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Abstract Several bis-amino acids were prepared using a

bis-Suzuki coupling (compounds 4–8, 10), a sequential

Michael addition and bis-Suzuki coupling (compounds 12,

13) and a Michael addition followed by a substitution reac-

tion (compounds 18, 19). Thus, the pure stereoisomer of the

methyl esters of N-(tert-butoxycarbonyl)-b-bromodehyd-

roaminobutyric acid and dehydrophenylalanine and of

N-benzyloxycarbonyl-b-bromodehydroaminobutyric acid

were reacted with 1,4-phenylene-bis-boronic acid or

9,9-dioctyl-9H-fluorene-2,7-bis-boronic acid using modified

Suzuki coupling conditions. The corresponding bis-dehyd-

roamino acid derivatives were obtained in good to high yields

maintaining the stereochemistry of the starting materials.

This reaction was also applied successfully to a brominated

dehydrodipeptide and 1,4-phenylene-bis-boronic acid show-

ing that it could be used to create cross-links in peptide

chains. An N,N-diacyldehydroalanine derivative was used in

a sequential Michael addition and bis-Suzuki coupling giving

a p-terphenyl bis-amino acid and a fluorenyl bis-amino acid

in good yields. Two bis-a,b-diamino acids were obtained by a

Michael addition of 1,2,4-triazole to the methyl esters of

N-(4-toluenesulfonyl), N-(tert-butoxycarbonyl) dehydroa-

mino acids followed by treatment with ethylenediamine.
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Introduction

Bis-amino acids can be used as cross-linking elements for

the control of peptide secondary structure, for stabilization

of peptides against degradation and denaturation and in

the synthesis of new analogues of biologically active

peptides most commonly being employed as replacements

for cystine (Schumann et al. 2000; Hoven et al. 2002).

Several bis-amino acids have been found in nature: meso-

diaminopimelic acid is found in several bacteria and plant

sources, being a biosynthetic precursor of the essential

amino acid L-lysine and a cross-linking element of the cell

wall of all Gram-negative and some Gram-positive bac-

teria (Jurgens 1992); dityrosine occurs naturally in fungal

cell wall proteins and in elastin and collagen (Labella

et al. 1968; Smail et al. 1995); isotyrosine is found in

plant cell wall proteins (Brady et al. 1998); lanthionine,

which is a thioether analogue of cystine is found in a class

of peptidic antibiotics known as lantibiotics (Bregant and

Tabor 2005). Thus, the development of synthetic methods

that allow the preparation of bis-amino acids has attracted

significant interest in the last few years. For example,

Porzi and Sandri et al. carried out a simple and efficient

enantioselective synthesis of a,a0-diamino dicarboxylic

acids, including (+)- and (-)-2,6-diaminopimelic acids,

starting from a chiral diketopiperazine derivative (Paradisi

et al. 2000a, b). Other strategies proposed for the syn-

thesis of bis-amino acids include palladium catalyzed

cross-couplings followed by hydrogenation of the bis-de-

hydroamino acids obtained. Frejd et al. used the Heck

reaction for the synthesis of several bis-dehydroamino

acids by reacting a dehydroalanine derivative with a

dihalogenated benzene (Carlstrom and Frejd 1991; Ritzén

et al. 1998). Hutton et al. developed an efficient synthesis

of dityrosine from 3-iodo-L-tyrosine employing a tandem
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Miyaura borylation–Suzuki coupling strategy (Hutton and

Skaff 2003; Skaff et al. 2005).

In our laboratories, we have developed an efficient

method for the synthesis of a,b-dehydroamino acids

(Ferreira et al. 1999). These have been used as substrates

for the preparation of new non-proteinogenic amino acids

via several types of reactions, namely, Michael additions,

substitution reactions and palladium catalyzed cross-cou-

plings (Ferreira et al. 2000a, b, 2001; Abreu et al. 2003a, b,

2004; Ferreira and Monteiro 2006). In the course of this

work we have synthesized bis-amino acids using Michael

additions and substitution reactions (Ferreira et al. 2003;

Ferreira and Monteiro 2006). Now we report the high yield

synthesis of bis-dehydroamino acids using a bis-Suzuki

cross coupling of b-bromodehydroamino acids and bis-

boronic acids and by a sequential Michael addition and

substitution reaction of N,N-diacyldehydroamino acids

with 1,2,4-triazole and ethylenediamine. The couplings

were carried out using the general conditions developed by

our group for the synthesis of b,b-diaryldehydroalanines

from a b,b-dibromodehydroalanine and aryl or heteroaryl

boronic acids (Abreu et al. 2004; Queiroz et al. 2007). The

preparation of bis-amino acids was carried out by a

sequential Michael addition–bis-Suzuki coupling of an

N,N-diprotected dehydroalanine with 3-iodobenzylamine

and a bis-boronic acid.

Materials and methods

Melting points (�C) were determined in a Gallenkamp

apparatus and are uncorrected. 1H and 13C NMR spectra

were recorded on a Varian Unity Plus at 300 and

75.4 MHz, respectively. 1H–1H spin–spin decoupling and

DEPT h 45� were used. Chemical shifts are given in ppm

and coupling constants in Hz. MS and HRMS data were

recorded by the mass spectrometry service of the Uni-

versity of Vigo, Spain. Elemental analysis was performed

on a LECO CHNS 932 elemental analyzer. The reactions

were monitored by thin layer chromatography (TLC).

Column chromatography was performed on Macherey-

Nagel silica gel 230–400 mesh. Petroleum ether refers to

the boiling range 40–60�C.

Synthesis of compounds Z-1 (Silva et al. 2002),

E-1 (Silva et al. 2002), Z-2 (Abreu et al. 2004),

E-2 (Abreu et al. 2004), Z-3 (Ferreira et al. 2007),

Z-9 (Ferreira et al. 2007), 11 (Abreu et al. 2003a),

14 (Ferreira et al. 1998), Z-15 (Ferreira et al. 1999),

E-16 (Ferreira et al. 2000a) and E-17 (Ferreira et al.

2000a)

The synthesis of these compounds is described elsewhere.

General procedure for the synthesis

of bis-dehydroamino acid derivatives

To a solution of the b-bromodehydroamino acid derivative

(0.625 mmol) in THF/H2O (1:1, 10 mL), bis-boronic acid

(0.25 mmol), PdCl2dppf.CH2Cl2 (1:1, 10 mol%) and

Cs2CO3 (1.4 eq.) were added. The reaction mixture was

heated at 70�C for 3 h (the reaction was followed by TLC).

The solvent was removed under reduced pressure and the

residue dissolved in ethyl acetate (100 mL). The organic

layer was washed with water and brine (2 9 30 mL each),

dried over MgSO4 and the solvent removed. The residue

was submitted to column chromatography using a solvent

gradient from neat petroleum ether to mixtures of ether/

petroleum ether, increasing 10% of ether each time until

the isolation of the product.

Synthesis of (2Z,20Z)-dimethyl, 3,30-(1,4-phenylene),

bis[2-(tert-butoxycarbonylamino)]but-2-enoate (Z,Z-4)

The general procedure described above was used with

compound Z-1 and 1,4-phenylene-bis-boronic acid to

afford compound Z,Z-4 (98 mg, 78%) as a white solid.

M.p. 114.0–115.0�C (from ethyl acetate/n-hexane).
1H NMR (300 MHz, CDCl3): 1.41 (s, 18 H, CH3 Boc),

2.27 (s, 6 H, cCH3), 3.86 (s, 6 H, OCH3), 5.79 (s, 2 H, NH),

7.27 (s, 4 H, ArH) ppm. 13C NMR (75.4 MHz, CDCl3):

20.49 (cCH3), 28.12 [C(CH3)3], 52.03 (OCH3), 80.63

[OC(CH3)3], 123.95 (=C), 128.00 (CH), 135.66 (C), 139.83

(=C), 153.21 (C=O), 165.92 (C=O) ppm. MS (EI): m/z

(%) = 505.98 (9.34) [M++1], 504.25 (4.56) [M+], 404.20

(8.48) [M+-Boc], 304.00 (100) [M+-2Boc]. HRMS: calcd

for C26H36N2O8 was 504.2472, found: 504.2481.

Synthesis of (2E,20E)-dimethyl, 3,30-(1,4-phenylene),

bis[2-(tert-butoxycarbonylamino)]but-2-enoate (E,E-4)

The general procedure described above was used with

compound E-1 and 1,4-phenylene-bis-boronic acid to

afford compound E,E-4 (91 mg, 72%) as a white solid.

M.p. 153.5–154.0�C (from diethyl ether/n-hexane).
1H NMR (300 MHz, CDCl3): 1.49 (s, 18 H, CH3 Boc),

2.13 (s, 6 H, cCH3), 3.48 (s, 6 H, OCH3), 6.04 (s, 2 H, NH),

7.13 (s, 4 H, ArH) ppm. 13C NMR (75.4 MHz, CDCl3):

21.19 (cCH3), 28.19 [C(CH3)3], 51.68 (OCH3), 80.90

[OC(CH3)3], 124.44 (=C), 127.02 (CH), 137.30 (C), 140.34

(=C), 153.20 (C=O), 165.92 (C=O) ppm. Anal. Calcd for

C26H36N2O8 (504.57): C 61.89; H 7.19; N 5.55; found:

C 61.53; H 7.30; N 5.20.
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Synthesis of (2Z,20Z)-dimethyl, 3,30-(1,4-phenylene),

bis[2-(tert-butoxycarbonylamino]-3-phenylacrylate

(Z,Z-5)

The general procedure described above was used with

compound Z-2 and 1,4-phenylene-bis-boronic acid to

produce compound Z,Z-5 (138.5 mg, 88%) as a white

solid. M.p. 194.5–195.0�C (from ethyl acetate/n-hexane).
1H NMR (300 MHz, CDCl3): 1.45 (s, 18 H, CH3 Boc),

3.52 (s, 6 H, OCH3), 6.15 (s, 2 H, NH), 7.12–7.16 (m, 4 H,

ArH), 7.23 (s, 4 H, ArH), 7.30–7.34 (m, 6 H, ArH) ppm.
13C NMR (75.4 MHz, CDCl3): 28.13 [C(CH3)3], 52.00

(OCH3), 81.38 [OC(CH3)3], 126.07 (C), 128.00 (CH),

128.17 (CH), 130.14 (CH), 133.58 (=C), 138.57 (=C),

139.55 (C), 152.73 (C=O), 166.39 (C=O) ppm. Anal. Calcd

for C36H40N2O8 (628.72): C 68.77; H 6.41; N 4.46; found:

C 68.75; H 6.45; N 4.45.

Synthesis of (2E,20E)-dimethyl, 3,30-(1,4-phenylene),

bis[2-(tert-butoxycarbonylamino)]-3-phenylacrylate

(E,E-5)

The general procedure described above was used with

compound E-2 and 1,4-phenylene-bis-boronic acid to

produce compound E,E-5 (105 mg, 67%) as a white solid.

M.p. 210.0–211.0�C (from diethyl ether/n-hexane).
1H NMR (300 MHz, CDCl3): 1.45 (s, 18 H, CH3 Boc),

3.56 (s, 6 H, OCH3), 6.06 (s, 2 H, NH), 7.03 (s, 4 H, ArH),

7.20–7.40 (m, 10 H, ArH) ppm. 13C NMR (75.4 MHz,

CDCl3): 28.08 [C(CH3)3], 51.95 (OCH3), 81.29

[OC(CH3)3], 125.95 (C), 126.50 (C), 128.37 (C), 128.75

(CH), 128.85 (CH), 129.62 (C), 129.81 (CH), 132.96 (C),

138.25 (C), 138.28 (C), 139.34 (C), 152.70 (C=O), 166.36

(C=O) ppm. MS (EI): m/z (%) = 628.27 (4.1) [M+], 528.23

(16.4) [M+-Boc], 428.16 (100) [M+-2Boc]. HRMS: calcd

for C36H40N2O8 628.2785;found: 628.2790.

Synthesis of (2Z,20Z)-dimethyl, 3,30-(9,9-dioctyl-9H-

fluorene-2,7-diyl), bis[2-(tert-butoxycarbonylamino)]

but-2-enoate (Z,Z-6)

The general procedure described above was used with

compound Z-1 and 9,9-dioctyl-9H-fluorene-2,7-bis-boro-

nic acid to produce compound Z,Z-6 (197 mg, 97%) as a

white solid. M.p. 154.0–155.0�C (from diethyl ether/n-

hexane). 1H NMR (300 MHz, CDCl3): 0.58–0.72 (m, 4 H,

CH2), 0.82 (t, J = 6.9 Hz, 6 H, CH3), 1.00–1.24 (m, 20 H,

CH2), 1.41 (s, 18 H, CH3 Boc), 1.90–1.96 (m, 4 H, CH2),

2.29 (s, 6 H, cCH3), 3.88 (s, 6 H, OCH3), 5.82 (s, 2 H, NH),

7.22 (d, J = 8.1 Hz, 2 H, ArH), 7.23 (s, 2 H, ArH), 7.71 (d,

J = 8.1 Hz, 2 H, ArH) ppm. 13C NMR (75.4 MHz,

CDCl3): 14.03 (CH3), 20.65 (cCH3), 22.56 (CH2), 23.99

(CH2), 28.15 [C(CH3)3], 29.18 (CH2), 29.22 (CH2), 30.01

(CH2), 31.70 (CH2), 40.08 (CH2), 52.03 (OCH3), 55.30

(C), 80.71 [OC(CH3)3], 120.07 (CH), 122.34 (CH), 123.87

(C), 126.47 (CH), 134.50 (C), 138.90 (C), 140.23 (C),

151.44 (C), 153.20 (C=O), 166.12 (C=O) ppm. Anal. Calcd

for C49H72N2O8 (817.10): C 72.03; H 8.88; N 3.43; found:

C 72.33; H 8.93; N 3.59.

Synthesis of (2E,20E)-dimethyl, 3,30-(9,9-dioctyl-9H-

fluorene-2,7-diyl), bis[2-(tert-butoxycarbonylamino)]

but-2-enoate (E,E-6)

The general procedure described above was used with

compound E-1 and 9,9-dioctyl-9H-fluorene-2,7-bis-boro-

nic acid to produce compound E,E-6 (183 mg, 90%) as a

white solid. M.p. 131.0–132.0�C (from diethyl ether/n-

hexane). 1H NMR (300 MHz, CDCl3): 0.58–0.62 (m, 4 H,

CH2), 0.81 (t, J = 6.9 Hz, 6 H, CH3), 1.02–1.21 (m, 20 H,

CH2), 1.50 (s, 18 H, CH3 Boc), 1.88–1.94 (m, 4 H, CH2),

2.18 (s, 6 H, cCH3), 3.40 (s, 6 H, OCH3), 6.08 (s, 2 H, NH),

7.12 (d, J = 8.1 Hz, 2 H, ArH), 7.13 (s, 2 H, ArH), 7.60 (d,

J = 8.1 Hz, 2 H, ArH) ppm. 13C NMR (75.4 MHz,

CDCl3): 14.02 (CH3), 21.76 (cCH3), 22.55 (CH2), 23.68

(CH2), 28.20 [C(CH3)3], 29.22 (CH2), 29.29 (CH2), 30.00

(CH2), 31.72 (CH2), 40.39 (CH2), 51.56 (OCH3), 55.10

(C), 80.84 [OC(CH3)3], 119.28 (CH), 121.76 (CH), 123.98

(C), 125.99 (CH), 139.01 (C), 140.15 (C), 140.24 (C),

150.73 (C), 153.31 (C=O), 166.16 (C=O) ppm. Anal. Calcd

for C49H72N2O8 (817.10): C 72.03; H 8.88; N 3.43; found

C 72.21; H 8.97; N 3.54.

Synthesis of (2Z,20Z)-dimethyl, 3,30-(9,9-dioctyl-9H-

fluorene-2,7-diyl), bis[2-(tert-butoxycarbonylamino)]-

3-phenylacrylate (Z,Z-7)

The general procedure described above was used with

compound Z-2 and 9,9-dioctyl-9H-fluorene-2,7-bis-boro-

nic acid to produce compound Z,Z-7 (179 mg, 76%) as a

white solid. M.p. 165.5–166.5�C (from diethyl ether/n-

hexane). 1H NMR (300 MHz, CDCl3): 0.56–0.62 (m, 4 H,

CH2), 0.85 (t, J = 6.9 Hz, 6 H, CH3), 1.01–1.26 (m, 20 H,

CH2), 1.48 (s, 18 H, CH3 Boc), 1.83–1.87 (m, 4 H, CH2),

3.57 (s, 6 H, OCH3), 6.14 (s, 2 H, NH), 7.10–7.30 (m, 14 H,

ArH), 7.66 (d, J = 7.8 Hz, 2 H, ArH) ppm. 13C NMR

(75.4 MHz, CDCl3): 14.05 (CH3), 22.55 (CH2), 24.07

(CH2), 28.17 [C(CH3)3], 29.18 (CH2), 29.33 (CH2), 30.05

(CH2), 31.72 (CH2), 40.08 (CH2), 52.03 (OCH3), 55.23

(C), 81.29 [OC(CH3)3], 120.12 (CH), 124.64 (CH), 125.39

(C), 127.92 (CH), 128.05 (CH), 129.13 (CH), 129.21 (CH),

133.96 (C), 137.70 (C), 139.97 (C), 140.55 (C), 151.38 (C),

152.82 (C=O), 166.68 (C=O) ppm. Anal. Calcd for

C59H76N2O8 (941.24): C 75.29; H 8.14; N 2.98; found C

74.89; H 8.02; N 2.98.
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Synthesis of (2E,20E)-dimethyl, 3,30-(9,9-dioctyl-9H-

fluorene-2,7-diyl), bis[2-(tert-butoxycarbonylamino)]-

3-phenylacrylate (E,E-7)

The general procedure described above was used with

compound E-2 and 9,9-dioctyl-9H-fluorene-2,7-bis-boro-

nic acid to afford compound E,E-7 (212 mg, 90%) as a

white solid, M.p. 156.0–156.5�C (from diethyl ether/n-

hexane). 1H NMR (300 MHz, CDCl3): 0.48–0.57 (m, 4 H,

CH2), 0.84 (t, J = 6.9 Hz, 6 H, CH3), 0.96–1.26 (m, 20 H,

CH2), 1.46 (s, 18 H, CH3 Boc), 1.79–1.84 (m, 4 H, CH2),

3.51 (s, 6 H, OCH3), 6.12 (s, 2 H, NH), 7.03–7.10 (m, 4 H,

ArH), 7.22–7.36 (m, 10 H, ArH), 7.58 (d, J = 7.8 Hz, 2 H,

ArH) ppm. 13C NMR (75.4 MHz, CDCl3): 14.04 (CH3),

22.54 (CH2), 23.74 (CH2), 28.13 [C(CH3)3], 29.16 (CH2),

29.31 (CH2), 29.90 (CH2), 31.73 (CH2), 40.22 (CH2), 51.90

(OCH3), 55.01 (C), 81.24 [OC(CH3)3], 119.43 (CH),

123.86 (CH), 125.23 (C), 128.27 (CH), 128.61 (CH),

128.93 (CH), 129.94 (CH), 134.45 (C), 137.40 (C), 138.83

(C), 139.06 (C), 140.38 (C), 150.82 (C), 152.95 (C=O),

166.72 (C=O) ppm. Anal. Calcd for C59H76N2O8 (941.24):

C 75.29; H 8.14; N 2.98; found: C 74.66; H 8.16; N 3.12.

Synthesis of (2Z,20Z)-dimethyl, 3,30-(1,4-phenylene),

bis(2-benzyloxycarbonylamino)but-2-enoate (Z,Z-8)

The general procedure described above was used with

compound Z-3 and 1,4-phenylene-bis-boronic acid to pro-

duce compound Z,Z-8 (71 mg, 50%) as a white solid, M.p.

171.0–172.0�C (from ethyl acetate/n-hexane). 1H NMR

(300 MHz, CDCl3): 2.27 (s, 6 H, cCH3), 3.86 (s, 6 H,

OCH3), 5.08 (s, 4 H, CH2 Z), 5.98 (s, 2 H, NH), 7.20–7.33

(s, 14 H, ArH) ppm. 13C NMR (75.4 MHz, CDCl3): 20.62

(cCH3), 52.16 (OCH3), 67.33 (CH2), 123.56 (=C), 127.96

(CH), 128.18 (CH), 128.33 (CH), 128.49 (CH), 135.80 (C),

139.66 (=C), 154.00 (C=O), 165.49 (C=O) ppm. Anal.

Calcd for C32H32N2O8 (572.61): C 67.12; H 5.63; N 4.89;

found: C 67.04; H 5.67; N 5.14.

Synthesis of (2Z,20Z)-dimethyl, 3,30-(1,4-phenylene),

bis{2-[2-(tert-butoxycarbonylamino)acetamido]}but-2-

enoate (Z,Z-10)

The general procedure described above was used with

compound Z-9 and 1,4-phenylene-bis-boronic acid to

produce compound Z,Z-10 (116 mg, 75%) as a white solid,

M.p. 195.0–195.5�C (from ethyl acetate/n-hexane). 1H

NMR (300 MHz, DMSO): 1.35 (s, 18 H, CH3 Boc), 2.20

(s, 6H, cCH3), 3.46 (d, J = 5.7 Hz, 4 H, CH2), 3.64 (s, 6 H,

OCH3), 6.85 (t, J = 5.7 Hz, 2 H, NH Gly), 7.30 (s, 4 H,

ArH), 9.08 (s, 2 H, NH DAbu) ppm. 13C NMR (75.4 MHz,

DMSO): 19.91 (c-CH3), 28.15 [C(CH3)3], 42.54 (CH2),

51.57 (OCH3), 78.00 [OC(CH3)3], 123.83 (C), 127.79

(CH), 137.23 (C), 139.28 (CH), 155.68 (C=O), 165.60

(C=O), 169.10 (C=O) ppm. Anal. Calcd for C30H42N4O10

(618.66): C 58.24; H 6.84; N 9.06; found: C 57.70; H 6.80;

N 8.79.

Synthesis of compound 12

The general procedure described above was used with

compound 11 and 1,4-phenylene-bis-boronic acid to pro-

duce compound 12 (149 mg, 67%) as a white solid. 1H

NMR (300 MHz, CDCl3): d = 1.45 (s, 36 H, CH3 Boc),

3.53 (s, 3 H, OCH3), 3.95 (d, J = 6.0 Hz, 2 H, CH2), 5.23

(br s, 1 H, NH), 7.35 (br s, 5 H, ArH), 8.20 (br s, 1 H, NH)

ppm. 13C NMR (75.4 MHz, CDCl3): 28.30 [C(CH3)3],

44.64 (CH2), 52.59 (OCH3), 80.93 [OC(CH3)3], 117.89

(C), 128.27 (CH), 128.36 (C), 128.88 (CH), 129.43 (CH),

136.99 (C), 156.22 (C=O), 163.27 (C=O), 167.83 (C=O)

ppm. Anal. Calcd for C48H66N4O12 (890.47): C 64.70; H

7.45; N 6.29; found C 64.88; H 7.63; N 6.24.

Synthesis of compound 13

The general procedure described above was used with

compound 11 and 9,9-dioctyl-9H-fluorene-2,7-bis-boronic

acid to produce compound 13 (159 mg, 53%) as a yellow

solid. 1H NMR (300 MHz, CDCl3): 1.45 (s, 36 H, CH3

Boc), 3.53 (s, 3 H, OCH3), 3.95 (d, J = 6.0 Hz, 2 H, CH2),

5.23 (br s, 1 H, NH), 7.35 (br s, 5 H, ArH), 8.20 (br s, 1 H,

NH) ppm. 13C NMR (75.4 MHz, CDCl3): 28.30 [C(CH3)3],

44.64 (CH2), 52.59 (OCH3), 80.93 [OC(CH3)3], 117.89

(C), 128.27 (CH), 128.36 (C), 128.88 (CH), 129.43 (CH),

136.99 (C), 156.22 (C=O), 163.27 (C=O), 167.83 (C=O)

ppm. Anal. Calcd for C71H102N4O12 (1202.75): C 70.85; H

8.54; N 4.64; found: C 70.85; H 8.56; N 4.62.

General procedure for the synthesis of compounds

E,E-18 and E,E-19

To a solution of the b-(1,2,4-triazol-1-yl) dehydroamino

acid derivative in methanol (0.1 mol dm-3), 1,2-ethylene-

diamine (10 eq.) was added. The reaction was left

overnight, stirring at room temperature. The solvent was

removed at reduced pressure and the residue obtained

was dissolved in ethyl acetate (100 mL). The solution was

washed with NaHCO3 1 mol dm-3 (2 9 30 mL) and brine

(2 9 30 mL). The organic layer was dried with MgSO4 and

the solvent removed under reduced pressure. The residue

obtained was added to a solution of b-(1,2,4-triazol-1-yl)

dehydroamino acid derivative (0.8 eq.) in methanol

(0.1 mol dm-3) followed by the addition of triethylamine

(10 eq.) The reaction was left overnight, stirring at room

temperature and the work-up procedure described above

was repeated to give an oil.
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Synthesis of compound E,E-18

The general procedure described above was used with

compound E-16 (134 mg, 0.5 mmol) and 1,2-ethylenedia-

mine to produce compound E,E-18 (115 mg, 50%) as a

white solid. M.p. 139.0–141.0�C (from ethyl acetate/n-

hexane). 1H NMR (300 MHz, CDCl3): 1.45 (s, 18 H, CH3

Boc), 3.32 (br s, 4 H, CH2), 3.71 (s, 6 H, OCH3), 5.46 (br s,

2 H, NH), 5.95 (br s, 2 H, NH), 7.15 (br s, 2 H, b-CH) ppm.
13C NMR (75.4 MHz, CDCl3): 28.21 [C(CH3)3], 49.53

(CH2), 51.36 (OCH3), 80.25 [OC(CH3)3], 98.93 (C),

141.46 (CH), 154.31 (C=O), 166.50 (C=O) ppm. MS (EI):

m/z (%) = 458 (22.0) [M+], 358 (16.3) [M+-Boc], 258

(100) [M+-2xBoc], HRMS: calcd for C20H34N4O8:

458.2376; found: 458.2370.

Synthesis of compound E,E-19

The general procedure described above was used with

compound E-17 (141 mg, 0.5 mmol) and 1,2-ethylenedia-

mine to produce compound E,E-19 (151 mg, 62%) as a

white solid. M.p. 197.0–198.0�C (from ethyl acetate/n-

hexane). 1H NMR (400 MHz, CDCl3): 1.47 (s, 18 H, CH3

Boc), 1.95 (s, 6 H, c-CH3), 3.40 (br s, 4 H, CH2), 3.65 (s, 6

H, OCH3), 5.65 (br s, 2 H, NH), 9.13 (br s, 2 H, NH) ppm.
13C NMR (75.4 MHz, CDCl3): 13.88 (c-CH3), 28.34

[C(CH3)3], 44.39 (CH2), 50.74 (OCH3), 79.30 [OC(CH3)3],

93.65 (C), 156.22 (C=O), 161.97 (C), 169.32 (C=O) ppm.

Anal. Calcd for C22H38N4O8 (486.27): C 54.31; H 7.87;

N 11.51; found: C 54.06; H 7.69; N 11.78.

Results and discussion

In view of our past experience in bis-Suzuki couplings

(Abreu et al. 2003a, b; Queiroz et al. 2007), we decided to

use this methodology for cross-linking dehydroaminobu-

tyric acid and dehydrophenylalanine derivatives using a

phenyl or a fluorenyl linker. The latter was chosen due to the

interesting properties of fluorene derivatives, which make

them useful in the development of light emitting diodes

(Grisorio et al. 2007) and photovoltaic devices (Wang et al.

2005). The pure stereoisomers of the methyl esters of

N-(tert-butoxycarbonyl)-b-bromodehydroaminobutyric acid

and N-(tert-butoxycarbonyl)-b-bromodehydrophenylala-

nine prepared according to the procedure already described

by us (Abreu et al. 2004; Silva et al. 2002) were coupled in a

one-pot bis-Suzuki coupling with 1,4-phenylene-bis-boro-

nic or 9,9-dioctyl-9H-fluorene-2,7-bis-boronic acids. The

conditions used were: 0.4 eq. of bis-boronic acid, 20 mol%

of PdCl2dppf.CH2Cl2, and Cs2CO3 as base (1.4 eq.) in

THF.H2O (1:1) at 70�C for 2 h (Scheme 1). The bis-de-

hydroamino acids were stereoselectively obtained in good

to high yields (compounds 4–7, Scheme 1). To test the

applicability of this bis-Suzuki coupling with dehydroami-

no acid derivatives with different protecting groups, the

Z-isomer of N-benzyloxycarbonyl-b-bromodehydroamino-

butyric acid was also reacted with 1,4-phenylene-

bis-boronic acid to give the corresponding cross-linked

dehydroamino acid in 50% yield (compound Z,Z-8,

Scheme 1).

The stereochemistry of the bis-dehydroamino acids was

determined by NOE difference experiments by irradiation

of the a-NH and OCH3 protons. In the case of the

Z,Z-isomers, when the OCH3 protons were irradiated an

NOE enhancement was observed on the c-CH3 protons or

on the C6H5 protons of the dehydroaminobutyric acid and

dehydrophenylalanine residues, respectively. The E,E-iso-

mers showed an NOE enhancement on the signals of the

same protons when the a-NH proton was irradiated. As

reported by other authors (Yamada et al. 1996; Brown and

Smale 1969), proton NMR chemical shifts of the c-CH3

protons of the E,E-isomers of bis-dehydroaminobutyric

acid derivatives were observed at a higher field relative to

that of the Z,Z-isomers (Table 1). The methyl ester protons

R

R

P
NH

CO2CH3

HN
P

H3CO2C

R

R

NHP

CO2CH3HN P

H3CO2C

C8H17C8H17

Boc
NH

CO2CH3

HN
Boc

H3CO2C

NHBoc

CO2CH3HN Boc

H3CO2C

C8H17

C8H17

Boc
NH

CO2CH3

HN
Boc

H3CO2C
C6H5

C6H5

NH
N
H

C8H17
C8H17

CO2CH3Boc CO2CH3

Boc

NHBoc

CO2CH3HN Boc

H3CO2C

C8H17

C8H17

C6H5

C6H5

NH
N
H

C8H17
C8H17

C6H5
C6H5

CO2CH3Boc CO2CH3

Boc

Z
NH

CO2CH3

HN
Z

H3CO2C

CO2CH3

N
H

H3CO2C

H
N

Boc

Boc

CO2CH3

N
H

H3CO2C

H
N

C6H5

C6H5

Boc

Boc

H
N CO2CH3

RBr

P
P=Boc, R=CH3, 1;
P=Boc, R=C6H5, 2;
P=Z, R=CH3, 3.

PdCl2dppf.CH2Cl2
Cs2CO3
THF:H2O (1:1), 80 ºC

P=Boc, R=CH3, 4;
P=Boc, R=C6H5, 5;
P=Z, R=CH3, 8.

P=Boc, R=CH3, 6;
P=Boc, R=C6H5, 7.

Z,Z-4, 78%

Z,Z-5, 88%

Z,Z-6, 97%

E,E-6, 90%

Z,Z-7, 76%

E,E-7, 90%

Z,Z-8, 50%

E,E-4, 72%

E,E-5, 67%

Scheme 1 Synthesis of bis-dehydroamino acids by Suzuki coupling
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of the E,E-isomers of compounds 4 and 6 appear at a

higher field than that of the corresponding Z,Z-isomers

probably because of the shielding anisotropic effect of the

aromatic ring in the b-position. This effect was observed by

Nunami et al. on the Z- and E-isomers of b-bro-

modehydrophenylalanines (Yamada et al. 1996). The

chemical shift of the OCH3 protons of the Z,Z- and E,E-

isomers of compounds 5 and 7 are similar due to the

influence of an adjacent aromatic ring in both isomers.

The brominated dehydrodipeptide Boc-Gly-DAbu(b-

Br)-OMe (compound Z-9) had been previously prepared by

us by reacting the corresponding dehydrodipeptide with

NBS and Et3N (Ferreira et al. 2007). The stereoisomers

obtained were separated by column chromatography. The

Z-isomer of Z-9 was coupled with 1,4-phenylene-bis-

boronic acid under bis-Suzuki cross-coupling conditions to

give the corresponding bis-dehydrodipeptide in good yield

and maintaining the stereochemistry of the starting material

(Scheme 2).

The setereoselective hydrogenation of compounds 4–8

and 10 would allow their use in the synthesis of cross-

linked or cyclic peptides.

In order to increase the chemical diversity of our bis-

amino acid derivatives, we took advantage of our previ-

ously described method for the synthesis of b-substituted

amino acids by Michael addition to N,N-diacyldehydroa-

mino acids. Thus, two bis-amino acids were prepared by

sequential Michael addition and bis-Suzuki coupling.

Compound 11 (Abreu et al. 2003a), was already prepared

in our group by Michael addition of 3-iodoaniline to the

methyl ester of N,N-bis(tert-butoxycarbonyl) dehydroala-

nine and submitted to a bis-Suzuki coupling reaction with

1,4-phenylene-bis-boronic acid or 9,9-dioctyl-9H-fluorene-

2,7-bis-boronic acid to give cross-linked a,b-diamino acids

(12 and 13) in good yields (67 and 53%, respectively,

Scheme 3).

Using a substitution reaction previously developed for

the synthesis of a,b-diaminodehydroamino acids (Ferreira

et al. 2003) we were able to prepare in good yields bis-

dehydroamino acids linked by a diaminoethylene moiety

(Scheme 4). Thus, the methyl esters of N-(tert-butoxycar-

bonyl), b-(1,2,4-triazol-1-yl) dehydroalanine (compound

E-16) and of N-(tert-butoxycarbonyl), b-(1,2,4-triazol-1-

yl) dehydroaminobutyric acid (compound E-17) were

reacted with 1,2-ethylenediamine in a two-step reaction to

give the corresponding bis-dehydroalanine and bis-dehyd-

roaminobutyric acid derivatives (compounds E,E-18 and

E,E-19, respectively). The stereochemistry of the products

was determined by NOE difference experiments by irra-

diation of the a-NH and observing an NOE effect on the

b-CH or on c-CH3 protons of the dehydroalanine and

dehydroaminobutyric acid derivatives, respectively.

In conclusion, several new bis-dehydroaminobutyric

acid and bis-dehydrophenylalanine derivatives were pre-

pared in good to high yields and maintaining the

stereochemistry of the starting materials, by a one-pot

Suzuki bis-coupling of the corresponding b-brominated

Table 1 1H NMR Chemical shifts of the c-CH3 and OCH3 protons of

bis-dehydroaminobutyric acid and dehydrophenylalanine derivatives

in CDCl3

Compound d/ppm Compound d/ppm

c-CH3 OCH3 c-CH3 OCH3

Z,Z-4 2.27 3.86 E,E-4 2.13 3.48

Z,Z-6 2.29 3.88 E,E-6 2.18 3.40

Z,Z-5 – 3.52 E,E-5 – 3.56

Z,Z-7 – 3.57 E,E-7 – 3.51

Z,Z-8 2.27 3.86 – – –
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Scheme 2 Synthesis of a bis-dehydrodipeptide by Suzuki coupling
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Scheme 3 Synthesis of bis-amino acids by sequential Michael
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dehydroamino acids with bis-boronic acids. The same

methodology was applied successfully for the preparation

of a cross-linked dehydrodipeptide using a b-bromode-

hydrodipeptide and 1,4-phenylene-bis-boronic acid

showing that this strategy could also be applied in the

synthesis of cross-linked peptides. Using a sequential

Michael addition and bis-Suzuki coupling it was possible

to prepare cross-linked b-substituted alanines. This strategy

has the advantage of giving directly bis-amino acids

avoiding a hydrogenation step. However, the products were

obtained as diastereomeric mixtures. Bis-dehydroalanine

and bis-dehydroaminobutyric acid were also obtained by a

Michael addition followed by a substitution reaction. By

changing the diamine linker it is possible to prepare several

bis-a,b-diamino acid derivatives. This work shows the

versatility of bis-Suzuki couplings and substitution reac-

tions in the synthesis of several cross-linked amino acids.
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