
K-means clustering combined with principal component

analysis for material profiling in automotive supply chains

Abstract. At a time where available data is rapidly increasing in both volume and variety, descrip-
tive Data Mining (DM) can be an important tool to support meaningful decision-making processes
in dynamic Supply Chain (SC) contexts. Up until now, however, scarce attention has been given to
the application of DM techniques in the field of inventory management. Here, we take advantage
of descriptive DM to detect and grasp important patterns among several features that coexist in a
real-world automotive electronics SC. Concretely, Principal Component Analysis (PCA) is employed
to analyze and understand the interrelations between ten quantitative and dependent variables in a
multi-item/multi-supplier environment. Afterwards, the principal component scores are character-
ized via a K-means clustering, allowing us to classify the samples into four clusters and to derive
di↵erent profiles for the multiple inventory items. This work provides evidence that descriptive
DM contributes to find interesting feature-patterns, resulting in the identification of important risk
profiles that may e↵ectively leverage inventory management for superior performance.

Keywords: Supply chain · Data mining · K-means clustering · Principal component analysis
(PCA).

1 Introduction

Aiming to cope with the fast and real time changes on the modern business environments, it is fun-
damentally important to perceive Supply Chain (SC) dynamics [1], especially at a time where there is
a pressing need for SC integration [2]. Bearing in mind that organizations are commonly structured in
SCs [3], Supply Chain Management (SCM) plays a paramount role in promoting their success, achieving
their objectives and, above all, guaranteeing customer satisfaction [4]. In this context, the inventory man-
agement process is considered to be an important driver for the success of a company, notwithstanding the
challenges related to demand and supply uncertainty attached thereto [5]. In the literature, this process
is closely bound up with the volatility of inventory components, namely raw materials, work-in-process,
and finished goods [6].

In highly volatile and dynamic markets, as in the case of the automotive sector, SC managers tend
to order components well beforehand in order to avoid stock-outs. As a corollary, this leads to excess
inventory, as well as to increased holding costs and higher risks of product obsolescence. Therefore, it is
essential to strike the proper balance between stock-outs and excess inventory [6], so that the customer
service level is maintained whilst minimizing total SC costs. Thus, for a given inventory component,
a comprehensive knowledge of its typical profile, based on the dynamic interplay between the various
parameters associated with it, might provide important insights on how to manage it. Moreover, due
to the fact that raw material inventory is directly influenced by interactions with suppliers (see [6] and
references cited therein), the buyer-supplier relationship can also be enhanced during this profiling process.
Indeed, special importance should be attached to this mutual relation. Following the reasoning of Talluri
and Sarkis [7], buyers should monitor supplier performance in such a way that the information derived
from this monitoring process can be shared with suppliers, in order to encourage them to take actions
able to meet the requests of the buyers.

Nonetheless, although the dynamic behavior is an inherent feature within any SC, especially regarding
the stochasticity of SC parameters, it tends to be undervalued or even neglected, particularly with regard
to risk assessment [8]. This, together with the complex business environments characterized by the rapid
growth of generated data [9], puts pressure on companies to take advantage of new approaches and
techniques able to support decision-making processes. At this point, the ultimate purpose relates to the
extraction of valuable insights from raw data, in order to generate new competitive advantages. The
application of these techniques is particular interesting in the framework of the automotive electronics
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sector, for which estimates point to a 8% growth forecast over 2017-2024 with an associated market share
of more than $390 billion by 2024 [10].

Increasingly, Data Mining (DM) techniques have been proposed to improve SC processes, for instance
relating to the ranking, selection and evaluation of suppliers (see, e.g., [11–14]). Up until now, however,
the application of DM techniques in the field of inventory management have not been fully explored, as
other aspects remain to be investigated. Indeed, this statement was recently emphasized by Moharana
and Sarmah [15]. For example, Tsai et al. [16] introduces an association clustering algorithm capable to
group a large number of products with identical demands in a hierarchical fashion, under the can-order
policy model. Simulation experiments showed the benefits of the proposed approach when compared with
di↵erent replenishment models in terms of total profit, sales revenue, as well as holding, shortage and
ordering costs. By contrast, Aqlan [17] applied K-means clustering to group inventory parts according to
di↵erent features. The obtained clusters served as a guideline for warehouse space optimization. Kartal et
al. [18] consider the joint application of multi-criteria decision making approaches with machine learning
algorithms in the field of multi-attribute inventory classification (MCIC). The proposed approach was
conducted in a real-world automotive production company in Turkey and revealed to be applicable to
multiple inventory structures. The benefits resultant of the application of supervised machine learning
methods for MCIC purposes are also highlighted in the research conducted by Lolli et al. [19].

Focusing on methods that do not require a-priori knowledge of underlying patterns, also known as
unsupervised methods [20], this paper addresses the problem of identifying di↵erent profiles for multiple
inventory components based on the interplay between several variables collected from a real-world auto-
motive SC with multiple suppliers. For that, descriptive Data Mining (DM) techniques [21] are employed.
Concretely, the mathematical relationship between ten quantitative and dependent variables is firstly
studied by taking advantage of Principal Component Analysis (PCA). Afterwards, K-means clustering
based on the principal component (PC) scores is used to identify and characterize di↵erent inventory com-
ponent profiles. The derived clusters are validated via 10-fold cross-validation using di↵erent benchmark
clustering models and validity indexes, stressing the relevance of this work in bridging the literature gap
related to the application of DM approaches in the field inventory management, already pointed by [15].
By simplifying the complexity in the dataset without much loss of information, this work contributes to
extant literature by proposing a descriptive DM approach that acts as a monitoring mechanism for the
status of multiple inventory component groups in real-world SC contexts. Moreover, it can be used by
SC managers and practitioners as a supporting tool for the decision-making process, whilst contributing
to the continuous improvement of inventory management.

The rest of the paper is organized as follows. Section 2 presents the real-world collected data, as well
as the selected unsupervised learning models. In Section 3 we describe the PCA framework. Next, the
numerical results derived from the application of K-means based on PCA are analyzed and discussed in
Section 4. Finally, conclusions are carried out in Section 5.

2 Materials and methods

2.1 Dataset

A total of 9806 records, associated with 59 inventory components and 39 worldwide suppliers, were
collected from a major automotive electronics supply chain, located in Europe, for the years of 2016
and 2017. For reasons of confidentiality, we have omitted the company name. Each record represents
information of a given component for a particular day and supplier. Concretely, 12 features were measured,
from which 10 of them are quantitative and dependent variables. After data cleansing, the company
managers manually grouped each component in one of 6 di↵erent categories, namely: “high runner” (4818
records), for fast-moving components; “special freights” (1202 records), referring to products with high
marginal propensity to incur in a special freight (e.g., due to stock-outs events); “critical” (1324 records),
to represent problematic components (e.g., in terms of quality issues or highly demand fluctuation);
“stable” (934 records), to identify components without deviant behaviors; “commodity”, to represent
undi↵erentiated components (577 records), and “common among plants” to represent components that are
used in several company plants (951 records). For this particular dataset, we found that the categories are
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non-overlapping, i.e, each component belongs to one and only one category. However, it should be noted
that further datasets can contain components belonging to more than one category. A short descriptive
analysis of each feature is provided in Table 1.

Table 1: Basic descriptive analysis of the dataset.

Feature Notation Domain Mean/Mode SD Description

qty.rec. F1 [1, 134136] 3572.08 7405.94 Stock quantity received

saf.time F2 [1, 15] 3.26 2.16 Time bu↵er added to the supply lead time that
pushes a delivery order earlier

val.stock F3 [0, 791907.2] 30477.99 65237.26 Monetary value of stock on-hand

cons.stock F4 [0, 14178] 1320.37 1670.86 Quantity of stock expected to be consumed

supp.otd F5 [1, 100] 75.85 25.62 Supplier On-Time Delivery (OTD) score

wh.occup F6 [0, 82] 10.71 10.78 Number of warehouse bins occupied

stock F7 [0, 861172] 16300.98 53068.48 Quantity of stock on-hand

moq F8 [0, 72000] 1285.86 6294.94 Agreed Minimum Order Quantity (MOQ) with
supplier

supp.lt F9 [1, 38] 7.34 9.01 Time interval between ordering and receiving an
item order

nr.end F10 [1, 109] 21.63 28.28 Number of end-items that make use of the com-
ponent in their Bill of Materials

rm.cat. F11 - High runner - Material category ({“Stable”, “High runner”,
“Special freights”, “Critical”, “Commodity”,
“Common among plants”})

geo.loc. F12 - Portugal - Geographical location of the supplier (e.g.,
{“Germany”, “Spain”, “Portugal”, “China”,
“Japan”})

SD = Standard Deviation.

2.2 Selected unsupervised learning models

Two unsupervised learning methods, namely Principal Component Analysis (PCA) and K-means clus-
tering, were tested in order to describe, in a quantitative fashion, the relationships between the variables
Fi, i = 1, . . . , 10, in the data matrix X9806⇥10. A short theoretical introduction of both methods is pro-
vided as follows (see [22, 23] and references cited therein for more detailed information regarding these
topics).

Principal Component Analysis (PCA). As a descriptive and multivariate statistical technique, PCA
was firstly studied by [24] and [25]. In short, PCA intends to compress the dimension of a given dataset,
whilst minimizing statistical information loss [26]. Let X be a (n ⇥ p) data matrix, with n observations
and p features. Considering X as a p-dimensional vector of random features, we denote the covariance
matrix of X by

P
X, with eigenvalues �1 � �2 � · · · � �p � 0 and eigenvectors ↵1,↵2, . . . ,↵p. PCA

seeks to determine a new set of q variables PCi, i = 1, . . . , p where (q ⌧ p), called principal components,
that represent linear combinations of the original features and are uncorrelated with each other in a
descending order of relevance in terms of total variance explained [27]. Each component can be then
interpreted according to the inter-correlated variables that comprise it. Moreover, ↵ij is called the PC
loading and represents the relative contribution of the jth original feature for the ith PC. The elements
of the linear combinations PCi are commonly referred as PC scores. It is noteworthy that the diagonal
elements of

P
X, �i, i = 1, . . . , p, traduce the variance explained by each PC and decrease monotonically

from PC1 to PCp. In this regard, a natural problem that may arise relates to determine how many PCs
should be retained. Albeit this problem continues to be unresolved, some methods have been proposed
in the literature to tackle it [27]. Typically, two approaches are often used to select the number of PCs
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to retain. The first one consists in selecting the PCs in which �i > 1, i = 1, . . . , p. The second involves
retaining the largest number of PCs that, together, account from 70% to 90% of total variance explained
in the dataset. Nonetheless, this interval may vary depending on the data concerned [22].

K-means clustering. Driven by the studies of [28–31], K-means is an iterative descent clustering
method [32], considered to be the most widely used algorithm for partitional clustering [33]. Let X =
{xij}, where i = 1, . . . , n and j = 1, . . . , p, be the set of observations in the data matrix X to be assigned
into a K-dimensional set C = {Ck, k = 1 . . . ,K}. Given the a-priori number of desired clusters K, the
main idea of K-means is to partition the n p-dimensional observations into K clusters in such a way that
the total within-cluster variation, W (Ck), is minimized. Following the formulations of [34], the within-
cluster variation for the kth cluster is typically expressed as the sum of all the pairwise squared Euclidean
distances between the observations in the kth cluster, divided by the total number of observations, |Ck|,
therein contained. This reasoning can be translated into the following optimization problem

min
C1,...,CK

(
KX

k=1

1

|Ck|
X

i,i02Ck

pX

j=1

(xij � xi0j)
2

)
. (1)

Despite of this optimization problem be NP-hard, as pointed in [23], a local optimum can be derived by
taking advantage of a simple algorithm in which each observation is assigned to the cluster whose centroid,
defined by

P
i2Ck

xi|Ck|�1, is closest (in our case in terms of the Euclidean metric). The computation
of the K-means depends on three pre-specified parameters, namely: (1) the number of clusters, K, for
which there is no theoretical approach to define it [23]; (2) the distance metric considered - typically the
Euclidean distance metric, notwithstanding other distance metrics can be used (e.g., Mahalanobis and
Gower); and (3) the initial cluster assignment (also called cluster initialization). Here, it is a common
practice to test di↵erent random initial assignments for a predefined value of K, inasmuch as K-means
does not provide a global optimum. At the end, it is chosen the solution for which the optimization
problem (1) is minimized [23, 34].

In this study, the optimal number K is selected via the R-squared (RS) [35] and the prediction
strength [36] validity indexes. Algebraically, the RS index is defined as RS = 1 � SSw/SSt, where SSw

and SSt are the sum of squares within each group and the total sum of squares for the whole dataset,
respectively. The RS index takes values in the compact interval [0, 1]. At this point, if the value of RS
is 0 there exists no significant di↵erences between clusters. By contrast, values of RS close to 1 indicate
a well separation between clusters, as well as a high degree of homogeneity intra-cluster. Regarding the
prediction strength approach, it treats clustering as a supervised classification problem in which the
main idea is to cluster both train and test data into K clusters and compute, for each test cluster, the
proportion of observation pairs therein contained that are also classified into the same cluster by the
training centroids (see [36] for details).

3 Modeling framework

The numerical experiments presented throughout this section were conducted in the R programming
language [37] with suitably selected packages.

Firstly, we adopt PCA in order to transform a set of correlated variables into a smaller set of linearly
uncorrelated variables, known as PCs, which retain the most relevant information from the original
dataset whilst minimizing information lost. Therefore, with the application of PCA we intend to identify
the most relevant logistic information patterns from a dimensional feature subspace with less than the
number of original features. In the literature, several applications of PCA have been proposed in the
context of SCM, showing relevant benefits on the supplier selection problem in multi-item/multi-supplier
environments [38] or on the extraction of the most relevant sustainability indicators to conduct eco-
e�ciency performance analyses in industrial companies [39]. PCA can also contribute to the identification
of operational risk sources (see, e.g., [40]) and, for our case in particular, to better comprehend the risk
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profiles of the di↵erent inventory items according to the logistic features associated with them. With
this knowledge base, we expect that company experts can develop more e↵ective action plans to improve
and support the inventory control decision-making process. Secondly, the PC scores are used as input
features for K-means clustering. Following this approach it is intended to apply K-means clustering on
a low-dimensional dataset rather than on the original 10-dimensional feature subspace. This represents
a relevant advantage in real-world business contexts inasmuch as it facilitates the use of this approach
by improving its interpretability. Indeed, it is common to combine these two unsupervised strategies for
data dimensional reduction purposes (see [41–43] and references cited therein).

In the next subsections, we provide the details of both PCA and K-means experimental setups.

3.1 PCA experimental setup

The features Fi, i = 1, . . . , 10, presented in Table 1 have di↵erent units of measurement. At this point,
the use the covariance matrix in the original data space would give greater weight to features with more
variance and, in contrast, less weight to features with smaller variance. Therefore, since we intend to
treat all input features on an equal basis, we preferred the use of the correlation matrix rather than the
covariance matrix [22], since with the former all features are typically standardized to unit variance. Note
that the correlation matrix of the original data boils down to the covariance matrix of the standardized
data. In this context, performing PCA on the standardized data is commonly referred to correlation
matrix PCA [26]. Moreover, since classical PCA is not robust to outliers and noise data, we considered
a Minimum Covariance Determinant (MCD)-based PCA (see [44]). The MCD method adopts a highly
robust estimator of multivariate locator and scatter and has been explored to develop robust multivariate
approaches (the reader is referred to [45] for details). Following this approach, it is expected that the
results derived by PCA based on a robust correlation matrix are not overly influenced by the presence of
pre-existing outliers [44]. Concerning the selection of the number of PC included, there exists a trade-o↵
between increasing variance explained while reducing the number of PCs containing irrelevant information
or noise. Following common yet subjective practice [26], we retain the components which account for at
least 70% cumulative explained variance. This leads to the selection of the first 4 PCs, accounting for
approximately 78% of cumulative total variance explained in the dataset (see Fig. 1).
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Fig. 1: Variance (left) and cumulative variance (right) explained as a function of the number of PCs.

Under the Kaiser’s rule [46], the exclusion of the remaining PCs is justified by the fact that the re-
spective eigenvalues are not equal to or greater than one. In this regard, we found through background
analyses (not presented) that the di↵erent samples showed a strong overlap on the higher-order principal
components, which represent the remaining 22% of the variability. Thus, this indicates that there is no rel-
evant logistic information contained therein, and the inclusion of such higher-order principal components
would essentially represent noise.
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On the other hand, since PCs are linear combinations of all the dataset features, we identified, for
each PC, which features can be discarded for the sake of interpretability while preserving as much as
possible statistical information. Typically, this identification is merely based on the magnitude of the
feature loadings, neglecting those with low magnitude, which can be potentially misleading (see [47]).
Thus, in a bid to reduce the subjective nature inherent to the interpretation of PCs [47], we also analyzed
the relationships between the features Fi , i = 1, 2, . . . , 10, and the di↵erent PCs via correlation circles,
in which the features are represented as points in the PC space using their correlations with each PC as
coordinates [27]. Figure 2 plots the correlation circles for the first four PC dimensions.
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Fig. 2: Correlation circles for the first and second (left), and third and fourth (right) PCs.

In both circles, particular attention should be given to the distance between the features and the
origin. The closer a feature is to the unit circle, the higher its relevance for interpreting the concerned
components in detriment of ones closer to the origin. In addition, two arbitrary features projected in
the PC space are said to be positive (negative) correlated variables if they are pointing in the same
(opposite) direction. In contrast, they are said to be unrelated if they are orthogonal to each other. By
way of example, examination of the left circle plotted in Fig. 2 shows that the first PC (PC1) reflects
the components’ inventory levels since it is mostly correlated with the stock quantity received (F1),
the warehouse occupation (F6) and the quantity of stock on-hand (F7). Yet, with the exception of the
stock quantity received, these features seem to have no strong correlation with PC2, which essentially
contrasts the safety time (F2), the supplier lead time (F9) and the monetary value of stock with both
the stock quantity received (F1) by the organization and the number of end-items that make use of
that specific material in their Bill of Materials (F10). Combined, the results derived from the correlation
circles together with both the magnitude and signs of the PC loadings allow us to derive truncated PCs
(PCtr

i , i = 1, . . . , 4). Each PCtr
i is described as follows:

PCtr
1 = 0.4001F1 + 0.3326F4 + 0.4476F6 + 0.5120F7 + 0.2661F8 (2)

PCtr
2 = 0.3208F1 � 0.3751F2 � 0.3480F3 � 0.4363F9 (3)

PCtr
3 = 0.4916F3 � 0.3853F8 (4)

PCtr
4 = 0.6159F8 + 0.5666F9 � 0.0634F3 � 0.4513F5 (5)

The selected subsets of features and the interpretation of each PCtr
i appear summarized in Table

2. Note that the interpretation of each PCtr
i depends both on the magnitude and signs of the variable
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loadings. For instance, the algebraically formulation of PCtr
1 given by Eq. (1) shows that all the variables

that comprise it are inventory-related and the corresponding loadings are positive. Thus, this suggests
that PCtr

1 can be interpreted as a weighted average of the inventory level, where samples with high
PCtr

1 scores exhibit high inventory levels, and vice versa. In contrast, PCtr
2 comprises three variables

with negative loadings and one variable with positive loading. Therefore, high values of PCtr
2 reflect the

contrast of the stock quantity received with the safety time, supply lead time and stock monetary value
of the six di↵erent component categories previously defined.

Overall, it is noteworthy that the truncated PCs are easier to be interpreted when compared to
the original PCs, due to the smaller subset of features which constitute them. Moreover, whatever the
truncated PC concerned, its correlation with the original PC is quite reasonable (� 0.8759), which
corroborates the quality of approximation of the four extracted PCs using the truncated components.

Table 2: Summary of the truncated PCs.

PCtr
i Subset of features Corr(PCtr

i ,PCi) Interpretation

i = 1 {F1, F4, F6, F7, F8} 0.8914 Weighted average of F1, F4, F6, F7, F8

i = 2 {F1, F2, F3, F9} 0.9401 Contrast between F1 and F2, F3, F9

i = 3 {F3, F8} 0.8759 Contrast between F3 and F8

i = 4 {F3, F5, F8, F9} 0.8833 Contrast between F3, F5 and F8, F9

3.2 K-means experimental setup

When choosing the initial centroids and selecting the number of clusters K to retain, multiple random
initial configurations are typically tested. In fact, this approach is considered to be the most widely
used [48]. However, apart from this strategy, there exist other initialization methods suitable for this
purpose (see, e.g., [48]). In this work, 24 sets of cluster centers were obtained via the Ward’s hierarchical
agglomerative clustering method [49]. Then, the derived centroids are used as starting centroids in the
regular K-means approach. Former studies had already pointed the benefits of this adoption for obtaining
good clusters [48, 50]. In this process we considered the Euclidean metric and the Ward2 algorithm [51]
implemented in the hclust function within the R package stats. Based on the RS indexes resulting
from the di↵erent initializations, the number of clusters was then set at K = 4 (left of Fig. 3). This
choice is corroborated by the average prediction strength value (right of Fig. 3) attained for K = 4
(ps|K=4 = 0.8524 with cuto↵ = 0.8 and 100 resampled datasets), which represents a proper threshold for
obtaining well separated clusters [36].
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Fig. 3: R-squared and prediction strength indexes as a function of K.
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4 Results

We hypothesized that PCA can provide valuable information to identify relevant relationships among
samples, and to collect some information regarding the logistic behavior of the various components over
time. Thus, we studied the changes of PC scores in the first two PC dimensions, which explain roughly
54% of the variability, with increasing number of samples from the first semester of 2016 (S1) until the end
of 2017 (S4) (Fig. 4). To confirm this hypothesis, four time frames are considered in subsequent analyses:
S1, containing numerical data related to the first semester of 2016; [S1, S2], representing samples related
to the entire year 2016; [S1, S3], referring to collected data from S1 to the first semester of 2017; and [S1,
S4], containing the whole dataset from 2016 to 2017.

In Fig. 4, each sample is related to a particular component category. In its turn, since the categories are
non-overlapping, each category is coded with a specific color. Figure 4 shows that the samples distribution
on the PC subspaces di↵ers over the time frames considered. In particular, it reveals that with an increase
of the number of samples from [S1, S3] to [S1, S4] some commodities are no longer located on the positive
semi-axis of PC2, meaning that the average stock quantity received related to those components decreased
substantially in that period. In addition, over the year 2016 ([S1, S2]), components prone to special freights
were mainly located on the negative semi-axis of PC2, attaining minimum PC scores of close to -20. Yet,
by gathering the data of 2016 together with the first semester of 2017 ([S1, S3]) we have noticed that the
same PC scores have become increasingly negative over the PC2, which have translated into higher safety
times, supply lead times and monetary stock values for some observations that fall within that specific
component category. Overall, by projecting the PC scores onto the first two PCs over the time window
considered, it was possible to detect important feature-patterns that provide company managers with
valuable insights regarding the status of the di↵erent types of component in that period. Nevertheless,
the di↵erent samples showed a strong overlap on these two PC-dimensions, making it di�cult to identify
any further relevant information among the projected samples. In this case, PCA fails to properly separate
the samples in such a way so as to be able to extract further insights from the dataset. Yet, we were
interested in investigate if this apparent drawback of PCA is motivated by an incorrect classification of
the samples during the data preparation stage, in the sense that there may be samples from distinct
component categories that, due to their similarity, could be grouped into the same category or cluster.

S1 (1851 samples) [S1, S2] (4045 samples) [S1, S3] (6921 samples) [S1, S4] (9806 samples)
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Fig. 4: Evolution of the first two PC scores with increasing number of samples over four distinct time
frames.

4.1 Visualizing PC scores via K-means

In order to further understand the information content in the projected data, the first four PC scores
are now used as features for unsupervised clustering in subsequent analyses. At this point, one could
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note that a combination between K-means and PCA enables to generate and interpret K clusters on a
4-dimensional PC subspace rather than a 10-dimensional feature subspace.

The results of K-means based on the PC scores are presented in Fig. 5, in which panels A and B
represent di↵erent combinations of PC subspaces.
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Fig. 5: Sample clusters determined by K-means. Panels A and B represent di↵erent combinations of PC
subspaces.

A descriptive analysis of the variables in each cluster appears summarized in Table 3. The dynamics
and location of the clustered samples on the di↵erent PC subspaces provide useful information concerning
the behavior of the di↵erent types of components. In particular:

• All of the samples classified into Cluster 2 tend to assume highly positive values on the PC1 (Panel A
Fig. 5), particularly indicating that inventory levels for this component typology tend to be well-above
average.

• The majority of the samples within Cluster 3 tend to strongly assume negative values over PC2,
demonstrating that the safety time, supply lead time and monetary value of stock on-hand for this
class of components are above average. At this point, since safety time pushes delivery orders earlier,
the larger the value of this parameter the greater the amount of stock on-hand and holding costs.
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Thus, attending to the high average stock levels recorded for components within Cluster 3, company
managers should analyze the possibility of decreasing the safety time parameter for some components
within this cluster. This reduction is particularly relevant in the automotive industry in which carrying
the lowest possible level of inventory without neglecting service level is a primary concern [52].

• We found that all samples in the Cluster 2 are also plotted in the negative direction of PC3, thus
particularly suggesting that the values of agreed MOQs with suppliers are well-above average for
commodities. This opens a space so that the company can negotiate less MOQs with suppliers in
order to decrease the high average stock levels related to this component typology (see Table 3).

• The Cluster 1 is the only one containing samples located in the positive direction of PC4 (Panel B of
Fig. 5). Concretely, 35% of the samples therein contained satisfy that condition. This suggests that,
in general, average supplier on-time delivery (OTD) scores for some inventory components within this
category tend to be higher than those recorded for components classified into the remaining clusters.

Table 3: Descriptive statistics of the features for di↵erent clusters.

Feature
Cluster 1 (n = 8257) Cluster 2 (n = 77) Cluster 3 (n = 1376) Cluster 4 (n = 96)

Mean SD Mean SD Mean SD Mean SD

qty.rec. 2811.96 3644.45 3.52 1.67 4247.35 5050.92 62133.88 24589.42

saf.time 2.94 1.87 3.03 0.23 5.14 2.81 4.07 0.62

val.stock 23827.93 42600.12 13249.77 16386.74 69987.24 132501.93 49972.12 11700.65

cons.stock 1286.56 1384.23 6857.42 3152.33 669.99 870.99 9109.10 3211.48

supp.otd. 80.11 24.26 64.68 19.70 52.52 20.48 52.21 8.34

wh.occup. 11.57 11.13 0.00 0.00 6.69 7.27 3.02 1.89

stock 8766.68 10722.34 372110.78 212060.78 17120.40 19482.01 367195.32 85015.91

moq 678.51 1190.89 70784.42 1818.26 953.67 965.59 2541.46 562.97

supp.lt 3.96 3.99 4.49 3.73 26.40 4.77 26.82 1.74

nr.end 23.82 29.64 22.40 20.05 9.68 14.57 3.97 0.31

SD = Standard Deviation.

4.2 Gaining insights from clustered data

Aiming to get a more comprehensive knowledge of the clustering results, we analyzed the proportion of
samples of each one of the 6 categories in the di↵erent clusters. These results are presented in Table 4,
in which the component categories with a strong presence in each cluster are highlighted in boldface.

For the concerned company one of the core and most critical procedures is the shipment process to the
end-customers. Therefore, company managers have suggested to analyze the dynamics of the di↵erent
clusters according to two important variables, namely the average supplier OTD score and the total
number of end-items that require a given component to be produced (Fig. 6).

Table 4: Distribution of categories within the four clusters derived by 4-means.

Category
Cluster 1 Cluster 2 Cluster 3 Cluster 4

n % n % n % n %

High runner 4818 58.4% 0 0% 0 0.0% 0 0%
Stable 752 9.1% 0 0% 181 13.2% 1 1%
Special freights 382 4.6% 0 0% 820 59.6% 0 0%
Commodity 500 6.0% 77 100% 0 0.0% 0 0%
Common among plants 484 5.9% 0 0% 372 27.0% 95 99%

Critical 1321 16.0% 0 0% 3 0.2% 0 0%
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Fig. 6: Cluster dynamics according to selected logistic metrics.

In Fig. 6, each cluster traduces average values and is represented by a circle with radius proportional
to the number of samples (n) of the concerned component category in that cluster. Moreover, all clusters
are labelled according to the category that represents more than 50% of the total cluster size (see Table 4).
We observe that high runner components (Cluster 1) are the ones with the highest average supplier OTD
score. Furthermore, they are necessary to produce several end-items. By contrast, components prone to
special freights show the smallest average supplier OTD score. This finding might seem contradictory at
first inasmuch as one of the primary reasons of using a special freight is to avoid delays [53]. However,
since special freights are last minute emergency shipments, just-in-time arrivals could be undermined if
there is no timely detection for establishing the need for carrying out these shipments by the logistics
planners. In such situations, premium freights are carried out but not su�cient to avoid time deviations
from due dates or even production line stoppages, if the concerned components are necessary to produce
several end-items as these ones are. Hence, as special freights are very costly, future requests should be
carefully and timely planned.

In order to get a better insight into the environment in which the concerned company operates, we
investigated the geographical distribution of the company suppliers according to the obtained clusters
(Fig. 7). In this context, the cluster analyses enable us to ascertain that the majority of high runner
component suppliers are located in Europe, in the neighbourhood of the concerned company. Conversely,
components prone to special freights, which in turn present a lower average supplier OTD score, are
mainly provided by Asian suppliers, normally associated with higher supply lead time values.

Following a subjective cluster evaluation, the aforementioned results and analyses derived therefrom
were validated by the company managers, who confirmed the usefulness of the proposed approaches to
enhance future decision making processes in the field of inventory management. For example, the strategies
herein presented can bring relevant guidelines to set new parameter values into Enterprise Resource
Planning (ERP) systems for the di↵erent components, that so far are established based on objective data
analyses rather than technique. Furthermore, the visibility of the multiple components with multiple
suppliers could also be enhanced with the adoption of these unsupervised learning techniques, enabling
for instance to detect inventory target deviations. At the end, company managers would start adopting
proactive behaviors rather than reactive ones. Another significant advantage resulting from the use of the
proposed approach in practice is the possibility to enhance demand forecasting. Indeed, the classification
of the samples into several homogeneous clusters allows to develop machine learning methods that are
suitable for multiple (but similar) time series rather than train several models, one for each time series.
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Fig. 7: Geographical distribution of the company suppliers according to the 4-means clustering.

4.3 Cluster validity

We compared the results obtained using K-means clustering with those using two flexible clustering
algorithms: spherical K-means clustering [54] and spectral clustering [55].

The spherical K-means clustering is a variant of the classical K-means suitable for high dimensional
datasets, which takes advantage of the cosine dissimilarity measure rather than the Euclidean metric. On
the other hand, given a set of n p-dimensional data points x1, x2, . . . , xn, the classical spectral clustering
transforms the raw data information into an a�nity graph G = (V, E), where each node of V represents a
particular data point while each edge of E traduces the similarity between two distinct data points. For
each edge (i, j) 2 E , there is an associated weight wij that encodes the similarity (or a�nity) between two
data points xi and xj . We denote by W = (wij)ni,j=1 the a�nity matrix of G. Then, the ultimate goal is
to partition V into K subsets {V1, . . . ,VK}. Nevertheless, since the classical spectral clustering generally
has a computational complexity of O(n3), as a result from the computation of the eigenvectors of the
n ⇥ n a�nity matrix W , its applicability to large-scale datasets becomes limited. For this reason, we
adopt the Fast Approximate Spectral Clustering (FASP) algorithm [56], with gaussian mixture modeling
(GMM) to reduce the high computation cost inherent to the classical spectral clustering algorithm.

To obtain the optimal number of clusters K for the spherical K-means clustering algorithm, we
iterated it forK varying from 2 to 25 centers and compare the respective RS indexes. For the case of FASP
algorithm, we follow a recent approach based on eigenvector distributional analysis proposed in [57]. As a
result, we set K = 4, for both spherical K-means and FASP. Aiming to measure the quality of clustering
results, namely in what concerns the compactness and separation of clusters, the silhouette width method

[58] and a Generalized Dunn’s index (GDI) [59] were employed using the Euclidean metric. The latter
metric overcomes some drawbacks of the original Dunn’s index (see [59] for details). The Generalized
Dunn’s index herein presented represents the ratio between the minimum average dissimilarity between
two clusters and the maximum average dissimilarity within clusters. The higher the GDI, the better is
the clustering. Regarding the silhouette width metric, it takes values in the compact interval [�1, 1]. For
a given observation i, a value of S(i) close to 1 translates into a good clustered observation (perfectly



Unsupervised learning approaches for profiling automotive electronic components 13

clustered for S(i) = 1). Conversely, a value S(i) close to �1 indicates that i is probably a misclassified
observation. In terms of internal cluster validation, we followed a 10-fold cross-validation approach to
compute both silhouette and GDI metrics for the test set, by taking advantage of the fpc R package.
Concretely, for each fold, each of the three clustering algorithms was applied to both train and test data.
Then, the training centroids were used to classify the test observations into di↵erent clusters. The derived
clusters were then validated according to the two distance based metrics previously described.

Table 5 presents the clustering evaluation results for the di↵erent validation methods used under
10-fold cross-validation. For this particular dataset, the results show that K-means generate reasonable
structured clusters, outperforming the remaining clustering algorithms in terms of both considered cluster
validation methods. In particular, when the Silhouette width is taken into consideration, the improvement
rate of K-means is observed as 11.3% and 45.3% over spherical K-means and FASP, respectively. The
superiority of K-means also holds when the GDI method is considered, leading to improvement rates of
42.6% and 38.3% over spherical K-means and FASP, respectively.

Table 5: Clustering evaluation results under 10-fold cross-validation for K = 4 (best mean values are
highlighted in boldface).

K-means Spherical K-means FASP

Cluster validation method Mean SD Mean SD Mean SD

Silhouette width 0.6839 0.0107 0.6066 0.0950 0.3742 0.2889
Generalized Dunn’s index 0.8098 0.1627 0.4652 0.3066 0.4998 0.4097

SD = Standard Deviation.

5 Conclusions

Understanding supply chain dynamics is a crucial task, especially with regard to inventory management.
Motivated by the permanent pressure facing the automotive industry to meet customer orders whilst
maintaining low inventory levels, we apply descriptive data mining techniques for profiling di↵erent
inventory component categories. Concretely, we take advantage of real-world data collected from an
automotive electronics SC to: (i) explore the application of PCA as a dimensional reduction technique in
order to summarize the overall data structure, (ii) assess the relevance of combining partitional clustering
with PCA to improve the extraction of important logistic information contained in the leading principle
components, and (iii) provide some managerial guidelines to practitioners who intend to leverage inventory
management for superior performance.

For the case study at stake, our findings suggest that further interpretation of the PCA results is
hampered by the fact that several data samples from distinct component categories overlap at specific
coordinates of the PC score plot. Thus, if the purpose is to identify relevant logistic patterns between the
distinct component samples, partitional clustering is our preferred approach. Yet, when the PC scores are
used as an input for clustering the task of profiling components according to the location of the respective
clusters on the di↵erent PC subspaces is enhanced. Also, PCA revealed to be helpful in transforming our
data into a lower dimensional representation rather than interpreting a higher-dimensional subspace.
Thus, we argue in favor of adopting PCA in combination with K-means.

On the other hand, our results show that there is no relevant distinction among some component
categories since they are classified into the same cluster. This therefore provides evidence in favor of the
application of K-means to identify major clusters of similar components rather than, in practice, classify
them in a manually fashion without multivariate information. The obtained clusters were subsequently
validated via the average silhouette and generalized Dunn’s indexes under 10-fold cross-validation. Overall,
our results confirmed the benefits inherent to the application of unsupervised learning techniques for
inventory components profiling in a real-world context. If applied, these methods have the potential
to extract important insights from the data that may turn out to be very useful to enhance decision
making processes related to the definition of suitable procurement strategies and inventory policies able
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to create value added in the supply chain while reducing supply chain costs. Yet, we acknowledge that
the investigated methods should not be understood as a panacea to tackle any inventory management
problem, but as a complementary tool with the ability to create value in dynamic supply chains. As future
research, we intend to explore a wider set of explanatory variables, as well as to test di↵erent clustering
algorithms under ensemble and consensus methods to derive better data partitions.
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