
DataGen: JSON/XML Dataset Generator1

Filipa Alves dos Santos2

University of Minho, Portugal3

a83631@alunos.uminho.pt4

Hugo André Coelho Cardoso5

University of Minho, Portugal6

a85006@alunos.uminho.pt7

João da Cunha e Costa8

University of Minho, Portugal9

a84775@alunos.uminho.pt10

Válter Ferreira Picas Carvalho11

University of Minho, Portugal12

a84464@alunos.uminho.pt13

José Carlos Ramalho14

Department of Informatics, University of Minho, Portugal15

jcr@di.uminho.pt16

Abstract17

In this document, it is described the steps towards DataGen’s implementation.18

DataGen is a versatile and powerful tool that allows for quick prototyping and testing of software19

applications, since currently too few solutions offer both the complexity and scalability necessary20

to generate adequate datasets in order to feed a data API or a more complex APP, enabling their21

testing with appropriate data volume and complexity.22

DataGen’s core is a Domain Specific Language (DSL) that was created to specify datasets.23

This language suffered several updates: repeating fields (with no limit), fuzzy fields (statistically24

generated), lists, high order functions over lists, custom made transformation functions. The final25

result is a diversified algebra that allows the generation of very complex datasets coping with very26

convoluted requirements. Throughout the paper, several examples of the possibilities will be given.27

After generating a dataset, DataGen gives the user the possibility to generate a RESTFul data28

API with it, creating a running prototype.29

This solution has already been used in real life cases, described with more detail throughout30

the paper, in which it was able to create the intended datasets successfully. These allowed the31

application’s performance to be tested and for the right adjustments to be made.32

The tool is currently being deployed for general use.33

2012 ACM Subject Classification Software and its engineering → Domain specific languages; Theory34

of computation → Grammars and context-free languages; Information systems → Open source35

software36

Keywords and phrases JSON, XML, Data Generation, Open Source, REST API, Strapi, JavaScript,37

Node.js, Vue.js, Scalability, Fault Tolerance, Dataset, DSL, PEG.js, MongoDB38

Digital Object Identifier 10.4230/OASIcs.SLATE.2021.539

1 Introduction40

Every application and software developed should be thoroughly tested before release, in order41

to determine the system’s ability to withstand realistic amounts of data and traffic, and42

that implies the usage of representative datasets that fit its use cases. The creation of said43

datasets is a laborious and drawn out process, as it implies firstly generating the test data44

in some way, in a file format compatible with the system. As it stands, there are currently45

© F. Santos, H. Cardoso, J. Costa, V. Carvalho, J.C. Ramalho;
licensed under Creative Commons License CC-BY

10th Symposium on Languages, Applications and Technologies (SLATE 2021).
Editors: Ricardo Queirós, Mário Pinto, Alberto Simões, Filipe Portela, and Maria João Pereira; Article No. 5;
pp. 5:1–5:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a83631@alunos.uminho.pt
mailto:a85006@alunos.uminho.pt
mailto:a84775@alunos.uminho.pt
mailto:a84464@alunos.uminho.pt
mailto:jcr@di.uminho.pt
https://doi.org/10.4230/OASIcs.SLATE.2021.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


5:2 DataGen

no efficient, intuitive and scalable tools to do this and so, developers often end up having46

to create test records either by hand, which is incredibly inefficient and time-consuming, or47

by using existing tools with some clever tactics to manage their shortcomings. As a matter48

of fact, many projects are not able to progress to the development stage due to the lack of49

adequate and sufficient data [3].50

Even with a reliable generation tool, the user might want to have control over the data in51

the resulting records, being able to observe and manipulate it freely, through CRUD requests,52

and adapting it however they want. Though there are products capable of doing this - for53

example the package json-server, which creates a full fake REST API -, its usage entails the54

user manually starting the application every time they want to edit the dataset’s contents55

and ensuring the data’s format is compliant with the software they’re using, which ends up56

requiring a lot of extra effort and setup on the user’s side.57

As such, the team came up with the idea of coupling the generation process and the58

REST API, in a way that allows the user to automatically generate data compatible with an59

integrated RESTful API - for which the software Strapi was chosen, as will be explained in60

more detail in section 3.4 -, allowing the user to load the records into an API server and61

perform CRUD operations over it, either through the user interface or via HTTP requests.62

This paper will cover the development of the resulting application, DataGen - a more63

versatile and powerful tool for data generation, according to the user’s specifications, and64

subsequent handling -, seeking to explain the decisions that were taken for its architecture,65

as well as all the implemented functionalities.66

2 Related Work67

User privacy concerns [13] have been a major topic of discussion over the last decades, which68

lead to the creation of strict regulations regarding the way sensitive data should be handled,69

such as the EU’s General Directive on Data Protection GDPR [2]. These regulations keep70

entities from disclosing private and sensitive information, which in turn hurts new growing71

ideas and projects that would require access to similar data. As it stands, not only is the72

lack of available data a big problem in this context, as are the data sharing agreements73

themselves, as their ratification tends to take, on average, a year and a half [10], which proves74

to be fatal for many small and upcoming companies.75

To circumvent these concerns, organisations have been increasingly adopting synthetic76

data generation [16], an approach that was originally suggested by Rubin in 1993 [1] in77

order to create realistic data from existing models without compromising user privacy. The78

prospect of being able to create viable information that does not relate to actual individuals is79

a very enticing solution for the privacy conundrum. If perfected, it could potentially provide80

the capacity of generating sizeable amounts of data according to any use cases, bypassing the81

need to access real users’ information. As such, this approach has been increasingly adopted82

and put to the test, in order to measure its efficiency with real-life cases [5, 14, 18].83

Dataset generation has become a requisite in many development projets. However, the84

majority of developed tools produce datasets for specific contexts like intrusion detection85

systems in IoT [4], crops and weed detection [6], vehicular social networks based on floating86

car data [12], 5G channel and context metrics [17], GitHub projects [9], to cite a few. Many87

others exist in different contexts like medicine, bioinformatics, weather forecasts, color88

constancy, market analysis, etc.89

Most of the researched tools are domain specific. The team’s goal is to create a generic90

tool but powerful enough to generate datasets for several and different contexts and with91



F. Santos, H. Cardoso, J. Costa, V. Carvalho, J.C. Ramalho 5:3

many levels of complexity. There are some tools available, many online, but they cover the92

generation of simple datasets, many times flat datasets.93

The main source of inspiration for this project was an already existing web application94

called "JSON Generator", developed by Vazha Omanashvili [11], as it is the most interesting95

dataset generation tool that was found. It features a DSL (Domain Specific Language) that’s96

parsed and converted into a JSON dataset, allowing the user to generate an array of objects97

that follow some predefined structure, specified in the DSL.98

In terms of utility, it is a very powerful tool that can generate very complex data structures99

for any application with relatively little effort. However, it had some shortcomings which100

initially inspired the team to develop an alternative solution that attempts to address them.101

Specifically, these shortcomings are:102

1. Limited size for the ’repeat’ statement (100 total). Arguably, the size of the dataset itself103

is one of the most important features to take into account. For applications on a larger104

scale, having a small amount of array elements does not allow for more realistic tests,105

as very few, if any, that are developed in a production environment use as little as 100106

entries created by the aforementioned directive.107

2. It only generates JSON. Despite being one of the most popular file formats, there are108

many others that could be useful to the user as they might want the data to be in a109

different format for their application without converting the JSON themselves, such as110

XML (another open text format [19]). This allows for further flexibility and expands the111

possible use cases that it provides.112

3. Does not generate a RESTful API for the dataset. Many users may optionally want their113

newly generated dataset hosted and exposed by a RESTful API for direct usage in their114

web applications, or to download a custom one created specifically for their dataset for115

later deployment on a platform of their choosing.116

4. Does not take into account fuzzy generation. Some elements of a dataset may not be117

deterministic and are represented by probabilities. For example, there may a field that118

exists only if another property has a specific value and the application should be able to119

take that into account.120

5. It does not have much data available. For instance, the user might want to use names121

from a list of famous people for their dataset, as it allows for a more realistic generation122

and consistency, which this tool currently does not provide.123

6. It is not multilingual. The data that this application uses is only available in English, it124

would be more user-friendly to give them the choice to use their preferred language for125

the dataset instead of forcing it to just one.126

7. Does not take into account integration on applications. The generation and download of127

a dataset requires the consumer to use the website’s interface - this is not ideal as many128

applications may want to use HTTP requests to automate this process for internal usage.129

8. Does not support functional programming features. Functions such as ’map’, ’reduce’ and130

’filter’ that are staple in the functional paradigm due to their simplicity and effectiveness131

are not present in this application. This would allow the user to chain statements and132

transform fields to the result they want, granting the application the ability to deal with133

more complex use cases.134

With clear goals and an initial application to take inspiration from, the team proceeded135

to the development stage by deciding on its architecture (i.e. programming languages,136

frameworks, external tools, etc), which will be explained in the following sections.137

SLATE 2021



5:4 DataGen

3 DataGen Development138

Building the application from the ground up requires a divide and conquer approach, since139

having a monolithic single server architecture will lead to a less stable user experience, due140

to the lack of scalability.141

Having the application compartmentalized in multiple servers, each with their specific142

function, allows for a much more sensible and balanced architecture since it leaves room for143

the possibility of individually upgrading each of them, leading to a much higher scalability144

and fault tolerance, as the failure of one component does not compromise the functionality145

of the entire application, allowing for quicker and easier routine maintenance.146

The following subsections will explain how the current architecture was achieved and the147

technological decisions behind each of the components.148

3.1 Architecture149

The picture below shows the general scope of the architecture, albeit simplified. This150

architecture allows for major upgrades, such as load balancers on both the back and front-end151

since they are both stateless (the JWT approach allows the servers to not maintain sessions152

with each user’s state) and using MongoDB as a distributed database - sharded cluster.153

Figure 1 Current architecture of DataGen

3.2 Front-End154

The first component needed for the application is the front-end server, which is responsible155

for building and showing the website’s interface to the user, making it the entry point to the156

application and its scripted behaviour.157

3.2.1 Grammar158

The application uses a PEG.js grammar-based parser [8] [15] to process the user’s input159

and generate the intended dataset. The aforementioned grammar defines a domain-specific160

language (DSL), with JSON-like syntax, providing many features that allow for the generation161

of complex and diverse datasets. These features include relational and logic capabilities,162



F. Santos, H. Cardoso, J. Costa, V. Carvalho, J.C. Ramalho 5:5

providing means for the datasets to satisfy several forms of constraints - which push towards163

the use of some declarative framework for this specification -, as well as functional capabilities,164

allowing for easier management and processing of certain properties of the datasets.165

The first and most fundamental of said features is the JSON-similar syntax - the user166

can specify key-value properties, where the value may take any of the basic JSON types and167

data structures, from integers to objects and arrays. The user may also nest these to create168

a structure with any depth they may want.169

name: {
first: ["John", "William"],
last: "Doe"

},
age: 21

To specify the size of the dataset, or a nested array, there is the repeat statement, where170

the user indicates the structure that they want replicated (which may range from a primitive171

JSON type to a complex object), as well as the number of copies, or range of numbers.172

names: [ ’repeat(150,200)’: {
first: ’{{firstName()}}’,
last: ’{{surname()}}’

} ]

They may also specify as many collections as they want in a single model (collections are173

the key-value properties on the uppermost level of the model) and the application will return174

the resulting dataset in json-server syntax - an object with a property for each collection.175

During the parsing of the input, the application recursively builds both the final dataset176

and the Strapi model for the specified structure, concurrently, in order to allow for posterior177

integration in a RESTful API.178

{
names: [ ’repeat(10)’: ’{{fullName()}}’ ],
animals: [ ’repeat(20)’: ’{{animal()}}’ ]

}

To define the value of a property, the user may also use interpolation. To access an179

interpolation function, it must be encased in double curly braces. There are two types of180

interpolation functions:181

functions that generate spontaneous values during execution, according to the user’s182

instructions - for example, there is a random integer generation function where the user183

must provide a range of values for the intended result:184

id: ’{{objectId()}}’,
int: ’{{integer(50,100)}}’,
random: ’{{random(23, "hello", [1,2,3], true)}}’

SLATE 2021



5:6 DataGen

functions that return random values from a group of datasets incorporated in the applica-185

tion behind an API, where each dataset has information of a given category, for example186

names and political parties.187

name: ’{{fullName()}}’,
party: ’{{political_party()}}’

These interpolation functions may also be interwoven together and with normal strings to188

generate more structured strings, such as addresses. Some of them take arguments, in which189

case the user can either manually introduce the value or reference another property defined190

above, through a variable this, allowing them to establish relations between properties.191

parish: ’{{pt_parish()}}’,
district: ’{{pt_district("parish", this.parish)}}’,
address: ’St. {{fullName()}}, {{pt_city("district", this.district)}}’

In regard to the API of datasets, the team did an extensive search for useful datasets,192

used the well-structured ones it found and salvaged whatever information it could from193

others that were maybe less organized, processing this information to remove errors and194

normalize its content, before joining it with other data of the same topic to create bigger,195

more complete datasets for the user to use.196

The team also created some original datasets by hand, for topics deemed appropriate,197

and manually introduced bilingual support, for both portuguese and english, in all datasets198

made available in the application, in order to let the user choose whichever language suits199

best their goal. To indicate their language of choice, the user’s model must start with the200

following syntax:201

<!LANGUAGE pt> or <!LANGUAGE en>

Currently, DataGen has support datasets of all the following categories: actors, animals,202

brands, buzzwords, capitals, cities, car brands, continents, countries, cultural landmarks,203

governmental entities, hackers, job titles, months, musicians, names, nationalities, political204

parties, portuguese businessmen, portuguese districts, cities, counties and parishes, por-205

tuguese public entities, portuguese politicians, portuguese public figures, portuguese top206

100 celebrities, religions, soccer clubs, soccer players, sports, top 100 celebrities, weekdays,207

writers.208

The grammar also makes available a feature named unique(), to which the user may209

provide an interpolation function, or a string interpolated with such a function, as an210

argument. unique guarantees that the interpolation functions on which it is applied always211

return unique values. This is especially relevant when it comes to interpolation functions212

that fetch random data from the support datasets inside a repeat statement, as there is no213

guarantee that there won’t be duplicates among the fetched records and the user might not214

want that.215

As such, unique only has any effect when applied on dataset interpolation functions or216

with random (which can be observed in one of the examples from last page). As long as217

it’s one of those (possibly interpolated with normal strings) and there are sufficient distinct218

entries for the entire repeat statement, this tool guarantees that all objects in the resulting219

dataset will have a different value in the property in question. If the user uses a string220



F. Santos, H. Cardoso, J. Costa, V. Carvalho, J.C. Ramalho 5:7

with more than one interpolation function, there is also no effect - there may be repeated221

combinations in the end.222

Below are two examples: the first one depicts the correct usage of the unique feature;223

the second shows instances of a wrong approach (not enough distinct values for the repeat224

statement; not a dataset interpolation function or the random function; more than one225

interpolation function) that will either not work or not assure any mutually exclusive226

guarantee for the resulting values:227

[ ’repeat(6)’: {
continent: unique(’{{continent()}}’),
country: unique(’Country: {{country()}}’),
random: unique(’{{random(1,2,3,4,5,6)}}’)

} ]

[ ’repeat(10)’: {
continent: unique(’{{continent()}}’),
int: unique(’{{integer(5,20)}}’),
name: unique(’{{firstName()}} {{surname()}}’)

} ]

Back to the properties of the model, the user may also use JavaScript functions to define228

their value. There are two types of functions: signed functions, where the name of the229

method corresponds to the key of the property, while the result of the body of the function230

translates to its value, and anonymous arrow functions, which are used to indicate solely the231

value of a property (the key needs to be precised separately beforehand).232

name: "Oliver",
email(gen) {

var i = gen.integer(1,30);
return ‘${this.name}.${gen.surname()}${i}@gmail.com‘.toLowerCase();

},
probability: gen => { return Math.random() * 100; }

Inside these functions, the user is free to write JavaScript code that will be later executed to233

determine the value of the property. This way, more complex algorithms may be incorporated234

into the construction logic of the dataset, allowing for a more nuanced and versatile generation235

tool. Given that the user has access to the whole Javascript syntax, they may make use236

of relational and logical operators to elaborate conditions on the intended data, as well as237

functional methods (for example "map" or "filter", which Javascript implements).238

Inside these blocks of code, the user has full access to any property declared above in239

the DSL model, through the variable this, as well as any interpolation function available in240

the parser, through a gen variable - whenever using a function, the user must declare this241

argument in its signature, which they may then use inside to run said interpolation functions.242

All of this can be observed in the example above.243

The grammar also allows fuzzy generation of properties, i.e. constraining the existence of244

certain properties based on logical conditions or probabilities. As of now, the grammar has245

four different tools for this purpose:246

SLATE 2021



5:8 DataGen

missing/having statements - as an argument, they receive the probability of the prop-247

erties inside (not) existing in the final dataset; this probability is calculated for each248

element, originating a dataset where some elements have said properties and others don’t:249

missing(50) { prop1: 1, prop2: 2 },
having(80) { prop3: 3 }

if... else if... else statements - these work just as in any programming language: the250

user can use relational operators and other conditional statements to create conditions251

and string multiple of them together with the help of logical operators. The final object252

will have the properties specified in the first condition that evaluates to true (or eventually253

none of them, if all conditions prove to be false). In these conditions, similar to the254

functions, the user has unrestricted access to all properties declared above in the DSL255

model, as well as the interpolation functions, which gives them the ability to causally256

relate different properties:257

type: ’{{random("A","B","C")}}’,
if (this.type == "A") { A: "type is A" }
else if (this.type == "B") { B: "type is B" }
else { C: "type is C" }

the or statement - the grammar makes available this logical operator for quick prototyping258

of mutually exclusive properties, where only one will be selected for each object (note259

that it doesn’t make sense to create an and statement, since that translates to simply260

listing the wanted properties normally in the DSL model):261

or() {
prop1: 1,
prop2: 2,
prop3: 3

}

the at_least statement - inside this, the user writes a set of properties and gives the262

statement an integer argument specifying the minimum number of those properties that263

must be present in the final object. The parser selects that number of properties randomly264

from the given set:265

at_least(2) {
prop1: 1,
prop2: 2,
prop3: 3

}

Finally, the grammar also provides an implementation of the fundamental functional266

programming features - map, filter and reduce. The user may chain together one or several267

of these functions with an array value (from any of the various array-creating features made268



F. Santos, H. Cardoso, J. Costa, V. Carvalho, J.C. Ramalho 5:9

available). Shorthand syntax is not allowed, so curly braces must always be opened for269

the code block. Aside from that, these features work exactly like the native Javascript270

implementations: the user may either declare the function inside or use anonymous syntax271

for the variables; they may declare only the current value or any of the additional, albeit272

less commonly used, variables. Examples of several possible usages of these features can be273

observed below:274

map: range(5).map(value => { return value+1 }),
filter: [0,1,2].filter(function(value, index) {return [0,1,2][index]>0}),
reduce: range(5).reduce((accum, value, index, array) => {

return accum + array[index] }),
combined: range(5).map((value) => { return value+3 })

.filter(x => { return x >= 5})

.map(x => { return x*2 }).reduce((a,c) => {return a+c})

3.2.2 Interoperability275

After processing the model, the parser generates an intermediary data structure with the276

final dataset, which can then be translated to either JSON or XML, according to the user’s277

preference. The parser also generates another data structure with the corresponding Strapi278

model, for possible later integration in its RESTful API.279

Note that the application’s purpose is to create datasets according to the user’s instructions,280

in either JSON or XML. Although the model specification may involve Javascript code, under281

the form of functions or conditions, as explained in the previous subsection, this does not282

correlate to the target application whatsoever. DataGen merely generates test datasets - it283

can be used for any kind of application that accepts data in JSON/XML format, whether it284

be an application written in Javascript, Python, C++ or some other language.285

3.2.3 Client-Side Generation286

This project was developed with the intent of being a web application, more specifically a287

website with user-friendly features. A server-sided approach would imply parsing the DSL288

models on the back-end server, which wouldn’t be sensible as the created PEG.js parser289

doesn’t require access to any private services (i.e. databases) hidden by the back-end itself.290

Therefore, a client-sided approach makes the most sense for this application in particular,291

freeing resources (mainly the CPU and memory modules) from the back-end server and292

shifting the computation of the generated dataset to the client in their browser, using the293

back-end as an API server.294

There are many frameworks aimed at client-sided browser experiences, however, it was295

decided that Vue.js would be the most adequate for this application. It allows for reactive two-296

way data binding - connection between model data updates and the view (UI) which creates297

a more user-friendly experience, since it shows changes on the DOM as they occur, instead298

of forcing a reload on the page (as in the traditional served-sided approach). Other reasons299

such as flexibility - on the components’ styling and scripted behaviour - and performance300

- it’s more efficient than React and Angular - were also a deciding factor on picking this301

specific framework.302

After deciding which framework to use, the team started developing the interface itself,303

which currently has the following features:304

SLATE 2021



5:10 DataGen

Authentication - it uses JWT (JSON Web Tokens) that are sent in the ’Authorization’305

header on every HTTP request that needs to be validated by the back-end (i.e accesses306

restricted user data);307

Generation and download of the dataset and/or its API - as previously mentioned, it308

uses a PEG.js parser for converting the DSL into JSON or XML, as well as Strapi for the309

API (which will be explained in section 3.4);310

Saving DSL models - authenticated users may save their created models and optionally311

make them available for others to use, being able to do CRUD operations on those they312

own;313

Documentation - since the DSL has a defined structure, it is essential that the user has314

access to these guidelines at any time;315

Team description - the user may want to contact the team directly so there is a dedicated316

page for them to find all of this information and a brief description of the team.317

The front-end needs to access persistent information such as user data and saved models318

which is accessible through the back-end’s RESTful API, viewed in more detail in section 3.3.319

3.3 Back-End320

The application needs a back-end server for multiple purposes, namely storing data, authen-321

ticating users and generating the API for the datasets.322

None of the above require intensive computational power for each request sent by the user,323

which was one of the main reasons why the team chose a Node.js server - it is built to deal324

with any incoming request that is not CPU intensive due to its single-threaded, event-driven,325

non-blocking IO model - and because it is scalable, has good performance in terms of speed326

and has a wide selection of packages (available on the npm registry).327

For storing all the data that needs to be persistent, the back-end server accesses a328

MongoDB server instance, which was chosen due to its scalability (the data is not coupled329

relationally, which means that each document may be in a different node instance without330

any conflicts since they are self-contained) and direct compatibility with Node.js since they331

both accept JSON documents.332

Currently the application uses three collections on the MongoDB database:333

users - stores all user specific data, which is their name, email, password (hashed) and334

the dates of register and most recent access;335

models - stores all DSL models and whom (user) they belong to, their visibility (public336

or private), title, description and register date;337

blacklist - stores users’ JWT tokens after they log-out and their expiry date so that they338

are automatically removed from the database after they expire.339

Authenticating the user allows them to access their saved DSL models and perform CRUD340

operations on them. Due to its Node.js integration, a JWT (JSON Web Token) approach341

was the chosen strategy to authenticate a user - after they submit their credentials, the342

system compares them to the ones saved on the database and if they match, the token is343

returned in the HTTP response. This token is needed for any further request that accesses344

critical information for that same user and expires after a short time for precaution and345

safety. After they log-out, it is added to a blacklist to provide extra security, since it does346

not allow for a user that got access to another user’s JWT (if they log-out before the short347

expiration date) to submit requests signed with it.348



F. Santos, H. Cardoso, J. Costa, V. Carvalho, J.C. Ramalho 5:11

Generating the API is a more complex process and has a dedicated subsection (3.4) which349

explains the steps followed in order to obtain a fully functional REST API for any generated350

dataset.351

3.4 Strapi API352

DataGen also provides another important functionality, which is generating a data API from353

the dataset previously created. It’s a useful feature since a lot of users may want to perform354

CRUD operations on the data they requested or even utilize the API themselves for further355

work.356

The tool chosen to create this API was Strapi [20], one of the best content management357

systems currently. Strapi automatically generates a REST API and allows multiple APIs358

to run simultaneously. It’s also very simple to configure and supports different database359

systems like PostgreSQL, MySQL, SQLite and MongoDB, being that the latter was the one360

used in this project. JSON-server was also considered as a tool but lacked scalability, as it361

only allows a single API to run at a time, which wouldn’t be ideal at all. However, Strapi362

presented its own set of challenges, like the difficult way in which it stores structured data363

(an array, for example) and how data is imported, all of which were surpassed successfully.364

The process of building the API begins within the grammar section of the project, since365

the Strapi model is written in a recursive way, at the same time the dataset itself is being366

built. This strategy was a big time save in terms of the program’s execution. For example,367

any time an array is encountered, because Strapi doesn’t have its own type to represent it, a368

component is created with the array’s elements and a reference to that component is written369

in the model itself. This recursive process keeps on going with this same logic until it reaches370

the root, which corresponds to the collection.371

After the model is created, this data is redirected to an auxiliary application that processes372

and rearranges it to be in the usual Strapi format. The data consists in the finished model373

and also an array filled with all the components created. At this point, the user can download374

a zipped version of the API model, if they so intend, and easily run it on their personal375

device.376

Furthermore, DataGen populates the newly created API with the generated dataset377

through a number of POST operations. Because of Strapi’s lack of methods for importing378

whole files as data, this cycle of POST requests was the solution found to provide a temporary379

populated API REST, with all the standard HTTP methods functional.380

4 Results381

One of the priorities during development was to test DataGen with real cases from early on,382

in order to not only validate the concept and its operability, but also to observe what kind383

of restrictions and requests were more frequent in the creation of test datasets, as a means384

to gather reliable external feedback on useful capabilities that should be implemented.385

The team made contact with other parties and received requests to create test datasets386

for real systems, using DataGen, which involved the usage of complicated generation logic387

with many restrictions. These opportunities helped further DataGen’s growth, as new ideas388

arised from the analysis of the requirements and were brought to life in the application, as389

well as proved the application’s credibility, given that the results obtained were adequate390

and very positive.391

In the interest of keeping this paper concise, it will be shown only the most important392

parts of one of the most complex of these application cases, that of elimination records [7].393

SLATE 2021



5:12 DataGen

Elimination records are a structure that must be created and carefully filled out in order394

to safely eliminate documentation that reaches the end of its administrative conservation395

deadline. This is an increasingly important tool nowadays, since most public information396

has shifted to being stored in digital format and the correct method for storing such data is397

often not followed, which increases the risk of long-term information loss. In order to correct398

this, the deletion of outdated documentation is just as important as the storage of new one.399

The generation of these documents implies a complex logic, with many properties that400

directly relate between themselves according to their values and others whose value must401

belong to a very rigid group of possibilities. Each record has a legitimation source, whose402

type can take one of five different string values. According to the record’s source type, its403

funds (public entities) vary from a single entity, in some cases, to an array of several:404

legitimationSource: {
type: ’{{random("PGD/LC", "TS/LC", "PGD", "RADA", "RADA/CLAV")}}’,
funds(gen) {

if (["PGD/LC","TS/LC","PGD"].includes(this.legitimationSource.type))
return [gen.pt_entity()]

else {
var arr = [], i
for (i=0; i < gen.integer(1,5); i++) arr.push(gen.pt_entity())
return arr

}
}

}

Moving on, each record has an array of classes. In case the legitimation source’s type is405

"PGD/LC" or "TS/LC", each class has a code; else, it has either a code, a reference or both.406

The class code itself can be composed by 3 or 4 levels, given that each level follows its own407

categorization:408

classes: [ ’repeat(2,5)’: {
if (["PGD/LC","TS/LC"].includes(this.legitimationSource.type)) {

code(gen) {
var level1 = gen.random(...gen.range(100,950,50))
var level2 = gen.random(10,20,30,40,50)
var level3 = gen.integer(1,999,3)
var level4 = gen.random("01","02")

var class = level1 + ’.’ + level2 + ’.’ + level3
if (Math.random() > 0.5) class += ’.’ + level4
return class

}
}

else {
at_least(1) {

code(gen) { (...) //equal to the function above },
reference: ’{{random(1,2,3,55,56)}}’

}



F. Santos, H. Cardoso, J. Costa, V. Carvalho, J.C. Ramalho 5:13

}
} ]

There are also year properties that must belong to the last 100 years:409

yearStart: ’{{integer(1921,2021)}}’,
yearEnd(gen) {

var year = gen.integer(1921,2021)
while (year < this.yearStart) year = gen.integer(1921,2021)
return year

}

Finally, there are two related fields, number of aggregations and the corresponding list,410

where the size of the list must correspond to the number indicated:411

numberAggregations: ’{{integer(1,50)}}’,
aggregations: [ ’repeat(this.numberAggregations)’: {

code: ’{{pt_entity_abbr()}} - {{integer(1,200)}}’,
title: ’{{lorem(3,"words")}}’,
year: ’{{integer(1921,2021)}}’,
if (["PGD/LC","TS/LC"].includes(this.legitimationSource.type)) {

interventionNature: ’{{random("PARTICIPANT","OWNER")}}’
}

} ]

5 Conclusion412

Along the paper it was discussed the development of a multilingual data generator, with413

built-in REST API integration. The intent behind this project was to create a versatile and414

powerful tool that would allow for quick prototyping and testing of software applications, a415

very important and common subject that seems to go surprisingly unnoticed, despite its vast416

relevance.417

Be it either small-scale projects of university students or big, complex company software,418

every application should be thoroughly tested along its development, which requires the419

leading team to create realistic data in order to populate the system. Even today, this process420

is very poorly optimized, which often leads either to very time-consuming manual generation421

or, even worse, to a scarce and inneficient testing of the system, with few records, possibly422

leading to wrongful conclusions, unnoticed bugs and dangerous bottlenecks.423

As such, DataGen emerges as a quick and easy to use application that allows the user to424

swiftly prototype a data model according to their use cases and put their system to practice425

with a newly-generated dataset, with accurate and realistic values, automating the generation426

process and facilitating the user’s role in it, ultimately enhancing the user’s experience and427

allowing more time and resources to go towards the project itself.428

DataGen was thoroughly experimented with real-life cases and proved to be capable of429

creating complex and sizeable datasets for third party applications. The product will very430

soon be put in a production environment and made available for the general public, after a431

laborious and successful development phase.432

SLATE 2021



5:14 DataGen

6 Future work433

This platform will be open-source and its contents will be uploaded to GitHub. The next434

step for the application itself is putting it in a production environment, to be made available435

for anyone that may want to use it.436

As for the grammar, the team intends to develop an user-friendly personalized grammar437

checker that analyzes the user’s DSL model and, in the presence of errors, communicates438

what they are, exactly where they occur and how to fix them, in a simple and clear way, in439

order to enhance the user’s experience and make the application easier to use.440

Extensive documentation on all the functionalities provided is also under development,441

along with examples on how to use them, in order to guide the user since the application442

uses a DSL. Without it, the user may be overwhelmed by the amount of features they must443

learn by themselves. This documentation will be made available in the website and may444

eventually be downloaded in PDF format, if the user so wishes.445

References446

1 D.b. statistical disclosure limitation. page 461–468, 1993.447

2 General data protection regulation. In GDPR, 2018. Accessed: 2021-04-26. URL: https:448

//gdpr-info.eu/.449

3 Artificial intelligence in health care: Benefits and challenges of machine learning in drug450

development (staa)-policy briefs & reports-epta network. 2020. Accessed: 2021-04-25. URL:451

https://eptanetwork.org/database/policy-briefs-reports/1898-artificial-intelli452

gence-in-health-care-benefits-and-challenges-of-machine-learning-in-drug-dev453

elopment-staa.454

4 Yahya Al-Hadhrami and Farookh Khadeer Hussain. Real time dataset generation framework455

for intrusion detection systems in iot. Future Generation Computer Systems, 108:414–423,456

2020. URL: https://www.sciencedirect.com/science/article/pii/S0167739X19322678,457

doi:https://doi.org/10.1016/j.future.2020.02.051.458

5 Anat Reiner Benaim, Ronit Almog, Yuri Gorelik, Irit Hochberg, Laila Nassar, Tanya Mashiach,459

Mogher Khamaisi, Yael Lurie, Zaher S Azzam, Johad Khoury, Daniel Kurnik, and Rafael460

Beyar. Analyzing medical research results based on synthetic data and their relation to real461

data results: Systematic comparison from five observational studies. 2015. URL: https:462

//unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/20150/Paper_33_Session463

_2_-_Univ._Edinburgh__Nowok_.pdf/, doi:10.2196/18910.464

6 Maurilio Di Cicco, Ciro Potena, Giorgio Grisetti, and Alberto Pretto. Automatic model465

based dataset generation for fast and accurate crop and weeds detection. In 2017 IEEE/RSJ466

International Conference on Intelligent Robots and Systems (IROS), pages 5188–5195, 2017.467

doi:10.1109/IROS.2017.8206408.468

7 Elimination records. https://clav.dglab.gov.pt/autosEliminacaoInfo/. Accessed:469

2020-05-02.470

8 Bryan Ford. Parsing Expression Grammars: A Recognition-Based Syntactic Foundation. In471

Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming472

Languages, 2004. Accessed: 2021-04-20. URL: https://bford.info/pub/lang/peg.pdf.473

9 Georgios Gousios. The ghtorent dataset and tool suite. In 2013 10th Working Conference on474

Mining Software Repositories (MSR), pages 233–236, 2013. doi:10.1109/MSR.2013.6624034.475

10 Bill Howe, Julia Stoyanovich, Haoyue Ping, Bernease Herman, and Matt Gee. Synthetic data476

for social good. 2017.477

11 JSON Generator. https://next.json-generator.com/4kaddUyG9/. Accessed: 2020-05-04.478

12 Xiangjie Kong, Feng Xia, Zhaolong Ning, Azizur Rahim, Yinqiong Cai, Zhiqiang Gao, and479

Jianhua Ma. Mobility dataset generation for vehicular social networks based on floating car480

https://gdpr-info.eu/
https://gdpr-info.eu/
https://gdpr-info.eu/
https://eptanetwork.org/database/policy-briefs-reports/1898-artificial-intelligence-in-health-care-benefits- and-challenges-of-machine-learning-in-drug-development-staa
https://eptanetwork.org/database/policy-briefs-reports/1898-artificial-intelligence-in-health-care-benefits- and-challenges-of-machine-learning-in-drug-development-staa
https://eptanetwork.org/database/policy-briefs-reports/1898-artificial-intelligence-in-health-care-benefits- and-challenges-of-machine-learning-in-drug-development-staa
https://eptanetwork.org/database/policy-briefs-reports/1898-artificial-intelligence-in-health-care-benefits- and-challenges-of-machine-learning-in-drug-development-staa
https://eptanetwork.org/database/policy-briefs-reports/1898-artificial-intelligence-in-health-care-benefits- and-challenges-of-machine-learning-in-drug-development-staa
https://www.sciencedirect.com/science/article/pii/S0167739X19322678
https://doi.org/https://doi.org/10.1016/j.future.2020.02.051
https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/20150/Paper_33_Session_2_-_Univ._Edinburgh__Nowok_.pdf/
https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/20150/Paper_33_Session_2_-_Univ._Edinburgh__Nowok_.pdf/
https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/20150/Paper_33_Session_2_-_Univ._Edinburgh__Nowok_.pdf/
https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/20150/Paper_33_Session_2_-_Univ._Edinburgh__Nowok_.pdf/
https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/20150/Paper_33_Session_2_-_Univ._Edinburgh__Nowok_.pdf/
https://doi.org/10.2196/18910
https://doi.org/10.1109/IROS.2017.8206408
https://clav.dglab.gov.pt/autosEliminacaoInfo/
https://bford.info/pub/lang/peg.pdf
https://doi.org/10.1109/MSR.2013.6624034
https://next.json-generator.com/4kaddUyG9/


F. Santos, H. Cardoso, J. Costa, V. Carvalho, J.C. Ramalho 5:15

data. IEEE Transactions on Vehicular Technology, 67(5):3874–3886, 2018. doi:10.1109/TVT.481

2017.2788441.482

13 Menno Mostert, Annelien L Bredenoord, Monique Biesaart, and Johannes Delden. Big data in483

medical research and eu data protection law: Challenges to the consent or anonymise approach.484

2016. doi:10.1038/ejhg.2015.239.485

14 Beata Nowok. Analyzing medical research results based on synthetic data and their relation486

to real data results: Systematic comparison from five observational studies. 2020. Accessed:487

2021-05-03.488

15 PegJS. https://pegjs.org/. Accessed: 2021-04-20.489

16 Haoyue Ping, Julia Stoyanovich, and Bill Howe. Datasynthetizer: Privacy-preserving synthetic490

datasets. In Proceedings of SSDBM ’17, 2017. doi:10.1145/3085504.3091117.491

17 Darijo Raca, Dylan Leahy, Cormac J. Sreenan, and Jason J. Quinlan. Beyond throughput,492

the next generation: A 5g dataset with channel and context metrics. In Proceedings of the493

11th ACM Multimedia Systems Conference, MMSys ’20, page 303–308, New York, NY, USA,494

2020. Association for Computing Machinery. doi:10.1145/3339825.3394938.495

18 Debbie Rankin, Michaela Black, Raymond Bond, Jonathan Wallace, Maurice Mulvenna, and496

Gorka Epelde. Reliability of supervised machine learning using synthetic data in health care:497

Model to preserve privacy for data sharing. 2020. doi:10.2196/18910.498

19 REGULAMENTO NACIONAL DE INTEROPERABILIDADE DIGITAL (RNID). https:499

//dre.pt/application/file/a/114461891. Accessed: 2020-04-21.500

20 Design APIs fast, manage content easily. https://strapi.io/. Accessed: 2020-04-21.501

SLATE 2021

https://doi.org/10.1109/TVT.2017.2788441
https://doi.org/10.1109/TVT.2017.2788441
https://doi.org/10.1109/TVT.2017.2788441
https://doi.org/10.1038/ejhg.2015.239
https://pegjs.org/
https://doi.org/10.1145/3085504.3091117
https://doi.org/10.1145/3339825.3394938
https://doi.org/10.2196/18910
https://dre.pt/application/file/a/114461891
https://dre.pt/application/file/a/114461891
https://dre.pt/application/file/a/114461891
https://strapi.io/

	Introduction
	Related Work
	DataGen Development
	Architecture
	Front-End
	Grammar
	Interoperability
	Client-Side Generation

	Back-End
	Strapi API

	Results
	Conclusion
	Future work

