
 João Pedro Antunes Gomes da Silva Reis

Cache-based Timing Side-channels
in Partitioning Hypervisors

 Dezembro de 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/475361744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

João Pedro Antunes Gomes da Silva Reis

Cache-based Timing Side-channels
in Partitioning Hypervisors

Dissertação de Mestrado em Engenharia Eletrónica
Industrial e Computadores

Trabalho efetuado sob a orientação do

Professor Doutor Sandro Pinto

Dezembro de 2019

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras

e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos

conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não

previstas no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da

Universidade do Minho.

Atribuição-NãoComercial-CompartilhaIgual
CC BY-NC-SA

https://creativecommons.org/licenses/by-nc-sa/4.0/

Agradecimentos

As minhas primeiras palavras de apreço são dirigidas ao meu orientador Professor Doutor Sandro

Pinto, pela partilha de conhecimento e sugestões ao longo da dissertação. De igual forma, agradeço ao

Mestre José Martins pela prontidão e celeridade com que acorreu às minhas dúvidas. A disponibilidade

que sempre demonstraram no decorrer da dissertação e o informalismo que demarcou a nossa relação,

tornaram a realização da dissertação um projeto proveitoso e aprazível.

A todos os meus companheiros do laboratório Embedded Systems Research Group que me

acompanharam durante a dissertação, agradeço os momentos importantes de companheirismo vividos

durante o ano.

Em último, mas não menos importante, agradeço à minha família, especialmente aos meus pais e

ao meu irmão, por me terem dado apoio incondicional e me terem alegrado nos momentos de maior

angústia.

Um obrigado a todos!

iv

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

Abstract

Cache-based Timing Side-channels in Partitioning Hypervisors

In recent years, the automotive industry has seen a technology complexity increase to comply with

computing innovations such as autonomous driving, connectivity and mobility. As such, the need to reduce

this complexity without compromising the intended metrics is imperative.

The advent of hypervisors in the automotive domain presents a solution to reduce the complexity of

the systems by enabling software portability and isolation between virtual machines (VMs).

Although virtualization creates the illusion of strict isolation and exclusive resource access, the

convergence of critical and non-critical systems into shared chips presents a security problem. This shared

hardware has microarchitectural features that can be exploited through their temporal behavior, creating

sensitive data leakage channels between co-located VMs. In mixed-criticality systems, the exploitation of

these channels can lead to safety issues on systems with real-time constraints compromising the whole

system.

The implemented side-channel attacks demonstrated well-defined channels, across two real-time

partitioning hypervisors in mixed-criticality systems, that enable the inference of a co-located VM’s

cache activity. Furthermore, these channels have proven to be mitigated using cache coloring as a

countermeasure, thus increasing the determinism of the system in detriment of average performance.

From a safety perspective, this dissertation emphasizes the need to weigh the tradeoffs of the trending

architectural features that target performance over predictability and determinism.

Keywords: Automotive Industry, Mixed-criticality Systems, Side-channel Attacks, Virtualization

vi

Resumo

Cache-based Timing Side-channels in Partitioning Hypervisors

Nos últimos anos, a indústria automotiva tem sido objeto de um crescendo na sua complexidade

tecnológica de maneira a manter-se a par das mais recentes inovações de computação. Sendo assim, a

necessidade de reduzir a complexidade sem comprometer as métricas pretendidas é imperativa.

O advento dos hipervisores na indústria automotiva apresenta uma solução para a redução da

complexidade dos sistemas, possiblitando a portabilidade do software e o isolamento entre virtual vachines

(VMs).

Embora a virtualização crie a ilusão de isolamento e acesso exclusivo a recursos, a convergência

de sistemas críticos e não-críticos em chips partilhados representa um problema de segurança. O

hardware partilhado tem características microarquiteturais que podem ser exploradas através do seu

comportamento temporal, criando canais de fuga de informação crítica entre VMs adjacentes. Em

sistemas de criticalidade mista, a exploração destes canais pode comprometer sistemas com limitações

de tempo real.

Os ataques side-channel implementados revelam canais bem definidos que possibilitam a inferência

da atividade de cache de VMs situadas no mesmo processador. Além disso, esses canais provaram serem

passíveis de ser mitigados usando cache coloring como estratégia de mitigação, aumentando assim o

determinismo do sistema em detrimento da sua performance.

De uma perspetiva da segurança, esta dissertação enfatiza a necessidade de pesar os tradeoffs das

tendências arquiteturais que priorizam a performance e secundarizam o determinismo e previsibilidade

do sistema.

Palavras-chave: Ataques Side-channel, Indústria Automotiva, Sistemas de Criticalidade Mista,

Virtualização

vii

Contents

List of Figures xiii

List of Tables xiv

List of Listings xvi

Glossary xvii

1 Introduction 1

1.1 Goals . 2

2 Background 3

2.1 State of Art . 3

2.2 Virtualization . 4

2.2.1 Definition . 4

2.2.2 Advantages . 5

2.2.3 Disadvantages . 6

2.2.4 Hypervisors . 7

2.3 Jailhouse . 8

2.3.1 Terminology . 10

2.3.2 Operation . 10

2.4 Bao . 13

2.5 Caches . 14

2.5.1 Definition . 15

2.5.2 Cache Lines or Blocks . 15

2.5.3 Cache Associativity . 16

viii

2.5.4 Cache Replacement Policies . 17

2.5.5 Cache Inclusion Policies . 18

2.5.6 Cache Indexing . 19

2.5.7 Cache Coherence . 20

2.6 Side and Covert Channels . 21

2.6.1 Definition . 21

2.6.2 Benchmarks . 21

2.6.3 Attack Types . 23

2.6.4 Countermeasures . 26

3 Analysis 29

3.1 Attack Strategy . 29

3.1.1 Experimental System Definition . 29

3.1.2 Resources Sharing Level Definition . 30

3.1.3 Temporal Concurrency Level Definition . 31

3.1.4 Exploitation Technique Definition . 32

3.2 Attack Challenges . 32

3.2.1 Prime Step Challenges . 32

3.2.2 Probe Step Challenges . 38

4 Design 41

4.1 Proposed Channels . 41

4.1.1 Simple Channel . 42

4.1.2 Bits Transmission Channel . 46

5 Implementation 52

5.1 System Configuration . 52

5.1.1 Jailhouse . 52

5.1.2 Jailhouse with cache coloring . 56

5.1.3 Bao Hu . 60

5.1.4 Bao Hu with cache coloring . 62

5.2 Eviction Strategy . 63

ix

5.3 Attack Challenges . 65

5.3.1 Prime Step . 65

5.3.2 Probe Step . 68

5.4 Proposed Channels . 69

5.4.1 Simple Channel . 70

5.4.2 Bits Transmission Cannel . 73

5.5 Countermeasures . 75

6 Evaluation 78

6.1 Experimental Setup . 78

6.2 Eviction Strategy . 79

6.2.1 AutoLock’s Eviction Strategy . 79

6.2.2 ARMageddon’s Eviction Strategy . 80

6.3 Proposed Channels . 81

6.3.1 Simple Channel . 81

6.3.2 Bits Transmission Channel . 83

6.4 Countermeasures . 84

6.4.1 First Channel . 84

7 Conclusion 88

7.1 Future Work . 88

x

List of Figures

2.1 Illustration of a system virtualization stack with Type-1 hypervisor. 8

2.2 Illustration of a system virtualization stack with Type-2 hypervisor. 8

2.3 Illustration of Jailhouse’s partitioning scheme. 9

2.4 Typical RAM layout in ZCU104 Evaluation kit. 12

2.5 Example of the Jailhouse’s activation procedure. After being initialized, Jailhouse

reassigns hardware to Linux and a Bare metal application. 13

2.6 Illustration of the memory hierarchy with 2 cache levels. From the top to the bottom, the

memory technology enlarges and gets slower. 15

2.7 Direct mapped cache. 17

2.8 Set associative cache. 17

2.9 Illustration of a cache coherence problem. 20

2.10 Channel matrix for the unmitigated L1 I-cache channel on Sandy Bridge platform. 23

2.11 Channel matrix for the mitigated L1 I-cache channels on Hikey platform. 23

2.12 Illustration of the Prime+Probe attack by means of a 4-way (columns) cache with 8 sets

(rows). 24

2.13 Illustration of the Flush+Reload attack by means of a 4-way (columns) cache with 8 sets

(rows). 25

2.14 Disposition of colour bits in a 32-bits PA address from the point of view of an OS, L1 and

L2 (PIPT) caches. 28

3.1 Mixed-criticality system using Jailhouse as hypervisor. The first 3 cores are assigned to

Linux, and the other core is within Erika RTOS’s domain. 30

xi

3.2 Contended resources in a hierarchical multicore system with 3 cache levels [1]. Within

the red rectangle, it is represented the resource sharing level intended to be studied and

replicated. 30

3.3 Table with known microarchitectural timing attacks. 31

3.4 Cross-core instruction cache eviction through data accesses on a instruction- inclusive,

data-non-inclusive cache. 33

3.5 Cross-core instruction cache eviction through data accesses on a instruction- inclusive,

data-non-inclusive cache. 34

3.6 Example of /proc/self/maps output when using a Linux application. 37

3.7 Effect of 2MB-sized huge pages on Cortex-A53 MPCore’s caches address translation. . . 38

3.8 Map of Linux event sources used by perf tool. 39

4.1 Attacker state machine during the attack that allows observing the Simple Channel. . . . 42

4.2 Victim state machine during the attack that allows to observe the Simple Channel. . . . 43

4.3 Sequence diagram of the attack that allows to observe the Simple Channel. 43

4.4 Attacker’s flow chart during the attack that allows to observe the Simple Channel. 45

4.5 Victim’s flow chart during the attack that allows to observe the Simple Channel. 46

4.6 Attacker state machine during the attack that allows observing the Bits Transmission

Channel. 48

4.7 Victim state machine during the attack that allows observing the Bits Transmission Channel. 48

4.8 Sequence diagram of the attack that allows to observe the Bits Transmission Channel. . 49

4.9 Attack’s flow chart during the attack that allows to observe the Bits Transmission Channel. 50

4.10 Victim’s flow chart during the attack that allows to observe the Bits Transmission Channel. 51

5.1 RAM’s layout after configuring the system. 56

5.2 L1-I cache with the highest index bit colored (left picture) and without coloring (right picture). 75

5.3 Coloring assignment with L1 cache coloring (above picture) and without L1 cache

coloring (below picture). 76

5.4 Hypervisor’s search mechanism for the next colored page. 77

6.1 Line graph for cache timing results on ZCU104 Evaluation Kit using N-A-D 23-2-5. . . . 80

6.2 Line graph for cache timing results on ZCU104 Evaluation Kit using N-A-D 25-2-6. . . . 81

xii

6.3 Channel matrix for the unmitigated LLC channel on ZCU104 Evaluation Kit using a bare

metal guest as the victim. 82

6.4 Sample sequence of attacker’s access time on ZCU104 Evaluation Kit. 83

6.5 Channel matrix for the mitigated LLC channel on ZCU104 Evaluation Kit using a bare

metal guest as the victim. 85

6.6 Memory latency of a partition on ZCU104 Evaluation Kit. 86

xiii

List of Tables

3.1 Different eviction strategies on Cortex-A53. 36

6.1 Hardware characteristics of Cortex-A53 processor. 79

xiv

List of Listings

2.1 Non-root cell code example. 10

5.1 Memory reservation code. The mem kernel boot parameter sets the available physical

memory and reserves the rest of the memory. 52

5.2 Root cell configuration code. 53

5.3 Non-root cell configuration code. 54

5.4 Root cell configuration code. 57

5.5 Non-root cell configuration code. 58

5.6 Non-root cell configuration code. 59

5.7 Bao Hu guest images assignment. 61

5.8 Bao Hu shared memory declarations. 61

5.9 Bao Hu memory region assignment for Linux guest. 61

5.10 Bao Hu colored shared memory declarations. 62

5.11 Bao Hu memory region assignment for colored Linux guest. 63

5.12 Hit simulation function. 64

5.13 Miss simulation function. 64

5.14 Code to get physical address recurring to /proc/self/pagemap. 65

5.15 Code to get physical address recurring to /proc/self/pagemap. 66

5.16 Find congruent addresses used during Prime step code. 66

5.17 Eviction strategy used during Prime step code. 67

5.18 Backwards access strategy used during Probe step code. 68

5.19 perf syscall used during Probe step code. 68

5.20 perf syscall used during Probe step code. 69

5.21 First channel root cell code example. 70

5.22 First channel root cell code example. 71

xv

5.23 First channel code example. 71

5.24 First channel root cell code example. 72

5.25 First channel non-root cell code example. 73

5.26 First channel code example. 73

5.27 Second channel non-root cell code example. 74

5.28 Function that searches for the next available page. 76

xvi

Glossary

ABI Application Binary Interface

ACP Accelerator Coherency Port

ACTLR Auxiliary Control Register

AMBA Advanced Microcontroller Bus Architecture

API Application Programming Interface

APU Application Processor Unit

ASIC Aplication Specific Integratedd Circuit

AXI Advanced Extensible Interface

CE Consumer Electronics

CPU Central Processing Unit

DCU Domain Control Unit

DMA Direct Memory Access

DMAC Direct Memory Access Controller

DoS Denial-of-Service

DPR Dynamic Partial Reconfiguration

DRAM Dynamic Random-Access Memory

DSP Digital Signal Processing

E/E Electrical/Electronic

ECU Engine Control Unit

FIQ Fast Interrupt Request

FPGA Field Programmable Gate Array

GIC Generic Interrupt Controller

GPIO General-Purpose Input/Output

xvii

GPOS General-Purpose Operating System

I/O Input/Output

IaaS Infrastructure-as-a-Service

IDE Integrated Development Environment

IOMMU Input/Output Memory Management Unit

IoT Internet of Things

IPC Inter-Partition Communication

IPI Inter-Processor Interrupt

IRQ Interrupt Request

ISR Interruption Service Routines

IVI In-Vehicle Infotainment

LLC Last-level Cache

LR Linker Register

LTZVisor Lightweight TrustZone-assisted Hypervisor

MMU Memory Management Unit

MPMU Message Passing Management Unit

OCM On-Chip Memory

OS Operating System

PA Physical Address

PFN Page Frame Number

PIPT Physically Indexed, Physically Tagged

PIVT Physically Indexed, Virtually Tagged

PL Programmable Logic

PS Processing System

RAM Random-Access Memory

ROM Read-Only Memory

RTOS Real-Time Operating System

SCTLR System Control Register

SCU Snoop Control Unit

SLCR System-Level Control registers

SMC Secure Monitor Call

xviii

SMT Simultaneous Multithreading

SoC System on-Chip

SP Stack Pointer

SPSR Saved Program Status Register

SRAM Static Random-Access Memory

TCB Trusted Computing Base

TZ TrustZone

VIPT Virtually Indexed, Physically Tagged

VIVT Virtually Indexed, Virtually Tagged

VM Virtual Machine

VMCB Virtual Machine Control Block

VMM Virtual Machine Monitor

XSDK Xilinx Software Development Kit

xix

1. Introduction

The embedded systems used to be relatively simple, single-purpose devices with very specific

functionalities focused on meeting hardware constraints and real-time requirements, thus exhibiting low

to moderate software complexity. Over the years, while still being resource-constrained and keeping their

real-time behavior, they started trending towards general-purpose systems with much more functionalities

that impose a growth in software complexity [2], as it has been the automotive industry’s case [3].

With the rising use of consumer electronics, comes a rising expectancy of infotainment-wise

performance of modern vehicles. As such, the automotive industry must bridge the gap between

consumers’ expectations for infotainment features and the current performance of today’s automotive

systems. To address these problems, virtualization is emerging as a key solution.

Among the many benefits virtualization brings in the automotive domain, software portability and

isolation between VMs stand as the most important features in virtualized automotive systems. With

virtualization, the automotive systems can be separated into critical and non-critical partitions, allowing

the integration of components with different criticality levels onto modern multi-core System on-Chips

(SoCs) [4]. This feature makes it possible for the firmware of one partition (e.g., non-critical) to be updated

without affecting the other, thus reducing the overall time-to-market and manufacturing costs [5] [6]. At

the lower level, resides a hypervisor to enforce isolation - thus, reliability and safety - between the guest

operating systems.

The automotive industry is also dependent on virtualization solutions due to the amount of needed

Electronic Control Units (ECUs), which, prior to virtualization application, would require a set of dedicated

microcontrollers, and which are currently being consolidated into fewer platforms, named Domain Control

Units (DCUs).

While it is true that the isolation of VMs from each other was and is one of the goals of virtualization,

it is inappropriate to consider the latter as a technique for bringing security into a system [7]. This results

from the fact that using VMs may not be as secure as running OSes on dedicated physical hardware each.

1

Chapter 1. Introduction 2

Consequently, extreme precautions need to be taken in order to not introduce security risks and attack

vectors with virtualization, otherwise, the safety of modern vehicles can be compromised.

The security and safety of a vehicle are tightly coupled, as one metric compromises the other. If a

mixed-criticality system is vulnerable to attacks, the execution of critical tasks, such as airbag deployment,

can be delayed by populating a cache that is shared by two critically-different VMs through a non-critical

domain [5]. As the cache is shared, the non-critical domain can populate the shared cache, with the

result that the content stored by the critical domain can be evicted, hence provoking cache misses at the

next access. This phenomenon may generate large and unpredictable interference across domains, thus

breaking isolation by introducing a strong coupling of their timing properties.

The shared hardware has microarchitectural features, such as control speculation [8], shared caches

[9][10][1] or interruption service routines (ISRs) [11] that can be exploited through their temporal behavior,

creating sensitive data leakage channels between co-located VMs. These channels can occur at any degree

of hardware sharing and concurrency involved, as long as there are at least two VMs within the same chip

[1].

This thesis focuses on the open problem of microarchitectural timing channels, which exploit timing

variations to leak information between co-located VMs. They are harder to deal with, partially because of

the breadth of exploitable mechanisms, being the usual defence to strive for deterministic execution time

via constant-time algorithms [9] [12], which degrades substantially the system’s performance.

1.1 Goals

The goals to be achieved are summarized as follows:

1. Replicate the timing side-channel attacks which explore the microarchitecture of ARM-based

platforms.

2. Show the effectiveness of these attacks when the targeted system’s security is not appropriately

secured by an hypervisor which provides isolation across VMs, by benchmarking the replicated

attacks.

3. Propose different mitigation strategies which prove to be relevant across similar ARM-based

platforms, ultimately bringing security into the system.

2. Background

In this chapter, it is provided the required preliminaries and discussed related work in the context of

cache attacks.

The themes addressed in this chapter range from the detection of exploitable modern caches’

properties, to the dissection of known countermeasures against cache attacks. The concept of

virtualization and its prominence in the embedded systems’ world are briefly explained to introduce the

software (i.e., Jailhouse, Bao) that is leveraged to find channels and upgraded to mitigate them.

2.1 State of Art

Back in 1996, Kocher et al. [13] showed that it is possible to find factor RSA keys and break other

cryptographic systems by measuring the execution time of private key operations. In 1999 Kocher et al.

[14] introduced Simple Power Analysis (SPA) and Differential Power Analysis (DPA) where an attacker can

extract cryptographic keys by studying the power consumption of a device.

Then, a different kind of side-channel focused on exploring the memory hierarchy, more specifically

the caches, was introduced. Cache side-channel attacks exploit the different access times of memory

addresses that are either held in the cache or the main memory. While the Evict+Time and Prime+Probe

techniques by Osvik et al. [15] explicitly targeted cryptographic algorithms, Yarom et al. [16] introduced

the Flush+Reload attack in 2014 that laid the foundation for new attack scenarios. The Flush+Reload

attack allows an attacker to determine which specific parts of a shared library or a binary executable have

been accessed by the victim with unprecedented high accuracy.

Although a major part of the known side-channel attacks targets the caches, they do not restrict to only

one component of the microarchitecture. As Heiser et al. [1] demonstrated, these attacks occur across

all hardware sharing levels (i.e., thread shared through system shared) and concurrency involved (i.e., full

concurrency, time-sliced execution on a single core, or hardware threading). Heiser et al. [1] affirmed that

3

Chapter 2. Background 4

the attacks that occur closer to the core tend to achieve higher severity because they have more precise

information available, while those at lower levels (e.g. the bus interconnect) could be mostly used to cause

interference, thus jeopardizing the determinism of the co-located cores.

In 2015, Heiser et al. [17] have used cross-core cache attacks that relied on the inclusiveness of Last-

level Caches (LLCs). The problem is that only the x86 architectures and the recent ARMv8 architectures

used inclusive LLCs. To the other architectures that didn’t use inclusive LLCs, Irazoqui et al. [18] exploited

cache coherence protocols to mount cross-core cache attacks on SoCs with non-inclusive shared LLCs.

In 2016, Moritz et al. [19] attacked cryptographic implementations and utilized microarchitectural

timing side-channel attacks to infer sensitive information (e.g., to differentiate between entered letters

and special keys on the keyboard, or measure the length of swipe and touch gestures) of ARM-based

smartphones. This disclosed the immense threat that those attacks represent, since they can be mounted

on millions of stock Android devices without the requirement of any privileges or permissions.

In 2018, Heiser et al. [1] summarised all microarchitectural attacks known to date, alongside existing

mitigation strategies, and developed a taxonomy based on both the degree of hardware sharing and

concurrency involved.

2.2 Virtualization

The increasing importance of isolation and security in modern systems (either for cloud servers which

hold, more than ever, confidential and critical information, andmore recently, embedded systems which are

responsible for performing critical operations [20][21][22]), the underutilization of hardware, the increase

in raw speed of processors over the decades (which makes the overhead of VMs more tolerable) and the

preference of multicore processors over single-core processors [2] [7], paved the way to a natural adoption

of the virtualization technology by the enterprise, cloud computing and embedded systems domains [23].

2.2.1 Definition

Virtualization in general terms refers to the act of creating or using a virtual version of a resource (e.g.,

computer hardware platforms, operating systems, storage devices or network resources) rather than the

physical one [24].

A virtual machine (VM) is commonly defined as a software program that emulates the behavior of a

separate computer system, being capable of performing tasks such as running applications and programs

Chapter 2. Background 5

like a separate computer. The emulated system is called the guest system and the system on which it

is being emulated is called the host system. The concept of emulation allows software or a peripheral

designed for the guest system to be executed on the host system.

In virtualized systems, a single computer can run multiple VMs supporting a number of different

operating systems (OSes) with all of them sharing the hardware resources. This contrasts with a

conventional platform, where a single OS owns all hardware resources and no other OS can obtain them

[25].

2.2.2 Advantages

The relevance of virtualization in embedded systems stems from the ability to address some of the

new challenges posed by them.

There are 3 main advantages regarding the use of virtualization on modern machines:

1. Improving protection, as it allows Infrastructure-as-a-Service (IaaS) companies (e.g., Amazon Web

Services) to protect users from each other while sharing the same server [25], and general-purpose

systems from jeopardizing systems with real-time constraints under the same hardware resources

[2].

The protection is guaranteed as the access to memory between guests is not reachable by userland,

because the accessed memory is perceived by the users as the physical one, instead of a virtual

one which is then remapped to a physical address.

2. Managing software, which enables a developer to run multiple systems (some of them stable, and

other, unstable releases) in one virtualized server without having a bunch of servers sitting around

for the occasional use of tests [25], or providing architectural abstraction, as the same software

architecture can be migrated essentially unchanged between a multicore and a (virtualized) single-

core [2].

3. Managing hardware, by enabling the concurrent execution of an application OS (e.g., Linux) and

a real-time OS (RTOS) on the same processor. This way, virtualization provides support for

heterogeneous operating-system environments, as a way to address the conflicting requirements of

high-level APIs for application programming, real-time performance, and legacy support [2].

Chapter 2. Background 6

Furthermore, the embedded systems can use the hardware management feature to meet their real-

time constraints, which means: (i) managing the power consumption of a system by dynamically

adding cores to an application domain which requires extra processor power, or (ii) removing

processors and shutting down idle cores.

2.2.3 Disadvantages

The costs of using virtualization in a business context depend on the requirements to run virtual

machines. The embedded systems environment distinguishes from the server/desktop environment by

its resource-constrained nature. The embedded systems are, by their nature, highly integrated and this

characteristic conflicts with the isolation factor that virtualization brings onto them. Hence, there needs

to be an effort made to not compromise the functional requirements of the embedded system without

neglecting the isolation between the subsystems that compose a modern embedded system [21][?][26].

The aforementioned advantages that made the virtualization a must on modern embedded systems,

have some intrinsic mismatches with the embedded systems requirements that need to be addressed:

1. Scheduling, as both co-located VMs are treated as black boxes with universal priorities, neglecting

the fact that within the real-time VMs there are tasks that should interleave with tasks of the other

general-purpose VMs [2].

2. Software complexity problem, that can lead, among other problems, to performance deterioration.

Virtualization introduces a layer of memory abstraction that increases cache contention, mostly

related to the frequent invocation of the hypervisor’s enter-and-exit operations [27], and an increase

in time taken to do memory operations, as every operation has to look up in page table, which

means it needs to access the page table and then the memory address.

One can conclude that the process of virtualization can be used to provide platform independence and

a secure environment for execution but this comes at a cost. Hence, one must ensure that embedded

hypervisors are used only when needed and the overhead and performance dip is well compensated by

the use of caching or multicore environments [24].

Chapter 2. Background 7

2.2.4 Hypervisors

With the increasing importance of virtualization in embedded systems, comes the need to address

the software layer that underlies the VMs. This section presents the definition and how hypervisors have

evolved into different implementations that can be classified in many ways.

2.2.4.1 Definition

The software that supports VMs is called a virtual machine monitor (VMM) or hypervisor, and presents

a code size much smaller than a traditional OS. The underlying hardware platform is called the host, and

its resources are shared among the guest VMs. The hypervisor determines how to map virtual resources

to physical resources: a physical resource may be time-shared, partitioned, or even emulated in software

[4] [21].

It presents a software interface to guest software, it must isolate the state of guests from each other, it

must protect itself from guest software, and it must ensure that the guest system only interacts with virtual

resources (i.e. a conventional guest OS runs as a user-mode program on top of the hypervisor) [4][25].

The qualitative requirements are:

1. Guest software should behave on a VM exactly as if it were running on the native hardware (to

improve emulation speed), except for performance-related behavior or limitations of fixed resources

shared by multiple VMs [25]. This can be acquired by making the ISA of the VM the same as the

host.

2. Guest software should not be able to change the allocation of real system resources directly [25].

To improve the performance of virtual machines, it is needed to:

1. Reduce the cost of processor virtualization [21].

2. Reduce interrupts overhead cost due to the virtualization [21].

3. Reduce interrupt cost by steering interrupts to the proper VM without invoking the hypervisor [21].

2.2.4.2 Classification

There are two types of hypervisors:

Chapter 2. Background 8

1. Type-1 - it runs directly on the hosting hardware to control it and to handle guest operating systems

[21] [26];

Figure 2.1: Illustration of a system virtualization stack with Type-1 hypervisor.

2. Type-2 - hypervisor is provided as an extension to an operating system that is executed on the host

while the guests run as tasks [21] [26].

Figure 2.2: Illustration of a system virtualization stack with Type-2 hypervisor.

Another element of distinction comes from the API exposed by the host to the generic guest OS:

1. Full Virtualization - the guest executes transparently and without software modifications, while

the hypervisor provides the API to emulate the underlying platform [26][28];

2. Paravirtualization - the guest is aware of the presence of virtualization. Thus it uses an API

similar, but not identical, to that of the underlying hardware. This allows to create specific solutions

and reduce the overhead [26][28].

2.3 Jailhouse

Jailhouse is a real-time, OS-agnostic partitioning hypervisor with a minimal code base that aims to

minimize hypervisor activity and focus on isolation and resource partitioning. The system is divided into

Chapter 2. Background 9

isolated domains that directly access physical resources, instead of recurring to resource virtualization and

scheduling (e.g., Xen hypervisor) [29].

This static approach derives from Jailhouse’s target domain, which is safety-critical industrial

applications [30], and allows to:

1. Provide average latencies and jitters similar to bare metal solutions - Jailhouse’s only

task is to use virtualization techniques to isolate guests, but doesn’t emulate any devices for them.

Besides that, it does one-to-one resource assignment to separate resources between partitions

which means that, if one partition has access to some I/O port, PCI device or any other resource,

the other partition hasn’t. These properties make the performance of the Jailhouse to be very close

as if tasks run on bare metal [31].

2. Ease potential certification processes - Safety-critical industrial applications need to

be certified according to numerous safety standards, and these standards give more strict

requirements on systems with higher criticality. So, it is important to keep the complexity of the

critically-high systems low, to ease the process of validation and certification, being this the main

reason for the minimalistic code base of Jailhouse [30].

Figure 2.3: Illustration of Jailhouse’s partitioning scheme. The root cell contains Linux, the
Jailhouse module and two cores along with three devices. The first non-root cell (left) contains a
bare-metal application and one core along with one device. The second non-root cell (right) contains

Erika v3 and one core along with one device.

Regarding the classification of the hypervisor, it doesn’t fit in the traditional classification (i.e., Type-1

or Type-2 hypervisor) because it runs on hardware like a bare-metal hypervisor, but needs to use Linux as

bootloader to provide initialized hardware [29].

Chapter 2. Background 10

2.3.1 Terminology

Each partition (i.e., allocated physical hardware) is called a cell, while the software, or VM, that can

only reach that subset of physical hardware (i.e., cells) is called the inmate.

The partitions are divided in two categories: (i) the root cell, and (ii) the non-root cells. The partition

with Linux that bootstraps Jailhouse and from where other cells could be managed is called root cell. The

other partitions that are added afterward, which may contain RTOSes or GPOSes, are called non-root cells.

2.3.2 Operation

This section describes the basic Jailhouse functionality, explains internal processes and also provides

steps which should be done to enable and start the inmate in a cell.

2.3.2.1 Cell Configuration

The first concept that the user must be aware of is the configuration of the cells (root or non-root).

The configuration is done statically before Jailhouse starts running, and it determines which hardware

resources can be accessed by each cell.

The configurations are done by using .c files where parameters have to be assigned as fields of special

C structures (defined in cell-config.h file). For the non-root cell, this setup looks like in Listing 2.1.

Listing 2.1: Non-root cell code example.

1 struct {

2 /*The size of arrays there must correspond with the amount of

3 fields of each type.*/

4 struct jailhouse_cell_desc cell;
5 __u64 cpus[1];
6 struct jailhouse_memory mem_regions[3];
7 } __attribute__((packed)) config = {

8 .cell = {

9 .signature = JAILHOUSE_CELL_DESC_SIGNATURE,
10 .revision = JAILHOUSE_CONFIG_REVISION,
11 .name = "gic-demo",

12 .flags = JAILHOUSE_CELL_PASSIVE_COMMREG,
13 .cpu_set_size = sizeof(config.cpus),
14 .num_memory_regions = ARRAY_SIZE(config.mem_regions),
15 .num_irqchips = 0,

16 .pio_bitmap_size = 0,

17 .num_pci_devices = 0,

Chapter 2. Background 11

18

19 .console = {

20 .address = 0xff010000,
21 .type = JAILHOUSE_CON_TYPE_XUARTPS,
22 .flags = JAILHOUSE_CON_ACCESS_MMIO |

23 JAILHOUSE_CON_REGDIST_4,
24 },

25 },

26 /*CPUs which are assigned to a cell.

27 <n> bit set = core <n> will be used.*/

28 .cpus = {

29 0x8, /* e.g., core 3 is assigned*/

30 },

31 /*Here is setup which mem regions this cell

32 could have access and with which rights (flags).*/

33 .mem_regions = {

34 /* UART */ {

35 .phys_start = 0xff010000,
36 .virt_start = 0xff010000,
37 .size = 0x1000,
38 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |

39 JAILHOUSE_MEM_IO | JAILHOUSE_MEM_ROOTSHARED,
40 },

41 /* RAM */ {

42 .phys_start = 0x800600000,
43 .virt_start = 0,

44 .size = 0x00010000,
45 .flags = JAILHOUSE_MEM_READ |

46 JAILHOUSE_MEM_WRITE ,

47 },

48 /* communication region */ {

49 .virt_start = 0x80000000,
50 .size = 0x00001000,
51 .flags = JAILHOUSE_MEM_READ |

52 JAILHOUSE_MEM_WRITE,
53 },

54 }

55 };

2.3.2.2 Jailhouse Enabling

After configuring appropriately each cell, the user still needs to provide the reserved memory region

to Jailhouse and non-root cells, appending mem (which assigns the non-reserved memory space) kernel

parameter on boot. The typical memory layout after reserving memory is depicted in Figure 2.4.

Chapter 2. Background 12

The values of .phys_start and .size in the header of root cell configuration, and the physical address

values of the defined memory regions on non-root cell configuration must be within the reserved memory.

Figure 2.4: Typical RAM layout in ZCU104 Evaluation kit. The first 1280 MB are available for the
root cell, while the rest of the memory is reserved for the hypervisor and the non-root cells.

The first step to enable Jailhouse is to load the jailhouse.ko module into the kernel, which enables

/dev/jailhouse in the system to enable the operation with Jailhouse user-space tools.

The second step is to execute jailhouse user-space program jailhouse enable �path/to/cell/conf.cell!.

In this program, the driver remaps the reserved memory region to the kernel address space memory, so

hypervisor could be accessed from the user-space. The driver also copies that binary at the start of this

memory area and cell configuration right after it [30].

2.3.2.3 Activation Procedure

Jailhouse can only be enabled after the full boot of Linux using a kernel module. After Linux inserts

the module into the kernel, the hypervisor takes control over all hardware resources and, according to a

partition configuration file (available for each cell), it reassigns the hardware to the cells, lifting Linux into

the state of a VM [29].

Chapter 2. Background 13

The deferred activation procedure of Jailhouse has the considerable practical advantage that the

majority of hardware initialization is fully offloaded to Linux, and Jailhouse can entirely concentrate on

managing virtualization extensions [29].

Figure 2.5: Example of the Jailhouse’s activation procedure. After being initialized, Jailhouse
reassigns hardware to Linux and a Bare metal application.

Although it follows a hardware partitioning philosophy, Jailhouse allows the sharing of memory between

cells in a region called ivshmem, enabling inter-cell communication and communication from the guests to

the hypervisor. Such concurrent access is, however, not arbitrated by Jailhouse and needs to be addressed

appropriately by the guests, in the correspondent configuration files [29].

Since Jailhouse only remaps and reassigns resources, the ideal design concept is that it does not

need to be active after setting up and starting all guests. It only intercepts in case of access violations

(e.g., illegal access across partitions), excepting some circumstances that still require intervention by the

VMM, such as (i) interrupt reinjection [29], and (ii) interception of non-virtualizable hardware resources

(e.g., parts of the GIC on ARM) [29].

2.4 Bao

Bao is a real-time partitioning hypervisor that follows a similar approach to Jailhouse’s approach

concerning the preference of a minimal hypervisor activity that leverages hardware virtualization support

to focus on isolation between guests and fault-containment over scheduling, as they target the same

applications.

Bao was originally developed to serve as a base scaffold to research on, and deepen VM

microarchitectural isolation. Nowadays, it supports Armv8-A and RISC-V architectures and is readily

available through an open-source license.

Chapter 2. Background 14

Among the characteristics of it, Bao partitions and assigns resources at virtual machine (VM)

instantiation time, and the virtual interrupts are directly mapped to physical ones, with one-to-one virtual-

to-physical CPU mapping. Unlike other open-source hypervisors, Bao has no external dependencies,

especially on privileged VMs running untrustable, large monoliths such as Linux, and as such, comprises

a much smaller trusted computing base (TCB).

Regarding the classification of the hypervisor, it can be classified as a Type-1 hypervisor as it runs

directly on top of the hosting hardware and, unlike Jailhouse, it loads firstly the hypervisor image which

then allocates pages for the guests. This contrasts with the deferred activation procedure of Jailhouse,

having the disadvantage of increasing the code size of the hypervisor since it needs to handle the hardware

initialization. On the other hand, it is completely independent of Linux, which presents three main

advantages: (i) as the hypervisor doesn’t rely on Linux to boot, it has faster boot time than Jailhouse,

(ii) it has a more universal behavior as it can host more operating systems aside Linux, and (iii) since the

hypervisor is not controlled by a trusted partition (i.e., root cell), it has a much smaller trusted computing

base (TCB), hampering the occurrence of attacks that could use Linux to jeopardize the hypervisor.

2.5 Caches

The steadfast development of the technology in the last decades has seen a divergence between the

clock rate of processors and the latency of memory, creating a bottleneck between both memory and

processor technologies that can be detrimental to the overall performance of a system [1]. Due to this

divergence, the way that the memory is accessed needed to be changed for its latency to be reduced.

The memory hierarchy solution, sustained by a philosophy of using different memory technology layers

that range from the fastest (but costliest) memory to the largest and cheapest memory, proved to be the

solution that provides the best performance and narrows the bridge betweenmemory and processor speed.

Chapter 2. Background 15

Figure 2.6: Illustration of the memory hierarchy with 2 cache levels. From the top to the bottom,
the memory technology enlarges and gets slower.

2.5.1 Definition

A part of the memory hierarchy are the caches, a small quantity of fast (but expensive) memory that

hides the latency of large and slow (but cheap) main memory, by buffering frequently used data [19].

It lays in the lowest layer of the memory hierarchy, being the first memory to be accessed in all memory

requests. Its effectiveness relies critically on the hit rate (i.e., the fraction of requests that are satisfied

from the cache). Due to the large difference in latency, a small decrease in hit rate leads to a much larger

decrease in performance [1].

2.5.2 Cache Lines or Blocks

Caches are divided into lines. A cache line holds one aligned, power-of-two-sized block of adjacent

bytes loaded from memory. If any byte needs to be replaced (i.e., evicted to make room for another), the

entire line is reloaded. It is the minimum unit that may be cached [1].

On increasing the cache line size there is an increase in cache hits up to a certain extent. This results

in performance enhancement based on the principle of locality 1. However increasing block size beyond a

certain point can also have a performance penalty because it will reduce the number of blocks which can

fit in the cache, and whenever the block needs to be replaced, it will take much more time than a reduced

block size. Not only this, each additional word will be less local and hence will be less used. Cumulatively,

the probability of using newly fetched information will become less than the probability of reusing replaced.

1Principle of locality: principle for which caches rule, that states that a computer program tends to access same set of
memory locations for a particular period

Chapter 2. Background 16

2.5.3 Cache Associativity

The associativity of the cache is another major property that must be taken into account when

performing an attack as it can alter the way the address is divided (i.e., to appoint which address belongs

to which line or set) or induct how many addresses must be accessed to completely evict a set. It refers

to the way that each line can be replaced, if it is confined to a sole line (i.e., direct-mapped), if it can be

replaced within a set (i.e., set-associative) or within any location (i.e., full associative). This choice of cache

design can be seen as a tradeoff between complexity (and hence speed), and the rate of conflict misses

[1].

2.5.3.1 Fully Associative

Ideally, any memory location could be placed in any cache line, thus the cache would always be used

to its full capacity (i.e., misses occur only when there is no free space in the cache). However, this cache

architecture requires that all lines are matched in parallel to check for a hit, which increases complexity

and energy consumption, limiting speed. Such designs are therefore limited to small and local caches,

such as TLBs [1].

2.5.3.2 Direct Mapped

The direct-mapped cache design is the opposite of the fully associative one. In this architecture, each

memory location can be held by exactly one cache line, determined by the cache index function. If two

memory locations that map to the same line are accessed, it will result in an eviction of the first one even

though the cache may have unused lines, being the increase of miss rate the main disadvantage of this

kind of design [1].

2.5.3.3 Set Associative

In this design, the cache is divided into small sets (usually of between 2 and 24 lines), within which

addresses are matched in parallel, as for a fully-associative cache. The calculation of a set that an address

maps to is given by the function of its address (just like the index is given in a direct-mapped design).

A cache with N-line sets is called N-way associative. Using this terminology, we can refer to direct-

mapped and fully-associative caches, as 1-way and N-way associativity, respectively (where N is the number

of lines in the cache).

Chapter 2. Background 17

Figure 2.7: Direct mapped cache.

Figure 2.8: Set associative cache.

For both the direct-mapped and set-associative caches, the predictable map from address to line is

exploited: (i) in attacks, to infer cache sets used by an algorithm under attack, and (ii) in cache coloring,

to ensure that an attacker and its potential victim never share sets, and thus cannot conflict [1].

2.5.4 Cache Replacement Policies

When the cache is full and a cache miss occurs, buffered code and data must be evicted from the

cache to make room for new cache entries. The heuristic that is used to decide which entry to evict is

called replacement policy. The replacement policy has to decide which existing cache entry is least likely

to be used in the near future, being implemented in hardware and not controlled by software [28].

There are numerous ways of predicting future cache accesses to optimize the cache resource

contention. The most known replacement policies are listed as follows:

1. Least Recently Used Replacement Policy - The least recently used cache entry will be replaced.

Chapter 2. Background 18

2. Round Robin Replacement Policy - The replacement occurs starting from the first cache entry

until the last one, independent of the temporal locality of the cache entries.

3. Pseudo-randomReplacement Policy - A random cache entry will be selected and evicted based

on a pseudo-random number generator.

There is a wide consensus that deterministic replacement policies like LRU or FIFO are to be

preferred in the context of real-time systems. Nonetheless, increasingly more vendors implement random

replacement policies to favor applications targeting average performance [32].

2.5.5 Cache Inclusion Policies

The inclusiveness property of a cache determines if all cache lines from the lower-level cache are also

stored in the higher-level cache [17].

The term is used to describe the higher-level cache with regard to the lower-level cache, and the

higher-level cache can be classified as follows:

1. Inclusive Cache - The higher-level cache contains all the data that is stored on the lower-level

cache. This means a superset of the lower-level cache.

2. Exclusive Cache - The contents of the higher-level cache are not stored on the lower-level cache

and vice versa. This architecture has the advantage of storing much more data in the cache

subsystem than the inclusive one.

3. Non-inclusive Cache - Both higher-level and lower-level cache can store at the same time the

same content (just like an inclusive cache); however, the data can be evicted from the higher-level

cache and still reside in the lower-level cache (like an exclusive cache). Hence, accesses to L1

cache cannot be detected by monitoring the LLC.

If a word is read from the cache, the data in the cache will be identical to the one in the main memory.

However, when the core executes a store instruction, a cache lookup to the address that is written to is

performed. If a cache hit occurs, there are two possible policies:

1. Write-back Policy - Writes are performed on the cache and not to the main memory, making the

content of the cache lines diverge on both. To mark the cache lines with the most recent data, an

Chapter 2. Background 19

associated dirty bit is used. If the bit is set, it means that the write updated the cache and not the

main memory. If the replacement policy evicts a cache line where the dirty bit is set, the cache line

is written out to the main memory.

2. Write-through Policy - Writes are performed to both the cache and the main memory which

means that they are kept coherent. Since there are more writes to the main memory, this policy is

slower than the write-back policy.

2.5.6 Cache Indexing

The cache can derive the index of a certain memory from its virtual or physical address, making the

cache virtually indexed or physically indexed, respectively.

The multiple cache indexing possibilities are listed as follows:

1. Virtually Indexed, Virtually Tagged (VIVT) - The virtual address is used for both, the index

and the tag. This method is faster in general because the caches do not require virtual to physical

address translation before the cache lookup [28][33][34]. However, this can lead to a problem of

redundancy in the cache in which the same physical address, that has been accessed by different

cores (each one with their virtual address that maps to same physical address), is cached in different

cache lines, reducing the performance.

2. Physically Indexed, Physically Tagged (PIPT) - The physical address is used for both, the

index and the tag. This method is slower since the virtual address has to be looked up in the TLB.

However, shared memory is only held once in the cache[35].

3. Virtually Indexed, Physically Tagged (VIPT) - The virtual address is used for the index, and

the physical address is used for the tag. The advantage of this combination compared to PIPT is

the lower latency since the index can be looked up in parallel to the TLB translation. However, the

tag can not be compared until the physical address is available.

4. Physically Indexed, Virtually Tagged (PIVT) - The physical address is used for the index, and

the virtual address is used for the tag. This combination has no benefit since the address needs to

be translated, the virtual tag is not unique and shared memory still can be held more than once in

the cache.

Chapter 2. Background 20

2.5.7 Cache Coherence

In modern systems where each core has its local cache and shared memory is implemented, it is

common for the applications to run simultaneously on different cores working on the same memory,

urging the need to certify that multiple cached copies of data that reside in different cores are updated

according to the main memory. This leads to the emergence of cache coherence protocols.

The coherency can be easily jeopardized in systems where the memory is shared, as it is illustrated

in Figure 2.9. In the first step, the core 0 accesses data x. Afterward, in step 2, the core 1 accesses the

same data x. In step 3, core 0 sets x to a new value, which is 3 in the illustrated example. Then, in step

4, core 0 re-accesses the value of x, reading an obsolete value concerning the other core. This problem is

extendable to DMA devices for example. Therefore, it is needed a coherence mechanism which can act in

these situations.

Figure 2.9: Illustration of a cache coherence problem.

There are three known mechanisms that tackle these coherency problems:

1. Caching Disable - An effective way of avoiding coherency problems is to disable the caching of

memory. This is the costliest mechanism in terms of performance and power as all of the cache

advantages are gone.

2. Software-managed Coherency - The software solution acts by cleaning dirty data and

invalidating obsolete data to enable sharing with other processes each time a read or write of

shared data is required.

3. Hardware-managed Coherency - The hardware solution is the most effective, and universal,

as it enables coherency to software applications transparently. The most known hardware

Chapter 2. Background 21

implementation of a coherency keeper is the Bus Snooping. In this mechanism, the cache controller

snoops on the bus, thereby monitoring occurring transactions and taking action if such transaction

pertains to it (e.g., a write to a memory block of which it has its copy in the cache). The coherence

is managed at the granularity of a cache line and, thus, either an entire cache line is valid or invalid.

2.6 Side and Covert Channels

In this chapter, both side and covert channels are presented, along with their respective

countermeasures. Moreover, the known benchmarks used to evaluate the attacks are listed.

2.6.1 Definition

Heiser et al. [1] differentiated side channels from covert channels by reporting that ”side channels

refer to the accidental leakage of sensitive data (e.g., an encryption key) by a trusted party, while covert

channels are those exploited by a victim to deliberately leak information.”

Hence, side and covert channel attacks exploit a device’s hardware characteristics leakage (e.g., power

dissipation, computation time or electromagnetic emission) to extract information about the processed

data and, if used along statistical computations [36], use the data to deduce sensitive information (e.g.,

cryptographic keys, messages).

To observe both side or covert channels, not only a communication medium (i.e., shared hardware) is

required but also an exploitation technique (e.g., Prime+Probe) to leverage the hardware’s contention [9].

2.6.2 Benchmarks

To measure how much information each channel can leak, there have been some terms used to

describe the amount of transmitted information through a channel. This section lists the most commonly

used terms, and reflects on how the benchmarks can be affected by the cache’s properties.

2.6.2.1 Channel Capacity or Bandwidth

The most known way of characterizing a channel is named capacity or bandwidth of a channel, and it

represents, in bits per second, how much information can be transmitted through that channel. The more

capacity a channel has, the more threatening it becomes to the targeted system [37].

Chapter 2. Background 22

Regarding the capacity of leaking information, it is known that collusion allows better utilization of the

underlying hardware mechanism and hence covert channels tend to have much higher bandwidth than

side channels based on the same mechanism (i.e., exploitation technique). The capacity of the covert

channel is the upper bound of the corresponding side channel capacity [9].

A preponderant factor when obtaining the channel’s capacity is the probing resolution of the LLC,

which is not tied to the victim preemption, but is fundamentally limited only by the speed at which the

attacker can perform the probe, in case of a Prime+Probe attack, referred in Section 2.6.3. This is much

slower than for a local cache, for two reasons:

1. The LLC typically has higher associativity than the L1 cache (e.g., 12 to 24-way versus 4 to 8-way),

hence more memory accesses are required to completely prime or probe a cache set [17].

2. The probe time increases due to the long access latency of the LLC (12 cycles more for Cortex-A53

processor [38]). Even with all lines resident in the LLC, the attacker, when performing a probe of

one LLC set, will still experience misses in the L1 and L2 caches, due to their lower associativity.

Furthermore, a miss in the LLC will cause more than 150 cycles latency while a miss in the L1 or

L2 cache has a latency of fewer than 40 cycles [17].

The slower the probing resolution, the less frequent will the cache’s contents be observed, hence the

channel capacity will decrease drastically.

2.6.2.2 Channel Matrix

A more recent way of visualizing the channels was introduced by Heiser et al. [9], which specifies the

conditional probability of an observed output symbol (e.g. spy, or attacker, probing time) given an input

symbol (e.g. cache lines accessed), by the use of a heat map, or a graph when visualizing low-capacity

channels.

An example of a heat map that demonstrates the existence of a well-defined channel (i.e., noticeable

horizontal variation) is illustrated in Figure 2.10, which has been used to characterize a channel on the

instruction side of an L1 cache.

Chapter 2. Background 23

Figure 2.10: Channel matrix for the unmitigated L1 I-cache channel on Sandy Bridge platform
[10].

In the absence of a channel, outputs are independent of inputs and the graph will show no horizontal

variation, as it is illustrated in Figure 2.11.

Figure 2.11: Channel matrix for the mitigated L1 I-cache channels on Hikey platform [10].

2.6.3 Attack Types

As mentioned in the definition of a side or covert channel, an attack needs a mechanism that

explores a communication medium. The classification of the attacks is done taking into account which

communication medium is leveraged: a) attacks that explore the cache, and b) attacks that explore

real-time contention (e.g., buses or other resources present in the resource sharing hierarchy, described

in Section 3.1.2).

2.6.3.1 Cache Exploitation Techniques

Prime+Probe

In the Prime+Probe technique, the attacker primes the cache by filling cache sets with its own data,

then waits for the victim to replace some of the cache lines based on the input symbol it transmits. Lastly,

the attacker probes the cache sets by measuring the access time to the previously cached data, thus

measuring the victim’s cache footprint. The output symbol is the total probing time of the attacker [10].

Although this technique doesn’t rely on sharing memory, it can have some handicaps, such as lower

resolution in comparison to other techniques because it can only target a cache set, and, due to the

pseudo-random replacement policy, it might happen that the access to one congruent address evicts a

Chapter 2. Background 24

previously accessed address from the attacker and thus it is possible that during the probing phase false

positives occur [28].

This technique is privileged in cases where there is a resource-sharing case but without memory

sharing between victim and attacker.

Figure 2.12: Illustration of the Prime+Probe attack by means of a 4-way (columns) cache with 8
sets (rows). In step 1, the attacker primes the cache filling all the ways from the same set. In step
2, the victim replaces some of the cache lines from the cache set. In step 3, the attacker probes
the cache set accessing all cache lines. The cache lines changed by the victim have a slow access

time, while the unchanged cache lines have a faster access time.

Flush+Reload

In Flush+Reload, the attacker first flushes a shared line of interest (by using dedicated instructions or

by eviction through contention). Once the victim has executed, the attacker then reloads the evicted line by

touching it, measuring the time taken. A fast reload indicates that the victim touched this line (reloading

it), while a slow reload indicates that it didn’t. The advantage of Flush+Reload over Prime+Probe is that

the attacker can target a specific line, rather than just a cache set [1].

This technique relies on the existence of shared virtual memory (e.g., shared libraries or page

deduplication), and the ability to flush by virtual address, bringing much more resolution (hence leakage

capacity) to the attack as it can target cache lines instead of cache sets.

Chapter 2. Background 25

Figure 2.13: Illustration of the Flush+Reload attack by means of a 4-way (columns) cache with 8
sets (rows). In step 1, the attacker or the victim cache a shared line. In step 2, the attacker flushes
the shared cache line. In step 3, the victim accesses the previously accessed cache line. In step
4, the attacker tries to reload the cache line. If the cache has been accessed by the victim, the

attacker will experience a fast access time.

Evict+Time

This approach uses the targeted eviction of lines, together with overall execution time measurement.

The attacker first causes the victim to run, preloading its working set, and establishing a baseline execution

time. The attacker then evicts a line of interest and runs the victim again. A variation in execution time

indicates that the line of interest was accessed [1].

Flush+Flush

The attack is basically the same as Flush+Reload. A binary or a shared object file is mapped into

the address space of the attacker. An address is flushed from the cache, and the victim’s program is

scheduled. However, instead of the reloading step where the monitored address is accessed, it is flushed

again causing no cache misses compared to Flush+Reload or Prime+Probe [28].

2.6.3.2 Exploiting real-time contention

These real-time attacks, also known as DoS attacks, target the systems by maliciously increasing the

consumption of a shared resource. The attacks can occur wherever exists resource contention, including

buses, by exhausting shared bus bandwidth with a large number of memory requests, as it was exemplified

Chapter 2. Background 26

by Woo et al. [39], who on a machine with a single frontside bus, generated a DoS attack with L2 cache

misses in a simulated environment.

2.6.4 Countermeasures

All of the published countermeasures, listed by a survey made by Heiser et al. [1], are summarized

in this section.

2.6.4.1 Constant-time techniques

The most widely used countermeasure, primarily applied to microarchitectural attacks, is making the

security operation time constant or random, regardless of the microarchitecture elements that are used.

This approach comes with the disadvantage of deteriorating the performance of the system [36].

There are rudimentary techniques where the access to, presumed undetectable microarchitecture

elements, depends on secret information. An example is the implementation of modular exponentiation

in OpenSSL, which can access different memory addresses within a cache line, depending on the secret

exponent. This countermeasure can be surpassed in processors that can leak information within a cache

line (i.e., offset of a cache line), as it has been demonstrated by Bernstein et al. [40].

These techniques have been applied in debuggers and compilers. It is the case of Valgrind debugger,

where Langley [41] modified it to trace the flow of secret information and warn if it is used in branches or

as a memory index.

2.6.4.2 Injecting noise

This countermeasure focuses on introducing noise to the attacker’s measurements making them

essentially useless [1]. As it occurs with the constant-time techniques, this technique has the disadvantage

of deteriorating the performance of the system.

Zhang et al. [42] introduced a bystander VM for injecting noise on the cross-VM L2 covert channel

with a configurable workload. They found that as long as the bystander VMs only adjust their CPU

time consumption, working sets and memory access rates, they impact the cross-VM covert channel’s

bandwidth.

Although noise injection can difficult the leak of information, it is inefficient for obtaining high security,

because the amount of actual required noise increases dramatically with decreasing channel capacity.

Chapter 2. Background 27

This significantly degrades system performance, and makes it infeasible to reduce channel bandwidth by

more than about two orders of magnitude [43].

2.6.4.3 Partitioning time

This countermeasure eliminates attacks which rely on either concurrent or consecutive access to

shared hardware by either providing time-sliced exclusive access, or carefully managing the transition

between time-slices (e.g., flushing the caches) [42]. Among the techniques that partition time to eliminate

the attacks, the cache flushing and the kernel address space isolation techniques stand out.

Cache flushing

Zhang et al. [44] suggested flushing all local state, including BTB and TLB, and all levels of caches

during VM switches in cloud computing when CPU switches security domains.

The lower and larger the cache level, the bigger the degradation of performance as the time to refill

the caches is bigger, and the likelier a newly scheduled VM finds any data or instructions hot in the cache

[45].

Kernel address space isolation

Gruss et al. [46] proposed isolating kernel form user address space by using separated page directories

for each, so switching context between user and kernel spaces includes switching the page directory. This

technique is designed to mitigate the timing attack on prefetch instructions.

2.6.4.4 Partitioning hardware

The partitioning hardware mechanism is only used in truly concurrent attacks that can only be

prevented by partitioning hardware resources among competing threads or cores [1].

Cache Coloring

The cache coloring approach exploits set-associativity to partition caches in software. Besides

improving determinism and predictability in detriment of average-case performance [32], it can be used

to protect against cache timing channels.

Cache coloring implementations divide memory into colored memory pools and allocate memory from

different pools to isolated security domains. As an example, Figure 2.14 shows how the same physical

address (PA) is interpreted from 4 different points of view. At the top, the bits of a PA are seen from

the perspective of an OS/Hypervisor as divided into physical frame number (PFN) and page offset (PO)

bits. At the lower layer, the structure of the same PA from the point of view of the L1 and L2 caches is

Chapter 2. Background 28

depicted, highlighting its color bits. Physical frames whose addresses diverge in any of these color bits

are not mapped to the same cache set, and thus never conflict.

Figure 2.14: Disposition of colour bits in a 32-bits PA address from the point of view of an OS, L1
and L2 (PIPT) caches.

3. Analysis

The analysis begins by defining the experimental system and which processor is being targeted.

Then, based on this dissertation’s context, the study is done upon three main factors that determine

the exploitation technique to be used, composing the attack’s strategy.

After defining the attacker’s strategy, all the challenges necessary to conduct the exploitation technique

are addressed, and it is presented to each one of them, several solutions.

3.1 Attack Strategy

To know which kind of attack is the most effective, a whole attack’s strategy needs to be defined. The

most preponderant attributes for choosing the appropriate exploitation technique refer to (i) the concurrency

level, (ii) the resource sharing level, and (iii) the memory sharing level.

3.1.1 Experimental System Definition

The targeted CPU within the Ultrascale+ MPSoC is the APU, a Cortex-A53 MPCore with 4 cores. Each

core has a private L1 instruction cache and L1 data cache, both connected through a shared L2 cache

inclusive on the instruction side and non-inclusive on the data side. Within the APU, three of the cores will

host the non-critical OS (i.e., Linux), while the other core will be responsible for serving the critical tasks

(i.e., ErikaRTOS).

29

Chapter 3. Analysis 30

Figure 3.1: Mixed-criticality system using Jailhouse as hypervisor. The first 3 cores are assigned
to Linux, and the other core is within Erika RTOS’s domain.

3.1.2 Resources Sharing Level Definition

The extension at which the contended resources are shared defines their sharing degree. The lowest

layer (i.e., interconnect) is shared between all processes in the system while the highest layer contains only

thread shared resources in the same core (e.g., BTB, pipelines and functional units). The intermediate

layers can be shared between packages (e.g., LLC) or cores (e.g., private caches). Those at higher levels

tend to achieve higher severity by exploiting the higher-precision information available, while those at lower

levels (e.g. the interconnect) tend to have lesser precision, being mostly DoS. Simultaneously, the lower

the layer, the easier to protect against attacks.

In this case, the resource sharing level at which will the attack occur will be the package-shared one,

as the proposed problem (i.e., extract information between different cores on the same chip) requires a

cross-core attack.

Figure 3.2: Contended resources in a hierarchical multicore system with 3 cache levels [1]. Within
the red rectangle, it is represented the resource sharing level intended to be studied and replicated.

Chapter 3. Analysis 31

Due to the hypervisor’s static partition hardware policy (i.e., AMP), there will be no memory shared

between cores. As such, the attacker cannot rely on memory sharing techniques such as page

deduplication (e.g., used in Flush+Reload or Flush+Flush exploitation techniques) to launch the attack.

3.1.3 Temporal Concurrency Level Definition

The degree of temporal concurrency at which will the attack occur varies with the level where the

resource contention will be exploited. These degrees can be classified as (i) time-sliced execution on a

single core, (ii) hardware threading (e.g. SMT), and (iii) full concurrency (i.e. multicore).

The attacks that occur at the lowest and highest sharing level require true concurrency, as the buses

or the low-level components (e.g., L1, TLB) have relatively small states that are rapidly overwritten.

The chosen exploited resource (i.e., LLC), has a much larger persistent state thanmost of the resources

on the other levels [1]. So, the attack can be exploited at a relatively coarse granularity, meaning that either

time-sliced concurrency within a core, or concurrency between cores, are enough to deploy an attack on

LLC, as it can be verified in Figure 3.3. Since the purpose of this dissertation is to deploy cross-core

attacks, the attack will occur in a full concurrency context (i.e., multicore).

Figure 3.3: Table with known microarchitectural timing attacks. The horizontal axis represents
the temporal concurrency level and the vertical axis represents resources sharing level [1]. Within

the red rectangle, it is represented the type of attacks intended to be studied and replicated.

Chapter 3. Analysis 32

3.1.4 Exploitation Technique Definition

Based on the previously listed attributes, the exploitation technique that fulfills the requirements

demanded by the system is a Prime+Probe attack on the Ultrascale+’s LLC (i.e., L2). The choice of

the Prime+Probe technique is sustained by the fact that the technique doesn’t rely on shared memory to

successfully, find the co-located VM’s cache activity at a cache set granularity.

3.2 Attack Challenges

Regarding the Prime+Probe attack, there are some challenges that need to be overcome to do an

efficient attack. These challenges can be divided into two major actions that need to be undertaken:

1. Efficient eviction (i.e., how to construct an efficient eviction set during the prime step).

2. Precise timing (i.e., how to time correctly the probe step).

Each step of the Prime+Probe attack (i.e., prime step and probe step), has its own set of concerns

that can range from the underlying properties of the cache (e.g., inclusiveness, replacement policy) to

privileged accesses of Linux registers and files (e.g., /proc/pagemap access, dedicated performance

counter registers).

3.2.1 Prime Step Challenges

The prime step challenges can be synthesized as to (i) how to construct an eviction set, and (ii) how

to evict efficiently a targeted LLC set by accessing cache lines. The concerns to take into account are as

follows:

3.2.1.1 Shared LLC inclusiveness (L1-I inclusive, L1-D non-inclusive)

The inclusiveness of the LLC is exploited to evict lines that belong to the victim’s private cache. By

evicting lines from the LLC, the attacker can evict lines from the instruction side of L1, forcing this way

that the following accessed cache lines are stored in LLC and doesn’t occur any cache hit in L1. The

inclusiveness can be exploited in two different ways:

1. Direct Eviction - This kind of eviction occurs by accessing the inclusive side of the local cache.

The steps to evict directly an instruction from the adjacent core’s local cache are as follows:

Chapter 3. Analysis 33

(a) Step 1: an instruction is allocated to the last-level cache and the instruction cache of one

core.

(b) Step 2: a process accesses data or instruction that maps to the same cache set as the

targeted cache set.

(c) Step 3: the process evicts the instructions from other core’s instruction caches as well.

Figure 3.4: Cross-core instruction cache eviction through data accesses on a instruction- inclusive,
data-non-inclusive cache.

2. Indirect Eviction - This kind of eviction occurs by accessing the non-inclusive side of the local

cache. The steps to evict indirectly an instruction from the adjacent core’s local cache are as follows:

(a) Step 1: an instruction is allocated to the last-level cache and the instruction cache of one

core.

(b) Step 2: a process fills its core’s data cache, thereby evicting cache lines into the last level

cache.

(c) Step 3: the process evicts the instructions from other core’s instruction caches as well.

In the experimental setup that is intended to be used, both the attacker and the victim agree on a

cache set to contend (explained further in Chapter 4). So, there is no need to pollute the L2 cache to evict

lines from local caches. Therefore, the chosen method to evict the targeted cache set is the direct eviction

way.

Chapter 3. Analysis 34

Figure 3.5: Cross-core instruction cache eviction through data accesses on a instruction- inclusive,
data-non-inclusive cache.

Autolock Mechanism

There is an SoC-specific feature that can prevent the eviction from higher-level caches through lower-

level caches. This feature is called AutoLock [47] and implements an indicator storage element that tracks

which lines are stored in higher levels. The element can be realized with a set of indicators or a tag

directory. If an indicator is set, the corresponding line is protected. This mechanism, therefore, prevents

said performance penalties, because subsequent evictions in higher cache levels are prohibited.

3.2.1.2 Replacement policy (LRU policy on L1, pseudo-random policy on LLC)

During the prime step, the cache replacement policy plays an important role in the eviction efficiency of

cache lines. During a Prime+Probe attack, when priming the set using an eviction set, due to the pseudo-

random replacement policy, some of the attacker’s addresses might be replaced with other attacker’s

addresses instead of replacing victim’s addresses, causing a self eviction effect, which is named cache

trashing. This problem is solved by using eviction strategies.

Eviction Strategy

The aforementioned attack techniques (see Section 2.6.3) like Flush+Reload and Flush+Flush use the

unprivileged x86’s flush instruction clflush to evict a cache line. But except for ARMv8-A CPUs, ARM

processors do not have an unprivileged flush instruction, and therefore cache eviction must be used

employing eviction strategies.

An eviction strategy accesses addresses from an eviction set in a specific access pattern and can ideally

be used as a replacement for a flush instruction. The access pattern defines in which order addresses

from the eviction set (i.e., a set of congruent addresses1) are accessed, including multiple accesses per

1Congruent Addresses: Addresses that map to the same cache set.

Chapter 3. Analysis 35

address.

The success of a cache eviction strategy is measured by testing whether the targeted memory address

is not cached anymore over many experiments (i.e., average success rate). The three attributes that weigh

the most in the success of the eviction of a set were enumerated by Maurice et al. [48] as: (i) the eviction

set size (N), (ii) the number of different memory addresses (D), and (iii) the number of repeated accesses

to the same address (A).

The eviction set size matters within the eviction strategy context because cache hits and cache misses

only have impact to addresses that map to the same cache set. The number of different memory addresses

that are accessed in a loop and the number of accesses to the same address also contribute to the

effectiveness of the eviction strategy. It might occur that some replacement policies prefer to evict recently

added cache lines over older ones, thus the repeated accesses are necessary to keep the lines in the

cache.

Taking into account the most important attributes, the eviction strategy, also named by Irazoqui et

al.[47] as sliding window eviction, can be described (in Algorithm 1) as a loop over an eviction set of size

N, where only a subset of D addresses is accessed per round. A parameter A allows to make accesses

overlap for repeated accesses.

Algorithm 1: Eviction loop using eviction set with N congruent addresses.

for i 0; i � N-D; i++ do

for j 0; j � A; j++ do

for k 0; k � D; k++ do

access (i+k)th address of eviction set;

end for

end for

end for

In order to acquire high-frequency measurements, the eviction has to be consequently fast. To find

fast eviction strategies, Lipp et al. [48] used Rowhammer attack techniques to evaluate different eviction

strategies and suggested the following table (illustrated in Table 3.1) for the Cortex-A53 MPCore.

Chapter 3. Analysis 36

N A D Cycles Eviction rate

- - - 767 100,00%

23 2 5 6209 100,00%

23 4 6 16912 100,00%

22 1 6 5101 99,99%

21 1 6 4275 99,93%

Table 3.1: Different eviction strategies on Cortex-A53 MPCore [28]. The first strategy is used
recurring to the x86’s clflush instruction, hence the absence of parameters.

3.2.1.3 Understand hidden mappings

Another challenge that must be overcome is to know which physical addresses are being accessed

while having only access to virtual addresses. If an eviction strategy is intended to be deployed, an eviction

set must be constructed. Thus, to know which cache set a group of addresses map to, there are two ways:

(i) know their physical address or, (ii) use huge pages.

1. Find congruent addresses (privileged access) - The first method, that requires privileged

access to access the intended files, is to use operating-system services like /proc/�pid!/maps or

/proc/�pid!/pagemap, to retrieve information on virtual and physical address mappings.

The /proc/�pid!/maps service offers information relative to regions of contiguous virtual memory,

such as (i) the virtual addresses that bound the region in a process or thread, (ii) the permissions

of the regions, and (iii) more importantly, the offset, if the region was mapped from a file, where

the mapping begins(illustrated in Figure 3.6).

On the other hand, /proc/�pid!/pagemap offers information relative to virtual pages, letting a

userspace process know, among other information, which physical frame each virtual page is

mapped to. The page table, that has the virtual to guest’s physical address translations, is

accessible via this file.

As the experimental setup comprises a hypervisor, an additional translation layer that separates the

guest’s physical address from the host’s (i.e., hypervisor) physical address exists. In this case, the

understanding of virtual to guest physical address translations isn’t enough to address this problem

(recall that the cache set index is derived directly from the physical address on ARM).

Chapter 3. Analysis 37

Figure 3.6: Example of /proc/self/maps output when using a Linux application. The first column
describes the starting and ending address of the contiguous region, the second column shows the
permissions of the regions and the third column outputs the offset in the file where the mapping

begins (if the memory was not mapped from a file, the value 0 is shown instead).

The second level translation problem is solved recurring to Jailhouse’s configuration files, which

allow to decide in which guest and host’s physical addresses the memory regions reside, making

it possible to establish a direct connection between the guest’s physical address and the host’s

physical address. In Bao, this challenge is significantly more difficult to overcome, since there is no

chance to assign physical addresses to memory regions. In this case, the only solution is to debug

the hypervisor’s code and find the translations. Once known the virtual to host’s physical address

translations, the virtual addresses can then be chosen to construct an eviction set based on their

translation.

2. Use huge pages (unprivileged access) - The secondmethod, that doesn’t require any privileged

access to any file, is to use huge TLB pages. The use of huge pages means the enlargement of

virtual memory pages so that the page offset is large enough to cover all of the L2 set index bits.

In the L2 cache, when using the default sized pages, the virtual-to-physical translation masks some

of the bits that encode the cache set index. By not knowing the physical frame number, the attacker

cannot determine the cache set that a memory address maps to.

To resolve this uncertainty, huge pages (e.g., 2MB-sized pages) are used. Hence, when using huge

pages, the L2 set index bits are preserved during virtual-to-physical address translation, allowing

the attacker to determine the cache set index from the huge page offset.

In Cortex-A53 MPCore’s case, if the default page size (i.e., 4KB-sized page) configuration is used,

the L1 and L2 caches have their set index bits masked by the PFN. The L1 cache has the highest

set index bit translated while the L2 cache has the set index bits [9:4] translated.

Chapter 3. Analysis 38

Figure 3.7: Effect of 2MB-sized huge pages on Cortex-A53 MPCore’s caches address translation.
The 4KB-sized pages configuration (above) masks a portion of the caches set index bits, while the

2MB-sized pages configuration (below) doesn’t mask any cache set index bit.

When the 2MB-sized pages are used, the page offset bits cover the set index bits of both L1 and L2

caches. Since the page offset bits aren’t translated, the set index bits of L1 and L2 caches maintain

their values during virtual-to-physical translation.

3.2.2 Probe Step Challenges

The main concern during the probe step is to time correctly the cache accesses. To have precise

timing, the challenges to be taken into account described in the following sections.

3.2.2.1 Timing sources or dedicated performance counters to be used

There are 4 ways of obtaining an accurate timing of cache accesses that distinguishes cache hits from

cache misses. They are listed below in descending order from timing accuracy:

1. Performance counter registers (privileged access) - ARMv8-A architectures provide one

performance monitor register denoted as Performance Monitor Cycle Count Register (PMCCNTR)

that counts processor cycles. While its measurements are fast and precise, the access to those

performance counters is restricted to the kernel space by default. As root privileges are required to

use these registers, this timing source is hardly accessible in serious attacks [28].

2. perf syscall (unprivileged access) - Linux kernel provides a powerful tool to instrument CPU

performance counters and tracepoints 2, independently of the used hardware. The system call

2Tracepoints: instrumentation points placed at logical locations in code, such as for system calls, TCP/IP events, file system
operations, etc.

Chapter 3. Analysis 39

perf_event_open is used to access such information from userspace; however, since this approach

relies on a system call to acquire the cycle counter value, a latency overhead can be observed.

Figure 3.8: Map of Linux event sources used by perf tool. [49]

3. POSIX function (unprivileged access) - The clock_gettime() function retrieves the time of a

clock that is passed as a parameter. Depending on the used clock, it allows obtaining timing

information with a resolution in the range of microseconds to nanoseconds, which is still enough

to distinguish cache hits and misses.

4. Dedicated thread timer (unprivileged access) - The least accurate method is done by an

attacker which implements a thread running on a different core that increments a variable in a

loop. The resolution of this threaded timing information is by far high enough to differentiate cache

hits from cache misses.

3.2.2.2 Replacement policy (LRU policy on L1, pseudo-random policy on LLC)

During the probe step, the cache replacement policy plays an important role in the eviction efficiency

of cache lines. During a Prime+Probe attack, when probing the targeted set, due to the pseudo-random

replacement policy, the same cache trashing effect (occurred on prime step) can occur on the cache. This

problem is solved by accessing in reverse order the cache lines from the set during the probe step and

reducing the eviction set size [19].

Chapter 3. Analysis 40

3.2.2.3 Interaction with higher-level caches

Besides cache trashing, there is another noise variation associated with the memory hierarchy.

Accessing memory from local caches is faster than reading from shared caches. So, local cache contents

affect the cache probe time (i.e., the more the local cache contents have in common with the shared

caches, the less will the probe time be) and introduce noise to its measurements. In Cortex-A53 MPCore,

4 accesses to the cache lines present in a L1-D’s cache way have lower latency (i.e., 12 cycles for simple

access via pointer) than 1 access to the L2 cache (i.e., 15 cycles). By measuring the total probe time,

the attacker doesn’t know if it accessed a L2 cache line or if it accessed 4 cache lines present in the local

cache. This ambiguity in the probing time can infer multiple cases of the victim’s cache activity to the

attacker.

This interaction tends to have less effect when the associativity of lower-level caches is much higher

than that of local cache since a local cache (e.g., L1) can only hold a small portion of the eviction set for

the lower level cache (e.g., LLC). In Cortex-A53 MPCore, there can be a total variation of 48 cycles in the

measured probing time. This variation is calculated by measuring the probing time difference between

two extreme cases. The highest latency case is when all cache lines are present in L2 and no cache line

is present in L1-D (i.e., 15x16 cycles). The lowest latency case is when 4 cache lines are present in L1-D

and L2 (i.e., Cortex-A53’s L2 is non-inclusive on data-side), and the remaining 12 lines are present in L2

(i.e., 4x3 + 15x12 cycles).

3.2.2.4 Probing resolution

The probing resolution of the LLC is limited only by the speed at which the attacker can perform the

probe. Probing an LLC is much slower than probing L1, which is tied to the reduced channel capacity of

an LLC based covert channel. This is due to two main reasons:

1. The LLC typically has higher associativity than the L1 cache (e.g., 12 to 24-way versus 4 to 8-way),

hence more memory accesses are required to completely prime or probe a cache set.

2. The probe time increases due to the long access latency of the LLC. To probe an LLC, the attacker

has to experience cache misses on the higher-level caches.

4. Design

The last chapter allowed to define which exploitation technique is intended to be used based on three

main factors: (i) the resource sharing level, (ii) the memory sharing level, and (iii) the temporal concurrency

level. Once defined the exploitation technique, all the main challenges were addressed. Also, multiple

alternatives to solve each challenge were presented, each one with its own advantages and disadvantages.

This chapter follows up the analysis by proposing algorithms that use the exploitation technique (see

Section 2.6.3.1) to exploit the communication medium (i.e., L2), resulting in the observation of a channel.

To observe channels, two algorithms were proposed and designed: (i) the first algorithm establishes the

dependency of probing time with number of accessed lines, and (ii) the second algorithm, that leverages

the principle established in the first algorithm to establish a communication between two partitioned cores.

4.1 Proposed Channels

After addressing the challenges of deploying an efficient Prime+Probe attack and defining the attack’s

strategy, it is possible to architect the channels which evidence the correlation between the victim accesses

and the cache state. Notwithstanding, there is the need to recreate an idyllic environment where: (i) the

attacker and the victim don’t perform at the same time; (ii) the attacker and the victim can agree,

beforehand, which addresses to access for the cache to be affected; and (iii) the attack can be done

consecutively, without external interference, to get around the problem of the occurrence of false positives.

By synchronizing both actors (much different from a realistic setting), the visualization of the channel gets

much more evident, because there is a minimal cache interference between the probing and priming step,

besides the interference of the victim.

41

Chapter 4. Design 42

4.1.1 Simple Channel

Osvik et al. [15] have shown that the time to access the addresses in the probing step is directly

related to the number of ways that have been replaced by the victim. If the victim didn’t replace any cache

ways, the probe step will take minimal time. If the victim replaced more ways, the probe step will take

longer. The algorithm to observe the channel is illustrated below in Algorithm 2.
Algorithm 2: Simple Prime+Probe attack
Input: Cache set s

Output: Probing time of cache set s

Prime: Occupy cache set s any data

Wait for victim to be scheduled

Probe: Re-access the data from the prime step in reverse order

if probe time � threshold then

no victim access;

else

victim access;

end if

4.1.1.1 Statechart Diagram

The behavior of the attacker and the victim during the attack execution are described by the following

state machines, illustrated by Figure 4.6 and Figure 4.2, respectively.

1. Attacker - The states that the attacker takes throughout the attack, are solely focused on priming

and probing the cache while the victim waits to access the cache. The attack starts when the

attacker starts priming the cache and finishes when the prime and probe runs are done.

Figure 4.1: Attacker state machine during the attack that allows observing the Simple Channel.

Chapter 4. Design 43

2. Victim - On the other hand, the victim interleaves the execution time with the attacker, only

accessing the cache when the attacker finishes priming the cache. As soon as the number of

runs is achieved, it finishes accessing the lines and stops executing.

Figure 4.2: Victim state machine during the attack that allows to observe the Simple Channel.

4.1.1.2 Sequence Diagram

The sequence diagram that describes the synchronous events during one attack iteration of both actors

is illustrated by Figure 4.3.

Figure 4.3: Sequence diagram of the attack that allows to observe the Simple Channel.

The attacker starts the attack by priming the cache set s. Then, it signals the victim to start accessing

the cache sending an interrupt. After signaling the victim, the attacker halts its execution and waits for

the victim to send back a signal. The victim proceeds to access a predefined number n of cache lines

from cache set s. Then, it signals back the attacker sending another interrupt and stops executing. The

Chapter 4. Design 44

attacker resumes the execution and completes the attack by probing the same cache set s that had been

primed and accessed. After probing the cache set, the attacker may start another attack by repeating the

sequence.

4.1.1.3 Flow Charts

The execution flows of the attacker and the victim are illustrated by Figure 4.4 and Figure 4.5,

respectively.

1. Attacker - As aforementioned, to start the attack, the attacker and the victim need to agree

beforehand on a cache set to contend. So, the first action the attacker needs to take before

beginning the attack is to get the set index of the address that the victim will target. This is necessary

because the attacker will need to target, when priming and probing the cache, a set of congruent

cache lines1 resorting to the obtained cache set index.

Then, the next step for the attacker is to prime the cache. It obtains the congruent addresses and

then evicts them through an eviction strategy that uses architecture-specific reading instructions.

After the priming finishes, the attacker sends an interrupt to the victim and waits until the victim

finishes accessing the cache. When the attacker receives the interrupt, it proceeds to probe the

cache by accessing all the previously evicted lines (in the prime step) in reversed order. The access

is done in reversed order to avoid self eviction caused by the pseudo-random policy of L2 cache.

Then, accordingly to a predefined number of Prime+Probe runs, the attacker repeats the same

procedure as many times as it is needed. This is done to prevent the observation of false positives,

that may happen due to the evicting inefficacy of the eviction strategy.

After completing all the attack iterations, the attacker calculates the average of the obtained probe

times, comparing its value to a predefined threshold value (calculated by measuring the minimum

amount of time an attacker takes to probe the cache). If the average value is below the threshold,

it means that the victim didn’t access the cache between the prime and probe phase, as every line

accessed in the probe phase had already been there, resulting in multiple cache misses. If the

average value is higher than the threshold, then at least one cache line of the agreed set has been

accessed by the victim, resulting in one cache miss.

1Congruent addresses: addresses that map to the same cache set.

Chapter 4. Design 45

Figure 4.4: Attacker’s flow chart during the attack that allows to observe the Simple Channel.

2. Victim - The victim’s behavior is solely based on accessing the cache lines, with the caution of

starting its activity when told to by the attacker.

The victim waits indefinitely for an interrupt to be sent by the attacker. When the victim receives the

interrupt, it proceeds to access a physical address that maps to the same cache set that has been

accessed by the attacker.

If the intended number of lines have been accessed, the victim sends back the interrupt to the

attacker and ends the execution. If the victim pretends to access more lines, the victim changes

Chapter 4. Design 46

the physical address to another physical address that maps to another line in the same cache set.

Figure 4.5: Victim’s flow chart during the attack that allows to observe the Simple Channel.

4.1.2 Bits Transmission Channel

Heiser et al. [17] proposed a covert channel that uses the same principle of the first channel (i.e., the

more the probing time, the more lines of a certain set have been accessed) as an indicator of cache set

usage to establish communication between guests.

To observe the channel, the attacker and the victim need to agree on 2 cache sets and 2 cache lines,

where line 0 maps to set 0, and line 1 maps to set 1. To send the value 1 or 0, the victim continuously

accesses line 1 or line 0, respectively, for an amount of time, while the attacker primes and probes both

cache sets that are mapped by the lines. The cache set that takes longer to probe is the one that was

accessed by the victim between the prime and probe phases.

The algorithms used to observe the channel are illustrated below in Algorithm 3, for the victim, and

Algorithm 4, for the attacker.

Chapter 4. Design 47

Algorithm 3: Covert channel protocol / Victim operations
Input: Cache lines 0 and 1

D[N]: N bits to be transmitted

Output: Probing time of cache sets 0 and 1

for i← 0 to N-1 do

if D[i] to 1 then

access line 1;

else

access line 0;

end if

end for

Algorithm 4: Covert channel protocol / Attacker operations

for an amount of time do

probe set 0 backwards;

probe set 1 backwards;

end for

4.1.2.1 Statechart Diagram

The behavior of both the attacker and the victim during the attack execution are described with the

correspondent state machine illustrated by Figure 4.7.

1. Attacker - The attacker focuses solely on priming and probing the cache interleaving with the

victim. In contrast to the Simple Channel attack, where there was only one set to be contended,

this channel requires two sets to be contended. So, the prime step of the attacker consists of priming

two cache sets at the same time, and, after the victim accesses one of the sets, the attacker needs

to probe both cache sets and compare them. This execution loop occurs until the number of needed

prime and probe runs is achieved.

Chapter 4. Design 48

Figure 4.6: Attacker state machine during the attack that allows observing the Bits Transmission
Channel.

2. Victim - In this channel, the victim accesses more than one set, alternating the sets being accessed

between each iteration. The first set to be accessed is the set 0, which is mapped by the cache line

0. The victim waits for the attacker to prime that set, and then accesses the line 0 evicting a line

from the cache set 0. After accessing the set 0, the victim waits for the attacker to probe the set

0 and proceed to prime the next set 1, which is mapped by the cache line 1. When the attacker

finishes priming the set 1, the victim repeats the sequence and accesses the cache line 1 to evict

a line from cache set 1. The attacker then probes the cache set 1 and compares the time that took

to access each one of the sets.

Figure 4.7: Victim state machine during the attack that allows observing the Bits Transmission
Channel.

Chapter 4. Design 49

4.1.2.2 Sequence Diagram

The sequence performed during one attack iteration is described by the diagram illustrated in Figure

4.8.

Figure 4.8: Sequence diagram of the attack that allows to observe the Bits Transmission Channel.

The attacker starts the attack by priming the cache set 0 and cache set 1. After both cache sets have

their content primed, the attacker signals the victim to access one of the cache sets and signal back the

end of its execution. Likewise to the first channel, the synchronization between both actors is achieved

using interrupt requests. Then, the attacker resumes its execution and completes the attack by probing

both cache sets.

4.1.2.3 Flow Charts

The execution flows of the attacker and the victim are illustrated by Figure 4.9 and Figure 4.10,

respectively.

1. Attacker - The attacker obtains the set index of the targeted physical address, enabling the attacker

to find the congruent addresses.

Chapter 4. Design 50

Then, the attacker primes both cache sets 0 and 1, and sends an interrupt to the victim signaling

the end of the priming phase. The attacker waits until the victim finishes accessing one of the cache

sets and probes both cache sets afterward. If the time taken to probe the cache set 0 is less than

the probing time of the cache set 1, it means that lesser lines of cache set 0 have been accessed

(subsequently, evicted) by the victim. In this case, that means that the victim didn’t access the

cache set 0, but accessed the cache set 1. The same occurs for the case when the probing time

of the cache set 1 is less than the cache set 0.

After the victim transmits all of the bits (willingly) through the access of different cache sets within

defined time intervals, the attacker then finishes its execution.

Figure 4.9: Attack’s flow chart during the attack that allows to observe the Bits Transmission
Channel.

Chapter 4. Design 51

2. Victim - Firstly, the victim waits for an interrupt from the attacker. When the victim receives the

interrupts, it checks for the interrupt’s occurrence. As the transmission is alternate, it is established

that the even occurrences of interrupt are used to send bit 0, while the odd occurrences are used

to send bit 1. So, an even occurrence means accessing a line that maps to cache set 0, while an

odd occurrence means accessing a line that maps to cache set 1.

When the access to either cache set 0 or cache set 1 is done, the victim might want to access more

lines to increase the probing time of the attacker. This approach is preferable because the greater

the probing time, the more noticeable is the victim’s access to the attacker’s perspective. When

the access to the intended lines is done, the victim finally sends an interrupt to attacker signaling

the end of the cache access.

Figure 4.10: Victim’s flow chart during the attack that allows to observe the Bits Transmission
Channel.

5. Implementation

This chapter describes the implementation of the proposed channels whose design was presented in

the last chapter. The implementation encompasses the system configurations and the previously designed

algorithms. Furthermore, the code that allows overcoming the challenges (see Section 3.2) is highlighted,

and the implementation of the countermeasure is presented too.

5.1 System Configuration

Before implementing the attacks, the system must be configured statically. The configuration occurs,

in Jailhouse’s case, via Jailhouse’s cell configuration source files (see Section 2.3.2.1) and Linux’s boot

parameters. In Bao Hu’s case, the configuration is done through a single configuration file that describes

the assigned resources for all guests.

5.1.1 Jailhouse

This section describes Jailhouse cells’ configurations without the coloring feature.

5.1.1.1 Cells Configuration

1. Root Cell - Firstly, Jailhouse needs the Linux kernel boot parameters mem to be set in order to

reserve memory for other cells. As the targeted board ZCU104 Evaluation Kit provides 2GB of RAM

accessible in a 32-bit address map (depends on the address width of the interface master [50]),

the chosen reserved memory for hypervisor and non-root cell is 0,75GB, while Linux is configured

to use 1,25GB.

In this case, the attribution is done through U-Boot, recurring to the following command:

52

Chapter 5. Implementation 53

Listing 5.1: Memory reservation code. The mem kernel boot parameter sets the

available physical memory and reserves the rest of the memory.

1 setenv bootargs "mem=1280M"

After reserving the memory for hypervisor and non-root cell, it follows the configuration of the root

cell. Due to the large size of the configuration code, only the most relevant sections of code are

addressed.

It is in the root cell configuration where the hypervisor memory and other root cell’s memory regions

locations are defined. The hypervisor memory must be within the reserved memory in U-Boot, and

it is defined by members .phys_start and .size, which represent the beginning (i.e., host physical

address) and the length of the memory region, respectively.

Regarding the CPUs assigned to each cell, since the root cell owns all CPUs at start and then

loses them according to non-root needs, it is attributed to the root cell all CPUs. This is done by

attributing the bitmap value 0xf, that converted to binary representation means 0b1111. Since there

are 4 cores in the targeted processor (i.e., Cortex A53 MPCore), 4 bits are enough to encompass

all CPUs.

The first declared memory region allows the access to PS I/O peripherals registers (e.g., UART, I2C,

CAN and other peripherals), while the second one allows the access to RAM with the permissions

to write, read and execute data within the established boundaries defined by .phys_start and

.virt_start members (.phys_start means the host’s physical address, and .virt_start means the

guest’s physical address). The last memory region grants to root cell the access to the previously

mentioned shared memory region (i.e., ivshmem) with the non-root cell.

Concerning the PCI devices, it is registered one virtual PCI device as a shared memory device in

.type member. This virtual PCI device allows cells to discover shared memory and send each other

interrupts.

Listing 5.2: Root cell configuration code.

1

2 .hypervisor_memory = {

3 /* Must be within reserved memory (0x50000000 -0x80000000)*/

4 .phys_start = 0x7c000000,
5 .size = 0x00400000,

Chapter 5. Implementation 54

6 },

7

8 /* CPUs which are assigned to a cell */

9 .cpus = {

10 0xf, /* Here are assigned all CPUs */

11 },

12

13 /*Memory regions this cell has access and with which rights (flags).*/

14 .mem_regions = {

15 /* MMIO (permissive) */ {

16 .phys_start = 0xfd000000,
17 .virt_start = 0xfd000000,
18 .size = 0x03000000,
19 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |

20 JAILHOUSE_MEM_IO,
21 },

22 /* RAM */ {

23 .phys_start = 0x0,
24 .virt_start = 0x0,
25 .size = 0x7c000000,
26 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |

27 JAILHOUSE_MEM_EXECUTE,
28 },

29 /* IVSHMEM shared memory region for 00:00.0 */ {

30 .phys_start = 0x7bf00000,
31 .virt_start = 0x7bf00000,
32 .size = 0x100000,
33 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE,
34 },

35 },

2. Non-root Cell - To the non-root cell are assigned the cores 2 and 3, given by the bitmap 0b1100.

The assigned memory regions range from UART, needed to interact with the inmate, to the shared

memory region with root cell. A memory region that enables the communication between hypervisor

and non-root cell is needed, in order to issue hypercalls that can enable, load and start the cell.

Finally, it is given a 512MB-sized RAM dedicated to the inmate, represented by erika_inmate.bin

file.

Listing 5.3: Non-root cell configuration code.

1

2 .cpus = {

Chapter 5. Implementation 55

3 0xc, /* Here are assigned CPUs 2 and 3*/

4 },

5

6 .mem_regions = {

7 /* UART */ {

8 .phys_start = 0xff010000,
9 .virt_start = 0xff010000,

10 .size = 0x1000,
11 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |

12 JAILHOUSE_MEM_IO | JAILHOUSE_MEM_ROOTSHARED,
13 },

14 /* RAM for loader*/ {

15 .phys_start = 0x7bef0000,
16 .virt_start = 0, //needs to start at 0 for loader

17 .size = 0x10000,
18 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |

19 JAILHOUSE_MEM_EXECUTE | JAILHOUSE_MEM_LOADABLE,
20 },

21 /* IVSHMEM shared memory region */ {

22 .phys_start = 0x7bf00000,
23 .virt_start = 0x7bf00000,
24 .size = 0x100000,
25 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |

26 JAILHOUSE_MEM_ROOTSHARED,
27 },

28 /* communication region */ {

29 .virt_start = 0x80000000,
30 .size = 0x00001000,
31 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |

32 JAILHOUSE_MEM_COMM_REGION,
33 },

34 /* RAM for erika_inmate.bin*/{

35 .phys_start = 0x50000000,
36 .virt_start = 0x50000000,
37 .size = 0x20000000, //must be page size aligned

38 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |

39 JAILHOUSE_MEM_EXECUTE | JAILHOUSE_MEM_DMA |

40 JAILHOUSE_MEM_LOADABLE,
41 },

42 },

Chapter 5. Implementation 56

5.1.1.2 Memory Layout

When the configuration is done, the system’s memory (only the root cell’s address space is illustrated)

has the layout depicted in Figure 5.1. Within the RAM’s address space, there is an overt division between

the reserved and non-reserved memory, established previously in U-Boot, through kernel boot parameters.

The non-reserved memory is fully taken by the root cell, which represents the first 1280MB of the RAM

address space, while the rest of the memory is divided between the non-root cell and the hypervisor

memory. The hypervisor memory only occupies 4MB, while the non-root cell occupies the rest of the

reserved memory.

Figure 5.1: RAM’s layout after configuring the system.

5.1.2 Jailhouse with cache coloring

This section describes Jailhouse cells’ configurations with the coloring feature implemented.

5.1.2.1 Cells Configuration

1. Root Cell - Using colored memory has its drawbacks. One of them is the amount of page entries

that is needed by the strided memory mapping, which could easily fill up all the memory reserved

for Jailhouse. As a consequence, the hypervisor memory needs to be increased.

Chapter 5. Implementation 57

Listing 5.4: Root cell configuration code.

1

2 .hypervisor_memory = {

3 .phys_start = 0x7d000000,
4 .size = 0x01000000,
5 },

6

7 .cpus = {

8 0xf,
9 },

10

11 .mem_regions = {

12 /* MMIO (permissive) */ {

13 .phys_start = 0xfd000000,
14 .virt_start = 0xfd000000,
15 .size = 0x03000000,
16 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |

17 JAILHOUSE_MEM_IO,
18 },

19 /* Colored RAM for inmates*/ {

20 .phys_start = 0x0,
21 .virt_start = 0x0,
22 .size = 0x7d000000,
23 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |

24 JAILHOUSE_MEM_EXECUTE,
25 },

26 /* IVSHMEM shared memory region for 00:01.0 (network) */ {

27 .phys_start = 0x7c000000,
28 .virt_start = 0x7c000000,
29 .size = 0x100000,
30 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE,
31 },

32 },

2. Linux Non-root Cell - The Linux non-root cell, since it is going to be used as the cell of the attacker,

needs to have a single region that can hold both kernel image, kernel decompression space, dtb and

initramfs together. To that region is given 8 colors out of 16, represented by the member .colors,

which has the value 0xff00.

The loader needs another memory region, which needs to begin mandatorily on the guest’s physical

address 0, due to jailhouse-cell-linux command implementation. Besides it, to communicate with

the victim’s cell (i.e., Erika non-root cell) and the root cell, where the commands are issued, it has

Chapter 5. Implementation 58

two shared memory regions and a communication region to communicate with the hypervisor.

Listing 5.5: Non-root cell configuration code.

1

2 .cpus = {

3 0x8, /* Here is assigned CPU 3*/

4 },

5

6 .mem_regions = {

7 /* UART */ {

8 .phys_start = 0xff010000,
9 .virt_start = 0xff010000,

10 .size = 0x1000,
11 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |

12 JAILHOUSE_MEM_IO | JAILHOUSE_MEM_ROOTSHARED,
13 },

14 /* Colored RAM for kernel image and initramfs*/ {

15 .phys_start = 0x40000000,
16 .virt_start = 0x40000000,
17 .size = 0x30000000,
18 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |

19 JAILHOUSE_MEM_EXECUTE | JAILHOUSE_MEM_LOADABLE |

20 JAILHOUSE_MEM_DMA| JAILHOUSE_MEM_COLORED_CELL,
21 .colors = 0xff00,
22 },

23 /* RAM for loader*/ {

24 .phys_start = 0x7bef0000,
25 .virt_start = 0,

26 .size = 0x10000,
27 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |

28 JAILHOUSE_MEM_EXECUTE | JAILHOUSE_MEM_LOADABLE,
29 },

30 /* RAM */ {

31 .phys_start = 0x74000000,
32 .virt_start = 0x74000000,
33 .size = 0x7ef0000,
34 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |

35 JAILHOUSE_MEM_EXECUTE | JAILHOUSE_MEM_DMA |

36 JAILHOUSE_MEM_LOADABLE,
37 },

38 /* IVSHMEM shared memory region */ {

39 .phys_start = 0x7bf00000,
40 .virt_start = 0x7bf00000,
41 .size = 0x100000,
42 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |

43 JAILHOUSE_MEM_ROOTSHARED,

Chapter 5. Implementation 59

44 },

45 /* communication region */ {

46 .virt_start = 0x80000000,
47 .size = 0x00001000,
48 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |

49 JAILHOUSE_MEM_COMM_REGION,
50 },

51 /* IVSHMEM shared memory region (network) */ {

52 .phys_start = 0x7c000000,
53 .virt_start = 0x7c000000,
54 .size = 0x100000,
55 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |

56 JAILHOUSE_MEM_ROOTSHARED,
57 },

58 },

59

60 .pci_devices = {

61 /* 00:00.0 */ {

62 .type = JAILHOUSE_PCI_TYPE_IVSHMEM,
63 .bdf = 0 << 3, // 00:00.0

64 .iommu = 1,

65 .bar_mask = {

66 0xffffff00, 0xffffffff, 0x00000000,
67 0x00000000, 0x00000000, 0x00000000,
68 },

69 .shmem_region = 4,

70 .shmem_protocol = JAILHOUSE_SHMEM_PROTO_UNDEFINED, //Undefined type

71 },

72 /* 00:01.0 */ {

73 .type = JAILHOUSE_PCI_TYPE_IVSHMEM,
74 .bdf = 1 << 3, // 00:01.0

75 .shmem_region = 6,

76 .shmem_protocol = JAILHOUSE_SHMEM_PROTO_VETH, //Virtual peer-to-peer Ethernet

77 },

78 },

3. Erika Non-root Cell - The Erika non-root cell has a memory region where the binary

erika_inmate.bin is located, and it is given to that region the other 8 colors that weren’t set.

This cell is also assigned with a virtual PCI device which allows to receive interrupts and share

memory with Linux non-root cell.

Listing 5.6: Non-root cell configuration code.

Chapter 5. Implementation 60

1

2 .cpus = {

3 0x4, /* Here is assigned CPU 2*/

4 },

5

6 .mem_regions = {

7 /* UART */ {

8 .phys_start = 0xff010000,
9 .virt_start = 0xff010000,

10 .size = 0x1000,
11 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |

12 JAILHOUSE_MEM_IO | JAILHOUSE_MEM_ROOTSHARED,
13 },

14 /* IVSHMEM shared memory region */ {

15 .phys_start = 0x7bf00000,
16 .virt_start = 0x7bf00000,
17 .size = 0x100000,
18 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |

19 JAILHOUSE_MEM_ROOTSHARED,
20 },

21 /* communication region */ {

22 .virt_start = 0x80000000,
23 .size = 0x00001000,
24 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |

25 JAILHOUSE_MEM_COMM_REGION,
26 },

27 /* Colored RAM for erika_inmate.bin*/{

28 .phys_start = 0x70000000,
29 .virt_start = 0x0,
30 .size = 0x4000000,
31 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |

32 JAILHOUSE_MEM_LOADABLE | JAILHOUSE_MEM_DMA |

33 JAILHOUSE_MEM_COLORED_CELL,
34 .colors = 0x00ff,
35 },

36 },

5.1.3 Bao Hu

The Bao Hu’s configuration system is much simpler than Jailhouse’s because it allows to configure all

the guests in the same file and it doesn’t support yet the majority of the functionalities as Jailhouse does,

which implies a naturally simpler approach to the assignment of memory regions and devices.

Chapter 5. Implementation 61

The guest images in Bao Hu are statically assigned in the configuration file, in contrast to Jailhouse

where they are assigned in execution time through userspace commands.

Listing 5.7: Bao Hu guest images assignment.

1 VM_IMAGE(bm1, /home/joao/nloader/linux.bin);
2 VM_IMAGE(bm2, /home/joao/bao_testguest/startup_AEMv8-FVP_AArch64_GCC.bin);

To share memory between guests, two shared memory regions are declared: (i) the first one is used to

synchronize both guests, and (ii) the second one is used as a contiguous memory region that starts at an

address that maps to cache set 0, being this way a reference to the guest’s access to targeted addresses.

Listing 5.8: Bao Hu shared memory declarations.

1 shmem_t bm_shmem = {

2 .size = 0x1000,
3 .colors = 0

4 };

5

6 shmem_t bm_shmem_contend_guest = {

7 .size = 0x100000, // 1MB = L2 size

8 .colors = 0,

9 };

Then, each guest image is assigned to a memory region, where it is given the guest’s starting physical

address (.base member) and a size for each memory region (.size member). It is also possible to assign

a number of CPUs to each guest (.cpu_num member) and specify them (.cpu_affinity member) using the

bitmap notation as it has been used in Jailhouse.

Listing 5.9: Bao Hu memory region assignment for Linux guest.

1

2 .image = {

3 .base_addr = 0x00200000,
4 .load_addr = VM_IMAGE_OFFSET(bm1),
5 .size = VM_IMAGE_SIZE(bm1)
6 },

7

8 .entry = 0x00200000,
9 .cpu_affinity = 0x7,

10 .platform = {

Chapter 5. Implementation 62

11 .cpu_num = 1,

12 .region_num = 2,

13 .regions = (struct mem_region[]) {

14 {

15 .base = 0x0000000,
16 .size = 0x20000000 //512 MB

17 },

18 {

19 .base = 0x21000000,
20 .size = 0x1000,
21 .shared = &bm_shmem
22 }

23 },

24 }

25 ...

5.1.4 Bao Hu with cache coloring

Regarding the cache coloring implementation in Bao Hu, it is possible to assign colors to each guest,

which means that the memory regions that the guest owns are only allocated to regions that map to a

certain set not accessible by other guests (through .color member), including the shared memory regions

which can be colored separately.

The distribution of colors can be done in any way, but in order to have mutual cache protection between

guests, memory regions with different colors must be assigned to different guests.

To the contiguous shared memory that is used to target certain cache sets by the victim’s side, it

is given a color different from the attacker guest, since it is imperative for them to not contend for the

same cache sets, otherwise the victim will evict the previously primed addresses and then the attacker will

recognize them as evicted.

Listing 5.10: Bao Hu colored shared memory declarations.

1 shmem_t bm_shmem = {

2 .size = 0x1000,
3 .colors = 0

4 };

5

6 shmem_t bm_shmem_contend_guest = {

7 .size = 0x100000, // 1MB = L2 size

8 .colors = 0x1

Chapter 5. Implementation 63

9 };

Another point to remember is to keep colors as contiguous as possible, allowing caches to exploit

the higher performance to central memory controller [32], so it is given half of the available colors to the

attacker guest (given by value 0xf0) while the rest of the colors are given to the victim guest (given by value

0x0e).

Listing 5.11: Bao Hu memory region assignment for colored Linux guest.

1 .image = {

2 .base_addr = 0x00200000,
3 .load_addr = VM_IMAGE_OFFSET(bm1),
4 .size = VM_IMAGE_SIZE(bm1)
5 },

6

7 .entry = 0x00200000,
8 .cpu_affinity = 0x7,
9 .colors = 0xf0,

10 .platform = {

11 .cpu_num = 1,

12 .region_num = 2,

13 .regions = (struct mem_region[]) {

14 {

15 .base = 0x0000000,
16 .size = 0x20000000 //512 MB

17 },

18 {

19 .base = 0x21000000,
20 .size = 0x1000,
21 .shared = &bm_shmem
22 }

23 },

24 }

5.2 Eviction Strategy

Before implementing the channels, it is also needed to test which eviction strategy is more effective

while evicting a cache. The parameters (i.e., N-A-D parameters) from Table 3.1 that showed the best

eviction rate, and the parameters used by Irazoqui et al. [47] to test AutoLock, were chosen to be tested.

Chapter 5. Implementation 64

This test occurs in a context where there is no victim, but only an attacker that simulates an access

to a cache line between prime and probe steps, meaning that the attack doesn’t occur between cores,

opposed to the attacks done in the proposed channels. The attacks are repeated over 100000 times,

50000 for each hit and miss cases, and then recorded to establish a histogram.

To simulate a cache hit, the attacker doesn’t access a cache line between the prime and probe steps,

minimizing the cache set activity. The function that implements a cache hit and records its probing value

is illustrated in Listing 5.12.

Listing 5.12: Hit simulation function.

1 static void prime_probe_hit(libflush_session_t* libflush_session, void* address, size_t
runs, size_t* histogram, size_t histogram_size, size_t histogram_scale)

2 {

3 size_t set_index = libflush_get_set_index(libflush_session, address);
4

5 for (unsigned int i = 0; i < runs; i++) {

6 libflush_prime(libflush_session, set_index);
7 size_t time = libflush_probe(libflush_session, set_index);
8 histogram[MIN(histogram_size - 1, time / histogram_scale)]++;
9 }

10 }

To provoke a cache miss, the attacker accesses one cache line that maps to the targeted set between the

prime and probe steps, as it is illustrated in Listing 5.13.

Listing 5.13: Miss simulation function.

1 static void prime_probe_miss(libflush_session_t* libflush_session, void* address, size_t
runs, size_t* histogram, size_t histogram_size, size_t histogram_scale)

2 {

3 size_t set_index = libflush_get_set_index(libflush_session, address);
4

5 for (unsigned int i = 0; i < runs; i++) {

6 libflush_prime(libflush_session, set_index);
7

8 /* Access targeted address */

9 libflush_access_memory(address);
10 size_t time = libflush_probe(libflush_session, set_index);
11 histogram[MIN(histogram_size - 1, time / histogram_scale)]++;
12 }

13 }

Chapter 5. Implementation 65

5.3 Attack Challenges

In this section, it is described the implementation of the challenges that were addressed previously

(see Section 3.2).

5.3.1 Prime Step

During the prime step, as the name suggests, the targeted cache set needs to be primed the way the

attacker wants. This means evicting the cache set and exchanging the content of it with the expected data.

To do this efficiently, the attacker needs primarily to know how to access the addresses for them to evict

the previous content from cache set, and then reside there.

1. Understand hidden mappings - As the accessed addresses in the attacker’s case (i.e., via Linux

application) are virtual, the first challenge consists in knowing their translation to physical memory,

or to use huge pages. The chosen method is to understand the virtual-to-physical translation, which

requires privileged access to /proc/self/pagemap system service.

The /proc/self/pagemap file is read to memory.pagemap variable before starting the attack as it

is illustrated in Listing 5.14.

Listing 5.14: Code to get physical address recurring to /proc/self/pagemap.

1 bool libflush_init(libflush_session_t** session, libflush_session_args_t* args)
2 {

3 #if HAVE_PAGEMAP_ACCESS == 1

4 (*session)->memory.pagemap = open("/proc/self/pagemap", O_RDONLY);
5 if ((*session)->memory.pagemap == -1) {

6 free(*session);
7 return false;
8 }

9 #endif
10 return true;
11 }

Then, when the attack starts, the attacker can get the physical address of a virtual address by

reading the memory.pagemap variable and retrieving the page frame from which the virtual page

is mapped to. With the page frame number and the virtual address known, the attacker can then

Chapter 5. Implementation 66

calculate the physical address by appending the first 12 bits of the virtual address to the page frame

number.

Listing 5.15: Code to get physical address recurring to /proc/self/pagemap.

1 uintptr_t libflush_get_physical_address(libflush_session_t* session, uintptr_t
virtual_address)

2 {

3 (void) session;
4 (void) virtual_address;
5

6 #if HAVE_PAGEMAP_ACCESS == 1

7 // Access memory

8 libflush_access_memory((void *) virtual_address);
9

10 uint64_t value;
11 off_t offset = (virtual_address / 4096) * sizeof(value);
12 int got = pread(session->memory.pagemap, &value, sizeof(value), offset);
13 assert(got == 8);

14

15 // Check the "page present" flag.

16 assert(value & (1ULL << 63));

17

18 uint64_t frame_num = get_frame_number_from_pagemap(value);
19 return (frame_num * 4096) | (virtual_address & (4095));

20 #else

21 return 0;

22 #endif

23 }

Once known the physical value of the addresses, the attacker can then check which ones share the

same set index (i.e., congruent addresses). The function that searches for congruent addresses is

illustrated in Listing 5.16.

Listing 5.16: Find congruent addresses used during Prime step code.

1 void find_congruent_addresses(libflush_session_t* session, libflush_eviction_t*
2 eviction, size_t index, uintptr_t physical_address)
3 {

4 unsigned int found = 0;

5 for (unsigned int i = 0; i < eviction->memory.mapping_size; i += LINE_LENGTH)
6 {

7 uint8_t* virtual_address_2 = (uint8_t*) eviction->memory.mapping + i;

Chapter 5. Implementation 67

8 uintptr_t physical_address_2 = libflush_get_physical_address(session, (uintptr_t
) virtual_address_2);

9 uint64_t index_2 = (physical_address_2 >> LINE_LENGTH_LOG2) % NUMBER_OF_SETS;
10

11 if ((index == index_2) && (physical_address != physical_address_2))
12 {

13 eviction->congruent_address_cache[index].congruent_virtual_addresses[found++]
=

14 virtual_address_2;
15 }

16 }

17 }

2. Defeat cache replacement policy - When the virtual addresses that map to the same cache

set have finally been found, they are used to evict the cache lines from the targeted cache set. This

isn’t as straightforward as it seems due to the pseudo-random replacement policy implemented in

the LLC. So, to overcome the self-eviction effect provoked by the replacement policy, an eviction

strategy is implemented (see Section 3.2.1.2). The function that implements the eviction strategy

is illustrated in Listing 5.17.

Listing 5.17: Eviction strategy used during Prime step code.

1 void evict(congruent_address_cache_entry_t* congruent_address_cache_entry)
2 {

3 /* For each address accessed */

4 for (unsigned int i = 0; i < ES_EVICTION_COUNTER; i += 1) {

5 /* For each time the same address is accessed repeatedly */

6 for (unsigned int j = 0; j < ES_NUMBER_OF_ACCESSES_IN_LOOP; j++) {

7 /* For each different address accessed in a loop */

8 for (unsigned int k = 0; k < ES_DIFFERENT_ADDRESSES_IN_LOOP; k++) {

9 libflush_access_memory(congruent_address_cache_entry->
congruent_virtual_addresses[i+k]);

10 }

11 }

12 }

13 }

Chapter 5. Implementation 68

5.3.2 Probe Step

During the probe step, the attacker only needs to check which previously accessed addresses still

remain in the cache, that is, how many cache hits occur during probe step.

1. Defeat cache replacement policy - To avoid cache thrashing, the eviction set size is reduced

and the access is done backwards. As the attack is run in a loop, exactly 1 way in the L2 cache will

not be occupied after a few attack rounds, which has the disadvantage of missing a victim access

in 1/16 of the cases. If the victim replaces one of the 15 ways occupied by the attacker, there is still

one empty way to reload the address that was evicted. This reduces the chance of cache thrashing

significantly and allows to successfully perform the attack on caches with a random replacement

policy.

Listing 5.18: Backwards access strategy used during Probe step code.

1 void libflush_eviction_probe(libflush_session_t* session, size_t set_index)
2 {

3 libflush_eviction_t* eviction = (libflush_eviction_t*) session->data;
4

5 congruent_address_cache_entry_t congruent_address_cache_entry =

6 eviction->congruent_address_cache[set_index];
7

8 if (congruent_address_cache_entry.used == false) {

9 find_congruent_addresses(session, eviction, set_index, (uintptr_t) NULL);
10 }

11

12 for (int i = ADDRESS_COUNT - 1; i >= 0; i -= 1) {

13 libflush_access_memory(congruent_address_cache_entry.congruent_virtual_addresses
[i]);

14 }

15 }

2. Accurate timing - To time accurately the probing time of cache, it was chosen the perf Linux

profiler, as it offers a highly precise timing and doesn’t need privileged access.

In the attack’s case, perf uses the CPU cycles as the source to measure the time to access the cache

(i.e., given by PERF_COUNT_HW_CPU_CYCLES macro). The initialization of perf Linux profiler is

illustrated in Listing 5.19.

Chapter 5. Implementation 69

Listing 5.19: perf syscall used during Probe step code.

1

2 inline bool perf_init(libflush_session_t* session, libflush_session_args_t* args)
3 {

4 (void) session;
5 (void) args;
6

7 static struct perf_event_attr attr;
8 attr.type = PERF_TYPE_HARDWARE;
9 attr.config = PERF_COUNT_HW_CPU_CYCLES;

10 attr.size = sizeof(attr);
11 attr.exclude_kernel = 1;

12 attr.exclude_hv = 1;

13 attr.exclude_callchain_kernel = 1;

14

15 session->perf.fd = syscall(__NR_perf_event_open, &attr, 0, -1, -1, 0);

16 return true;
17 }

Whenever the attacker wants to measure the time to access the cache, it only needs to get a time

reference before accessing the cache, and after accessing the cache, obtain again a time reference

and calculate the difference between both time references. The function that allows to obtain the

time reference via perf is illustrated in Listing 5.20.

Listing 5.20: perf syscall used during Probe step code.

1 inline uint64_t perf_get_timing(libflush_session_t* session)
2 {

3 long long result = 0;

4 if (read(session->perf.fd, &result, sizeof(result)) < (ssize_t) sizeof(result)) {

5 return 0;

6 }

7 return result;
8 }

5.4 Proposed Channels

To prove the existence of cache timing channels between VMs, some libraries and hypervisor features

were used to deploy the attacks:

Chapter 5. Implementation 70

1. libflush - The library, named libflush, was used to implement an attack based on Prime+Probe

exploitation technique. It was developed by Gruss et al. [19] to target Android mobile devices by

monitoring tap and swipe events as well as keystrokes, even deriving the words entered on the

touchscreen.

The library’s Prime+Probe implementation was taken advantage of to perform the attacks, as

such implementation had the functionality of performing the necessary platform’s architecture

instructions.

2. Inter-cell communication - To enable signaling between isolated cells, Jailhouse provides a

communication channel through a shared memory region, called ivshmem. Device drivers get the

relevant information by accessing custom PCI configuration space registers, being used too to state

synchronization between cells. The aforementioned registers are the following:

(a) IntrMask - Identifies the interrupt.

(b) IntrStatus - Carries the message of the other guest’s doorbell.

(c) IVPosition - Reports the guest’s ID number.

(d) Doorbell - Carries the message and triggers an interrupt.

To make use of the ivshmem, a driver is needed to map to userspace PCI device registers and

memory regions. This driver, named UIO_PC [51], is a relatively recent driver model that seeks to

move as much functionality into userspace as possible.

5.4.1 Simple Channel

1. Attacker - The first thing the attacker needs to do is to use UIO driver to map ivshmem device

registers to userspace. This is needed to enable from the userspace the cell to use one of ivshmem’s

registers (i.e., Doorbell register) to send an interrupt to the other cell.

Listing 5.21: First channel root cell code example.

1 /* Open uio_ivshmem device file */

2 fd = open("/dev/uio1", O_RDWR);
3 if (fd < 0) {

4 exit(EXIT_FAILURE);
5 }

Chapter 5. Implementation 71

6

7 /* Map ivshmem registers --> /dev/uio1 maps[0] */

8 if ((virt_ivshmem_reg_address = mmap(NULL, IVSHMEM_REG_LENGTH,
9 PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0)) == (void *) -1){

10 close (fd);
11 exit(EXIT_FAILURE);
12 }

The next step is to get the virtual address of the ivshmemmemory region to send the agreed physical

address for the other cell to access.

Listing 5.22: First channel root cell code example.

1 /* Open memory virtual file */

2 fd2 = open("/dev/mem", O_RDWR);
3 if (fd2 < 0) {

4 exit(EXIT_FAILURE);
5 }

6

7 /* Map ivshmem adress */

8 void* virt_ivshmem_address = mmap(NULL, IVSHMEM_SIZE,
9 PROT_READ | PROT_WRITE, MAP_SHARED, fd2, IVSHMEM_ADDR);

10 if(virt_ivshmem_address==MAP_FAILED) {

11 exit(EXIT_FAILURE);
12 }

Then, the agreed physical address is sent, but before that, the set index of the physical address is

calculated, given by the formula: set index (physical address ª log2 of line length) % number of

sets.

Listing 5.23: First channel code example.

1 /* Choose physical address */

2 uintptr_t phys_devmem_address = 0x70000000;
3 /* Get set index */

4 size_t set_index = (phys_devmem_address >> LINE_LENGTH_LOG2)
5 % NUMBER_OF_SETS;
6 /* Send physical address to ivshmem memory space */

7 *(volatile uintptr_t *)virt_ivshmem_address = phys_devmem_address;

Chapter 5. Implementation 72

After preparing the attack, the attacker starts to prime the cache set set_index using libflush’s

libflush_prime(). After priming, it sends the interrupt by writing to one of ivshmem’s registers (i.e.

Doorbell register).

The function of awaiting an interrupt from non-root cell is done using a blocking read function

linked to UIO_PCI’s device file. When the interrupt is received, the attacker probes the cache using

libflush’s libflush_probe().

The cycle is repeated NUMBER_OF_RUNS times, and finally, the mean value of the probing time

is calculated.

Listing 5.24: First channel root cell code example.

1 for(unsigned int run = 0; run < NUMBER_OF_RUNS; run++)
2 {

3 /* Prime cache */

4 libflush_prime(libflush_session, set_index);
5 /* Send interrupt to non-root cell */

6 virt_ivshmem_reg_array[Doorbell/sizeof(int)] = msg;
7 /* Wait for interrupt from non-root cell */

8 rv = read(fd, &buf, sizeof(buf));
9 if (rv == (ssize_t)sizeof(buf))

10 {

11 /* Probe cache */

12 time = libflush_probe(libflush_session, set_index);
13 }

14 time_avg += time;
15 usleep(100000);
16 }

17 /* Calculate the mean value of probing time */

18 time_avg = time_avg / NUMBER_OF_RUNS;

2. Victim - The first thing the victim has to do, is to retrieve in the first interrupt occurrence the address

that the attacker has shared through ivshmem to know which address to access.

In the victim counterpart, the cache access occurs in a simple way. Using the inmate’s library

(provided in header file inmate.h) functionmmio_read32(), it is possible to access directly a physical

address as Erika v3 OS doesn’t support MMU [52].

Although the access is pretty straightforward, the victim has to have some cautions. In the case

of accessing more than one line, the victim has to change the accessed address maintaining the

Chapter 5. Implementation 73

cache set index (which corresponds to bits [15:5]). This is achieved by jumping to the next cache

way. Since the way size of the L2 cache is 64KB, the jump is done by adding 64KB to the address.

Finally, after accessing the 16th 64KB-spaced physical addresses (i.e. evict all cache lines from

same cache set), the interrupt is sent by, once again, writing to the Doorbell register through

send_irq() function.

Listing 5.25: First channel non-root cell code example.

1 /* Retrieve targeted address from ivshmem */

2 if(irq_occurence == 1) address = mmio_read32((void*)IVSHMEM_MEM_ADDR);
3 /* For 16 lines to access */

4 for (unsigned long v = 0; v < (16*LENGTH_64KB); v += LENGTH_64KB)
5 {

6 /* Access address */

7 mmio_read32((void*)(unsigned long)(address + v));
8 }

9 /* Send interrupt to root cell */

10 send_irq(d);

5.4.2 Bits Transmission Cannel

1. Attacker - Regarding the second attack, the same preparation steps (e..g, mapping and choosing

target addresses) are done, with the exception that instead of one cache set, the attack must monitor

two cache sets. So, two physical addresses are chosen based on their set index difference and sent

to the non-root cell.

The implementation of the attack is also similar to the one that was done on the first channel. The

two chosen sets set_index and set_index_2 are primed and probed one after another, and there is

no calculation of the mean probing time for each set, because as the victim access is scheduled to

emphasize the probing time difference between accessed and non-accessed set, there is no need

to calculate a mean value.

Listing 5.26: First channel code example.

1 for(unsigned int run = 0; run < NUMBER_OF_RUNS; run++)
2 {

3 /* Prime cache */

4 libflush_prime(libflush_session, set_index);

Chapter 5. Implementation 74

5 libflush_prime(libflush_session, set_index_2);
6 /* Send interrupt to non-root cell */

7 virt_ivshmem_reg_array[Doorbell/sizeof(int)] = msg;
8 /* Wait for interrupt from non-root cell */

9 rv = read(fd, &buf, sizeof(buf));
10 if (rv == (ssize_t)sizeof(buf))
11 {

12 /* Probe cache */

13 time = libflush_probe(libflush_session, set_index);
14 time_2 = libflush_probe(libflush_session, set_index_2);
15 }

16 usleep(100000);
17 }

18 /* Calculate the mean value of probing time */

19 time_avg = time_avg / NUMBER_OF_RUNS;

2. Victim - In the second channel’s case, the access to different cache sets occurs in an alternate

way, so for each interrupt, the victim accesses a different cache set. After retrieving both physical

addresses that map to the targeted cache sets, the victim accesses the first cache set in case

of an even interrupt occurrence, and the other cache set is accessed in case of an odd interrupt

occurrence.

Listing 5.27: Second channel non-root cell code example.

1 /* Retrieve targeted address from ivshmem */

2 if(irq_occurence == 1) address = mmio_read32((void*)IVSHMEM_MEM_ADDR);
3 /* Access cache set 0 in case of even interrupt */

4 if(irq_occurence % 2 == 0)

5 {

6 for (unsigned long v = 0; v < (16*LENGTH_64KB); v += LENGTH_64KB)
7 {

8 mmio_read32((void*)(unsigned long)(address + v));
9 }

10 }

11 /* Access cache set 1 in case of odd interrupt */

12 else {

13 for (unsigned long b = 0; b < (16*LENGTH_64KB); b += LENGTH_64KB)
14 {

15 mmio_read32((void*)(unsigned long)(address_2 + b));
16 }

17 }

18 /* Send interrupt to root cell */

19 send_irq(d);

Chapter 5. Implementation 75

5.5 Countermeasures

The chosen strategy to mitigate the occurrence of side-channel attacks is the cache coloring approach,

which assigns different colors to the available cores partitioning the LLC.

Colors Selection

Before implementing the cache coloring, the number of available colors needs to be known. To

calculate the number of colors, the L2 cache architecture needs to be taken into account. The targeted

board’s L2 cache is 1MB-sized and its associativity is 16-way set-associative, which corresponds to a way

size of 64KB. As such, the number of colors available is the number of pages that can fit in a way, which

corresponds to 16 colors.

There is a precaution to not divide the L1 cache into more colored partitions. If the L1 is colored (i.e,

the highest index bit is colored), the core will only have access to half of the available sets (there is no

need to partition memory within a core since the attack is cross-core). Hence, there will be fewer lines to

be used by the core, which will increase the contention between them on future accesses. This contention

leads to an increase in the miss rate.

Figure 5.2: L1-I cache with the highest index bit colored (left picture) and without coloring (right
picture).

To avoid the performance penalty of coloring, the colors are configured to only encompass the L2

cache. Thus, instead of the available 16 colors, there will be 8 colors that can only partition the L2 cache,

as the Figure 5.3 illustrates.

Chapter 5. Implementation 76

Figure 5.3: Coloring assignment with L1 cache coloring (above picture) and without L1 cache
coloring (below picture).

Colored Pages Allocation

Once the number of available colors is known, the hypervisor proceeds to allocate the colored pages

according to the VMs’ configuration files. In Bao, since the VM and hypervisor images are loaded to certain

contiguous physical memory spaces at the boot time (when U-Boot is running), they need to be re-colored

1 by the hypervisor.

As aforementioned, the color configuration is given by a bitmap at VM instantiation time. The

hypervisor uses the color bitmap to search through the VM’s memory region page pool, which keeps

track of the colored pages. The search is done always by looking for the next page that fits in the colored

mask and isn’t colored. Once a color-compliant page has been found, the hypervisor maps the page.

Listing 5.28: Function that searches for the next available page.

1 static inline uint64_t pp_next_clr(uint64_t base, int from, uint64_t colors){
2

3 uint64_t clr_offset = (base/PAGE_SIZE) % (COLOR_NUM * COLOR_SIZE);
4 uint64_t index = from;
5

6 while(!((colors >> ((index + clr_offset) / COLOR_SIZE % COLOR_NUM)) & 1))

7 index++;
8

9 return index;
10 }

The function that is used to compute the next color-compliant page is described in Listing 5.28. It first

needs to calculate the offset at which the page to be colored is, relatively to the beginning color mask.

Then, it checks if the concerning page, represented by index, fits into the color mask. Since the allocation

1Re-coloring: process of moving uncolored memory spaces to colored memory spaces.

Chapter 5. Implementation 77

of color pages occurs by looking for the next color-compliant page, it is assumed that the index represents

the last allocated page, and there are no allocated color pages ahead of it.

Figure 5.4: Hypervisor’s search mechanism for the next colored page. The base value indicates
the beginning of the pool page. The index value indicates the current page being checked on if it is
color-compliant. The color offset value represents the offset of the index in relation to the beginning
of the color mask. The color mask repeats itself every four pages. The page pool has 19 pages, of

which 10 of them are already allocated.

6. Evaluation

In this chapter, the experimental results of the attacks are presented. The results have the purpose to

confirm if there exists a channel between statically partitioned cores, or if there is no dependency between

them. To evaluate the channels, different kinds of graphical representations have been used, namely the

channel matrix and the graph line.

The first section of this chapter is dedicated to the description of the experimental setup used in the

deployment of the attacks. Then, the results obtained for two tested eviction strategies are discussed.

Using the most suitable eviction strategy, follows the deployment of the proposed attacks and the

comparison to their counterparts with a mitigation strategy implementation.

6.1 Experimental Setup

The environment where the tests took place is characterized, essentially, by two main components:

(i) the hardware where the attacks were deployed, and (ii) the software tools used to build the different

VMs and libraries.

Test Device

The tests were done on the ZCU104 Evaluation Kit that features a Zynq UltraScale+ MPSoC device

with support to many common peripherals and interfaces for embedded vision use case. The included

ZU7EV device is equipped, among other processors, with a quad-core Cortex-A53 applications processor

and 16nm programmable logic. The Table 6.1 resumes all main characteristics of the Cortex-A53 MPCore.

Software Tools

To build the Linux kernel image it was used the PetaLinux Software Development Kit (SDK) (i.e.,

Petalinux tools 2018.2 release) that contains everything necessary to build, develop, test and deploy

embedded Linux systems on ARM platforms. For Jailhouse v0.10, the image is built using SD Card as

the root file system, while in Bao’s case, the image is built using initramfs as the root file system. For the

78

Chapter 6. Evaluation 79

Processor (cores) Characteristics

ARM Cortex-A53 (4)

Architecture: Armv8-A
Clock speed: 1536 MHz
RAM: 2 GB
L1 cache: 4 x 32 KB, 4-way, 128 sets
L2 cache: 1 MB, 16-way, 1024 sets

Table 6.1: Hardware characteristics of Cortex-A53 processor.

Linux image to be built against ZCU104 Evaluation Kit platform, it is complemented with ZCU102 BSP that

contains device tree information, hardware description files, and other system setup files.

In regards to the ERIKA v3 image, it was used the Eclipse framework with RT-Druid as a plugin to build

an ERIKA v3 image that includes the main application running on it.

To deploy the attacks, as it has been mentioned, it was used the library libflush. The library is compiled

using Linaro’s aarch64-linux-gnu v5.4.0 toolchain. Regarding the configuration of the library, it is set in

config.mk file to use zeroflte device configuration and perf as time source.

In Bao, the device tree for Linux image is customized manually while Jailhouse’s device tree is already

built by Petalinux. The Device-tree Compiler (DTC) used to compile the customized Linux’s device tree for

Bao is dtc v1.4.5 while the toolchain used to build Bao is ARM’s aarch64-elf v8.2.1 toolchain.

The heatmap results were obtained by using Plotly Chart Studio software, while the rest of the line

graphs were obtained by using LibreOffice Calc and Microsoft Excel.

6.2 Eviction Strategy

To evaluate the eviction strategies, a line graph was used to display the distribution of the cache hit

and cache miss results over the 100000 iterations done in the platform. The following results reveal the

efficiency of the eviction strategies to evict cache sets and their implication to the success of the attack.

6.2.1 AutoLock’s Eviction Strategy

The first eviction strategy, used by Irazoqui et al. [47], is illustrated in Figure 6.1. The graph reveals a

considerable distribution of the results, which can be observed by the y-axis that shows at best 12154 (in

50000) occurrences for a certain probing time interval. While it is possible to distinguish between hit and

miss results the majority of the time, some of them merge making it difficult to distinguish at times which

Chapter 6. Evaluation 80

one is which. This uncertainty when probing the cache isn’t useful to the deployment of the attack as it

doesn’t establish a clear time border between cache misses and cache hits.

The success of the attack depends mostly on the capacity of the eviction strategy to evict a whole

cache set. So, an eviction strategy that cannot distinguish with certainty a cache miss from a cache hit

cannot be used to deploy the attack as it might lead to incorrect observations.

Figure 6.1: Line graph for cache timing results on ZCU104 Evaluation Kit using N-A-D 23-2-5.
The x-axis represents the probing time that each cache miss or hit took and the y-axis represents

the number of times that a cache miss or hit occurred.

6.2.2 ARMageddon’s Eviction Strategy

The second eviction strategy, used by Lipp et al. [28], shows a much more concentrated distribution

of the results as it can be seen in Figure 6.2. As the eviction strategy evicts more effectively the cache

set, the cache hit and cache miss probing times appear to be more distant and concentrated, allowing a

better realization to the attacker of the occurrence of cache hits and misses.

With this display of results, it is possible to trace a threshold value that can discern an observation of

a cache miss or a cache hit. In this case, the value of 1130 CPU cycles could be safely chosen to infer,

based on the probing time acquired value, the occurrence of a cache miss or cache hit.

Comparing to the first eviction strategy, it is possible to observe that the second eviction strategy is

more suitable to be used in the attack deployment, as it reveals a better eviction efficiency.

Chapter 6. Evaluation 81

Figure 6.2: Line graph for cache timing results on ZCU104 Evaluation Kit using N-A-D 25-2-6.
The x-axis represents the probing time that each cache miss or hit took and the y-axis represents

the number of times that a cache miss or hit occurred.

6.3 Proposed Channels

6.3.1 Simple Channel

To evaluate the Simple Channel, it was used a heat map which specifies the dependency of an observed

probing time given a certain number of accessed cache lines, where a brighter color represents a higher

probability. To avoid the occurrence of false positives (i.e., observation of a probing time of fewer cache

lines than expected) or false negatives (i.e., observation of a higher probing time than expected), 500

consecutive attacks were run. To a certain number of accessed cache lines from a certain cache set, 500

probing values are recorded and then it is calculated the number of occurrences of each value. Given

the number of occurrences, follows the calculation of their probability of occurring within a 10 CPU cycles

interval. This probability is represented in the heat map using a sequence of darker to brighter colors (i.e.,

represented in z-axis).

Bao

The heat map of the observed channel on Bao is illustrated in Figure 6.3. The observation of the

heat map shows the existence of a well-defined channel that establishes the correlation between cache

lines accessed and probing time (i.e., a directly proportional relation). The more the number of cache

lines the victim accesses, the more is the probability of the attacker experiencing a greater probing time.

Chapter 6. Evaluation 82

This probability is associated with the brighter color that demonstrates horizontal variation across the heat

map.

Figure 6.3: Channel matrix for the unmitigated LLC channel on ZCU104 Evaluation Kit using a
bare metal guest as the victim. The x-axis represents the number of accessed cache lines, the
y-axis represents the probing time of each attack run and the z-axis represents the probability of the

probing time value happen given a certain number of cache lines accessed by the victim.

Since the attacker previously prepares the shared cache set with known cache lines (i.e., priming the

cache), it will wait for the victim to access those lines. As the victim accesses more cache lines from

the shared cache set, the number of evicted lines from that cache set will increase. Thus the attacker,

when trying to access again the cache set (i.e., probing the cache), will experience more cache misses.

The increase in the number of cache misses means naturally a greater probing time. This dependency

between the attacker’s probing time and the victim’s number of cache lines might lead to a leak of critical

information of co-located VMs that only share a cache level.

An observation that can be made is the distribution of probing time values for a certain number of

cache lines accessed. To use as an example, for 8 cache lines accessed by the victim, the attacker might

obtain probing time values that range from 1500 CPU cycles to 3000 CPU cycles. This distribution might

be caused by the pseudo-random policy employed by the L2 cache. The more the number of cache lines

accessed, the higher the probability of newly-allocated cache lines evict the other victim accessed cache

lines. The Prime+Probe runs that measured 3000 CPU cycles could have occurred in a case where the

victim could allocate successfully the 8 cache lines in the cache set, while the runs that measured 1500

CPU cycles could have occurred in cases where most of the 8 cache lines accessed by the victim would be

evicted by the newly-allocated victim cache lines. This phenomenon could explain too the concentration of

results when fewer cache lines are accessed by the victim. The lesser the number of cache lines accessed

Chapter 6. Evaluation 83

by the victim, the lesser is the chance of occurring self-eviction. Thus, the probability of obtaining similar

values is higher. As an example, for 1 cache line accessed by the victim, the probability of the attacker

obtaining probing times between 1350 and 1360 CPU cycles is 18%. For a bigger number of cache lines

accessed, there is no other interval with such probability, while for less number of cache lines accessed,

there are more intervals with probability close to 18%.

It can also be observed from the heat map that the probing time of the cache sets is much higher than

the expected probing time given the cache latency values (i.e., 16 lines accessed from L2 are reported to

have 16x15 cycles of latency). This increase in probe time is caused by the use of the perf tool instead of

directly accessing the PMU counter values. The perf tool uses system calls (e.g. read syscall) to read the

PMU-based hardware counters, which introduces some overhead to the measurements [49].

6.3.2 Bits Transmission Channel

To evaluate the Bits Transmission Channel, it was used a line chart that overlaps two different measures

done to two different cache sets consecutively. The chart compares the probing time of different cache

sets in each attack run, revealing which set was accessed and what not during each attack iteration.

Jailhouse

The line graph, illustrated in Figure 6.4, describes two lines that represent the probing time of two sets

throughout 50 Prime+Probe iterations. During each iteration, one cache set has a higher probing time

than the other. The cache set with the higher probing time has the most evicted lines by the victim. This

way, the Bits Transmission Channel serves as a channel that leverages the directly proportional relation

verified by the Simple Channel to infer, between 2 cache sets, which one is the victim accessed cache set.

Figure 6.4: Sample sequence of attacker’s access time on ZCU104 Evaluation Kit. The blue line
represents the probing time of set 0, while the yellow line represents the probing time of set 1.
The x-axis represents the index of the attack run and the y-axis represents the probing time of each

attack run.

Chapter 6. Evaluation 84

This channel simulates the transmission of bits between victim and attacker by checking the probe

time of different sets. The victim was designed to alternate the access to two agreed sets, leaking this way

information to the attacker of which set the victim accessed. To emphasize the probing time difference

(i.e., make the leak information more noticeable) between accessed and not accessed cache set, the victim

accesses 16 cache lines of the intended cache set and the other cache set is not accessed.

In this particular case, the chart reveals that the peaks of cache set 0 occur during the troughs of

cache set 1 and vice-versa. The chart reveals too, that the first accessed cache set by the victim is cache

set 0, which then alternates the access with the other set, transmitting the sequence “01010...”.

An observation that can be made is the relative non-linearity between iterations. To use as an example,

the 25th iteration demonstrates a much higher probing time difference between cache sets than the 3th

iteration. While this specific example could infer correctly to the attacker the cache set accessed by the

victim, it might lead to wrong assumptions about the victim’s activity. This phenomenon, transverse to

all the cases, could be caused by multiple factors: (i) the first supposition, derives from the problem

mentioned in Section 3.2 that, in some cases, higher-level caches might already have cache lines that

map to the targeted cache set which leads to a lower probing time, and (ii) the second supposition, that

explains the increase in the measured values, relies on the eviction strategy’s inefficacy to evict a whole

cache set that might lead to the mistaking of cache hits with cache misses when probing. Previously

(see Section 3.2.1.2), it has been discussed that some eviction strategies might not have an eviction rate

of 100%, which can cause the non-eviction of some cache lines by the attacker. Then, when the probe

step occurs, the non-evicted cache lines can be perceived as cache misses by the attacker when, in fact,

were cache lines that weren’t evicted by the attacker. This imperceptible cache miss might lead to a

misunderstood accessed line by the victim, which will cause an increase in the probe time that wasn’t

caused by the victim’s activity but by the eviction’s strategy inefficacy to evict a whole cache set.

6.4 Countermeasures

6.4.1 First Channel

Bao

The heat map of the first channel with the application of the cache coloring countermeasure is

illustrated in Figure 6.5. It is noticeable the lack of horizontal variation when different cache lines of the

Chapter 6. Evaluation 85

same set are accessed, which means that the outputs are independent of inputs. So, it can be concluded

that with the implemented mitigation strategy the channel stops existing.

Figure 6.5: Channel matrix for the mitigated LLC channel on ZCU104 Evaluation Kit using a
bare metal guest as the victim. The x-axis represents the number of accessed cache lines, the
y-axis represents the probing time of each attack run and the z-axis represents the probability of the

probing time value happen given a certain number of cache lines accessed by the victim.

The coloring partitioning scheme has the particularity of isolating co-located VMs in detriment of the

cache set accessible space’s reduction. The hardware isolation between partitions is achieved by giving

different colors to the cache-contending partitions. When the attacker and the victim have different colors,

they don’t contend for the same cache lines. So, the victim cannot evict cache lines from the attacker and

vice-versa. This means that, when the attacker primes the shared cache set, the victim won’t be able to

access the cache lines that were previously accessed by the attacker. Hence, when the attacker probes

the cache set, it will find no cache misses because the cache lines weren’t evicted by the victim. This

independence between the attacker and the victim’s cache activity is represented by the invariance of the

attacker’s probing time given the number of the victim’s accessed cache lines. Since the probability of the

attacker obtaining a probe time between 1750 and 2500 CPU cycles is independent of the caches lines

accessed by the victim, it can be concluded that the attacker cannot infer any cache activity by the victim.

This means that the coloring strategy guarantees determinism at the cache level.

Although the cache coloring strategy guarantees determinism, it comes with a cost. As the cache

set accessible space is reduced by half to each partition (i.e., the attacker owns half of the colors, while

the victim owns the other half), more likely will be for the partitions to access cache lines that map to

the same cache set. Thus, the probability of newly-allocated cache lines evicting other allocated cache

lines increases. This leads to the deterioration of the victim’s performance, but there is another factor

Chapter 6. Evaluation 86

that needs to be taken into account when considering the effects of the color partitioning in the system’s

performance. Even though the cache’s space is reduced, there won’t be more victim’s evictions forced by

the attacker’s cache activity. Hence, there is a decrease in the miss rate due to the lack of contention on

the cache sets. It can be concluded that coloring efficacy is a delicate balance between the degradation

caused by cache size reduction and the isolation enhancement introduced by cache partitioning.

To evaluate the implemented system’s performance on ZCU104 Evaluation Kit, the LMBench’s

lat_mem _rd benchmark was used. A partition measures the latency of a memory read, using lat_mem

_rd benchmark, while the other partition accesses the cache. The lat_mem _rd benchmark is employed

to read a 20MB memory area with a 64B stride distance. The behavior of the system with different

configurations is illustrated in Figure 6.6.

Figure 6.6: Memory latency of a partition on ZCU104 Evaluation Kit. The blue line represents a
system with coloring and interference of the other partition. The red line represents the system with
interference and without coloring. The yellow line represents a system with coloring and without
interference. The green line represents a system without coloring and interference. The x-axis
represents the depth of the memory accessed by the partition, and the y-axis represents the memory

read latency for a certain memory depth.

The logarithmic graph describes a similar memory read latency when there is a coloring scheme

implemented, whether there is interference or not. When there is a co-located VM polluting the cache (i.e.,

blue line), the other partition experiences the same memory read latency as if it was running solo (i.e., red

line). This behavior resemblance is represented in the line graph by the overlapping of blue and red lines,

which means that a critical partition (i.e., victim) runs in a deterministic fashion whether there is another

partition (i.e., attacker) using the cache or not. Thus, this enforces the idea of determinism given by the

color partitioning scheme.

The graph describes also an increase in the memory read latency when the coloring strategy is

implemented. The partitions that are isolated between each other (i.e., blue and yellow lines) start to

Chapter 6. Evaluation 87

have an increase in the memory read latency at a lower memory depth than the non-isolated ones (i.e.,

red and green line). While the red and green lines start to increase their memory read latency when the

L2 cache size is achieved (i.e., 1MB), the blue and yellow lines start to increase their latency when half of

the L2 cache size is achieved (i.e., 512KB). This happens due to the reduction of the accessible cache set

size given by the color partitioning.

7. Conclusion

This dissertation presents microarchitectural attacks that allow making a side-channel analysis based

on the timing behavior of the cache. The presented attacks have been done under certain conditions that

resemble a real-world application in the context of the automotive industry. The attacks occur in systems

where VMs with different critical levels (i.e., mixed-criticality systems) are assigned to different cores within

the same processor. The VMs are also isolated between each other by software, and this implies: (i) no

memory sharing, (ii) full concurrency, and (iii) cache sharing between cores, as it has been described in

the Analysis chapter (see Section 3.1).

Regarding the proposed goals, they have been achieved with success as they proved the lack

of determinism and insecurities of mixed-criticality systems supported by so-called isolation enforcer

hypervisors, using thememory hierarchy as a communicationmedium between guests. The cache coloring

countermeasure proved to be an effective but performance-wise costly solution to these attacks, as it

increased the memory latency of both partitions.

7.1 Future Work

There are many suggestions to hamper the occurrence of attacks and many ways to improve the

attack’s speed and resolution. The presented attacks in this dissertation relied on a library that used an

eviction strategy to prime a cache set, but it is known that this isn’t the fastest neither most effective way

to evict cache lines from a set in the ARMv8-A architecture. To improve the attack’s efficiency, the author

proposes to implement the same attacks using the provided ARMv8-A cache flush instructions instead of

an eviction strategy.

Two other improvements concerning the libflush library are suggested. The first one is related to the use

of huge pages to directly target PIPT and VIVT caches without the need of knowing the address translations.

The libflush library leverages a given privileged access to proc/self/maps file to see the translations that

88

Chapter 7. Conclusion 89

allow the user to access a specific cache set, while the use of huge pages has the advantage of not relying

on any privilege mode to access a specific cache set. The other suggestion is related to the way that

the probe time is measured. To avoid the noise introduced by the interaction with higher-level caches,

the probing time can be acquired by measuring the time of every load from the eviction set, instead of

measuring the total probe time. This way, the attacker knows from which memory level each line has been

accessed (i.e., L1, L2 or main memory).

To give use to these attacks, the author has already implemented a rudimentary transmission channel

that simulates the leak of information through cache observation (i.e., Bits Transmission Channel). So,

the author proposes to extrapolate even more the application of these attacks and decode co-located VM

information exploiting speculative execution [53] or out-of-order execution [8]. To mitigate these attacks,

the author recommends the future Linux releases to not give userspace access to the PMU values through

system calls as they expose a lot of the hardware’s activity. Although there are other userspace ways to

time cache accesses documented in this dissertation, there is no other known userspace tool that can be

as precise as perf.

Bibliography

[1] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitectural timing attacks and

countermeasures on contemporary hardware,” Journal of Cryptographic Engineering, vol. 8, no. 1,

pp. 1–27, 2018.

[2] G. Heiser, “The role of virtualization in embedded systems,” in Proceedings of the 1st workshop on

Isolation and integration in embedded systems, pp. 11–16, ACM, 2008.

[3] M. Strobl, M. Kucera, A. Foeldi, T. Waas, N. Balbierer, and C. Hilbert, “Towards automotive

virtualization,” in Applied Electronics (AE), 2013 International Conference on, pp. 1–6, IEEE, 2013.

[4] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive survey,” ACM Computing

Surveys (CSUR), vol. 51, no. 6, p. 130, 2019.

[5] A. Biondi, M. Marinoni, G. Buttazzo, C. Scordino, and P. Gai, “Challenges in virtualizing safety-critical

cyberphysical systems,” in Proceedings of Embedded World Conference, pp. 1–5, 2018.

[6] J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto, “Bao: a lightweight static partitioning

hypervisor for modern multi-core embedded systems,” in Workshop on Next Generation Real-Time

Embedded Systems (NG-RES 2020), (Bologna, Italy), to appear 2020.

[7] J. Martins, J. Alves, J. Cabral, A. Tavares, and S. Pinto, “µrtzvisor: A secure and safe real-time

hypervisor,” Electronics, vol. 6, no. 4, p. 93, 2017.

[8] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher, D. Genkin, Y. Yarom,

and M. Hamburg, “Meltdown,” arXiv preprint arXiv:1801.01207, 2018.

[9] Q. Ge, Y. Yarom, F. Li, and G. Heiser, “Your processor leaks information-and there’s nothing you can

do about it,” arXiv preprint arXiv:1612.04474, 2016.

[10] Q. Ge, Y. Yarom, and G. Heiser, “No security without time protection: We need a new hardware-

software contract,” in Proceedings of the 9th Asia-Pacific Workshop on Systems, p. 1, ACM, 2018.

90

BIBLIOGRAPHY 91

[11] J. Van Bulck, F. Piessens, and R. Strackx, “Nemesis: Studying microarchitectural timing leaks in

rudimentary cpu interrupt logic,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security, pp. 178–195, ACM, 2018.

[12] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “SoK: Understanding the Prevailing Security

Vulnerabilities in TrustZone-assisted TEE Systems,” in IEEE Symposium on Security and Privacy

(S	P), (Los Alamitos, CA, USA), to appear 2020.

[13] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems,” in

Annual International Cryptology Conference, pp. 104–113, Springer, 1996.

[14] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Annual International Cryptology

Conference, pp. 388–397, Springer, 1999.

[15] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures: the case of aes,” in

Cryptographers’ track at the RSA conference, pp. 1–20, Springer, 2006.

[16] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low noise, l3 cache side-channel attack.,”

in USENIX Security Symposium, vol. 1, pp. 22–25, 2014.

[17] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel attacks are practical,”

in Security and Privacy (SP), 2015 IEEE Symposium on, pp. 605–622, IEEE, 2015.

[18] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Cross processor cache attacks,” in Proceedings of the 11th

ACM on Asia conference on computer and communications security, pp. 353–364, ACM, 2016.

[19] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “Armageddon: Cache attacks on mobile

devices.,” in USENIX Security Symposium, pp. 549–564, 2016.

[20] S. Pinto, H. Araujo, D. Oliveira, J. Martins, and A. Tavares, “Virtualization on trustzone-enabled

microcontrollers? voilà!,” in 2019 IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), pp. 293–304, IEEE, 2019.

[21] S. Pinto, J. Pereira, T. Gomes, M. Ekpanyapong, and A. Tavares, “Towards a trustzone-assisted

hypervisor for real-time embedded systems,” IEEE Computer Architecture Letters, vol. 16, no. 2,

pp. 158–161, 2016.

[22] S. Pinto, A. Tavares, and S. Montenegro, “Space and time partitioning with hardware support for

space applications,” Data Systems in Aerospace, European Space Agency, ESA SP, vol. 736, 2016.

[23] S. Pinto, A. Oliveira, J. Pereira, J. Cabral, J. Monteiro, and A. Tavares, “Lightweight multicore

BIBLIOGRAPHY 92

virtualization architecture exploiting arm trustzone,” in IECON 2017-43rd Annual Conference of the

IEEE Industrial Electronics Society, pp. 3562–3567, IEEE, 2017.

[24] M. Mounika and C. Chinnaswamy, “A comprehensive review on embedded hypervisors,” vol. 5, no. 5,

2016.

[25] D. A. Patterson and J. L. Hennessy, Computer Organization and Design MIPS Edition: The

Hardware/Software Interface. Newnes, 2013.

[26] S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral, “Ltzvisor: Trustzone is the key,” in 29th

Euromicro Conference on Real-Time Systems (ECRTS 2017), Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik, 2017.

[27] U. Drepper, “The cost of virtualization.,” Acm Queue, vol. 6, no. 1, pp. 28–35, 2008.

[28] M. Lipp, Cache attacks on arm. PhD thesis, Master thesis, Graz, University Of Technology, 2016.

[29] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer, “Look mum, no vm exits!(almost),” arXiv

preprint arXiv:1705.06932, 2017.

[30] M. Baryshnikov, “Jailhouse hypervisor, bachelor project,” 2016.

[31] J. Kiszka, “Hard partitioning for linux: The jailhouse hypervisor,”

http://events.linuxfoundation.org/sites/events/files/slides/LinuxConNA-2015-Jailhouse.pdf,

2015.

[32] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and M. Bertogna, “Deterministic memory

hierarchy and virtualization for modern multi-core embedded systems,” in 25th IEEE real-time and

embedded technology and applications symposium, RTAS, 2019.

[33] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner, F. Piessens, D. Evtyushkin, and

D. Gruss, “A systematic evaluation of transient execution attacks and defenses,” in 28th {USENIX}

Security Symposium ({USENIX} Security 19), pp. 249–266, 2019.

[34] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher, and D. Gruss, “Zombieload:

Cross-privilege-boundary data sampling (2019),” arXiv preprint arXiv:1905.05726, 2019.

[35] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,

Y. Yarom, and R. Strackx, “Foreshadow: Extracting the keys to the intel {SGX} kingdom with transient

out-of-order execution,” in 27th {USENIX} Security Symposium ({USENIX} Security 18), pp. 991–

1008, 2018.

BIBLIOGRAPHY 93

[36] A. Fournaris, L. Pocero Fraile, and O. Koufopavlou, “Exploiting hardware vulnerabilities to attack

embedded system devices: a survey of potent microarchitectural attacks,” Electronics, vol. 6, no. 3,

p. 52, 2017.

[37] S. E. J. W. R. Trimble, W. Oblitey, Covert Storage Channels: A Brief Overview. 2013.

[38] “Arm cortex-a53,” https://www.7-cpu.com/cpu/Cortex-A53.html, 2018.

[39] D. H. Woo and H. Lee, “Analyzing performance vulnerability due to resource denial of service attack

on chip multiprocessors,” in Workshop on Chip Multiprocessor Memory Systems and Interconnects,

2007.

[40] D. J. Bernstein and P. Schwabe, “A word of warning,” in Workshop on Cryptographic Hardware and

Embedded Systems, vol. 13, 2013.

[41] A. Langley https://github.com/agl/ctgrind, 2010.

[42] R. Zhang, X. Su, J. Wang, C. Wang, W. Liu, and R. W. Lau, “On mitigating the risk of cross-vm covert

channels in a public cloud,” IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 8,

pp. 2327–2339, 2014.

[43] D. Cock, Q. Ge, T. Murray, and G. Heiser, “The last mile: An empirical study of timing channels

on sel4,” in Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications

Security, pp. 570–581, ACM, 2014.

[44] Y. Zhang and M. K. Reiter, “Düppel: retrofitting commodity operating systems to mitigate cache

side channels in the cloud,” in Proceedings of the 2013 ACM SIGSAC conference on Computer 	

communications security, pp. 827–838, ACM, 2013.

[45] V. Varadarajan, T. Ristenpart, and M. Swift, “Scheduler-based defenses against cross-vm side-

channels,” in 23rd USENIX Security Symposium (USENIX Security 14), pp. 687–702, 2014.

[46] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch side-channel attacks: Bypassing

smap and kernel aslr,” in Proceedings of the 2016 ACM SIGSAC conference on computer and

communications security, pp. 368–379, ACM, 2016.

[47] M. Green, L. Rodrigues-Lima, A. Zankl, G. Irazoqui, J. Heyszl, and T. Eisenbarth, “AutoLock: Why

Cache Attacks on ARM Are Harder Than You Think,” in 26th USENIX Security Symposium (USENIX

Security 17), pp. 1075–1091, 2017.

[48] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer. js: A remote software-induced fault attack

BIBLIOGRAPHY 94

in javascript,” in International Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment, pp. 300–321, Springer, 2016.

[49] V. M. Weaver, “Linux perf_event features and overhead,” in The 2nd International Workshop on

Performance Analysis of Workload Optimized Systems, FastPath, vol. 13, 2013.

[50] Zynq UltraScale+ Device Technical Reference Manual. 2018.

[51] H. Schild https://github.com/henning-schild-work/ivshmem-guest-code/, 2018.

[52] P. Gai, “Mmu support in erika,” http://www.erika-enterprise.com/forum/viewtopic.php?t 1230,

2019.

[53] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,

and Y. Yarom, “Spectre attacks: Exploiting speculative execution,” arXiv preprint arXiv:1801.01203,

2018.

	List of Figures
	List of Tables
	List of Listings
	Glossary
	Introduction
	Goals

	Background
	State of Art
	Virtualization
	Definition
	Advantages
	Disadvantages
	Hypervisors

	Jailhouse
	Terminology
	Operation

	Bao
	Caches
	Definition
	Cache Lines or Blocks
	Cache Associativity
	Cache Replacement Policies
	Cache Inclusion Policies
	Cache Indexing
	Cache Coherence

	Side and Covert Channels
	Definition
	Benchmarks
	Attack Types
	Countermeasures

	Analysis
	Attack Strategy
	Experimental System Definition
	Resources Sharing Level Definition
	Temporal Concurrency Level Definition
	Exploitation Technique Definition

	Attack Challenges
	Prime Step Challenges
	Probe Step Challenges

	Design
	Proposed Channels
	Simple Channel
	Bits Transmission Channel

	Implementation
	System Configuration
	Jailhouse
	Jailhouse with cache coloring
	Bao Hu
	Bao Hu with cache coloring

	Eviction Strategy
	Attack Challenges
	Prime Step
	Probe Step

	Proposed Channels
	Simple Channel
	Bits Transmission Cannel

	Countermeasures

	Evaluation
	Experimental Setup
	Eviction Strategy
	AutoLock's Eviction Strategy
	ARMageddon's Eviction Strategy

	Proposed Channels
	Simple Channel
	Bits Transmission Channel

	Countermeasures
	First Channel

	Conclusion
	Future Work

