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Featured Application: The work described in this paper has significant potential for medical appli-
cations. As an example, these peptides can be incorporated into wound dressings to treat chronic
wounds, increasing their re-epithelization, or to treat other skin diseases, such as psoriasis.

Abstract: FAO estimates that in 2030 the poultry meat production could reach 120 million tons,
which is a challenge in terms of waste management. Feathers are mainly composed of keratin, an
important biomaterial. Using feathers as a source of keratin will minimize the waste generated,
while contributing to supply an important material for several industries, such as pharmaceutical
and biomedical. The peptides were extracted from the feathers by microbial degradation. In this
study, we evaluated the peptides effect on keratinocyte metabolic activity and migration. The
influence of these peptides on non-activated and activated macrophages was also assessed. It was
demonstrated that depending on the keratin peptide fraction in contact with keratinocytes, it is
possible to modulate the migration rate of the keratinocytes. Peptide fraction with low molecular
weight increases migration, while peptides with a high range of molecular sizes decreases it. Some
peptide fractions induce the secretion of TNF-α in non-activated macrophages and not on activated
macrophages, demonstrating that these peptides should only be placed in contact with cells, in the
context of an ongoing inflammatory process. This work is a step forward on the understanding of
keratin peptides influence on keratinocytes and immune cells system cells, macrophages.

Keywords: chicken feathers; microbial hydrolysis; keratin peptides; keratinocytes; cellular migra-
tion; inflammation

1. Introduction

The Food and Agriculture Organization estimates that in 2030 the poultry meat
production could reach 120 million tons [1,2]. This fact poses a huge challenge in terms
of waste management. Worldwide, it is calculated that the poultry-processing industry
generates over 5 million tons of feather biomass [3]. This represents a serious waste hazard
since only a small amount is processed into valuable products, such as feather meal or
fertilisers [4]. Due to economic and environmental pressures, the industry is forced to find
better ways to deal with feathers waste and generate economic value. This is particularly
important due to the EU Directive 1999/31/EC on the landfill of waste [5], which restricts
the disposal of waste with a significant concentration of biodegradable materials and with
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high burning values, such as feathers. Finding an eco-friendly and effective way to reuse
chicken feathers waste is of the utmost importance for this industry. The importance is not
only due to the necessity to comply with the law and contribute to the 2030 United Nations
goals [6] for sustainable development, but it is an opportunity to reduce costs in waste
management. Furthermore, it is also an opportunity to create high-value products that
can be used, for example, in the pharmaceutical and dermo-cosmetic industry. In this way,
chicken feathers can be recycled and provide high-value materials, decreasing economic
and environmental pressures [4]. The poultry industry could receive a boost based on
renewable and sustainable growth.

The possibility to use feather waste material from the poultry industry in dermo-
cosmetics is related to its high content (90%) in a specific protein, keratin, particularly
β-keratin. Keratin is a widely used material in the pharmaceutical, cosmetic, medical,
biomedical, and biotechnological industries due to its unique characteristics of bioactivity,
biodegradability, and biocompatibility [3,7].

Several techniques can be used to extract keratin from feathers, such as acid and alkali
hydrolysis, hydrothermal methods, high-density steam flash explosion, and ionic liquids.
These techniques raise even more environmental concerns and have a low keratin yield [8].
The use of enzymatic and microbial keratinases can overcome all these problems [9]. The
use of keratinases involves a few steps, namely keratinases production by bacteria or fungi
strains, followed by its isolation and purification. Then, keratinases can be incubated with
a rich keratin-containing substrate that can be hydrolysed to soluble peptides without the
loss of essential amino acids [10,11]. Enzymatic keratinolysis is an effective, economic, and
environmentally friendly method to extract keratin-based peptides from chicken feathers.

For the past years’, keratin-based biomaterials have gained interest due to keratin
biodegradability, biocompatibility, and mechanical durability [12]. Keratin is particularly
interesting for skin applications, as it is the most abundant structural protein in epithelial
cells after collagen [13]. Psoriasis, chronic cutaneous wound, and skin cancer are common
skin diseases associated with the dysregulation of keratinocyte proliferation [14]. This
event is often linked with a pathological pathway of regenerative maturation characterized
by a higher rate of proliferation, aberrant response to growth factors, faulty differentiation,
and increased migratory capability [14]. Keratins are typical intermediate filament proteins,
having an important role in the mechanical stability and integrity of epithelial cells and
tissues [15]. These proteins are also involved in regulatory functions and intracellular
signalling pathways, such as wound healing [15].

The interactions between keratins and skin cells have been studied for many years. At
the beginning of the 1950s, Giroud and Leblond, and later in the 1970s, Sun et al. studied
the intermolecular disulphide bond of keratins on keratinocytes and their influence on the
final stage on cell differentiation [16,17]. This fact demonstrates the importance of keratin
interactions. Moreover, it is known that actin cytoskeleton is crucial for motility of adult
keratinocytes; there is evidence that keratins, which are normally basally restricted, appear
suprabasally in keratinocytes at the wound margin [18]. It is also described that short
filament keratins 6, keratin 16 and 17 are induced and appear to help retract other cellular
keratins into juxtanuclear aggregates within the actively crawling cells [18,19]. These
studies demonstrated the importance of keratin on wound healing, particularly migration.

The peptide molecular weight has a significant influence on the cellular metabolism,
so on this work, keratin peptides obtained from microbial chicken-feather degradation were
fractioned, according to their molecular weight, and their effect on keratinocyte migration
and metabolic activity as well as on macrophage release of TNF- α was evaluated.

2. Materials and Methods
2.1. Microorganisms

The Bacillus subtilis (S188D) used in this study belong to the collection of Bacillus
of the University of Azores (Portugal). This strain was chosen for this work due to its
high capability to hydrolase chicken feathers (results obtained in previous tests, data not
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shown). A single fresh colony of strain S188D was grown in 5 mL of lysogeny broth (LB)
(10 g/L tryptone, 5 g/L yeast extract and 5 g/L NaCl) at 28 ◦C for 18 h, for later use in the
fermentation process.

2.2. Fermentation

Chicken feathers were thoroughly washed in current water, dried at 60 ◦C for 24 h and
shredded in a blade mill before fermentation. For microbial fermentation, 2 g of shredded
chicken feathers were incubated with 100 mL of minimum medium (1 g (NH4)2SO4, 3 g
KH2PO4, 0.1 g/L MgSO4.7H2O, 7 g K2HPO4 and 0.2 g yeast extract per litre, pH 7) [20],
and 2 mL of LB S188D culture (0.5 MacFarland standard at 600 nm) transferred to the
medium with feathers. The fermentation was performed at 28 ◦C and 120 rpm for 48 h.
These conditions of solid/liquid ratio, temperature, agitation, and time were previously
optimized in our group (data not shown).

2.3. Isolation, Purification and Fractionation

At the end of the fermentation, bacteria and contaminant products were separated by
centrifugation at 8000 g for 10 min, using a fixed angle rotor (Megafuge, Heraeus). The
supernatant was then filtered through a 0.22 µm cellulose acetate membrane (Millipore)
and concentrated by tangential flow filtration (TFF). The TFF was performed using a
polyethersulfone cassette (Millipore) with 10 KDa cut-off membranes to obtain the peptides
(eluted fractions). The peptides were then subjected to different purification procedures.
First, they were desalted using a C18 column and eluted with graded series of acetonitrile,
20%, 40% and 80%. Each eluted fraction was fractionated using a Superdex peptide column
to obtain different molecular weight chromatographic peaks, P1, P2, P3, P4, and P5. The
peptide was designated as P188D in accordance with the bacterial isolate used.

2.4. Cells

Human keratinocytes (NCTC 2544) were grown in Dulbecco’s modified Eagle medium
(DMEM; Lonza Group, Ltd., Braine l’Alleud, Belgium) with 10% foetal bovine serum (FBS;
Biosera, Ringmer, UK) and 1% penicillin-streptomycin (complete medium). Cultures were
maintained at 37 ◦C in a humidified atmosphere of 5% CO2.

Human dermal fibroblasts (Zen-Bio DF-F) were used in the preliminary viability assay
(outsourced—Tebu-Bio). The cells were grown in Dulbecco’s modified Eagle medium
(DMEM; Lonza Group, Ltd., Braine l’Alleud, Belgium) with 10% foetal bovine serum (FBS;
Biosera, Ringmer, UK) and 1% penicillin-streptomycin (complete medium). Cultures were
maintained at 37 ◦C in a humidified atmosphere of 5% CO2.

Macrophage cell line Raw 264.7 was also used to evaluate secretion of TNF-α, pro-
inflammatory cytokine, after incubation with the peptides. This cell line was routinely
cultured with DMEM high glucose, supplemented with 10% heat-inactivated FBS and
10 mM 4-(2-hydroxyethyl)1-piperazineethanesulfonic acid (HEPES) buffer in tissue culture
flasks 5% (v/v) CO2 at 37 ◦C.

2.4.1. Proliferation Assay

Keratinocytes were maintained with complete medium and seeded into 96-well plates
(2 × 104 cells/mL). The cells were incubated overnight at 37 ◦C in 5% CO2 atmosphere.
After 24 h, the culture medium was replaced by complete medium with 45 µg/mL of each
peptide solution. Resazurin sodium salt was diluted in PBS to a concentration of 0.15 g/L
and filter (0.2 µm pore diameter). The resazurin working solution was prepared by diluting
resazurin stock solutions 1:5 in complete medium. After 24 h of contact, the cells were
washed with PBS and incubated with resazurin working solution for 2 h. At this time point,
the supernatant was removed and placed into black, opaque 96-well plates to measure the
conversion of rezaruin to resorfin. For that, a fluorimeter with an excitation wavelength at
540 nm and emission at 590 nm was used.
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2.4.2. Migration Assay

Keratinocytes were seeded into a six-well plate (5 × 105 cells/mL) and incubated
overnight at 37 ◦C in 5% CO2 atmosphere. A scratch on the confluent cell layer was per-
formed with a pipette tip. The culture medium was then replaced by complete medium and
45 µg/mL of each keratin peptides solution. Cell migration was monitored microscopically,
and images were acquired at 0 h, 6 h and 24 h, in the same region.

The area of the scratch was measured at different time points using Image J’s plugin,
MRI Wound Healing Tool.

2.4.3. Quantification of TNF-α

The macrophage cell line Raw 264.7 was routinely cultured in DMEM supplemented
with 10% heat-inactivated foetal calf serum, 2 mM glutamine, 1 mM sodium pyruvate,
and 25 mM HEPES buffer, in tissue culture flasks (Nagle Nunc, Int., Hereford, UK) in a
humified atmosphere with 5% (v/v) CO2 at 37 ◦C (Binder CB150; Tuttlingen, Germany).

After confluent growth, macrophage cells were washed with fresh medium and recov-
ered by scrapping. Viable cells were counted by Trypan blue exclusion in the haemocytome-
ter and resuspended in DMEM to a final concentration of 1 × 105 cells/mL. Then, 500 µL
of the macrophage suspension was cultured in 24-well tissue culture plates. Cells were
incubated overnight with increasing lipopolysaccharide (LPS) concentrations (0.08, 0.33,
and 1 µg/mL). After incubation, supernatants were collected, and the cells were treated
with different peptide fractions. Then, 24 h after treatment the cells’ supernatants were
stored at −20 ◦C for TNF-α quantification. The Mouse TNF alpha Elisa Ready-SET-Go®

(Sensitivity: 8 pg/mL) was used according to the manufacturer’s instructions (Affymetrix,
eBioscience). Cells incubated only with DMEM were considered negative controls. Two
other controls were also performed: cells treated only with peptides and cells treated with
different concentrations of LPS.

2.5. Mass Spectrometry Analysis and Peptide/Protein Identification

Mass spectrometry was performed at the UniMS—Mass Spectrometry Unit, ITQB/IBET,
Oeiras, Portugal. Briefly, 20 µL of the samples were and diluted 1:20 in buffer A (0.1%
formic acid in water, Fisher Chemicals, Geel, Belgium).

Liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis was per-
formed on an ekspert™ NanoLC 425 cHiPLC® system coupled with a TripleTOF® 6600 with
a DuoSpray Turbo V ion source (Sciex, Framingham, MA, USA). Peptides were separated
through reversed-phase chromatography (RP-LC). Separation was performed at 1µL/min,
on a HALO C18 column (Sciex 0.5 × 50 mm, 2.7 µm, 90 Å). The gradient was as follows:
0–1 min, 5% B (0.1% formic acid in acetonitrile, Fisher Chemicals, Geel, Belgium); 1–31 min,
5–30% B; 31–34 min, 30–95% B; 34–36 min, 95% B; 36–38 min, 95–5% B; 38–42 min, 5% B.

Peptides were sprayed into the MS through an ESI electrode (50 µm, Eksigent). The
source parameters were set as follows: 20 GS1, 0 GS2, 30 CUR, 5.5 keV ISVF and 100 ◦C IHT.
An information-dependent acquisition (IDA) method was set with a TOF-MS survey scan of
400–2000 m/z. The 40 most intense precursors were selected for subsequent fragmentation
and the MS/MS were acquired in high-sensitivity mode. The obtained spectra were
processed and analysed using ProteinPilot™ software, with the Paragon search engine
(version 5.0, Sciex). A database containing the sequences of the proteins of interest was
used (Gallus gallus feather keratin, from Uniprot 09-2017). The instrument selected was
TripleTOF 6600. The ID focus was on biological modifications and amino acid substitutions.
The search effort was set as thorough. Only the proteins with an unused protein score
above 2.2 and 99% confidence were considered.

2.6. Statistical Analysis

All measurements were performed in triplicate and data presented as mean. For
the selected evaluation tests, the means of all tested formulations were compared with
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each other by means of one paired Student’s t-test or one-way ANOVA. The statistical
significance level (p) was set at <0.05.

3. Results and Discussion
3.1. Cell Metabolic Activity and Migration

Cellular migration is of the utmost importance for several mechanisms, such as
immune response, wound repair and tissue homeostasis [21]. On the other hand, an
aberrant cell migration leads to several pathologies such as the invasion of malignant cells
into the surrounding tissue, with the formation of tumour metastasis, leading to a poorer
prognostic for the patient [22].

A patient with a chronic wound has a compromised quality of life due to excruciating
pain and the constant need for medical care, resulting in a significant burden to the health
system worldwide. Briefly, the physiological process of wound healing has several steps,
such as haemostasis, inflammation, proliferation, and remodelling. The haemostasis starts
as soon as the injury occurs and is characterized by vasoconstriction and blood clotting.
This stage is of the utmost importance as it prevents excessive blood loss and provides
the required matrix for cell migration. Upon the inflammation stage in which phagocytic
cells are recruited, the proliferation stage starts. At this stage, several growth factors and
cytokines are recruited by different cell types, such as keratinocytes. The final stage is
characterized by the formation and organization of collagen bundles [21]. If an arrest or
delay occurs in any of these stages, particularly in the inflammation stage, it can lead to the
formation of a chronic wound. It is known that keratinocytes have an important role in
wound healing, particularly in re-epithelization [23]. The non-migration of these cells to
the injury site is associated with the clinical phenotype of chronic wounds.

Even though keratinocytes are not motile in normal steady-state condition, in the
presence of signalling molecules, they can migrate to re-epithelize the wound site [24]. Con-
sequently, the enhancement of the keratinocyte migration rate is of the utmost importance
for wound re-epithelization, particularly in the case of chronic wounds [25].

On the other hand, cancer metastization or invasion into the surrounding tissue leads
to a poorer prognostic for the patient, as in the case of invasive squamous cell carcinoma [22].
Squamous cell carcinoma and basal cell carcinoma are keratinocyte carcinomas, particularly
diagnosed in fair-skinned populations [26,27]. The decrease in cell migration might result
in a less invasive tumour.

The ability of keratinocytes to migrate from one edge of the scratch, performed on
a cell confluent monolayer, to its opposite edge was evaluated for a period of 24 h, in
the presence and absence of the peptides designated by P188D. First, a preliminary cell
viability study using fibroblasts demonstrated that the presence of 25 and 50 µg/mL of
peptides resulted in 94.2 ± 0.77 and 92.4 ± 1.55% of viable cells, respectively. Therefore,
45 µg/mL was the chosen concentration for the following tests.

The effect of P188D peptide on keratinocyte migration was evaluated up to 24 h hours
of contact. The presence of the peptide seems to decrease the keratinocyte migration rate in
comparison to the control, this effect being clear at 24 h of contact (Figure 1). Thus, it seems
that the presence of the peptides negatively affects keratinocyte migration, which could be
important to reduce the invasiveness of skin cancer cells.

The microbial degradation of a protein results in several peptides with different sizes,
amino acid composition and sequence. It is known that these characteristics have a striking
effect on several physiologic mechanisms [28]. Therefore, to better understand the effect
observed on keratinocyte migration, peptides were fractioned into smaller fractions using
different percentages of acetonitrile 20%, 40% and 80% (20%, 40% and 80% fraction peptide).
The final result was a solution with a narrowed peptides distribution. The influence of these
fractions on the keratinocyte metabolic activity and migration was once again evaluated.
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Peptide Fraction. Chromatographic Peak  Molecular Weight (Da) 
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Figure 1. Keratinocyte migration in absence (A) and presence (B) of P188D peptide over time.
1—before contact, 2—2 h, 3—6 h, 4—24 h, respectively. Scale bar—200 mm.

As can be seen in Figure 2A,B, the presence of the 20% peptide fraction decreased
the metabolic activity and migration rate of the keratinocytes, although it did not reach
statistical significance. On the other hand, fractions 40 and 80% do not seem to have any
effect on either mechanism. As these fractions did not induce significant changes in the
keratinocyte proliferation and migration rate, an additional fractionation was performed,
where peptides were separated according to their molecular weight, ranging from 9090
to 401 Da for the 20% fraction (P188D 20%) and from 8082 to 382 Da for the 40% fraction
(P188D 40%) (Table 1). Once again, the keratinocyte proliferation and migration rate were
determined in contact with these new peptide fractions.
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Figure 2. Keratinocyte proliferation (A) and migration rate (B) (in comparison to the control) in the presence of peptide
fractions (45 g/mL).

Table 1. Peptide fractions and respective molecular weight.

Peptide Fraction. Chromatographic Peak Molecular Weight (Da)

P188D 20%
P1 9090
P2 1361
P3 401

P188D 40%

P1 8082
P2 4699
P3 2473
P4 1199
P5 382

In this analysis, the results obtained were very distinct (Figure 3) from the previous
one (fraction 20%, 40% and 80%). Significant changes were observed in the metabolic
activity of cells in the presence of peptides, particularly in the presence of 40% fraction
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peptides. Analysing Figure 3A, it is clear that fractions P188D 20% P1, P188D 40% P1 seem
to induce a higher metabolic activity of these cells; in contrast, P188D 40% P3 induced
a decrease in the metabolic activity. Even though the results showed that sub-fraction
P1 from 20% fraction peptide induced the highest metabolic activity in comparison to P2
or P3 from the same fraction, these differences did not reach statistical significance. On
the other hand, significant changes were observed for the peptides from the 40% fraction,
particularly P188D 40% P1, P3 and P5. While P1 significantly increased the metabolic
activity, P3 decreased it.
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Figure 3. Keratinocyte metabolic activity (A) and keratinocyte migration rate (B) (in comparison to
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All the peptide sub-fractions induced an increase in the keratinocyte migration rate
(Figure 3B), with significant differences. P188D 20%, P2 and P3 are significantly different,
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with the latter presenting a higher migration rate in comparison to the former. A similar
result was observed for P188D 40% P2, wherein P188D 20% P2 and P188D 40% P2 are
significantly different, with the latter inducing a higher migration rate. P188D 40 % P3
also significantly affects migration in comparison with P188D 20% P1 and P188D 20 % P3.
It seems that the presence of these peptides has a more significant effect on the migratory
ability of these cells than on their metabolic activity. In this case, the use of fractioned
peptides is very important for skin reepithelization and therefore for the treatment of
chronic wounds.

It is important to mention that resazurin assay is based on the capacity of living cells
to transform resazurin to resorufin [29]. This ability is correlated with cell viability and cell
number/proliferation. The basis for this understanding is that the higher the conversion
of the dye, the higher the cell number. Therefore, taking into consideration this fact, it is
possible to interpret the results observed, as the peptides fraction has a higher influence on
cellular migration than on proliferation.

There are different physiological or pathological conditions, such as wound repair
that induce cells to shift their phenotype from proliferative to migratory in response to
similar stimulus (reciprocal control of cell proliferation and migration). It is known that
cytokines produced by cells present at the wound area can act as a chemoattractant for
distant cells, leading to cell migration [30]. However, upon their arrival, the cells switch
from a migrating phenotype to a proliferating one [30]. In this case, the wound inflicted on
the cell monolayer may have induced cells to release chemoattractant, signalling cells to
migrate to the injury site.

It has been demonstrated that keratin intermediate filaments regulate proliferation,
migration, adhesion, and inflammatory phenotype of keratinocytes [31].

Keratins 6, 16 and 17 are very important as they are considered barrier alarmins,
rapidly inducing keratinocytes to migrate to the injury site [31]. As in the wound healing
process, keratinocytes suffer dramatic changes as they are required to migrate and prolif-
erate during the healing phase. Their expression is founded in the epithelial remodelling
phase until the barrier function is repaired, demonstrating the importance of these keratins
in wound repair [31]. Among others, the expression of keratin 6, 16, and 17 persist through
the epithelial remodelling phase until the barrier function is restored [32]. It is hypothesized
that the peptides in the study may have a similar role to these keratins.

3.2. Quantification of TNF-α

Inflammation is a crucial process in several medical conditions, such as psoriasis and
wound healing; therefore, the ability of these peptide fractions to influence the inflamma-
tory response in terms of TNF-α release by macrophages was evaluated.

This assay had two distinct steps; the first one was to evaluate if the peptide fractions
induced an inflammatory response in non-activated macrophages (0 mg/mL of LPS) and
the second one was to evaluate if, in LPS pre-activated macrophages, the peptides would
influence the release of the pro-inflammatory cytokine.

As it can be seen in Figure 4A in non-activated macrophages, the peptide fraction
P188D 40% induces a significantly high release of TNF-α in comparison to the control
(cell culture media only), while the increase in TNF-α in the presence of P188D 20% is
significantly lower and similar to the control (no statistically significant difference). In
the presence of LPS pre-activated macrophages, the levels of TNF-α with or without
the peptides fraction is similar. However, the amount of TNF-α released by peptide
fraction P188D 40% was significantly reduced in the presence of LPS. As it is known, the
maintenance of an inflammatory microenvironment favours tumorigenesis, particularly in
skin cancers, such as the squamous cell carcinoma and basal cell carcinoma, in which there
is an important inflammatory component [33]. Even though these peptides are not able to
decrease TNF-α release, they do not enhance it. This cytokine is important in the induction
of a pro-inflammatory response and it seems that in activated macrophages the presence of
these peptides will not contribute to enhancing inflammation, as in some of the traditional
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chemotherapy agents, such as cisplatin, paclitaxel, 5-fluorouracil, and doxorubicin [34].
Therefore, the use of these peptides, such as 20% fraction peptides (P188D 20%), which
seems to decrease the migration rate as well as the proliferation rate, can be an interesting
alternative to the traditional chemotherapy agents.
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Figure 4. TNF-α release in the presence of the different fractions of the peptide (A) 20% and 40% fraction and (B) 20%
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difference in comparison to the control of 0 mg/mL LPS (p < 0.05). The error bars represent the standard error.

The fractioned peptides from the last fractionation stage (chromatographic peaks by
molecular weight) have a similar behaviour when in contact with pre-activated macrophages,
where the values of this cytokine can be slightly higher than the negative control (DMEM)
but never reaching statistical significance (Figure 4B). On the other hand, the contact of
the different fractions with the non-activated macrophages (without LPS) induced distinct
results. The P188D 20% P1 and P2, and P188D 40% P3 induced a significantly higher
release of TNF-α in comparison to the negative control and all other conditions. Again,
these results suggest that these peptides can be used in medical conditions, where there is
an inflammatory process involved, as they will not aggravate it, as in the case of cancer
or wound healing. These peptides open the possibility to modulate the migration rate of
the keratinocytes involved in both processes, to enhance or decrease it, depending on the
patient’s needs.
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Gao et al. [35] demonstrated that the presence of hair keratins in a culture with rat
neuronal Schwann cells increased proliferation and increased the number of cells passing
through a trans-well pore. In the wound-healing experiment with primary Schwann
cells, the damaged areas in the keratin group significantly decreased [35]. The presence of
keratins from chicken feathers, when fractioned, also resulted in an increase in the metabolic
activity/proliferation, with the exception of one fraction P188D 40% P3. Our results also
demonstrated that the peptide fraction stimulates cell proliferation in a wound-healing
model similar to the one reported by Gao et al. [35]. However, the keratins extracted from
the chicken feathers did not seem to significantly affect the production of the inflammatory
cytokine TNF-α, as described by Gao et al. [35]. This difference may be due to the different
experimental settings; while in the Gao et al. [35] experimental model the keratin peptides
are in contact with the cells prior to LPS activation, in our experimental model, the keratin
peptides were added to the cell culture medium after LPS stimulation. Our experimental
model allows the evaluation of these peptides as coadjutant molecules for the treatment of
skin inflammatory diseases.

The current knowledge regarding macrophage activation in wound healing is the
ability of these cells to shift from an M1 classical pro-inflammatory response (stimulated
by TNF-α, LPS as an example) to an M2 (polarized by IL-4, for example) anti-inflammatory
response activation pathway after microbial infection control [36–38]. It has been described
that a biomaterial made from human hair keratins elicit anti-inflammatory responses from
naïve macrophages and polarize them towards M2 phenotype [38]. Waters et al. [39]
described that keratin influences macrophage behaviour, although the mechanism behind
it is extremely complex. Nevertheless, Waters et al. [39] describes that, macrophages are
altered when in contact with an immobilized keratin biomaterial surface, and that these
changes appear to trend toward an anti-inflammatory phenotype. Even more importantly,
it is described that the response of macrophages is dependent on keratin molecular weight.
This fact is very important as it can explain the differences observed on the response of the
macrophages to the chicken feather keratin hydrolysate.

As the results differ depending on the peptide fraction present, a proteomic study was
performed to evaluate the main sequences of peptides present in the solution, as well as
comparing it to the keratin structure present in chicken feathers.

3.3. Proteomics

In order to identify an amino-acid sequence that could be responsible for the results
observed, the different fractions were analysed using the ProteinPilot™ software and a
database containing the sequences of the proteins of interest (Gallus gallus feather keratins,
from Uniprot 09-2017). Peptide fractions of three proteins were detected, as described in
Table 2.

Table 2. Peptide sequence of chicken feather keratin 1, 3 and 4.

Feather Keratin 1

SCYDLCRPSAPTPLANSCNEPCVRQCQDSRVVIQPSPVVVTLPGPILSSFPQNTAVGSSTSAAVGSILSEEGVPISSGGFGISGLGSRFSSRRCLPY

Feather Keratin 3

SCFDLCRPCGPTPLANSCNEACVRQCQDSRVVIQPSPVVVTLPGPILSSFPQNTLVGSSTSAAVGSILSEEGVPISSGGFGISGLGSRFSGRRCLPC

Feather Keratin 4

SCYDLCRPSAPTPLANSCNEPCVRQCQDSRVVIQPSPVVVTLPGPILSSFPQNTAVGSSTSAAVGSILSEEGVPISSGGFGISGLGSRFSSRRCLPY

The proteomics analysis revealed the presence of peptides with different sequences
and with homology to three distinct chicken keratin proteins: keratin 1, 3 and 4, as described
in Tables 3–6.
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Table 3. Peptide sequence of the chicken feather microbial degradation present in the fraction P188D
20% with 99% of confidence and its homology to chicken feather keratin 3 and 4.

Protein Sequence Modifications Number of Repeats

4 SSFPQNTAVGS 2

4 SFPQNTAVGSSTSA 2

4 SFPQNTAVGSSTS

4 GPILSSFPQNTAVGSSTS

4 GPILSSFPQNTAVGSSTS Deamidated(N)@10
4 GPILSSFPQNTAVGSS

4 GPILSSFPQNTAVGS 2

4 GPILSSFPQNTAVGS Pro→Asn@8

4 GPILSSFPQNTAVGS Asn→His@10 4

4 GPILSSFPQNTAVGS Deamidated(N)@10

4 GPILSSFPQNTAVGS Asn→His@10

4 GPILSSFPQNTAVGS Deamidated(N)@10 3

4 GPILSSFPQNTAVGS Oxidation(P)@8, Gln→His@9

4 GPILSSFPQNTAVG Deamidated(N)@10

4 GPILSSFPQNTAV

4 GPILSSFPQNTAV Deamidated(N)@10 3

4 GPILSSFPQNTAV Asn→His@10

4 GPILSSFPQNTA

4 GPILSSFPQNTA Deamidated(N)@10

4 AVGSSTSAAVGSIL

3 GSRFSGRR Arg→Ser@7 2

3 GPILSSFPQNTLVGS Deamidated(N)@10,
Leu→Val@12

3 GPILSSFPQNTLVGS Deamidated(N)@10,
Leu→Val@12

4, 3 VVVTLPGPILS 2

4, 3 VVTLPGPILS 2

4, 3 VVTLPGPILS Ser→Thr@10

4, 3 VVTLPGPIL 2

4, 3 VVIQPSPVVVT

4, 3 VVIQPSPVVV Pro→Ser@7 3

4, 3 VVIQPSPVVV Oxidation(P)@5, Ser→Pro@6

4, 3 VVIQPSPVVV 4

4, 3 VVIQPSPVVV Val→Leu@1 2

4, 3 VVIQPSPVVV Ser→Ala@6 3

4, 3 VVIQPSPVVV Carbamidomethyl@N-term,
Ser→Pro@6

4, 3 VVIQPSPV 2

4, 3 VVIQPSPV Ser→Ala@6

4, 3 VIQPSPVVV Ser→Ala@5

4, 3 VIQPSPVV Ser→Ala@5

4, 3 TLPGPILSSFPQ 2

4, 3 TLPGPILS Ser→Thr@8

4, 3 TLPGPILS Ser→Thr@8

4, 3 TLPGPILS Leu→Phe@2

4, 3 SSGGFGISGLGSR Delta:H(2)C(2)@N-term
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Table 3. Cont.

Protein Sequence Modifications Number of Repeats

4, 3 SRVVIQPSP 2

4, 3 SPVVVTLPGPILSSFPQN Pro→Thr@8

4, 3 SPVVVTLPGPILSSFPQ Pro→Thr@8

4, 3 SPVVVTLPGPILSSFPQ Pro→Asp@8

4, 3 SPVVVTLPGPILSSFPQ Pro→Asp@8,
Deamidated(Q)@17

4, 3 SPVVVTLPGPILSSFPQ Oxidation(P)@8

4, 3 SPVVVTLPGPILS

4, 3 SPVVVTLPGPIL 2

4, 3 SPVVVTLPGP 2

4, 3 SPVVVTLPG Oxidation(P)@8, Gly→Cys@9,
Carbamidomethyl(C)@9

4, 3 SPVVVTLP

4, 3 SGGFGISGLGSR

4, 3 SGGFGISGLGSR Ile→Asn@6

4, 3 SEEGVPISSGGFGIS Glu→Ser@3

4, 3 SEEGVPISSGGFGIS

4, 3 SEEGVPISSGGFGI Glu→Ser@3 2

4, 3 SEEGVPISSGGFGI Glu→Ser@2

4, 3 SEEGVPISSGGF Glu→Ser@3

4, 3 RVVIQPSP Arg→Asp@1

4, 3 QPSPVVVTLPGPIL Gln→Met@1

4, 3 QDSRVVIQPSP 2

4, 3 PSPVVVTLPGPILS

4, 3 PSPVVVTLPGPIL

4, 3 PSPVVVTLPGP

4, 3 PSPVVVTLP Pro→Ala@1

4, 3 PSPVVVTLP 2

4, 3 PISSGGFGISGLGS Leu→Thr@12

4, 3 LPGPILSSFPQN

4, 3 LPGPILSSFPQ

4, 3 IQPSPVVVTLP

4, 3 IQPSPVVVTLP Ser→Pro@4 2

4, 3 IQPSPVVVT Ser→Pro@4 2

4, 3 IQPSPVVV Ser→Pro@4 5

4, 3 ILSSFPQN 2

4, 3 GVPISSGGFGISGLGSR 2

4, 3 GVPISSGGFGIS 5

4, 3 GVPISSGGFGI 3

4, 3 GVPISSGGFGI Ile→Phe@11

4, 3 GVPISSGGFG

4, 3 GVPISSGGF 3

4, 3 GVPISSGGF PhosphoHexNAc(S)@6

4, 3 GPILSSFPQNT 3

4, 3 GPILSSFPQNT Deamidated(N)@10 2

4,3 GPILSSFPQNT Asn→His@10
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Table 3. Cont.

Protein Sequence Modifications Number of Repeats

4, 3 GPILSSFPQN 7

4, 3 GPILSSFPQN Asn→Gln@10 3

4, 3 GPILSSFPQN Asn→Ser@10 2

4, 3 GPILSSFPQN Deamidated(N)@10

4, 3 GPILSSFPQ 2

4, 3 GPILSSFPQ Ser→Thr@5 3

4, 3 GPILSSFP 4

4, 3 GISGLGSRFS Phe→Leu@9

4, 3 GISGLGSRFS 3

4, 3 GISGLGSRF Phe→Tyr@9

4, 3 GISGLGSRF Ser→Gly@7 2

4, 3 GGFGISGLGSRF 2

4, 3 GGFGISGLGSR

4, 3 GFGISGLGSRF

4, 3 GFGISGLGSR 2

4, 3 GFGISGLGSR Ser→Gly@9

4, 3 EGVPISSGGFGIS 3

4, 3 EGVPISSGGFGI

4, 3 EGVPISSGGF Glu→Ser@1

4, 3 EEGVPISSGGFGI Glu→Ser@2

Table 4. Peptide sequence of the chicken feather microbial degradation present in the fraction P188D
40% with 99% of confidence and its homology to Keratin Chicken Feather 4 and 1.

Protein Sequence Modifications Number of Repeats

4 VVVTLPGPILSSFPQN Pro→Asp@6

4 VVVTLPGPILSSFPQN 4

4 VVVTLPGPILSSFPQ 7

4 VVVTLPGPILSSFPQ Pro→Asn@6

4 VVVTLPGPILSSFP cGMP + RMP-loss(S)@12

4 VVVTLPGPILSS

4 VVVTLPGPILS Ser→Thr@11

4 VVVTLPGPILS Thr→Leu@4 2

4 VVVTLPGPILS Pro→Met@6

4 VVVTLPGPILS 31

4 VVVTLPGPIL 3

4 VVVTLPGPI

4 VVTLPGPILSSFPQN Leu→Phe@4

4 VVTLPGPILSSFPQ 5

4 VVTLPGPILSSFPQ Leu→Phe@4 2

4 VVTLPGPILSS Ser→Val@11

4 VVTLPGPILS Ser→Thr@10

4 VVTLPGPIL 2

4 VVIQPSPVVVTLPGPILSSFPQNT

4 VVIQPSPVVVTLPGPILSSFPQ 4

4 VVIQPSPVVVTLPGPILSSFP cGMP + RMP-loss(S)@19
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Table 4. Cont.

Protein Sequence Modifications Number of Repeats

4 VVIQPSPVVVTLPGPILS Pro→Ser@7

4 VVIQPSPVVVTLPGPILS 6

4 VVIQPSPVVVTLPGPILS Val→Leu@1

4 VVIQPSPVVVTLPGPILS Ser→Ala@6

4 VVIQPSPVVVTLPGPIL 2

4 VVIQPSPVVVTLPGP Pro→Ala@5, Oxidation(P)@7

4 VVIQPSPVVVTLPGP Pro→Thr@7 2

4 VVIQPSPVVVTLP Pro→Ser@7 2

4 VVIQPSPVVVTLP Oxidation(P)@7, Thr→Pro@11 3

4 VVIQPSPVVVTLP Ser→Pro@6, Oxidation(P)@7

4 VVIQPSPVVVTLP Pro→Ser@7

4 VVIQPSPVVVTLP 7

4 VVIQPSPVVVTLP Val→Leu@1

4 VVIQPSPVVVTLP Ser→Ala@6 3

4 VVIQPSPVVVTLP Pro→Ser@5, Oxidation(P)@7

4 VVIQPSPVVVTLP Oxidation(P)@5, Pro→Ser@7

4 VTLPGPILSSFPQN

4 VTLPGPILSSFPQ 4

4 VTLPGPILSSFPQ Leu→Phe@3 3

4 VIQPSPVVVTLP Ser→Ala@5

4 VIQPSPVVVTLP Ser→Ala@5

4 TLPGPILSSFPQN 2

4 TLPGPILSSFPQ 6

4 TLPGPILSSFPQ Ser→Thr@8

4 TLPGPILSSFPQ Leu→Phe@2 5

4 TLPGPILS Leu→Phe@2

4 TLPGPILS Leu→Phe@2

4 TLPGPILS Ser→Phe@8

4 SRVVIQPSP Arg→Asp@2

4 SPVVVTLPGPILSSFPQN Pro→Thr@8

4 SPVVVTLPGPILSSFPQ 4

4 SPVVVTLPGPILS 5

4 SPVVVTLPGPILS Dehydrated(T)@6

4 SPVVVTLPGPIL 3

4 SPVVVTLPGP

4 SPVVVTLPG Oxidation(P)@8, Gly→Cys@9,
Carbamidomethyl(C)@9

4 SGGFGISGLGSRF

4 SCGGFGISGLGSR Cys→Leu@2

4 RVVIQPSPVVVTLPGPILS

4 PVVVTLPGPILSSFPQ Pro→Thr@1

4 PVVVTLPGPILS Pro→Thr@1

4 PVVVTLPGPILS Pro→Ser@1 2

4 PVVVTLPGPIL Pro→Thr@1

4 PVVVTLPGP Pro→Ser@1
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Table 4. Cont.

Protein Sequence Modifications Number of Repeats

4 PVVVTLPGP Pro→Thr@1 2

4 PSPVVVTLPGPILS 3

4 PSPVVVTLPGPIL Pro→Ala@1

4 PSPVVVTLPGPIL 3

4 PSPVVVTLPGP

4 LPGPILSSFPQNTAVGS Deamidated(N)@12

4 LPGPILSSFPQ Ile→Phe@5 3

4 LPGPILSSFPQ Leu→Phe@1

4 LPGPILSSFPQ 2

4 IQPSPVVVTLPGPILSSFPQ Ser→Pro@4 5

4 IQPSPVVVTLPGPILS 3

4 IQPSPVVVTLPGPILS Ser→Pro@4 5

4 IQPSPVVVTLPGPIL Ser→Pro@4

4 IQPSPVVVTLPGP Ser→Pro@4 3

4 IQPSPVVVTLP Ser→Ala@4

4 IQPSPVVVTLP Ser→Pro@4 5

4 GVPISSGGFGISGLGSR

4 GVPISSGGFGISGL

4 GVPISSGGFGIS Ile→Phe@11

4 GVPISSGGFGI 2 2

4 GVPISSGGFGI Ile→Phe@11

4 GPILSSFPQNTAVGS

4 GPILSSFPQNTAVGS Asn→His@10 3

4 GPILSSFPQNTAVGS Deamidated(N)@10 2

4 GPILSSFPQNTAVGS Deamidated(N)@10,
Ala→Val@12 2

4 GPILSSFPQNTAV Deamidated(N)@10 3

4 GPILSSFPQNT 2

4 GPILSSFPQNT Deamidated(N)@10

4 GPILSSFPQN 5

4 GPILSSFPQ

4 GPILSSFPQ Ser→Thr@6

4 GPILSSFPQ Ser→Thr@5 2

4 GGFGISGLGSRFS 2

4 GGFGISGLGSRF 3

4 GGFGISGLGSR 3

4 GFGISGLGSRFS Phe→Leu@11

4 GFGISGLGSR 2

4 FGISGLGSR

4 EGVPISSGGFGIS
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Table 5. Peptide sequence of the chicken feather microbial degradation present in the fraction P188D
20% P1, P2 and P3 with 99% of confidence and its homology to chicken feather keratin 4, 1, 3,
respectively.

Sequence Modifications Protein Modifications Number of
Repeats

P188D 20% P1

EGVPISSGGF

EGVPISSGGFGI

EGVPISSGGFGIS

GPILSSFPQ

GPILSSFPQN

GPILSSFPQNT

GPILSSFPQNTAV Deamidated(N)@10

GVPISSGGF

GVPISSGGFGI

GVPISSGGFGIS

IQPSPVVVTLP

IQPSPVVVTLPGPILS

PSPVVVTLPGP

PSPVVVTLPGPILS

QDSRVVIQP Gln→pyro-Glu@N-term

QDSRVVIQPSP Gln→pyro-Glu@N-term

SFPQNTAVGSSTS Deamidated(N)@5

SFPQNTAVGSSTSA Deamidated(N)@5

SFPQNTAVGSSTSAA Deamidated(N)@5

SGGFGISGLGSR

SPVVVTLPGP

SPVVVTLPGPILS

TLPGPILSSFPQ

VPISSGGFGI

VPISSGGFGIS

VVIQPSPV

VVIQPSPVVV

VVIQPSPVVVTLPGPILS

VVTLPGPILS

VVVTLPGPIL

VVVTLPGPILS

GPILSSFPQNTAVGS Asn→His@10 Asn→His@54

EEGVPISSGGFGI Glu→Ser@2 Glu→Ser@72

SEEGVPISSGGF Glu→Ser@2 Glu→Ser@71

SEEGVPISSGGFGI Glu→Ser@2 Glu→Ser@71

SEEGVPISSGGFGIS Glu→Ser@2 Glu→Ser@71

EEGVPISSGGF Glu→Ser@2 Glu→Ser@72
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Table 5. Cont.

Sequence Modifications Protein Modifications Number of
Repeats

EEGVPISSGGFGIS Glu→Ser@2 Glu→Ser@72

SFPQNTAVGS Asn→His@5 Asn→His@54

SSFPQNTAVGS Asn→His@6 Asn→His@54

VVIQPSPVVVTLP Ser→Val@6 Ser→Val@37

PVVVTLPGP Pro→Thr@1 Pro→Thr@38

PVVVTLPGPIL Pro→Ser@1 Pro→Ser@38

PVVVTLPGPILS Pro→Thr@1 Pro→Thr@38

IQPSPVVVT Ser→Pro@4 Ser→Pro@37

VIQPSPVVVTLP Pro→Thr@6 Pro→Thr@38

IQPSPVVV Ser→Pro@4 Ser→Pro@37

RVVIQPSP Arg→Thr@1 Arg→Thr@31

PSPVVVTLP Thr→Leu@7 Thr→Leu@42

SEEGVPISS PhosphoHexNAc(S)@8 PhosphoHexNAc(S)@77

VPISSGGF PhosphoHexNAc(S)@5 PhosphoHexNAc(S)@78

SPVVVTLPG
Oxidation(P)@8;

Gly→Cys@9;
Carbamidomethyl(C)@9

Oxidation(P)@44;
Gly→Cys@45

DSRVVIQPSP Asp→Thr@1;
Deamidated(R)@3

Asp→Thr@29;
Deamidated(R)@31

EEGVPISSGGF Glu→Ser@1 Glu→Ser@71

EEGVPISSGGFGI Glu→Ser@1 Glu→Ser@71 2

EEGVPISSGGFGI Glu→Ser@2 Glu→Ser@72

EEGVPISSGGFGIS Glu→Ser@1 Glu→Ser@71

EGVPISSGGFGI

EGVPISSGGFGIS 2

GPILSSFPQ 3

GPILSSFPQN 3

GPILSSFPQNT 3

GPILSSFPQNTAV Deamidated(N)@10

GPILSSFPQNTAVGS Deamidated(N)@10 4

GPILSSFPQNTAVGS Asn→His@10 Asn→His@54 3

GVPISSGGF 2

GVPISSGGFGI

GVPISSGGFGIS 2

IQPSPVVV Ser→Pro@4 Ser→Pro@37

IQPSPVVVT Ser→Pro@4 Ser→Pro@37

IQPSPVVVTLP Pro→Thr@3 Pro→Thr@36

IQPSPVVVTLP Pro→Thr@5 Pro→Thr@38

IQPSPVVVTLP Thr→Leu@9 Thr→Leu@42

IQPSPVVVTLP Pro→Ser@3 Pro→Ser@36

IQPSPVVVTLP Ser→Pro@4 Ser→Pro@37
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Table 5. Cont.

Sequence Modifications Protein Modifications Number of
Repeats

PSPVVVTLP

PVVVTLPGP Pro→Ser@1 Pro→Ser@38

PVVVTLPGP Pro→Thr@1 Pro→Thr@38

PVVVTLPGP Pro→Ser@1 Pro→Ser@38

PVVVTLPGPIL Pro→Ser@1 Pro→Ser@38 2

PVVVTLPGPIL Pro→Thr@1 Pro→Thr@38 2

PVVVTLPGPILS Pro→Thr@1 Pro→Thr@38

PVVVTLPGPILS Pro→Ser@1 Pro→Ser@38 2

RVVIQPSP Arg→Asp@1 Arg→Asp@31

SEEGVPISS

SEEGVPISS Cation:Na(E)@3 2

SEEGVPISS Glu→Ser@2 Glu→Ser@71

SEEGVPISS Glu→Ser@3 Glu→Ser@72

SEEGVPISS Glu→Ser@3 Glu→Ser@72

SEEGVPISS Glu→Ser@2 Glu→Ser@71

SEEGVPISS Glu→Lys@2 Glu→Lys@71

SEEGVPISS PhosphoHexNAc(S)@8 PhosphoHexNAc(S)@77

SEEGVPISS PhosphoHexNAc(S)@9 PhosphoHexNAc(S)@78

SEEGVPISSGGF Glu→Ser@2 Glu→Ser@71

SEEGVPISSGGF Glu→Lys@2 Glu→Lys@71

SEEGVPISSGGF Glu→Ser@2 Glu→Ser@71

SEEGVPISSGGF 3

SEEGVPISSGGF Glu→Ser@2 Glu→Ser@71

SEEGVPISSGGFGI Glu→Ser@3 Glu→Ser@72

SEEGVPISSGGFGI Glu→Ser@2 Glu→Ser@71 2

SEEGVPISSGGFGIS Glu→Ser@2 Glu→Ser@71

SEEGVPISSGGFGIS 3

SFPQNTAVGS Asn→His@5 Asn→His@54 4

SFPQNTAVGS Deamidated(N)@5 4

SFPQNTAVGSSTS Deamidated(N)@5 2

SFPQNTAVGSSTSA Deamidated(N)@5

SPVVVTLPG
Oxidation(P)@8;

Gly→Cys@9;
Carbamidomethyl(C)@9

Oxidation(P)@44;
Gly→Cys@45

SPVVVTLPGP

SPVVVTLPGPILS 3

SSFPQNTAVGS Asn→His@6 Asn→His@54 2

VIQPSPVVVTLP Pro→Thr@4 Pro→Thr@36

VIQPSPVVVTLP Ser→Ala@5 Ser→Ala@37

VPISSGGFGIS
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Table 5. Cont.

Sequence Modifications Protein Modifications Number of
Repeats

VVIQPSPV 2

VVIQPSPVVV Ser→Ala@6 Ser→Ala@37 2

VVIQPSPVVV

VVIQPSPVVVTLP Pro→Ser@5;
Oxidation(P)@7

Pro→Ser@36;
Oxidation(P)@38

VVIQPSPVVVTLP Oxidation(P)@5;
Pro→Ser@7

Oxidation(P)@36;
Pro→Ser@38

VVIQPSPVVVTLP

VVIQPSPVVVTLP Ser→Val@6 Ser→Val@37 4

VVIQPSPVVVTLP Pro→Ser@7 Pro→Ser@38

VVIQPSPVVVTLP Pro→Thr@5 Pro→Thr@36

VVIQPSPVVVTLP Pro→Thr@7 Pro→Thr@38 2

VVIQPSPVVVTLP Pro→Ser@5 Pro→Ser@36

VVIQPSPVVVTLP

VVIQPSPVVVTLPGPILS

VVTLPGPILS 2

VVVTLPGPILS 3

P188D 20% P2

GPILSSFPQN

GLGSRFSGR Arg→Ser@9 Arg→Ser@93

PVVVTLPGPILS Pro→Thr@1 Pro→Thr@38 2

PVVVTLPGPILS Pro→Ser@1 Pro→Ser@38 2

P188D 20% P3

GFGISGLGSR Gly→Asn@3 Gly→Asn@82

GLGSRFSGR Arg→Ser@9 Arg→Ser@93

Table 6. Peptide sequence of the chicken feather microbial degradation present in the fraction P188D
40% P2 and P3 with 99 % of confidence and its homology to chicken feather keratin 4.

Sequence Modifications Protein Modifications Number of
Repeats

P188D 40% P2

EGVPISSGGFGIS

GFGISGLGSR

GGFGISGLGSR

GPILSSFPQ

GPILSSFPQN

GPILSSFPQNT

GPILSSFPQNTAVGS Deamidated(N)@10

GVPISSGGF

GVPISSGGFGI

GVPISSGGFGIS

IQPSPVVV
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Table 6. Cont.

Sequence Modifications Protein Modifications Number of
Repeats

PSPVVVTLP

QDSRVVIQPSP Gln→pyro-Glu@N-term

SEEGVPISSGGF Glu→Ser@2 Glu→Ser@71

SEEGVPISSGGFGIS

SFPQNTAVGSSTS Deamidated(N)@5

SGGFGISGLGSR

SPVVVTLPGP

TLPGPILSSFPQ

VVIQPSPV

VVIQPSPVVV

VVIQPSPVVVTLP

VVTLPGPILS

VVVTLPGPIL

VVVTLPGPILS

PVVVTLPGP Pro→Ser@1 Pro→Ser@38

SFPQNTAVGS Asn→His@5 Asn→His@54

IQPSPVVVTLPGP Ser→Pro@4 Ser→Pro@37

EEGVPISSGGF Glu→Ser@2 Glu→Ser@72

VIQPSPVVVTLP Ser→Ala@5 Ser→Ala@37

SRVVIQPSP Arg→Asp@2 Arg→Asp@31

SPVVVTLPG
Oxidation(P)@8;

Gly→Cys@9;
Carbamidomethyl(C)@9

Oxidation(P)@44;
Gly→Cys@45

VPISSGGF PhosphoHexNAc(S)@5 PhosphoHexNAc(S)@78

IQPSPVVVTLP Oxidation(P)@3;
Pro→Ala@5

Oxidation(P)@36;
Pro→Ala@38

EEGVPISSGGF Glu→Ser@1 Glu→Ser@71

EGVPISSGGFGIS 2

EGVPISSGGFGIS

GGFGISGLGSR

GPILSSFPQ 4

GPILSSFPQN 4

GPILSSFPQNT 2

GPILSSFPQNTAVGS Deamidated(N)@10 2

GPILSSFPQNTAVGS Asn→His@10 Asn→His@54 3

GVPISSGGF 3

GVPISSGGFGIS 3

IQPSPVVV Ser→Pro@4 Ser→Pro@37

IQPSPVVV Pro→Glu@5 Pro→Glu@38

SEEGVPISSGGF Glu→Lys@2 Glu→Lys@71



Appl. Sci. 2021, 11, 6779 21 of 24

Table 6. Cont.

Sequence Modifications Protein Modifications Number of
Repeats

SEEGVPISSGGF 2

SEEGVPISSGGFGIS 0.038

SFPQNTAVGS Asn→His@5 Asn→His@54

SFPQNTAVGS Deamidated(N)@5

SPVVVTLPG
Oxidation(P)@8;

Gly→Cys@9;
Carbamidomethyl(C)@9

Oxidation(P)@44;
Gly→Cys@45

SPVVVTLPGP 2

TLPGPILSSFPQ

TLPGPILSSFPQ Leu→Phe@2 Leu→Phe@43

VVIQPSPVVV Ser→Ala@6 Ser→Ala@37 3

VVTLPGPILS 4

VVTLPGPILS Leu→Phe@4 Leu→Phe@43

VVVTLPGPIL

VVVTLPGPILS 4

P188D 40% P3

GFGISGLGSR Gly→Asn@3 Gly→Asn@82

Analysing the fraction P188D 20% it was detected the presence of amino-acid se-
quences similar to the ones present in keratin 3 and 4 (Table 3). The presence of the
two keratins (3 and 4) seems to decrease the migration and metabolic activity of the ker-
atinocytes. In the P188D 40% fraction only the presence of sequences related to keratin
4 were found (Table 4). The loss of peptides with the homology to keratin 3 in P188D 40%
results in keratinocytes with a behaviour similar to the control. It can be hypothesized that
the presence of peptides with homology to keratin 3 may be responsible for cell migration
and metabolic activity decrease. Keratins are known to be intermediate filament-forming
proteins that are related to differentiation status [40] and are known to be crucial for the
motile processes, although is not fully clear [41].

The proteomics analysis detected any peptides for the fractions P188D 40% P1, P4
and P5 related to chicken keratin feathers. In the case of fractions P188D 20% P1, 40%
P2 and 40% P3, all the peptides present had homology to chicken feather keratin 4 with
some modifications on the sequence resulting in changes in the protein, as can be seen in
Tables 5 and 6.

The peptides present in the fraction P188D 20% P2 had homology to feather keratin 1
and 4, while 20% P3 has a homology to the chicken feather keratin 3. The results obtained
for migration or metabolic activity were not possible to correlate with the presence or
absence of the peptides with homology to the keratin 3; this may be due to the loss of some
of the peptide with particular sequences.

Nevertheless, this study demonstrates the ability to modulate keratinocyte migration and
metabolic activity in the presence of different peptide sequences with homology to keratin.

4. Conclusions

This study demonstrated that the microbial degradation of chicken feathers has
significant advantages. It is an environmentally friendly method to obtain bioactive
peptides. The resulting peptides induced significant changes in the viability and migration
rate of keratinocytes. The effect observed was dependent on the size distribution (fraction).
The distinct effect of the peptides, depending on their fraction, opens doors to tailor-made
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medicine, where it is possible to modulate the cell’s response, either to increase or decrease
their migration rate and metabolic activity. The production of TNF-α was not exacerbated
by the presence of the keratin peptides if there was a pre-activation of macrophages. On
the other hand, P188D 40% and P188D 20% P1 significantly increased TNF- α production
when placed in contact with non-activated macrophages. If these peptides are placed in
contact with macrophages in their non-activated state, they will induce the production of
an inflammatory cytokine. On the other hand, if the macrophages are already activated,
the presence of the peptides will not exacerbate the condition.

The size as well as the sequence of the peptides present influences the cellular response,
so on this project, the sequence of the peptides was determined and compared to Gallus
gallus feather keratin. It was not possible to correlate the result obtained in terms of
migration rate or metabolic activity, even though it was observed that the different peptides
collections had homology to different Gallus gallus feather keratin. This fact may be due to
changes present in a particular peptide sequence. Nevertheless, this study demonstrates
the ability to modulate keratinocyte migration and metabolic activity in the presence of
different peptide sequences with homology to keratin.

The work presented here is a step forward on the understanding of keratin peptides’
influence on keratinocytes and immune cells system cells, macrophages, opening doors to
tailor-made medicine.
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