
Development of Self-diagnosis Tests System1

Using a DSL for Creating New Test Suites for2

Integration in a Cyber-physical System3

Ricardo B. Pereira4

Department of Informatics, University of Minho, Braga, Portugal5

ricardo-97-pereira@hotmail.com6

José C. Ramalho7

Centro Algoritmi (CAlg-CTC), Department of Informatics, University of Minho, Braga, Portugal8

jcr@di.uminho.pt9

Miguel A. Brito10

Centro Algoritmi, Department of Information Systems, University of Minho, Guimarães, Portugal11

mab@dsi.uminho.pt12

Abstract13

Testing Cyber-physical systems (CPS) requires highly qualified engineers to design the tests since14

its computational part is programmed in low-level languages. The origin of this work arises from15

the need to find a solution that optimizes this problem and allows abstracting the current methods16

so that the tests can be created and executed more efficiently. We intend to do this by creating a17

self-diagnosis tests system that allows us to automate some of the current processes in the creation18

and execution of test suites. The work presented here addresses the problem by creating a new19

self-diagnosis tests system that will guarantee the reliability and integrity of the CPS. In detail, this20

paper begins by exposing a study on the current state of the art of test automation, Keyword-driven21

Testing (KDT) methodology and Domain-specific Languages (DSL). A new modular and extensible22

architecture is proposed for self-diagnosis tests systems based on two main concepts: the creation23

of a DSL combined with the use of the KDT methodology, as well as a methodology to extend it24

and integrate it into a CPS. A new self-diagnosis tests system has been proposed that applies the25

proposed architecture proving that it is possible to carry out the self-diagnosis in real-time of the26

CPS and allowing the integration of any type of test. To validate the implementation of the system,27

28 test cases were carried out to cover all its functionalities. The results show that all test cases28

passed and, therefore, the system meets all the proposed objectives.29

2012 ACM Subject Classification Software and its engineering → Parsers; Computer systems30

organization → Embedded and cyber-physical systems; Information systems → RESTful web31

services32

Keywords and phrases Web Application, DSL, Self-diagnosis, Test automation, Cyber-physical33

systems34

Digital Object Identifier 10.4230/OASIcs.SLATE.2021.1835

1 Introduction36

Today, the production of many industrial companies is supported by cyber-physical systems37

(CPS) and, therefore, they must be able to obtain the maximum performance of these38

systems. For this, it is necessary that these systems remain reliable and can guarantee their39

functionality [9]. However, to ensure that these systems work correctly, a diagnosis of them40

is necessary regularly. Testing CPS requires highly qualified engineers to design the tests41

since its computational part is programmed in low-level languages. The origin of this work42

arises from the need to find a solution that optimizes this problem and allows abstracting the43

current methods so that the tests can be created and executed more efficiently. We intend44

© Ricardo B. Pereira, José C. Ramalho and Miguel A. Brito;
licensed under Creative Commons License CC-BY 4.0

10th Symposium on Languages, Applications and Technologies (SLATE 2021).
Editors: Ricardo Queirós, Mário Pinto, Alberto Simões, Filipe Portela, and Maria João Pereira; Article No. 18;
pp. 18:1–18:16

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/475361826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/OASIcs.SLATE.2021.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

18:2 Self-diagnosis Tests System Using a DSL for Creating New Test Suites

to do this by creating a self-diagnosis tests system that allows us to automate some of the45

current processes in the creation and execution of test suites.46

The work presented here addresses the problem by creating a new self-diagnosis tests47

system that will guarantee the reliability and integrity of the CPS. In detail, this paper48

begins by exposing a study on the current state of the art of test automation, Keyword-49

driven Testing (KDT) methodology and Domain-specific Languages (DSL). A new modular50

and extensible architecture is proposed for self-diagnosis tests systems based on two main51

concepts: the creation of a DSL combined with the use of the KDT methodology, as well as52

a methodology to extend it and integrate it into a CPS. A new system of self-diagnosis tests53

system has been proposed that applies the proposed architecture and aims to prove that it is54

possible to perform the self-diagnosis in real-time of the CPS and allow the integration of55

any type of test through the combination of a DSL with the KDT methodology. Some test56

cases were also carried out to validate the implemented solution.57

Section 2 analyzes the state of the art in test automation, KDT methodology and DSL.58

Section 3 describes the structure and architecture of the system. Section 4 describes the59

implementation of the system. Finally, Section 5 concludes and identifies future work.60

2 State of the art61

In this section, a review of the state of the art in test automation will be presented in62

Section 2.1. In Section 2.2, KDT methodolody is presented as well as the advantages and63

disadvantages of using it. In Section 2.3, a brief introduction is made to the concept of64

DSL and, more specifically, how to apply this concept with the Another Tool for Language65

Recognition (ANTLR).66

2.1 Test Automation67

The importance of testing automation is directly related to the quality of the final product.68

The execution of all functional tests before delivery guarantees the lowest incidence of errors69

in the post-delivery of the final product. As such, software developers/creators are required70

that their projects maintain a certain quality standard during all phases of development71

until the launch of a new product. Therefore, testing at the end of each stage no longer72

works in a professional environment. This is because the occurrence/discovery of unforeseen73

obstacles can significantly delay the development of the software. In recent years, it has been74

found that the software development market has increased its competitiveness, due to the75

modernization of the technologies involved and due to the maturity of the capacity to develop76

software. Thus, the range of information technology solutions, to meet the needs of consumer77

organizations, has increased considerably, which ends up making it difficult for users to78

choose when purchasing a product. In this competitive scenario, consumer organizations,79

when opting for software, are increasingly relying on quality criteria. One of the pillars for80

ensuring this quality of the software product is the testing process [1].81

In the current software market, the concern for creating quality and error-free products82

has led companies to look for models and processes that guarantee quality to satisfy the needs83

of their customers. Unsuccessful projects, with expired deadlines and defective products, lead84

to customer dissatisfaction, high maintenance costs and compromise the company’s image.85

The main objective of a software test is to define the implementation of this software that86

meets all the specifications and expectations defined and expected by the customer, that is,87

the objective is to “verify” if what was specified in the requirements phase is what really88

was developed. When verifying that the implemented software meets all specifications and89

R. B. Pereira, J. C. Ramalho and M. A. Brito 18:3

expectations defined and expected by the customer, it also looks for errors in the software.90

The software test must be seen as a part of its quality process.91

Test automation is not limited to just performing the tests but above all being aware of92

when and where the tests need to be carried out, thus leaving the test team more time to93

plan more effective tests with better quality accuracy instead of worrying about scheduling94

them. Thus, automation results in the mechanization of the entire process of monitoring and95

managing the needs for testing and evaluation associated with software development [3].96

2.2 Keyword-Driven Testing97

KDT is a type of functional automation testing methodology that is also known as table-98

oriented testing or action-based testing. In KDT, we use a table format, usually a spreadsheet,99

to define keywords or action words that represent the content of the tests in a simple way.100

But it also allows the use of a keyword to represent part of the test case and in this way101

make the creation of the test case simpler, since we can reuse the keywords and the whole102

process they represent in different test cases. It allows novice or non-technical users to write103

tests more abstractly and it has a high degree of reusability. Industrial control software has104

been having an enormous increase in complexity as technology has developed and requires a105

systematic testing approach to enable efficient and effective testing in the event of changes.106

KDT has been proving that it is a valuable test method to support these test requirements107

[16]. Recent results from other researchers have shown that the design of the KDT test is108

complex with several levels of abstraction and that this design favours reuse, which has the109

potential to reduce necessary changes during evolution [6]. Besides, keywords change at110

a relatively low rate, indicating that after creating a keyword, only localized and refined111

changes are made. However, the same results also showed that KDT techniques require tools112

to support keyword selection, refactoring, and test repair [4].113

2.2.1 Advantages114

Fast execution of test cases;115

Software testing in less time;116

All manual testing problems are solved by automated testing;117

Repeating test cases are handled in an easy way.118

2.2.2 Disadvantages119

Sometimes some knowledge of programming and skill is needed to use these tools;120

Maintenance is a complicated task and can be expensive;121

2.3 Domain-Specific Language122

DSL is a language meant to be used in the context of a particular domain. A domain could123

be a business context or an application context. A DSL does not attempt to please all.124

Instead, it is created for a limited sphere of applicability and use, but it’s powerful enough125

to represent and address the problems and solutions in that sphere [5]. A DSL can be126

used to generate source code from a keyword. However, code generation from a DSL is not127

considered mandatory, as its primary purpose is knowledge. However, when it is used, code128

generation is a serious advantage in engineering. DSL will never be a solution to all software129

engineering problems [10], but their application is currently unduly limited by the lack of130

knowledge available to DSL developers, so further exploration of this area is needed [7].131

SLATE 2021

18:4 Self-diagnosis Tests System Using a DSL for Creating New Test Suites

Other researchers used DSL in CPS and left their testimony of how the specification language132

hides the details of the implementation. The specifications are automatically enriched with133

the implementation through reusable mapping rules. These rules are implemented by the134

developers and specify the execution order of the modules and how the input/output variables135

are implemented [2]. This allows the reuse of software components (e.g. modules or classes)136

and improves software productivity and quality [8].137

2.4 ANTLR138

ANTLR is a parser generator, a tool that helps you to create parsers [12]. A parser takes a139

piece of text and transforms it into an organized structure, a parse tree, also known as an140

Abstract Syntax Tree (AST) [15]. AST is like a story describing the content of the code, or141

its logical representation, created by putting together the various pieces [13]. Figure 1 shows142

the parsing process.143

Figure 1 Block diagram of a standard Language Processor

The Parsing process shown in Figure 1 goes through three major phases explained below:144

Lexical Analysis:145

It is performed by a component usually called Lexer, Lexical Analyser or Tokenizer;146

The Lexer reads and divides the input (character or byte stream) into tokens applying147

lexical rules;148

Lexical rules are defined using regular expressions and aim to identify terminal symbols149

and specify tokens;150

In the end, the Lexer generates a token stream as output.151

Figure 2 shows the illustration of this process.152

Syntactic Analysis:153

It is performed by a component usually called Parser, Syntatic Analyser or Grammar;154

The parser gives the token stream a structure by checking token order against structural155

rules;156

These Structural rules define the order and structure of token combination;157

In the end, the Parser generates a parse tree as output.158

Figure 3 shows the illustration of this process.159

Transformations:160

It is performed by a component usually called Transformer or Walker and it follows161

the pattern Visitor or Listener;162

The Transformer traverses the parse tree in order to produce some output;163

The traversal defines an action for each node of the parse tree;164

The action can output text (string) or any other complex object.165

Figure 4 shows the illustration of this process.166

R. B. Pereira, J. C. Ramalho and M. A. Brito 18:5

Figure 2 Block diagram of a Lexical Analyzer

Figure 3 Block diagram of a Syntactic Analyzer

Figure 4 Block diagram of a Transformer

SLATE 2021

18:6 Self-diagnosis Tests System Using a DSL for Creating New Test Suites

ANTLR is a parser generator that uses ALL(*). It parses the input dynamically at167

runtime and uses a top-down parser left to right by constructing a Leftmost derivation of168

the input and looking any number of ahead tokens when selecting among alternative rules169

[14]. The Visitor pattern let us decide how to traverse the tree and wich nodes we will visit.170

It also allows us to define how many times we visit a node [11].171

3 Architecture172

As the architecture incorporates several diversified components, its modelling was divided173

into two phases. In the first phase, the part of the architecture that refers to the system to174

be developed and that includes the management and configuration of the tests are explained.175

In the second phase, the general architecture of the CPS is presented.176

3.1 Self-diagnosis Tests System Architecture177

To obtain a complete understanding of this architecture, it is necessary to understand the178

3 tiers that are present, Frontend, Backend and Database. We can see the architecture in179

figure 5, shown below:

Figure 5 Proposed architecture for self-diagnosis tests system

180

3.1.1 Frontend181

In this tier, we have two first elements, OPERATOR and TEST MANAGER, which represent the182

two types of users that the system has. Therefore, according to the permissions of each183

one, this tier makes available to each user the respective interface that will give access184

to the realization of the functions of each one in the system. The two elements below in185

the tier, TESTS EXECUTION and SYSTEM CONFIGURATION, represent the different interfaces186

that each user will have access to. In this case, the OPERATOR type user will have access187

to the system TESTS EXECUTION mode and the TEST MANAGER type user will have access to188

the SYSTEM CONFIGURATION mode. The last element of this tier, USER INTERFACE SERVER,189

represents the logic of the Client. It is in charge of implementing any logic that exists in this190

tier, such as, for example, providing an adequate interface for the type of user that must191

comply with it or even the manipulation of data in the formation of web pages. It is also192

this server that establishes the connection to the Backend tier, making HTTP requests to193

request data or actions, receiving and validating data that arrives through HTTP responses.194

R. B. Pereira, J. C. Ramalho and M. A. Brito 18:7

3.1.2 Backend195

The Backend tier, unlike what was done in the Frontend tier, will be analyzed from the bottom196

up, as it will be understood more intuitively. In this tier, we start by looking at two elements197

in parallel. The OBJECT DATA MODELING element represents the module responsible for198

establishing the connection between this tier and the Database tier, that is, it is this module199

that performs the queries and receives data from the database. Element TESTS MANAGEMENT200

is responsible for the acquisition and management of the primitive tests of the system and201

the configuration of new test suites for the system, using the KDT methodology and a202

DSL. Above, we see the BUSINESS LOGIC SERVER element that represents the Server that203

implements all the logic of this tier. This component is responsible for executing the tests and204

for the internal organization of all other components of this tier. Manages all data arriving205

at the system, guaranteeing its integrity, and also provides the routes or services through206

which this tier responds to Clients requests. The last element of this tier, API FRAMEWORK, is207

responsible for building and making the REST API available to the Client. This element208

implements the routes that are created in the BUSINESS LOGIC SERVER element and, in this209

way, the Client can make HTTP requests to the Server.210

3.1.3 Database211

Finally, it remains only to present and explain the Database tier, which is also the simplest212

tier of this architecture. It consists of the system database, which is a document database that213

stores documents in JSON. All data sent to the Backend tier, via OBJECT DATA MODELING, is214

in JSON, which is an advantage because all data processing and manipulation in the system215

is always done in this format.216

3.2 General Architecture for Cyber-Physical System217

In this section, the final CPS architecture is presented and explained, where we integrate all218

its components with the self-diagnosis tests system. This architecture enables the CPS to219

diagnose itself and, thus, be able to identify the failures in case of any internal error. The220

architecture, being the final abstraction of the system, can be seen in figure 6.221

Figure 6 Proposed architecture for a self-diagnosis test system integrated with the CPS

SLATE 2021

18:8 Self-diagnosis Tests System Using a DSL for Creating New Test Suites

In this architecture, we can easily identify 4 component groups in which three of them222

will form an integral part of the CPS: Devices Under Test, Electronic Test Drivers and the223

Self-Diagnosis Tests System. The last group will be an important intervenient, but it is not224

an integral part of the CPS, the User Types. Each of these groups will be explained in detail,225

as each has its particularities.226

The Devices Under Test group contains, as the name implies, the devices that can be227

subjected to tests which are the car radios and the machine itself. The elements CAR RADIO228

and TSIM MACHINE represent the two types of devices, the car radio and the machine,229

respectively. The Electronic Test Drivers group is responsible for the primitive tests of the230

system, which in this case will be mostly electronic tests, but which can be any type of test231

as long as they respect the same integration format. Each element of this group must respect232

the following format:233

EXECUTABLE DRIVER - Provides an executable driver file to run that will contain several234

primitive tests that can be run and test the Devices Under Test;235

METADATA - Provides a metadata file that contains all the information about the tests236

that the driver can perform.237

The Self-Diagnosis Tests System group is where the system developed in this work is238

represented, which will allow users to manage and execute the system tests. This system will239

be fed with primitive tests from the group of Electronic Test Drivers. The TESTS MANAGEMENT240

element is responsible for loading all the metadata of the primitive tests, available in the241

METADATA files of the Electronic Test Drivers group, and managing them so that they are242

saved in the system database and are available for execution.243

The link element with the system database is the OBJECT DATA MODELING that will make244

the connection and handle queries and transactions to the database, which is the DATABASE245

element.246

This test management is done through the KDT methodology, and the configuration247

of new test suites made through the developed DSL. The tests will be performed by the248

BUSINESS LOGIC SERVER element, which will receive the execution orders from the end-user249

and proceed with the executions. The way to do this is to execute the drivers that are250

available as executable files. This Server will know which tests are available to execute on251

each driver since the TESTS MANAGEMENT element has already collected the metadata of all252

drivers and at that moment made available for execution, all the tests contained therein.253

This entire organization is orchestrated by the Server, which is responsible for the logic of254

the system and is represented by the element BUSINESS LOGIC SERVER. This Server not only255

controls all the data and logic of the system but also defines the routes and types of requests256

that can be made by the Client-side. It defines the services that will be available and this257

is called an API. The API FRAMEWORK element is responsible for creating and providing a258

REST API for any client to access, but obviously with the appropriate permissions, also259

defined by the BUSINESS LOGIC SERVER.260

In this system architecture, USER INTERFACE SERVER represents the Client-side, that is,261

it is the server responsible for creating the web interface for end-users. It makes HTTP262

requests specifying the services, through routes, that it wants to access, to obtain the data it263

needs for its pages. Two types of interfaces are available, the execution interface, represented264

by the TESTS EXECUTION element, and the test and configuration management interface,265

represented by the SYSTEM CONFIGURATION element. Each of these interfaces will have its266

correspondent as a user, which brings us to the last group specified in the architecture, the267

User Types.268

R. B. Pereira, J. C. Ramalho and M. A. Brito 18:9

This group is represented by the USER TYPES element and represents the different types269

of users of the final system. The first and most basic type of user is the OPERATOR, that is,270

the industrial operator who is working and commanding the CPS and performs only the271

tests or test packages of the system. The second type of user, already more sophisticated, is272

the TEST MANAGER, who is someone with the responsibility of managing the entire system,273

using the appropriate interface for that.274

4 Implementation275

This section describes the implementation of the system and its validation. Thus, Section276

4.1 explains each collection of data maintained in our database. Section 4.2 describes the277

Backend tier where the system logic is, including the management of the system data and278

the configuration and execution of the tests. Section 4.3 describes the Frontend tier that279

contains the user interface and the different features available for each type of user. Finally,280

Section 4.4 presents the results obtained from the validation performed to ensure the correct281

functioning of the system.282

4.1 Database283

For the database, MongoDB was used, which is a document database, that is, it stores284

the data in the form of JSON documents. According to the data that the system needs, 5285

collections of data have been identified to be stored in the database: Configurations, Tests,286

Packages, Reports and Schedules.287

The configuration collection contains attributes about some configurations that may differ288

from machine to machine and are necessary to ensure the correct functioning of the system.289

The tests collection stores all metadata for the system’s primitive tests. This metadata290

is provided by those who create and make the primitive tests available, so they are only291

imported into the system database and updated whenever there are changes. The packages292

collection stores all metadata for the new test suites that are created in the system from the293

primitive tests. The reports collection stores all reports of execution of primitive tests or test294

packages in the system. The schedules collection stores all primitive test executions or test295

suite executions scheduled for a specific time by the user.296

After specifying the data to be saved in each collection of the system’s database, the next297

section will explain how the system interacts with the database, through queries, to obtain298

the data for its operation.299

4.2 Backend300

The Backend is the system tier responsible for managing the database and making the data301

available to Frontend. Therefore, framed in the MVC architecture, it is the Controller of the302

system and establishes the connection between the database and the user interfaces, thus303

guaranteeing the integrity of the data, not allowing other components to access or change304

them.305

The technology used to develop this server was Node.js combined with Framework Express.306

This server is organized so that there is a division of the code according to its function, that307

is, instead of all the code being in one file, it was divided into different files and directories308

according to its purpose on the server. This will allow the reuse and modularity of the309

developed code, which will also facilitate its maintenance and understanding in the future.310

Thus, the server structure is as follows:311

SLATE 2021

18:10 Self-diagnosis Tests System Using a DSL for Creating New Test Suites

Models: Here are the models that correspond to the collections saved in the database.312

Each model contains the attributes corresponding to its collection and performs validations313

related to data types to ensure that wrong data types are not inserted into the database;314

Controllers: Here are the files responsible for performing all system operations, such as315

database queries, executing primitive tests and test suites, and creating new test suites316

using the DSL defined;317

Grammar: Corresponds to the DSL developed for the system, where is the grammar,318

composed by a Lexer and a Parser, and the Visitor that generates the code for the new319

test suites;320

Routes: Here is the file that routes the requests, from the client, that is, from the user321

interfaces to the controllers, according to the URL request. As soon as the requested322

operations are completed, sends the requested data to the client.323

Each of these elements mentioned above, has a fundamental role in the Server’s logic, so324

each of them will be explained in the next subsections individually.325

4.2.1 DSL326

The DSL developed aims to enable the creation of new test suites, from the primitive tests327

available in the system, with rules and logic applied. This will allow the test suites to328

be optimized to execute in the shortest possible time and may shorten certain executions329

whenever the suite specifies it. The language was created from the identification of terminal330

symbols, that is, the symbols that would be identified by Lexer. After this step, the Parser331

was created, where the rules of logic and sentence construction of the grammar are specified.332

The terminal symbols of the DSL are shown in table 1, where the respective descriptions333

are also shown.334

Symbol Description
keyword Catches the keywords in the script

-> Catches the "next" symbol, which means that after that symbol the next block
to be executed arrives

(Catches the opening parenthesis
) Catches the closing parenthesis
? Catches the conditional expressions from the script
: Catches the next block of code to be executed when a condition is false
& Catches the logical operator that means intersection
| Catches the logical operator that means union
; Catches the end of the script

Table 1 DSL Symbols Description

The Lexer structure is shown below in Listing 1:335

Listing 1 Grammar Lexer
336

lexer grammar TestLexer ;337

338

NEXT : ’->’ ;339

AND : ’&’ ;340

OR : ’|’ ;341

342

IF : ’?’ ;343

R. B. Pereira, J. C. Ramalho and M. A. Brito 18:11

ELSE : ’:’ ;344

345

RPAREN : ’)’ ;346

LPAREN : ’(’ ;347

348

END : ’;’ ;349

350

KEYWORD : ([A-Za -z]+([/ _ -][A-Za -z]+)*)351

;352

353

WS354

: [\r\n\t] -> skip355

;356357

The structure of the Lexer is quite simple, starting with its identification and then just358

specifying all terminal symbols that must be recognized. The way these symbols are specified359

is through regular expressions, that is, for each symbol the regular expression that represents360

it is defined, however, always taking care that this definition does not include unexpected361

elements and, therefore, is not ambiguous.362

The symbols we see in this grammar are very intuitive and this is also one of its advantages,363

as it will be easy for the end-user to understand, which is one of the objectives. The only364

symbol that gives rise to any further explanation is the KEYWORD symbol. This symbol must365

recognize all the names of the primitive tests introduced in the script and, therefore, its366

regular expression includes isolated words or also the composition of several words, thus367

giving the user some freedom to be more expressive in the choice of keywords since this it is368

also the purpose of the KDT methodology applied in the system.369

After defining the terminal symbols and the Lexer specification, it is time to specify the370

sentence construction rules with these symbols and this is done in the Parser, which is shown371

below in Listing 2:372

Listing 2 Grammar Parser
373

parser grammar TestParser ;374

375

options {376

tokenVocab = TestLexer ;377

}378

379

test380

: statement END381

;382

383

statement384

: condition # Conditional385

| seq # Sequence386

;387

388

condition389

: expr IF statement ELSE statement # IfElse390

| expr IF statement #If391

;392

393

seq394

: KEYWORD (NEXT statement)*395

;396

SLATE 2021

18:12 Self-diagnosis Tests System Using a DSL for Creating New Test Suites

397

expr398

: LPAREN KEYWORD (AND KEYWORD)* RPAREN #And399

| LPAREN KEYWORD (OR KEYWORD)* RPAREN #Or400

;401402

The Parser also starts with its identification, following the reference for the Lexer that403

it provides the symbols to be able to know which are the terminal symbols. After these404

two steps, the sentences of the grammar are specified and here there is no more than a405

specification of the sequences that the elements of the language can follow. We can see,406

for example, in the element statement two possibilities. One possible statement is the407

condition that represents a conditional expression and the other possibility is a seq that408

represents a tests sequence. The most important part of the Parser to retain is the elements409

that come at the end of the lines for each possibility determined at the beginning of words by410

a #. This allows the Visitor to know the possible paths in the parsing tree that this Parser411

will generate.412

So that this grammar can now be used by the system and generate the parsing tree that413

will be interpreted by the Visitor, it is still necessary to find a way to use it in the system.414

Since ANTLR offers the transformation of these grammars for several known programming415

languages, we will proceed to transform the grammar into JavaScript and include the code416

directly in the system. For this, it is necessary to execute the following command:417

$ antlr4 -Dlanguage=JavaScript Lexer.g4 Parser.g4 -no-listener -visitor418

In this command, we specify the Lexer and Parser to be transformed and we also specify419

that we do not want the generation of a Listener because, by default, it generates the Listener.420

Finally, we specify the generation of a Visitor because, by default, it does not generate the421

Visitor. After executing this command, several files will be generated, among which, the422

Visitor that will be the most important in the next steps, as this is where the code to be423

generated for the new test suites will be specified.424

We can see below, in Listing 3, an example of a Visitor function:425

Listing 3 Grammar Visitor
426

TestParserVisitor . prototype . visitAnd = function (ctx) {427

this.auxOp = 0;428

for (let i = 0; i < ctx. KEYWORD (). length ; i++) {429

this. auxList .push(ctx. KEYWORD (i));430

}431

return "";432

};433434

The Visitor’s strategy developed is to go through the code script through the elements435

specified in the Parser and each element generate the corresponding code. The generated436

code, within the Visitor, is nothing more than a string that is incremented and filled up to437

the end of the parsing tree. All keywords are also being saved in a list so that the list and438

the string containing the generated script are returned at the end. The list of keywords is439

necessary because after generating this code it will be necessary to match the keywords with440

the primitive tests but this is a process already done in the packages controller.441

4.3 Frontend442

The frontend is the system tier responsible for creating and managing graphical interfaces443

for end-users. In this case, there are two types of users in the system, and it is important to444

R. B. Pereira, J. C. Ramalho and M. A. Brito 18:13

understand well the limits on what each one should be allowed to do or not do. The first445

type of user, more basic, will only have access to the execution of primitive tests and test446

suites. The second type of user, already responsible for managing the system and also the447

test suites for it, has access to all other features. The technology used to develop this tier448

was React, as it will allow us to create dynamic interfaces, with components managing their449

state and the possibility to compose the components themselves. This allows the code to be450

modularized and, in the future, it will be easier to understand the code.451

4.3.1 Components452

As mentioned, the development of components in React becomes an asset, but to master the453

use of technology it is necessary to understand the fundamentals and the way the components454

interact with each other. The three concepts that we highlight are the following:455

State: The state of a component is mutable and can be changed by the component itself,456

due to the actions performed by the user. Information stored in a component’s state can457

be accessed as attributes of the component, such as "this.state.name";458

Props: Props are state information from a parent component to a child component, so459

the child cannot directly change the props but can access them in the same way as the460

parent, such as "this.props.name". They are generally used to determine some properties461

of the child component when it is created;462

Events: Events are how the child component should inform the parent component of463

changes that have occurred. This is how a child component can change the state of464

the parent component, through events that will inform the parent component so that it465

updates its state.466

Thus, to understand how these concepts apply in practice and make the most of the use467

of React components, we can see below, in figure 7, an illustration of how these concepts are468

related:469

Figure 7 Interactions between reaction components

4.3.2 Obtaining API data470

Another important aspect for this part of the system to work as planned is to obtain the data471

that is managed by the Backend tier. For the graphical interfaces built to be as optimized as472

SLATE 2021

18:14 Self-diagnosis Tests System Using a DSL for Creating New Test Suites

possible and quick in obtaining data, so that the user does not have to wait long to load473

the pages, the data must be obtained in the best way. And here the decision made was that474

the parent components of each page make the data requests to the API at the time of its475

creation. With this, what happens on the system pages is that whenever the user changes476

the page or enters a new page, the data is requested and loaded. This will allow the actions477

taken by the user on the components belonging to these pages to be carried out much more478

quickly, giving the user the perception that nothing has happened when real events and state479

changes have already occurred witch allows the page to become dynamic with desired speed.480

The way to obtain the data is through HTTP requests, explained previously, therefore,481

to make the code clearer, a dedicated file was created for request methods. This file contains482

the base URL of the Data API and all methods add only the route and sub-route as needed.483

We can see below, in Listing 4, an example of a method of obtaining data by making an484

HTTP request to the data API:485

Listing 4 Example of request to obtain API data
486

export const getTests = async () => {487

try {488

const response = await axios.get(‘${url }/ tests ‘);489

return response .data;490

} catch (error) {491

const statusCode = error. response ?492

error. response . status :493

500;494

throw new Error(statusCode . toString ());495

}496

};497498

In this example, we can see how HTTP requests are made to the API. These requests499

are made through the imported module "Axios" since the technology does not provide this500

functionality natively. Another important feature that we see in this example is the use of501

the keyword "await", which in this particular case makes the method wait for the results502

of the API. This is also one of the strong characteristics of the technologies used, as they503

perform I/O operations asynchronously by default.504

4.3.3 User Interfaces505

Only one page will be demonstrated in this paper for the same reason that previously only506

the implementation of DSL was demonstrated. This is the page for managing and configuring507

new test suites for the system, which can be seen in figure 8. The user has on this page at his508

disposal the list of existing packages in the system, where he can remove or edit them. There509

is also a form for creating a new test suite, where the user only needs to specify the name,510

description and code of the new test suite. The code is written with the DSL presented511

earlier. In this case, the elements that can be used to write the code are the connectors512

below the form that are made available to the user according to the status of their script, to513

help the user and try to avoid errors. The other elements to include in the script are the514

primitive tests, and these are made available in a list next to the form where the user can515

even see their description to understand what the test does. To include a test in the script,516

the user just needs to click on it and it is automatically added to the script. This way, the517

user does not need to write anything manually, having to select the elements he wants to518

add to the script.519

R. B. Pereira, J. C. Ramalho and M. A. Brito 18:15

Figure 8 Package creation and management page

4.4 Validation520

Having already implemented the system with all the requirements that were established,521

several test cases were created to be carried out in the system to validate the solution and522

confirm the fulfilment of all the proposed objectives. The first tests were carried out on the523

most fundamental functionalities of the system, the execution of the tests and the automation524

of the update in the face of changes introduced in its supply. Several test scenarios were525

simulated and the system behaved as expected, passing all performed tests.526

In total, 28 test cases were carried out covering all the functionality of the system and in527

some of them with more than one test case. No more test cases were carried out because the528

time it would take to do so is immense, but the test cases performed were considered to be529

the most comprehensive cases and therefore will give the greatest coverage of requirements.530

After analyzing all the results obtained in the tests and verifying that they all passed, we531

can say that all requirements have been successfully implemented and the system is ready to532

be integrated with the other components.533

5 Conclusions and Future Work534

The main contributions of this paper are the design of the architecture to integrate a self-535

diagnosis tests system into a CPS and its implementation. This architecture provides a536

modular and extensible solution so that the system can be integrated with the CPS and537

perform any type of test. The system was implemented based on the proposed architecture,538

but only the part of the implementation corresponding to the DSL was demonstrated due to539

the paper size limit. To validate the implementation of the system and its compliance with540

the established requirements, 28 test cases were carried out to cover all requirements. All541

test cases have passed and, therefore, the system meets all the objectives.542

The proposed modular and extensible architecture represents an innovation for research543

in self-diagnosis systems and CPS, as it allows the combination of these two types of systems,544

through the use of KDT methodology with a DSL to manage and configure the tests of the545

system. This architecture also allows the execution of the tests to be done remotely or by any546

other system with permission to make HTTP requests to the API REST provided. Although547

the focus of the architecture is the application in a CPS, it is also applicable to any type of548

system, since it is generic to accept any type of test. With this work, we proved that it is549

SLATE 2021

18:16 Self-diagnosis Tests System Using a DSL for Creating New Test Suites

possible to integrate self-diagnosis tests systems into a CPS with a practical and also generic550

solution that can be integrated with other types of testing systems.551

As future work, it would be interesting to improve the interface for creating new test552

suites in the system. Although the solution currently implemented is practical and allows553

good use, it could be even more practical and simple for the user if a drag and drop window554

were developed in the design of new test suites instead of writing a code script.555

References556

1 Márcio Filipe Alves Carvalho. Automatização de testes de software, 2010. URL: https:557

//files.isec.pt/DOCUMENTOS/SERVICOS/BIBLIO/teses/Tese_Mest_Marcio-Carvalho.pdf.558

2 S. Ciraci, J. C. Fuller, J. Daily, A. Makhmalbaf, and D. Callahan. A runtime verification559

framework for control system simulation. In 2014 IEEE 38th Annual Computer Software and560

Applications Conference, pages 75–84, 2014. doi:10.1109/COMPSAC.2014.14.561

3 Guru99. What is automation testing?, 2021. URL: https://www.guru99.com/562

automation-testing.html.563

4 R. Hametner, D. Winkler, and A. Zoitl. Agile testing concepts based on keyword-driven564

testing for industrial automation systems. In IECON 2012 - 38th Annual Conference on IEEE565

Industrial Electronics Society, pages 3727–3732, 2012. doi:10.1109/IECON.2012.6389298.566

5 Felienne Hermans, Martin Pinzger, and Arie Van Deursen. Domain-specific languages in567

practice: A user study on the success factors. In Lecture Notes in Computer Science (including568

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2009.569

doi:10.1007/978-3-642-04425-0_33.570

6 Jingfan Tang, Xiaohua Cao, and A. Ma. Towards adaptive framework of keyword driven571

automation testing. In 2008 IEEE International Conference on Automation and Logistics,572

pages 1631–1636, 2008. doi:10.1109/ICAL.2008.4636415.573

7 Tomaž Kosar, Sudev Bohra, and Marjan Mernik. Domain-Specific Languages: A Systematic574

Mapping Study. Information and Software Technology, 2016. doi:10.1016/j.infsof.2015.575

11.001.576

8 Charles W. Krueger. Software Reuse. ACM Computing Surveys (CSUR), 1992. doi:10.1145/577

130844.130856.578

9 Edward A. Lee. Cyber physical systems: Design challenges. In Proceedings - 11th IEEE579

Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing, ISORC580

2008, 2008. doi:10.1109/ISORC.2008.25.581

10 Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop domain-582

specific languages. ACM Computing Surveys, 2005. doi:10.1145/1118890.1118892.583

11 Jens Palsberg and C. Barry Jay. The essence of the Visitor pattern. In Proceedings -584

International Computer Software and Applications Conference, 1998. doi:10.1109/CMPSAC.585

1998.716629.586

12 T. J. Parr and R. W. Quong. ANTLR: A predicated-LL(k) parser generator. Software:587

Practice and Experience, 1995. doi:10.1002/spe.4380250705.588

13 Terence Parr and Kathleen Fisher. LL(*): The foundation of the ANTLR parser generator.589

In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and590

Implementation (PLDI), 2011. doi:10.1145/1993498.1993548.591

14 Terence Parr, Sam Harwell, and Kathleen Fisher. Adaptive LL(*) parsing. ACM SIGPLAN592

Notices, 2014. doi:10.1145/2714064.2660202.593

15 Gabriele Tomassetti. The antlr mega tutorial, 2021. URL: https://tomassetti.me/594

antlr-mega-tutorial/.595

16 X. Zhou, X. Gou, T. Huang, and S. Yang. Review on testing of cyber physical systems: Methods596

and testbeds. IEEE Access, 6:52179–52194, 2018. doi:10.1109/ACCESS.2018.2869834.597

https://files.isec.pt/DOCUMENTOS/SERVICOS/BIBLIO/teses/Tese_Mest_Marcio-Carvalho.pdf
https://files.isec.pt/DOCUMENTOS/SERVICOS/BIBLIO/teses/Tese_Mest_Marcio-Carvalho.pdf
https://files.isec.pt/DOCUMENTOS/SERVICOS/BIBLIO/teses/Tese_Mest_Marcio-Carvalho.pdf
https://doi.org/10.1109/COMPSAC.2014.14
https://www.guru99.com/automation-testing.html
https://www.guru99.com/automation-testing.html
https://www.guru99.com/automation-testing.html
https://doi.org/10.1109/IECON.2012.6389298
https://doi.org/10.1007/978-3-642-04425-0_33
https://doi.org/10.1109/ICAL.2008.4636415
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.1145/130844.130856
https://doi.org/10.1145/130844.130856
https://doi.org/10.1145/130844.130856
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1109/CMPSAC.1998.716629
https://doi.org/10.1109/CMPSAC.1998.716629
https://doi.org/10.1109/CMPSAC.1998.716629
https://doi.org/10.1002/spe.4380250705
https://doi.org/10.1145/1993498.1993548
https://doi.org/10.1145/2714064.2660202
https://tomassetti.me/antlr-mega-tutorial/
https://tomassetti.me/antlr-mega-tutorial/
https://tomassetti.me/antlr-mega-tutorial/
https://doi.org/10.1109/ACCESS.2018.2869834

	1 Introduction
	2 State of the art
	2.1 Test Automation
	2.2 Keyword-Driven Testing
	2.2.1 Advantages
	2.2.2 Disadvantages

	2.3 Domain-Specific Language
	2.4 ANTLR

	3 Architecture
	3.1 Self-diagnosis Tests System Architecture
	3.1.1 Frontend
	3.1.2 Backend
	3.1.3 Database

	3.2 General Architecture for Cyber-Physical System

	4 Implementation
	4.1 Database
	4.2 Backend
	4.2.1 DSL

	4.3 Frontend
	4.3.1 Components
	4.3.2 Obtaining API data
	4.3.3 User Interfaces

	4.4 Validation

	5 Conclusions and Future Work

