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Abstract: The topic of joint modeling of longitudinal and survival data has re-
ceived remarkable attention in recent years. In cancer studies for example, these
models can be used to assess the impact that a longitudinal marker has on the
time to death or relapse. Analyzes of such studies, in which individuals may
experience several events, can be successfully performed by multi-state models.
The goal of this work is to introduce feasible estimation methods for the tran-
sition probabilities conditionally on covariates observed with repeated measures
through the use of the landmark methodology and the adaptation of existing
methods for joint modeling of longitudinal and survival data. Results of the sim-
ulation studies confirm the superiority of the proposed estimator when compared
to methods that do not take in consideration the effect of the covariate on the
estimated transition probabilities or do not assume all the existence of repeated
measures (Breslow estimator).
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1 Introduction

Multi-state model is a model for a time continuous stochastic process which
can be used to describe complex event history data with several events
(Meira-Machado and Sestelo, 2019). In medical science studies beyond the
times-to-event a main goal is to identify the impact of a set of repeated
measures as a time-dependent covariate on the transition among states. In
order to produce valid inferences in these cases a joint modeling analysis
of longitudinal and multiple survival outcomes are required (Rizopoulos,
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2012). The final model is built using two sub-models; a longitudinal sub-
model (such as a linear mixed effects model) and a time-to-event sub-model
(such as a proportional hazards model) for each transition intensity which
are linked through an association structure quantifying the relationship
between the outcomes of interest. The background concepts related to the
extension of the joint modeling to multi-state models can be found in Ferrer
et al (2016). The aim of this paper is propose a feasible estimation method
for the transition probabilities conditionally on covariates observed with
repeated measures. To this end we will use the subsampling approach, also
termed as landmarking, proposed by de Uña-Álvarez and Meira-Machado
(2015), combined with methods proposed by Rizopoulos (2012). The land-
mark methods considers subsamples of individuals of the data that belong
in a given state at a pre-specified time point and gives rise to consistent
estimators regardless the Markov assumption.

1.1 Joint multi-state model specification

The joint modeling approach for multi-state models can be described by a
linear mixed effect model and a survival sub-model for each transition. The
longitudinal sub-model follows the gaussian assumptions and the observed
measure Yij at time tij is given by Yij = Xi (tij)

T
β+Zi (tij)

T
bi+εij , where

Xi (tij) and Zi (tij) represent the vectors of time-dependent covariates of
the individual and bi is the vector of random effects with bi ∼ N(0,Σ). The
β parameter is a fixed vector and εi ∼ N

(
0, σ2Ini

)
where ni is the number

of longitudinal measures by individual (Ferrer (2016)).
The time-to-event outcome at time t from state h to state k, with h, k ∈ S
the finite state space, is modeled by a proportional hazards sub-model
which takes the following form λi

hk(t|bi)=λhk,0(t) exp{XST
hk,iγhk+Whk,i(bi,t)ηhk},

where λhk,0 (.) is a parametric baseline intensity (with weibull, exponen-
tial or piecewise constant distributions, for instance). The baseline covari-
ates are denoted by wi with coefficients γhk. The multivariate function
Whk,i (bi, t) defines the dependence structure between the longitudinal and
multi-state process and represents the true and unobserved value of the
longitudinal outcome for patient i at time t. The association between the
longitudinal and the times-to-event for each transition is given by ηhk.

1.2 Estimation and Dynamic predictions of the transition
probabilities

In this study the maximum likelihood estimation for joint models will be
used to estimate the parameters of the joint multi-state model under the
landmark approach described in Uña-Álvarez and Meira-Machado (2015).
The maximization of the log-likelihood function will be done using an EM
algorithm coupled with a quasi-Newton algorithm in case of slow conver-
gence. As referred above the aim of this paper is to estimate the transition
probabilities phj(s, t) = P (X(t) = j|X(s) = h) conditional to a vector of
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covariates that include a covariate with longitudinal measures (as tumor
markers measured at different moments) ỹi (v) = {yi (v) , 0 ≤ u ≤ v}. For
each individual a transition probability is estimated and is assumed that
the patient has survived up to the last time point s (Rizopoulos, 2012)

2 Simulation study

The longitudinal and multi-state data were generated through a joint mod-
eling with 1000 replicates with 400 individuals given by Yij = β0 + β1 ×
tij+bi0+bi1×tij+εij and λihk (t|bi) = λhk,0 (t) exp{γhk+Whk,i (bi, t) ηhk},

where h ∈ {0, 1}, k ∈ {0, 1, 2} and bi ∼ N

(
(0, 0)

T
,

(
20 0.2
0.2 0.02

))
. The

longitudinal times, initially were the same for each individual, given by
tij = 0.33, 0.66, · · · , 16.50 and the εi ∼ N (0, 18). The parametric baseline
intensities were obtained from exponential distributions with rate param-
eters 3, 1.5 and 0.5. We took the value 2 for the γhk and for ηhk we took
the values -0.7, -0.7 and -0.6 for the transitions 0 → 1, 0 → 2 and 1 → 2,
respectively. The vector of true transition times, T ∗i =

(
T ∗i,01, T

∗
i,02, T

∗
i,12

)
,

were generated following the procedures described in Beyersmann et al.
(2011). By comparing T ∗i and Ci, the vector of times Ti = min(T ∗i , Ci),
where Ci denotes the censoring times, which characterizes the multi-state
process, was deduced. The longitudinal measurements, generated from the
linear mixed sub-model, were truncated at Ti1 the first observed time of
the multi-state process.

2.1 Results

The transition probabilities for the Landmark approach (LM), Breslow’s
method (BRES) and Joint Modeling-Landmark estimator (JMLM) were ob-
tained through Monte Carlo simulation with 1000 replicas with 400 indi-
viduals. For each replica, eight individuals were retained with the purpose
to identify the influence of the longitudinal marker on the estimation of
the transition probabilities (decreasing, constant, increasing and random
values of the marker). Although the variability seems to be quite similar,
the results confirm the superiority of the JMLM estimator which produced
unbiased estimates for all transitions probabilities. This conclusion are in
accordance with the ratio between the mean square errors (MSEs) for the
transition probabilities p̂00 (4, t) (Figure 1) and p̂11 (4, t) with t = {6, 8, 10}.
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Figure 1: Boxplots of the M = 1000 estimates of the transition probabilities.

It was also possible to observe the ability of the JMLM to reflect the evo-
lution of the longitudinal measures of the marker. In fact, for instance,
considering p̂00 (4, 6), for individual 3 with an increasing trend of the re-
peated measures of the marker as the Breslow estimator takes into account
the higher value the transition probabilities decrease comparing to the LM

estimator. However the effect of the previous repeated measures have as
consequence the increase of the JMLM estimation, following the true values.

3 Conclusions

Results obtained from simulation studies and in the real data application
confirmed the good performance of the JMLM estimator, providing accurate
estimated transition probabilities. The proposed method also demonstrated
to have more sensibility to reflect the evolution of the longitudinal measures
when comparing to the Breslow’s based method which only makes use of a
single value of the covariate.
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