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Abstract

BACKGROUND: Fermented cocoa beans (Theobroma cacao L.) are a pivotal raw material for chocolate production. A cocktail
yeast applied in the cocoa fermentation process can promote the formation of pleasant metabolites. Saccharomyces, Pichia
and Hanseniaspora have been widely used in fermentation to improve the final product organoleptic profile, highlighting that
fermentation is a critical point for chocolate flavour precursor production. This study aims to evaluate the impact of Pichia kluy-
veri and Saccharomyces cerevisiae strains as starter cultures on the fermentation for two cocoa hybrids, FA13 and CEPEC2002.

RESULTS: During fermentation processes, volatile organic compounds (VOCs) and protein profiles were assessed. Chocolates
produced were also assessed regarding the presence of VOCs. Eighty VOCs were identified using gas chromatography coupled
tomass spectrometry analysis. Mass spectrometry provided the protein profile evolution during fermentation and showed that
the profiles changed with inoculation type (spontaneous versus inoculated fermentation). Chocolate obtained from FA13 inoc-
ulated with S. cerevisiae strain contained a greater amount of organics acids, being categorised as sourer than chocolate pro-
duced by spontaneous fermentation of FA13. CEPEC2002 inoculated with S. cerevisiae strain in co-culture with P. kluyveri
strain generated less sour and sweeter chocolate than spontaneous fermentation only.

CONCLUSIONS: Chocolates from inoculated assays with starter cultures were more accepted by evaluators, highlighting that
P. kluyveri and S. cerevisiae influence the composition of VOCs. Besides, protein profiles also changed throughout fermentation.
Further investigation should be conducted to clarify protein degradation dynamics during inoculated fermentations to define
which of the microbial cultures positively affect the chocolate sensory characteristics.
© 2021 Society of Chemical Industry
Supporting information may be found in the online version of this article.
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INTRODUCTION
Cocoa beans are a pivotal raw material for many food products
such as cocoa paste, butter, powder, liquor and chocolate.1 Over-
all, global food industries direct the majority of cocoa bean yield
to chocolate manufacture, which accounts for more than 45% of
output.2 This is due mainly to widespread chocolate consumption
with large growth potential. In 2020, the global chocolate market
was forecast to reach USD137.12 billion.2 Moreover, by 2026,
growth is expected to reach USD189.89 billion.2 For that, it is of
utmost necessity to improve and control the processing of each
step of the chocolate production chain seeking to meet the mar-
ket sensorial requirement demands.
High-quality chocolate production is directly reliant on an effi-

cient fermentation process since flavour precursors are formed
in this step. Before fermentation, cocoa bean is astringent and bit-
ter, and therefore unfeasible for post-harvest processing
(e.g. roasting and conching steps).3

Generally, cocoa fermentation is conducted spontaneously by
the action of natural microbiota.4 Under uncontrolled operating
conditions, these microorganisms can be provided by contact
with operators' hands and tools. Besides, microorganisms are nat-
urally present on the surface of cocoa pods.5 In spontaneous

fermentation, a random fluctuation in inoculum is expected, since
there is no real control of the natural microbiota composition har-
boured by each cocoa breed or of the microbiota that can be
added by external factors. Hence, the fermentation process can
be subjected to variations.6

Conversely, controlled fermentation processes use a defined
cocktail of microorganisms, optimising the fermentation
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timeframe, and minimising the presence of spoilage organisms.
The use of a standardised process provides a feasible condition
to achieve a high-quality product.6

The microorganism dynamic of cocoa bean fermentation is
complex, and thus is essential broaden knowledge of the role of
each microbial group. The main microbial groups found in fer-
mentation processes are yeasts, lactic acid bacteria (LAB) and
acetic acid bacteria (AAB).6 Yeasts are dominant in the early stages
and, subsequently, are surpassed by LAB and AAB.6–9 The func-
tional roles of LAB and AAB in cocoa bean processing have been
much discussed,10–12 but are not the focus of this study.
Saccharomyces cerevisiae has been widely applied as a starter

yeast in the fermentation of cocoa beans, either alone in the pro-
cess13 or in co-culture with other yeasts such as Candida, Hanse-
niaspora (anamorph Kloeckera), Pichia and Torulaspora.14–17

The real fermentation takes place in the mucilaginous fruit pulp
that surrounds the cocoa beans. This sugar-rich substrate boosts
yeast growth, triggering alcoholic fermentation of the pulp sugars
into ethanol and also pectinolytic enzymes.6

Proteolytic reactions inside the beans during fermentation are
responsible for releasing small peptides and free amino acids con-
sidered as flavour precursors of the final produced chocolate.18 In
addition, esters and higher alcohols produced by yeast during fer-
mentation have been reported, potentially contributing to the
volatile compound admixture.19

Various volatile organic compounds (VOCs) such as carboxylic
acids, esters, aldehydes, alcohols and ketones that are produced
during fermentation influence directly the chocolate sensory attri-
butes.18,20 Microbiota strains involved, proteins and VOC profiles
released during the fermentation process will be crucial factors
for the production of chocolate of high quality.13,15,16,18,20

Previous studies have investigated the influence of yeast inocu-
lation on the volatile and non-volatile composition, microbial
community and sensory profile of chocolate.8,9,20,21 A proper
understanding of the microbial dynamic in cocoa fermentation,
mainly the role of yeasts, must be broadened. Despite this, up to
now a microbial cocktail suitable as a starter culture for applica-
tion in chocolate production has not been defined and
marketed.10

The study presented here aimed to use Pichia kluyveri CCMA-
UFLA 0237 and Saccharomyces cerevisiae CCMA-UFLA 0200 strains
as starters for fermentation of cocoa beans from the hybrids FA13
and CEPEC2002, and to evaluate the sensorial characteristics of
chocolate produced in relation to the physicochemical changes,
such as protein profile combined with VOCs.

MATERIALS AND METHODS
Sampling, inoculation and fermentation
The field experiments were conducted at Igrapiúna, BA, Brazil.
Ripe cocoa beans (Theobroma cacao L.) from CEPEC2002 and
FA13 hybrids were harvested from September to December
2014. Physical characteristics of each hybrid are presented in
Table S1 (supporting information).
After harvesting, cocoa pods from CEPEC2002 and FA13 hybrids

weremanually opened with amachete, and the beans were trans-
ferred to the fermentation site. The fermentation began approxi-
mately 3 h after the pods were broken and was performed in
0.06 m3 wooden boxes; this point was considered as T0 of fer-
mentation.22 Each fermentation batch included 100 kg of cocoa
beans. From these, 25 g of each hybrid was analysed in triplicate.

Fermentations were assessed using inoculation of CEPEC2002
with S. cerevisiae CCMA-UFLA 0200 in co-culture with P. kluyveri
CCMA-UFLA 0237 and FA13 with S. cerevisiae CCMA-UFLA 0200
as single inoculum. Four fermentations were conducted:
CEPEC2002 SP (S. cerevisiae and P. kluyveri), CEPEC2002 (control/
spontaneous fermentation), FA13 S (S. cerevisiae) and FA13 (con-
trol/spontaneous fermentation).
Both S. cerevisiae and P. kluyveri strains were obtained from

CCMA-UFLA Culture Collection (Lavras/Brazil, WDCM 1083).
S. cerevisiae CCMA-UFLA 0200 is commercialised by LNF (CA11)
and was assessed according to the manufacturer's instructions.
Based on this, S. cerevisiae was mixed in solution to reach a popu-
lation of approximately 107 cells per gram of cocoa. P. kluyveriwas
grown on yeast extract–peptone–dextrose broth (10 g L−1 yeast
extract; 20 g L−1 peptone; 20 g L−1 dextrose) at 30 °C and repli-
cated every 24 h. The cells were recovered by centrifugation
(11 000 × g, 10 min) and re-suspended in 1 L of sterile peptone
water (1 g L−1 peptone; Himedia, Mumbai, India). This solution
was applied to cocoa fermentation, reaching a concentration of
approximately 105 cells per gram of cocoa.23

The fermentations were performed in triplicate, with the ana-
lyses being performed every 24 h during 6 consecutive days
(144 h). All samples were taken approximately 40 cm from the
surface of the centre of the fermenting cocoamass, placed in ster-
ile plastic pots and stored at−20 °C. The fermentation results rep-
resent the mean ± standard error of three independent
experiments.

Analysis of VOCs using gas chromatography coupled to
mass spectrometry
The headspace–solid-phase microextraction (HS–SPME) tech-
nique combined with gas chromatography–mass spectrometry
(GC–MS) was used for the analysis of VOCs from cocoa sam-
ples.7,23 Analyses were performed for each sample from the
beginning (0 h) and at the end of the fermentation process
(144 h). Extraction and analysis conditions were applied as previ-
ously described by Moreira et al.21.
VOCs from each headspace analysis were defined by integrating

the peak areas of all the identified compounds. The relative per-
centages of individual compounds were calculated from the total
contents of VOCs in the chromatograms.24

Determination of protein profiles
Purification of protein samples
Before conducting matrix-assisted laser desorption ionization
time-of-flight (MALDI-TOF) MS analysis, samples from the begin-
ning and end (0 and 144 h) of each fermentation were subjected
to extraction of lipids and polyphenols. This purification allowed
removal of interfering substances such as lipids or phenolic com-
pounds. Lipids were extracted from cocoa beans (ca 6.0 g) that
were crushed with liquid nitrogen and then extracted with
n-hexane in a Soxhlet system as previously described by Voigt
and Biehl.25 After 6 h, lipid fraction was obtained using a rotary
evaporator.
For polyphenol extraction, an acetone powder of defatted

cocoa beans was obtained as previously reported.21 Each sample
(3 g) was successively treated with 70% and 80% aqueous ace-
tone, and 60 mL of neat acetone (sufficient to cover the sample).
In each step, acetone suspensions were then supplemented with
ascorbic acid (5 mmol L–1). Each mixture was stirred for 20 min
using a vortex and then centrifuged at 30 000 × g for 20 min at
4 °C for recovering the pellet.
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MALDI-TOF MS analyses of proteins
After the lipid and polyphenol extraction, each sample (0.5 g) was
crushed with a mortar and pestle using liquid nitrogen until a fine
powder was obtained. Each sample was transferred to tubes con-
taining 2 mL of solution A composed of water–acetonitrile–
trifluoroacetic acid (50:47.5:2.5 by volume) that were immediately
stirred using a vortex for 10 min. To improve protein extraction,
glass beads were used. Tubes were centrifuged at 17 000 × g for
2 min at 4 °C and protein concentration in the supernatant was
assessed by Bradford's method.26

Suspensions (1 μL) were transferred to the MALDI-TOF sample
plate (Bruker Daltonics, Bremen, Germany) and 1 μL of saturated
matrix solution of ⊍-cyano-4-hydroxycinnamic acid prepared with
solution A described above was added and mixed.27–29 Spectra
were acquired with a MALDI-TOF Microflex LT (Bruker Daltonics,
Bremen, Germany) using the mass range from 2000 to 20 000 Da.
Calibration of the MALDI-TOF equipment was performed using

freshly in situ extracted ribosomal proteins of E. coli strain
DH5-alpha, as previously described by Matos et al.30 and Paziani
et al.31 Cells of E. coli DH5-alpha were grown on nutrient agar
medium (Merck) at 37 °C for 20 h. Briefly, fresh E. coli DH5-alpha
biomass was transferred toMALDI sample plate andMALDI matrix
solution was added and mixed. To evaluate reproducibility, each
sample was applied in triplicate.
Raw spectra mzXML data were pre-processed and analysed

using Mass-up software, following a previously published proto-
col.32 Treatment of spectral data involved establishing parameters
as previously described by Moreira et al.33

Sensorial analysis
Dried cocoa beans from different hybrids were used for chocolate
production and the final moulded chocolate composed of 70%
cocoa was wrapped and kept at 4 °C until sensory analysis. Sen-
sory analyses of chocolates obtained from controls and inocu-
lated fermentations were evaluated using a consumer
acceptance test followed by a check-all-that-apply (CATA) ques-
tionnaire. Seventy-one people over 18 years old (59% female
and 41%male), non-professional tasters, participated in the CATA
test. Participants were often untrained consumers of dark
chocolate.
Consumers indicated in the acceptance test their satisfaction

regarding each sample using a 9-point hedonic scale (1 = dislike
extremely and 9 = like extremely).34 In the CATA questionnaire
the consumers evaluated seven chocolate sensorial attributes
(astringent, bitter, coffee, fruity, nutty, sour and sweetness) and
selected those considered appropriate to describe each chocolate
sample. Tests were carried out as previously described by Batista
et al.19

Statistics
All statistical analyses were performed using SISVAR 5.1 software
(Federal University of Lavras, Department of Statistics, Lavras,
Brazil). Analysis of variance (ANOVA) was used for the data
obtained from both the acceptance testing and protein quantifi-
cation analysis. Test of Tukey (5% significance level) was
employed to compare the means.
To establish the agglomerative hierarchical clustering (AHC),

XLSTAT software (version 7.5.2) was used. AHC was obtained
using results of Biomarker Discovery analysis (presence and
absence of ion peaks). Pearson correlation coefficient was used
for showing similarities among samples.

RESULTS
Chemical changes during fermentation
Temperatures of inoculated fermentations increased rapidly over
time, ranging from 25 °C at 0 h to 48 °C at 96 h (Fig. 1). A sharp
increase in temperature occurred between the second and third
days. The FA13 inoculated fermentation (FA13 S) showed a maxi-
mum temperature at 96 h (48.1 °C). After 72 h, a continues and
slower rise of temperature was observed in all fermentation treat-
ments, mainly for CEPEC2002 SP and FA13 S. All fermentations
exhibited a plateau (120 h) with temperatures up to 47.5 °C.

Volatile organic compounds
A total of 80 different VOCs were identified using HS–SPME
GC–MS analysis. These compounds were identified as 9 acids,
22 alcohols, 26 aldehydes and ketones, 19 esters and 4 other com-
pounds (including pyrazines, pyrroles and terpenes) (Table 1).
The distribution of the 80 VOCs varied according to the sample

evaluated. At the beginning of fermentation, a total of 31 com-
pounds were identified in both spontaneous and inoculated fer-
mentations of CEPEC2002 hybrid. The profiles of aldehydes,
ketones, pyrazines and other esters were closely similar for both
treatments with CEPEC2002 and FA13 hybrids.
Among the VOCs, some of the common compounds identified

were flavour-desirable ones, such as 3-methyl-1-butanol,
2,3-butanediol and 2-heptanol. Off-flavour acid compounds such
as isobutyric acid, isovaleric acid and propanoic acid were also
identified at the end of both fermentation processes. Conversely,
phenylethyl alcohol, 1-butanol and ethyl benzoate were observed
exclusively in CEPEC2002 SP. Other volatiles such as acetic acid
were detected in the chocolates as well in T0 of CEPEC2002 SP
and FA13 S fermentations.
FA13 S presented 40 compounds at the beginning, while in the

FA13 control were found 48 compounds. However, the numbers
of VOCs at the end of the fermentation process (144 h) increased
for all samples. In detail, 46 compounds for CEPEC2002 SP, 43 for
CEPEC2002 control, 42 for FA 13 S and 58 for FA13 control were
found.
Regarding both hybrids, the profiles of aldehydes, ketones, pyr-

azines and esters were very similar. Despite the similarity in the
presence/absence profiles, the percentages of volatile com-
pounds were different, fluctuating throughout the fermentation.
Acid and ester groups increased, while alcohols, aldehydes and

Figure 1. Evolution of temperature during fermentation under different
conditions. CEPEC2002 ( ), FA13 ( ). Inoculated (CEPEC2002 SP and
FA13 S, continuous line) and spontaneous (CEPEC2002 and FA13, dotted
line) fermentations. Mixing ( ) of the mass was performed at 48 and 72 h.

Influence of S. cerevisiae and P. kluyveri on chocolate flavour www.soci.org

J Sci Food Agric 2021; 101: 4409–4419 © 2021 Society of Chemical Industry wileyonlinelibrary.com/jsfa

4411

http://wileyonlinelibrary.com/jsfa


Table 1. VOCs identified by HS–SPME GC–MS during cocoa beans fermentation from 0 h to 144 h, and in chocolate samples (Ch), and reference
flavour for compounds. Fill box means presence and open box absence of the compound
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Table 1. Continued
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ketones decreased in different proportion for all samples, as
shown in Fig. 2.
Concerning the chocolate samples, 29 compounds were identi-

fied in spontaneous fermentations (CEPEC2002 and FA13). Choc-
olates from CEPEC2002 inoculated with a mix of the two yeasts
showed 30 identified compounds, while chocolates produced
from inoculated FA13 presented a total of 35 VOCs. The occur-
rence of acids, esters and other compounds (pyrazines, pyrroles
and terpenes) gradually increased during the whole process, from
fermentation to chocolate, for all samples; while the occurrence of
alcohols, aldehydes and ketones decreased, as observed in Fig. 2.

MALDI-TOF MS: protein degradation kinetics and
clustering
Protein extracts were quantified using Bradford's method and the
results are presented in Table 2. For all fermentations, protein con-
centrations decreased approximately half way from the beginning
to the end of fermentation. The greatest protein degradation was
observed in the CEPEC2002 spontaneous fermentation, a reduction
of 0.42 mg of protein per millilitre of extract. Protein samples were
then analysed using the MALDI-TOF MS technique. Mass spectra
obtained for each sample allowed the determination of minimum
and maximum molecular masses (m/z) and the total mass peaks
for each sample (Table S2, supporting information).

The peak matching operation in Mass-up software generated a
list with 131 ion peaks of different m/z values (data not shown).
Only 3 out of 131 peaks were common among all samples (m/z
2818.716, 4195.56 and 9538.966). Ion peaks with mass values
m/z 2723.138, 3127.244 and 3735.043 were found only in
CEPEC2002 inoculated with S. cerevisiae and P. kluyveri.
A greater number of ion peaks with different m/z values was

observed for FA13 S (2103.681, 2302.024, 2879.490, 2929.855,
3256.854, 3421.062 and 4797.277). In Fig. 3 can be observed a
clustering in terms of similarity of the samples using data of pres-
ence and absence of the generated peak list in Mass-up software.

Sensorial analysis
Both the acceptance test and CATA questionnaire allowed differ-
entiation between the chocolates produced from spontaneous
and inoculated fermentations. The parameters used in CATA
questionnaire analysis were focused for determining if the fla-
vours of the chocolates were bitter, sweet, coffee and nutty.
Judges indicated which attributes better described the chocolate
samples, and the results are shown in Fig. 4.
Although there were no significant differences (P < 0.5, by

Tukey's test) between samples from inoculated (CEPEC2002 SP
and FA13 S) and non-inoculated fermentations (CEPEC2002 and
FA13), pleasant notes were predominantly perceived in choco-
lates from CEPEC2002 SP and FA13 S.

Table 1. Continued
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Samples from CEPEC2002 SP were described as bitter and
sweeter, with a lower perception of an undesirable sour taste. In
contrast, the chocolates from FA13 S were perceived as sourer,
fruity, sweetness and less astringent than chocolates from sponta-
neous fermentation.

DISCUSSION
Temperature is a driving factor for chocolate manufacture. This
parameter may fluctuate due to metabolic reactions carried out
by microbiota harboured in cocoa beans.35 Temperature changes
were detected for all the various fermentations performed in the
present study. However, a considerable increase in temperature
was noted between 48 and 72 h in inoculated fermentations.
The addition of a yeast cocktail may have potentiated alcoholic

fermentation of the pulp sugars, producing ethanol. This conse-
quently potentiated the next reaction in which AAB oxidize the
alcohol formed, first into acetic acid and then to CO2 and H2O.

6

Figure 2. VOCs identified using HS–SPME GC–MS during cocoa bean fermentations for (A) 0 h and (B) 144 h and chocolate samples (C) of CEPEC2002 SP
( ), CEPEC2002 control ( ), FA13 S ( ) and FA13 control ( ).

Table 2. Protein quantification by Bradford's method for inoculated
and spontaneous fermentations at beginning and at end of process

Sample Extract (mg mL−1)

CEPEC2002 SP 0 h 0.71 ± 0.01a

CEPEC2002 SP 144 h 0.39 ± 0.01b

CEPEC2002 0 h 0.76 ± 0.05a

CEPEC2002 144 h 0.34 ± 0.01b

FA13 S 0 h 0.73 ± 0.00a

FA13 S 144 h 0.38 ± 0.05b

FA13 0 h 0.64 ± 0.03a

FA13 144 h 0.33 ± 0.03b

In each hybrid, values followed by different letters are different at the
5% level of significance by ANOVA test.
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This exothermic reaction can lead to rising cocoa bean mass heap
temperature.6 Also, a temperature increase occurred simulta-
neously with performing a turning ofbean mass (e.g. 48 and
72 h). Aeration stimulated the exothermic reactions carried out
by aerobic AAB.36

Addition of a starter yeast cocktail can drive pleasant metabolites
in raw cocoa. Someof the volatiles found in inoculated samples have
been assigned to P. kluyveri metabolism (e.g. benzaldehyde,
1-butanol, phenylethyl alcohol) and S. cerevisiae metabolism
(3-methyl-1-butanol, 2-phenylethanol, 2-pentanone).13

As is evident from Table 1, some identified alcohols are responsible
for conferring sweet, fruity, malty, honey and caramel flavours to the
cocoa final product.7,37,38 In the present study alcohols with pleasant
notes, such as 2-phenylethanol, 2,3-butanediol, 2-heptanol andbenzyl
alcohol, have been detected.
Conversely, the occurrence of some VOCs (e.g. phenol, 2-ethyl-

3,5-dimethylpyrazine, ethyl heptanoate and so forth) that may
confer unpleasant flavour must be avoided.7 Increasing acid con-
centration during the fermentation process can generate percep-
tions of sour taste (Fig. 2). Chocolate from FA13 S contained a
higher number of organic acids identified by GC–MS (Table 1),
which may have given rise to the sour characteristic described
by judges (Fig. 4). On the other hand, chocolate from CEPEC2002
SP had a decreased amount of acids, which could be reflected in
the sour taste perception (Fig. 4). Overall, the inoculation process
improved the chocolate sensorial qualities, as translated in choc-
olates being judged more acceptable (Table 3).
Several studies showed that yeast inoculation in cocoa fermen-

tation modifies the chemical composition of fermented beans
and consequently the chocolate sensorial profiles.21,39,40 Batista
et al.19 reported a yeast cocktail applied in cocoa fermentation
(S. cerevisiae, P. kluyveri and Hanseniaspora uvarum). Yeast inocula-
tion accelerated carbohydrate consumption and ethanol

Figure 3. AHC based on presence and absence of mass peaks with different m/z values.

Figure 4. Results of CATA questionnaire analysis regarding the flavour of chocolates produced with spontaneous fermentation (solid line) and fermen-
tation with a yeasts starter culture (dashed line). (A) CEPEC2002 and (B) FA13.

Table 3. Scores of acceptance test for chocolate samples of each fer-
mentation, with and without inoculation

Chocolate sample Acceptance test

CEPEC2002 SP 7.27a

CEPEC2002 6.79b

FA13 S 7.32a

FA13 6.83b

Values followed by the same letter in the same row are not different at
the 5% level of significance by Tukey's test.
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production during the process. Also, judges reported stronger
coffee and sour attributes of chocolate produced from the inocu-
lated assay.19

According to previous work, S. cerevisiae and P. kluyveri probably
inhibit the growth of another yeast (H. uvarum) used as inoculum.
This was justified based on the ability of S. cerevisiae and P. kluyveri
in producing toxins against other yeast genera.41 Furthermore,
other studies have mentioned that VOCs play a key role in micro-
bial interaction avoiding a growth of competitor microorgan-
isms.42,43 Understanding VOCs released during cocoa
fermentation would also enlighten microbial succession that
occurs during this process.
Crafack et al.40 analysed the impact of starter cultures on sen-

sory attributes of chocolate. Fermentation inoculated with
P. kluyveri in association with Kluyveromyces marxianus produced
chocolates characterised as fruity, acid and bitter. P. kluyveri is
considered a highly aromatic yeast, while S. cerevisiae, besides
producing aromatic compounds, is considered a large alcohol
producer and highly resistant to environmental conditions
(e.g. pH, temperature, ethanol concentration).4

The proper performance of the fermentative process is pivotal
for downstream steps (e.g. drying, roasting and conching) and
hence for flavour compound formation.44 Pyrazine compounds
are formed mainly during the cocoa bean roasting process due
to Maillard reaction. Moreover, pyrazine production has also been
linked to Bacillus strains.45

Tetramethylpyrazine and trimethylpyrazine have been detected
in all chocolate samples, although during fermentation (0 and
144 h) these compounds were not detected (Table 1). Tetra-
methylpyrazines have been reported in cocoa aroma, being
related to pleasant flavour notes (e.g., nutty, roasted and choco-
late).39 The absence of Bacillus spp. and the temperatures reached
in the fermentation have been reported as possible reasons for
the absence of these compounds.46

The aroma admixture which characterises chocolate is not
formed only by the presence of volatile compounds. As men-
tioned previously, the onset of proteolytic processes inside the
beans occurs after embryo death due mainly to yeast action.
Some studies confirmed the presence of endoprotease and car-
boxypeptidase.47,48 Both these proteases are composed mainly
of albumin and vicilin-class (7S) globulin, which can degrade the
majority of protein content inside beans during fermentation.49,50

Free amino acids and hydrophilic peptides derived from the
vicilin-class (7S) globular storage protein are necessary for the for-
mation of the cocoa-specific flavours during the roasting
process.51,52

In the present study, as an effect of the proteolytic processes
inside the beans, the content of total protein decreased during
all fermentations, both inoculated and spontaneous ones
(Table 2). Furthermore, initial and final times of fermentation
showed different protein profiles, as presented in Table 2.
Using the MALDI-TOF MS technique, it was possible to deter-

mine more precisely the pool of different peptide molecular
masses and generate more adequate protein profiles. The
MALDI-TOF MS technique delivered only qualitative information
about proteins. Hence the lack of quantification of each ion peak
did not allow an in-depth determination of the protein degrada-
tion dynamics. However, in agreement with sensorial analysis
results, the yeast inoculation triggered modification in protein
profiles.
According to the results observed in the AHC graph (Fig. 3), it

can be possible to identify similarities among protein profiles of

the inoculated fermentations at the end of the process (144 h).
In addition, differences between the fermentation at 0 h can be
explained by microbiota intrinsic to each hybrid. Overall, to clarify
the influence of the protein/peptide profiles and VOCs on the final
chocolate flavour, a clear need for exhaustive analysis with com-
plementary techniques such as MALDI-TOF MS/MS is here
highlighted.
This study showed that inoculation with P. kluyveri and

S. cerevisiae yeast starter can influence the composition of VOCs
and sensory profile of chocolates, enhancing the cocoa quality.
Moreover, MALDI-TOF MS results corroborated that protein pro-
files also changed with fermentations.
Regarding the results of the CATA questionnaire, use of

S. cerevisiae CCMA-UFLA 0200 as single inoculum showed a
greater effect on changing chocolate sensory attributes.
Although, based on the scores of the acceptance test, both choc-
olates produced from inoculated fermentations were most appre-
ciated by judges.
A further in-depth investigation would be necessary to under-

stand the modulation of each VOC throughout the fermentation
process, as well as the protein degradation dynamics during inoc-
ulated fermentation.
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