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Robust one dimensionality at twin grain boundaries in MoSe2
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We show that 1D electron states confined at twin grain boundaries in MoSe2 can be modeled by a three-orbital
tight-binding model including a minimum set of phenomenological hopping terms. The confined states are robust
to the details of the defect hopping model, which agrees with their experimental ubiquity. Despite a valley Chern
number which is finite and opposite on both sides of the defect, there is no topological protection of the confined
states. This turns out to be an essential feature to have only one confined electronic band, in agreement with
experiments, instead of two, as the bulk-edge correspondence would imply. Modeling the confined state as a
1D interacting electronic system allows us to unveil a mobile quantum-impurity-type behavior at energy scales
beyond the Tomonaga-Luttinger liquid with an interaction range which extends up to the lattice spacing, in
excellent agreement with angle-resolved photoemission spectroscopy measurements.
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I. INTRODUCTION

One-dimensional (1D) electronic systems are the host
of many interesting phenomena, including the possible
condensed-matter realization of Majorana zero modes due to
the nontrivial topology of the electron states [1], the obser-
vation, due to electron correlations [2], of both low-energy
Tomonaga-Luttinger liquid (TLL) physics and higher-energy
mobile quantum impurity model (MQIM) behavior, beyond
TLL [3], as well as the observation of spin and charge separa-
tion at all energy scales [4], to mention a few. In a 3D world,
one-dimensionality is obviously not the rule. Fortunately, a
variety of examples can be found in nature (or synthesized)—
carbon nanotubes are a paradigmatic example [5], but also
semiconducting nanowires such as, for example, InSb and
InAs [1,6], and assembled atom chains on surfaces [2,7] have
been in the spotlight recently, with prominent technological
potential in some cases.

The advent of 2D materials [8], in particular the realiza-
tion of a class known as semiconducting transition metal
dichalcogenides (TMDs) [9], formula MX2, where M is a
transition metal (e.g., Mo, W) and X is a chalcogen (e.g.,
S, Se) [10,11], allowed for a distinct type of 1D electron
system: a confined state at the twin-grain-boundary (TGB)
defect shown in Fig. 1(a). The presence of such 1D states
inside the bulk gap, in excess of 1 eV, has been clearly demon-
strated experimentally [12–15]. Their metallicity also became
apparent, as well as intrinsic 1D behavior such as a Peierls
transition originating a charge-density-wave order below T �
250 K, as well as spin and charge separation characteristic of
a correlated 1D system [4,14]. In this paper, we show that the

three-orbital tight-binding (TB) model of Ref. [16], widely
used to describe physics around the gap edges in TMDs,
can be used to describe the confined 1D states at TGBs. A
minimum set of phenomenological hoppings are included to
couple the two sides of the TGB. The induced in-gap states
are robust to the details of the defect hopping model, being
present in its simplest version where only nearest-neighbor
(NN) hoppings between dz2 orbitals are allowed. The respec-
tive spectrum is shown in Fig. 1(b), where a band of states
localized at the TGB is clearly seen crossing the gap. The
localized nature of the states is depicted in Fig. 1(c), where we
show the probability density for a K-valley state. The valley
Chern number, which changes signs across the boundary and
takes values Cv = ±1, does not warrant topological protection
of the 1D states. This is crucial to stabilize a single band at the
TGB, in agreement with experiments and ab initio simulations
[14,17,18], as opposed to what would be implied by the Chern
number change |�Cv| = 2 across the TGB [19]. The stability
of the single band is, however, reminiscent of the Berry phase
difference between the two sides of the TGB [20].

Including interactions in the effective 1D system, and
explicitly accounting for the effects of the finite range of the
interaction between the MQIM charge degrees of freedom,
improves the agreement with angle-resolved photoemission
spectroscopy (ARPES) experiments beyond that reached in
Ref. [4].

The paper is organized as follows: In Sec. II, we introduce
the TB model used to describe the electronic properties of
the TGB. The continuum theory valid on both sides of the
line defect is discussed in Sec. III, where we also provide
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FIG. 1. (a) MX2 lattice with a TGB defect along the x direction.
(b) Spectrum for a ribbon of MX2 with a TGB in the middle, obtained
with a single hopping parameter to couple the two sides of the TGB
(see text). A band of electron states confined at the TGB is shown
as a thick (orange) line. Thin (black) lines are bulk states and short
dashed (blue and orange) are other 1D states. (c) Probability density
for an electron confined at the TGB in the K-valley.

a detailed topological analysis. The effect of the electron
finite-range interactions within the line defects is studied in
Sec. IV. In Sec. V, the key results are summarized and some
conclusions are drawn. We also include two appendices: In
Appendix A, we derive the continuum theory; in Appendix B,
some expressions useful for the discussion of the electron
finite-range interactions associated with metallic states in the
line defects are provided.

II. TIGHT-BINDING ANALYSIS

We model electrons in MoSe2 using an M atom three-
orbital NN-TB Hamiltonian given by

H0 =
∑
i,α

∑
γ ,γ ′,σ

c†
i,γ ,σ Eσ

γ ,γ ′ (Rα )ci+Rα,γ ′,σ , (1)

where c†
i,γ ,σ is an electron creation operator on lattice site

i, M-atom orbital γ = dz2 , dxy, dx2−y2 , spin σ =↑,↓, and Rα

with α = 1, . . . , 6 are the six vectors connecting NN atoms
as shown in Fig. 1(a). Eσ

γ ,γ ′ (Rα ) are hopping integrals as
given in Ref. [16] for the NN model [21]. We write the TB
Hamiltonian, including the TGB, as

H = HL + HR + HTGB, (2)

with HL ≡ H0 to the left of the TGB (y < 0) and HR ≡
σ †

v H0σv to the right (y > 0), where σv is the reflection op-
erator associated to the mirror transformation y → −y [see
Fig. 1(a)], and HTGB couples left and right regions. HR can
be written as in Eq. (1) with the NN hoppings reversed [see
Fig. 1(a)], so that the total Hamiltonian in Eq. (2) respects the
apparent mirror symmetry of the system with respect to the
line defect. HTGB is modeled in two ways: a simplified model,
where only the NN hopping between M-atom dz2 orbitals
is allowed, and a more elaborated model, where three NN
hopping terms are allowed across the TGB.

The results for the simplified model are shown in
Figs. 2(a)–2(c), respectively, for hopping values |t̃z2 | =
0.2, 0.6, 1.0 eV, where we considered a ribbon with trans-
lational invariance along the x direction and Ny = 100 unit

FIG. 2. Energy spectrum for a ribbon with a TGB in the middle,
obtained using the TB model with (a)–(c) only one NN hopping
between dz2 orbitals, |t̃z2 | = 0.2, 0.6, 1.0 eV, respectively; (d)–(e)
three NN hoppings involving dz2 and dx2−y2 (see main text), where
|t̃z2,x2−y2 | = 0.2, 0.6, 1.0 eV, respectively.

cells in the y direction, transverse to the TGB. Figure 2(c)
is the same as the one in Fig. 1(c). In the latter, the dashed
blue line corresponds to edge states localized at the outer
edges of the ribbon, so-called M edges. These edge states,
present in all panels of Fig. 2, have been studied elsewhere
[16,22,23] and will be ignored here. In the limit t̃z2 = 0, the
TGB is composed of two uncoupled X edges, which also
support edge states [24,25]. In Fig. 2(a), it is seen that a
finite t̃z2 lifts the degeneracy of the two X-edge states. On
increasing t̃z2 [Figs. 2(b) and 2(c)], bonding and antibonding
states are formed. The bonding state is pushed down in energy,
particularly when the localization length is smaller (kxa � π ),
and will be partially occupied.

Ab initio calculations clearly show that the in-gap states lo-
calized at the TGB are derived from M-atom orbitals [18,26].
Within the three-orbital NN-TB model adopted here, we have
verified that including hoppings involving the orbital dxy has
little effect on the dispersion of in-gap states, implying that
the orbitals dz2 and dx2−y2 are the most important for the defect
state. With this in mind, we developed a more realistic model
for HTGB considering three hoppings across the defect: direct
hoppings t̃z2 and t̃x2−y2 , and a crossed term t̃z2,x2−y2 . To reduce
the number of free parameters, we fix the hopping ratios to
the values in the bulk, t̃z2 : t̃x2−y2 : −t̃z2,x2−y2 = tbulk

z2 : tbulk
x2−y2 :

tbulk
z2,x2−y2 . The minus sign in t̃z2,x2−y2 accounts for the π/2

rotation of the hopping direction with respect to R1, which
is the reference for the hopping amplitudes in the bulk [16].
Figures 2(d)–2(f) show the spectrum for increasing values
of |t̃z2,x2−y2 | = 0.2, 0.6, 1.0 eV. The results are very similar
to those obtained with the single-hopping model. Allowing
for hoppings involving the dxy-orbital does not significantly
change the results, which agrees with dxy minor role in TGB
states.

In both models, we allowed for hopping values t ∼ 1 eV.
These are higher then bulk values [16], as a consequence
of the shorter NN distance between M atoms on opposite
sides of the TGB (20% smaller [26]). We have deliberately
ignored spin-orbit coupling (SOC) since TGB states derive
from the X-edge states, which are weakly affected by SOC.
Intrinsic SOC can be easily incorporated [27–29], but only at
very low temperatures will the spin-degeneracy assumption
breakdown.
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III. CONTINUUM THEORY AND TOPOLOGICAL
CONSIDERATIONS

A. Low-energy two-band model

A continuum theory describing the left (y < 0) and right
(y > 0) regions [see Fig. 1(a)] can be derived from the three-
orbital TB model (see Appendix A). The Hamiltonian reads

Hτμ(q) = vh̄(τqxσx + μqyσy) + (� + βq2)σz + εFσ0, (3)

where q = k − τK is the small momentum with respect to
valley K (τ = +1) or K ′ (τ = −1), μ = +1 on the left
(y < 0) and μ = −1 on the right (y > 0) regions, and εF is
the chemical potential. The Pauli matrices σi=x,y,z act on the
space of conduction and valence band states at τK, with σ0

for the identity. For MoSe2, the coefficients take the values

v � 5.6 × 105 ms−1, 2� � 1.44 eV, β � −3.01 eV Å
2
, and

εF � 0.76 eV. Apart from SOC, we are ignoring electron-hole
asymmetry and trigonal warping terms, which have much
smaller coefficients (see Appendix A).

Equation (3) can be cast in the form

Hτμ(q) = h(q) · σ + εFσ0, (4)

where σ is the vector of Pauli matrices. Equation (4) allows
for straightforward topological analysis in terms of the valley
Chern number, as done in the following.

B. Chern number

Within the two-band continuum theory of the previous
section, the valley Chern number is defined by Cv

τ,μ =
1

2π

∫ ∞
−∞

∫ ∞
−∞ 
v

τ,μ(q)dqxdqy, with 
v
τ,μ the Berry curvature

for the lower band [30,31],


v
τ,μ(q) = 1

2

∂h
∂qx

× ∂h
∂qy

.
h
h3

, (5)

with the vector h(q) as in Eq. (4). After integration [32], we
obtain

Cv
τ,μ = 1

2τμ[sign(�) − sign(β )]. (6)

The dependence on � and β is known [33,34]: for � > 0 and
β < 0, the case of TMDs, the system is topologically nontriv-
ial with Cv

τ,μ = τμ. The dependence on the valley index τ is
required by time-reversal symmetry. The dependence on μ,
which accounts for the position, left or right, with respect to
the TGB, needs clarification.

For a Chern number change �Cv
τ = |Cv

τ,+1 − Cv
τ,−1| =

2, we would expect two chiral modes per valley (per
spin) running along the boundary, as implied by the bulk-
edge correspondence [19]. These modes appear as bound
states of the Hamiltonian Hτμ(qx, y), obtained from Eq. (3)
with qy → −i∂y and μ→ μ(y), where μ(y < 0) = + 1 and
μ(y > 0) = −1. Close inspection shows that no bound-state
solution exists, contrary to other 2D systems with domain
walls [35–37]. This is consistent with the absence of a gap
closing associated with a change of sign in μ (the spectrum
Eq = εF ± |h(q)| is independent of μ). The apparent discrep-
ancy stems from the transformation y → −y relating left and
right regions, which implies a reversal of the chirality of edge
states, and thus a sign change of the valley Chern number [38],

FIG. 3. Sketch of the band structure right at a single valley
momentum on both sides of the TGB. A band inversion involving
the highest and the lowest Bloch states d±2 is apparent.

but not a gap closing. The lack of topological protection, in
contrast to that found in topological band insulators [39], is
crucial to make our TB results compatible with experiments.
Indeed, for a filling n = 2/3 (including spin), expected for
the charge neutral system, a single 1D band—and not two—
crossing the Fermi level was observed [4]. The stability of
these states can be linked to the 1D Berry phase difference
between the two sides of the TGB [20], as discussed in
Sec. III D.

C. Low-energy three-band theory

The inadequacy of the two-band theory of Sec. III A to
describe bound states at the TGB can be understood within a
continuum three-band approximation. Such an approximation
may be obtained by writing the momentum-space version of
H0 defined in Eq. (1), and expanding around the corners of
the Brillouin zone (BZ). As is well known, right at the corner
momenta k = τK (τ = ±1), we obtain Bloch states with well-
defined z-component orbital angular momentum [16],

|τK, d0〉 = |τK, dz2〉,

|τK, d+2τ 〉 = 1√
2

[|τK, dx2−y2〉 + iτ |τK, dxy〉], (7)

|τK, d−2τ 〉 = 1√
2

[|τK, dx2−y2〉 − iτ |τK, dxy〉],

with momentum states |k, dγ 〉 ≡ c†
k,γ

|0〉 dual to the c†
i,γ |0〉

states in Eq. (1).
In the presence of the TGB, a low-energy three-band model

can be invoked far away from the line defect. On the y < 0
side, Eq. (2) reduces to HL, while on the y > 0 only HR

matters. Since HL ≡ H0 and HR is related to H0 through a y →
−y mirror transformation, we can show that the three Bloch
states given in Eqs. (7) are eigenstates on both sides of the
TGB right at the corner momenta k = τK (see Appendix A
for details). However, the eigenergies are different, with a gap
inversion affecting the two states d+2τ and d−2τ [compare
Eqs. (A10) and (A19)]. Such gap inversion is sketched in
Fig. 3.

The origin of the confined 1D states at the TGB may be
traced back to the gap inversion involving the valence and the
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FIG. 4. (a) The spectrum of the three-band model of TMDs under
open boundary condition along y and (b) the corresponding Berry
phase γ (kx ). The blue and red colors in (b) are for the two halves
with y < 0 and y > 0, respectively, in the system with TGB defect as
described in Fig. 1(a).

highest bands described by the three-orbital TB model (see
Fig. 3). A low-energy two-band approximation, where only
the two lowest energy states are considered, cannot capture
this effect. This picture also provides an understanding for
why SOC effects are not important, as these amount just to
a small variation of the band energies, not affecting the gap
inversion.

D. Berry phase

The state localized at the TGB is topologically originated
at the difference of Berry phase across the boundary [20].

The X- and M-edge states localize at the boundary along x,
therefore the system can be viewed as 1D lattice periodically
modulated by a parameter kx, and the edge states can be
described by a Berry phase defined as

γ (kx ) = i
∮

dky
〈
ukx,ky

∣∣∂ky

∣∣ukx,ky

〉 = π, (8)

with ukx,ky the occupied state at 1/3 filling (without spin),
obtained by diagonalizing Eq. (A2) [40]. A topologically
nontrivial 1D insulating system is generally characterized by
a π Berry phase, and has a pair of topologically protected
degenerate edge states localized at the two ends of the 1D
chain. However, the X- and M-edge states of TMDs have
different energy dispersions versus kx, and γ (kx ) also varies
continuously.

In Fig. 4, we illustrate the spectrum as a function of kx

under open boundary condition along y, and the correspond-
ing Berry phase γ (kx ). The two edge states in Fig. 4(a)
become degenerate at two certain values of kx = kx,0 (and
k′

x,0), corresponding to a Berry phase γ (kx,0) = π . The Berry
phase varies continuously away from kx,0, thus the degeneracy
of edge states is lifted. Nevertheless, the edge states can be
interpreted as a continuation of the degenerate edge states at
kx,0, and thus topologically originated at the π Berry phase.

In the system with TGB that we consider in this paper, the
two sides with y < 0 and y > 0 correspond to the Berry phase
γ (kx ) and −γ (kx ), respectively, and the state localized at
the TGB can be associated with the difference of the Berry
phase across the TGB [20].

IV. EFFECT OF CORRELATIONS
WITHIN THE LINE DEFECTS

Consistent with the robust 1D nature of the metallic states
in MoSe2 line defects found here, the approach used by
Ma et al. [4] for a class of 1D correlated electronic lattice
systems whose finite-range potential general properties are
reported below that applies to such states is a particular case
of the general MQIM [3]. It uses a representation in terms of
charge and spin particles that emerge in such systems at all
energy scales. The main effects of the electron repulsion be-
tween different sites are within that approach in the interaction
of the charge particles with the charge- or spin-hole mobile
impurity created under one-electron removal excitations.

For the MoSe2 line defects, the effective range Reff of the
latter interaction is small. Consistently, the studies of Ma et al.
[4] used Reff = 0. Here we account for the effects of higher-
order charge-particle phase-shift terms that contain Reff . We
find that for the MoSe2 line defects, Reff is of about one lattice
spacing a0. We confirm that using Reff ≈ a0 or Reff ≈ 0 leads
to theoretical predictions for such line defect ARPES peaks
distribution within the experimental uncertainty. However,
we find that accounting for the higher-order charge-particle
phase-shift terms and thus using Reff ≈ a0 improves the agree-
ment with experiments.

In this section, we generally use units of lattice spacing a0

one and Planck constant h̄ one so that wave vectors are called
momenta.

A. The MQIM for finite-range interactions

A decisive low-energy property of 1D metallic correlated
systems is the low-energy power-law suppression of the den-
sity of states (SDS) at the Fermi level. The experimental value
of the corresponding power-law SDS exponent α is typically
equal to or larger than 1/2 [2,4,41]. Figure 5 displays the SDS
of MoSe2 line defects close to the Fermi level measured at
room temperature (to avoid charge-density-wave transition)
and corresponding analytical lines for SDS power-law expo-
nent α = 0.70, α = 0.75, and α = 0.80.

It is known that the SDS exponent is such that α < 1/8
for the integrable correlated electronic models such as the 1D
Hubbard model (1DHM) with on-site repulsion U and transfer
integral t whereas an α > 1/8 stems from finite-range elec-
tron interactions in nonintegrable models [42] whose range is
at least of one lattice spacing.

According to the principle of emergence, the properties of
a physical system are mainly determined by how electrons are
organized in it [43]. In the case of the correlated electronic
systems to which the MQIM applies [3], such an organization
gives rise to emerging fractionalized particles whose phase
shifts are imposed by mobile quantum impurities created
under transitions to excited states.

The MQIM scheme used in the studies of Ref. [4] ac-
counted for the leading-order term of an effective-range

155109-4



ROBUST ONE DIMENSIONALITY AT TWIN GRAIN … PHYSICAL REVIEW B 99, 155109 (2019)

FIG. 5. The suppression of the density of states of mirror twin
grain boundaries in monolayer MoSe2 close to the Fermi level mea-
sured at room temperature and corresponding theoretical predicted
power-law lines for α = 0.70, α = 0.75, and α = 0.80. It is obtained
by plotting the angle-integrated photoemission intensity as a function
of binding energy ω. The experimental data are well fit for α =
0.75 ± 0.5 and thus with a corresponding uncertainty estimated to
be as large as ±0.05. Source: Fig. 4(c) of Ma et al. [4].

expansion of the charge-particle phase shift. For the corre-
sponding leading-order MQIM (MQIM-LO) [4], the emerg-
ing particles are the charge c and spin s (or s1) pseud-
ofermions. For simplicity, in this paper we call them charge c
and spin s particles, respectively. Both the general MQIM [3]
and the MQIM-LO used in the studies of Ma et al. [4] provide
accurate high-energy spectral function expressions beyond the
low-energy TLL theory [2]. For our purposes, by high energy
we mean energy scales beyond the TLL limit.

Except for accounting for higher-order terms in the
effective-range expansion of the charge-particle phase shift,
the expressions of the spectral-function quantities have for the
higher-order MQIM (MQIM-HO) [45] the same general form
as for the MQIM-LO. Within the MQIM-HO, the Hamiltonian
that describes the 1D metallic states in the corresponding class
of electronic lattice systems is of the form,

Ĥ = −t
∑

σ=↑,↓

L∑
j=1

(c†
j,σ c j+1,σ + c†

j+1,σ c j,σ ) + V̂R,

V̂R =
L/2−1∑

r=0

Ve(r)
∑

σ=↑,↓

∑
σ ′=↑,↓

L∑
j=1

ρ̂ j,σ ρ̂ j+r,σ ′ , (9)

where ρ̂ j,σ =(c†
j,σ c j,σ − 1

2 ), Ve(0) = U/2, Ve(r) = U Fe(r)/r
for r > 0, and Fe(r) is a continuous decreasing screen-
ing function such that Fe(0) � 1/4, which at large r
vanishes as some inverse power of r, limr→∞ Fe(r) = 0.
The microscopic interactions associated with the elec-
tronic potentials then decay faster than 1/r. Hence
the Fourier transform of Ve(r) does not diverge at

k → 0 and the compressibility and sound velocity remain
finite.

The matrix elements in the one-electron spectral func-
tion involve phase shifts and the charge parameter ξ̃c =√

2K̃c naturally related to them. Its range for the present
lattice systems is ξ̃c =

√
2K̃c ∈]1/2, ξc]. Here K̃c is the usual

TLL charge parameter and the bare charge parameters ξc ∈
]1,

√
2[ and Kc refer to the 1DHM in which the model

Hamiltonian, Eqs. (9), becomes in the ξ̃c → ξc limit. For
electronic density ne ∈]0, 1[, there is a ξc → ξ̃c transforma-
tion [4] for each fixed value of ξc and ξ̃c that maps the
1DHM onto that model Hamiltonian, upon gently turning
on Fe(r). Consistent, limξ̃c→ξc

Fe(r) → 0 for r ∈ [0,∞]. The
MQIM-HO relies on that transformation. It transforms the
1DHM pseudofermion dynamical theory (PDT) [44], which
for integrable models is equivalent to the MQIM [3,44], into
the MQIM-HO that accounts for the electronic finite-range
interactions of a class of electronic lattice systems whose
1D metallic states are described by the model Hamiltonian,
Eqs. (9).

As reported by Ma et al. [4], the ξc → ξ̃c transformation
gives rise to a continuous decreasing of the initial bare param-
eters ξc = √

2Kc ∈]1,
√

2[ and Kc = ξ 2
c /2 ∈]1/2, 1[. (Here

ξc = 1 for u = U/4t → ∞ and ξc = √
2 for u → 0, respec-

tively.) The resulting smaller renormalized parameter, ξ̃c =√
2K̃c, has values in the ranges ξ̃c =

√
2K̃c ∈]1/2, 1[ and

ξ̃c =
√

2K̃c ∈]1, ξc]. The theory does not apply at the bare
parameter ξc = 1 that refers to a nonmetallic Mott-Hubbard
insulating phase at ne = 1 for u > 0 and to u → ∞ states
whose spin configurations are all degenerated for ne ∈]0, 1[.
It also does not apply at ξ̃c = 1. Hence K̃c ∈]1/8, 1/2[ and
K̃c ∈]1/2, Kc[, so that, as expected [42], K̃c > 1/8 for lattice
correlated models.

Importantly, upon decreasing ξ̃c from ξ̃c = ξc, the ini-
tial 1DHM SDS exponent α0 = (2 − ξ 2

c )2/(8ξ 2
c ) ∈]0, 1/8[

continuously increases. Its expression is given by α =
(2 − ξ̃ 2

c )2/(8ξ̃ 2
c ). It has values in the corresponding in-

tervals α ∈ [α0, 1/8[ and α ∈]1/8, 49/32[. The regime
of more physical interest is ξ̃c ∈]1/2, 1[, for which
α > 1/8.

For each chosen initial fixed 1DHM finite values u =
U/4t ∈]0,∞[ and ξc = ξc(u, ne) ∈]1,

√
2[, where the elec-

tronic density varies in the interval ne ∈]0, 1[ there is one
ξc → ξ̃c transformation. Indeed, the system retains the mem-
ory of ξc, and both ξc and ξ̃c are MQIM-HO parame-
ters that appear in the expressions for physical quantities.
The same applies to the scattering lengths a and ã con-
sidered below in Sec. IV B. The 1DHM initial interac-
tion value U remains under the ξc → ξ̃c transformation,
the interaction in both the on-site, Ve(0) = U/2 and r > 0,

Ve(r) = U Fe(r)/r, parts of the electronic potential in
Eqs. (9).

B. The one-electron removal spectral function
and its exponent’s phase shifts

Within the MQIM-HO, the one-electron removal spectral
function in the (k, ω)-plane vicinity of three singular features
called spin s branch line and charge c and c′ branch lines,
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−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

ω
(e

V
) s

c

c′

(a)

−0.3 0.0 0.3

Momentum (Å−1)
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FIG. 6. (a) Raw ARPES data image of MoSe2 line defects
with energy versus momentum (k‖) along the �01 K direction in
the Brillouin zone plus the theoretical c, c′, and s branch lines
spectra [4] for u = U/4t = 0.18, transfer integral t = 0.58 eV, and
electronic density ne = 2/3. The full and dashed lines refer to mo-
mentum ranges with negative and positive exponents, respectively.
(b) Second-derivative ARPES images. Source: The experimental
ARPES data are from Ma et al. [4].

respectively, shown in Fig. 6(a), has the form

B̃(k, ω) = Cs(ω̃s(k) − ω)ζ̃s (k) and

B̃(k, ω) ≈
∑
ι=±1

(ι)Cβ,ιIm

{
(−ι)

(
ω̃β (k)−ω− i

2τβ (k)

)ζ̃β (k)
}

,

(10)

respectively, for small (ω̃s(k) − ω) > 0 and (ω̃β (k) − ω) > 0
where β = c, c′. Here Cs and Cβ,ι are ne, u = U/4t , and ξ̃c-
dependent constants and ω < 0 are high energies.

On the one hand, for ξ̃c ∈ [ξ̃�
c , ξc], the β = c, c′ lifetimes

τβ (k) in Eqs. (10) are very large for the k intervals for
which the β = c, c′ exponents ζ̃β (k) are negative, so that
the expression given in that equation is nearly power-law-
like, B̃(k, ω) ∝ (ω̃β (k) − ω)ζ̃β (k). The charge parameter value
ξ̃�

c = 1/ξc is determined by that of the bare charge parameter
ξc and varies in the interval ξ̃�

c ∈ [1/
√

2, 1[. Its smallest
value ξ̃�

c = 1/
√

2 refers to ξc = √
2 and u → 0 whereas its

nonreachable largest value ξ̃�
c → 1 corresponds to ξc → 1

for u → ∞. On the other hand, the effects of long-range
interactions are stronger for ξ̃c ∈]1/2, ξ̃�

c ].
The γ = s, c, c′ branch-line spectra ω̃γ (k) in Eqs. (10)

are provided in Eqs. (B1) of Appendix B. They involve
the c- and s-band-energy dispersions given in Eqs. (B2) of
that Appendix. The excitation momentum k in those spectra
argument are in Eqs. (B1) of the same Appendix expressed
in terms of the occupancies of the c-band momenta q ∈
[−2kF , 2kF ] and s-band momenta q′ ∈ [−kF , kF ] associated
with the corresponding excited states. Here 2kF = π ne.

Moreover, τc(k) and τc′ (k) are in Eqs. (10) large charge-
hole mobile impurity lifetimes mentioned above. They are
associated with the relaxation processes discussed below and
the expressions of the γ = s, c, c′ exponents ζ̃γ (k) in Eqs. (10)
are given in Eqs. (B3) of Appendix B. They involve the charge
parameter ξ̃c and the c particle phase shifts �̃c,s(ι2kF , q′) and
�̃c,c(ι2kF , q) where ι = ±1. They are the phase shifts in units

FIG. 7. The exponents that control the line shape near the MoSe2

line defect ARPES peaks and corresponding theoretical c, c′, and
s branch lines, respectively, in Fig. 6(a). They are here plotted as
a function of the momentum k for u = 0.18, ne = 2/3, l = 8, and
different ξ̃c and thus α values. The black solid lines refer to the
conventional 1D Hubbard model (α0 = 0.0011336 and ξc = 1.367)
and the red dashed and blue (dashed-dotted and full) lines to α < 1/8
and α > 1/8 values, respectively. The c line, c′ line, and s line whose
negative exponent ranges agree with the ARPES (k, ω)-plane peaks
in Fig. 6(a) are those whose c′ branch-line exponent crosses zero
at k/π = 0. For such lines, ξ̃c = 0.655, α = 0.72, and Reff = 1.01
in units of lattice spacing. The ξ̃c value below which the effects of
long-range interactions become stronger is ξ̃�

c = 1/ξc = 0.731.

of 2π imposed on a c particle of momentum ι2kF = ±2kF

by a s (spin) and c (charge) hole mobile impurity created
at momentum q′ and q, respectively, under one-electron re-
moval excitations. Such exponents expressions also involve
phase shifts �̃s,s(±kF , q′) and �̃s,c(±kF , q) imposed on the
s particles by a s (spin) and c (charge) hole mobile impurity,
respectively. They remain hidden because they are invariant
under the ξc → ξ̃c transformation and due to the SU(2) sym-
metry are interaction, density, and momentum independent,
as given in Eqs. (B5) of Appendix B. The exponents ζ̃γ (k) are
plotted in Fig. 7 as a function of the excitation momentum k
for u = U/4t = 0.18 and electronic density ne = 2/3.

In the low-energy TLL regime and in the crossover regime
to it that refer to small-energy regions near the (k, ω)-plane
points (±kF , ω) for the s and c branch lines and (±3kF , ω)
for the c′ branch line, the corresponding exponent expressions
are different from those provided in Eqs. (B3) of Appendix B.
Fortunately, the ARPES peaks studied here refer to higher
energy scales at which the latter exponents apply.

The microscopic processes that control the weight distri-
bution near the γ = s, c, c′ branch-line singularities of the
one-electron removal spectral function at k domains for which
the exponents ζ̃γ (k) in Eqs. (B3) of Appendix B are negative
refer to creation of one hole in the c band and one hole in
the s band. Specifically, in the case of the s branch line, the
s-band hole is created away from the corresponding Fermi
points ±kF whereas the c-band hole is created at one of that
band Fermi points ±2kF . The charge c and c′ branch lines
result from processes under which the c-band hole is created
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away from the corresponding Fermi points ±2kF and the
s-band hole is created at one of its bands, Fermi points ±kF .
Furthermore, the c-band discrete momenta are all shifted by
π/L or −π/L whereas those of the s band are not. This leads
to an overall macroscopic shift of momentum 2kF or −2kF ,
respectively, which originates from the shifting of the whole
c-band occupied sea.

Such a shifting is behind the existence of two independent
charge branch lines. The parts of these two branch lines that
connect the point (k, ω) = (−kF , 0) in Fig. 6(a) to a k = 0
finite-ω point and the latter point to (k, ω) = (kF , 0) are here
and in the figure called the c branch line. The remaining parts
of the charge branch lines that connect the point at k = 0
and finite ω to the (k, ω) = (−3kF , 0) and (k, ω) = (3kF , 0)
points, respectively, are called the c′ branch line. (Because one
finds below that for the parameters suitable to the theoretical
description of the ARPES in the MoSe2 line defects, there are
no singularities in the c′ branch line, in Fig. 6(a) only part of
its k range is included.)

Only the charge hole or spin hole, respectively, that is
created away from the corresponding Fermi points is called
a mobile impurity. The high-energy MQIM-HO charge-hole
quantum mobile impurity and spin-hole quantum mobile im-
purity become in the low-energy limit the usual TLL holon
and spinon, respectively.

On the one hand, since the c and c′ branch lines lie in
the spectral-weight continuum, in their vicinity the spectral-
function expression given in Eqs. (10) is for the charge
parameter range ξ̃ ∈]1/2, ξ̃�

c ] for which the effects of the
finite-range interactions are stronger such that their power-law
singularities are slightly broadened by weak charge-hole mo-
bile impurity relaxation effects associated with large lifetimes
τc(k) and τc′ (k). However, they remain sharp peaks for the k
ranges for which the exponents ζ̃c(k) and ζ̃c′ (k), respectively,
given in Eqs. (B3) of Appendix B are negative. For ξ̃ > ξ̃�

c =
1/ξc, the relaxation effects are much weaker and the above re-
ported β = c, c′ branch line singularities’ power-law behavior
B̃(k, ω) ∝ (ω̃β (k) − ω)ζ̃β (k) is a good approximation for their
expression given in Eqs. (10). What matters for the description
of the MoSe2 line defect ARPES peaks distribution reported
below in Sec. IV C is not, though, the precise form of the
theoretical spectral function near its peaks but rather the k
ranges for which its exponents are negative. They provide
precise and valuable information on the predicted location of
such peaks in the (k, ω) plane.

On the other hand, the s branch line coincides with an edge
of support of the spectral function that limits the finite-weight
region. Then the scattering processes allowed by energy and
momentum conservation ensure that the expression of the
exponent ζ̃s(k) in Eqs. (10) is exact.

The s particle energy dispersion remains invariant under
the ξc → ξ̃c transformation. The c-particle energy dispersion
bandwidth of the occupied sea increases slightly [45]. (See
Eqs. (B2) of Appendix B where ε̃c(q) and ε̃s(q′) = εs(q′)
are the MQIM-HO energy dispersions and εc(q) and εs(q′)
are those associated with the bare limit, ξ̃c = ξc, that refers
to the 1DHM.) That the spin spectra remain invariant under
finite-range interactions whereas the charge spectra band-
width and charge Fermi velocity are increased upon increasing
the interactions range is also known from numerical studies

[46]. (See charge and spin spectra in Fig. 7 of that paper and
corresponding discussion.)

However, the major effects of the finite-range interactions
are on the one-electron matrix elements between the ground
state and the excited states. In the representation in terms of
charge and spin particles, such effects lead to a renormal-
ization of the phase shifts of the charge particles imposed
by the charge- and spin-hole mobile impurities created under
transitions to the one-electron removal excited states [4].
The renormalization of the phase shifts 2π�̃c,s(±2kF , q′)
and 2π�̃c,c(±2kF , q) appearing in the exponents expressions,
Eqs. (B3) of Appendix B, under the ξc → ξ̃c transformation
leads to Eqs. (B4) of Appendix B.

The MQIM-HO phase shift term 2π�̃Reff
c,c (kr ) in that equa-

tion is absent from the 1DHM as it emerges from finite-
range interactions higher-order effects beyond the renormal-
ization factor [ξc(ξ̃c − 1)2]/[ξ̃c(ξc − 1)2] of the phase-shift
term 2π�̃ã

c,c(±2kF , q). (That term has not been considered
in the MQIM-LO of Ma et al. [4].)

Such higher-order effects result from the potential Vc(x)
associated with the interaction of the charge c particle and
the charge-hole mobile impurity at spatial distance x, which
is induced by the electronic potential Ve(r) in Eqs. (9). For
the class of MQIM-HO electronic potentials, that induced
potential Vc(x) vanishes for large x as Vc(x) = −Cc/xl . Here
l � 6 is an integer determined by the large-r behavior of
Ve(r), Cc = (2rl )l−2/μ, rl is a length scale (van der Waals
length for l = 6), and μ is the reduced mass [45].

The phase-shift term 2π�̃Reff
c,c (kr ) expression [45] involves

the effective range Reff of the interactions between the c
particles at and near the c-band Fermi points ±2kF and the
charge-hole mobile impurity created under one-electron re-
moval excitations at c-band momenta q away from the c-band
Fermi points. It is a function of the corresponding relative
momentum, kr = q ∓ 2kF , such that |kr | ∈ [k0

Fc, 4kF [. The
use of standard scattering theory for potentials with large-x
behavior Vc(x) = −Cc/xl where l � 6 leads to a Reff effective
range expression that involves the ratio ã/a of the scattering
length ã corresponding to the renormalized charge parameter
ξ̃c value and the bare scattering length a associated with the
ne and u = U/4t dependent bare charge parameter ξc value,
respectively [45].

C. Application to the ARPES peaks distribution

The higher-order charge-charge interaction effects associ-
ated with the phase-shift term 2π�̃Reff

c,c (kr ) play an important
role in the one-electron spectral properties of 1D metallic
states as those in a bismuth-induced anisotropic structure on
indium antimonide [Bi/InSb(001)] whose effective range Reff

can reach values Reff ≈ 17 in units of lattice spacing [45].
The studies of Ma et al. [4] on the MoSe2 line defects

considered that Reff = 0 and thus that 2π�̃Reff
c,c (kr ) = 0 in the

expression of the phase shift 2π�̃c,c(±2kF , q) in Eqs. (B4).
This is acceptable provided that Reff ≈ 1 in units of lattice
spacing. Here we confirm that such a condition holds for the
MoSe2 line defects. Nevertheless, we show that accounting
for the effects of Reff improves the agreement with the exper-
iments beyond that reached by Ma et al. [4].
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As in that reference, the SDS exponent α = (2 −
ξ̃ 2

c )2/(8ξ̃ 2
c ) is chosen to refer to the ξ̃c value for which there

is agreement between the specific k intervals at which the
γ = s, c, c′ branch-lines exponents ζ̃γ (k) given in Eqs. (B3)
of Appendix B are negative and the ARPES peaks distri-
bution. For the c and s branch lines, these intervals are
k ∈ [−2kF + kex

Fc, 2kF − kex
Fc] and k ∈ [−kF + kex

Fs, kF − kex
Fs],

respectively. On the one hand, here kex
Fc is the experimental

momentum that corresponds to the theoretical small momen-
tum k0

Fc that controls the TLL and cross over to TLL regimes
momentum width considered in the discussions of Sec. IV B.
Consistent with those discussions, kex

Fc/kF is vanishing or very
small. On the other hand, kex

Fs > k0
Fs such that kex

Fs/kF ≈ 0.12
rather refers to the experimental momenta k = ±(kF − kex

Fs) at
which the theoretical s-branch exponent vanishes. Hence it is
negative and positive for k ∈ [−kF + kex

Fs, kF − kex
Fs] and k ∈

[−kF + kex
Fs,−kF ]; [kF − kex

Fs, kF ], respectively. Indeed, only
for negative exponent values does the theoretical s branch line
correspond to ARPES peaks. (See s branch line exponent in
Fig. 7 for the value α = 0.72, for which, as discussed below,
there is agreement between theory and experiments.) Finally,
the c′ branch line exponent should be positive for its whole k
interval.

The exponents in Eqs. (B3) of Appendix B depend both on
ξ̃c and momentum-dependent phase shifts �̃c,c(±2kF , q) and
�̃c,s(±2kF , q′). There is no apparent direct relation between
the high-energy ARPES peaks distribution and the low-energy
SDS. That the MQIM-HO contains the main microscopic
mechanisms behind the 1D metallic states physics in the
MoSe2 line defects then requires that the α value that refers to
the ξ̃c value for which there is agreement with the high-energy
ARPES peaks distribution is also that measured within the
low-energy angle integrated photoemission intensity.

We use in the expressions of the exponents ζ̃c(k) and
ζ̃c′ (k), Eqs. (B3) of Appendix B, the expression of the phase
shift 2π�̃c,c(±2kF , q) in Eqs. (B4) of that Appendix, which
includes the term �̃Reff

c,c (kr ). We then find that the parameter
values that at electronic density ne = 2/3 lead to agreement
between the above intervals of the s, c, and c′ branch lines
[see Fig. 6(a)] and the line defect ARPES peaks distribution
are u = U/4t = 0.18, ξ̃c = 0.655, α = 0.72, and l = 8 for
transfer integral t = 0.58 eV.

The corresponding γ = c, c′, s exponents ζ̃γ (k) are plotted
as a function of k in Fig. 7 for different ξ̃c values and cor-
responding α = (2 − ξ̃ 2

c )2/(8ξ̃ 2
c ) values. The ξ̃c value below

which the effects of long-range interactions become stronger
is ξ̃�

c = 1/ξc = 0.731. The matching α = 0.72 value refers
to ξ̃c = 0.655 and Reff = 1.01 in units of lattice spacing
and agrees with the estimated experimental uncertainty, α =
0.75 ± 0.05 [4]. The prediction of Ma et al. [4] that α =
0.78 lays in that uncertainty range, which confirms that the
approximation of using Reff ≈ 0 in the expression of the phase
shift 2π�̃c,c(±2kF , q) is acceptable.

The room-temperature experimental SDS of the MoSe2

line defects is plotted in Fig. 5 along with analytical lines for
α = 0.70, 75, 80. The theoretical SDS universal power-law
behavior controlled by the exponent α in Fig. 5, though, only
applies at very low energy, up to ≈0.07 eV. For larger energy
values, the SDS loses its universal power-law behavior, its

form becoming different and specific to each many-electron
problem.

Comparison with the experimental points for that energy
range reveals that concerning the α = 0.70, 75, 80 theoretical
lines, the best agreement is reached at α = 0.70. This is
consistent with our correction from α = 0.78 to α = 0.72,
improving the agreement. This is physically appealing, as one
expects that the effective range should not be smaller than one
lattice spacing.

V. CONCLUSIONS

Confined states at TGBs in MoSe2 were shown to be well
described by a three-orbital TB model, which is robust to the
details of the defect hoppings. The presence of a single band
(per spin) at the Fermi level is consistent with experiments.

Modeling the confined states as a 1D interacting electronic
system unveils a MQIM (k, ω)-plane behavior with an effec-
tive range for the charge fractionalized particle–charge-hole
mobile impurity interaction that extends up to the lattice
spacing, in excellent agreement with ARPES measurements.

The robustness and the properties found here for 1D
confined states in MoSe2 extend to the full semiconducting
TMD family, giving rise to a distinct paradigm where one-
dimensionality is protected by the two-dimensionality of the
host material.
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APPENDIX A: DERIVATION
OF THE CONTINUUM THEORY

Consider the three-band TB Hamiltonian of TMDs [16]
applied to the y < 0 side of the TGB [see Fig. 1(a)],

H =
∑

k

ψ̂
†
kH (k)ψ̂k, (A1)

with ψ̂
†
k = (ĉ†

k,z2 , ĉ†
k,xy, ĉ†

k,x2−y2 ) and

H (k) =
⎛
⎝h0 h1 h2

h∗
1 h11 h12

h∗
2 h∗

12 h22

⎞
⎠, (A2)
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where

h0 = ε1 + 2t0 cos 2α + 4t0 cos α cos β, h11 = ε2 + 2t11 cos 2α + (t11 + 3t22) cos α cos β,

h22 = ε2 + 2t22 cos 2α + (t22 + 3t11) cos α cos β, h1 = 2it1 sin 2α + 2it1 sin α cos β − 2
√

3t2 sin α sin β,

h2 = 2t2 cos 2α − 2t2 cos α cos β + 2
√

3it1 cos α sin β, h12 = 2it12 sin 2α − 4it12 sin α cos β +
√

3(t22 − t11) sin α sin β,

(A3)

α = kxa/2, and β = √
3kya/2. The K (τ = +1) and K ′ (τ = −1) points in the BZ are

τK =
(

τ
4π

3a
, 0

)
, (A4)

where α and β take the values ατ = τ 2π
3 , βτ = 0. The Taylor expansion to the second order around K and K ′ points reads

H (τK + q) = H (τK) + H (1)
q + H (2)

q + O(aq)3

= H (τK) + qi(∂iH )τK + 1

2
qiq j (∂i∂ jH )τK + O(aq)3

=
⎛
⎝η0 η1 η2

η∗
1 η11 η12

η∗
2 η∗

12 η22

⎞
⎠ + a

⎛
⎝u0 u1 u2

u∗
1 u11 u12

u∗
2 u∗

12 u22

⎞
⎠ + a2

⎛
⎝v0 v1 v2

v∗
1 v11 v12

v∗
2 v∗

12 v22

⎞
⎠ + O(aq)3, (A5)

with

η0 = ε1 − 3t0, η11 = ε2 − 1

2
(3t11 + 3t22), η22 = ε2 − 1

2
(3t11 + 3t22), η1 = 0, η2 = 0, η12 = −iτ3

√
3t12, (A6)

u0 = 0, u11 = 3
√

3

4
τ (t11 − t22)qx, u22 = 3

√
3

4
τ (t22 − t11)qx, u1 = −3

2
it1qx − τ

3
√

3

2
t2qy,

(A7)

u2 = τ
3
√

3

2
t2qx − 3

2
it1qy, u12 = τ

3
√

3

4
(t22 − t11)qy,

and

v0 = 3

4
t0q2, v11 = 3

16

[
(3t11 + t22)q2

x + (t11 + 3t22)q2
y

]
, v22 = 3

16

[
(t11 + 3t22)q2

x + (3t11 + t22)q2
y

]
,

(A8)

v1 = 3

4
t2qxqy + iτ

3
√

3

8
t1

(
q2

x − q2
y

)
, v2 = 3

8
t2

(
q2

x − q2
y

) − iτ
3
√

3

4
t1qxqy, v12 = 3

8
(t11 − t22)qxqy + iτ

3
√

3

4
t12q2.

Diagonalizing the zeroth-order Hamiltonian in Eq. (A5),

H (τK) =
⎛
⎝ε1 − 3t0 0 0

0 ε2 − 1
2 (3t11 + 3t22) −iτ3

√
3t12

0 iτ3
√

3t12 ε2 − 1
2 (3t11 + 3t22)

⎞
⎠, (A9)

one obtains for the respective eigenvectors and eigenvalues,

|ψc(τK)〉 = |τK, dz2〉, εc = ε1 − 3t0, |ψv (τK)〉 = 1√
2

[|τK, dx2−y2〉 + iτ |τK, dxy〉],

εv = ε2 − 1

2
(3t11 + 3t22) − 3

√
3t12, |ψh(τK)〉 = 1√

2
[|τK, dx2−y2〉 − iτ |τK, dxy〉], (A10)

εh = ε2 − 1

2
(3t11 + 3t22) + 3

√
3t12,

with the underscripts meaning conduction band (c), valence band (v), and highest energy band (h).
The transformation matrix that diagonalizes H (τK) reads

Uτ =

⎛
⎜⎝

1 0 0

0 −iτ/
√

2 1τ/
√

2

0 iτ/
√

2 1τ/
√

2

⎞
⎟⎠, (A11)
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and the first-order matrix in the eigenbasis of H (τK) is to be written as

�(1)(q) = Uτ H (1)(q)U −1
τ

=

⎛
⎜⎝

u0
1√
2
(u2 + iτu1) 1√

2
(u2 − iτu1)

1√
2
(u2 + iτu1)∗ 1

2 (u22 + u11) + τ Im[u12] 1
2 (u22 − u11) − iτRe[u12]

1√
2
(u2 − iτu1)∗ 1

2 (u22 − u11) + iτRe[u12] 1
2 (u22 + u11) − τ Im[u12]

⎞
⎟⎠

= a

⎛
⎜⎝

0 t (1)
vc (τqx − iqy) t (1)

ch (τqx + iqy)

t (1)
vc (τqx + iqy) 0 t (1)

vh (τqx − iqy)

t (1)
ch (τqx − iqy) t (1)

vh (τqx + iqy) 0

⎞
⎟⎠, (A12)

with

t (1)
vc = 3

2
√

2
(
√

3t2 + t1), t (1)
ch = 3

2
√

2
(
√

3t2 − t1), t (1)
vh = 3

√
3

4
(t22 − t11). (A13)

The second-order correction to the Hamiltonian can be written as

�(2)(q) = Uτ H (2)(q)U −1
τ

= a2

⎛
⎜⎝

v0
1√
2
(v2 + iτv1) 1√

2
(v2 − iτv1)

1√
2
(v2 + iτv1)∗ 1

2 (v22 + v11) + τ Imv12
1
2 (v22 − v11) − iτRev12

1√
2
(v2 − iτv1)∗ 1

2 (v22 − v11) + iτRev12
1
2 (v22 + v11) − τ Imv12

⎞
⎟⎠

= a2

⎛
⎜⎝

χcq2 t (2)
vc (qx + iτqy)2 t (2)

ch (qx − iτqy)2

t (2)
vc (qx − iτqy)2 χvq2 t (2)

vh (qx + iτqy)2

t (2)
ch (qx + iτqy)2 t (2)

vh (qx − iτqy)2 χhq2

⎞
⎟⎠, (A14)

with

χc = 3

4
t0, χv = 3

8
(t11 + t22 +

√
3t12), χh = 3

8
(t11 + t22 −

√
3t12),

t (2)
vc = 3

8
√

2
(t2 −

√
3t1), t (2)

ch = 3

8
√

2
(t2 −

√
3t1), t (2)

vh = 3

16
(t22 − t11) . (A15)

The effective second-order Hamiltonian of the lowest conduction and highest valence bands is then given by

Heff(q) = Pl [H0 + �(1)(q) + �(2)(q)]Pl +
∑
l=c,v

|ψl〉〈ψl |�(1)(q)Ph�
(1)(q)|ψl〉〈ψl |

εl − εh

+
∑

m,n=c,v
m �=n

|ψm〉〈ψm|�(1)(q)Ph�
(1)(q)|ψn〉〈ψn|

εF − εh
,

with Pl = |ψc〉〈ψc| + |ψv〉〈ψv|, Ph = |ψh〉〈ψh|, and εF = εc+εv

2 . After straightforward manipulation, we obtain

H (y<0)
eff (q) =

(
εc 0
0 εv

)
+ at (1)

vc

(
0 τqx − iqy

τqx + iqy 0

)
+ a2

(
χcq2 t (2)

vc (qx + iτqy)2

t (2)
vc (qx − iτqy)2 χvq2

)

+ a2

(
ξcq2 tvch(qx + iτqy)2

tvch(qx − iτqy)2 ξvq2

)

= vh̄(qxτ3σx + qyσy) + (� + δξa2q2)σ3 + ζa2(qxτ3σx − qyσy)σx(qxτ3σx − qyσy) + (εF + ξq2)σ0, (A16)

where ξc = t2
ch

εc−εh
, ξv = t2

vh
εv−εh

, tvch = tvhtch
εF −εh

, v = at (1)
vc , � = εc−εv

2 , δξ = ξc−ξv

2 + χc−χv

2 , ζ = t (2)
vc + tvch, ξ = χc+χv+ξc+ξv

2 , and
τ → τ3. Apart from the constant and the electron-hole asymmetry terms proportional to σ0, there is also a trigonal warping
term proportional to ζ , as well as the massive Dirac Hamiltonian with a quadratic term. Estimates for MoSe2 give [16]
v = 5.6 × 105 ms−1, 2� = 1.44 eV, δξ = −0.30 eV, ζ = 9.4 meV, and ξ = 0.8 meV.

To obtain a low-energy two-band model for the y > 0 side of the TGB [see Fig. 1(a)], we must recognize that the two
sides are related by a y → −y transformation. This allows us to right the three-band TB Hamiltonian for y > 0 exactly as in
Eqs. (A1)–(A3), with the replacement β → −β in Eqs. (A3). It should also be noted that the y → −y transformation affects
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the atomic orbital basis (dxy → −dxy), so that the three component operator ψ̂
†
k in Eq. (A1) is to be read on the y > 0 side as

ψ̂
†
k = (ĉ†

k,z2 , ĉ†
k,−xy, ĉ†

k,x2−y2 ).
We want to compare the two sides of the TGB, so it is convenient to use the same basis, which requires the transformation

(ĉ†
k,z2 , ĉ†

k,−xy, ĉ†
k,x2−y2 ) → (ĉ†

k,z2 , ĉ†
k,xy, ĉ†

k,x2−y2 ) on the y > 0 side. The unitary operator transforming between the two basis is
just U = diag(1,−1, 1), and the transformed Hamiltonian, Taylor expanded to the second order near the K (τ = +1) and K ′
(τ = −1) points, reads

H (τK + q) = H (τK) + H (1)
q + H (2)

q + O(aq)2

= H (τK) + qi(∂iH )τK + 1

2
qiq j (∂i∂ jH )τK + O(aq)3

=
⎛
⎝ η0 −η1 η2

−η∗
1 η11 −η12

η∗
2 −η∗

12 η22

⎞
⎠ + a

⎛
⎝ u0 −u1 u2

−u∗
1 u11 −u12

u∗
2 −u∗

12 u22

⎞
⎠ + a2

⎛
⎝ v0 −v1 v2

−v∗
1 v11 −v12

v∗
2 −v∗

12 v22

⎞
⎠ + O(aq)3, (A17)

where the matrix elements η, u, and v, are the same as in Eqs. (A6)–(A8), respectively, with the replacement qy → −qy in
Eqs. (A7) and (A8).

Diagonalizing the zeroth order Hamiltonian in Eq. (A17),

H (τK) =
⎛
⎝ε1 − 3t0 0 0

0 ε2 − 1
2 (3t11 + 3t22) +iτ3

√
3t12

0 −iτ3
√

3t12 ε2 − 1
2 (3t11 + 3t22)

⎞
⎠, (A18)

one obtains

|ψc(τK)〉 = |τK, dz2〉, εc = ε1 − 3t0, |ψh(τK)〉 = 1√
2

(|τK, dx2−y2〉 + iτ |τK, dxy〉),

εh = ε2 − 1

2
(3t11 + 3t22) + 3

√
3t12, |ψv (τK)〉 = 1√

2
(|τK, dx2−y2〉 − iτ |τK, dxy〉),

εv = ε2 − 1

2
(3t11 + 3t22) − 3

√
3t12. (A19)

Comparing the atomic content of the two states |ψv (τK)〉 and |ψh(τK)〉 in Eq. (A19) with their counterparts in Eq. (A10), it is
apparent that a gap inversion occurs between the two as we cross the boundary. This gap inversion is further discussed in the
main text, Sec. III C.

The effective Hamiltonian for y > 0 in the subspace of the conduction and valence bands may now be obtained in a similar
way to the y < 0 side. We first use the basis in Eq. (A19) to write the expanded Hamiltonian of Eq. (A17), and then apply exactly
the same procedure as for the y < 0 side after Eq. (A10). We finally arrive at

H (y>0)
eff (q) = vh̄(qxτ3σx − qyσy) + (� + δξa2q2)σ3 + ζa2(qxτ3σx + qyσy)σx(qxτ3σx + qyσy) + (εF + ξq2)σ0, (A20)

which is exactly the same as Eq. (A16) after the transformation qy → −qy. The parameters in Eq. (A20) are the same as in
Eq. (A16).

APPENDIX B: SOME MQIM-HO USEFUL EXPRESSIONS

The spectra of the γ = s, c, c′ branch lines in the spectral-function expression, Eqs. (10), are given by

ω̃s(k) = ε̃s(k) = εs(k) � 0 for k = −q′ ∈ [−kF , kF ],

ω̃c(k) = ε̃c(|k| + kF ) � 0 for k = kc = −sgn{k}kF − q ∈ [−kF , kF ], (B1)

ω̃c′ (k) = ε̃c(|k| − kF ) � 0 for k = kc′ = sgn{k}kF − q ∈ [−3kF , 3kF ],

where ε̃s(q′) and ε̃c(q) are the s and c particle energy dispersions, respectively, given below in Eqs. (B2). The spectra, Eqs. (B1),
are plotted within the MQIM-HO in Fig. 6(a) as a function of the excitation momentum k for u = U/4t = 0.18, transfer integral
t = 0.58 eV, and electronic density ne = 2/3.

As discussed in Sec. IV B, the charge particle–charge-hole mobility impurity interaction gives rise to a slight renormalization
of the c-band energy dispersion. Within the MQIM-HO, it is estimated to lead to

ε̃c(q) = (1 + βc θc)εc(q) for q ∈] − 2kF , 2kF [, ε̃s(q
′) = εs(q

′) for q′ ∈] − kF , kF [ , (B2)

where βc = 1
ξc

(1 − ξc√
2

) and θc = 1 for ξ̃c ∈]1/2, 1[ and θc = ( ξc−ξ̃c

ξc−1 ) for ξ̃c ∈]1, ξc[. Here the s-band energy dispersion, which
remains invariant under the universal transformation, was also given. The 1DHM dispersions εc(q) and εs(q′) in Eqs. (B1) are
defined by Ma et al. [4].
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The γ = c, c′, s exponents ζ̃γ (k) in the spectral function, Eqs. (10), plotted in Fig. 7 for u = 0.18, ne = 2/3, and l = 8 read

ζ̃c(k) = −1

2
+

∑
ι=±1

(
ξ̃c

4
− �̃c,c(ι2kF , q)

)2

, where k =∈ [ − kF + k0
Fc, kF − k0

Fc

]
,

q = −sgn{k}kF − k ∈ [ − 2kF + k0
Fc,−kF

]
, and

= −sgn{k}kF − k ∈ [
kF , 2kF − k0

Fc

]
,

ζ̃c′ (k) = −1

2
+

∑
ι=±1

(
ξ̃c

4
− �̃c,c(ι2kF , q)

)2

, where k =∈ [−3kF + k0
Fc, 3kF − k0

Fc

]
,

q = sgn{k}kF − k ∈ [−2kF + k0
Fc, kF

]
, and

= sgn{k}kF − k ∈ [−kF , 2kF − k0
Fc

]
,

ζ̃s(k) = −1 +
∑
ι=±1

(
− ι

2ξ̃c
− �̃c,s(ι2kF , q′)

)2

, where k ∈ [ − kF + k0
Fs, kF − k0

Fs

]
,

q′ = −k ∈ [ − kF + k0
Fs, kF − k0

Fs

]
. (B3)

The renormalization of the phase shifts 2π�̃c,s(±2kF , q′) and 2π�̃c,c(±2kF , q) appearing in the exponents expressions,
Eqs. (B3), under the ξc → ξ̃c transformation of Ma et al. [4] leads to

2π�̃c,s(±2kF , q′) = ξ̃c

ξc
2π�c,s(±2kF , q′), 2π�̃c,c(±2kF , q) = 2π�̃ã

c,c(±2kF , q) + 2π�̃Reff
c,c (kr ),

2π�̃ã
c,c(±2kF , q) = ξc

ξ̃c

(ξ̃c − 1)2

(ξc − 1)2
2π�c,c(±2kF , q), (B4)

for q′ ∈ [−kF , kF ], q ∈ [−2k+
F , 2k−

F ], and |kr | = |q ∓ 2kF | ∈ [0, 4kF [. Here k0
r = 2π/L and kr = (q ∓ 2kF ) are the relative

momentum of the charge particle at the c-band Fermi points ±2kF and charge-hole mobile impurity of c-band momentum
q ∈ [−2k+

F , 2k−
F ] and �c,s(±2kF , q′) and �c,c(±2kF , q) are 1DHM phase shifts.

The spin-particle phase shifts remain invariant under the MQIR-LR transformation and are given by

�̃s,s(ιkF , q′) = ι(ξs − 1)(ξs + (−1)δq,ιkF )

2ξs
for q′ ∈ [−kF , kF ],

�̃s,c(ιkF , q) = − ιξs

4
for q ∈ [−2kF , 2kF ], (B5)

where ξs = √
2 and ι = ±1.
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R. Das, M.-H. Phan, T. Čadež, J. M. P. Carmelo,
M. C. Asensio, and M. Batzill, Nat. Commun. 8, 14231
(2017).

[5] X. He, H. Htoon, S. K. Doorn, W. H. P. Pernice, F. Pyatkov, R.
Krupke, A. Jeantet, Y. Chassagneux, and C. Voisin, Nat. Mater.
17, 663 (2018).

[6] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012).

[7] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo,
A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Science
346, 602 (2014).

[8] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[9] X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Nat. Phys. 10, 343
(2014).

[10] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and
M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).

[11] O. V. Y. Kis and A. Kis, Mater. Today 18, 20 (2015).
[12] A. M. Van Der Zande, P. Y. Huang, D. A. Chenet, T. C.

Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman,
D. A. Muller, and J. C. Hone, Nat. Mater. 12, 554 (2013).

[13] H. Liu, L. Jiao, F. Yang, Y. Cai, X. Wu, W. Ho, C. Gao, J. Jia,
N. Wang, H. Fan, W. Yao, and M. Xie, Phys. Rev. Lett. 113,
066105 (2014).

155109-12

https://doi.org/10.1038/nature26142
https://doi.org/10.1038/nature26142
https://doi.org/10.1038/nature26142
https://doi.org/10.1038/nature26142
https://doi.org/10.1038/nphys2051
https://doi.org/10.1038/nphys2051
https://doi.org/10.1038/nphys2051
https://doi.org/10.1038/nphys2051
https://doi.org/10.1103/RevModPhys.84.1253
https://doi.org/10.1103/RevModPhys.84.1253
https://doi.org/10.1103/RevModPhys.84.1253
https://doi.org/10.1103/RevModPhys.84.1253
https://doi.org/10.1038/ncomms14231
https://doi.org/10.1038/ncomms14231
https://doi.org/10.1038/ncomms14231
https://doi.org/10.1038/ncomms14231
https://doi.org/10.1038/s41563-018-0109-2
https://doi.org/10.1038/s41563-018-0109-2
https://doi.org/10.1038/s41563-018-0109-2
https://doi.org/10.1038/s41563-018-0109-2
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1038/nphys2942
https://doi.org/10.1038/nphys2942
https://doi.org/10.1038/nphys2942
https://doi.org/10.1038/nphys2942
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1016/j.mattod.2014.07.005
https://doi.org/10.1016/j.mattod.2014.07.005
https://doi.org/10.1016/j.mattod.2014.07.005
https://doi.org/10.1016/j.mattod.2014.07.005
https://doi.org/10.1038/nmat3633
https://doi.org/10.1038/nmat3633
https://doi.org/10.1038/nmat3633
https://doi.org/10.1038/nmat3633
https://doi.org/10.1103/PhysRevLett.113.066105
https://doi.org/10.1103/PhysRevLett.113.066105
https://doi.org/10.1103/PhysRevLett.113.066105
https://doi.org/10.1103/PhysRevLett.113.066105


ROBUST ONE DIMENSIONALITY AT TWIN GRAIN … PHYSICAL REVIEW B 99, 155109 (2019)

[14] S. Barja, S. Wickenburg, Z. F. Liu, Y. Zhang, H. Ryu, M. M.
Ugeda, Z. Hussain, Z. X. Shen, S. K. Mo, E. Wong, M. B.
Salmeron, F. Wang, M. F. Crommie, D. F. Ogletree, J. B.
Neaton, and A. Weber-Bargioni, Nat. Phys. 12, 751 (2016).

[15] Y. Ma, S. Kolekar, H. Coy Diaz, J. Aprojanz, I. Miccoli,
C. Tegenkamp, and M. Batzill, ACS Nano 11, 5130 (2017).

[16] G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, and D. Xiao, Phys. Rev.
B 88, 085433 (2013).

[17] X. Zou, Y. Liu, and B. I. Yakobson, Nano Lett. 13, 253 (2013).
[18] O. Lehtinen, H.-P. Komsa, A. Pulkin, M. B. Whitwick, M.-W.

Chen, T. Lehnert, M. J. Mohn, O. V. Yazyev, A. Kis, U. Kaiser,
and A. V. Krasheninnikov, ACS Nano 9, 3274 (2015).

[19] B. Andrei Bernevig with Taylor L. Hughes, Topological Insu-
lators and Topological Superconductors (Princeton University
Press, New Jersey, 2013).

[20] L. Zhu, E. Prodan, and K. H. Ahn, Phys. Rev. B 99, 041117
(2019).

[21] We use the hopping integrals obtained from the GGA DFT
calculation of Ref. [16].

[22] M. V. Bollinger, J. V. Lauritsen, K. W. Jacobsen, J. K. Nørskov,
S. Helveg, and F. Besenbacher, Phys. Rev. Lett. 87, 196803
(2001).

[23] Y. Li, Z. Zhou, S. Zhang, and Z. Chen, J. Am. Chem. Soc. 130,
16739 (2008).

[24] R.-L. Chu, G.-B. Liu, W. Yao, X. Xu, D. Xiao, and C. Zhang,
Phys. Rev. B 89, 155317 (2014).

[25] L. Li, E. V. Castro, and P. D. Sacramento, Phys. Rev. B 94,
195419 (2016).

[26] D. Le and T. S. Rahman, J. Phys.: Condens. Matter 25, 312201
(2013).

[27] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev.
Lett. 108, 196802 (2012).

[28] E. Cappelluti, R. Roldán, J. A. Silva-Guillén, P.
Ordejón, and F. Guinea, Phys. Rev. B 88, 075409
(2013).

[29] H. Rostami, A. G. Moghaddam, and R. Asgari, Phys. Rev. B 88,
085440 (2013).

[30] D. Xiao, M. C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959
(2010).

[31] C.-K. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Rev.
Mod. Phys. 88, 035005 (2016).

[32] H. Z. Lu, W. Y. Shan, W. Yao, Q. Niu, and S. Q. Shen, Phys.
Rev. B 81, 115407 (2010).

[33] S.-Q. Shen, Topological Insulators, Springer Series in
Solid-State Sciences, Vol. 174 (Springer, Berlin, 2012),
p. 23.

[34] H. Rostami, R. Asgari, and F. Guinea, J. Phys.: Condens. Matter
28, 495001 (2016).

[35] I. Martin, Y. M. Blanter, and A. F. Morpurgo, Phys. Rev. Lett.
100, 036804 (2008).

[36] F. Zhang, A. H. MacDonald, and E. J. Mele, Proc. Natl. Acad.
Sci. USA 110, 10546 (2013).

[37] A. Vaezi, Y. Liang, D. H. Ngai, L. Yang, and E. A. Kim, Phys.
Rev. X 3, 021018 (2013).

[38] M. A. N. Araújo and E. V. Castro, J. Phys.: Condens. Matter 26,
075501 (2014).
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