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Abstract: The combination of diagnostics and therapy (theranostic) is one of the most complex, yet
promising strategies envisioned for nanoengineered multifunctional systems in nanomedicine. From
the various multimodal nanosystems proposed, a number of works have established the potential
of Graphene-based Magnetic Nanoparticles (GbMNPs) as theranostic platforms. This magnetic
nanosystem combines the excellent magnetic performance of magnetic nanoparticles with the unique
properties of graphene-based materials, such as large surface area for functionalization, high charge
carrier mobility and high chemical and thermal stability. This hybrid nanosystems aims toward
a synergistic theranostic effect. Here, we focus on the most recent developments in GbMNPs for
theranostic applications. Particular attention is given to the synergistic effect of these composites, as
well as to the limitations and possible future directions towards a potential clinical application.

Keywords: graphene; magnetic nanoparticles; graphene-based nanomaterials; theranostic

1. Introduction®

At the nanoscale (1–100 nm) materials exhibit unique size dependent properties which
are not achievable in bulk materials [1–3]. In a simplistic way, a bulk ferromagnetic material
can be observed as several small regions (domains) that are spontaneously magnetized.
However, when the particle size of a ferro- or ferrimagnetic material is reduced at diameters
near to the monodomain, these nanoparticles are often in a superparamagnetic state at
room temperature, meaning that magnetization decreases to zero when the magnetic field
that has been applied is removed [4–6]. This ability to interact with external magnetic
fields allows them to be remotely manipulated or controlled, thus enabling a plethora
of possibilities in the development of biomedical technologies aimed at improving the
understanding, diagnosis and treatment of different diseases [7]. Magnetic nanoparticles
(MNPs) offer a diverse range of applications, from magnetic resonance imaging (MRI), to
drug delivery or magnetic hyperthermia [8]. The first MNPs, approved by the US Food
and Drugs Administration (FDA) for clinical application, date from 1996, and consisted
in the use of magnetic iron oxide nanoparticles to serve as negative contrast agents in
MRI to enhance tumor detection in the liver [9,10]. Nevertheless, MNPs can present some
disadvantages, such as self-aggregation, toxicity and low performance for biofunctionaliza-
tion [11]. Foreseeing the need for improved nanomaterials to suppress these limitations,
numerous composite magnetic nanosystems and strategies have been developed in the last
decade for nanomedicine. Among them, carbon-based nanomaterials are being explored
due to their many interesting physicochemical properties different from those of bulk
carbon materials like diamond, graphite, fullerenes and nanotubes [1–3]. Since 2004, when
Geim and Novoselov discovered graphene (a flat monolayer of carbon atoms, also known
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as graphene monolayer, tightly packed into a 2D honey lattice), many other graphene
derivatives, such as graphene oxide (GO), reduce graphene oxide (rGO), and graphene
quantum dots (GQD), have attracted great deal of global attention [12–14]. Graphene,
defined as a single atomic layer of sp2 carbon atoms arranged in a honeycomb lattice, is
thus defined as the building block of all other carbon-based materials, their classification
mostly dependent on the number of layers and chemical modifications [15].

Overall, carbon atoms have the ability to participate in robust covalent bonds with
other carbon atoms and also with other elements in diverse hybridization states (sp, sp2,
and sp3) [16], creating carbonaceous monolayers with unique properties, such as high
charge carrier mobility, high chemical and thermal stability and large surface area.

In graphite, i.e., 3D multilayers of graphene where each carbon atom is exclusively
attached to other carbon atoms in the same plane forming strong covalent bonds, the
carbon multilayers are bound to each other mainly through weak forces, such as Van der
Waals. For this reason, graphite is considered as a soft carbon-material, and the previous
highlighted properties of graphene-based materials are partially lost.

A particular case of a carbonaceous nanomaterial is the carbon nanotube, which is a
tubular arrangement of single or multilayered graphene arranged as a roll, and responsible
for their specific properties [17,18].

Graphene-based materials (graphene and graphene derivatives), compared to other
carbon-based materials, such as graphite, present a larger surface area, are easier to function-
alize and have improved solubility, due to their own unique physicochemical, mechanical,
optical, thermal, electronic and biomedical properties [17,19]. The presence of free π elec-
trons and reactive sites for surface reactions offer large room to load and deliver drugs,
genes, and proteins towards specific cells, tissues, and organs [18]. Moreover, this material
also has specific optical properties, which promote its use in optical absorption in the near
infrared (NIR) windows (750−1000 nm for the NIR-I window and 1000–1700 nm for the
NIR-II window) [16].

Taking advantage of these characteristics, some studies have demonstrated the po-
tential of combining graphene-based materials and MNPs [11,20]. Thereby, GbMNPs are
hybrid combinations of these two materials conjugated in various configurations [21].
This promising nanosystem can collate the advantages and unique properties of each
nanomaterial separately, namely high magnetic saturation and superparamagnetism from
the magnetic nanoparticles and the high thermal and electronic conductivity, high charge
carrier mobility and improved biocompatibility of the graphene-based material [17,19,22].
Additionally, it allows the combination of multiple theranostic functionalities into a single
platform.

In this review, we will focus on the latest advances in the use of GbMNPs as theranostic
probes. Furthermore, we will discuss the synergistic improvement of these hybrid nanosys-
tems, their current limitations, biocompatibility and cytotoxicity and future directions for
their clinical application.

1.1. Graphene-Based Magnetic Nanoparticles Configurations

GbMNPs can be categorized into two basic configurations (Figure 1A): (a) graphene-
based materials encapsulated magnetic nanoparticles (GbEMNPs) and (b) graphene-based
materials decorated with magnetic nanoparticles (GbDMNPs) [23].

In the first configuration, the core made of magnetic material is covered with a
graphene-based shell. In this case, the magnetic nanomaterial can be covered by the
carbonaceous shell with spherical or oblong geometry, such as the case of nanotubes, and
designed as core–shell or yolk–shell. For biomedical applications, the yolk–shell configura-
tion, i.e., core@void@shell, similar to the one represented in Figure 1A/(a), has attracted
much attention due to the hollow space that is created between the magnetic core and the
carbonaceous shell. Due to the typical mesoporous characteristic of carbonaceous shells,
this interior hollow space can then be used to improve the capability of these nanostruc-
tures to load higher drug/gene payloads and serve as super-efficient nanocarriers [11].
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Overall, the main advantages of the GbEMNPs’ configuration are the capability to provide
protection to the magnetic core from corrosion, prevent potential toxic side-effects caused
by the exposure of free magnetic nanoparticles and improve the colloidal stabilization of
the magnetic nanoparticles by increasing their hydrophilicity.
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In the second configuration, graphene-based materials are decorated with magnetic
nanoparticles [23]. Generally, GbMNPs nanosystems are mostly produce in GbDMNPs
configurations (Figure 1A/(b)). However, in this case the MNPs are not protected against
the environment and vice versa. Thus, biological systems are not protected from potential
leaches from these materials, demanding further functionalization.

1.2. Preparation and Synthesis of Graphene-Based Magnetic Nanoparticles Hybrids

Over the years, several synthesis protocols have been developed to produce graphene
and its derivatives, including mechanical exfoliation, epitaxial growth, and liquid phase
exfoliation [24]. Among the most popular techniques used for the synthesis of graphene
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monolayers are the mechanical exfoliation or chemical vapor deposition (CVD); for GO,
the most popular is the oxidation of crystalline graphite followed by dispersion in aqueous
medium through sonication or other processes; and for rGO, the most popular is the
thermal, chemical or UV treatment of GO under reducing conditions [17]. Likewise, MNPs’
synthesis techniques have also been the focus of intensive research and development, which
can be listed in three main classifications, i.e., physical, chemical or biological methods,
each one with their own advantages and disadvantages. Among those, chemical methods
are the most used, allowing efficient and precise control of particle size, composition and
surface chemistry. The most successful and popular ones are the coprecipitation, thermal
decomposition and hydrothermal methods [25].

In general, two main strategies can be followed for the synthesis of GbMNPs, namely:
the ex situ and in situ methods [26]. In the ex situ method, two main steps are followed.
Firstly, the magnetic nanoparticles are synthesized and after that, bonded onto the surface
of graphene sheets by covalent or noncovalent modification [27–29]. In the in situ method
(mostly hydrothermal and solvothermal growth and reduction method), nanocrystallites
are produced in the presence of functionalized graphene nanosheets, growing directly onto
the graphene surface [27].

GbEMNPs’ heterogenic structures are, in general, generated following ex situ methods
using direct routes, such as CVD, or by indirect routes, mostly wet chemical techniques [23].
As an example of this last technique, some of the authors of this revision, Rodrigues
et al. [30] presented a protocol for the synthesis of tailor-made yolk-shell graphene-based
magnetic nanoparticles envisioning biomedical applications. In this work, the authors
used a two-step procedure, where first the magnetic core was synthesized, followed by
the formation of the carbonaceous nanoshell. For this second step, the authors used a
one-pot strategy of hydrolysis and polymerization of the precursors resorcinol, formalde-
hyde and TEOS. By increasing the amount of those precursors and maintaining a fixed
mass of the magnetic core, the authors obtained different yolk-shell GbMNPs architec-
tures, with different sizes of the hollow cavity and thickness of the carbon-shell, ranging
from graphene-based to graphite nanostructured shells [30]. The same authors later pub-
lished the optimization of GbMNPs for combined hyperthermia and dual thermal/pH
stimuli-responsive drug delivery [11] showing the potentiality of this procedure to develop
multifunctional nanosystems for medicine.

On the other hand, GbDMNPs can be easily obtained by in situ methods. Most of
these nanocomposites are prepared by the reduction of the metal precursors on the surface
of graphene-based sheets with the help of reductants, such as NaOH, NaBH4 and amines,
among others [21]. In a recent study published by Isiklan et al., 2021 [31], a synthesis
protocol for the development of gelatin-decorated magnetic graphene oxide nanoplatfom
is described for photothermal therapy and drug delivery to achieve theranostics. In this
work, magnetic graphene oxide nanosheets were synthesized under inert atmosphere
using Fe(acac)3 as metal precursor and TREG as reducing agent at high temperature (278
◦C). Then, the magnetic graphene oxide was decorated with gelatin following a facile
mixing approach, which improved the biocompatibility, colloidal and thermal stability
with enhancement of the photothermal conversion efficiency compared to the uncoated
magnetic graphene oxide. A more complete and comprehensive overview of the synthesis
methods for graphene-based and graphene-based magnetic nanoparticles can be found
elsewhere [19,32,33].

Overall, and independent on the selected method used to obtain GbMNPs, it is
important that the final nanoproduct can be presented in aqueous colloidal dispersions,
ideally monodisperse in size and shape, in order to guarantee reproducibility and high-
quality performance [4]. Additionally, the cytotoxicity and biocompatibility to tissues and
cells is of the outmost importance, which will be focus of discussion in Section 2.3 of this
review.
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2. Graphene-Based Magnetic Nanoparticles for Theranostics

Theranostics involves the combination of diagnostics and therapeutics in a single
platform. Among diagnostic strategies the most relevant are: MRI; positron emission
tomography, PET; single-photon emission computed tomography, SPECT; computed to-
mography, CT; and photoacoustic imaging, PAI. Regarding the therapeutic strategies, the
most relevant are drug and gene therapy; photothermal therapy, PTT; magnetic hyperther-
mia, MHT; and photodynamic therapy, PDT [34]. The combination of these strategies in a
single platform results from the integration of various functional components.

From the mid-1990s, nanotechnology has been used in therapeutics to target cancer
and since then, nanoparticle-based platforms have gradually increased their complexity
and have approached a wider range of diseases and conditions [35]. Nonetheless, due
to their increased complexity, theranostic platforms are to date unavailable for clinical
use [35,36]. Despite the great performance showed by many of the developed theranostic
nanostructures at a preclinical level, only a few nanomaterials have been evaluated in
clinical trials [37].

Among the wide variety of nanostructures developed for theranostic purposes, GbM-
NPs represent a research trend that has attracted increasing attention in the last few years
(Figure 2a). However, if the search is narrowed to the keywords (“graphene + magnetic
+ theranostic” (title/abstract/keywords)) (Figure 2b) we verify that the growth trend
continues to exist, but in a more modest and oscillating way.
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GbMNPs are able to perform or improve several functions key in the different biomedi-
cal applications, namely: (i) signal generation, either through GbMNPs’ intrinsic properties,
for example, via interactions with electromagnetic fields in MRI or radiation in fluorescent
imaging, or via functionalization with external reporters (e.g., radioactive nuclides for PET
or SPECT); (ii) the conversion of electromagnetic energy into thermal or chemical energy
for remote manipulation of their surroundings, representative of applications such as PTT,
PDT and MHT; (iii) drug delivery and (iv) increased specificity via surface modification
with targeting biomolecules or magnetic guidance [38], as exemplified in Figure 1B.

In this review we discuss studies proposing the development of GbMNPs for ther-
anostic applications. These studies are only included if they meet the following criteria:
(i) have been published within the last six years and, (ii) present at least one strategy for
diagnosis plus one strategy for therapy. The literature search was conducted in electronic
databases (i.e., PubMed and Scopus). Table 1 presents a summary of characteristics of
GbMNPs proposed for theranostic applications.
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Table 1. Summary of characteristics of GbMNPs for theranostic applications, including configuration, preparation method, Dh (Diameter by DLS), Dc (Diameter by
TEM), relaxivity, SAR (specific absorption rate), drug loading capacity, pH sensitive release, diagnostic strategy, therapeutic strategy, in vitro and in vivo trials.

Graphene-Based
Magnetic

Nanoparticle
Configuration Preparation

Method Dh Dc Relaxivity
(mM−1S−1)

Magnetic
Proper-

ties

Drug
Loading
Capacity

pH Sensitive
Release

Diagnostic
Strategy

Therapeutic
Strategy

In
Vitro

In
Vivo Ref.

rGO-MnFe2O4-PEG GbDMNPs
In situ:

hydrothermal
reaction

- -
r1= 11.74; r2

= 295.48
(3.0 T)

- - MRI;
SPECT

RIT;
Chemotherapy x x [39]

CoFe2O4/GO GbDMNPs
In situ:

Sonochemical
reaction

-
L = 300–2000
nm; D = 5–13

nm

r2 = 92.71
(3.0 T)

Ms = 38.7
emu/g

=1.08
mg/mg MRI Chemotherapy x - [40]

GO-IO-DOX GbDMNPs
Ex situ:

hydrophobic–
hydrophobic

- L = n/d ; D = 20
nm

r2 = 84.0
(3.0 T)

Ms =
25.37

emu/g
- pH 7.4 = 19%;

pH 5 = 58% (6 h) MRI MFH;
Chemotherapy x - [20]

MNP/GO/chitosan GbDMNPs Ex situ - -
r1 = 6.99; r2
= 44.51 (1.5

T)
MRI Chemotherapy x - [41]

GO-CD/Fe@C GbDMNPs Ex situ 267–334
nm - r2 = 9.37

(3.0 T)
Ms = 2.45

emu/g
=3.50

mg/mg
pH 7 = 20%; pH
5 = 38% (48 h) MRI Chemotherapy x - [42]

IUdR/NGO/SPION/
PLGA GbEMNPs

Ex situ: emulsion
solvent

evaporation
71.8 nm D = 26.3 nm -

Ms =
15.98

emu/g
- pH 7.4 = 67% (8

h) MRI Chemotherapy;
PTT x x [43]

GO/ZnFe2O4/UCNPs GbDMNPs
Ex situ:

electrostatic
interactions

400 nm L = n/d ; D = 12
nm; T = 1- 2 nm

r2 = 24.84
(1.2 T) - - - UCL; CT;

MRI; PAT PDT x x [44]

GQDs-Fe/Bi GbEMNPs Ex situ >100 nm D = 64± 5.46 nm
r1 = 2.37; r2
= 62.34 (1.5

T)

Ms =
48.59

emu/g
- - CT; MRI PTT x - [45]

CAD-SPIONs@GO GbDMNPs In situ - L= n/d; D = 5
nm

r1 = 3.17 r2
= 8.36 (0.5

T)

Ms =
10.50

emu/g
-

pH 7.4 = 13.7%
(48 h); pH 5.5 =

35.4% (1 h)
MRI Chemotherapy x x [46]

GO-Fe3O4 GbDMNPs Ex situ 76 nm L = 265 nm r1 = 6.6 r2 =
71.1 (3.0 T) - =0.2

mg/mg - MRI; FI Chemotherapy x - [47]

GIPD GbDMNPs In situ 86.7 ±
3.4 nm

L = 150 nm ; D =
8.25 nm - - =0.48

mg/mg - MRI PTT x x [48]

NGO-SPION-PLGA-
5-Fu GbDMNPs Ex situ L = 72.9 - - - pH 7.4 = 41.36%

(24 h) MRI PTT;
Chemotherapy x x [49]

Abbreviations: GO—graphene oxide; L × D × T—length × diameter × thickness; d—day(s); GbEMNPs—G = graphene-based materials encapsulated magnetic nanoparticles; GbDMNPs—
graphene-based materials decorated with magnetic nanoparticles ; FI—fluorescence imaging; MRI—magnetic resonance imaging; CT—computed tomography; UCL—upconversion
luminescence; PL—photoluminescence; PAT—photoacoustic tomography; PDT—photodynamic therapy; PTT—photothermal therapy; RIT—radioisotope therapy; Ms—saturation
magnetization; n/d—not defined.
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The theranostic modality most often described in the studies highlighted in Table 1
is the combination of MRI with chemotherapy. However, many other combinations are
possible and, above all, there is currently a great demand, especially in cancer, for synergic
theranostic systems [20]. The following sections will cover representative examples of
GbMNPs-based theranostic agents involving several diagnostic and therapeutic modalities.
Limitations regarding the use of GbMNPs for clinical applications will also be addressed.

2.1. Graphene-Based Magnetic Nanoparticles in Diagnostic

As mentioned above, the diagnostic technique most often described in the studies
reviewed is MRI. MRI contrast agents have demonstrated their ability to maximize the
difference in relaxation time between healthy and diseased tissues and are classified into T1
or T2 contrast agents depending on their magnetic properties and imaging effects [49]. On
the one hand, the T1 performance is mainly associated with a paramagnetic character of
the contrast agent coming from transition and lanthanide metal ions within their chemical
structure presenting a large number of unpaired electrons [50,51]. On the other hand, a
T2 behavior involves a long-range magnetic interaction with water molecules that it is
caused by the magnetic field that a superparamagnetic core is able to induce under an
applied magnetic field [52]. In GbMNPs hybrids, the observed shortening in the transverse
relaxation time (T2) [4] comes from the MNPs counterpart, since the graphene component
does not exhibit intrinsic paramagnetism or superparamagnetism [53–55]. Some GbMNPs
combinations [39] show transverse relaxivity (r2) values superior to those of commercial
iron oxide contrast agents Feridex® (r2 = 130 m M−1 s−1, at 3T, 37 ◦C) [56] and Resovist®

(r2 = 200 m M−1 s−1, at 3T, 37 ◦C) [57], both superparamagnetic iron oxide NPs approved
by FDA. This increase in the r2 of GbMNPs can be also tuned by, for example, increasing
iron oxide nanoparticle loadings, controlling MNPs aggregation or increasing average
nanoparticle sizes [57], translating into improved T2-weighted contrast enhancements.

In a study by Qian et al. the MRI performance of RGO-MnFe2O4-PEG nanocomposites
showed both T1 and T2 weighted contrast enhancement [39]. The r1 and r2 values were
calculated to be 11.74 and 295.48 m M−1 s−1, respectively. Mice bearing 4T1 tumor models
were IV injected with RGO-MnFe2O4-PEG nanocomposites and imaged in an MRI scanner
at 3.0 T (Figure 3a). T2-weighted MR images showed a dark contrast effect in the tumor
sites, whereas T1 weighted MRI exhibited brighter contrast in the same areas.

Other imaging modalities can also be integrated in GbMNP, including PET and SPECT,
which make use of radioactive tracers and allow for higher sensitivity (10−10–10−11 M) [39].
In this field, graphene-based nanomaterials play an important role due to their optical
properties. In contrast to graphene, GO exhibits robust and reproducible fluorescence,
with a range of lateral dimensions, and tunable wavelengths [58]. GbMNPs have been
used as MRI and SPECT multimodal imaging probes, providing precise information about
the location and size of tumors [39]. In the study by Qian et al., mice bearing 4T1 tumors
were also i.v. injected with 125I-RGO-MnFe2O4-PEG nanocomposites (10 mg/mL of RGO-
MnFe2O4-PEG, 200 µCi of 125I) and then imaged using a small animal SPECT imaging
system. The acquired images were over imposed to those of MRI, showing a higher
accumulation of the 125I-RGO-MnFe2O4-PEG nanocomposites at the tumor site (Figure 3).

CT it is also used in the studies reviewed, this strategy is based on differential levels
of X-ray attenuation by tissues within the body to produce three dimensional high-contrast
anatomic images enabling delineation between various structures [44,45]. In a study of
Bi et al., a GO/ZnFe2O4/UCNPs nanocomposite is presented, abbreviated as GZUC [44].
In vitro CT images of GZUC-PEG at different concentrations are shown in Figure 4a,
where the signal intensity is stronger with the increasing concentration of GZUC-PEG.
CT imaging in vivo is given in Figure 4c. The images revealed that the CT value of the
mouse injected with GZUC-PEG is 247 HU, which is higher than the noninjected mouse
(i.e., control) [44]. Photoacoustic tomography (PAT) combines the advantages of optics and
ultrasound through exciting the sample with a laser and then detecting the ultrasound
wave generated (due to laser absorption and subsequent thermoelastic expansion) [44,59],
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and was also applied as a bioimaging tool in the same study [44]. The study revealed
that GZUC-PEG can reach the tumor region, showing its potential to be used as imaging-
guided cancer treatment application using both techniques. Another dual bioimaging
strategy was proposed by Gonzales-Rodriguez et al., which proposed a multifunctional
graphene oxide/iron oxide nanoparticles for dual fluorescence/MRI imaging and the
optical detection of cancerous tissues [47]. Using this strategy, the authors have shown
the potential of GO-Fe3O4 as negative MRI contrast enhancement agent in in vivo studies,
and the intrinsic green fluorescence of GO-Fe3O4 complex to track the efficiency of cell’s
internalization in in vitro studies, using the ratios of emission intensity in green (535 nm)
to red (635 nm) that enabled them to differentiate cancer cells (MCF-7 and HeLa) from
healthy cells (HEK-293), with 4 to 5-fold orders of difference.
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In the last few years GbMNPs have assumed a substantial importance in the develop-
ment of other diagnostic applications, such as biosensors, where GbMNPs have been used,
for instance, to enhance the detection efficiency and to monitor biomarkers released from
diseased tissues. However, biosensors are, in general, developed with the particular aim to
detect analytes and not for the combination with other therapeutic approaches. Therefore,
this application was not considered in this review, but more information on this topic can
be found through this reference [21].

2.2. Graphene-Based Magnetic Nanoparticles in Therapy

The therapeutic modality PTT is based on nanoparticles with a photoabsorbing capa-
bility to generate heat under NIR irradiation, thus, inducing hyperthermia and leading to
apoptosis on unhealthy cells or tissues while protecting healthy ones [60,61]. Graphene-
based structures are potential PTT agents due to their high absorbance in the NIR range.
These nanocomposites have the potential to absorb NIR in the spectral region, where water
and hemoglobin show low optical absorption (750–1700 nm), which enables maximum
light penetration depth without affecting tissues or blood cells [62,63]. However, even in
the NIR region, the light depth penetration is limited, which may lead to the partial ablation
of large or deep-seated tumors. A potential solution to this is the use of high-power light
sources, but this may damage neighboring healthy tissues.

Thereby, integrating heating capabilities, namely MHT and PTT, into a unique nanosys-
tem, presents several advantages. When MNPs are exposed to an alternating magnetic
field, local heat is induced by magnetic energy losses [64,65]. This phenomenon, called
magnetic hyperthermia, does not present the depth penetration limitations that light has,
as biological tissues are transparent to magnetic fields and the use of GbMNPs allows
the synergistic improvement of hyperthermia properties of MNPs, due to high thermal
conductivity of GO [66,67]. Thus, GbMNPs can be accumulated into the malignant tis-
sues to generate localized heat when subjected to NIR light or/and magnetic fields, thus
preventing damage to healthy cells [67].

The therapeutic modality most often described in the studies that were reviewed is
chemotherapy. Unlike standard cancer treatments that are based on chemotherapeutics and
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present serious adverse side-effects on healthy tissues due to the non-specificity of the drugs,
carefully designed NPs can provide higher treatment efficacies and reduced side-effects
through an increase in the specificity of the anticancer pharmaceutical agents towards tu-
mors [68]. Furthermore, NPs can also enhance the pharmacokinetic and pharmacodynamic
properties of encapsulated drugs compared with free drugs [68]. Once graphene-based
materials exhibit delocalized π electrons, as well as polar chemical groups and negative
surface charge, this grants high drug loading ratios for a variety of molecules [17]. In the
reviewed studies the encapsulation efficiency could reach 95.8% for GbMNPs [20], which
is exceptionally high compared to any other drug nanocarrier system described in the liter-
ature [69]. Doxorubicin (DOX) is the most studied chemotherapeutic drug [20,39–42,70].
Nevertheless, besides a high drug loading, the specific and timely delivering of the drugs
to the targeted cells or tissues also have to be taken into account to achieve a successful
therapeutic effect [4]. There are different possible strategies to achieve this goal. The
most popular strategy in the reviewed studies is a pH stimuli-responsive controlled drug
release, triggered by the acidic pH values found around 6.5 in the tumor microenvironment
(Figure 5a) [11,20,40]. Mostly this phenomenon is attributed to the π-π stacking between
the graphene-based nanostructures and the aromatic drug molecules, which can be easily
disrupted under a mild acidic environment and/or the increased solubility of medicines
caused by the protonation process. It is interesting to note that in some of these studies
the combination of magnetic hyperthermia and chemotherapy has been shown to have a
synergistic effect caused by the high thermal conductivity of graphene-based materials
on cancer, when compared to the therapeutic effect when these treatment procedures are
applied alone (Figure 5b) [11,20]. Another strategy used in the reviewed studies is magnetic
targeting. In a study by Shirvalilou et al., IUdR/NGO/PLGA magnetic nanoparticles are
developed and used with the help of magnetic targeting to treat C6 glioma. The results
show a high-level of specificity to C6 glioma achieving high nanocomposite accumulation
at the targeted tumor site using a magnet [43].
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2.3. Biocompatibility and Toxicity of Graphene-Based Magnetic Nanoparticles

From the studies reviewed it is evident that the graphene-based nanomaterials’ shape,
layer number, size, purity, surface properties, dose, composition and chemistry, including
hydrophilicity, all play a crucial role in determining their interactions with cell membranes,
cellular uptake and fate [17]. For example, lateral dimensions can promote cellular uptake
(<100 nm), while larger GbMNPs are detected by the immune system, removed from the
blood and discarded from the body by the liver and the spleen [46,71]. However, it is
common that some of this information about each nanomaterial’s size, thickness, surface
charge or even the colloidal stability, is missing in some of the published papers [40].
Therefore, a complete collection and analysis of the data regarding the graphene-based
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materials and their biocompatibility and toxicity to cells and tissues is difficult to archive.
Nevertheless, there is a general consensus in the scientific community that among the
graphene-based materials, high negatively charge rGO and GO are the ones with the best
biocompatibility to cells and tissues, mostly due to their oxygenated functional groups,
which allows electrostatic interactions between these graphene-based nanomaterials and
the lipids of the cell’s membranes [72]. On the other hand, it has been shown that pure
graphene material, which have no charge on the basal plane, do not interact with phospho-
lipids of the cell’s membranes, but have hydrophobic interaction with their lipids, which
can lead to membrane disruption [72]. Overall, these findings pinpoint the importance of
the chemical surface of the graphene-based nanomaterials, which have to be taken into
account for biomedical applications. Therefore, an important requirement for biomedical
applications is related to the surface functionalization of the GbMNPs, which besides
having the potential to improve the biocompatibility of graphene-based nanoparticles, can
also improve their colloidal stability.

In biological media, it has been shown that nonfunctionalized GbMNPs tend to form
aggregates due to strong intermolecular interactions, which result in unwanted changes
to their physicochemical properties. Functionalization is then used as a strategy to im-
prove the colloidal stability of GbMNPs, assuring a better body distribution and reduction
in toxicity. Due to their large surface area and chemical composition, GbMNPs can be
functionalized either covalently through hydroxide, epoxy or carboxylic acid groups or
noncovalently through the surface π electrons, hydrophobic interactions or electrostatic in-
teractions [18]. The functionalization of GbMNPs includes an extensive variety of strategies,
namely, stealth strategies where GbMNPs are coated with polymers that inhibit protein
binding and provide long-term chemical stability. However, also, using targeting strategies,
where GbMNPs can be conjugated with ligands and/or antibodies that recognize specific
cell surface receptors, or other strategies, where GbMNPs can be conjugated with drug and
genes to their specific delivery into the target-cells. These post synthesis procedures allow
GbMNPs to gain optimal characteristics for theranostic applications.

In the reviewed articles, the most common surface functionalization is PEG [20,40,45,47,49].
However, some other strategies are boarded in those articles, including coating the GbM-
NPs with chitosan [41] and poly (lactic-co-glycolic acid) (PLGA) [43,49]. In those works,
PLGA was selected due to its potential utility in reducing enzymatic degradation, the
sustained release of various drugs, the enhancement of the drug payload and the reduction
in immune reactions [49]. Chitosan, i.e., polysaccharide of natural origin, was in turn
selected because it responds to microenvironmental pH-stimuli by changing its solubility
accordingly to the pH values of healthy and cancer cells. Additionally, it has recognized
properties such as biocompatibility, biodegradability and antibacterial activity [41].

In regard to the in vitro toxicity evaluation, most of the studies reviewed use MTT
[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay for cell viability eval-
uation in 2D static cultured cells [41–43]. However, this colorimetric assay is prone to
producing false-positive/false-negative results, since any remaining GbMNPs in the so-
lution to be analyzed can interfere with cell viability and proliferation results, due to the
absorbance of light by the graphene-based shell [73]. Other factors to take into account
when performing in vitro tests are the selection of the cell lines, the cell densities and media
temperature, that could affect the nanoparticle cellular uptake [74]. These can explain
the biased results observed from in vitro and in vivo studies. For instance, in some of
the revised articles, although the in vitro studies showed good cell viability and high effi-
ciency as a theranostic nanosystem, the in vivo studies revealed lower efficiency with the
bioaccumulation of GbMNPs in the liver and spleen [46,71]. Additionally, it is important
to empathize that the different synthetic procedures used for the preparation of these
graphene-based nanocomposites use, in general, several chemical oxidizers and reducing
agents, which typically generate metallic impurities and contaminations that can result in
cell damage or apoptosis [72]. To overcome this synthetic limitation, green synthesis routes
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can be an interesting approach to reduce possible cytotoxicity of GbMNPs designed for
biomedical applications.

2.4. Limitations of Graphene-Based Magnetic Nanoparticles for Potencial Clinical Applications

In a similar way to many others nanotheranostic systems, the lack of translation of
GbMNPs to clinical applications can be ascribed to two main types of challenges, namely
(i) biological and (ii) commercial ones [11].

Among the biological challenges, the evaluation of the biocompatibility and toxicity
of nanostructures can be demanding, since a standard research protocol to evaluate the
toxicity of a nanomedicine system is lacking, which creates bias in the comparison and
standardization of biological results, limiting the development and applications of nanopar-
ticles [75]. In the case of GbMNPs, this can be even more challenging, since there is a lack
of consensus in the categorization of the many types of graphene-based nanomaterials (i.e.,
graphene, graphene oxide, reduced graphene oxide or even graphite). In the literature,
although works performing biological studies on graphene-based nanomaterials can be
easily found, not all of these studies present enough physicochemical characterization of
the nanomaterials to provide clear information on the type of GbMNP developed. This is
particularly important to assess, since the biological properties of GbMNPs can be very
distinct if the carbon-based material used is graphene, graphene oxide, reduced graphene
oxide or graphite. Additionally, the shape, size, configuration and surface charge of the
GbMNPs are of the utmost importance for the biological evaluation. However, many
of the articles present gaps in the data regarding size and thickness, as well as surface
charge. Nevertheless, it is important to note that some graphene-based materials have
demonstrated a certain dose-dependent toxicity to cells that must be considered for biomed-
ical applications [76]. To improve reproducibility, increase quantitative comparisons of
bio-nanomaterials and facilitate meta analyzes, some authors suggest the adoption of a
minimum standard of information [77].

Among the commercialization challenges, one of the main problems is the difficulty of
formulating a controllable and reproducible product [11]. Ideally, for large scale production,
GbMNPs have to be developed in a simple and reproduceable way, with low physicochem-
ical variability. For pharmacological interest, laborious and expensive procedures are rarely
worthy of interest.

Therefore, and despite the incredible breakthroughs that nanoscience and nanotechnol-
ogy have attained in the last decade, further research has to be devoted to achieving these
goals, including: (i) the standardization of the production of the different graphene-based
materials; (ii) the development of reproducible GbMNPs preparations; (iii) the standard-
ization of characterization and functionalization protocols; (iv) the understanding of the
nano-bio interface; (v) the understanding of the nanoparticles’ biodistribution; and (vi) the
evaluation of toxicity in a wider context, in order to obtain robust and precise toxicological
data [73,78].

3. Future Perspective for the Advance of GbMNPs

As abovementioned, despite the evident benefits and potential of GbMNP nanosys-
tems, there are still several challenges that need to be surpassed before a clinical translation
is possible. Without these advancements, graphene-based nanomaterials will face dif-
ficulties in fulfilling the rigid criteria for a significant clinical translation of the novel
nanomaterials. Overall, in nanomedicine, there is a need to increase the involvement of
the scientific community with the regulatory authorities. Since the commercialization of
nanomedicines is mainly monitored by government policies, clear regulation and guide-
lines defined by the stakeholders and regulatory agencies can have a dramatic impact in
the translation of nanotheranostic systems, such as GbMNPs. Another major achievement
can be obtained with the effort to understand, in the early stages of material development
and preclinical studies, the impact of nanomedicines in the human body. Until now, the
majority of preclinical tests have been performed in static 2D cell cultures and small ani-
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mals, such as mice, rabbits, or other animal species. Although they have all demonstrated
their validity in the past, none of these models truly represent the patient biology and the
disease heterogeneity found in humans. This subject has been mentioned as one of the
major challenges in nanomedicines translation to clinics. To overcome this drawback, in
recent years, advanced microfluidic devices comprising organ models, i.e., organ-on-a-chip,
are being proposed. These advanced microfluidic platforms have shown high potential to
reduce the bias between the results derived from preclinical and clinical trials. Furthermore,
these advanced microfluidic tools are being highlighted as ideal platforms to predict the
performance and biotoxicity of the developed nanomedicines, with several advantages
over the gold standard methodologies [78]. Thus, organ-on-a-chip can impact the ad-
vancement of GbMNPs by providing clues in new formulations and their performance
regarding particle–tissue interaction, toxicity, cell uptake, accumulation, cell targeting,
transport, among others. More details on this theme can be obtained in a review found
elsewhere [78].

Overall, GbMNPs are a promising nanosystem with great potential for theranostic
applications. However, as debated in this review, the advancement of GbMNPs for clinical
applications is intrinsically associated with other developments in nanomedicine and nan-
otheranostics. Nevertheless, a great effort is being made by the scientific community and
stakeholders in this regard. Thus, advances in nanosystems in combination with mathemat-
ical approaches such as machine/deep learning can accelerate the discovery and successful
clinical translation of nanomedicines, and it is expected that in the next decade nanother-
anostics will be a promising option in medicine that, together with the development of
ultrasensitive and portable nanotechnology-based devices, can revolutionize personalized
care, tracking disease profiles in early stages and monitoring post-treatment recurrences, in
order to predict the patient’s response to therapies and evaluate the prognosis at low cost.
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Lima, R.; et al. Multifunctional graphene-based magnetic nanocarriers for combined hyperthermia and dual stimuli-responsive
drug delivery. Mater. Sci. Eng. C 2018, 93, 206–217. [CrossRef] [PubMed]

12. Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [CrossRef]
13. Shen, X.-J.; Zeng, X.-L.; Dang, C.-Y. Handbook of Graphene: Graphene Composites; Scrivener Publishing: Beverly, MA, USA, 2019;

ISBN 9781119468554.
14. Yan, Q.L.; Gozin, M.; Zhao, F.Q.; Cohen, A.; Pang, S.P. Highly energetic compositions based on functionalized carbon nanomateri-

als. Nanoscale 2016, 8, 4799–4851. [CrossRef]
15. Yang, G.; Li, L.; Lee, W.B.; Ng, M.C. Structure of graphene and its disorders: A review. Sci. Technol. Adv. Mater. 2018, 19, 613–648.

[CrossRef] [PubMed]
16. Nehra, M.; Dilbaghi, N.; Hassan, A.A.; Kumar, S. Carbon-Based Nanomaterials for the Development of Sensitive Nanosensor Platforms;

Elsevier Inc.: Amsterdam, The Netherlands, 2019; Volume 60, ISBN 9780128174562.
17. Goenka, S.; Sant, V.; Sant, S. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 2014, 173,

75–88. [CrossRef] [PubMed]
18. Saleem, J.; Wang, L.; Chen, C. Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment. Adv.

Healthc. Mater. 2018, 7, 1800525. [CrossRef] [PubMed]
19. Dasari Shareena, T.P.; McShan, D.; Dasmahapatra, A.K.; Tchounwou, P.B. A Review on graphene-based nanomaterials in

biomedical applications and risks in environment and health. Nano-Micro Lett. 2018, 10, 1–34. [CrossRef]
20. Ramachandra Kurup Sasikala, A.; Thomas, R.G.; Unnithan, A.R.; Saravanakumar, B.; Jeong, Y.Y.; Park, C.H.; Kim, C.S. Multi-

functional nanocarpets for cancer theranostics: Remotely controlled graphene nanoheaters for thermo-chemosensitisation and
magnetic resonance imaging. Sci. Rep. 2016, 6, 20543. [CrossRef] [PubMed]

21. Li, F.; Huang, Y.; Huang, K.; Lin, J.; Huang, P. Functional magnetic graphene composites for biosensing. Int. J. Mol. Sci. 2020, 21,
390. [CrossRef]

22. Albert, E.L.; Sajiman, M.B.; Che Abdullah, C.A. Incorporation of magnetic nanoparticle to graphene oxide via simple emulsion
method and their cytotoxicity. Appl. Nanosci. 2019, 9, 43–48. [CrossRef]

23. Boncel, S.; Herman, A.P.; Walczak, K.Z. Magnetic carbon nanostructures in medicine. J. Mater. Chem. 2012, 22, 31–37. [CrossRef]
24. Xu, M.; Zhu, J.; Wang, F.; Xiong, Y.; Wu, Y.; Wang, Q.; Weng, J.; Zhang, Z.; Chen, W.; Liu, S. Improved in vitro and in vivo

biocompatibility of graphene oxide through surface modification: Poly (acrylic acid)-functionalization is superior to pegylation
improved in vitro and in vivo biocompatibility of graphene oxide through surface modificatio. ACS Nano 2016, 10, 3267–3281.
[CrossRef]

25. Ali, A.; Zafar, H.; Zia, M.; ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, characterization, applications, and challenges of
iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67. [CrossRef]

26. Alegret, N.; Criado, A.; Prato, M. Recent advances of graphene-based hybrids with magnetic nanoparticles for biomedical
applications. Curr. Med. Chem. 2017, 24, 529–536. [CrossRef]

27. Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686. [CrossRef] [PubMed]
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