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Abstract: Polyelectrolytic complexation has stood out due to its application in the development of
drug delivery systems using biopolymers as raw materials. The formation of complexes between
cashew gum and chitosan can be intermediated by cross-links, mediated by the action of the sodium
tripolyphosphate crosslinking agent. These polymers have been used in the nanotechnological devel-
opment of formulations to protect peptide drugs, such as insulin, allowing their oral administration.
In this work, we describe the development of polyelectrolytic complexes from cashew gum and
chitosan as biopolymers for oral administration of insulin. The obtained complexes showed a mean
particle size of 234 nm and polydispersity index of 0.2. The complexes were 234 nm in size, PDI 0.2,
zeta potential −4.5 mV and 22% trapping. The obtained complexes demonstrated considerable and
promising characteristics for use as oral insulin delivery systems.

Keywords: Anacardium occidentale L.; cashew gum; chitosan; polyelectrolyte complex; insulin; Dia-
betes mellitus

1. Introduction

The use of biopolymers for the production of drug delivery systems is receiving
increasing attention because of their specific attributes in the production of nanoparticles [1].
Such interest is attributed to their degradability, biocompatibility and non-toxic profile.
Besides this, when combined with other polymers, a range of structures, such as gels,
layer-by-layer films, excipients and/or even nanometric scale drug delivery systems, can
be obtained with improved properties when compared to synthetic polymers [2–5].

Cashew gum (CG) is a polysaccharide extracted from the exudate of the species Anac-
ardium occidentale L., popularly known as cashew, a tree widely cultivated in the regions of
northeastern Brazil and some areas of the African continent [6,7]. Its structural composition
has a variety of monosaccharides, differing in quantities and proportion by repeated units
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of β-D-galactopyranose (72%), α-D-glucopyranose (14%), α-L-arabinofuranose (4.6%), acid
β-D-glucuronic (4.5%) and α-L-ramnopyranose (3.2%) [8].

The presence of available groups of glucuronic acids and hydroxyls in its framework,
even in small percentages, adds a negative surface charge to the material, making it possible
to carry out reactions with different polymers through different molecular interactions [9].
CG shows promising properties to be used in the formation of layer-by-layer films applied
to nanobiomedical devices [10], as Pickering emulsions stabilizers [11], in aceclofenac
toothpastes [12] and also showing antinociceptive and anti-inflammatory activity [13].

The characteristics present in the conformation of CG can be added to those of other
polymers, such as chitosan (CH) [14]. CH is obtained by deacetylation of chitin, present
in the shells of insects, crustaceans and in some fungi [15]. It is a biopolymer with a
linear conformation structure also of repeated units of β-(1–4) N-Acetylglycosamine and
D-Glucosamine [15], and it has several positively charged amine groups in its structural
composition [16,17]. The polyelectrolytic complexation method is a technique in which
biopolymers can interact spontaneously from differences in their charges, by electrostatic
interactions, hydrogen bonds and ionic bonds, with the use of organic solvents or exposure
to high temperatures not being necessary [18–20]. Peptide drugs, such as insulin, play
important roles in a range of biological processes and reactions, being of great importance
for glycemic control in patients affected by the diabetes mellitus pathology [21]. Insulin
is usually administered subcutaneously, which can result in constant discomfort in its
use and may be subject to incomplete distribution. However, due to the physicochemical
features of the molecule and biopharmaceutical characteristics, the subcutaneous route
still constitutes the main form of treatment [22]. A possible alternative to overcome the
limitations of this drug is the use of polyelectrolytic complexes [1,4]. Therefore, the present
study aims to produce polyelectrolytic complexes through the interaction between GC and
CH, intermediated by the use of the reticulating agent sodium tripolyphosphate (TPP).

2. Materials and Methods
2.1. Materials

Cashew gum (CG) (Mw = 2.35 × 104 g/mol) was isolated from the exudate obtained
from collections of trees found in the region of Parnaíba (Piauí, Brazil) and purified [8].
Chitosan (CH) (50 kDa) with a 78% deacetylation degree was purchased from Sigma-
Aldrich (Darmstadt, Germany). Other used products included the solvents: hydrochloric
acid (HCl) (Dinâmica®, Sao Paulo, Brazil), lactic acid (Puratec®, Rio de Janeiro, Brazil)
sodium tripolyphosphate (TPP) (Sigma Aldrich, Darmstadt, Germany) and syringe filters
with 0.46 µm Millipore® (Burlington, MA, USA) porosity. Humulin R® Insulin (INS)
(100 IU/mL) was purchased from Lilly pharmaceutical company (São Paulo, Brazil). A
syringe with a 21 G needle attached was used. All water used in the processes was
ultrapure obtained from the Milli-Q system (Smart®, Ultrapure water system, Heal force®,
Shanghai, China).

2.2. Preparation of CG, CH and TPP

The CG solution was prepared at a concentration of 0.5% (w/v). CH solution was
prepared at a concentration of 0.2% (w/v), dissolved in a solution of lactic acid at 0.1%
(v/v), with agitation of 600 rpm overnight. The 13.5 mM TPP solution was prepared by
dissolving it in ultrapure water. The pH of the CG, CH and TPP solutions were checked to
be 6.2, 3.4 and 9.1, respectively. All solutions were filtered through a 0.45 µm Millipore®

(Burlington, MA, USA) porosity filter.

2.3. Preparation of CG/INSULIN/TPP/CH Nanoparticles

Complexes without insulin were formed by polyelectrolytic complexation. Different
volumes of TPP (0.4, 0.6, 0.7 and 0.8 mL) were injected into a CG solution (10.0 mL). Af-
terwards, the CH solution (0.6 mL) was dripped for 30 min, stirring for another 30 min
(Figure 1). The nanospheres loaded with insulin were prepared as follows: insulin
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(0.05–0.005%) was added to the aqueous CG solution (10.0 mL). After 30 min, TPP (0.8 mL)
was added and stirred for 30 min. After that time, CH (0.6 mL) was added and stirred for
another 30 min. All nanoparticles were prepared in triplicate.
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Figure 1. Production of nanoparticles by polyelectrolytic interactions between cashew gum (CG), insulin, sodium
tripolyphosphate (TPP) and chitosan (CH).

2.4. Characterization of Nanoparticles
2.4.1. Particle Size Determination, Polydispersity Index (PDI) and Zeta-Potential
of Nanoparticles

The size, PDI and zeta potential analyzes were performed on the Zetasizer Nano ZS
equipment (Malvern Instruments Ltd., Malvern, UK). The particle size distribution and PDI
were obtained by dynamic light scattering (DLS), with an angle of 90◦. The zeta potential
was calculated mathematically based on the Smoluchowski equation. The stability of
the complexes was evaluated at predetermined times. The formulations were stored in a
refrigerator (6 ◦C to 10 ◦C). All measurements were recorded in triplicate at 25 ± 2 ◦C.

2.4.2. FTIR Spectroscopy Analysis

CG, CH, TPP and electrolytic complexes were characterized by infrared spectroscopy,
using a PerkinElmer FTIR, spectrum 400, in the ATR module, in the range of 650 and
4000 cm−1.

2.4.3. Morphological Characterization of Scanning Electron Microscopy (SEM)

SEM analyses were performed on the SS-550 Sperscan® equipment (Shimadzu, Tokyo,
Japan). The samples were coated with a gold film of approximately 20 nm, for about two
minutes, at an amperage of 5 mA (model SC-701 Quick Coater®, Tokyo, Japan) to facilitate
the conduction and observe the morphology of the nanoparticles.

2.4.4. Determination of Insulin Encapsulation Efficiency

The insulin encapsulation efficiency was determined by the difference between the
total amount of insulin used to prepare the nanoparticles and the amount of free insulin
divided by the total amount of insulin used. To analyze the amount of free insulin, 1.5 mL
of the nanoparticles were subjected to centrifugation at 12,000 RPM for 50 min at 4 ◦C.
The supernatant containing free insulin was collected and quantified in triplicate by high-
performance liquid chromatography (HPLC).
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2.4.5. In Vitro Release Study

The tests were performed by the dialysis method, using a dialysis membrane (MWCO
14 kDa, Sigma Aldrich, Darmstadt, Germany), to determine the release of insulin from the
complexes under different conditions of enzyme-free gastrointestinal pHs. The complex
preparations were submerged in simulated gastric fluid (SFG) without pepsin (USP34-
NF29) at 37 ◦C for 120 min with stirring. The insulin samples released were collected
at certain times, and the same volume that was removed was replaced with buffered
medium under the same conditions to keep the volume constant. To determine the release
of insulin from the complexes, a fixed volume collection was carried out and subsequently
centrifuged at 12,000 rpm for 30 min at 4 ◦C; the supernatants were analyzed by HPLC.
The analyses were performed in triplicate.

2.4.6. Chromatographic Conditions for the Determination of Insulin by HPLC

For the determination of insulin, an Ascentis®-C18 column (250 × 4.6 mm, 5 µm,
Supelco®, Bellefonte, PA, USA), a mobile phase of 52% 20 mM aqueous buffer KH2PO4
(buffer at pH 3.1 ± 0.1, adjusted using phosphoric acid), 31% acetonitrile and 7% methanol,
flow of 1 mL·min−1 with an injection volume of 20 µL and a column temperature 35 ◦C
were used. A wavelength of 214 nm and isocratic elution were also used. Chromatograms
were recorded, and the peak area (responses) was measured using an automatic integrator.

3. Results
3.1. Preparation of Cashew Gum–TPP–Chitosan Polyelectrolyte Complex

The nanoparticles were produced using the polyelectrolytic complexation method [1].
The volumes of CG and CH were fixed, and the volume of TPP was varied in order to
investigate its influence on the formation of complexes. Table 1 shows the hydrodynamic
size, PDI and zeta potential data of the colloidal systems obtained in the four formulations.
Polyelectrolytic complexes composed of CG and CH were prepared; however, they did not
show viability. The formation of heterogeneous systems with sizes ranging from 150 nm
to 300 nm was evidenced, obtaining a polymodal population. In addition, precipitate
formation was observed.

Table 1. Size, polydispersity index and zeta potential of the different polyelectrolytic complexes.

Formulation Cashew
Gum (mL) TPP (mL) Chitosan (mL) Size (nm) PDI Zeta (mV)

NP-1 10.0 0.4 0.6 143.9 0.59 −6.47
NP-2 10.0 0.6 0.6 161.6 0.35 −5.12
NP-3 10.0 0.7 0.6 169.3 0.29 −4.23
NP-4 10.0 0.8 0.6 204.8 0.24 −2.94

3.2. Preparation and Physicochemical Characterization of the Cashew Gum–Insulin–TPP–Chitosan
Polyelectrolyte Complex

Based on the results shown in Table 1, the NP-4 formulation was selected as it depicted
the lowest PDI, indicating improved uniformity over the remaining formulations. NP-4
was thus chosen to be loaded with insulin. Insulin concentrations ranging from 0.05%
to 0.005% were used for the preparation of the complexes. The system that contained a
higher percentage of insulin had a high size and PDI. The use of a reduced amount of
the protein resulted in a complex with a single population, with a size of 234.5 nm, PDI
0.27 and zeta potential of −4.5 mV. The insulin trapped inside the nanoparticles was 22%.
Both complexes showed opalescent coloring, indicating the formation of nanoparticles. The
study of complex release without insulin under simulated gastric fluid (SFG) conditions
without enzymes was carried out. In the SFG medium, about 3% of the insulin released
was observed in the first moments. After 2 h of testing, 60% of insulin release was observed,
as shown in Figure 2. The colloidal stability of the complexes with and without insulin
were monitored for 1 year, with no changes in particle size, as seen in Table 2.
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Table 2. Colloidal stability of polyelectrolytic complexes with and without insulin.

2 Days 7 Days 15 Days 1 Month 1 Year

NP
without
insulin

Size (nm) 206.8 206.4 207.2 210.0 205.0
PDI 0.24 0.2 0.2 0.2 0.3

Zeta(mV) Zeta(mV) −7.17 −6.74 −4.60 −3.43

NP with
insulin

Size (nm) 260.4 266.0 268.3 272.4 311.8
PDI 0.27 0.2 0.2 0.2 0.2

Zeta (mV) Zeta (mV) −8.21 −5.07 −4.62 −1.81

3.3. Characterization of the Polyelectrolyte Complex

FTIR spectra of the isolated materials and the polyelectrolytic complex are shown in
Figure 3. The CG bands were observed at 2174.88 cm−1 and 3317.98 cm−1, which referred
to groups C-H and O-H, respectively. Stretching of C-O-C vibrations was observed due to
glycosidic bonds in the region of 1036.92 cm−1 [23,24]. The main bands referring to the CH
molecule were attributed to an elongation of the O-H and N-H groups by 3354.68 cm−1

and 3288.97 cm−1, respectively [25]. The C-H pyramid structures were at 1417.55 cm−1,
and the C-H stretch vibrations were at 2872.07 cm−1 [17]. Stretching vibrations classified
as amide I (C-H) and amide II (N-H) in the bands of 1651.92 cm−1 and 1580.63 cm−1,
respectively, were also observed [26]. The amide functional groups present on the CH
surface are responsible for interactions with other molecules [17]. In the TTP molecule, the
intense absorption bands at 1136.43 cm−1, 1095.45 cm−1 and 1209.94 cm−1 referred to the
groups P=O, P-O-P and =O, respectively.

In the spectrum of the polyelectrolytic complex, changes were observed in regions
in which they suggested interactions between the materials used for its formation. In
the 3325.81 cm−1 region, the band became wider and shifted, reducing the wavelength,
indicating an increase in hydrogen interactions [26]. There was a lack of the band related
to the glucuronic acid group of cashew gum in the complex (1740.81 cm−1, C=O), showing
that there was an electrostatic interaction with the chitosan. A reduced change of direction
was observed in the amide I region in the spectrum from 1651.92 cm−1 to 1604.01 cm−1,
related to the CH/TPP interaction [17,26].
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polyelectrolyte complex.

In the region of the amide II band of CH, the interaction of the N-H groups, either
with TPP or CG, was observed. This was also confirmed by the reduction of the peak by
1127.63 cm−1, which indicated the possible electrostatic interaction between the sodium
tripolyphosphate molecule and the positively charged amine group of chitosan [27].

The morphological analysis of the polyelectrolytic complex was observed by SEM as
shown in Figure 4. A smooth and spherical shape was observed, proving the formation of
the complex between CG/TPP/CH.
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4. Discussion

For the treatment of diabetes, currently available therapeutic options include several
oral and injectable antidiabetic drugs (GLP1 analogs) and insulin. In this work, insulin has



Diabetology 2021, 2 113

been proposed to be loaded into nanoparticles obtained from cashew gum and chitosan,
through a method requiring sodium tripolyphosphate as a crosslinking agent [1]. Insulin
is a hormone produced by pancreatic β cells, with a peptidic structure consisting of
51 amino acids and composed of two chains, A and B, linked by disulfide bonds. Its
key role in the treatment of Diabetes mellitus is linked to its capacity to promote the
uptake and use of glucose at the cellular level, the synthesis of glycogen in the liver
and muscle, the synthesis of triglycerides in adipose tissue and the liver, the storage of
triglycerides and the synthesis of proteins. Besides this, insulin inhibits glycogenolysis,
lipolysis, gluconeogenesis and ketogenesis. The sensitive character of this peptide, and its
low bioavailability, compromises its administration through the oral route, while efforts
have been made to promote its paracellular and/or transcellular pathways in the ileum and
colon. The cross-linking of nanoparticles has been proposed to strengthen their resistance
in the gut.

To evaluate the capacity of nanoparticles for the loading of insulin and their suitability
for oral administration, a regular synthetic molecule was used experimentally only as a
model compound that structurally resembled the same physiologically produced molecule.

The CG “in nature” has a low surface negative charge due to a lower percentage
of acid groups of around 5%. Its composition contains about 60 to 72% of galactose [8].
Biopolymers with high levels of galactose and mannose present surface charges between
−13.7 and −2.1 mV, which hinders their interaction with other molecules [23].

CH is a hydrophilic polycathion at an acidic pH, and it has structurally charged
amides that give the molecule a high positive charge [17]. Its interaction with GC alone
for the formation of complexes by the ionotropic gelling process is not sufficient due to
the structural characteristics and the low negative charge present in GC, which results
in the formation of heterogeneous, polydispersed and unstable systems [23]. In order to
improve the anionic properties of GC, a crosslinking with TPP was performed. CG has
functional groups available to make bonds to TPP atoms. TPP can interact via intermolecu-
lar or intramolecular bonds with the CG. The chemical interactions may be the result of
hydrogen and ionic bonds between the susceptible oxygen in the TPP molecule with the
-OH groupings of the CG monosaccharide units (Figure 5).
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QT loads [17], not completing the interaction, besides the presence of precipitated in the
formulation, showing amounts of polysaccharide without interaction [16]. The surface load
of NP-1 and NP-2 were less negative when compared to formulations of NP-3 and NP-4.
The formulations (NP-3 and NP-4) used the highest proportion of TPP, which provided a
greater neutrality of CH loads, and were also used because of the reticulant action of TPP.

A strong influence on size, PDI and payload was observed in relation to the amount
used in formulations loaded with insulin. Heterogeneous and unstable systems were
obtained with a high concentration of insulin. On the other hand, a stable and monomodal
system was obtained with a reduced amount of the protein. An influence of the size increase
of the complexes with the presence of insulin was observed, when compared to those
produced without the drug. This phenomenon may have been due to the simultaneous
competition between the negative charges present in CG, TPP and insulin interacting
with the positive charges of CH, leading to an increase of the particle Alteration in the
surface load of the complex was also observed. The complex with insulin presented
a greater anionic character. This finding was related to the negative charge of insulin.
The release profile may have been related to free insulin or weakly bound insulin on the
complex surface. Based on FTIR spectra, electrostatic interactions, hydrogen bonds and
ionic interactions between the biopolymer groups and the reticulating agent were observed,
which resulted in the formation of the complex.

5. Conclusions

The present study described the production and characterization of polyelectrolytic
complexes, composed of CG, CH and TTP, for the transport of the insulin polypeptide.
The structural and electrostatic characteristics of these colloids were studied, which led to
the formation of nanoparticles with an average size ranging from 143 to 204 nm. Several
processing parameters and the polyelectrolytic nature of the biopolymers and TPP used
influenced the characteristics of the nanoparticles. The process of formation of stable
particles depended on the volume of TPP used. The potential use of these CG/TP/CH
complexes has been applied to carry the insulin polypeptide. A stable system with a size
of 243 nm was obtained. Thus, the formulation can be used as a promising carrier for oral
insulin administration for the management of diabetes.
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