastal ecosystems. In general, nutrient enrichment and N deposition are expected 

to stimulate growth and productivity of marsh grasses and mangroves (Feller et al. 2003, Darby 

and Turner 2008, Davis et al. 2017). Similar to most nutrient limited ecosystems, early studies 

showed that mangrove responses to N and P additions are dependent upon the limiting nutrient in 

the system (Feller et al. 2007).  Some also have suggested that A. germinans is a superior 

competitor to marsh grass species when nutrients are limited (Simpson et al. 2013). In a new 

study, Dangremond et al. (2020) found that N-enriched mangroves grew taller, increased their 

canopies, increased leaf chlorophyll content, and had higher leaf N concentrations relative to P-

enriched and control trees. However, important questions remain. For instance, few studies have 

examined how long-term nutrient (N and P) enrichment impacts photosynthetic biochemistry or 

respiratory capacity of mangrove foliage. We also have a limited understanding of the short-term 

responses of photosynthesis and respiration to nutrient pulses in coastal wetlands. These 
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knowledge gaps hinder our ability to predict photosynthetic and respiratory processes along 

spatial or temporal gradients in nutrient enrichment or incorporate the impacts of nutrient 

enrichment on vegetation function in models that simulate or project C and N cycling over space 

and time in coastal wetlands. 

 The overarching aim of this thesis is to investigate patterns of thermal acclimation of leaf 

respiration over space and time in coastal plant species, and the long and short-term 

physiological response of mangroves to N and P additions. In the first chapter we tested whether 

a C4 marsh grass species (Spartina alterniflora) and C3 mangrove species (Avicennia germinans) 

growing in a marsh-mangrove ecotone show evidence of seasonal temperature acclimation of 

leaf R, and whether seasonal temperature acclimation of leaf R is consistent in plants growing 

under ambient and experimentally warmed conditions, as well as across sites at the northern and 

southern edge of the ecotone. We accomplished this by repeatedly measuring the short-term 

temperature responses of leaf R over a 10-month period in marsh and mangrove plants grown in 

situ under ambient temperatures and experimental warming at two sites within the ecotone. We 

also determined leaf N on a subset of leaves and tested whether leaf N scales positively with 

Spartina and Avicennia leaf R, over time and across sites and treatments. We hypothesized that 

seasonal acclimation of R would be consistent across ambient and warmed treatments, and across 

northern and southern sites, demonstrating convergent temperature acclimation of leaf R. In the 

second chapter we determined the long-term and short-term impacts of N and P additions on 

photosynthetic and respiratory processes in black mangrove (Avicennia germinans). Ultimately, 

this work will improve our understanding of coastal wetland vegetation responses to 

environmental change.  
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Chapter 1 

Patterns of thermal acclimation of leaf respiration in a marsh-mangrove ecotone 

 
Abstract 

Leaf respiration (R) is an important parameter in terrestrial biosphere models and associated 

earth system models. Yet, spatiotemporal patterns of leaf R, its temperature sensitivity, and 

temperature acclimation of leaf R have not been widely studied in coastal marsh and mangrove 

species. Here we examined seasonal temperature acclimation of leaf R in a C4 marsh species 

(Spartina alterniflora) and C3 mangrove species (Avicennia germinans) growing under ambient 

temperatures and experimental warming at northern and southern sites within a marsh-mangrove 

ecotone in North Florida. We also tested whether variation in leaf N (proxy for enzyme 

concentrations) explain temperature acclimation patterns in both species. In Spartina, respiratory 

capacity (R per unit mass at 25 °C, Rmass25) and the temperature sensitivity of R (Q10) declined as 

seasonal temperatures increased, indicating seasonal temperature acclimation, and did so 

consistently across treatments and sites. Across sites and treatments, leaf N per unit mass (Nmass) 

showed a strong positive relationship with Rmass25. In Avicennia, Rmass25 showed no relationship 

with prevailing seasonal temperatures at the northern site but increased as seasonal temperatures 

increased at the southern site. Warming caused a small increase in Rmass25 at both sites. 

Nonetheless, the Q10 of R decreased as seasonal temperatures increased and did so consistently 

across sites and treatments. Importantly, Nmass also showed a strong positive relationship 

with Rmass25 in Avicennia. Therefore, although temperature acclimation of R differed 

between Spartina and Avicennia, changes in Nmass explained temporal and spatial variation in 

Rmass25 in both species. These results improve our quantitative and predictive understanding of 
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temperature controls of leaf respiration in coastal plant species and provide new data for 

improving representation of these processes in larger-scale models. 

 

Introduction 

Coastal marsh and mangrove ecosystems make a large contribution to global primary production 

and carbon (C) cycling despite covering a small proportion of the earth’s surface. (Lugo & 

Snedeker 1974, Bouillon et al. 2008, Donato et al. 2011, McCleod et al. 2011, Lu et al. 2017). 

For instance, each year these coastal wetlands deposit a similar amount of organic C 

belowground as terrestrial forests, despite covering less than 3% of the area of forests (Lugo & 

Snedeker 1974, Bouillon et al. 2008, Duarte et al. 2013). The high C storage capacity of coastal 

wetlands can be attributed to their effectiveness in trapping and burying sediment from terrestrial 

and marine sources, often referred to as blue carbon (Nellemann et al. 2009). Much of the C 

fixed by photosynthesis remains sequestered for millennia due to slow decomposition rates, 

anaerobic conditions, and a relatively high fraction of total biomass allocated to roots and 

rhizomes (Duarte et al. 2005; Mcleod et al. 2011, Howard et al. 2017). However, global mean 

temperatures are expected to rise 1–4°C by 2050 (IPCC 2013, Ciais et al. 2013) resulting in 

higher sea levels, more frequent and intense storms, and altered precipitation patterns, all of 

which could affect the composition, structure, C storage and persistence of coastal wetlands 

(Lovelock et al. 2016, Friess et al. 2019). Rising temperatures, in particular, will have direct 

effects on photosynthesis and respiration, with important consequences for coastal C cycling and 

vegetation – climate feedbacks. New work is required to improve our understanding of 

temperature controls of C cycling processes over space and time for marsh and mangrove 

ecosystems.  
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At the global scale, autotrophic respiration represents the second largest flux of CO2 

second only to photosynthesis (IPCC 2013, Ciais et al. 2013). On an annual basis, roughly half of 

global terrestrial gross primary production (GPP) by plants is returned to the atmosphere via 

autotrophic respiration (Piao et al. 2013). Plant respiration is estimated to account for a similar 

proportion (~50%) of GPP in marsh and mangrove ecosystems (Alongi et al. 2020). At the 

global scale, roughly 50% of plant respiration comes from leaves (Atkin et al. 2007, Atkin et al. 

2015). As a result, leaf mitochondrial respiration (R, typically measured in darkness as CO2 

efflux) is an important parameter for simulating C cycling in terrestrial biosphere models 

(TBMs) and associated earth system models (Fisher et al. 2014, Atkin et al. 2015). Leaf R and 

photosynthetic capacity are closely coupled (O’Leary et al. 2019, Wright et al. 2004, Wang et al. 

2020). Respiration plays an important role in nitrate reduction, phloem loading, and turnover of 

phospholipid membranes and proteins. Rubisco accounts for a large fraction of leaf protein 

(Evans 1989, Hikosaka and Shigeno 2009, Aspinwall et al. 2019) and thus leaf R plays an 

important role in maintaining photosynthetic capacity under natural conditions. Across a wide 

range of species and systems, leaf R at 25 °C scales positively with maximum rates of Rubisco 

carboxylation (Vcmax) at 25 °C (Atkin et al. 2015). Total leaf N represents total photosynthetic 

and respiratory enzyme content, and leaf N also positively scales positively with both Vcmax and 

R at 25 °C across a wide range of species and growth environments (Reich et al. 2008, Atkin et 

al. 2015). For these reasons, many land surface models predict functional-type specific rates of R 

using either estimates of Vcmax at 25 °C or measurements of leaf N on an area or mass-basis 

(Fisher et al. 2014, Lawrence et al. 2019).  

Leaf R is determined by a series of enzymatic reactions in the cytosol and mitochondria 

and is therefore temperature dependent. In the short-term (minutes, hours) leaf R increases quasi-
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exponentially with increasing measurement temperature before reaching an optimum, typically 

between 50 and 60 °C (O’Sullivan et al. 2017, Aspinwall et al. 2017). This temperature 

sensitivity has led to the prediction that climate warming will accelerate the positive feedback 

between CO2 and temperature. However, there is considerable evidence that plants may 

‘acclimate’ to changes in growth temperature by modifying the short-term temperature response 

of R. In most cases, thermal acclimation of R results in partial or complete homeostasis of leaf R 

across changing growth temperatures. At the plant scale, thermal acclimation helps balance the 

supply of ATP and carbon skeletons for growth while reducing the C cost of maintenance R 

(Atkin and Tjoelker 2003, Atkin et al. 2005). Acclimation can occur within a few days of a 

change in growth temperature (Bolstad et al. 2003, Lee et al. 2005, Aspinwall et al. 2016). Many 

plants acclimate to increasing growth temperatures by reducing R at a set measurement 

temperature (i.e. 25 °C, Slot and Kitajima 2015). This type of acclimation is referred to as Type 

II acclimation and is considered a change in respiratory capacity (Atkin and Tjoelker 2003). Less 

commonly, thermal acclimation can result in a reduction in the short-term temperature sensitivity 

of R (Q10, activation energy, Slot and Kitajima 2015). This type of acclimation is referred to as 

Type I acclimation (Atkin and Tjoelker 2003). Type II acclimation may be the result of changes 

in respiratory enzyme concentrations, while Type I acclimation is probably the result of 

regulatory changes in respiratory enzymes (Atkin et al. 2005). Across sites and species, patterns 

of thermal acclimation of R are generally associated with changes in leaf N and adjustments in 

photosynthetic capacity (e.g. Vcmax, Atkin et al. 2015, Wang et al. 2020). Similar coupling of R, 

Vcmax, and leaf N across different growth temperatures is sometimes observed at the local scale 

with individual species (Tjoelker et al. 1999, Lee et al. 2005, Crous et al. 2017).  
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Thermal acclimation of R has important implications for C cycle responses to 

temperature at local and global scales, as well as climate C cycle feedbacks. Assuming 

acclimation results in partial or complete homeostasis of R with changing growth temperature, 

the long-term temperature sensitivity of R would be reduced over time, dampening the positive 

feedback between CO2 and temperature (King et al. 2006, Smith and Dukes 2013). Without 

acclimation, R would increase sharply as temperature increases, weakening ecosystem C storage, 

and accelerating the positive CO2 - temperature feedback (Atkin and Tjoelker 2003, Atkin et al. 

2014, Heskel et al. 2014). Modelling experiments that have incorporated thermal acclimation of 

photosynthesis or R have demonstrated that acclimation significantly alters estimates of C pools 

and fluxes. Lombardozzi et al. (2015) found that simulating thermal acclimation of 

photosynthesis and R in models resulted in a 20 Pg increase in terrestrial C pools by the end of 

the 21st century. Smith et al. (2016) also found that accounting for thermal acclimation improved 

model performance and suggested that acclimation results in higher net C storage and uptake 

than currently predicted. 

Although leaf R and patterns and mechanisms of thermal acclimation of leaf R are better 

understood and better represented in TBMs, important knowledge gaps and data uncertainties 

remain. Direct measures of leaf R or its temperature sensitivity over space and time are relatively 

rare for coastal wetland species, and only a handful of studies have quantified thermal 

acclimation of leaf R in mangrove species (see Akaji et al. 2019, Aspinwall et al. 2021) and none 

have examined thermal acclimation in marsh grasses. As a result, respiratory responses of coastal 

plants to spatiotemporal variation in temperature and projections of coastal wetland C cycling 

over space remain uncertain. It is also unclear whether seasonal acclimation and acclimation to 

climate warming are equivalent, suggesting a common mechanism. Evidence for thermal 
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acclimation of R largely comes from two different types of studies: field studies of plants 

responding to seasonal variation in temperature (Atkin et al. 2000; Lee et al. 2005; Ow et al. 

2008, 2010; Tjoelker et al. 2008, 2009); and warming studies conducted under controlled 

conditions on small plants, usually for short time periods (Bolstad et al., 2003; Bruhn et al., 

2007; Cheesman & Winter, 2013; Drake et al., 2015). Two separate experiments with tree 

species from warm-temperate and boreal climates have indicated that seasonal temperature 

acclimation and acclimation to climate warming may be equivalent (Aspinwall et al. 2016, Reich 

et al., 2016), and physiological responses to climate warming might be predicted from studies of 

physiological responses to seasonal temperature changes. There is also evidence that 

acclimation-over-time and acclimation-across-space may result in similar changes in leaf R in 

response to changes in temperature (Vanderwel et al. 2015). New studies are required to 

determine whether convergent temperature acclimation of R is common and generalizable across 

disparate ecosystems and communities, including coastal wetlands. Finally, it remains unclear 

whether thermal acclimation capacity differs between C3 and C4 plants; both are common in 

coastal wetlands. It has been hypothesized that C4 plants may show limited capacity for thermal 

acclimation due to a more complex physiology (Yamori et al. 2014). Support for this hypothesis 

is mixed, however, with C4 plants sometimes showing similar or comparable acclimation 

responses to C3 species (Smith and Dukes 2017).  

The marsh-mangrove ecotone on the northern Atlantic coast of Florida (USA) provides 

an opportunity to address these uncertainties. The ecotone represents a highly productive coastal 

wetland transitional zone where the southern limit of temperate saltmarsh habitat converges with 

the northern limit of tropical mangrove habitat. The purpose of this study was to test whether C4 

marsh grass species (Spartina alterniflora) and C3 mangrove species (Avicennia germinans) 
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growing in a coastal wetland show evidence of seasonal temperature acclimation of leaf R, and 

whether seasonal temperature acclimation of leaf R is consistent in plants growing under ambient 

and experimentally warmed conditions, as well as across sites at the northern and southern edge 

of the ecotone. We accomplished this by repeatedly measuring the short-term temperature 

responses of leaf R over a 10-month period in marsh and mangrove plants grown in situ under 

ambient temperatures and experimental warming at two sites within the ecotone. For each 

species, we then developed empirical models describing the relationship between prevailing 

(seasonal) air temperature and R at 25 °C and the Q10 of R. We tested whether site or 

experimental warming altered the relationship between prevailing air temperature and R at 25 °C 

or the Q10 of R. We also determined leaf N on a subset of leaves and tested whether leaf N scales 

positively with marsh grass and mangrove leaf R, over time and across sites and treatments. We 

hypothesized that both species should show declining leaf R at 25 °C (and/or Q10) with 

increasing growth temperature, demonstrating seasonal acclimation, but the decline would be 

stronger for the C3 mangrove species than the C4 marsh grass. We also hypothesized that 

seasonal acclimation of R would be consistent across ambient and warmed treatments, and across 

northern and southern sites, demonstrating convergent temperature acclimation of leaf R.  

 

Materials and methods 

Study sites and experimental design 

This study took place at two sites in the Guana Tolomato Matanzas National Estuarine Research 

Reserve (GTMNERR) on the Atlantic coast of northeast Florida, near St. Augustine. The 

estuarine vegetation in GTMNERR represents a marsh-mangrove ecotone. The southern limit of 

saltmarsh habitat converges and overlaps with the northern limit of mangrove habitat in Florida, 
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although mangroves are increasingly common north of GTMNERR. The northern site (NS) was 

located roughly 14 km north of St. Augustine along the Tolomato River near the northern edge 

of GTMNERR (30°00'41.9"N 81°20'39.2"W). The southern site (SS) was located roughly 20 km 

south of St. Augustine, 34 km to the south of the northern site, and just north of the Matanzas 

Inlet (29°43'38.3"N 81°14'25.0"W). The NS and SS have similar elevation, and average annual 

precipitation at the GTMNERR reserve is 1317 mm (Chapman et al. 2021). Mean annual 

temperature (2001–2018) at St. Augustine is 20.8 °C. The highest monthly mean daily max 

temperature (July) is 31.97 °C, and the lowest monthly mean daily low temperature (January) is 

11.13 °C (NOAA). Spartina alterniflora (smooth cordgrass) and Avicennia germinans (black 

mangrove) are common at both sites although A. germinans trees are generally larger and more 

abundant at SS. Spartina alterniflora is a C4 grass that dominates temperate estuaries along the 

east coast of North America and subtropical estuaries in the Gulf of Mexico and northern 

Florida. Avicennia germinans is a broadly distributed mangrove species native to warm-

temperate, subtropical, and tropical regions of the Americas and Africa. On the Pacific coast, its 

distribution stretches from Mexico to Peru. On the Atlantic coast, its distribution stretches from 

North Florida to southern Brazil. All mangroves selected for this study ranged from 4-11 years 

old in 2018 with an average age of 7.4 years and 7.2 years at SS and NS respectively (Chapman 

et al. 2021).  

The study included six replicates of four treatment plots at each site. The four 

treatments were: A. germinans ambient, A. germinans warmed, S. alterniflora ambient, and S. 

alterniflora warmed. Treatment plots were randomly positioned within a one-hectare area at 

each site. The warmed plots were enclosed in 1.5m × 1.5m × 1.5m chambers, framed with PVC 

and wrapped in 6 mil polyethylene greenhouse film (Greenhouse Megastore, Danville, IL, USA) 
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that transmits ~90% of photosynthetically active radiation. The chamber top was left open to 

allow for air circulation and natural rainfall. The chambers ‘trap’ radiation causing the chamber 

air to passively warm. This passive warming design was chosen based on ease of construction, 

portability, and durability. In the event of a tropical storm, we removed the polyethylene film 

from the PVC frames so that chambers would not become airborne. In comparison to warming 

experiments with infrared heaters, our design did not necessarily change the canopy surface 

temperature, but instead increased the air temperature. Infrared (active) heating experiments may 

increase canopy surface temperature without increasing air temperature (Smith et al. 2020). This 

differentiation is important given that air temperatures are expected to increase while canopy 

temperatures may or may not depending on transpirational cooling (e.g. Drake et al. 2018). A 

limitation of our passive warming design was that warming could not be applied at night or 

during cloudy conditions. Air temperature (Tair) and relative humidity (RH) were measured every 

15 minutes in the center of two ambient and warmed treatment plots using an air temperature/RH 

sensor covered in a solar radiation shield (HOBO MX2302 External Temperature/RH Sensor, 

Onset Computer Corp., Bourne, MA). Gaps in Figure 1 weather data were a result of HOBO 

logger failure in warmed and ambient plots. A dual failure scenario left us with no way to 

precisely gap fill temperature data. However, when HOBO failure was limited to ambient 

temperature measurements, data were gap filled using nearby GTMPCMET (Guana Tolomato 

Matanzas Pellicer Creek Meteorological) weather station data. Data loggers were reset prior to 

sampling dates to ensure temperatures were accurately recorded.  

Over the course of the experiment, mean daily (24-hr) Tair was on average 0.66 °C and 

0.63 °C higher in the warmed treatment than mean daily Tair in the ambient treatment at the SS 

(Figure S1c) and NS (Figure S1a), respectively (SS ambient mean daily Tair = 22.9 ± 5.1 
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(standard deviation) °C, warmed mean daily Tair = 23.6 ± 5.4 °C; NS ambient mean daily Tair = 

22.8 ± 5.1 °C, warmed mean daily Tair = 23.5 ± 5.3). Daily maximum Tair was on average 3.2 °C 

and 3.1 °C higher in the warmed treatment than the ambient treatment at the SS (Figure S1d) and 

NS (Figure S1b), respectively (SS ambient daily max Tair = 27.5 ± 5.2 °C, warmed daily max Tair 

= 30.7 ± 5.8 °C; NS ambient daily max Tair = 28.1 ± 5.2 ± °C, warmed mean daily Tair = 31.2 ± 

5.8 °C). Warming of this magnitude (1-3 °C) is expected by 2050 throughout the southeast U.S. 

(Ashfaq et al. 2016, Diem et al. 2017). The daily mean relative humidity (RH) at both sites was 

similar. SS daily mean RH was 85.3 ± 8.4% (Figure 1b) and NS daily mean RH was 83.1 ± 7.1% 

(Figure 1e). Overall, average RH was similar in the ambient and warmed plots at both sites. As a 

result of high RH, the daily mean VPD was <1 at both sites (Figure 1 c, f), with only small 

differences in VPD between warmed and ambient treatment plots (Figure 1f). 

 

Temperature response of leaf respiration 

Measurements of the short-term temperature response of leaf dark respiration (R) were 

conducted at 6 timepoints (October, December, February, April, June, July) over a 10-month 

period. Each monthly campaign of leaf collection was split over a maximum of two days at each 

site (four days total). An equal number of leaves from each species and treatment were selected 

during each campaign to avoid sampling-date bias. On each sampling day we collected two 

recent and fully developed upper canopy leaves from S. alterniflora and three recent and fully 

developed upper canopy leaves from A. germinans. Leaves were collected pre-dawn (04:30 – 

06:00 local time) to avoid activation of photosynthesis. The excised leaves were placed in 

Ziplock bags with moist paper and transferred to the lab in complete darkness. Previous studies 

have found no effect of leaf removal on leaf R measurements (O’Sullivan et al. 2013; Aspinwall 
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et al. 2017; 2019). Moreover, all measurements were completed the same day as leaf collection 

and we found no evidence that leaf R changed with time since leaf removal. Leaf area (cm2) of 

the measured leaves was determined with a leaf area meter (LI-3000C, LI-COR BioSciences, 

Lincoln, NE, USA) just prior to measurements of leaf R. Leaf area data were used to calculate R 

per unit area (Rarea μmol m–2 s–1).  

Short-term temperature response curves of leaf R were completed by sealing excised 

leaves inside a large gas-exchange chamber (3010-GWK1, Heinz Walz GmbH, Effeltrich, 

Germany) connected to a portable infrared gas-analyzer (LI-6400XT, LiCor Inc, Lincoln, NE, 

USA). The large gas-exchange chamber was set at 20 °C, while the flow rate and reference CO2 

(both controlled by the infrared gas-analyzer) were set at 500 mol s–1 and 410 µmol mol-1, 

respectively. Tleaf on the abaxial surface of the leaf was continuously measured with a small-

gauge copper constantan thermocouple wire attached to a LI-6400XT external thermocouple 

adaptor (LI6400–13, LI-COR BioSciences). To facilitate measurements of R, the airflow from 

the chamber was connected to the ‘sample’ gas line of the LI-6400XT fitted with an empty and 

closed 2×3 cm cuvette. The incoming air was dried before entering the 3010-GWK1 chamber by 

routing the incoming air through the LI-6400XT desiccant column. Once rates of R reached 

steady-state at 20 C (~5 min) the temperature of the leaf was increased from 20C - 40C at a 

rate of 1C per minute using the chamber software (GFS-Win, Heinz Walz GmbH) while 

continuously (30 second interval) measuring Rarea (Figure S2). After temperature response 

measurements were completed, leaves were dried at 70 °C for ~72 hours after which leaf dry 

mass measurements were recorded to determine leaf dry mass per unit area (LMA, g m-2). Leaf R 

per unit mass (Rmass, nmol g-1 s-1) was calculated by dividing Rarea (×1000) by LMA (Figure S3). 

Leaf tissue was then homogenized and dried at 105°C for ~16 hours, stored under desiccation, 
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and leaf N per unit mass (Nmass, % or mg N g-1) was determined using a combustion elemental 

analyzer (Rapid max N, Elementar Americas Inc., Ronkonkoma, NY, USA). Leaf N per unit area 

(Narea, g N m-2) was calculated as the product of %N and LMA. 

Modelling the temperature response of respiration 

Nonlinear regression was used to model the temperature response of leaf R. Nonlinear models 

were fit using R version 3.43 (R Core Team 2017). To determine the appropriate model for our 

data, we compared the suitability of three different algorithms following the approach of 

Aspinwall et al. (2017): (1) a log polynomial function, which describes the non-linear 

relationship between natural log transformed R and Tleaf (O’Sullivan et al. 2013; Heskel et al. 

2016), (2) an exponential function with a single Q10 value which assumes that the temperature 

sensitivity of R is constant across the entire measurement temperature range (e.g. Tjoelker et al. 

2001), and (3) a modified Arrhenius function, which accounts for a non-exponential increase in 

R with increasing Tleaf (Lloyd and Taylor 1994). The polynomial function is written as:  

(1)     ln R = a + bT + cT2     or 

(2)      𝑅 =  𝑒𝑎+𝑏𝑇+ 𝑐𝑇2
 

where T is Tleaf and a is an estimate of ln R at 0 °C, b is the slope of temperature response of ln R 

at 0 °C, and c describes any nonlinearity in the temperature response of ln R with increasing Tleaf. 

The differential of Eqn 2 can be used to estimate the Q10 of R at any Tleaf: 𝑄10 = 𝑒10 ×(𝑏+2𝑐𝑇). 

Among these algorithms, the polynomial (Equation 1) provided the best fit to our data, with a 

strong linear relationship (R2 = 0.998) between observed and predicted values of ln R, and 

residuals values normally distributed around zero with little pattern associated with increasing 
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Tleaf. Thus, we used the polynomial equation to model the temperature response of R and used 

coefficients a, b and c to estimate Rarea and Rmass at 25 °C (Rarea25, Rmass25), and the Q10 of R 

(between 20 and 30 °C) for each leaf (Table S1). Repeated estimates of Rarea25, Rmass25, and Q10 

over time provide a direct way of determining the direction and magnitude of seasonal thermal 

acclimation (Aspinwall et al. 2019).  

Data analysis 

All analyses were performed using R version 3.43 (R Core Team 2017). As a preliminary step in 

our analysis, we carried out variance partitioning to determine the proportion of the overall 

variance in each trait (e.g. Rarea25) explained by different experimental factors (species, 

measurement dates, site, treatment). The variance partitioning results indicated that 'species' 

accounted for the majority of the variance in most traits (16-68%), while other factors generally 

explained a much smaller proportion of the variance (0-7%) (Figure S4). Therefore, the 

remainder of the analysis was conducted separately for each species.   

For each species, mixed-effect models were used to test the fixed effects of time 

(measurement date), temperature treatment (ambient, warmed), site (SS, NS) and their respective 

interactions on Rarea25, Rmass25, Q10, LMA, Nmass, and Narea. For consistency, we analyzed estimates 

of Rarea25, Rmass25, and Q10 derived from our temperature response models rather than observations 

at 25 °C, although estimates and observed rates were nearly identical given the high resolution of 

our temperature response data. Homogeneity of variance for model results were tested using 

Levene's and Shapiro-Wilk tests. Data were log or square-root transformed as necessary.  

For each species, analysis of covariance (ANCOVA) was used to test relationships 

between Rarea25, Rmass25, Q10, LMA, Nmass, and Narea values and prevailing mean daily air 

temperature of the preceding 7 days (mean daily Tair) and determine whether relationships 
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differed between sites or treatments. If seasonal temperature acclimation of leaf R is occurring, 

we expect negative linear relationships between mean daily Tair and Rarea25, Rmass25, or the Q10 of 

R (e.g. Aspinwall et al. 2016). The strength of acclimation is determined by the slope of this 

relationship; stronger acclimation is indicated by a more negative slope estimate. In this model, 

site and treatment were treated as factors and mean daily Tair a covariate. A significant (P<0.05) 

interaction between mean daily Tair and site or treatment indicated that site or treatment affected 

the relationship between mean daily Tair and the response variable (e.g. Rarea25), and different 

slope parameters were required for each site or treatment. If site, treatment, and mean daily Tair 

were significant (P<0.10), with no interactions, equations with different intercepts for each site 

or treatment, but a common slope, were fit to the data. If only mean daily Tair was significant, 

one equation describing the relationship between mean daily Tair and the response variable was 

fit to data from both sites and treatments. We also used ANCOVA to test whether leaf N (Nmass, 

Narea) scales positively with respiratory capacity (Rarea25, Rmass25), and whether site or treatment 

changes the relationship between leaf N and respiratory capacity. 

 

Results 

Leaf R, leaf N, and LMA over space and time 

In Avicennia, Rarea25, Rmass25, and Narea varied over time, but differences among time points were 

dependent upon site (significant date × site interactions Table 1, 2). Rarea25 was lower at SS than 

NS in December 2019 (SS: 0.86 ± 0.04 μmol m-2 s-1, NS: 1.09 ± 0.04 μmol m-2 s-1), but higher at 

SS than NS in July 2020 (SS: 1.30 ± 0.04 μmol m-2 s-1, NS: 1.05 ± 0.04 μmol m-2 s-1, Figure 2a). 

Rmass25 was also higher at SS than NS in July 2020 (SS: 7.64 ± 0.36 nmol g-1 s-1, NS: 4.36 ± 0.36 
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nmol g-1 s-1, Figure 2c). Narea was lower at SS (3.22 ± 0.23 g N m-2) than NS (4.29 ± 0.17 g N m-

2) in October 2019 (Figure 2i).  

Across both sites, warming increased Rarea25 by 8% (ambient Rarea25 = 1.05 ± 0.02 μmol m-

2 s-1, warmed Rarea25 = 1.14 ± 0.02 μmol m-2 s-1). However, warming effects on Rmass25 differed 

between sites (treatment × site interaction, Table 1). Warming increased Rmass25 by 24% at SS 

(ambient Rmass25 = 4.56 ± 0.22 nmol g-1 s-1, warmed Rmass25 = 5.67 ± 0.23 nmol g-1 s-1) but did not 

affect Rmass25 at NS (mean = 4.43 ± 0.21 nmol g-1 s-1).  

The Q10 of R varied over time (Table 1) and was highest in February (2.25 ± 0.05) and 

April 2020 (2.26 ± 0.05), and lowest in June 2020 (1.94 ± 0.05, Figure 2e). Q10 did not differ 

between treatments but differed between sites (Table 1).  Q10 was higher at SS (2.17 ± 0.03) than 

NS (2.03 ± 0.03). LMA showed a complex pattern; with variation over time depending upon 

both treatment and site (treatment × date × site, Table 1) (Figure 2g). LMA was highest in 

warmed plants at NS in July 2020 (272 ± 10.4 g m-2) and October 2019 (277 ± 10.4 g m-2), and 

lowest in ambient plants at SS in July 2020 (168 ± 10.4 g m-2). Nmass did not differ between sites 

or treatments (Table 2), but was 15% higher in June 2020 (17.1 ± 0.60 g N kg-1) than in February 

2020 (14.9 ± 0.60 g N kg-1). 

In Spartina, Rarea25, Rmass25, and LMA varied over time, but differences among time points 

were dependent upon site (i.e., date × site interaction, Table 1, Figure 2). In October 2019, Rarea25 

was higher at SS (1.71 ± 0.11 μmol m-2 s-1) than at NS in February 2020 (1.19 ± 0.10 μmol m-2 s-

1) (Figure 2b). Rmass25 was generally higher during winter (December, February) and lower during 

summer (June, July) (Figure 2). In December 2019, Rmass25 was significantly lower at SS (9.9 ± 

0.5 nmol g-1 s-1) than NS (13.6 ± 0.5 nmol g-1 s-1). Rmass25 was similar between sites across all 

other dates. LMA showed the opposite seasonal pattern of Rmass25; lowest in winter and highest 
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during peak growing season. In February 2020, LMA was significantly higher at SS (128 ± 5.9 g 

m-2) than NS (99 ± 5.9 g m-2). On average, warming reduced Rmass25 6.4% across all timepoints 

(Table 1, ambient Rmass25: 10.9 ± 0.2 nmol g-1 s-1, warmed Rmass25: 10.2 ± 0.2 nmol g-1 s-1) but had 

no effect on Rarea25 or LMA. The Q10 of R varied over time and was higher in February 2020 

(1.94 ± 0.03) than June 2020 (1.77 ± 0.03) (Figure 2e). The Q10 of R was similar across sites and 

treatments (Table 1). Nmass varied over time, but differences among time points were dependent 

upon temperature treatment (significant date × treatment interaction, Table 2). In February 2020, 

Nmass was significantly lower in warmed plants (15.7 ± 0.6 g N kg-1) than ambient plants (18.3 ± 

0.6 g N kg-1) (Figure 2k). Narea did not differ between dates, treatments, or sites (and no 

interactions, Table 2) and averaged (2.04 ± 0.08 g N m-2). 

 

Relationships between Tair and leaf R, leaf N, and LMA 

For each species, we expected that Rarea25 and Rmass25 would decline as seasonal temperatures 

increased, demonstrating seasonal acclimation. We hypothesized that seasonal acclimation 

would be stronger in Avicennia than Spartina, but within each species seasonal acclimation 

would be consistent across sites and treatments. For Avicennia, ANCOVA results indicated that 

the response of Rarea25 and Rmass25 to prevailing mean daily Tair differed between sites (Tair × site 

interaction, Table 3). At SS, we found a positive relationship between mean daily Tair and Rarea25 

and Rmass25 (Table 4, Figure 3a,c). At NS, Rarea25 and Rmass25 showed no clear relationship with 

mean daily Tair (Figure 3a,c). In agreement with our ANOVA results above, we found that 

warming generally increased Rarea25 and Rmass25 across sites and prevailing mean daily Tair (Figure 

3a,c). These results provide little evidence for thermal acclimation of respiratory capacity (Type 

II acclimation, Atkin and Tjoelker 2003) in Avicennia growing at their northern range limit. 



 23 

However, ANCOVA results revealed that the Q10 of R decreased as mean daily Tair increased 

(Table 3, Figure 3e), indicating Type I thermal acclimation (Atkin and Tjoelker 2003). This 

acclimation response was consistent across treatments and sites, although the intercept of the 

relationship was significantly lower at NS than SS (Table 3, 4; Figure 3e).  

In Avicennia, LMA decreased as mean daily Tair increased, but the slope of the 

relationship differed between sites (Tair × site interaction, Table 3, 4). LMA decreased faster with 

increasing Tair at SS than NS (Table 4, Figure 3g). Similar to our ANOVA results, warming 

effects on LMA differed between sites (treatment × site interaction, Table 3). Warming generally 

reduced LMA at SS but did not change LMA at NS. Lastly, Nmass increased as mean Tair 

increased and did so consistently across treatments and sites (Table 3, Figure 3i).  

Spartina showed clear evidence of Type II and Type I thermal acclimation of R across 

seasons. Seasonal acclimation patterns were consistent across treatments and sites. Specifically, 

Rmass25 decreased with increasing mean daily Tair; the intercept of the relationship was lower at 

SS than NS (Table 4, Figure 3d). This relationship accounts for increasing LMA with Tair (Figure 

3h) which obscured the relationship between area-based respiratory capacity and Tair (Figure 3b). 

The Q10 of R also decreased with increasing mean daily Tair (Figure 3f). Nmass declined with 

increasing Tair, although the decline in Nmass with increasing Tair differed between treatments (Tair 

× treatment interaction, Table 3). Across sites, warming reduced the intercept and slope of the 

relationship between Tair and Nmass (Figure 3j, Table 4).  

 

Scaling of leaf N and R 

In general, we found that leaf N (area- and mass-basis) scaled positively with leaf R (area- and 

mass-basis) in both species. However, in some cases, relationships between leaf N and R 
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depended upon treatment or site (Table 5). In Avicennia, Rarea25 increased with Narea at SS but not 

NS, and Rarea25 at a given Narea was higher under warming than ambient conditions (Table 6, 

Figure 4a). Nmass and Rmass25 scaled positively although the intercept was higher in plants at SS 

(Table 5, 6; Figure 4c). 

In Spartina, the slope of the Narea – Rarea25 relationship was slightly higher at SS than NS 

(Table 5,6; Figure 4b). The positive relationship between Nmass and Rmass25 was consistent across 

treatments and sites (Table 5, 6; Figure 4d). Although temperature acclimation of R differed 

between Avicennia and Spartina, changes in leaf N explained thermal acclimation patterns in 

both species. 

 

Discussion  

Spatiotemporal patterns of leaf R, the temperature sensitivity of R (Q10), and temperature 

acclimation of leaf R have been understudied in coastal marsh and mangrove species (Duarte 

2017; Adame et al. 2018; Akaji et al. 2019, Aspinwall et al. 2021). To address this knowledge 

gap, we examined seasonal temperature acclimation of leaf R in a C4 marsh species (Spartina 

alterniflora) and C3 mangrove species (Avicennia germinans) growing under ambient and 

experimentally warmed temperatures at two sites within a marsh-mangrove ecotone. We also 

tested whether leaf N scales positively with marsh grass and mangrove leaf R over time and 

across sites and treatments. We hypothesized that both species would reduce leaf R at 25 °C 

(and/or Q10) with as growth temperatures increased over time, demonstrating seasonal 

temperature acclimation, but the decline would be stronger for the C3 mangrove species than the 

C4 marsh grass. We also hypothesized that seasonal acclimation of R would be consistent across 

treatments and sites. In Avicennia, we found that Rarea25 and Rmass
25 showed no relationship with 
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prevailing Tair at the north site, increased with Tair at the south site, and generally increased with 

experimental warming across both sites. These results indicated no temperature acclimation of 

respiratory capacity (no Type II acclimation) in Avicennia. Yet, the Q10 of R decreased as 

seasonal temperatures increased (Type I acclimation) and did so consistently across sites and 

treatments. In Spartina, Rmass
25 and the Q10 of R both declined as seasonal temperatures increased 

(demonstrating Type I & II acclimation). These seasonal patterns of temperature acclimation 

were largely consistent across sites and treatments. These results do not support the expectation 

for weaker temperature acclimation of R in Spartina than Avicennia. However, the Spartina 

results supported our expectation of convergent temperature acclimation of R over time, space, 

and temperature treatments. Although species differed in regulating respiratory capacity over 

time, sites, and treatments, leaf N scaled positively with leaf R in both species. These results 

improve our quantitative and predictive understanding of temperature controls of leaf R in 

coastal wetland species. 

 In a synthesis of studies, Slot and Kitajima (2015) found a significant downregulation of 

leaf R in response to increasing growth temperature (Type II acclimation) in 73% of the cases 

examined. This suggests that temperature acclimation of respiratory capacity is relatively 

common across species and systems – although coastal wetland plant species were not included 

in that synthesis. We expected marsh and mangrove species would generally conform to the 

patterns observed across terrestrial plant species. However, in contrast to our expectations, 

Avicennia generally increased Rarea25 and Rmass
25 with increasing growth temperatures, although 

no seasonal pattern was observed at the north site. Moreover, we found no evidence for 

convergent acclimation of respiratory capacity over time, and across sites and treatments in 

Avicennia. This contrasts with results from previous warming experiments with warm-temperate, 
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temperate, and boreal tree species growing at individual sites (Aspinwall et al. 2016, Reich et al. 

2016). This also contrasts with analyses indicating similar changes in leaf R with increasing 

temperature across space and time (Vanderwel et al. 2015). Ultimately, our results indicate that 

changes in respiratory capacity may not be easily predicted by growth temperature, at least in 

Avicennia growing at its northern range limit. 

The increase in respiratory capacity with increasing temperature in Avicennia might be 

explained by temporal variation in salinity, nutrient availability, or the inherent functional 

strategy of this species. Coastal wetlands are dynamic systems where water levels (i.e. tides) and 

salinity can vary diurnally and seasonally. Salinity depends on relative proximity to the ocean 

and freshwater inputs, seasonality of precipitation, and rates of evaporation which change with 

temperature. In our experiment, the southern site was near an inlet and thus closer to the open 

ocean while the northern site was further from the ocean and closer to freshwater inputs. This 

may have resulted in higher salinity at the southern site, particularly during the summer when 

temperatures and evaporation are high. Indeed, previous work at the southern site indicated that 

salinity was particularly high during summer (up to 60 ppt) and lower during winter (48 ppt) 

(Dangremond et al. 2020). Previous studies have also found modest increases in leaf R with 

increasing salinity, presumably due to costs associated with maintaining cellular ion gradients 

(Lopez-Hofmann et al. 2007, Aspinwall et al. 2021). Thus, the combination of warmer growth 

temperatures and higher salinity might explain why R increased with Tair at the southern site, and 

why thermal acclimation appeared constrained.  

However, averaged across sites, respiratory capacity also increased with experimental 

warming, suggesting that salinity alone is unlikely to explain the increase in leaf R with warmer 

growth temperatures. Instead, coordination between leaf R and photosynthetic capacity might 
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explain the positive relationship between growth temperature and respiratory capacity in 

Avicennia. Importantly, we found that variation in respiratory capacity (e.g. Rmass
25) over time 

and across sites and treatments was largely explained by changes in leaf N. The coupling of leaf 

N and respiratory capacity could represent enzyme limitation of respiratory capacity (Ryan et al. 

1996). However, across other studies leaf N and Rubisco carboxylation (Vcmax) are often coupled 

given that a large fraction of N is allocated to Rubisco. A new theory also indicates that 

temperature acclimation of leaf R is consistent with maintenance of ‘optimal’ photosynthetic 

capacity, where respiratory capacity increases to support processes that maintain photosynthesis 

(e.g. protein turnover, Wang et al. 2020). We hypothesize that respiratory capacity increased 

with temperature in Avicennia due to concomitant changes in photosynthetic capacity, which 

were reflected in changes in leaf N. If true, Avicennia responded to increasing growth 

temperature by also increasing photosynthetic capacity; a response which is not necessarily 

consistent with studies of photosynthetic temperature acclimation over space and time (Way and 

Sage 2008, Way and Yamori 2014, Ali et al. 2015). Further studies are required to determine 

whether the increase in R with growth temperature in Avicennia was coupled with increased 

photosynthetic capacity. 

Temporal patterns in leaf R and leaf N in Avicennia may have also been influenced by 

nutrient availability, which could vary with air and soil temperature. In general, warmer soil 

surface temperatures during summer may speed up decomposition and N mineralization (Kirwan 

and Blum 2011, Gao et al. 2014) which could increase N availability and potentially result in 

higher leaf N concentrations. Results from a fertilization experiments near our southern site have 

demonstrated that higher N availability leads to higher leaf N concentrations in Avicennia 

(Simpson et al. 2013, Dangremond et al. 2020). Although seasonal changes in N availability 
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were not quantified in our study, we did find evidence that leaf N concentrations increased with 

prevailing air temperature across both sites. Therefore, higher N availability during warmer time 

periods may have resulted in higher leaf N, greater photosynthetic capacity, and coordinated 

increases in respiratory capacity in Avicennia (Wang et al. 2020).  

Although respiratory capacity increased with growth temperature in Avicennia, indicating 

no type II temperature acclimation, some temperature acclimation did occur mainly through a 

reduction in the short-term temperature sensitivity of R, also referred to as Type I acclimation 

(Atkin and Tjoelker 2003, Slot and Kitajima 2015). This acclimation response is less common 

and results in weaker temperature acclimation than Type II acclimation, but it has been observed 

in several studies (Atkin et al. 2000, Zaragoza-Castells et al. 2007, Ow et al. 2010). Mechanistic 

explanations of Type I acclimation remain speculative; however, it has been hypothesized that a 

reduction in the temperature sensitivity of R is the result of regulatory changes in several 

respiratory enzymes (Atkin et al. 2005, Kruse et al. 2011; 2020). Other studies have identified 

positive relationships between soluble sugars and the Q10 of R (Azcón-Bieto et al. 1983, Ow et 

al. 2010) which could reflect substrate limitation of the maximum catalytic enzyme activity 

(Atkin and Tjoelker 2003). Although the cause of the reduction in the Q10 with increasing 

temperature is unclear, it is possible that high respiratory demand during summer may have 

drawn down soluble sugar concentrations in leaves which in turn reduced maximum catalytic 

activity and the temperature sensitivity of R. Whatever the explanation, our results indicate that 

Avicennia may show modest reductions in the temperature sensitivity of R as temperatures 

increase, which could mitigate rising leaf CO2 efflux as the climate warms.  

 Compared to C3 plants, C4 plants have a more complex photosynthetic apparatus 

(mesophyll-bundle sheath complex). This complexity has been hypothesized to come at a cost of 
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reduced phenotypic plasticity or lower temperature acclimation capacity in C4 plants (Sage and 

McKown 2006, Yamori et al. 2014). Yet, experimental work has found no clear differences in 

thermal acclimation responses between C3 and C4 plant species (Smith and Dukes 2017). We 

tested the expectation that Spartina would show weaker temperature acclimation than Avicennia 

and found no support for this expectation. In fact, we found that Spartina reduced Rmass
25 and the 

Q10 of R as growth temperatures increased (Type II acclimation and Type I acclimation) over 

time and across treatments while Avicennia generally showed increased respiratory capacity with 

temperature. Moreover, in Spartina, this acclimation response was consistent across sites 

demonstrating convergent acclimation to changes in growth temperature. This result aligns with 

patterns of thermal acclimation observed in tree species representing different biomes (Aspinwall 

et al. 2016, Reich et al. 2016). We conclude that Spartina, a dominant C4 marsh grass, may show 

rather consistent temperature acclimation of leaf R over space and time, which could reduce the 

sensitivity of coastal wetland (especially marsh-dominated) C fluxes to changes in temperature, 

and dampen the positive feedback between warming and rising atmospheric CO2 (King et al. 

2006, Smith & Dukes 2013, Lombardozzi et al. 2015). 

 Although temperature acclimation of R differed between Spartina and Avicennia, 

changes in leaf N (particularly, Nmass) explained temporal and spatial variation in respiratory 

capacity in both species. The relationship between leaf N and leaf R (area- and mass-based) was 

stronger for Spartina than Avicennia and was relatively consistent across treatments and sites. 

Theory suggests that temperature acclimation of R arises through the importance of respiration in 

maximizing photosynthetic capacity under natural conditions (Wang et al. 2020), where 

photosynthetic capacity is strongly influenced by concentrations of photosynthetic proteins 

which represent a large fraction of leaf N. Predictions of this theory have been validated with C3 
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plants but not C4 plants. Even if this prediction holds, our results show clearly contrasting 

responses of respiratory capacity to seasonal temperature changes in Avicennia and Spartina. 

These contrasting responses could be due to factors not directly related to photosynthetic 

pathway (i.e. C3 vs C4). Species differences in leaf N and R over time may be in part related to 

differences in nutrient acquisition or inherent differences in resource investment over seasons. 

For instance, Avicennia is an evergreen species and is known to be very responsive to N 

enrichment in these systems (Simpson et al. 2013, Dangremond et 2020). At any given time, leaf 

N may be higher when N availability is higher. In our study, Avicennia also generally responded 

to increasing seasonal temperatures by reducing LMA and increasing leaf N. Spartina is also 

responsive to nutrients (e.g. Mendelssohn 1979) and may also generally increase leaf N with 

increased N availability (e.g. Gallagher 1975). However, Spartina exhibits a strong seasonality to 

leaf development and leaf N concentrations; LMA generally increases with growth temperature 

while leaf N generally decreases with growth temperature. These distinct seasonal patterns that 

may explain the contrasting responses of leaf R to prevailing Tair between species, but also the 

close coupling of leaf N and R across species.  

More broadly, our results indicate that leaf N may be an effective predictor of foliar C 

fluxes in dominant coastal wetland species, irrespective of temperature, just as leaf N is used as a 

predictor of leaf R in land surface models that predict terrestrial C fluxes over space and time 

(Atkin et al. 2015, Fisher et al. 2014, Lawrence et al. 2019). In fact, in our species and across our 

sites, it appears that leaf N may explain more variation in leaf R than prevailing growth 

temperature. We note that coastal wetlands are not well-represented in land surface models due 

to gaps in our understanding of key processes and data limitations. The data presented here offer 
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an opportunity to improve representation and parameterization of CO2 exchange between coastal 

vegetation and the atmosphere in land surface models. 

Our results provide new information about respiratory C fluxes in marsh and mangrove 

vegetation. They suggest that C4 marsh grasses and C3 mangrove species growing together may 

show contrasting respiratory responses to temperature, yet both species show a positive 

relationship between respiratory capacity and leaf N. The data presented here may be useful in 

modelling ecological processes and physiological feedbacks for coastal marsh-

mangrove ecosystems under current and future climate warming scenarios. Future studies that 

explore plant-soil and plant-air interactions in coastal wetlands, will further advance our 

understanding of C fluxes in these systems. 
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Table 1. Results of a three-way analysis of variance testing the main and interactive effects of 
temperature treatment (T), measurement date (D), and site (S) on rates of leaf dark respiration at 
per unit area and per unit mass at 25 °C (Rarea25, Rmass25), the temperature sensitivity of R (Q10), 
and leaf dry mass per unit area (LMA) in Spartina alterniflora and Avicennia germinans. 
Degrees of freedom (df) and F-values are presented for each factor and reponse variable. F-
values with ‘*’, ‘**’ and ‘***’ are significant at P<0.05, P<0.01, and P<0.001, respectively. 
 

Species 
Dependent 

Variables 
df Rarea

25 Rmass
25 Q10 LMA 

Avicennia 

Treatment (T) 1 9.05** 6.79* 0.39 1.95 
Date (D) 5 10.00*** 10.09*** 9.88*** 13.29*** 

Site (S) 1 0.50 9.38** 19.38*** 32.77*** 

T x D 5 0.35 0.34 0.63 0.83 
T x S 1 1.92 5.27* 0.57 6.18* 

D x S 5 5.96*** 7.57*** 1.39 3.87** 

T x D x S 5 0.48 0.86 0.32 2.41* 

Spartina 

Treatment (T) 1 1.75 4.83* 2.76 0.04 

Date (D) 5 3.17* 15.67*** 4.62*** 22.57*** 

Site (S) 1 0.69 12.03*** 0.62 2.88 

T x D 5 0.58 0.51 0.73 0.54 

T x S 1 0.42 2.68 2.43 0.42 

D x S 5 2.33* 3.53** 0.82 4.29** 

T x D x S 5 0.49 0.22 0.66 0.37 
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Table 2. Results of a three-way analysis of variance testing the main and interactive effects of 
temperature treatment (T), measurement date (D), and site (S) on concentration of leaf nitrogen 
on per unit area and per unit mass (Nmass, Narea) in Avicennia germinans and Spartina alterniflora. 
Degrees of freedom (df) and F-values are presented for each factor and reponse variable. F-
values with ‘*’, ‘**’ and ‘***’ are significant at P<0.05, P<0.01, and P<0.001, respectively.  
 

Species 
Dependent 

Variables 
df Nmass Narea 

Avicennia 

Treatment (T) 1 0.83 0.05 
Date (D) 2 3.34* 0.08 
Site (S) 1 0.44 9.18** 

T x D 2 0.14 1.34 
T x S 1 0.20 3.46 
D x S 2 0.57 3.69* 

T x D x S 2 0.42 0.09 

Spartina 

Treatment (T) 1 0.41 0.02 
Date (D) 2 15.32*** 2.03 
Site (S) 1 1.82 1.23 
T x D 2 5.55** 2.20 
T x S 1 0.00 0.42 
D x S 2 0.86 1.68 
T x D x S 2 0.43 0.21 
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Table 3. The relationship between preceding 7 day daily mean temperature and leaf 
physiological traits for S. alterniflora and A. germinans at both sites, with and without 
experimental warming. Leaf respiration per unit area at 25°C (Rarea25); Leaf respiration per unit 
mass at 25°C (Rmass25); The temperature sensitivity (Q10) of (Rmass25); Leaf mass per unit area 
(LMA); leaf N per unit area (Narea); leaf N per unit mass (Nmass). Degrees of freedom (df) and F-
values are presented for each factor and reponse variable. F-values with ‘*’, ‘**’ and ‘***’ are 
significant at P<0.05, P<0.01, and P<0.001, respectively. 
 

Species 
Dependent 

Variables 
df Rarea

25 Rmass
25 Q10 LMA Nmass Narea 

Avicennia 

Air (A) 1 6.23* 26.38*** 20.81*** 44.62*** 5.80* 0.16 
Treatment (T) 1 6.85** 4.94* 0.13 0.98 0.76 0.12 
Site (S) 1 0.24 6.90** 23.80*** 23.26*** 0.42 9.04** 

A x T 1 0.72 0.04 0.14 0.19 0.50 2.84 
A x S 1 18.19*** 25.24*** 0.64 12.08*** 0.34 0.03 
T x S 1 1.44 3.89 0.22 4.62* 0.23 2.84 
A x T x S 1 0.23 0.76 0.35 2.10 0.16 0.00 

Spartina 

Air (A) 1 1.07 86.88*** 14.52*** 59.77*** 34.93*** 0.63 
Treatment (T) 1 1.59 3.02 2.17 0.08 0.06 0.00 
Site (S) 1 0.39 6.18* 1.51 0.51 2.11 1.05 
A x T 1 1.06 3.23 2.38 0.05 12.74*** 3.65 
A x S 1 0.36 2.98 1.69 3.17 0.42 3.31 
T x S 1 0.11 1.71 1.75 0.43 0.00 0.59 
A x T x S 1 1.24 0.31 1.06 0.50 0.37 0.95 
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Table 4. The relationship between preceding 7 day daily mean temperature and leaf 
physiological traits for A. germinans and S. alterniflora at both sites, with and without 
experimental warming. Leaf respiration per unit area at 25°C (Rarea25); Leaf respiration per unit 
mass at 25°C (Rmass25); The temperature sensitivity (Q10) of (Rmass25); Leaf mass per unit area 
(LMA); leaf N per unit area (Narea); leaf N per unit mass (Nmass). Slopes and intercepts are only 
shown for significant (p<0.05) relationships.  
 

Species Variable Site Treatment Intercept Slope R2 

Avicennia 

Rarea
25 

North Overall 1.169 -0.003 

0.21 
South Overall 0.350 0.033 

Both 
Ambient 0.845 0.010 
Warmed 0.927 0.010 

Rmass
25 

North Overall 3.769 0.029 

0.34 
South Overall -2.509 0.335 

Both 
Ambient 1.230 0.146 
Warmed 1.739 0.146 

Q10 
North Overall 2.508 -0.023 

0.26 
South Overall 2.758 -0.023 

LMA 
North Overall 299.52 -2.131 

0.40 
South Overall 374.68 -6.473 

Nmass Both Overall 9.493 0.288 0.12 

Spartina 

Rmass
25 

North Overall 21.34 -0.444 
0.45 

South Overall 20.12 -0.444 

Q10 Both Overall 2.525 -0.028 0.16 

LMA Both Overall 88.18 2.336 0.33 

Nmass Both Ambient 32.36 -0.7500 
0.47 

Warmed 19.31 -0.1797 
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Table 5. Results of a two-way analysis of co-variance testing the main and interactive effects of 
leaf nitrogen concentration per unit area and per unit mass (Nmass, Narea) on Rarea25 and Rmass25 in 
Avicennia germinans and Spartina alterniflora. Degrees of freedom (df) and F-values are 
presented for each factor and reponse variable. F-values with ‘*’, ‘**’ and ‘***’ are significant 
at P<0.05, P<0.01, and P<0.001, respectively. 
 

 Dependent 

Variables 

Avicennia germinans 
 

Spartina alterniflora  

Rarea
25 

 

Narea (Na) 5.77* 154.20*** 

Treatment (T) 4.18* 2.59 
Site (S) 0.17 0.00 
Na x T 0.02 0.21 
Na x S 7.54** 5.41* 

T x S 1.37 2.06 
Na x T x S 0.30 0.20 

Rmass
25 

 

Nmass (Nm) 50.73*** 51.25*** 
Treatment (T) 3.47 3.10 
Site (S) 4.51* 0.82 
Nm x T 0.36 0.03 
Nm x S 3.24 0.82 
T x S 3.47 3.46 
Nm x T x S 0.63 0.41 
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Table 6. Results of a two-way analysis of co-variance testing the main and interactive effects of 
leaf nitrogen concentration per unit area and per unit mass (Nmass, Narea) on Rarea25 and Rmass25 in 
Avicennia germinans and Spartina alterniflora. Slopes and intercepts are only shown for 
significant (p<0.05) relationships. 

 

Species Variable Site Treatment Intercept Slope R2 

Avicennia 

Rarea
25 

North Overall 1.039 0.017 

0.25 
South Overall 0.446 0.179 

Both Ambient 0.761 0.077 
Warmed 0.848 0.077 

Rmass
25 North Overall 0.179 0.267 

0.53 

South Overall 0.631 0.267 

Spartina 
Rarea

25 
North Overall 0.392 0.499 

0.74 
South Overall -0.177 0.785 

Rmass
25 Both Overall 1.835 0.568 0.51 

 

 

 

 

 

 

 

 

 

 

 

 



 43 

 
Figure1. South Site temperature, relative humidity, and vapor pressure deficit over the course of 
the study (Panels a, b, c). North Site temperature, relative humidity, and vapor pressure deficit 
over the course of the study (Panels d, e, f). Grey rectangles signify timepoints of sampling. 
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Figure 2. Means of leaf physiological traits across collection dates (2019-2020) for Avicennia 
germinans (a, c, e, g, i, k) and Spartina alterniflora (b, d, f, h, j, l) at two sites, with and without 
experimental warming. Leaf respiration per unit area at 25°C (panels a, b) Leaf respiration per 
unit mass at 25°C (panels c, d); The temperature sensitivity (Q10) of Rmass25 (panels e, f); Leaf 
mass per unit area (LMA) (panels g, h); leaf N per unit area (Narea) (panels I, j); leaf N per unit 
mass (Nmass) (panels k, l).  
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Figure 3. The relationship between preceding 7 day daily mean temperature and leaf 
physiological traits for Avicennia germinans (a, c, e, g, i, k) and Spartina alterniflora (b, d, f, h, j, 
l) at two sites, with and without experimental warming. Leaf respiration per unit area at 25°C 
(Rarea25) (panels a, b); Leaf respiration per unit mass at 25°C (Rmass25) (panels c, d); The 
temperature sensitivity (Q10) of Rmass25 (panels e, f); Leaf mass per unit area (LMA) (panels g, h); 
Leaf N per unit mass (Nmass) (panels i, j); Leaf N per unit area (Narea) (panels k, l). Gray solid 
lines signify a common relationship across sites and to warming. Black solid and dashed lines 
signify different relationships between sites. Red and blue lines are shown where differences in 
the effect of warming were consistent across sites. 
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Figure 4. The relationship between leaf N concentration and leaf respiration for Avicennia 
germinans (panels a, c) and Spartina alterniflora (panels b, d) at both sites, with and without 
warming. Leaf respiration per unit area at 25°C (Rarea25) relationship to leaf N per unit area (Narea) 
(panels a, b).  Leaf respiration per unit mass at 25°C (Rmass25) relationship to leaf N per unit mass 
(Nmass) (panels c, d).  Gray solid lines signify a common relationship across sites and to warming. 
Black solid and dashed lines signify different relationships between sites. Red and blue lines are 
shown where differences in the effect of warming were consistent across sites. 
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Chapter 2 

Long-term and short-term impacts of nutrient enrichment on photosynthetic and 

respiratory processes in black mangrove (Avicennia germinans) in North Florida 

 
Abstract 

At the global scale, photosynthesis (A) and autotrophic respiration (R) are the two largest 

physiological processes responsible for CO2 flux. The carbon (C) and nutrient cycles are 

interactively coupled, therefore by measuring the effect of nutrient enrichment on parameters of 

A and R we may gain a better understanding of plant allocation and use of C. Here we tested 

whether nitrogen (N) or phosphorus (P) inputs altered parameters of A and R in black mangrove 

(Avicennia germinans) over time, whether the application of nutrients (N or P) resulted in short-

term differences in A and R, and whether leaf age (new vs. old) affected rates of A and R 

differently between fertilization treatments. We accomplished this by repeatedly measuring 

short-term temperature responses of leaf R and CO2 response of A on N treated, P treated, and 

un-treated Avicennia over a 4-month period in situ. We found that N treated trees showed a 

short-term increase in Asat and Vcmax in response to pulse enrichment. N treated trees also showed 

a consistently high Rmass25 over time indicating a legacy effect. Across all fertilization treatments, 

old leaves had 17% lower Rarea25, 34% lower Rmass25, and 20% higher LMA than new leaves, yet 

leaf age had no consistent effect on parameters of A. These results provide mechanistic support 

for existing hypotheses of mangrove nutrition and simplify future predictions of CO2 flux and 

associated physiological feedbacks for mangrove ecosystems experiencing increased nutrient 

input.  
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Introduction 

Coastal wetland ecosystems play an important role in the global Nitrogen (N) and Carbon (C) 

cycle. In particular, mangrove forests store up to 4× more C per unit area than tropical rainforests 

(Donato et al. 2011, Alongi et al. 2014) and play a vital role in supporting the trophic relay that 

drives N transformation, use, and storage in coastal wetlands (Nagelkerken et al. 2008). 

However, continued anthropogenic pressures (e.g., agriculture, residential development, and 

recreation) have increased nutrient, especially N and P, inputs into coastal wetland ecosystems 

(Meybeck 2003, Holtgrieve et al. 2011, Ward et al. 2020). Atmospheric N deposition is also 

expected to increase at lower latitudes (Stevens et al. 2019) where mangrove vegetation is 

common and where mangrove deforestation rates are increasing (Friess et al. 2019). Increased 

nutrient inputs may impact coastal wetlands by accelerating rates of resource uptake and use or 

by changing the structure and composition of coastal plant communities (Simpson et al. 2013, 

Dangremond et al. 2020, Mozdzer et al. 2020). Nutrient additions may also have direct effects on 

photosynthesis (A) and respiration (R); key regulators of plant growth and function and the two 

largest fluxes of CO2 between vegetation and the atmosphere at the global scale (Canadell et al. 

2007, IPCC 2013). Thus, nutrient enrichment is expected to have important consequences for 

mangrove vegetation and as well as interactions between coastal vegetation and the atmosphere 

(Janssens & Luyssaert 2009, Fleischer et al. 2013, Fleischer et al. 2019). 

Coastal wetlands are generally oligotrophic, and most mangrove soils are extremely 

nutrient-poor (Kathiresan and Bingham 2001). As a result, several studies have examined how 

nutrient enrichment affects mangrove productivity (e.g. Feller 1995, Lovelock et al. 2005, Feller 

et al. 2007, Reef et al. 2010). These experiments have demonstrated that mangrove productivity 

can be N-limited (Feller et al. 2003a, Lovelock and Feller 2003, Lovelock et al. 2007, Naidoo 
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2009, Simpson et al. 2013, Dangremond et al. 2020), P-limited (Lin and Sternberg 1992, Koch 

1997, Medina et al. 2010), or both N- and P-limited (Feller 1995, Feller et al. 2003b, Lovelock et 

al. 2004, Weaver and Armitage 2020) depending upon the species and local edaphic conditions. 

What remains unclear, however, is how nutrient enrichment impacts mangrove A and R over 

both short and long timescales. New studies that examine mangrove photosynthetic and 

respiratory responses to nutrient enrichment could improve our basic understanding of nutrient 

impacts on mangrove physiology and aid predictions of nutrient enrichment impacts on CO2 

exchange between mangrove vegetation and the atmosphere.  

In situ A under natural conditions is determined by both physical (i.e. stomatal) 

limitations of CO2 diffusion and biochemical limitations to CO2 fixation and RuBP regeneration. 

The maximum carboxylation rate of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, 

Vcmax), and the maximum rate of electron transport (Jmax) required to regenerate ribulose-1,5-

bisphosphate, are two key biochemical determinants of A (Farquhar et al. 1980). Many terrestrial 

biosphere models (TBMs) rely on accurate estimates of Vcmax and Jmax to simulate C fluxes 

(Zaehle et al. 2005, Bonan et al. 2011, Clark et al. 2011, Lawrence et al. 2019). A recent meta-

analysis across hundreds of terrestrial species showed that N addition (fertilization) generally 

increases A (12.6%), leaf N per unit mass and area (18.4% and 14.3%, respectively), and 

stomatal conductance to water vapor (gs, 7.5%), with little change in water-use efficiency (Liang 

et al. 2020). Other broad meta-analyses have also found significant increases in leaf N following 

N addition (Ostertag and DiManno 2016). However, among individual studies, photosynthetic 

responses to N enrichment range from negative (Mao et al. 2018) to moderately or strongly 

positive (Teskey et al. 1994, Manter et al. 2005, Zhang et al. 2020). The effects of nutrient 

addition on A can also be transient (Gough et al. 2004). Moreover, the effects on N addition on 
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Vcmax are inconsistent across species and studies (Liang et al. 2020), even though leaf N generally 

increases with N addition and often scales positively with Vcmax (and net photosynthesis) given 

that Rubisco represents a substantial fraction of leaf N (Evans 1989, Reich et al. 1999, Wilson et 

al. 2000, Wright et al. 2004, Manter et al. 2005, Kattge et al. 2009, Walker et al. 2014). Studies 

have also found that P addition increases A in some species and systems (Warren and Adams 

2002, Li et al. 2016), and low P can limit the response of photosynthesis to increasing leaf N 

(Reich et al. 2009). P availability influences photosynthesis by affecting membrane solubility, 

NADPH, and ATP production which can in turn effect reduction of phosphoglyceric acid and 

regeneration of RuBP (Marschner 1995; Taiz and Zeiger 2010). There is some evidence that P 

scales positively with Vcmax (Domingues et al. 2010) and less so with Jmax (Walker et al. 2014). 

Only a handful of studies have examined the impacts of nutrient enrichment on mangrove 

photosynthetic processes. On the east coast of Florida, Lovelock and Feller (2003) found that N 

additions increased A in Avicennia germinans but not in Laguncularia racemosa. In Panama, 

Lovelock et al. (2004) found no effect of N or P additions on A in Rhizophora mangle. Lovelock 

et al. (2006a) found that P fertilization increased A in fringe but not dwarf Rhizophora mangle. 

Lovelock et al. (2006b) found that P fertilization increased A in Avicennia germinans in Belize, 

but not in Avicennia germinans in Florida. Fertilization can also impact intrinsic water use 

efficiency (WUE) of mangrove foliage, quantified as the ratio of A to stomatal conductance to 

water vapor (gs). Under moderate to high salinity conditions typical of coastal wetlands, N 

addition can increase WUE by increasing leaf N and C fixation when gs is low (Reef et al. 2010; 

Martin et al. 2010). Overall, the effects of nutrient enrichment on mangrove A vary among 

studies, and photosynthetic responses to N or P additions are often smaller in magnitude or not 

clearly linked with biomass responses (e.g. Lovelock et al. 2004). This fits with general patterns 
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across species where nutrient enrichment increases biomass and leaf area much more than A 

(Liang et al. 2020). However, no studies have examined how nutrient enrichment impacts Vcmax 

or Jmax in mangroves, or whether N and P have different effects on photosynthetic parameters. 

There is evidence that N additions increase leaf N concentrations in mangroves (Lovelock and 

Feller 2003, Lovelock et al. 2004, Dangremond et al. 2020) which could result in increased Vcmax 

and possibly Jmax, although the change in Jmax may depend on leaf thickness or leaf P (Walker et 

al. 2014). In general, very few studies have estimated Vcmax or Jmax on any mangrove species, 

regardless of the growth conditions (Aspinwall et al. 2021). New studies that estimate Vcmax and 

Jmax over time or under varying conditions could improve C flux estimates in coastal wetlands, 

and their representation in TBMs. 

About half of plant R comes from leaves (Atkin et al. 2007). Leaf R (measured in 

darkness as CO2 efflux) is co-limited by the supply of carbohydrates from photosynthesis, 

respiratory enzyme concentrations, and adenylate demand (Ryan et al. 1996, Atkin and Tjoelker 

2003). Leaf R is also linked with photosynthesis given that R is used to support processes that 

maintain photosynthesis (e.g. protein turnover, Wang et al. 2020). In TBMs, leaf R is estimated 

as proportion of Vcmax or is predicted based on empirical relationships between leaf N and R at a 

set measurement temperature (Atkin et al. 2015). Although there are exceptions, previous studies 

have generally found that N addition results in higher leaf N and leaf R (Brix 1971, Manter et al. 

2005, van de Weg et al. 2013). P is also an important component of respiratory enzymes and is 

needed for phosphorylation of ADP during respiration, which could explain why leaf R scales 

positively with leaf P across species and environments (Meir et al. 2001, Weerasinghe et al. 

2014, Atkin et al. 2015). However, in some fertilization experiments, leaf R does not increase 

with P addition, unless applied in combination with N (Heskel et al. 2014). In experiments with 
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mangroves, P addition may or may not result in increased leaf P concentrations (Lovelock et al. 

2004, Dangremond et al. 2020), and it unclear whether P addition effects leaf R. More broadly, 

respiratory responses to nutrient enrichment or any aspect of environmental change have not 

been widely studied in mangroves (Burchett et al. 1989, Lopez-Hoffman et al. 2007, Akaji et al. 

2019, Aspinwall et al. 2021). Likewise, it is unclear whether nutrient enrichment alters the 

temperature sensitivity of leaf R in any species.  

The purpose of this study was to determine the long-term and short-term impacts of 

nutrient enrichment (N or P addition) on photosynthetic and respiratory processes in black 

mangrove (Avicennia germinans) growing in a long-term fertilization study in a coastal wetland 

in north Florida. The study was established in 2012 and included three treatments: control, added 

N, or added P. Previous results indicated that leaf N and productivity increased with added N, 

but leaf P and productivity did not change with added P (Dangremond et al. 2020). In summer 

2020, on three dates prior to the annual addition of N or P, we measured in situ A, gs, WUE, and 

the CO2 response of A to determine Vcmax and Jmax. We also measured the short-term temperature 

response of leaf R on each date to determine respiratory capacity and the temperature sensitivity 

of R. These data were used to determine the long-term impacts of nutrient enrichment on leaf 

physiology. Then, roughly 20 days after the annual addition (pulse) of N or P, we again 

measured A, gs, and WUE, and determined Vcmax, Jmax, leaf R and the temperature sensitivity of 

leaf R. Measurements made after the pulse of N or P were made on two sets of leaves: those 

formed prior to the N or P pulse and those formed after the N or P pulse. These data were used to 

determine the response of photosynthetic and respiratory processes to the N or P pulse, and test 

whether responses differed between leaves formed before and after the N or P pulse. Given that 

Avicennia productivity at the site was primarily N-limited and N addition increased leaf N 
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(Dangremond et al. 2020), we expected modest increases in A, WUE, Vcmax, and R with long-

term N addition, and larger increases in A, WUE, Vcmax and R following the N pulse. We also 

expected that the effect of the N pulse on leaf physiology would be most apparent in leaves 

formed after the N pulse. Given that Avicennia showed no growth response to P addition at the 

site, we expected no long-term or short-term response of photosynthetic or respiratory processes 

to P addition.  

Materials and methods 

Site Description 

This study took place in the Guana Tolomato Matanzas National Estuarine Research Reserve 

(GTMNERR) on the Atlantic coast of northeast Florida, near St. Augustine. The estuarine 

vegetation in GTMNERR represents a marsh-mangrove ecotone. The southern limit of saltmarsh 

habitat converges and overlaps with the northern limit of mangrove habitat in Florida, although 

mangroves are increasingly common north of GTMNERR (Doughty et al. 2016). Our study site 

(N29°43′, W81°14′) was located roughly 20 km south of St. Augustine and just north of the 

Matanzas Inlet. Average annual precipitation at the GTMNERR reserve is 1317 mm (Chapman 

et al. 2021). Mean annual temperature (2001–2018) at St. Augustine is 20.8 °C. The highest 

monthly mean daily max temperature (July) is 31.97 °C, and the lowest monthly mean daily low 

temperature (January) is 11.13 °C (NOAA). The vegetation is dominated by low-stature, 

shrubby A. germinans trees, less than 2 m tall, with an understory of halophytic succulents, Batis 

maritima and Sarcocornia perennis. Avicennia germinans is a broadly distributed mangrove 

species native to warm-temperate, subtropical, and tropical regions of the Americas and Africa. 
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Experimental Design 

As described by Dangremond et al. (2020), 24 A. germinans trees ranging from 62 to 87 cm 

(mean = 70.7 ± 1.53 cm) in height were selected to be used for an in-situ fertilization experiment 

at the site described above. Trees were assigned to one of three treatments (8 replicates per 

treatment): control (no fertilization), added nitrogen (N), or added phosphorus (P). Due to 

methods limitations and time constraints we randomly selected 6 trees per treatment for our 

study. Treatments were randomly assigned to trees, ensuring that trees were located at least 5m 

away from each other. Trees were fertilized annually with 300 g of fertilizer [N as NH4 (45:0:0; 

N:P:K) or P as P2O5 (0:45:0; N:P:K)], with the most recent fertilization event applied during 

October 2019. A second fertilization event occurred during the middle of this experiment 

(August 17th 2020). Physiology measurements taken before August 17th 2020 were used to infer 

long-term effects of N or P addition. Measurements taken after this date were used to infer 

responses to the pulse of added N or P. Surface broadcasting was not used when applying N or P, 

as there was no way to assure that fertilizer treatments could be contained to target trees. Instead, 

nutrient enrichment was administered through two (3 cm wide x 30 cm deep) soil cores (150 g 

per core) inserted on opposing sides of the target tree. 150 g of N or P fertilizer was placed in the 

core hole before sealing the hole. For control trees, holes were cored and sealed, but no fertilizer 

was added. These methods have been used in similar fertilization experiments in Florida (Feller 

et al. 2003) and in Belize (Feller et al. 2007).  

Environmental Data 

Air temperature (Tair) and relative humidity (RH) were measured every 15 minutes at the site 

using an air temperature/RH sensor covered in a solar radiation shield (HOBO MX2302 External 

Temperature/RH Sensor, Onset Computer Corp., Bourne, MA). Mean daily air temperature 
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(mean daily Tair) of the 7 days preceding physiology measurements ranged from 26.4 ºC to 28.8 

ºC, and the maximum daily Tair ranged from 31.3 to 33.7 ºC over the experimental period 

(June-September 2020) (Figure S5). At the same study site in 2019, Dangremond et al. (2020) 

reported that pore-water salinity was generally highest during summer (60 ppt) and lower 

during winter (48 ppt).  

CO2 response of photosynthesis 

In situ rates of leaf gas-exchange were measured five times between June 2020 and September 

2020 to determine the effects of long term and pulse additions of N and P on leaf physiology of 

A. germinans. The number of measurements varied per measurement date depending on weather; 

afternoon thunderstorm are common in north Florida during summer. On each date, two portable 

cross-calibrated photosynthsis systems (LI-6800, LiCor., Inc, Lincoln NE, USA) were used to 

measure CO2 response of leaf-level net photosynthesis (A-Ci). A roughly equal number of C, N, 

and P plots were measured by each photosynthesis system on each date.  

 Both LI-6800s were fitted with a 3 × 3 cm cuvette head and a red-blue LED light source. 

For all measurements, flow rate was held constant at 500 μmol s-1. To help moderate temperature 

fluctations in the LI-6800 system, the temperature exchanger of each LI-6800 was set to the 

prevailing midday temperature. Leaf temperature (Tleaf) was measured with the built-in leaf 

temperature thermocouple and averaged 32 ± 1.5 (standard deviation) °C across all measurement 

dates. Relative humidity conditions in the chamber were controlled near ambient external 

conditions but also varied depending upon water vapor fluxes from the leaf. There was no shade 

at our site, so light conditions within the cuvette were set at a photosynthetic photon flux density 

of 1800 μmol m-2 s-1, which approximates full-sun conditions. Each CO2 response measurement 

began with steady-state measurements of light-saturated net photosynthesis (Asat, μmol m-2 s-1), 
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stomatal conductance to water vapor (gs, mol m-2 s-1), and intrinsic water use efficiency (WUE, 

umol mol-1) at a chamber reference [CO2] of 420 μmol mol-1. Leaves typically reached steady-

state within 5–10 min of being enclosed in the cuvette. 

All A-Ci measurements occurred between 9:00 and 15:00 local time and were made on 

recently mature, fully expanded, upper canopy leaves of A. germinans. The one-sided surface 

area (cm2) of leaves within the chamber was determined by measuring the length and width with 

a ruler. Leaf gas-exchange data were then back-corrected using the corrected leaf area estimate. 

A-Ci curves were constructed by measuring Asat and intercellular CO2 (Ci) at a series of reference 

[CO2]: 300, 250, 100, 50, 0, 420, 650, 800, 1200, and 1500 μmol mol-1. On the final collection 

dates (27, 28 September) we recorded A-Ci measurements (using the same methods as listed 

above) on leaves formed prior to the pulse of N or P, as well as leaves formed after the pulse of 

N or P. 

 Each A-Ci curve was parameterized using the Farquhar model of C3 photosynthesis 

(Farquhar et al. 1980) using non-linear least squared parameter estimation R version 3.2.1 (R-

Development-Core-Team, 2009) and the model was fit using the Plantecophys package 

(Duursma 2015) following the methods of Smith and Dukes (2017). The model estimates the 

maximum rate of Rubisco carboxylation (Vcmax; μmol m-2 s-1) and the rate of electron transport 

for RuBP regeneration (Jmax; μmol m-2 s-1). Vcmax and Jmax provide estimates of the biochemical 

capacity of photosynthesis. Using estimates of Vcmax from each A-Ci curve, we also estimated 

stomatal limitations (L) to photosynthesis. L was calculated following Farquhar and Sharkey 

(1982) by comparing observed Asat with the predicted rate of Asat if stomatal limitation was zero 

(i.e., Ci = Ca). The predicted ate of Asat when L = 0 was back-calculated from predicted Vcmax 

using the model of Farquhar et al. (1980). 
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Temperature response of leaf respiration 

Measurements of the short-term temperature response of leaf dark respiration (R, measured as 

CO2 efflux per unit leaf area) were conducted at five timepoints (June 21st, July 19th, August 16th, 

September 5th, September 27th). We measured the same leaves used for measurements of the CO2 

response of photosynthesis. Leaves were collected pre-dawn (04:30 – 06:00 local time) to avoid 

activation of photosynthesis. The excised leaves were placed in Ziplock bags with moist paper 

and transferred to the lab in complete darkness. Previous studies have found no effect of leaf 

removal on leaf R measurements (O’Sullivan et al. 2013; Aspinwall et al. 2017; 2019). 

Moreover, all measurements were completed the same day as leaf collection, and we found no 

evidence that leaf R changed with time since leaf removal. Leaf area (cm2) of the measured 

leaves was determined with a leaf area meter (LI-3000C, LI-COR BioSciences, Lincoln, NE, 

USA) just prior to measurements of leaf R. Leaf area data were used to calculate R per unit area 

(Rarea μmol m–2 s–1). 

Short-term temperature response curves of leaf R were completed by sealing excised 

leaves randomly in one of three infrared gas analyzers (one LI-6400XT, two LI-6800s, LI-COR, 

Inc., Lincoln, NE, USA) fitted with large chambers (LI-6400-22L or LI-6800-24, LI-COR, Inc.). 

The large chambers increased CO2 differentials (sample CO2−reference CO2) without leak 

artifacts without leak artifacts (Drake et al. 2015, Jahnke and Krewitt 2002), which improves 

measurement accuracy. For each gas analyzer, flow rate and reference CO2 of the air were set at 

500 mol s–1 and 410 mol μmol-1 respectively. Temperature response curves began by placing gas 

analyzers inside temperature-controlled growth cabinet (E41L1, Percival Scientific Inc., Perry, 

IA, USA) set at 15 °C. The block temperature of the gas analyzers was also set at 15 °C. Once 
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rates of R reached steady state (~10 min) 5 spot measurements of leaf R were logged. Once Rarea 

of each leaf was measured at 15 °C, we repeated measurements of R in stepwise fashion at a 

series of higher temperatures; 20, 27, 35 and 40C. After temperature response measurements 

were completed, leaves were dried at 70 °C for ~72 hours after which leaf dry mass 

measurements were recorded to determine leaf dry mass per unit area (LMA, g m-2). Leaf R per 

unit mass (Rmass, nmol g-1 s-1) was calculated by dividing Rarea (×1000) by LMA. 

Modelling the temperature response of respiration 

Nonlinear regression was used to model the temperature response of leaf R. Nonlinear models 

were fit using R version 3.43 (R Core Team 2017). To determine the appropriate model for our 

data, we compared the suitability of three different algorithms following the approach of 

Aspinwall et al. (2017): (1) a log polynomial function, which describes the non-linear 

relationship between natural log transformed R and Tleaf (O’Sullivan et al. 2013; Heskel et al. 

2016), (2) an exponential function with a single Q10 value which assumes that the temperature 

sensitivity of R is constant across the entire measurement temperature range (e.g. Tjoelker et al. 

2001), and (3) a modified Arrhenius function, which accounts for a non-exponential increase in 

R with increasing Tleaf (Lloyd and Taylor 1994). The polynomial function is written as:  

(1)     ln R = a + bT + cT2     or 

(2)      𝑅 =  𝑒𝑎+𝑏𝑇+ 𝑐𝑇2
 

where T is Tleaf and a is an estimate of ln R at 0 °C, b is the slope of temperature response of ln R 

at 0 °C, and c describes any nonlinearity in the temperature response of ln R with increasing Tleaf. 

The differential of Eqn 2 can be used to estimate the Q10 of R at any Tleaf: 𝑄10 = 𝑒10 ×(𝑏+2𝑐𝑇). 
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Among these algorithms, the polynomial (Equation 1) provided the best fit to our data, with a 

strong linear relationship (R2 = 0.998) between observed and predicted values of ln R, and 

residuals values normally distributed around zero with little pattern associated with increasing 

Tleaf. Thus, we used the polynomial equation to model the temperature response of R and used 

coefficients a, b and c to estimate Rarea and Rmass at 25 °C (Rarea25, Rmass25), and the Q10 of R 

(between 20 and 30 °C) for each leaf. Repeated estimates of Rarea25, Rmass25, and Q10 over time 

provide a direct way of determining the direction and magnitude of respiratory capacity 

(Aspinwall et al. 2019).  

Data Analysis 

 
All analyses were performed using R version 3.43 (R Core Team 2017). A two-way analysis of 

variance (ANOVA) was used to test the effects of measurement date, fertilization treatment 

(control, added N, added P), and their respective interaction (Date x Treatment) on 

photosynthetic and respiratory parameters (e.g. Asat, gs, Vcmax, Jmax, Rarea25, Rmass25, LMA, Q10). A 

second two-way ANOVA was used to test whether the general timing of fertilizer application 

(pre vs. post fertilization), fertilization treatment, or their interactions (Application x Treatment) 

influenced photosynthetic and respiratory parameters. A third two-way ANOVA only included 

data collected on the final date, and was used to test whether leaf age (formed prior to N or P 

pulse, formed after N or P pulse), fertilization treatment, or their interaction (Leaf Age × 

Treatment) had any effect on photosynthetic or respiratory parameters. Homogeneity of variance 

for model results were tested using Levene's and Shapiro-Wilk tests. Data were log or square 

root transformed as necessary. 
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Results 

Impacts of N and P addition on photosynthetic parameters 

Compared to the timepoint just prior to the fertilizer addition, trees in the added N treatment 

showed a modest increase in Asat following the pulse of N (+28%), while trees in the added P and 

control treatments showed less variation over time (Figure 1). Nonetheless, the effects of date, 

treatment, and their interaction on Asat were not statistically significant (Table 1). Across time 

points and treatments Asat averaged 7.9 ± 0.65 μmol m-2 s-1. gs did not differ between fertilizer 

treatments, but varied among measurement dates (Table 1). gs was highest on September 27th 

(0.12 ± 0.01 mol m-2 s-1), and lowest on July 19th (0.07 ± 0.01 mol m-2 s-1) (Figure 1). WUE did 

not differ among individual measurement dates, or among fertilizer treatments (Table 1) and 

averaged 0.09 ± 0.01 μmol mol-1. 

Vcmax and Jmax differed among measurement dates (Table 1). Vcmax was lowest on August 

16th (63.5 ± 6.4 μmol m-2 s-1) and highest on September 27th (88.6 ± 5.6 μmol m-2 s-1) (Figure1a). 

Similarly, Jmax was lowest on August 16th (100 ± 9.2 μmol m-2 s-1) and highest on September 27th 

(136 ± 8.0 μmol m-2 s-1) (Figure 1c). Compared to the timepoint just prior to the fertilizer 

addition, trees in the added N treatment showed a marked increase in Vcmax and Jmax following 

the pulse of N, while trees in the added P and control treatments showed smaller changes (Figure 

1a). Nonetheless, no significant date × treatment interactions were observed for Vcmax or Jmax 

suggesting that increase in photosynthetic capacity after fertilization was not statistically 

significant. Stomatal limitation of net photosynthesis (L) was similar across measurement dates 

and fertilizer treatments and showed not date × treatment interaction (Table 1). On average, L 

was 0.31 ± 0.03 (Figure 1). 
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Finally, we tested whether the average values for photosynthetic parameters measured 

after the N or P pulse (i.e. post-fertilization) differed from average values of photosynthetic 

parameters aggregated across timepoints before the N or P pulses. We also tested whether leaves 

formed prior to N or P pulses differed in photosynthetic parameters compared to leaves formed 

after N or P pulses. Compared to measurements taken before the N pulse, trees in the added N 

treatment showed relatively large increases in Asat, gs, Vcmax, and to some extent Jmax, following 

the N pulse (Figure 1). Trees in the added P treatment showed smaller increases in these 

parameters following the P pulse (relative to measurements taken before the P pulse), while 

control trees showed little change in photosynthetic parameters before and after the nutrient 

pulses. The apparent short-term responses of photosynthetic parameters to N (and to some extent 

P) pulses were only seen in newly formed leaves (Figure 1). Despite these trends, treatment and 

timing × treatment interactions were not significant for any photosynthetic parameter, suggesting 

that photosynthetic parameters showed no significant long-term or short-term response to N or P 

enrichment. Moreover, leaf age (prior formed leaves, leaves formed after nutrient pulses) had no 

significant effect on photosynthetic traits and did not interact with treatment (Table 3). 

Significant differences in Asat, gs, Vcmax and Jmax were only observed between the pre- and post-

fertilization time periods (Table 2). Post-fertilization (September 27th) Asat (9.40 ± 0.64 μmol m-2 

s-1) was 26% higher than Asat averaged across pre-fertilization dates (June – August; 7.43 ± 0.37 

μmol m-2 s-1). Post-fertilization gs (0.115 ± 0.010 mol m-2 s-1) was also 39% higher than pre-

fertilization gs (0.083 ± 0.006 mol m-2 s-1). Post-fertilization Vcmax (88.6 ± 5.6 μmol m-2 s-1) was 

23% higher than pre-fertilization Vcmax (72.3 ± 3.3 μmol m-2 s-1) (Figure 1b).  
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Impacts of N and P addition on respiratory parameters 

Respiratory parameters were generally consistent across treatments but varied over time (Table 

4). Rarea25 was 20% higher on September 27th (1.54 ± 0.06 μmol m-2 s-1) than September 5th (1.28 

± 0.06 μmol m-2 s-1) (Table 4, Figure 2a). Rmass25 was higher on August 16th (8.73 ± 0.65 nmol g-2 

s-1) and September 27th (8.65 ± 0.55 nmol g-2 s-1) than September 5th (6.61 ± 0.61 nmol g-2 s-1). 

LMA was higher on June 21st (222 ± 8.8 g m-2) than August 16th (178 ± 10.4 g m-2) or September 

27th (186 ± 8.8 g m-2) (Table 4, Figure 2e). Although only marginally significant (p=0.06) trees 

in the N treatment had higher Rmass25 (8.56 ± 0.47 nmol g-2 s-1) than trees in the P treatment (7.47 

± 0.46 nmol g-2 s-1) and control trees (7.24 ± 0.44 nmol g-2 s-1) averaged over time (Table 4, 

Figure 2c). There was no effect of treatment or measurement date on the of Q10 of R (Table 4, 

Figure 2g). On average, the Q10 of R was 2.39 ± 0.06.  

Leaf respiratory parameters were consistently different between leaf age classes (prior 

formed leaves, newly formed leaves). Compared to newly formed leaves, leaves formed prior to 

the fertilization event had 17% lower Rarea25 (prior leaves: 1.28 ± 0.05 μmol m-2 s-1, new leaves: 

1.54 ± 0.05 μmol m-2 s-1), 34% lower Rmass25 (prior leaves: 5.75 ± 0.52 nmol g-2 s-1, new leaves: 

8.65 ± 0.50 nmol g-2 s-1), and 20% higher LMA (prior leaves: 223 ± 6.6 g m-2, new leaves: 186 ± 

6.4 nmol g m-2) (Table 5, Figure 2b,d,f). Unlike photosynthetic traits, there were no significant 

differences between respiratory parameters measured before and after application of fertilization 

treatments (N or P) (Table 6, Figure 2b,d,f,h).  

Although N treated trees showed increased response of Asat, Vcmax, and Rd there were no 

detectable relationships between parameters of A and R.  
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Discussion 

Mangrove ecosystems have the ability to sequester and store large amounts of C, but little is 

known about how increased nutrient inputs may affect photosynthetic and respiratory processes 

that regulate patterns of C allocation, storage, and use in coastal wetland plants (Evans 1989, 

Feller 2007, Donato et al. 2011, Fernandez-Martinez et al. 2014). To address this knowledge gap, 

we examined whether black mangrove (Avicennia germinans) in a north Florida coastal wetland 

adjust their photosynthetic and respiratory capacities in response to N or P additions, and 

whether long-term physiological responses to nutrient enrichment differ from short-term 

physiological responses. We expected that N treated Avicennia would increase in situ Asat, 

photosynthetic capacity (Vcmax, Jmax) and respiratory capacity (Rarea25, Rmass25) in response to the 

N pulse (i.e. short-term response), with smaller long-term effects of N addition on photosynthetic 

and respiratory parameters. Trees at our site previously showed no evidence of P-limitation on 

aboveground productivity (Dangremond et al. 2020). Therefore, we hypothesized that P addition 

would have little short-term or long-term effect on photosynthetic or respiratory capacity. In 

addition, we tested whether responses to nutrient enrichment differed between leaves formed 

before and after the N or P pulse. We found that pulse N addition led to a short-term increase of 

photosynthetic parameters and consistently increased Rmass25 over time. These results indicate 

that photosynthetic responses to N addition may be short-lived, while respiratory responses to N 

addition may persist for longer time periods. In support of our hypothesis, we also found that P 

treatment had little short- or long-term effect on photosynthetic or respiratory parameters. Lastly, 

we found some evidence that increases in Asat and photosynthetic capacity were limited to leaves 

formed after the N pulse, although leaf age effects on photosynthetic traits were largely non-

significant. Even so, newer leaves had significantly lower LMA and higher respiratory capacity. 
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These results improve our understanding of nutrient enrichment effects on photosynthetic and 

respiratory physiology in Avicennia germinans growing near its northern range limit. 

In a synthesis of studies, Liang et al. (2020) found that N addition increased leaf A per 

unit area, gs, WUE, and Vcmax. In the present study, N treated trees showed a short-term increase 

of Asat and Vcmax in response to pulse enrichment which partially supports our hypothesis that in 

an N limited system, N enrichment would result in increased photosynthetic capacity. This 

positive relationship between N enrichment and increased photosynthetic capacity might be 

explained by the proportion of N allocated to Rubisco and other bioenergetic proteins (Evans and 

Clarke 2019). Rubisco accounts for the largest fraction of leaf protein, therefore N addition 

alleviates limitations imposed on Rubisco carboxylation (Vcmax) in an N limited system (Evans 

1989, Hikosaka and Shigeno 2009, Aspinwall et al. 2019). Previous work by Dangremond et al. 

(2020) found that leaf %N increased in response to N addition, supporting the hypothesis that 

leaf %N, photosynthetic capacity, nutrient limitations are tightly coupled in Avicennia.  

Many plant types have been shown to reduce their response to consistent nutrient 

enrichment, resulting in weaker relationships between fertilization and physiological response 

over time (Liang et al. 2020). Considering that in this study trees received nutrient enrichment 

annually over 9 years, it is plausible that the overall effect of nutrient enrichment declined as the 

trees became acclimated to this level of enrichment. It is also plausible that the ratio of fertilizer 

to total plant biomass has been reduced heavily over time, warranting a proportionally smaller 

physiological response by year 9 (Linder and Rook 1984). However, as described in Liang et al. 

(2020), the percent change in structural traits (~ 33%) and physiological traits (~ 5.4%) in 

response to N addition are not equivalent. A simple explanation for this type of response is that 

the plant is allocating N to something other than leaf level photosynthesis. There is evidence to 
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support a decoupling of leaf A and R from N driven increases in biomass (Teskey 1994). Some 

clues for simplifying the imperfect relationships between N addition, photosynthesis and 

respiration could be attributed to the storage of nonstructural carbohydrates (NSC) (Collalti et al 

2020).   

Leaf N has been shown to positively scale with capacity of leaf A and R (Reich et al 

2008, Crous et al. 2018). Our results support the hypothesis that R capacity (Rmass25), CO2 

assimilation (Asat) and carboxylation of Rubisco (Vcmax) would positively scale with each other in 

response to N enrichment. However, it is important to make a distinction between the response 

patterns of A and R. Our results showed short-term response of A to pulse additions of N but did 

not show evidence of a sustained legacy effect over time. Mitochondrial enzymes that regulate R 

require much less N than that of those that regulate A (Ghimire et al. 2017). Therefore, N 

addition may result in higher R over longer periods of time than A. This is an important result for 

future mangrove physiology studies because it presents a new gap in our understanding of how 

nutrient enrichment might illicit short-term response of A, legacy effects of R, and a possible 

decoupling of A and R over time. This result may also be useful in earth system modelling in 

coastal wetland ecosystems as eutrophication, N deposition, and mangrove expansion progress.  

Site conditions play an important role in mediating mangrove responses to nutrients (Reef 

et al. 2010). As a result of proximity (~2 miles) to the Matanzas inlet, our study site had a high 

rate of exchange and a low residence time for nutrients, a known driver of N limitation in 

mangrove ecosystems (Smith 1984; Reef et al 2010). There was also evidence that the site would 

be N limited from the growth response to N addition reported by Dangremond et al. (2020). 

Many mangrove nutrition experiments have demonstrated large increases in biomass and 

physiology related responses as a result of P addition (Feller 1995; Feller et al. 2003, Lovelock et 



 66 

al. 2006, Lovelock et al. 2007). However, just as Dangremond et al. (2020) found limited 

biomass response to P addition, we found no effect of P addition on leaf level physiology. Our 

results for P treated and control trees were highly variable which may suggest that influxes of 

organic N could be responsible for variability over time. However, as leaves aged there were 

consistent patterns of reduced levels of A and R across treatments.  

Previous studies have shown that the relationship between leaf age and overall 

physiological capacity is negative across plant types (Suzuki et al. 1987, Whitehead et al. 2011). 

Black mangrove leaf lifespan is ~16 months (consistent with many broadleaved tropical and 

subtropical evergreens), supporting our hypothesis that Avicennia would show a negative 

relationship between leaf age and physiological response to nutrient enrichment (Reich et al. 

1992, Reich et al. 1998, Suarez and Medina 2005). Our work supports this hypothesis as Rarea25, 

and Rmass25 were greatly reduced in old Avicennia leaves. We found that old leaves had much 

higher LMA and lower parameters of A and R relative to new leaves. This response might be 

driven by a reduction in leaf N allocated to Rubisco and a simultaneous increase in leaf N is 

allocated to cell wall material (Kattge et al. 2011, Onoda et al 2017). Although results of 

statistical analysis were not significant, old leaves showed reduced photosynthesis consistently 

across treatment types and time with lower Vcmax (old leaves: mean = 79.1 ± 5.6 μmol m-2 s-1, 

new leaves: mean = 87.5 ± 5.7 μmol m-2 s-1) and Jmax (old leaves: mean = 119 ± 6.7 μmol m-2 s-1, 

new leaves: mean = 135 ± 6.9 μmol m-2 s-1). Leaves formed before the N (or P) pulse showed no 

difference in response to application of fertilization indicating that an increase in parameters of A 

is only measurable in leaves formed after the N pulse, and that response is relatively short lived. 

This finding may be useful in describing similarities between relationships between leaf age, 

respiration, and photosynthesis for Avicennia, mangroves, and other coastal wetland species.  
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Our results provide new information on the short-term and long-term impacts of nutrient 

enrichment on mangrove photosynthetic and respiratory parameters. They suggest that 

alleviation of N limitation drives short term increases in A and that N addition might drive long-

term elevation of R. Our results also suggest that old mangrove leaves reduce rates of R as they 

increase LMA over time; a result found in most C3 plants. We note that coastal wetlands are not 

well-represented in land surface models due to gaps in our understanding of key processes and 

data limitations. The information presented here may be useful in modelling C cycle and nutrient 

cycle feedbacks in coastal wetland ecosystems under current and future nutrient input scenarios.  

Future studies that explore mangrove physiology of full factorial nutrient enrichment 

experimental designs (N, P, N+P) and legacy effects of nutrient enrichment across multiple sites 

will further advance our understanding of how nutrient inputs impact mangrove C exchange.  
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Table 1. Results of a two-way analysis of variance testing the main and interactive effect of 
fertilization treatment and measurement date on in situ rate of leaf net photosynthesis (Asat), 
stomatal conductance to water vapor (gs), water use efficiency (WUE), the estimated rate of 
Rubisco carboxylation (Vcmax), the maximum rate of electron transport for RuBP regeneration 
(Jmax), and stomatal limitation of net photosynthesis (L). Degrees of freedom (df) and F-values 
are presented for each factor and reponse variable. F-values with ‘*’, ‘**’ and ‘***’ are 
significant at P<0.05, P<0.01, and P<0.001, respectively. 
 

 df Asat gs WUE Vcmax Jmax L 

Treatment (T) 2 0.56 0.01 0.40 0.83 0.68 0.14 
Date (D) 3 2.57 3.60* 2.73 3.53* 2.89* 2.50 

T x D 6 1.10 0.59 0.55 0.97 0.62 0.71 
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Table 2. Results of a two-way analysis of variance testing the main and interactive effect of 
fertilization treatment and timing of fertilizer application (before versus after N or P application 
on the in situ rate of leaf net photosynthesis (Asat), stomatal conductance to water vapor (gs), 
water use efficiency (WUE), the estimated rate of Rubisco carboxylation (Vcmax), the maximum 
rate of electron transport for RuBP regeneration (Jmax), and stomatal limitation of net 
photosynthesis (L). Degrees of freedom (df) and F-values are presented for each factor and 
reponse variable. F-values with ‘*’, ‘**’ and ‘***’ are significant at P<0.05, P<0.01, and 
P<0.001, respectively. 
 

 df Asat gs WUE Vcmax Jmax L 

Treatment (T) 2 0.58 0.02 0.44 0.81 0.57 0.16 
Application (A) 1 6.35* 6.78* 0.22 5.64* 0.37 0.05 

T x A 2 2.05 1.48 0.11 2.37 0.34 0.11 
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Table 3. Results of a two-way analysis of variance testing the main and interactive effect of 
fertilization treatment and leaf age (formed prior to fertlizer pulse, formed after fertlizer pulse) 
on the in situ rate of leaf net photosynthesis (Asat), stomatal conductance to water vapor (gs), 
water use efficiency (WUE), the estimated rate of Rubisco carboxylation (Vcmax), the maximum 
rate of electron transport for RuBP regeneration (Jmax), and stomatal limitation of net 
photosynthesis (L). Degrees of freedom (df) and F-values are presented for each factor and 
reponse variable. F-values with ‘*’, ‘**’ and ‘***’ are significant at P<0.05, P<0.01, and 
P<0.001, respectively. 
 

 df Asat gs WUE Vcmax Jmax L 

Treatment (T) 2 1.74 0.03 1.14 2.70 0.79 0.00 
Leaf age (La) 1 1.26 1.66 0.39 1.43 2.87 0.77 

T x La 2 1.11 1.20 0.15 0.80 1.31 0.02 
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Table 4. Results of a two-way analysis of variance testing the main and interactive effect of 
nutrient treatment and measurement date on rates of leaf dark respiration at per unit area and per 
unit mass at 25 °C (Rarea25, Rmass25), leaf dry mass per unit area (LMA), and the temperature 
sensitivity of R (Q10) in Avicennia germinans. Degrees of freedom (df) and F-values are 
presented for each factor and reponse variable. F-values with ‘*’, ‘**’ and ‘***’ are significant 
at P<0.05, P<0.01, and P<0.001, respectively.  
 

 df Rarea25 Rmass25 LMA Q10     
Treatment (T) 2 1.45 2.91 1.57 1.81 

Date (D) 4 3.27* 2.79* 3.25* 2.42 
T x D 8 0.91 0.87 1.00 0.90 
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Table 5. Results of a two-way analysis of variance testing the main and interactive effect of 
nutrient treatment (T) and leaf age (La) on rates of leaf dark respiration at per unit area and per 
unit mass at 25 °C (Rarea25, Rmass25), leaf dry mass per unit area (LMA), and the temperature 
sensitivity of R (Q10) in Avicennia germinans. Degrees of freedom (df) and F-values are 
presented for each factor and reponse variable. F-values with ‘*’, ‘**’ and ‘***’ are significant 
at P<0.05, P<0.01, and P<0.001, respectively. 
 

 df Rarea25 Rmass25 LMA Q10 
Treatment (T) 2 0.58 0.61 0.23 0.78 
Leaf age (La) 1 13.49*** 16.46*** 16.20*** 1.61 

T x La 2 0.73 0.55 0.21 0.08 
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Table 6. Results of a two-way analysis of variance testing the main and interactive effect of 
nutrient treatment (T) and application (A) on rates of leaf dark respiration at per unit area and per 
unit mass at 25 °C (Rarea25, Rmass25), leaf dry mass per unit area (LMA), and the temperature 
sensitivity of R (Q10) in Avicennia germinans. Degrees of freedom (df) and F-values are 
presented for each factor and reponse variable. F-values with ‘*’, ‘**’ and ‘***’ are significant 
at P<0.05, P<0.01, and P<0.001, respectively. 
 

 df Rarea25 Rmass25 LMA Q10 
Treatment (T) 2 1.53 2.60 1.39 1.79 

Application (A) 1 0.92 0.01 0.85 0.45 
T x A 2 0.28 0.12 0.20 0.11 
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Figure 1. Means (± standard error) values for leaf photosynthetic parameters across collection 
dates for Avicennia germinans (panels a, c, e, g, i, k). Significant main and interactive effects of 
treatment (T) and date (D) are annotated in the upper right corner of each panel. The red vertical 
line represents the fertilization event. Signifigant main and interactive effects of fertilization 
treatment (T) and measurement date (D) on in situ rate of leaf net photosynthesis (Asat) (panels a 
and b), stomatal conductance to water vapor (gs) (panels c and d), water use efficiency (WUE) 
(panels e and f) estimated rate of Rubisco carboxylation (Vcmax) (panels g and h), electron 
transport for RuBP regeneration (Jmax) (panels i and j), and stomatal limitation (L) (panels k and 
l).  
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Figure 2. Means of leaf respiratory traits across collection dates for Avicennia germinans are 
shown in panels a, c, e, g. Significant main and interactive effects of treatment (T) and date (D) 
are annotated in the upper right corner of each panel. The red vertical line indicates the 
fertilization event. Means of photosynthetic traits Pre and Post fertilization event are shown in 
panels b, d, f, h.  Leaf respiration per unit area at 25°C (panels a and b) Leaf respiration per unit 
mass at 25°C (panels c and d); Leaf mass per unit area (LMA) (panels e and f); The temperature 
sensitivity (Q10) of Rmass25 (panels g and h).  
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Supplemental Tables and Figures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
Table S1. Log polynomial parameter estimates of a, b, and c for each Species x Treatment (W = warmed, A = ambient) x Site (North 
or South) x Date combination. Standard error of each estimate is also shown. Grey rectangles signify the dates at which leaf N 
concentration was measured.  
 

 

 October 2019 December 2019 February 2020     April 2020     June 2020    July 2020 

 a b c a b c a b c a b c a b c a b c 

S. alterniflora  

North W 
-0.3986 
±0.326 

0.0741 
±0.004 

-0.0002 
±0.000 

-0.2062 
±0.330 

0.0753 
±0.004 

-0.0003 
±0.000 

-0.0729 
±0.379 

0.0455 
±0.015 

0.0003 
±0.000 

-0.3432 
±0.380 

0.0761 
±0.012 

-0.0003 
±0.000 

0.4976 
±0.399 

0.0091 
±0.021 

0.0008 
±0.000 

-0.2591 
±0.303 

0.0548 
±0.011 

0.0000 
±0.000 

North A 
-0.6269 
±0.444 

0.0983 
±0.003 

-0.0006 
±0.000 

-0.5400 
±0.332 

0.1030 
±0.006 

-0.0007 
±0.000 

-0.6282 
±0.395 

0.0929 
±0.012 

-0.0005 
±0.000 

-0.2108 
±0.333 

0.0720 
±0.004 

-0.0002 
±0.000 

0.0839 
±0.459 

0.0437 
±0.023 

0.0003 
±0.000 

-0.1486 
±0.005 

0.0500 
±0.005 

0.0002 
±0.000 

South W 
-0.5175 
±0.395 

0.0927 
±0.009 

-0.0006 
±0.000 

-0.4064 
±0.327 

0.0672 
±0.008 

0.0000 
±0.000 

-0.5963 
±0.340 

0.0855 
±0.012 

-0.0004 
±0.000 

-0.2298 
±0.374 

0.0648 
±0.012 

-0.0001 
±0.000 

-0.2852 
±0.313 

0.0609 
±0.007 

0.0000 
±0.000 

-0.2750 
±0.294 

0.0572 
±0.007 

0.0000 
±0.000 

South A 
-0.4701 
±0.294 

0.0847 
±0.008 

-0.0004 
±0.000 

-0.4363 
±0.332 

0.0780 
±0.013 

-0.0003 
±0.000 

-0.6712 
±0.318 

0.1001 
±0.007 

-0.0006 
±0.000 

-0.6750 
±0.352 

0.0905 
±0.007 

-0.0005 
±0.000 

-0.2474 
±0.313 

0.0535 
±0.007 

0.0001 
±0.000 

0.2513 
±0.288 

0.0224 
±0.008 

0.0006 
±0.000 

A. germinans                  

North W 
-0.5076 
±0.306 

0.0232 
±0.016 

0.0008 
±0.000 

-0.4709 
±0.221 

0.0302 
±0.006 

0.0008 
±0.000 

-1.1186 
±0.245 

0.0788 
±0.011 

0.0000 
±0.000 

-0.9562 
±0.250 

0.0653 
±0.009 

0.0002 
±0.000 

-0.1130 
±0.392 

0.0232 
±0.017 

0.0008 
±0.000 

-0.1831 
±0.255 

0.0139 
±0.008 

0.0010 
±0.000 

North A 
-0.6151 
±0.270 

0.0268 
±0.012 

0.0008 
±0.000 

-0.3647 
±0.251 

0.0243 
±0.008 

0.0009 
±0.000 

-1.3228 
±0.247 

0.0846 
±0.007 

0.0000 
±0.000 

-1.0407 
±0.248 

0.0691 
±0.011 

0.0002 
±0.000 

0.5286 
±0.380 

-0.0199 
±0.020 

0.0015 
±0.000 

-0.5173 
±0.239 

0.0319 
±0.007 

0.0007 
±0.000 

South W 
-0.4381 
±0.525 

0.0431 
±0.013 

0.0003 
±0.000 

-1.3511 
±0.286 

0.0789 
±0.011 

0.0000 
±0.000 

-0.9903 
±0.251 

0.0621 
±0.009 

0.0004 
±0.000 

-1.4821 
±0.262 

0.1063 
±0.009 

-0.0004 
±0.000 

-0.2795 
±0.260 

0.0330 
±0.007 

0.0007 
±0.000 

-0.2570 
±0.308 

0.0387 
±0.008 

0.0006 
±0.000 

South A 
-0.7724 
±0.441 

0.0419 
±0.020 

0.0006 
±0.000 

-1.5348 
±0.250 

0.0755 
±0.009 

0.0001 
±0.000 

-1.3524 
±0.278 

0.0781 
±0.013 

0.0001 
±0.000 

-1.3717 
±0.221 

0.0813 
±0.007 

0.0000 
±0.000 

-0.5131 
±0.332 

0.0356 
±0.015 

0.0008 
±0.000 

-0.3717 
±0.349 

0.0451 
±0.015 

0.0006 
±0.000 



  
Figure S1. North site difference between Warmed and Ambient plots; daily mean (panel a) and 
max (panel b). South site difference between Warmed and Ambient plots; daily mean (panel c) 
and max (panel d).The green dashed lines represent the mean affect of warming over the course 
of the study.  
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Figure S2 
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Figure S3 
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Figure S4. The proportion of variance explained for each of the leaf physiological traits 
analyzed across all timepoints. Panel a shows main and interactive effects that explain the 
greatest proportion of variance. Panel b shows what main and interactive effects make up the 
“Other” section from panel a.    
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Figure S5. Maximum, mean, and minimum temperature differences over the course of the study. 
Grey rectangles signify timepoints of sampling. Green rectangle signifies fertilization.  
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