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Abstract
The lambda-calculus with generalized applications is the Curry-Howard counterpart to the system
of natural deduction with generalized elimination rules for intuitionistic implicational logic. In this
paper we identify a call-by-value variant of the system and prove confluence, strong normalization,
and standardization. In the end, we show that the cbn and cbv variants of the system simulate each
other via mappings based on extensions of the “protecting-by-a-lambda” compilation technique.
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1 Introduction

The λ-calculus with generalized applications [8], named system ΛJ , or λJ-calculus, cor-
responds, under the Curry-Howard isomorphism, to the system of natural deduction with
generalized elimination rules [10, 16], in the setting of intuitionistic implicational logic. As a
variant of the λ-calculus, ΛJ can be qualified naively as being a call-by-name (cbn) system,
simply because its β-rule prescribes that, in functional application, functions are called
without prior evaluation of arguments. In this paper we propose a call-by-value (cbv) variant
of system ΛJ and prove some of its properties. With this, we develop the cbv side of natural
deduction.

The novel system is named system ΛJv, or the λJv-calculus. Notably, the syntax of proof
terms remains the same as that of system ΛJ - and our purpose is to define cbv reduction
rules appropriate for this syntax. Moreover, the reduction rules of ΛJv will look like those of
ΛJ : there is a β-rule (corresponding to a “detour” conversion rule) and a π (corresponding to
a commuting conversion rule), the latter in fact unchanged w.r.t. ΛJ ; the notion of β-redex
is also unchanged; the only thing that will change is the concept of substitution.

Plotkin [11] sets a criterion for a calculus to be qualified as call-by-value: it should
enjoy a standardization theorem, and the notion of standard reduction sequence should
be based on a notion of call-by-value evaluation. We will prove a standardization theorem
for ΛJv that makes an explicit link to a notion of cbv evaluation. We also prove the main
rewriting-theoretic properties: confluence and strong normalization.

Plotkin [11] shows that cbn and cbv calculi based on the syntax of ordinary λ-terms
simulate each other via cps translations. The need to resort to cps translations is justified in
[11] by the fact that the “protecting-by-a-lambda” compilation technique (which easily gives
a simulation of cbn by cbv) does not extend to a simulation in the opposite direction. Here we
show that, when the syntax allows generalized applications, cps translations are not needed to
obtain simulation in both ways, as both simulations can be based on “protecting-by-a-lambda”.
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35:2 The call-by-value lambda-calculus with generalized applications

Plan of the paper. Section 2 reviews Λ, Plotkin’s Λv, and ΛJ . Section 3 introduces
ΛJv. Sections 4 and 5 prove strong normalization and confluence, respectively. Section 6
proves standardization. Section 7 simulates the cbn and cbv variants into each other. Section
8 summarizes our contributions and concludes.

2 Background

System Λ. The ordinary λ-calculus is denoted Λ. The λ-terms are given by:

(Terms) M,N,P,Q ::= V |MN (Values) V,W ::= x |λx.M

We work modulo α-equivalence and assume silent renaming of bound variables as needed.
We write x /∈M to say that x does not occur free in M . Substitution is denoted [N/x]M .

Λ is equipped with the β-rule (λx.M)N → [N/x]M , which generates the relation →β

- the compatible closure of β. We use the common notations →=
β , →

+
β , →∗β , and =β for,

respectively, the reflexive, transitive, reflexive-transitive, and equivalence closures of→β (and
similarly for any other reduction rule in any other calculus in this paper).

An important role is played by λ-terms with holes. A hole, denoted [·], is a special
place-holder that can be filled with a λ-term. We will only consider terms with a single hole,
and call them contexts. If C is a context, the C[M ] denotes the λ-term resulting from filling
the single hole of C with M . Notice contexts allow an alternative definition of →β : P →β Q

iff P = C[(λx.M)N ] and Q = C[[N/x]M ], for some C.
We consider the familiar, Curry-style typing system, for assigning simple types to λ-terms.

Types, ranged over by A, B, C, etc. are formulas of implicational logic, which can either
be an atom p or an implication A ⊃ B. A sequent is an expression Γ ` M : A, where Γ
and M are called the base and the subject of the sequent, respectively. A base Γ is a set of
assignments x : A of types to variables, so that no variable is assigned two different types.
The familiar typing rules, which we refrain to repeat, determine the derivable sequents, and
define a natural deduction system for intuitionitic implicational logic. A λ-term M is typable
if there is a derivable sequent with M as subject.

System Λv. Plotkin’s cbv λ-calculus [11] is here named Λv. The terms of Λv are
the same λ-terms of Λ, but now the system is equipped with a variant of the β-rule,
named βv: (λx.M)V → [V/x]M . Here, for the function λx.M to be called, the argument
is required to be a value. Again, the compatible closure →βv of βv may be defined by
C[(λx.M)V ]→βv C[[V/x]M ]. For the typed version of the system, we employ the same typing
system as for Λ.

Several authors [13, 6] have proposed extra reduction principles for Λv. Two of them will
be central in the present paper:

(ρ1) (λx.M)NQ → (λx.MQ)N
(ρ2) (λy.P )((λx.M)N) → (λx.(λy.P )M)N

The first is one of Regnier’s σ-rules [12]. The author has studied these rules in [3, 4], allowing
the second one in a more general form: P ((λx.M)N) → (λx.PM)N . A common idea to
ρ1 and ρ2 is to rearrange the term to reveal (potential) redexes: MQ in the former case,
(λy.P )M in the latter case1. We let ρ := ρ1 ∪ ρ2.

1 The name ρ intends to be mnemonic of this action of rearranging to reveal redexes. We find ρ preferable
to σ for two reasons: first, σ is a name one wishes to reserve to substitution rules; second, ρ2 is not one
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System ΛJ . The λ-calculus with generalized applications [8] is here named system ΛJ ,
or the λJ-calculus. The λJ-terms are given by:

(Terms) M,N,P,Q ::= V |M(N, x.P ) (Values) V,W ::= x |λx.M

The constructor M(N, x.P ) is called generalized application; in it, “x.” is a binder of x, so x
is bound in P . Consistent with the generalized application terminology is to call (N, x.P )
the generalized argument of that application.

ΛJ is equipped with two rules:

(β) (λx.M)(N, y.P ) → [[N/x]M/y]P
(π) M(N, x.P )(N ′, y.P ′) → M(N, x.P (N ′, y.P ′))

The version of π adopted is the same as in [8]. One could have considered an “eager” version,
with contractum M(N, x.P@(N ′, y.P ′)), where operator @ is defined by

V@(N ′, y.P ′) = V (N ′, y.P ′)
M(N, x.P )@(N ′, y.P ′) = M(N, x.P@(N ′, y.P ′))

In this version of the rule, the generalized argument (N ′, y.P ′) is eagerly pushed in, until a
value is found. Operator @ will be used again in Section 5.

The typing system of ΛJ is obtained from the one for Λ by adopting the following rule
for typing generalized applications:

Γ `M : A ⊃ B Γ ` N : A Γ, x : B ` P : C
Γ `M(N, x.P ) : C GE ⊃

Such typing system defines a system of natural deduction with generalized elimination rules
[16]. Rule π is a “commutative conversion” caused by the repetition of formula C in GE ⊃.

3 The call-by-value variant

This section is dedicated to the call-by-value variant of ΛJ we introduce, named ΛJv. We
first motivate the system. In the second part of the section, we define the system.

3.1 Motivation
Consider the β-redex (λx.M)N . We will define a new contractum for this redex, making use
of a syntax where application is generalized. The contractum is again a substitution, but one
whose definition will express call-by-value - let us denote it by [N\x]M .

If N = V , no doubt we want to substitute ordinarily, as in Plotkin’s Λv, so we put

[V \x]M = [V/x]M (1)

But if N = M ′N ′, we want to postpone the call of λx.M and evaluate N first. Making use
of generalized application, we rewrite the original β-redex as M ′(N ′, x.M). Notice M ′N ′ is
actually M ′(N ′, z.z), so we want

[M ′(N ′, z.z)\x]M = M ′(N ′, x.M) (2)

of Regnier’s σ-rules. In [3, 4] these rules were called π1 and π2. There is some point in that choice of
names, even knowing that π is the name used in [8] for one of the reduction rules of ΛJ - a convention
we will maintain here. Still, we found it preferable to abandon π1 and π2 and give the rules a fresh and
useful name for the present paper.

CSL 2020
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How to complete the definition of [N\x]M , for the case N = M ′(N ′, z.P ′)? Just put

[M ′(N ′, z.P ′)\x]M = M ′(N ′, z.[P ′\x]M) (3)

Then we get (2) from (3) and (1).
Finally, how about starting off with (λx.M)(N, y.P )? As in ΛJ , the contractum consists

of two substitutions, but both of the new kind we have just defined.

3.2 System ΛJv

We now define system ΛJv, or λJv-calculus. The λJv-terms are the same as the λJ-terms.
Ordinary substitution will be used only in the form [V/x]M , with the actual parameter a
value V . We introduce left substitution, denoted [N\x]M , defined by recursion on N as
follows:

[V \x]M = [V/x]M
[N(Q, y.P )\x]M = N(Q, y.[P\x]M)

ΛJv has two reduction rules:

(βv) (λx.M)(N, y.P ) → [[N\x]M\y]P
(π) M(N, x.P )(N ′, y.P ′) → M(N, x.P (N ′, y.P ′))

Rule π is the same as ΛJ , rule βv is new. However, there is a formal similarity with rule β
from ΛJ - the only difference is in the substitution operator employed.

The typing system for ΛJv is the same as the typing system for ΛJ , with left substitution
being typed by the same admissible rule that types ordinary substitution. A λJv-term is
typable if it is the subject of some derivable sequent.

A routine result is subject reduction, already known for →π, and which also extends to
→βv . Perhaps more important is to recast rule βv as a proof normalization rule in natural
deduction with generalized elimination rules - this is done in Fig. 1.

We finish this section with some technical lemmas.

I Lemma 1 (Substitution lemma). In ΛJv:
1. [V/x][N\y]M = [[V/x]N\y][V/x]M , provided y /∈ V .
2. [N\x][N ′\y]M = [[N\x]N ′\y]M , provided x /∈M,y /∈ N .

Proof. Routine. J

I Lemma 2 (Parallelism). The following rules are admissible:

V →∗π V ′ M →∗π M ′

[V/x]M →∗π [V ′/x]M ′
(i)

M →∗π M ′

[N\x]M →∗π [N\x]M ′
(ii)

N →∗π N ′ M →∗π M ′

[N\x]M →∗π [N ′\x]M ′
(iii)

Proof. (i) Known. (ii) Proved by induction on N and uses (i). (iii) Follows easily from the
version of (iii) where the first premiss is N →π N

′, and the latter is proved by induction on
N →π N

′, using (i) and (ii). J

4 Strong normalization

We define a map from λJ-terms to λ-terms

x] = x (λx.M)] = λx.M ] M(N, x.P )] = (λx.P ])(M ]N ])

This map is to be promoted to a homomorphism ΛJv → Λv. First, the technical lemma:
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Figure 1 Rule βv as a proof normalization rule in natural deduction with generalized elimination
rules. Meta-variables for λJ-terms and values are used to denote derivations. V and W denote
derivations whose last inference is not an elimination. The maximal formula is in boldface. The
numbers n and m may be 0. D11, D12, Dm1, Dm2, F11, F12, Fn1, Fn2 are formulas. For each
1 ≤ i ≤ n, Fi1 = Fi2 ⊃ F ′

i2, for some formula F ′
i2. For each 1 ≤ i ≤ m, Di1 = Di2 ⊃ D′

i2, for
some formula D′

i2. Hypothesis cancelation by elimination inferences marked with Ei or E′
i is not

displayed.
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I Lemma 3. (λx.M ])N ] →+
βvρ2

([N\x]M)].

Proof. By induction on N . The cases N = y and N = λy.N ′ require the lemma [V ]/x]M ] =
([V/x]M)], which is proved by a straightforward induction on M . J

I Proposition 4 (Strict simulation).
1. If M1 →βv M2 in ΛJv then M ]

1 →
+
βvρ2

M ]
2 in Λv.

2. If M1 →π M2 in ΛJv then M ]
1 →+

ρ M
]
2 in Λv.

Proof. Both items by induction on M1 →M2. The base case of the first item uses Lemma
3 twice. The base case of the second item is proved by a direct calculation. The inductive
cases are routine. J

I Theorem 5 (SN). If M ∈ ΛJv is typable, then M is βvπ-SN.

Proof. Suppose M is typable. It is easy to see that M ] has to be typable. By strong
normalization for Λ, M ] is β-SN. By the main result in [4], M ] is βρ-SN, and so is βvρ-SN.
Given the strict simulation obtained in Proposition 4 (M1 →βvπ M2 implies M ]

1 →
+
βvρ

M ]
2),

we conclude that M is βvπ-SN. J

5 Confluence

In this section we prove that →βvπ is confluent. We follow the approach in [8], pointing out
where the differences are. In this section, we abbreviate →βvπ as →. So →∗ denotes →∗βvπ

.
Given a binary relation ; on ΛJ-terms and a function f from ΛJ-terms to ΛJ-terms, we

say ; and f satisfy the triangle property [15, 8] if M ;M ′ implies M ′ ; f(M). Hence,
every 1-step ;-reduct of M does one ;-step to a common term that depends on M solely;
and therefore, ; satisfies the diamond property.

Given a binary relation ; on ΛJ-terms, we say ; is a βvπ-development, or just a
development, if →⊆;⊆→∗ and ; and f satisfy the triangle property, for some f (which
is then called a complete βvπ-development, or just a development). Notice that, if
there is a development ;, then → is confluent. Proof: ; satisfies the diamond property,
hence so does ;∗. But ;∗=→∗ (because →⊆;⊆→∗). Therefore →∗ satisfies the diamond
property, that is, → is confluent.

For M a ΛJ-term, the π-normal form Mπ is defined2 by recursion on M as follows:

xπ = x

(λx.M)π = λx.Mπ

(M(N, x.P ))π = Mπ@(Nπ, x.Pπ)

I Lemma 6. →∗π and (_)π satisfy the triangle property.

Proof. In [8]. J

Given that →π⊂→∗π=→∗π, we may call (_)π a complete π-development.
Next we introduce a new pair that will satisfy the triangle property, containing a new

binary relation and a complete βv-development. The binary relation ⇒v on ΛJ is defined in
Fig. 2. It is immediate to show that: (i) ⇒v is reflexive; (ii) →βv⊆⇒v; (iii) ⇒v⊆→∗βv

.

2 The operator @ we are employing in this paper is slightly different from the one employed in [8], but
the function Mπ is the same.
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Figure 2 βv-development

x⇒v x
V AR

M ⇒v M
′

λx.M ⇒v λx.M
′ ABS

M ⇒v M
′ N ⇒v N

′ P ⇒v P
′

M(N, x.P )⇒v M
′(N ′, x.P ′) APL

M ⇒v M
′ N ⇒v N

′ P ⇒v P
′

(λx.M)(N, y.P )⇒v [[N ′\x]M ′\y]P ′ BETA

I Lemma 7 (Parallelism). The following rules are admissible:

V ⇒v V
′ M ⇒v M

′

[V/x]M ⇒v [V ′/x]M ′
(i) N ⇒v N

′ M ⇒v M
′

[N\x]M ⇒v [N ′\x]M ′
(ii)

Proof. The proof of (i) is by induction on M ⇒v M
′. Case BETA uses item 1 of Lemma 1.

The proof of (ii) is by induction on N ⇒v N
′. Cases VAR and ABS use (i). Case BETA

uses item 2 of Lemma 1. J

For M a ΛJ-term, define Mβv by recursion on M as follows:

xβv = x

(λx.M)βv = λx.Mβv

(M(N, y.P ))βv =
{

[[Nβv\x]Mβv
0 \y]P βv if M = λx.M0

Mβv(Nβv , y.P βv) otherwise

I Lemma 8. ⇒v and (_)π satisfy the triangle property.

Proof. Once we have the parallelism property of ⇒v w.r.t. left substitution (item (ii) of
Lemma 7), we can repeat the proof in [8]. J

Given that →βv⊆⇒v→∗βv
, we may call (_)βv a complete βv-development.

I Lemma 9 (Commutation). If M ⇒v N1 and M →∗π N2 then there is P such that N1 →∗π P
and N2 ⇒v P .

Proof. We can repeat the proof in [8], since →∗π is also parallel in the sense of Lemma 2. J

I Theorem 10. →βvπ is confluent.

Proof. The two triangle properties (Lemmas 6 and 8) and the commutation property (Lemma
9) imply that the relation →∗π ◦⇒v and the function (_)π ◦ (_)βv have the triangle property
(this composition of triangle properties is easily proved - see [8]). Moreover, it is obvious that
→βvπ⊆→∗π ◦⇒v⊆→∗βvπ

. This means that →∗π ◦⇒v is a development (and that (_)π ◦ (_)βv

is a complete development). Hence → is confluent. J

6 Standardization

In this section we prove the mandatory [11] standardization theorem for ΛJv. Contrary to
many proofs [11, 6], our proof does not handle directly standard reduction sequences - in
this we follow [8]. On the other hand, we do not rely on vector notation either; instead we
make explicit the contribution of call-by-value evaluation to the standard reduction relation.
The definition of cbv evaluation is interesting on its own.

CSL 2020
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Figure 3 Standard reduction

x⇒ x V AR
M ⇒M ′

λx.M ⇒ λx.M ′
ABS

M ⇒M ′ N ⇒ N ′ P ⇒ P ′

M(N, x.P )⇒M ′(N ′, x.P ′) APL

M 7→∗v λx.M ′ [[N\x]M ′\y]P ⇒ Q

M(N, y.P )⇒ Q
BETA

M 7→∗v M ′(N ′, x.P ′) M ′(N ′, x.(P ′(N, y.P )))⇒ Q

M(N, y.P )⇒ Q
PI

The definition of cbv evaluation is in terms of cbv evaluation contexts:

E ::= [·] | E(N, x.P )

Then call-by-value evalution, denoted 7→v, is defined as E [M ] 7→v E [M ] where (M,M ′) ∈
βv ∪ π (in other words, M → M ′ is a root βvπ-reduction). The familiar, alternative and
equivalent definition is to say that 7→v is inductively defined by βv ∪ π and the closure rule:
M →M ′ implies M(N, x.P )→M ′(N, x.P ).

So we employ the single closure we would employ if we were defining call-by-name
evaluation - the whole difference is in the β-rule. Notice that, due to rule π, evaluation is
not a deterministic (univocal) relation.

Standard reduction, denoted M ⇒M ′, is defined in Fig. 3.
A simple induction shows that ⇒⊆→∗βvπ

. Despite its simplicity, this remark is important
because its proof builds a βvπ-reduction sequence from M to M ′, given that M ⇒M ′. We
refer to reduction sequences thus built as standard reduction sequences. If M ⇒M ′ is
proved by V AR, ABS or APL, the outer constructor of M is frozen forever. For instance, if
M = λx.M0, then M ′ = λx.M ′0 and the reduction sequence given by induction hypothesis
will have all of its members prefixed by λx. On the other hand, if M ⇒ M ′ is proved by
BETA, we prefix the reduction sequence (not its members) given by induction hypothesis by a
sequence of cbv evaluation steps, namely the ones leading fromM(N, y.P ) to (λx.M ′)(N, y.P )
followed by the step (λx.M ′)(N, y.P ) 7→v [[N\x]M ′\y]P implicit in rule BETA. Similar
remarks apply to rule PI. The general description of a standard reduction sequence is this:
it contains an initial segment performing cbv evaluation, until one decides to freeze the outer
constructor of the last term obtained, and the standard reduction sequence proceeds by
reducing in parallel the immediate sub-terms.

The converse of ⇒⊆→∗βvπ
is a kind of completeness of ⇒.

I Theorem 11 (Standardization). →∗βvπ
⊆⇒.

Proof. We show successively the closure rules I to VII in Fig. 4. The theorem follows from
rule VII (together with rule I). We also need substitutivity of evaluation: If M 7→∗v M ′

then [V/x]M 7→∗v [V ′/x]M ′. This is an easy consequence of: If M 7→v M
′ then [V/x]M 7→v

[V ′/x]M ′. The latter is proved by induction on M 7→v M
′.

Rule I is proved by an easy induction on M . Rule II is proved by induction on M 7→v M
′.

Rule III is an easy consequence of II. Rule IV is proved by induction on M ⇒M ′ (the case
relative to BETA requires substitutivity of evaluation). Rule V is proved by induction on
N ⇒ N ′ and uses rule IV. Rule VII is an easy consequence of Rule VI. Rule VI is the rule
with most delicate proof. It is proved by induction on M ⇒M ′. The case relative to APP
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Figure 4 Additional closure rules

M ⇒M
I

M 7→v M
′ ⇒ Q

M ⇒ Q
II

M 7→∗v M ′ ⇒ Q

M ⇒ Q
III

V ⇒ V ′ M ⇒M ′

[V/x]M ⇒ [V ′/x]M ′ IV
N ⇒ N ′ M ⇒M ′

[N\x]M ⇒ [N ′\x]M ′ V

M ⇒M ′ →βvπ Q

M ⇒ Q
V I

M ⇒M ′ →∗βvπ
Q

M ⇒ Q
V II

splits into several cases determined by a reduction step of the form M ′(N ′, y.P ′) →βvπ Q.
Two of them are proved with a sub-induction and use rules III and V. J

7 Call-by-name and call-by-value

In this section, we show simulations between ΛJ and ΛJv. For emphasis, we denote ΛJ
by ΛJn, and β by βn. Both simulation employ the “protecting-by-a-lambda” technique;
and, in their typed version, the simulations employ the same type translation, namely the
replacement of A by > ⊃ A at appropriate places. So, we need neither cps-translations, nor
type translations based on the insertion of double negations, in order to translate between
the cbn and cbv variants of ΛJ .

We will use I to denote the combinator λx.x; and MI will abbreviate M(I, x.x). Also,
λd.M will stand for a vacuous abstraction (d is a “dummy” variable, i.e. d /∈ M). We fix
some type variable X and put > := X ⊃ X.

7.1 Simulation of cbn by cbv
For M ∈ ΛJn, M◦ is defined by recursion on M as follows:

x◦ = xI

(λx.M)◦ = λxλd.M◦

(M(N, y.P ))◦ = M◦(λd.N◦, y.P ◦)

This compilation is a variation on the “protecting-by-a-lambda” technique [11], now
extended to deal with generalized applications. When translating these, the argument is
protected by a vacuous abstraction, to pretend to be a value. Accordingly, variables are
applied to a dummy argument. The generality of generalized applications commutes with
the translation, but some novelty is observed in the translation of abstractions, where an
unexpected, extra, vacuous abstraction shows up.

This surprise has a counterpart in the typed version of this translation, at the level of
types. The type A◦ is defined by recursion on A by:

X◦ = X

(A ⊃ B)◦ = A ⊃ B
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where A = > ⊃ A◦. The surprise is that (A ⊃ B)◦ is not defined as A ⊃ B◦, as one
would expect, if this was just the usual “protecting-by-a-lambda”, or “thunk-introduction”
compilation (see e.g. [7, 5]).

As usual, Γ = {(x : A)|(x : A) ∈ Γ}. It is straightforward to show:

I Proposition 12. If Γ `M : A then Γ `M◦ : A◦.

I Lemma 13. (λd.M)I →βv M .

Proof. By a simple calculation, using the fact [M\x]x = M . J

I Lemma 14. [λd.N◦/x]M◦ →∗βv
([N/x]M)◦.

Proof. By induction on M . The case M = x uses the previous lemma, and is where the
βv-steps are generated. J

I Theorem 15 (Simulation of ΛJn by ΛJv).
1. If M →βn N in ΛJn then M◦ →+

βv
N◦ in ΛJv.

2. If M →π N in ΛJn then M◦ →π N
◦ in ΛJv.

Proof. Both items by induction on M → N . The inductive cases are routine. The base case
of the first item (case βn) uses Lemma 14. The base case of the second item (case π) is a
straightforward calculation. J

7.2 Simulation of cbv by cbn
In the 1970’s [11], the need for cps-translations was justified by the fact that the compilation
technique “protecting-by-a-lambda” did not extend to give a simulation of cbv by cbn. Next
we show that this is not the case when cbn and cbv are given with generalized applications.

For V,M ∈ ΛJv, V • and M are defined by simultaneous recursion on V and M as follows:

x• = x

(λx.M)• = λx.M

V = λd.V •

M(N, y.P ) = M(I,m.N(I, n.m(n, z.z(I, y.P ))))

This time, it is values which are wrapped with vacuous abstractions, and dummy argu-
ments I are used in the translation of application to manipulate the flow of the computation;
and even if the translation of applications is reminiscent of cps, the typed version confirms
the type structure of this translation is still based on a top level given by > ⊃ A, and not by
a double negation.

The type A• is defined by recursion on A by:

X• = X

(A ⊃ B)• = A ⊃ B

where A = > ⊃ A•. Indeed A• = A◦ and A = A.
As usual, Γ• = {(x : A•)|(x : A) ∈ Γ}. It is straightforward to show:

I Proposition 16.
1. If Γ `M : A then Γ• `M : A.
2. If Γ ` V : A then Γ• ` V • : A•.

I Lemma 17.
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1. [V •/x]M = [V/x]M .
2. λd.[V •/x]W • = [V/x]W .

Proof. By simultaneous induction on M and V . J

In order to motivate the next two lemmas, observe that the term I(M,x.P ) behaves
like an explicit substitution, both in ΛJn and ΛJv. In the former case, the term reduces
to [M/x]P ; in the latter, it reduces to [M\x]P . We would like to have terms that, in ΛJn,
reduce to [M\x]P and [[N\x]M\y]P .

I Lemma 18. M(I, x.P )→+
βnπ

[M\x]P .

Proof. By induction on M . The case M = V uses Lemma 17. J

I Lemma 19. N(I, n.(λx.M)(n, z.z(I, y.P )))→+
βnπ

[[N\x]M\y]P .

Proof. By induction on N . The case N = V uses Lemmas 17 and 18. J

I Theorem 20 (Simulation of ΛJv by ΛJn).
1. If M →βv N in ΛJv then M →+

βnπ
N in ΛJn.

2. If M →π N in ΛJv then M →π N in ΛJn.

Proof. Both items by indunction on M → N . The inductive cases are routine. The base
case of the first item (case βv) uses Lemma 19. The base case of the second item (case π) is
a straightforward calculation. J

8 Final remarks

We identified a call-by-value variant ΛJv of system ΛJ , sharing the set of terms with the
original, cbn variant, and only differing in the definition of substitution. We established the
main rewriting-theoretic properties (strong normalization and confluence), and proved the
standardization theorem in a way that makes evident the contribution of call-by-value evalu-
ation for standard reduction. Finally, we proved that the cbn and cbv variant simulate each
other, not via cps-translations, but rather via the technique of “protecting-by-a-lambda”[11],
or “thunk-introduction”[7], which is here shown for the first time to extend to a simulation
of cbv by cbn.

In [5] one sees the simulation of the cbn, ordinary λ-calculus and of Plotkin’s cbv λ-calculus
into a common modal language, via modal embeddings: cps-translations are dispensed with,
because use can be made of the extra facilities of the modal target. But here, no extension
of the logic is required, we never leave intuitionistic implicational logic. Instead, use is made
of the structural extension provided by generalized applications.

Our goal was to define the cbv variant of ΛJ and the cbv variant of natural deduction
with generalized elimination rules: we believe this was not attempted before, we made a
proposal and studied it. On the other hand, the study of cbv λ-calculi is an active field of
research, with new calculi being proposed for decades ([11, 9, 13, 14, 2, 1, 6]). Although this
was not our primary goal, we believe we made a contribution to this line of work, since ΛJv

seems to have a singular place among the panoply of systems in the literature, for various
reasons: first, it is strongly anchored in proof theory; second: it is extremely simple; third, it
exploits the original syntactic idea of fusing into a single constructor (generalized application)
ordinary application with let-expressions.

Finally, there may be another reason for studying ΛJv further: contrary to, say, Plotkin’s
cbv λ-calculus, β-redexes in ΛJv always reduce, never get stuck. Now this may turn the
system suitable for “open” call-by-value [1] - but that remains future work.
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