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Abstract. Recently, there have been advances in using unsupervised
learning methods for Acoustic Anomaly Detection (AAD). In this paper,
we propose an improved version of two deep AutoEncoders (AE) for
unsupervised AAD for six types of working machines, namely Dense
and Convolutional AEs. A large set of computational experiments was
held, showing that the two proposed deep autoencoders, when combined
with a mel-spectrogram sound preprocessing, are quite competitive and
outperform a recently proposed AE baseline. Overall, a high-quality class
discrimination level was achieved, ranging from 72% to 92%.

Keywords: Acoustic anomaly detection · Unsupervised learning · Au-
toencoders · Convolutional neural network.

1 Introduction

With the advent of the Industry 4.0 phenomenon, the amount of digital data is
growing exponentially. In effect, currently there is a widespread usage of inter-
connected sensors that can capture diverse physical aspects of the productive
process (e.g., images, sound, temperatures, torque, energy consumption values).
All this data can be used by Artificial Intelligence (AI) and Machine Learn-
ing (ML) to extract valuable productive analytics. A particularly relevant ML
task is anomaly detection, which intends to distinguish abnormal events from
normal ones [18,34]. In industrial processes, the early detection of operating ma-
chines with a defects by using ML can potentially [25, 31]: reduce maintenance
time and costs; prevent or reduce production stops, and increase the safety of
human operators that operate the machines. In this work, we focus on ML meth-
ods for Acoustic Anomaly Detection (AAD) [8], which aims to detect abnormal
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behaviours using audio data. In particular, we aim to automatically detect, be-
forehand, if a given industrial machine is not working correctly, by using only the
sound produced by it. Several studies addressed this issue as an unsupervised
ML task, since data labeling is highly costly and time consuming, requiring great
manual human work subject to errors [4].

Over the years, several algorithms were applied to unsupervised AAD prob-
lems, including Isolation Forest (IF) [9, 10] and One-Class Support Vector Ma-
chines (OCSVM) [4,29]. Following the success of Deep Learning, there has been
a growing usage of neural network architectures for AAD. In particular, Au-
toEncoders (AE) are becoming popular for unsupervised AAD [15, 24]. When
compared with other ML approaches (e.g., IF and OCSVM), AE present the
advantage of requiring a lower computational effort [19].

AEs compressed the input features into a lower dimensional space, named
latent space, learning their most relevant relationships, and are composed by two
main components [5, 22]: an encoder that maps the input vector (features) into
the latent space, via a nonlinear transformation; and a decoder that attempts to
reconstruct the reverse transformation to the original input signal. The difference
between the original input vector and the AE output is called reconstruction
error [3]. This error can be used to detect anomalies. AEs assume that normal
and anomalous events follow different distributions and it is trained to learn the
normal multi-dimensional space of the data, by using only normal event records,
aiming to minimize the reconstruction error on such data. When an AE tries
to reconstruct new unseen data containing anomalies, the reconstruction errors
are higher and by using a predefined threshold, the samples can be signaled as
anomalous [5, 22].

Following on good results obtained in previous studies [14,18,26,32], in this
work we address unsupervised AAD task in industrial machines using two dif-
ferent AE architectures: deep Dense and Convolutional. In order to use audio as
input, it is often necessary to preprocess the raw data by extracting features from
the signal. In this work, we use Mel Frequency Energy Coefficients (MFECs),
which are a popular sound preprocessing method [7, 28]. Moreover, we use two
public datasets [17, 27] to test the proposed AEs that are fed with MFECs.
For benchmark purposes, we compare the Dense and Convolutional AEs with a
baseline AE architecture that was recently proposed [16].

The paper is organized as follows: Section 2 describes the used datasets, the
audio features used and its extraction process, the proposed AE architectures,
and the evaluation process. Section 3 presents the experimentation developed
and obtained results. Lastly, final conclusions are discussed in Section 4.

2 Materials And Methods

2.1 Dataset

The data used for this task comprises parts of the ToyADMOS [17] and the
MIMII [27] datasets, consisting of the normal and anomalous operating sounds of



Deep Dense and Convolutional Autoencoders for Machine AAD 3

six types of toy/real machines, as obtained from the DCASE 2020 challenge [16].
The data is divided into two datasets (development and evaluation) for 6 different
machine types: ToyCar, ToyConveyor, Slider, Pump, Fan, and Valve.

The ToyCar and ToyConveyor data belong to ToyADMOS dataset. This
dataset involved miniature machines (toys) that were damaged deliberately to
record anomalous behavior. As for the MIMII Dataset, the sounds were recorded
from different industrial machines, aiming to resemble a real-life scenario. In
the development datasets, each machine type has 4 different specific machines,
except for ToyConveyor, which has only 3. Each machine sound was recorded
using only one microphone and sampled at 16 kHz.

The machine sound datasets include normal and anomaly labels that are
available for the test data, allowing to estimate the AAD performance of the
ML models. Regarding the evaluation data, it contains audio for new machines
(new IDs) in each machine type, both for model training and testing. Table 1
summarizes the analyzed datasets. A different number of approximately 10 sec-
ond Waveform Audio File (WAV) files is used for each machine.

Table 1. Summary of the machine AAD datasets.

Development Evaluation
Machine Audio Files Machine Audio Files

ID Train Test ID Train Test

Toy Car

01 1000 614 05 1000 515
02 1000 615 06 1000 515
03 1000 615

07 100 515
04 1000 615

Toy Conveyor
01 1000 1200 04 1000 555
02 1000 1155 05 1000 555
03 1000 1154 06 1000 555

Fan

00 911 507 01 911 426
02 916 549 03 916 458
04 933 448

05 1000 458
06 915 461

Pump

00 906 243 01 903 2016
02 905 211 03 606 213
04 602 200

05 908 348
06 936 202

Slider

00 968 456 01 968 278
02 968 367 03 968 278
04 434 278

05 434 278
06 434 189

Valve

00 891 219 01 679 220
02 608 220 03 863 220
04 900 220

05 899 500
06 892 220
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2.2 Feature Extraction

MFCCs, which are derived from the mel-cepstrum representation of the audio, is
one of the best known and most popular audio processing features [30]. However,
when computing MFCCs, a Discrete Cosine Transform (DCT) is applied to the
logarithm of the filter bank outputs, resulting in decorrelated MFCC features.
Therefore, they have the drawback of having non-local features, which makes
them unsuitable for Convolutional AE (CAE) processing.

In this paper, we address a feature for audio signal processing named MFECs,
which are log-energies derived directly from the filter-banks energies. These are
similar to MFCCs, yet they do not include the DCT operation. This feature
provided good results in detecting different audio sounds and classification of
sounds in previous studies [2, 13,33].

To prepare the features for the first proposed deep learning architecture, the
Dense AE, some operations were made. Audio data are buffered in fixed-length
1-second intervals with 50% overlap. For each audio buffer obtained, the segment
is then divided into 64 ms analysis frames, with 50% overlap and 128 MFECs are
extracted from the magnitude spectrum of each frame. In this way, 5 time-frames
are concatenated to form a 640-dimensional input vector as shown in Figure 1.

Fig. 1. Feature extraction procedure for the Dense AE.

The second deep learning architecture, the Convolution Neural Network
(CNN) AE, requires a different feature extraction method. For each audio, 128
log mel-band energy features were extracted from the magnitude spectrum, con-
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sidering 64 ms analysis frames with 50% overlap. Then, each feature was nor-
malized to zero mean and unit standard deviation by using statistics from the
training data. Finally, the mel spectrogram was segmented every second into 32
column data, with approximately 100 ms of hop size. This procedure is shown
in Figure 2.

Fig. 2. Feature extraction procedure for the CNN AE.

2.3 Autoencoder Architectures

The two proposed AEs contain a large number of hyperparameters. In order to
select the best architectures, we have first conducted several preliminary experi-
ments, in which we only used development data, selecting the best configuration
(in terms of the reconstruction error) when varying element such as the number
of hidden layers and units per layer. Once the neural architecture was selected,
it was fixed and applied to all datasets. For both AEs, the training only uses
normal machine sounds.

The first proposed architecture consists of a deep fully-connected AE (top
of Figure 3), which was adopted in the baseline AE proposed in [16]. The best
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preliminary results were achieved by a Dense AE that includes encoder and
decoder components with four fully-connected layers with 512 hidden units, fol-
lowed by Batch Normalization, with all neural nodes using the popular ReLU
as activation function. The Batch Normalization layer allows reduce the inter-
nal covariate shift, discarding the need of dropout, and normalizes the inputs for
each batch of data [12]. As for ReLU, it presents the advantage of non-saturation
of its gradient, which greatly accelerates the convergence of stochastic gradient
descent compared to other activation functions, including logistic or hiperbolic
tangent [20]. The bottleneck layer is set as one fully-connected layer with 8
hidden units, resulting in an 8-dimensional latent space. To train the AE only
normal event audio was used, aiming to learn the data normal event distribu-
tion. Turning to the loss function, we adopted the popular Mean Squared Error
(MSE), which is more sensitive to extreme errors and that is computed as:

MSEi =

∑I
k=1(xi,k − x̂i,k)2

I
(1)

where i denotes a data instance, xi,k the k-th input value for instance i, x̂i,k

the AE predicted output response for the same input and I the total number of
inputs of the AE.

Recently, CNNs have achieved promising results on many AAD benchmarks
[6,11,21]. By integrating 2D convolutional operations in an AE structure, CNN
AEs are capable of learning the spatial structure of the input features and recon-
struct them while taking into account their spatial structural patterns. Based
on this property, the second proposed deep learning architecture for the un-
supervised AAD task consists of a deep CNN AE (shown in the bottom of
Figure 3). With such an architecture, the AAD task is handled as a computer
vision problem by exploring image-like time-frequency representations of audio.
The encoder and decoder networks are comprised of convolutional blocks, each
consisting of 2D Convolution and Batch Normalization layers, using ReLU as
the activation function. The encoder network is composed by a stack of five con-
volutional layers with 32, 64, 128, 256, and 512 convolutional filters, kernel sizes
of 5, 5, 5, 3, and 3 to capture local patterns, and strides of (1, 2), (1, 2), (2, 2),
(2, 2), and (2, 2), respectively. The feature size map is reduced throughout the en-
coder by the convolution operation stride. The bottleneck consists of a layer with
40 convolutional filters, reducing the encoder feature maps to a 40-dimensional
compressed input representation. Concerning the decoder network, it starts with
a fully-connected layer that increases the latent space dimensionality, equalizing
encoder last layer’s shape, followed by five 2D transposed convolutional layers
that mirror the encoder layers.

Regarding the training algorithm used to train both Dense AE and CNN AE
architectures, we employed the Adam optimizer, which also was used in [16],
using a learning rate of 0.001. Both AE were trained to minimize MSE between
input and its reconstruction (the loss function). The training procedure was
iterated up to a maximum of 100 epochs. In each epoch, 10% of training data
is randomly divided for validation, which is used for evaluating training process
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Fig. 3. Proposed AE Network architectures: Dense AE (top) and CNN AE (bottom).

evolution, by computing the reconstruction error on such data. If MSE does
not improve on validation data after 10 epochs, an early stopping callback is
activated, ending the training process and storing the weights of the model that
achieved a lower reconstruction error on validation data. The batch size for both
Dense AE and CNN AE architectures was set as 512 and 64, respectively.

Once the AE is trained, the reconstruction error for an unseen sound sample
j is used as the decision score (dj), where dj = MSEj . A anomaly class label is
considered true if dj > Th, where Th is a decision threshold.

2.4 Evaluation

We evaluated our methods, we used two popular metrics on AAD that are based
on the Receiver Operating Characteristic (ROC) analysis [17, 27]: Area Under
the ROC Curve (AUC) and partial-AUC (pAUC). The ROC curve shows the
False Positive Rate (FPR) versus the True Positive Rate (TPR) for different
threshold values (Th). In this study, the positive class is the anomaly.
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AUC represents the overall ML discrimination performance, while pAUC
focuses on a particular range of interest from the ROC curve, defined in this
work as the FPR values from 0 to 0.1, which reflects in a model with fewer false
alarms. Both metrics are not influenced by unbalanced data, which in occurs
in our datasets. The AUC and pAUC values can be interpreted as follows: 50%
performance of a random classifier; 60% - reasonable; 70% - good; 80% - very
good; 90% - excellent; and 100% - perfect.

As mentioned in Section 2.1, the datasets used in this work contain a total
of 6 types of machines, most of them containing 4 specific machine data, except
ToyConveyor that contains 3. We used development data to select two first fix
AE architectures and then train the models for each specific machine. As for
the predictive results, they are measured on the test sets from the evaluation
datasets. A single model was created for each machine type and evaluated over
each specific machine, using both AUC and pAUC.

3 Results

The proposed dense and CNN AE architectures were implemented in the Python
programming language, using the TensorFlow-GPU library [1]. The computa-
tional experiments were conducted using two different GPUs (Titan Xp and
1080Ti). To evaluate the model performance, both AUC and pAUC metrics
were used, as defined in Section 2.4. Table 2 presents the obtained predictive re-
sults for each specific machine, also showing the average value for each machine
type. For comparison purposes, the Baseline system results from [16] are also
provided in the table.

In terms of the average AUC and pAUC values for each machine type, the
Dense AE outperforms the Baseline system in all machine types. Furthermore,
the Baseline system only achieved better results in 5 of the 23 analyzed specific
machines, namely ToyCar ID 3, pump (IDs of 0, 2, and 4) and slider ID 0. Re-
garding the CNN AE overall performance, it outperformed the Baseline system,
although the latter achieved a higher average AUC values for 2 of 6 machine
types (ToyCar and pump).

The two proposed AE architectures4 are quite competitive in terms of mean
AUC and pAUC values, outperforming the Baseline system for all machine types.
The Dense AE obtains the best average AUC and pAUC results for ToyCar,
ToyConveyor and fan, while the CNN AE achieves the best AAD measures for
the slider and valve tasks. Turning to the pump machine, the best AUC value
is provided by the Dense AE and the best pAUC is returned by the CNN AE.
In particular, when considering the AUC measure, a high quality anomaly class
discrimination was achieved by the proposed AEs, since most AUC values are
above 70%. Furthermore, the CNN AE architecture obtained excellent results
for slider machine type, presenting the highest AUC value (91.77%).

4 https://github.com/APILASTRI/DCASE Task2 UMINHO
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Table 2. Comparison of AUC and pAUC results for all AE architectures for each
machine (best average values are denoted in bold)

Machine Machine Baseline Dense AE CNN AE
Type ID AUC (%) pAUC (%) AUC (%) pAUC (%) AUC (%) pAUC (%)

ToyCar

1 81.36 68.40 83.87 72.64 81.59 71.88
2 85.97 77.72 87.56 80.35 85.46 79.92
3 63.30 55.21 63.12 55.02 62.73 55.08
4 84.45 68.97 88.60 76.68 82.38 69.60

Average 78.77 67.58 80.79 71.17 78.04 69.12

ToyConveyor

1 78.07 64.25 81.67 69.41 79.90 62.71
2 64.16 56.01 68.04 58.31 67.78 54.85
3 75.35 61.03 79.59 63.64 80.11 62.53

Average 72.53 60.43 76.43 63.79 75.93 60.03

fan

0 54.41 49.37 56.73 49.72 51.77 49.05
2 73.40 54.81 79.60 54.00 72.71 55.51
4 61.61 53.26 70.11 54.11 62.60 52.80
6 73.92 52.35 81.69 55.15 80.05 53.19

Average 65.83 52.45 72.03 53.25 66.78 52.63

pump

0 67.15 56.74 66.94 56.83 66.37 54.95
2 61.53 58.10 60.77 60.31 54.31 53.58
4 88.33 67.10 87.00 66.32 94.64 77.26
6 74.55 58.02 77.53 60.32 76.97 58.05

Average 72.89 59.99 73.06 60.94 72.07 60.96

slider

0 96.19 81.44 96.12 82.30 98.86 94.47
2 78.97 63.68 79.55 64.42 84.06 69.33
4 94.30 71.98 95.44 76.14 97.69 87.82
6 69.59 49.02 77.22 49.56 86.46 53.16

Average 84.76 66.53 87.08 68.10 91.77 76.20

valve

0 68.76 51.70 74.61 52.28 78.69 52.59
2 68.18 51.83 76.68 52.72 85.02 55.92
4 74.30 51.97 79.58 50.96 82.59 53.68
6 53.90 48.43 57.78 48.73 69.03 50.22

Average 66.28 50.98 72.16 51.17 78.83 53.10

4 Conclusions

In this paper, we proposed two AutoEncoder (AE) deep learning architectures
for an unsupervised Acoustic Anomaly Detection (AAD) task: a Dense AE and
a Convolutional Neural Network (CNN) AE. The two AE architectures were ap-
plied to six different real-world industrial machine sound datasets. Using develop-
ment records from the datasets and sound energy features from mel-spectrograms
to preprocess the raw sounds, several preliminary experiments were conducted
in order to tune the AE hyperparameters, namely in terms of hidden layers and
nodes and activation functions. Then, the selected AE architectures were trained
and tested using the evaluation instances from the public domain datasets.

Overall, competitive results were obtained by the Dense and CNN AEs when
compared with a recently proposed baseline AE architecture [16]. For two ma-
chine types (slider and valve), the best results were achieved by the CNN AE,
while the Dense AE provided the best results for the remaining machines (Toy-
Car, ToyConveyor, fan, and pump). In general, a high anomaly class discrimi-
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nation was achieved by both proposed AEs, ranging from 72% (good) to 92%
(excellent discrimination level).

As future work, we aim to explore different deep learning architectures for
AAD, such as Variational AEs [23]. Furthermore, we intend to study the effect of
using audio data augmentation techniques (e.g., pitching, time-shifting, Gener-
ative Adversarial Networks) or signal frequency filtering tools, aiming to further
improve the AAD results.
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