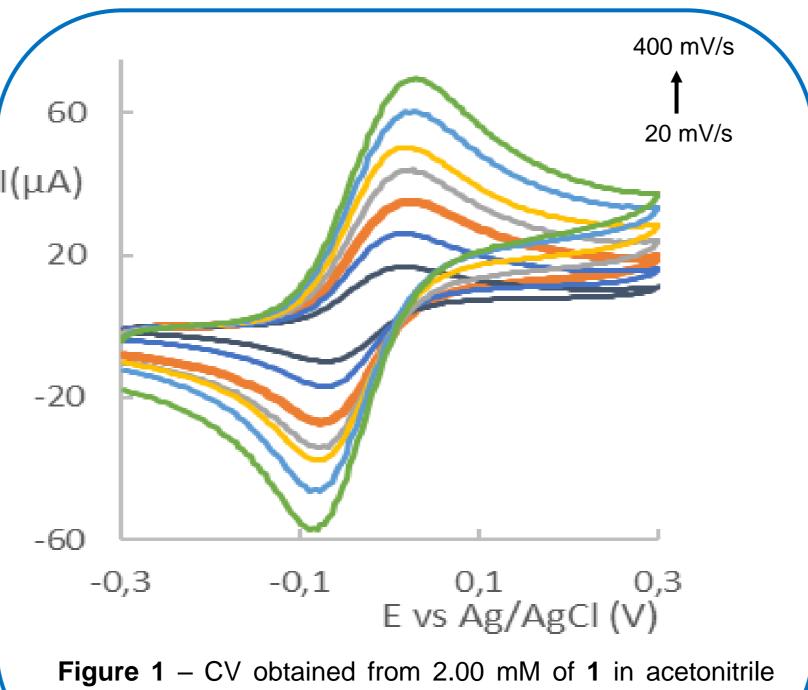
Synthesis and Antimicrobial Activity of a New Class of Azoimidazoles

U.PORTO UNIVERSIDADE DO PORTO

Universidade do Minho Escola de Ciências

D. Dantas,^a A. I. Ribeiro,^b R. Rodrigues,^a L. F. Carvalho, ^a E. Pinto,^{c,d} F. Cerqueira,^{d,e,f} D. Geraldo,^a A. Zille, ^b and A. Dias^a


a) Centre of Chemistry of University of Minho (CQ-UM), Departamento de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; b) Centre for Textile Science and Technology (2C2T), Departamento de Engenharia Têxtil, Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; c) Laboratory of Microbiology, Biological Sciences Department, Faculty of Porto, 4200-135 Porto, Portugal; d) Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, 4450-208 Matosinhos, Portugal; e) FP-ENAS Research Unit, CEBIMED, Biomedical Research Centre, Fernando Pessoa University, Praça 9 de Abril, 349, 4249-004 Porto, Portugal .an Faculty of Health Sciences, Fernando Pessoa University, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal; f) Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal

INTRODUCTION

The emergence of infectious diseases caused by new pathogens or multidrug-resistant (MDR) strains has been a global health threat over the last decades.¹ These infections are among the most severe healthcare problems and have been associated to several deaths and heavy economic burden per year.^{2,3} The imidazole ring is present in several natural and synthetic molecules with biological activity namely on effective antimicrobial agents, which make it a anchor for the development of new therapeutic vital molecules in this field.⁴ Furthermore, amidrazones are known for their high reactivity, thus being useful intermediates for the synthesis of compounds with a wide range of biological activities, including antimicrobial. The amidrazone derivatives have been applied in different subjects of chemistry, specifically in the synthesis of azo molecules.⁵

ELECTROCHEMICAL CARACTERIZATION

Cyclic voltammograms (CV) were obtained from -0.3 to 0.3 V in a three-electrode cell using an Autolab PGSTAT 30 (Eco-Chemie) controlled by GPES 4.9 software. The working electrode was a glassy carbon electrode, a Pt wire and an Ag/AgCI (KCI 1M) were used as counter and reference electrode, respectively. Tetrabutylammonium tetrafluoroborate (TBAB) was used as supporting electrolyte.

Table 1 – Anodic (Epa) and cathodic (Epc) peak potential, peak separation (Δ Ep), anodic peak potential minus half-wave potential (Epa- $E_{1/2}$) and anodic and cathodic peak current ratios (Ipa/Ipc). Values obtained from CV at 100 mV/s scan rate.

Epa (mV)	-Epc (mV)	ΔEp (mV)	Epa-E _{1/2} (mV)	lpa/lpc
13	69	82	63	0.92

In a previous work, novel imidazole-based 5-aminoimidazole-4-carboxamidrazones were prepared and exhibited potent antimicrobial activity against C. krusei and C. albicans.⁶ Further biological studies to elucidate the action mechanism revealed an interesting relationship between the antimicrobial activity and total intracellular ROS production by the yeasts.⁷ Here, we present results obtained from its electrochemical and chemical oxidation, as well the antimicrobial activity of the oxidized products.

SYNTHESIS

Studies on the reactivity of amidrazones led us to find that the oxidation of amidrazones 1 in the presence of silver nitrate gave rise to azoimidazoles in the form of HNO₃ salts (2). The neutralization of these products generated azoimidazoles 3.

containing TBAB (0.1 M) using a glassy carbon working electrode, at different scan rates 20-400 mV/s.

Effect of scan rate (v) on potential and current

• Epa and Epc do not shift with the increase of *v*.

• Δ Ep and Epa-E_{1/2} values are consistent with a reversible one-electron process.

Ipa/Ipc are always approximately 1.

• Direct proportionality between Ipa and Ipc with v.

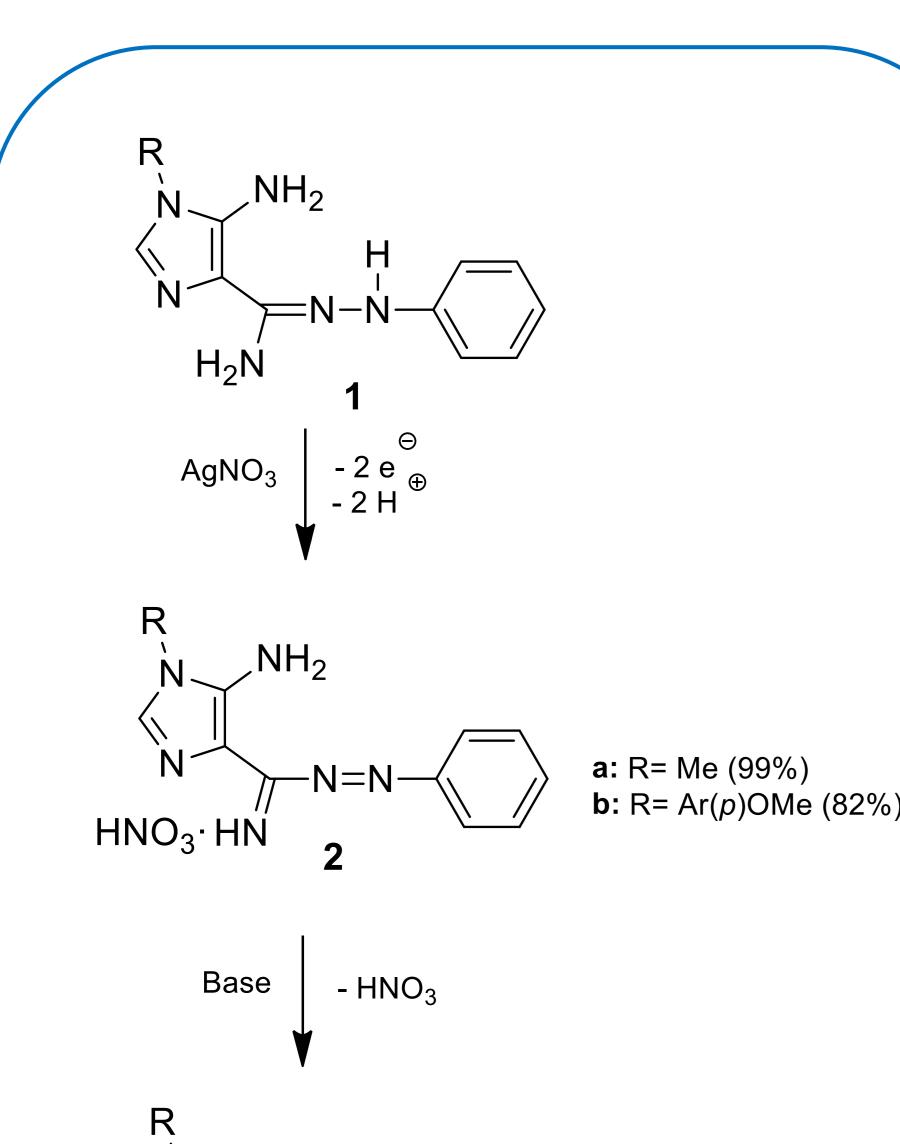
All diagnostic criteria indicate a reversible one-electron process.⁸

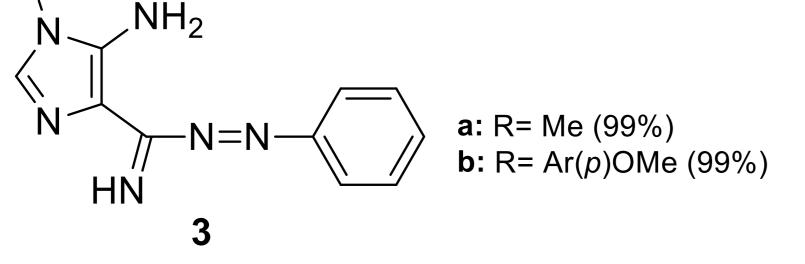
ANTIMICROBIAL TESTS

The antifungal activity of the azoimidazoles in the form of HNO₃ salts (2) was evaluated against yeasts (Candida and Cryptococcus strains) and against filamentous fungi (Aspergillus, Fusarium, Scedosporium, *Mucor* and dermatophyte strains). The antibacterial activity of these compounds was also evaluated against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria.

Table 2 – Antifungal activity (MIC and MLC) of the azoimidazoles 2 against yeasts (*Candida* and *Cryptococcus* strains).

		<i>Candida albicans</i> ATCC 10231	<i>Candida albicans</i> DSY294 (S)	<i>Candida albicans</i> DSY296 (R)	<i>Candida glabrata</i> DSY562 (S)	<i>Candida glabrata</i> DSY565 (R)	<i>Candida krusei</i> ATCC 6258	Cryptococcus neoformans CECT1078
MICª (MLC ^b) µg/mL	2 a	64 (128)	32 (128)	16 (128)	64 (128)	64 (128)	4 (4)	2 (4)
	2 b	64 (256)	32 (256)	32 (256)	64 (256)	64 (256)	4 (4)	4 (4)




Table 3 – Antifungal activity (MIC and MLC) of the azoimidazoles 2 against filamentous fungi: Aspergillus, Fusarium, Scedosporium, Mucor and dermatophyte strains.

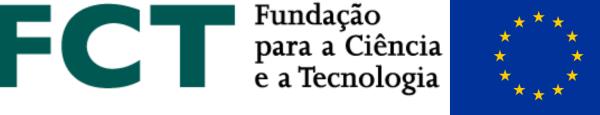
		Aspergillus fumigatus ATCC 204305	Aspergillus niger ATCC 16404	<i>Fusarium solani</i> FF125	Scedosporium spp.	<i>Mucor</i> spp.	Trichophyton rubrum FF5	Trichophyton mentagrophytes FF7	<i>Nannizzia gypsea</i> FF3
MIC ^a	2 a	256 (>256)	256 (>256)	256 (>256)	256 (256)	>256 (>256)	64 (128)	64 (64)	128 (256)
(MLC♭) µg/mL	2 b	256 (>256)	256 (>256)	256 (>256)	256 (>256)	256 (>256)	64 (128)	32 (64)	128 (≥256)

Table 4 – Antibacterial activity (MIC and MLC) of the azoimidazoles 2 against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria.

		Escherichia coli ATCC 25922	Staphylococcus aureus ATCC 25923
MIC ^a	2a	>256 (>256)	128 (>256)
(MLC♭) µg/mL	2b	>256 (>256)	64 (≥256)

a) MIC-minimum inhibitory concentration; b) MLC-minimum lethal concentration.

Scheme 1 – Synthesis of azoimidazoles 3 from the oxidation of 5-aminoimidazole-4-carboxamidrazones 1


(S) -Fluconazole susceptible strain; (R) -Fluconazole resistant strain

CONCLUSIONS

- Amidrazones 1 were easily oxidized with silver nitrate to give azoimidazoles 3 in excellent very good yields.
- Cyclic voltammogram of 1 obtained in the -0.3 to 0.3 V potential range showed a reversible peak involving an electron at an extremely low oxidation potential, which proves the susceptibility of 1 to oxidation reactions.
- Azoimidazoles 2 exhibited good—moderate activity against Candida, Cryptococcus and dermatophyte strains.
- On the contrary, activity against other filamentous fungi and bacteria decreased significantly.

Acknowledgements: We thank Fundação para a Ciência e a Tecnologia (FCT) for financial support through the Chemistry Research Centre of the University of Minho (UID/QUI/00686/2020) and CIIMAR (UIBD/04423/2020). This work was also supported under the projects MEDCOR (PTDC/CTM-TEX/1213/2020) and UID/CTM/00264/2019, and the PhD grant SFRH/BD/137668/2018.

References:

- 1. Morsy M. A.; Ali E. M.; Kandeel M.; Venugopala K. N.; Nair A. B.; Greish K.; El-Daly M. Antibiotics 2020, 9 (5).
- 2. van Oosterhout C.; Hall N.; Ly H.; Tyler K. M.. Virulence 2021, 12 (1), 507-508.
- 3. Pietsch F.; O'Neill A. J.; Ivask A.; Jenssen H.; Inkinen J.; Kahru A.; Ahonen M.; Schreiber F. Journal of Hospital Infection 2020, 106 (1), 115-125.
- 4. Chopra P. N.; Sahu J. K. Current Drug Discovery Technologies 2020, 17 (5), 574-584.
- 5. Mazur L.; Sączewski J.; Jarzembska K. N.; Szwarc-Karabyka K.; Paprocka R.; Modzelewska-Banachiewicz B. Cryst Eng Comm 2018, 20 (29), 4179-4193. 6. Ribeiro A. I.; Gabriel C.; Cerqueira F.; Maia M.; Pinto E.; Sousa J. C.; Medeiros R.; Proença M. F.; Dias A. M. Bioorganic & Medicinal Chemistry Letters 2014, 24 (19), 4699-4702. 7. Cerqueira F.; Maia M.; Gabriel C.; Medeiros R.; Cravo S.; Ribeiro A. I.; Dantas D.; Dias A. M.; Saraiva L.; Raimundo L.; Pinto E. Antibiotics 2021, 10 (2). 8. Brett C. M. A.; Brett A. M. O. *Electrochemistry: Principles, Methods, and Applications*; Oxford University Press: Oxford; New York, 1993.