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R E S U M O

Titulo: Estudo da transferência ressonante de energia de Förster em amostras coloidais de
pontos quânticos de PbS, emissores no infravermelho próximo.

A transferência ressonante de energia de Förster (em inglês, Förster resonance energy
transfer, ou, simplesmente, FRET) é um mecanismo de transferência de energia não
radiativo presente entre duas unidades fluorescentes, como dois pontos quânticos
ou duas moléculas. Neste mecanismo, um dador excitado (por exemplo, um ponto
quântico ou uma molécula) transfere a sua energia de excitação para um aceitador
(outro ponto quântico ou molécula) com o qual se encontre em ressonância, por
acoplamento dipolo-dipolo. O FRET é um mecanismo dominante entre emissores
distanciados entre si a uma ordem dos nanómetros. Outros fatores dominantes que
influenciam a eficiência deste mecanismo de transferência são a sobreposição do
espetro de emissão do dador com o espetro de absorção do aceitador e a orientação
relativa do momento dipolar de ambas as partículas. Este mecanismo tem também um
papel fundamental em processos biológicos como a fotossíntese em plantas e bactérias.
Algumas aplicações de FRET podem ser encontradas em sistemas fotovoltaicos, na
análise de distâncias e interações moleculares, e no armazenamento de informação
quântica.

O objetivo principal desta tese de mestrado é a deteção do mecanismo de FRET
numa mistura coloidal de duas amostras pontos quânticos de PbS (símbolo químico
para Galena, ou sulfeto de chumbo) com diferentes tamanhos, que são unidas por
processos de química de superfícies. Estes processos químicos promovem, neste caso
específico, ligações cruzadas físicas entre dois, ou mais, pontos quânticos, a uma
distância da ordem dos nanómetros, que promove a presença de FRET. A deteção
de FRET em sistemas de pontos quânticos que emitem no espetro infravermelho
próximo (isto é, com comprimentos de onda entre 0.7− 1.4µm), como os pontos
quânticos de PbS, não é amplamente encontrada na literatura, a qual foca na deteção
de mecanismos de FRET em pontos quânticos que emitem no espetro visível, como
pontos quânticos de CdTe ou CdSe. O espetro infravermelho próximo permite, como
exemplo, aplicações em cristais fotónicos, aonde o mecanismo de FRET é predomi-
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nante pela inibição da emissão radiativa espontânea, assim como a aplicação em lasers
que emitem no infravermelho e absorção de luz no infravermelho em sistemas foto-
voltaicos. De forma a detetar a presença de FRET nas amostras de pontos quânticos,
foram medidos espetros de emissão e cinéticas fotoluminescentes, estas obtidas por
técnicas de resolução temporal de fotoluminescência como TCSPC (em inglês, Time
Correlated Single Photon Counting).

Em conjunto com os resultados experimentais obtidos, é apresentado nesta tese o
estudo estatístico das cinéticas fotoluminescentes das amostras de pontos quânticos
PbS, cujas cinéticas foram obtidas pela técnica de TCSPC. A partir desta análise es-
tatística, é possível de avaliar e comparar várias propriedades das cinéticas, tais como
o tempo médio de decaimento, o erro quadrático médio e a medida da assimetria da
cinética obtida. De forma a compreender os resultados obtidos, alguns modelos de
decaimentos do dador foram desenvolvidos e estudados, em conjunto com outras
funções de decaimento que são encontradas na literatura. De forma a sustentar os
modelos teóricos de decaimento, é também apresentado um tratamento teórico do
mecanismo de FRET.

Palavras-chave: Pontos quânticos (QDots, ou QD), Transferência ressonante de
energia de Förster (FRET), Sulfeto de chumbo (PbS)



A B S T R A C T

Förster resonance energy transfer (FRET) is a non-radiative energy transfer mech-
anism between two light-emitting systems, such as two quantum dots (QDots) or
molecules. This mechanism involves an excited donor fluorophore (e.g., a QDot or a
dye molecule) which transfers its energy of excitation to an acceptor (another QDot or
molecule which is in resonance with the donor), via dipole-dipole coupling. FRET
is the dominant type of energy transfer between emitters at a nanometre proximity.
Other factors that influence the efficiency of this energy transfer mechanism include
the spectral overlap of the donor emission spectrum and the acceptor absorption
spectrum and the relative orientation of the dipole moment of both particles. In
nature, for instance, FRET plays a dominant role in the energy transfer in photosyn-
thetic apparatus of plants and bacteria. Some interesting applications of FRET can be
found in photovoltaics, probing of molecular distances and molecular interactions,
and storage and transfer of quantum information.

The main goal of this master thesis lies in detecting the presence of the FRET
mechanism when two different colloidal QDot samples of PbS (short for Lead Sulfide),
with different QDot size, are linked together via surface chemistry. This chemical
procedure activates carboxyl or phosphate groups, which promote the binding of
primary amines of organic glutathione QDot shell molecules. In other words, it
promotes a cross-linkage between the organic shells of two, or more, quantum dots
at a distance at which FRET is present. Using PbS quantum dots, which emit in the
near-infrared (NIR) region of the light spectrum, these experiments can be reported
as one of the first attempts to find The FRET mechanism in a near-infrared system
of QDots. Most previous reports of FRET mechanisms were concerned with QDots
which emit in the visible range, such as CdTe and CdSe QDots. The NIR spectral
range, for instance, promotes interesting applications in photonic crystals, where
FRET can be enhanced by spontaneous emission inhibition, in photovoltaics, in order
to greatly absorb infrared light, and in the production of near-infrared QDot lasers.
In order to find evidences of the presence of the FRET mechanism, emission spectra
and time-resolved measurements, using the time correlated single photon counting
technique (TCSPC), of cross-linked colloidal PbS QDot solutions have been performed
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and will be shown in this master thesis.

Along with the experimental results, a study of statistical moments of the PbS
quantum dot photoluminescence kinetics will be presented in this thesis, which ex-
perimental kinetics were acquired with TCSPC. With this statistical analysis, it is
possible to evaluate and compare various decay properties, such as the average decay
time, the mean-squared value of the decay and the measure of asymmetry of the
time-resolved distribution. In order to understand the obtained results, some donor
decay models were developed and studied, alongside with other decay functions
found in the literature. A theoretical description of the FRET mechanism will be
presented in order to understand the proposed decay models.

Keywords: Quantum dot (QDot, or QD), Förster resonant energy transfer (FRET),
Lead Sulphide (PbS)
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1

I N T R O D U C T I O N

1.1 semiconductor quantum dots (qdots)

Quantum Dots (QDots or QDs, in abbreviation) are small semiconductor crystallites,
on the nanometre scale, which have properties intermediate between bulk semicon-
ductors and discrete atoms or molecules. QDots are often referred to as artificial
atoms, emphasizing their singularity, having bound, discrete electronic states, even
though they consist of many (around 103) atoms [17, 18, 19]. These effects arrive
from carrier confinement in all three dimensions, which drastically changes the elec-
tronic density of states (DOS) near the band-edges, by confining electrons or holes,
or both. Figure 1 shows the effect of quantum confinement in different structures,
from bulk (3 dimensions), quantum well (2 dimensions), quantum wire (1 dimension)
and quantum dot (0 dimension). A three-dimensional confinement, which leads to
zero-dimensional structures, restrains the electronic DOS for bulk semiconductors
into Dirac-delta type of peaks1, comparable to what is predicted for isolated atoms.
Carrier confinement also produces an increase on the band-gap energy. This increase
of energy is inversely proportional to the size of the QDot, i.e., the smaller the QDot
the higher the band-gap energy. The effective band-gap energy depends on factors
such as size, shape, materials and impurities of the QDots.

Due to the discrete electronic states, these semiconductor nano-particles show a
distinctive peaked emission spectra. The peak emission wavelength increases with
increasing QDot average size. In Figure 3 this trend is found on emission spectra of
different sized CdSe QDot samples. The width of the transmission spectra arises from
QDot size dispersion on fabricated samples with the know techniques.

The effects of size quantization appear when the carrier motion is limited in a layer
of the thickness of the order of the carriers’ de Broglie wavelength, which wavelength
depends on the effective mass of the carrier and on the temperature [20]. The exciton

1 Note that, in real quantum dots, the size distribution leads to a broadening of this line function.
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2 Chapter 1. Introduction

Figure 1: Schematic illustration of the changes in the density of states (DOS) of the conduction
band with increasing number of dimensions of carrier confinement. Schematic figure
adapted from figure of reference [1].

Bohr radius rB, defined as the distance between the electron and a hole 2, sets a
threshold for carrier confinement. It is defined as:

rB ≡
h̄2ε

e2

(
1

m∗e
+

1
m∗h

)
, (1.1)

where ε, h̄, and e are the static dielectric constant, reduced Planck’s constant and
the charge of an electron, respectively, and m∗e and m∗h are the electron’s and hole’s
effective masses, which differ between different materials. If the dimension of the
QDot, R, approaches rB, i.e., R ≈ rB, or if R < rB, the motion of the electrons and
holes is strongly spatially confined to the dimension of the QDot [18]. For R > rB

one has the weak confinement regime, where the electron-hole Coulomb interaction is
predominant.

Semiconductor QDots have the property of presenting an energy shift between the
absorption spectrum and the emission spectrum. This shift is called the Stokes shift,
and it is an effect where the peak of the emission band lies at a smaller energy than
the lowest maximum of the absorption band. In most cases it is caused mainly by
the size distribution in the measured ensemble of QDots. However, a smaller Stokes
shift is also present for individual dots, which comes from the particular structure of

2 Exciton stands for the electron-hole pair, produced when an electron from the valence band is excited
to the conduction band and leaves a hole in the valence band, considered as a positive charged particle.



1.1. Semiconductor quantum dots (QDots) 3

Figure 2: Schematic representation of the exciton states of CdSe nanocrystals involved in the
Stokes shift. Figure obtained from reference [2].

Figure 3: On top: variation of emitted colour with increased crystalite size of CdSe colloidal
QDots, when excited with a near-ultraviolet lamp. On the bottom: Photolumines-
cence spectra of different sized QDots. As on the top figure, when bigger the QDot,
the bigger is the peak emission wavelength. Figure obtained from reference [3].

the exciton energy levels inside the nanocrystal QDot [2]. The fine structure of the
excited state consists in several degenerate states, whose degeneracy is lifted due to
a symmetry reduction as, for instance, non-spherical shape of the dot or hexagonal
structure of the underlying material. Figure 2 presents these states for CdSe QDots.
Some states, called "bright", of higher energy, are optically allowed states to which
electrons are excited, while another state, called "dark", of lower energy, is optically
inactive because of symmetry-dictated selection rules. Relaxation occurs via phonon
emission from bright states to the dark state and radiative recombination occurs,
yielding a lower energy photon. This energy difference is of the order of 10-15 meV in
isolated QDots.



4 Chapter 1. Introduction

Figure 4: Stages of monodisperse colloidal quantum dot synthesis, from initial nucleation to
particle growth stages. Figure obtained from reference [4].

1.1.1 Colloidal quantum dots

Colloidal QDots are semiconductor nanocrystallites that are suspended throughout
a liquid substance, obtained from the chemical process of precipitation of a solid
phase from a solution. The fabrication of colloidal QDots relies one two main steps:
nucleation and particle growth stages [4, 21, 22]. Figure 4 presents these precipitation
stages. The nucleation stage starts when the solution is supersaturated with precursors,
i.e, the semiconductor particles. In this stage, stable self-organized nuclei are formed
due to the instability of the supersaturated solution. The uniformity of size distribution
of these nanocrystals is obtained by a short nucleation period. As nucleation reduces
the solution’s saturation by molecular addition, the nucleation process stops when the
concentration drops below the critical level of the solution’s solubility, and particles
proceed growing by molecular addition until the equilibrium concentration of the
precipitated crystallites is reached. If the chemical reaction is not stopped, the size of
the crystals can extend into the micrometre regime on the saturated stage [4]. During
the particle growth stage, there is a stage when there is a broad size distribution,
named Ostwald ripening or defocusing [22]. If the reaction is stopped at this stage,
there will be two size regimes, a bigger one and a smaller one.

In order to finally produce stable nanoparticles, the produced crystallites are sur-
rounded during the reaction by adding organic ligands or inorganic capping materials.
The use of organic ligands to stabilize the nanoparticles comes from the diverse use of
colloidal quantum dots in biomedical applications [23, 24]. The systematic adjustment
of the reaction parameters, such as the reaction time, temperature, concentration, and
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the selection of the reagents and surfactants are used to control the size, shape and
quality of the colloidal QDots.

1.2 size-dependent properties of colloidal pbs quantum dots

Lead Sulfide (PbS) is an inorganic compound, appears in nature as the mineral Galena,
and it is a natural group IV-VI semiconductor [25]. Bulk PbS has a direct band gap of
0.41 eV at 300K, it has a rock-salt structure, with lattice constant a = 5.936 Å[8], and
has a large exciton Bohr radius of 18 nm [8, 26, 27]. Due to such a large Bohr radius,
colloidal QDots of PbS are characterized by the strong confinement regime [8, 28],
and can be produced with a band gap in the Near-Infrared (NIR) spectral range [8].
PbS nanocrystals have an electron effective mass, m∗e equal to the hole effective mass,
m∗h, with the value of 0.085m0, where m0 is the electron rest mass [29]. PbS QDots
have been estimated to have a static dielectric constant ε0 = 14.5± 1.8 [30]. Colloidal
PbS quantum dots can be controlled to absorb light in the range of 600-3000 nm [31].
These QDots maintain their rock-salt crystal structure even when the size is decreased
from bulk down to the nanoscale [8, 32, 33].

In the work by Moreels et al [8], colloidal PbS quantum dots are shown to be
non-stoichiometric, with an excess of Pb over Sulphur ion, S−2. With Rutherford
backscattering spectrometry experiments, the ratio of Lead and Sulphur Pb/S has
been found to vary between 1.23 and 1.37. The work presents as well an experimental
sizing curve of the QDots by correlating the band gap E0 with the QDot size d as

E0 = 0.41 +
1

0.0252 d2 + 0.283 d
(1.2)

where the size range was 3.9 < d < 13.3 nm. The experimental sizing curve agrees
well with tight-binding calculations [32]. The molar extinction coefficient of a colloidal
solution of PbS QDots, ε, scales with the QDot volume and the molar extinction
coefficient at the band gap was found to scale as d1.3 [8].

For a semiconductor QDot, the temperature dependence of the energy band gap
is proportional to the size of the nanocrystallite. For PbS QDots the same trend is
found, where, for bigger PbS QDots, around 16 nm, ∂E0/∂T approaches the bulk PbS
semiconductor value (∼ 500µeV/T), and for smaller 2 nm to 4 nm sized QDots the
temperature dependence is nearly zero [34].

The Stokes shift on PbS QDots has been reported by Liu et al and Voznyy et al to
reach energy shifts of around 200 meV, which is considerably greater than, e.g, CdSe
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QDots [35, 36]. The main arguments presented by the authors to understand this shift
are QDot defects and QDot aggregation.

Walsh et al [37] has shown the theoretical effect of the elongation of PbS QDots
on its electronic and optical properties. Using the k · p method with the rock-salt
crystal structure [38], Walsh et al shown that the elongation of a spherical PbS QDot
along the longitudinal (z) and/or the transverse (x or y) directions yields a lower
band gap. Due to the incremental change in the confinement volume, the geometrical
symmetry breaking increases the number of optically allowed transitions and moves
the absorption cross section peaks to lower energies.

PbSe QDots, another well known lead chalcogenide, present similar properties to
PbS QDots, regarding crystal structure, but a slightly smaller bulk band gap energy
of 0.28 eV and a larger Bohr radius of 46 nm, where the latter property gives stronger
quantum confinement effects [13, 34, 38, 39]. Both types of QDots can achieve stronger
quantum confinement 3 than the most common CdSe QDots and other II-VI and III-V
semiconductor materials [34]. PbSe QDots show similar QDot size dependence to the
band gap E0 as found with PbS QDot, although PbS QDots are typically larger than
PbSe QDots for a given E0 [8, 39]. Due to their similar properties and sharp emission
spectra in the near-infrared spectral range, PbS and PbSe QDots are of great interest
for studies of nanophotonic control over spontaneous emission of light in strongly
interacting silicon photonic crystal structures [40, 41, 42, 43].

PbS QDots have been applied in photovoltaics due to low energy band gap, high
absorption coefficient 1− 5× 105cm−1 and large exciton Bohr radius [31, 44, 45]. Other
known applications are in bioanalysis [46], photonic crystals [40, 41, 42, 43] and lasers
[47]. Together with other lead chalcogenides, they are amongst the most promising
materials for quantum emitters in the infrared spectral range [34, 48].

1.3 förster resonance energy transfer : main concepts

The FRET mechanism, short for Förster resonance energy transfer or fluorescence
resonance energy transfer, is a mechanism which describes non radiative energy trans-
port between two quantum dots, or fluorescence molecules. It was first theoretically
described by Förster in 1948 [49], and still forms the basis of most of the work in the
domain of nonradiative energy transfer. This mechanism involves an excited donor

3 Strong quantum confinement effects occur when the QDot radius, R, is much smaller the the exciton
Bohr radius, aB. In lead chalcogenide QDots the ratio (R/aB) can reach small values around 0.02,
whereas, e.g, in CdSe QDots the minimum possible value is around 0.16 [34].
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fluorophore (e.g., a quantum dot or a dye molecule) which transfers its energy of
excitation to an acceptor fluorophore via dipole-dipole coupling, i.e, by dipole-dipole
resonance. In a quantum mechanical description, the energy transfer is mediated
by virtual photons, i.e., intermediate quantum mechanical states which describe the
interaction of the entangled donor-acceptor system [5]4. FRET is one of the main types
of energy transfer between emitters at a nanometre proximity. It can also act as a
mechanism of non-radiative de-excitation of a QDot if the energy is transferred to a
dissipative environment [50].

Figure 5 shows a Jablonski diagram, i.e, a diagram of molecular electronic states,
in case of a FRET mechanism. At first, the donor molecule is excited to a higher
energy level S1

5. Typical relaxation to the state of least vibrational energy occurs,
with a decay rate of the order of picoseconds [51]. The non-radiative FRET mechanism
mediates the donor electron’s excited energy into the acceptor molecule, which excites
the acceptor into its excited level, and then finally decays into the ground state. Thus,
FRET introduces a new decay channel for the excited state, which, without FRET,
predominantly decays via the donor radiative mechanism (displayed in green in
Figure 5).

Figure 5: Jablonski diagram of the Förster Resonance Energy Transfer (FRET) between a donor
and acceptor molecules. The black lines indicate the transfer of virtual photons,
which are intermediate quantum mechanical states which describe the interaction of
the entangled donor-acceptor system [5]. Figure reproduced from reference [6].

4 Detailed consideration of the dipole-dipole resonance interaction for quantum dots, in a quantum-
mechanical description, is found in Chapter 2.3.

5 In a Jablonski diagram, the energy levels, namely S0 and S1, are arranged vertically and divided into
multiple vibrational energy levels. See reference [51] for further explanation.
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As previously mentioned, adding a acceptor into the donor’s environment intro-
duces FRET as a new energy decay channel to the fluorescent system. Therefore, the
total decay rate, ΓDA, of a FRET coupled donor is ΓDA = ΓD + ΓFRET , where ΓD is the
total decay rate of an isolated donor. Since the latter is the sum of the radiative rate
Γrad and the non-radiative rate Γnr, ΓD = Γrad + Γnr, the FRET efficiency, ηFRET, can be
written as follows:

ηFRET ≡
ΓFRET

ΓFRET + Γrad + Γnr
= 1− ΓD

ΓDA
(1.3)

By measuring the decay rates ΓDA and ΓD one can find evidence of the presence of
FRET by studying its efficiency ηFRET. The donor-acceptor decay rate ΓDA should be
higher or equal comparing with the isolated donor decay rate ΓD, in order to yield
efficiencies below or equal to one. The decay rate values can be determined with
a statistical study of the arrival time of emitted photons from excited quantum dot
samples, such as the Time-Correlated Single Photon Counting (TCSPC) technique (See
chapter 3.1).

The rate of energy transfer, ΓFRET, from a specific donor to a specific acceptor, in the
strong confinement regime, is given by

ΓFRET =
1

τD

(
R0

R

)6

, (1.4)

where R0 is the Förster distance, i.e. the distance between donor and acceptor where
the efficiency is 50%, i.e, where the transfer rate equals the rate of emission, τD = 1/ΓD

is the lifetime of the donor in absence of the acceptor and R is the distance between the
two entities [12, 49, 52]. The mechanism’s efficiency depends on the inverse 6th-power
law of the distance R, due to the dipole-dipole interaction of these particles.

FRET strongly depends on three main parameters, which are the following:

1. Distance R between donor and acceptor;

2. Spectral overlap of the donor emission spectrum and the acceptor absorption
spectrum;

3. The relative orientation of the transition dipole moment of the donor and the
acceptor.
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Figure 6: Effect of FRET on the emission spectrum of PbS colloidal quantum dots. The legend
indicates the concentration of chemical linker, the ion Zn2+, that binds quantum dots
at nanometre distance. The higher the Zn2+ concentration the more redshifted is the
emission spectra. This is an evidence of the FRET mechanism between quantum
dots. Figure obtained from reference [7].

Since, in quantum dots, the emission spectrum is redshifted in comparison with
the absorption spectrum (the Stokes shift), the optimal spectral overlap occurs when
the donor quantum dots are smaller (i.e, higher band-gap energy) than the accep-
tor quantum dots (i.e, lower band-gap energy). This condition yields higher FRET
mechanism efficiency and, in a emission spectrum, the energy transfer translates
into a redshift of the emission peak, comparing with QDots with no FRET mecha-
nism. In Figure 6 this effect is found on PbS colloidal quantum dots, by increasing the
concentration of a chemical linker that binds QDots together at nanometre distance [7].

One possible application of the FRET mechanism in quantum dots is to create a
quantum information system, by embedding the quantum dots in a photonic bandgap
crystal. The photonic bandgap crystal, such as a inverse woodpile photonic crystal
[13, 53, 54], inhibits the radiative decay of quantum dots, thus increasing the efficiency
of the FRET mechanism.

1.4 objectives of this work and outline of this thesis

The main objective of this work was to detect the presence of the FRET mechanism
in ensemble of colloidal PbS quantum dots, where the quantum dots act as both



10 Chapter 1. Introduction

the donor and acceptor entities. Experimental techniques, such as emission spectra
acquirement and Time-Correlated Single Photon Counting (TCSPC), were used to
study photoluminescence properties of the QDot samples. By introducing a chemical
linker, namely using the EDC/NHS surface chemistry6, the QDots were binded at a
fixed length, at a nanometre distance. This binding allows to detect changes on the
emission and decay properties of the QDot samples, which can be related with the
appearance of new energy decay mechanism, such as the FRET mechanism. In order
to further understand the experimental results, theoretical studies were performed,
followed by an analysis of the statistical moments of some empirical and derived
decay functions.

The use of colloidal PbS QDots leads to the study of FRET in QDots emitting in the
near-infrared (NIR) part of the light’s spectrum. Most studies of FRET mechanisms in
colloidal QDot systems use QDots emitting in the visible light spectrum.

Similar experimental techniques were used by Wang et al [7], where the authors
reported signals of the presence of energy transfer. According to them, it occurred by
multi-step hopping of near-infrared excitons, within aggregates of PbS QDots capped
with glutathione and aggregated using Zn+2 cations. A redshift of the samples’
emission and absorption spectra with increase of the concentration of Zn+2 cations
shown the increasing efficiency of the FRET mechanism, since it can be an evidence of
energy transfer from a larger gap (smaller sized) QDot to a smaller gap (larger sized)
one.

Experimental results obtained in the framework of this thesis, after a careful statisti-
cal analysis performed, also demonstrate that the FRET mechanism was present in
the samples. Such results give an insight of some expected photoluminescence results
of PbS QDot aggregations.

The thesis is consisted by this introduction (Chapter 1) and five chapters, with
appendices.

In Chapter 2 a theoretical background is presented for the study of FRET in semi-
conductor PbS quantum dots. Here are presented studies of the band gap energy
of confined excitons (Chapter 2.1), the study of spontaneous emission in two-level
quantum systems (Chapter 2.2), studies of the FRET mechanism, in a quantum electro-

6 The molecules EDC (1- Ethyl- 3- (3- dimethylaminopropyl) carbodiimide) and NHS (N-
Hydroxysulfosuccinimide) were the cross-linker molecules used to bind the PbS QDots. See Chapter
3.3 for further insight.
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dynamics description, between two model quantum dots (Chapter 2.3), the derivation
of the Förster radius (Chapter 2.4), the derivation of decay functions for 3-dimensional
QDot ensembles (Chapter 2.5) and a brief review of theoretical approaches to study
photoluminescence decay in QDots, including empirical decay functions, found in the
literature (Chapter 2.6).

In Chapter 3 the main experimental techniques and the experimental procedure
are introduced, used to develop the study of cross-linked ensembles of PbS QDots.
It is presented a description of the TCSPC technique (Chapter 3.1), along with the
experimental setup over an optical table (Chapter 3.2). Brief studies of the technique
of surface chemistry and the main interacting molecules for cross-link of QDots are
also present, including the chemistry procedure used for creating colloidal PbS QDot
aggregates (Chapter 3.3).

In Chapter 4 the main experimental results of this thesis are presented. Emission
spectra and time resolved photoluminescence measurements of cross-linked PbS QDot
samples and non-cross-linked ones are compared in order to detect evidences of FRET
due to the agglomeration of QDots. Data fitting time resolved measurements, with
empirical and derived decay functions is achieved in this chapter, finding possible evi-
dences of FRET for the studied samples, albeit the obtained results hold interpretation
struggles.

In Chapter 5 a study is developed of the statistical moments of the photolumines-
cence kinetics of the PbS QDot samples. Firstly, the statistical moments of empirical
and derived decay functions are studied (Chapter 5.1) and they are afterwards com-
pared with the statistical moments obtained from the data treatment of the studied
PbS QDot samples (Chapter 5.3). From the obtained results, evidences of FRET have
been found in the studied samples and an estimate of the Förster radius and the
average QDot agglomerate size is here presented.

In Chapter 6 a conclusion over the content of this thesis is presented, including the
summary of the main achievements of this work, as well as suggestions for improving
the viability of the experimental results for the further development of studying FRET
in colloidal QDot ensembles.





2

T H E O R E T I C A L B A C K G R O U N D

2.1 effective mass approximation for electron and hole energy lev-
els

To describe the electronic spectrum of a quantum dot (QDot), let us assume a spherical
QDot with radius R. To a first approximation, the QDot’s involving material creates
an infinite height potential for both confined electrons and holes of the QDot. Such
an approximation is only valid if the surrounding medium has a band gap energy
much higher than the semiconductor QDot [19, 55, 56]. This approximation is valid
for colloidal PbS QDots in water 1. If considering, for instance, QDots embedded
in a crystal, one must take into account a finite potential V0, for which analytical
solutions are difficult to produce. Nanda et al [55, 28] has developed a model for a
finite potential square-well model, which applied to determine the band-gap of PbS
and CuBr nanoparticles. On a more general study, many mathematical models, within
the effective mass and nonparabolic band theory 2, were developed in order to find,
using numerical approximations, the electronic structure of semiconductor QDots [58].

In this chapter a study is presented of the ground state (i.e, l = 0, m = 0) of
the electronic spectrum of a 0D semiconductor for an infinite barrier potential. By
calculating the ground state eigenvalues one evaluates the size-dependent band gap
of the QDot. One finds, as well, to a first approximation, the effect of the Coulomb
interaction between electrons and holes in the QDots.

1 The energy band gap of water is calculated as 7.3 eV in room temperature (300K) in the literature [57].
This energy is at least 7 times higher than the band gap of PbS QDots, considering equation 1.2 from
reference [8]. Thus, this approximation can be valid for colloidal PbS QDots in water, which means that
the QDot wave function extends negligibly outside the QDot.

2 Many other approaches, such as tight binding, configuration interaction, density functional theory
(DFT), multiband and one band, were developed to study QDot systems. As a guideline, see the
references metioned on the second paragraph of the introduction of reference [58].
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Using spherical coordinates, the Schrödinger equation which describes the electron
and hole wavefunction inside the spherical infinite potential well is:− h̄2

2m∗

[
1
r2

d
dr

(
r2 d

dr

)]
+∇2

θ,φ

Ψ(r, θ, φ) = E Ψ(r, θ, φ) (2.1)

where m∗ is the electron (or hole) effective mass and ∇2
θ,φ is the angular part of the

Laplacian, with spherical harmonics eigenfunctions Ylm(θ, φ), and with eigenvalues:

∇2
θ,φ Ylm(θ, φ) = − l(l + 1)

r2 Ylm(θ, φ). (2.2)

One assumes that one exciton is produced3. The exciton’s electron has an energy
Ee ≥ Ec, where Ec is the bottom value of the conduction band, and the exciton’s hole
has an energy Eh ≤ Ev, where Ev is the top value of the valence band. Since one
needs to find the ground state energy, one chooses l = 0. In this way, the Schrödinger
equations for the electron and the hole with wavefunctions Φe and Φh, respectively,
read inside the QDot (r < R):

− h̄2

2m∗e

[
1
r2

d
dr

(
r2 d

dr

)]
Φe(r) + EcΦe(r) = EeΦe(r) (2.3a)

⇔ d2

dr2 Φe(r) +
2
r

d
dr

Φe(r) + k2
e Φe(r) = 0,

and

− h̄2

2m∗h

[
1
r2

d
dr

(
r2 d

dr

)]
Φh(r) + EvΦh(r) = EhΦh(r) (2.3b)

⇔ d2

dr2 Φh(r) +
2
r
(r)

d
dr

Φh(r)− k2
hΦh(r) = 0,

with

2m∗e (Ee − Ec)

h̄2 = k2
e and

2m∗h (Ev − Eh)

h̄2 = k2
h; ke, kh > 0. (2.4)

3 We shall call an electron-hole pair exciton for clarity, even if the electron-hole interaction energy is
small compared to the confinement energy. See chapter 2.1.1 for further development.
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The ground state solutions to equations 2.3a and 2.3b are the wavefunctions Φe and
Φh, respectively, equal to:

Φe(r) = Ae j0(kere), (2.5a)

Φh(r) = Ah j0(khrh), (2.5b)

j0(kr) ≡ sin(kr)
kr

,

where j0 is the spherical Bessel function of first kind and Ae and Ah are the respective
normalization constants. In this model it is assumed that Ae = Ah = A.

At the boundary of the QDot, i.e, r = R, the wavefunctions must vanish, due to the
infinite barrier at the QDot’s radius:

Φe(R) = Φh(R) = 0 (2.6a)

using the definition of the Bessel function j0:

⇔ sin(keR)
keR

= 0∧ sin(khR)
khR

= 0 (2.6b)

Thus,

⇔ ke =
neπ

R
∧ kh =

nhπ

R
, (2.6c)

where ne,h = 1, 2, .... Since the ground state is to be studied, then ne = nh = 1, since it
yields the lower energy state. Thus we have, in the ground state, that

k = ke = kh =
π

R
(2.7)
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The normalization constants of the electron and hole wavefunctions, equations 2.5a and
2.5b, respectively, can be calculated using the result of equation 2.7. The normalization
constant is the same for both wavefunctions and yields the following expression:

|A|2
∫

V

sin2(kr)
k2r2 dr = 1

⇔|A|2
∫ 2π

0
dφ
∫ π

0
sin θdθ

∫ R

0

sin2(kr)
k2 dr = 1

⇔|A|2 4π

(
R
π

)3 ∫ π

0
dx sin2(x) = 1

⇔|A| =
√

π

2R3 ,

(2.8)

where the variable substitution x ≡ kr = π
R r was used. By inserting equation 2.7 into

equation 2.4 one obtains the energy Ee of the ground state of the electron to be equal
to

Ee = Ec +
h̄2k2

e
2m∗e

= Ec +
h̄2π2

2m∗e R2 (2.9a)

⇒ Ee − Ev = Eg +
h̄2π2

2m∗e R2

while, the hole’s energy is equal to

Eh − Ev = − h̄2π2

2m∗hR2 (2.9b)

This way, we find the ground state energy, ∆EG = Ee − Eh, for the QDot to be

∆EG(R) = Eg +
h̄2π2

2R2

(
1

m∗e
+

1
m∗h

)
+ UC (2.10)

where UC is the exciton Coulomb interaction energy between the electron and the
hole, which will be derived in the following subsection.
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2.1.1 Coulomb exciton interaction: Weak and strong confinement

The exciton energy spectrum strongly depends on the magnitude of the Coulomb
interaction between the electron and the hole, when compared with the typical value
of the energy gained by the particles due to their confinement (∆Ee = Ee − Ec for the
electron and ∆Eh = Eh − Ev for the hole). The typical energy of the Coulomb exciton
interaction between the electron and the hole UC can be estimated to be [2, 19]

UC = −ξ
e2

ε1R
, (2.11)

where R is the QDot radius, e is the elementary electric charge, ε1 is the dielectric
constant of the QDot and ξ is a coefficient of the order of the unity. By compar-
ing the energy UC with the electron-hole energy gap ∆E = ∆Ee + ∆Eh, one may
find two different regimes, namely, the strong and weak confinement regimes. In
the strong confinement regime one has that ∆E � |UC| or, equivalently, rB � R,
where rB is the exciton Bohr radius [2, 19]. In this regime, the Coulomb interaction
can be considered to be a small perturbation comparing the confinement energy.
On the other hand, the weak confinement regime has ∆E � |UC|, or rB � R. In
this case, the Coulomb interaction is predominant and creates strongly bound excitons.

Most reports regarding PbS quantum dots [8, 26, 59, 60] describe these QDots
as belonging to the strong confinement regime. Therefore, a strong confinement
description is hereby presented. The Coulomb interaction is considered as a small
perturbation. So, to a first approximation, the exciton wavefunction is the product of
the independent electron and hole wavefunctions:

Ψ(re, rh) = Φe(re)Φh(rh). (2.12)

The Coulomb correction is given, in first order perturbation theory, by the mean value
of the Coulomb potential:

UC '
〈
− e2

ε1|re − rh|

〉
= − e2

ε1

〈
1

|re − rh|

〉

= − e2

ε1

∫ ∫
|Φe(re)|2|Φh(rh)|2

dre drh
|re − rh|

.

(2.13)
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The inverse modulus factor in equation 2.13 can be written in terms of Legendre
polynomials [61] as

1
|re − rh|

=


∑∞

l=0
rl

h
rl+1

e
Pl(cos γ), if re < rh

∑∞
l=0

rl
e

rl+1
h

Pl(cos γ), if re > rh

(2.14)

where γ is the angle between re and rh and Pl(cos γ) are the Legendre polynomials of
order l. Since in this problem we are only interested in studying the wavefunction
for the ground state, which is an s-state, if one deals only with s-states in equation
2.13 then the only dependence on angle, in the same equation, lies with the Legendre
polynomial obtained in equation 2.14. We have for the Legendre polynomials that

∫
Pl(cos γ) dΩγ = 0, if l 6= 0. (2.15)

where dΩγ is the angular part of dr (dr = r2drdΩγ, in spherical coordinates). Due
to this definition, the only non-zero element in the sum in equation 2.14, if only
considering the exciton ground state wave functions, is for l = 0. In this way equation
2.14 is simplified as:

1
|re − rh|

=


r−1

h , if re < rh

r−1
e , if rh < re

(2.16)

This expression simplifies equation 2.13 such that the total mean potential UC is a
sum of two regimes, re < rh and rh < re. Using equations 2.5a and 2.5b in equation
2.13, with the approximation from equation 2.16, gives:

UC =− e2

ε1
16π2A4

∫ R

0
dre r 2

e j0(kre) ·
[

1
re

∫ re

0
drh r 2

h j 2
0 (krh) +

∫ R

re
drh rh j 2

0 (krh)

]

=− e2

ε1
16π2A4[I1 + I2],

(2.17)
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where

I1 =
∫ R

0
dre

sin2(kre)

k2re

∫ re

0

sin2(krh)

k2 drh

≈ 0.701389
(

R
π

)5

,

(2.18)

and

I2 =
∫ R

0
dre

sin2(kre)

k2

∫ R

re

sin2(krh)

k2rh
drh

≈ 0.701389
(

R
π

)5

.

(2.19)

Assuming that the normalization constant A is given by equation 2.8, then the average
Coulomb potential is given by:

UC ≈ −1.78607
e2

ε1R
. (2.20)

Using the result of Equation 2.20 into Equation 2.10 gives the exciton ground state
energy of a strongly confined QDot to be

∆EG(R) = Eg +
h̄2π2

2R2

(
1

m∗e
+

1
m∗h

)
− 1.78607

e2

ε1R
(2.21)

A plot of this energy band gap function for PbS is produced using some known
constants. From Chapter 1.2, we have that, for PbS QDots, Eg = 0.41eV, m∗e = m∗h =

0.085m0, where m0 is the electron rest mass, ε1 = 14.5 and typical PbS QDot diameter
ranges between 4nm and 20nm. Figure 7 presents the plot of the energy band gap
of PbS QDots in funtion of QDot size, d = 2R, compared with the empirical sizing
curve presented by Moreels et al in reference [8], and presented in this thesis in
Equation 1.2 in Chapter 1.2. It is seen that the effective mass approximation prediction
greatly overestimates the energy band energy for small diameter PbS QDots. Such an
overestimation was also observed by Wang et al [29]. In this work, the overestimation
is corrected by developing a "cluster" model, with a tight-binding approximation
Hamiltonian. While the effective mass approximation gives, for this situation, too
high exciton energies, it is an interaction model which can produce a simple analytic
expression.
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Figure 7: Ground state exciton energy, ∆EGS, as function of QDot diameter, d = 2R, for PbS
QDots, as calculated with effective mass approximation (EMA) theory, compared
with the empirical sizing curve presented by Moreels et al, in reference [8].

2.2 spontaneous emission and photoluminescence in two-level quan-
tum systems

A semiconductor quantum dot has a sharp peaked, Dirac-delta like, density of states,
as mentioned on Chapter 1.1. This property of QDots tells us that energy levels are
sharply quantized, similarly to atoms. Thus, when involving interaction with light,
the process of electronic excitation can be analogous to a two level quantum system,
with a ground state and an excited state. The properties of spontaneous emission on
these nanocrystals involve many variables, some of those are the band-gap energy
and the surrounding environment.

Let us derive the spontaneous decay rate of a two-level quantum system located
at r = r0, which we shall call here as an "atom". The atom set initially in an excited
state |i〉 will decay into a set of final states | f 〉 with identical energies E f . The set of
final states only differ by the mode k of the radiation field (see Figure 8). Since the
transitions are independent, we sum all the transition probability for each mode to
obtain the total transition rate. Here the polarization of the radiation field is neglected.
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Figure 8: Transition from a initial state to a set of final states. Figure taken from reference [9].

According to Fermi’s 2nd golden rule [62] the spontaneous decay rate γ is given as

γ =
2π

h̄2 ∑
f

∣∣∣〈 f |ĤI |i〉
∣∣∣2 δ(ωi −ω f ), (2.22)

where ĤI = −d̂ · Ê is the interaction Hamiltonian in the dipole approximation, where
d̂ is the dipole moment operator and Ê the vacuum electric field operator. The initial
energy is solely determined by the atom’s excited state energy Ee = h̄ωi

4. On the
other hand, the final energy is described by the atom and the field as h̄ω f = Eg + h̄ω0,
where Eg is the energy of the ground state and h̄ω0 is one quantum of electromagnetic
radiation (photon), which is close to the exciton energy of the QDots. Therefore the
delta function is a statement of energy conservation, by assuming, for ωi = ω f , that
Ee − Eg = h̄ω0.

Let us find the matrix elements of 〈 f |ĤI |i〉. One can write Ê in terms of the operators
of the harmonic oscillator â and â†:

Ê = ∑
k

{
E+

k âk(t) + E−k â†
k(t)

}
, (2.23)

where E+
k and E−k are the positive and negative parts of the complex electric field Ek,

respectively, and the time-dependent harmonic oscillator operators are equal to

â†
k(t) = â†

k(0) exp(iωkt) ∧ âk(t) = âk(0) exp(−iωkt). (2.24)

4 We neglect the zero point energy 1
2 h̄ω0 since we are only interested in energy differences.



22 Chapter 2. Theoretical Background

For a two-level atomic system with ground state |g〉 and excited state |e〉, the transition
dipole moment operator can be rewritten as:

d̂ = d
(

r̂+ + r̂
)

, (2.25)

with r̂+ = |g〉 〈e| and r̂ = |e〉 〈g|. Here, the transition dipole moment is taken to be
real, i.e., 〈g|d̂|e〉 = 〈e|d̂|g〉. Using the expressions for Ê and d̂, equations 2.23 and 2.25
respectively, the interaction Hamiltonian ĤI is rewritten as:

ĤI = −d̂ · Ê = −∑k d ·
[
E+

k r̂+ âk(t) + E−k r̂â†
k(t) + E+

k r̂âk(t) + E−k r̂+ â†
k(t)

]
(2.26)

The initial and final states, |i〉 and | f 〉 respectively, are defined as:

|i〉 = |e, {0}〉 = |e〉|{0}〉

| f 〉 = |g,
{

1ωk′

}
〉 = |g〉|

{
1ωk′

}
〉,

(2.27)

where |{0}〉 stands for the zero-photon state and |{1ωk′
}〉 stands for a one photon

state with a mode k′ and frequency ω0 = (Ee − Eg)/h̄. Operating the perturbation
d̂ · Ê on the mentioned states gives:

〈 f |d̂ · Ê|i〉 = d ·∑
k

E−k eiωkt
〈

g,
{

1ωk′

}
|g,
{

1ωk

}〉
, (2.28)

〈i|d̂ · Ê| f 〉 = d ·∑
k

E+
k e−iωkt

〈
g,
{

1ωk

}
|g,
{

1ωk′

}〉
. (2.29)

where Thus, the module squared
∣∣∣〈 f |d̂ · Ê|i〉∣∣∣2 is equal to:

∣∣∣〈 f |d̂ · Ê|i〉∣∣∣2 =∑
k′

∑
k
(d · E+

k′′
⊗ E−k · p)e

i(ωk−ωk′′ )t ·

· 〈g, {1ωk′′
}|g, {1ωk’}〉 〈g, {1ωk′

}|g, {1ωk}〉

(2.30)

where we note that, as any dot product, d · E−k = E−k · d, and E+
k′′
⊗ E−k stands for the

outer product of the two vectors of the electric field (i.e, a 3× 3 matrix in 3D space
with components EiEj). The matrix element 2.30 can be introduced in equation 2.22.
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Expressing the sum of the final states as a sum over the modes k′, the transition rate
becomes

γ =
2π

h̄2 ∑
k

∑
k′

[
d ·
(

E+
k ⊗ E−k

)
· d
]

ei(ωk−ωk′′ )t·

·∑
k′
〈g, {1ωk′′

}|g, {1ωk’}〉 〈g, {1ωk′
}|g, {1ωk}〉 δ (ωk −ω0)

(2.31)

Due to states’ orthogonality, there are non-zero values in equation 2.31 only if k′′ =
k′ = k. Thus, the transition rate becomes

γ =
2π

h̄2 ∑
k

[
d ·
(

E+
k ⊗ E−k

)
· d
]

δ (ωk −ω0) . (2.32)

If we rewrite E+
k and E−k in terms of their respective normal modes uk, such as5 [9]

E+
k =

√
2πh̄ωk

ε1
uk ∧ E−k =

√
2πh̄ωk

ε1
u∗k, (2.33)

where ε1 is the effective dielectric constant of the surrounding medium, the decay rate
in equation 2.32 can be written as:

γ =
4π2ω

3h̄ε1
|d|2ρp (r0, nd, ω0) , (2.34)

where nd = d
|d| is the unit vector of the transition dipole moment d, and ρd is the

partial local density of states, defined as [9, 63]:

ρd (r0, nd, ω0) ≡ 3 ∑
k

[
nd ·

(
uk ⊗ u∗k

)
· nd

]
δ (ωk −ω0) , (2.35)

The expression for the partial local density of states suggests that we need to integrate
over a finite distribution of available final frequencies. By writing the expression in
terms of a Green’s dyadic

↔
G, the sum becomes a trace6:

ρd (r0, nd, ω0) =
6ω0η2

πc2

[
nd · Im

{
↔
G (r0, r0; ω0)

}
· nd

]
. (2.36)

5 CGS units are used in the following equations. The normal modes uk have dimensions of (volume)−1/2.
6 See Appendix A.1 for deduction of the Green function representation of the normal modes of the

electric field.
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where η =
√

ε1 is the refractive index of the surrounding medium. With this equation
for the partial local density of states one can calculate the spontaneous decay rate of a
two-level quantum system in an arbitrary reference system. All one needs is to know
the Green dyadic for the reference system.

2.2.1 Local density of states (LDOS)

In equation 2.34 the partial local density of states function ρd(r0, np, ω0) was intro-
duced. It corresponds to the number of modes per unit volume and frequency, at the
origin r of the (point-like) quantum system with dipole orientation nd, into which a
photon with energy h̄ω0 can be released during the spontaneous decay process [9, 63].

If there is no fixed dipole axis nd and the medium is isotropic and homogeneous,
the decay rate, given by equation 2.34 with partial local density of states given by
equation 2.36, is averaged over all directions, which implies:

〈nd · Im
{
↔
G (r0, r0; ω0) · nd

}
〉

= 〈nd · ndIm
{
↔
G (r0, r0; ω0)

}
〉

= 〈|nd|2 Im
{
↔
G (r0, r0; ω0)

}
〉

=
1
3

Im
{

Tr[
↔
G (r0, r0; ω0)]

}
(2.37)

where 〈· · · 〉 = n−1Tr[· · · ], where n is the number of elements of the vector. Inserting
this result in equation 2.35 defines the total local density of states ρ, given by:

ρ(r0, ω0) =
6ω0η2

πc2

[
1
3

Im
{

Tr[
↔
G (r0, r0; ω0)]

}]

=
2ω0η2

πc2

[
Im
{

Tr[
↔
G (r0, r0; ω0)]

}]

= ∑
k
|uk(r0, ω0)|2δ(ωk −ω0),

(2.38)
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where, in the last step, the following relation between the Green function and the
normal modes uk was used 7

2ω0η2

πc2 Im
↔
G (r0, r0; ω0) = ∑

k
u∗k(r0, ωk)uk(r0, ωk)δ(ωk −ω0). (2.39)

In summary, the spontaneous decay rate is proportional to the partial local density
os states, which depends on the transition dipole between the two atomic states
involved in the transition. Only in homogeneous environments or after orientational
averaging can ρd can be replaced by the total local density of states. In free space, for
instance, the LDOS is uniform and ρ is equal to

ρ0 =
ω 2

0 η3

π2c3 (2.40)

which, if η = 1, is the density of electromagnetic modes as encountered in, e.g.,
blackbody radiation [9, 63]. Using equation 2.40 in equation 2.34 gives the decay rate
for a homogenous environment written as

γ =
4E3η

3h̄4c3
|d|2, (2.41)

where E = h̄ω0.

2.3 dipole-dipole resonance interaction between two quantum dots

In a wide range of phenomena in chemical physics, intermolecular interactions de-
termine the observed behaviour of a system. These interactions are stronger at small
distances, such that the molecule’s wave function overlap and electron exchange occur,
also known as electronic transfer [64, 65]. Nonetheless, inter-molecular interactions
still remain significant at greater distances, such that individual molecules can be
regarded as chemically distinct. The mechanism for these long-range interactions is
electromagnetic; in this regime lies the non-radiative energy transfer. Energy transfer
is different from electronic transfer in the sense that there is no net transport of charge;
the charge neutral excitation is transferred as an entity from the donor to the acceptor.

In this section a thorough theoretical description of the non-radiative energy transfer
mechanism is given, assuming the dipole approximation in the interaction Hamil-

7 See Appendix A.1 for the full derivation.
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Figure 9: Excitonic picture of the donor-acceptor quantum system. The horizontal arrow
shows the direction of the exciton transfer. There can be a distribution of allowed
final exciton states.

tonian between two QDots [5, 66]. The energy transfer process can be considered
using an excitonic (i.e, electron-hole) picture of the quantum system (see Figure 9).
Alternatively, the process can be described using the single-particle picture, as it has
been done in the classical work of D. Dexter [67]. This approach will be presented in
Chapter 2.4. If the QDots are in the strong-confinement regime (as reported for PbS
QDots [8, 26, 59, 60]), electron-hole interaction is negligible, and, thus, the exciton and
the single-electron pictures are completely equivalent.

Here we shall consider two quantum dots of the same size R in a homogeneous
dielectric medium with permittivity ε1. In the beginning the donor particle, labelled
D, is photo-excited, being in state |Dnilimi〉, whilst the acceptor particle, labelled A, is
de-excited, being in state |Aground〉. The initial state is described as the product of the
initial states of the donor and acceptor QDots, and photons with wave vector k and
polarization λ,

|i〉 = |Dnilimi〉 |Aground〉 |Nk,λ〉 , (2.42)

with energy Ei = E(D)
nili

+ Nh̄ωk
8. The final state consists of the acceptor QDot in a

excited state, the donor QDot in the ground state and the same number of photons,
Nk,λ, of the system, with wave vector k and polarization λ,

| f 〉 = |Dground〉 |An f l f m f
〉 |Nk,λ〉 , (2.43)

8 The energy of ground state is set to be zero, so there is no net contribution of |Aground〉 to Ei.
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with energy E f = E(A)
n f l f

+ Nh̄ωk
9.

Resonant energy transfer is promoted via an interaction Hamiltonian, described by
a electric dipole interaction approximation, which takes the form

Ĥr
QD = −d̂QD · Ek,λ(r), (2.44)

where d̂QD is the electric dipole momentum operator, induced on the quantum dot
by the electric field measured in position r, Ek,λ(r), which can be rewritten with the
construction and annihilation harmonic oscillators, â†

k,λ and âk,λ respectively, as

Ek,λ(r) = i
(

2πh̄ωk

Vε1

)1/2 {
ek,λ âk,λei(k·r−ωkt) − e∗k,λ â†

k,λe−i(k·r−ωkt)
}

, (2.45)

where ek and e∗k are the electromagnetic radiation polarization vectors, ε1 is the effec-
tive dielectric constant of the surrounding medium and V is an arbitrary quantization
volume.

2.3.1 Energy transfer matrix element

In order to determine the system’s transfer matrix element Mi→ f , using second order
perturbation theory, two virtual intermediate states of the system are defined, which
involve the creation of virtual photons10, such as

|I1〉 = |Dground〉 |Aground〉 |Nk,λ + 1〉 ;

|I2〉 = |Dnilimi〉 |An f l f m f
〉 |Nk,λ + 1〉 ,

(2.46)

9 For the same reason as for Ei, there is no net contribution of |Dground〉 to E f .
10 In Quantum Field theory, a virtual photon is presented as a particle which mediates the exchange of

momentum, i.e, mediates the interactions, between two electromagnetic fields. The term "virtual" arises
because these photons cannot be observed. Intermediate quantum states add virtual photons to the
quantum system, which could be wrongly understood as a violation of conservation of energy but,
due to its short term lifetime, the Heisenberg uncertainty principle tells us there is high uncertainty in
energy, and it can actually have the same energy as the initial and final states. Further intuitions over
the concept of virtual photons in Quantum Electrodynamics can be found on reference [68]. For a more
in-depth theoretical description of manifestations of electromagnetic fields consider reading Quantum
Field Theory books, such as Chapter 1.5 of reference [69].
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which have energies EI1 = (N + 1)h̄ωk and EI2 = E(D)
nili

+ E(A)
n f l f

+ (N + 1)h̄ωk. The
quantum amplitude for RET, i.e. the matrix element Mi→ f is calculated with the
following expression 11:

Mi→ f = ∑
k,λ

{
〈 f |ĤQD|I1〉 〈I1|ĤQD|i〉

Ei − EI1

+
〈 f |ĤQD|I2〉 〈I2|ĤQD|i〉

Ei − EI2

}
. (2.47)

The acceptor QDot is located at position rA, whilst the donor is located at position rD.
The vector R defines the distance between the donor-acceptor pair, R = rA − rD. If
the resonance condition is fulfilled, then the initial and final energies of the system
should be the same: Ei = E f ⇒ ED

nili
= EA

n f l f
≡ Enl. Let us assume, as well, without

losing generality, that the initial state of the system doesn’t have photons, i.e. Nk,λ = 0.
This way, the state energies are rewritten as: Ei = E(D)

nili
, E f = E(A)

n f l f
, EI1 = h̄ωk and

EI2 = Ei + E f + h̄ωk. Using this information, Equation 2.47 is rewritten as

Mi→ f = ∑k,λ

{
〈 f |Ĥ(r=rA)

QD |I1〉〈I1|Ĥ
(r=rD)
QD |i〉

E(D)
nili
−h̄ωk

− 〈 f |Ĥ
(r=rD)
QD |I2〉〈I2|Ĥ

(r=rA)
QD |i〉

E(D)
nili

+h̄ωk

}
, (2.48)

where Ĥ(r=rA)
QD and Ĥ(r=rD)

QD indicate the position where the Hamiltonian is interacting
with the virtual photon.

Using the Hamiltonian defined in equation 2.44, writing the electric field as in
equation 2.45, the matrix element is written as 12:

Mi→ f =
1
ε1

dATdD , (2.49)

where dA ≡ d( f ,g.)
A ≡ 〈An f l f m f

|d̂A|Aground〉 and dD ≡ d(g.,i)
D ≡ 〈Dground|d̂D|Dnilimi〉 are

the matrix elements of the transition dipole moment acting on the acceptor and the
donor, respectively, and the tensor T is defined as,

Tαβ ≡ −q3
[

A
(
qR
)

δαβ + B
(
qR
)

nαnβ

]
eiqR, (2.50)

11 This expression comes from using second order time-dependent perturbation theory on transitions
from discrete states into continuous states. In this chapter’s problem, the initial state corresponds to
the state |i〉 and the final state corresponds to the state | f 〉. See, for instance, chapter 13.4 of reference
[70] for a development of this type of state transitions in time-dependent perturbation theory.

12 See Appendix A.2 for the full derivation.
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with A(x) = 1
x + i

x2 − 1
x3 , B(x) = − 1

x −
3i
x2 +

3
x3 , q =

√
ε1

h̄c Enl, R is the donor-acceptor
distance vector, nα,β = Rα,β/R is the unit vector of R, i.e., n = R/R.

In the near-field approximation, where energy transfer is mediated by a virtual
photon, qR � 1. Therefore, in this regime, the 1/(qR)3 factors are the dominant
terms in A(qR) and B(qR) in equation A.33, which leads to an exciton transfer matrix
element given as:

Mi→ f =
1

ε1R3

{
(dA · dD)− 3(dA · n)(dD · n)

}
. (2.51)

2.3.2 Transfer rate

The exciton transfer rate, analogous with the non-radiative decay rate of the pair of
QDots, is given by the Fermi’s golden rule [62] in the form

γD→A =
2π

h̄ ∑
i, f

Pnilimi |Mi→ f |2 δ(Ei − E f )

=
2π

h̄ ∑
i, f

Pnilimi |Mi→ f |2 δ

(
E(D)

nili
− E(A)

n f l f

) (2.52)

The delta function in equation 2.52 shows the requirement of energy conservation
so that exciton transfer can resonantly occur. The function Pnilimi is a distribution
function which states the probability of finding a QDot in the initial state {ni, li, mi}.
Since the transient dipole moments are randomly oriented, it is valid to assume the
average of the modulus of the matrix element squared as an approximation. By using
equation 2.51, the average value of |Mi→ f |2 is given as13:

〈
|Mi→ f |2

〉
=

2
3ε2

1R6
|dA|2|dD|2 (2.53)

Using this result on equation 2.52 yields:

γD→A =
4π

3h̄ε2
1R6 ∑

i, f
Pnilimi

∣∣∣d( f ,g.)
A

∣∣∣2 ∣∣∣d(g.,i)
D

∣∣∣2 δ

(
E(D)

nili
− E(A)

n f l f

)
(2.54)

where we retrieved the notation simplification dA ≡ d( f ,g.)
A and dD ≡ d(g.,i)

D , for clarity.
Equation 2.54 is the general result for the transfer rate, regardless of the structure
of the quantum dots. It shows that the energy transfer rate is not dependent on the

13 See Appendix A.3 for the full derivation.
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density of optical states, contrary to some previous suggestions, and in agreement
with recent theory [54].

2.4 fret rate and the förster radius in dexter’s theory

Förster showed that the rate of resonance energy transfer from an electronically excited
donor (D) to an acceptor (A) separated by a distance R decreases as R−6, as it follows
from equation 2.54. He wrote this relation, as previously presented in Chapter 1.3, in
the form [49]

γD→A =
1

τD

(
R0

R

)6

, (2.55)

where R0 is the Förster radius, which defines the distance between two quantum
dots at which the probability of resonant non-radiative energy transfer is equal to
the probability of the internal decay of the donor quantum dot, via radiative or non-
radiative decay channels, and τD is the isolated donor lifetime, which is defined as the
inverse of the donor decay rate, i.e, τD = 1/γD. The value of R0 sets the length scale
of FRET for a given pair of emitters and depends on their spectroscopic properties
[49, 71]. The relation is written in numerical form, widely used by experimentalists,
as follows

R 6
0 =

9000(ln 10)κ2φ f

128π5NAη4

∫ ∞

0
FD(λ)εA(λ)λ

4dλ, (2.56)

where the integral accounts for the spectral overlap of the normalized donor fluo-
rescence spectrum FD(λ) with the absorption spectrum of the acceptor εA(λ). The
Förster radius also depends on the isolated donor fluorescence quantum yield φ f , in
units of area times energy, the refractive index η of the medium in the wavelength
range of spectral overlap, the Avogadro’s number NA, and the orientation factor κ2,
which depends on the angle between the transition dipole moments of the donor
(D) and acceptor (A) emitters θDA, and the angles θD and θA between each of theses
dipoles and the vector connecting their centres [49, 71]:

κ2 =
(
cos(θDA)− 3 cos θD cos θA

)2 . (2.57)
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For a single D-A pair, the value of κ2 is in the range between 0 and 4. For an ensemble
of D-A pairs, κ2 is usually preaveraged over the distribution of all orientations to
give 〈κ2〉 = 2/3 if the emitters undergo rotational motion faster than the fluorescence
lifetime 14, and 〈κ2〉 = 0.476 if the dipoles are randomly oriented and do not rotate
on the time scale of fluorescence [71]. The expression for the Förster radius in equa-
tion 2.56 was firstly proposed for fluorescence molecules. For study of QDots, it is
commonly considered the overlap integral of the absorption and emission spectra of
QDot ensembles, broadened due to the usual size dispersion of the QDot samples.
Moreover, in QDot ensembles a sizeable Stokes shift is present between the emission
and absorption spectra, due to QDot aggregates and size broadening. However, all
these QDot ensemble effects are irrelevant to the interactions between individual
QDots. To understand the energy transfer between individual QDots the derivation
of Chapter 2.3 is better suited to study individual QDot interactions, and equation
2.54, from Chapter 2.3.2, describes the energy transfer between a pair of donor and
acceptor QDots .

A detailed derivation of equation 2.56, and overall resonant energy transfer mech-
anism, was performed by Dexter, arriving to the results introduced by Förster and
generalizing energy transfer for dipole-quadrupole, quadrupole-quadrupole and
higher order interactions of the electromagnetic field in crystals [67]. In Dexter’s
approach, single electron states describe the initial and final states of the energy
transfer, contrary to the exciton picture as considered in chapter 2.3 (see Figure 10).
The final states have a bandwidth of energies, ∆ω.

In the next subchapter a thorough derivation of equation 2.56 in the light of
the work of Dexter will be presented. The decay rate γD→A will be derived as
previously in Chapter 2.3 (see equation 2.54 as the final result), but here accounting
for the spectroscopic properties of the donor and acceptor, and interactions with the
environment. Afterwards, relating with the phenomenological relation for the FRET
rate, equation 2.55, the derivation of formula for the Förster radius is complete.

2.4.1 Derivation of the Dexter expression for the Förster radius

Dexter developed a theory of light emission in crystalline phosphors, where the light
is absorbed by an impurity, called absorber, and then the energy is non-radiatively

14 This factor of 2/3 is the same as presented in equation 2.53 in chapter 2.3.2, as a result of averaging the
transition dipoles orientation.
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Figure 10: Electronic picture for the FRET mechanism in Dexter’s formulation. The horizontal
arrows describe the direction of electron transfer. The states are broadened due to
molecule interactions with the surrounding medium. It is assumed the same state
broadening of the excited (∆ω′) and ground (∆ω) states for the donor and acceptor.

transferred to another impurity, called emitter, both embedded in an insulating crystal
[67]. This theory is equivalent to the initial idea of Förster and the simple quantum-
mechanical consideration presented in Chapter 2.3. In our terminology, the absorber
impurity is a donor and the emitter impurity is the acceptor. One assumes as well
small concentrations of donors and acceptors, such that the transfer probability from
one donor to another donor is negligible and the probability of formation of either
donor or acceptor clusters is negligible. Therefore, one can consider a single donor-
acceptor pair as before, except for admitting a distribution of the electronic state
energies for both of them.

In Dexter’s theory, the donor and acceptor interact with the environment and their
states are broadened, as a consequence. Specifically, they are coupled to the surround-
ing crystal lattice where a continuum of acoustic phonons exists; consequently, the
electronic states also form a continuum with a characteristic width ∆ω15. Dexter
considered FRET in the single-electron picture where the electrons are transferred
simultaneously in the opposite directions (See Figure 10).

Let us define the wavefunctions of our system. The initial wavefunction, Ψi, de-
scribes the configuration where the donor is excited, ψ′D, with energy ω′D, and the
acceptor is in the ground state, ψA, with energy ωA. The final wavefunction, Ψ f ,

15 During this chapter we consider ω has dimension of energy.
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corresponds to the configuration where the donor is in the ground state, ψD, with
energy ωD, and the acceptor is in the excited state, ψ′A, with energy ω′A.

The electronic wavefunctions of continuum states are usually normalised to delta
functions. For the unexcited donor and acceptor states, the normalization is as follows

∫
ψ∗D(r1; ωD, j)ψD(r1; ω̃D, j̃)dr1 = δ(ωD − ω̃D)δj, j̃; (2.58a)

∫
ψ∗A(r2; ωA, k)ψA(r2; ω̃A, k̃)dr2 = δ(ωA − ω̃A)δk,k̃ (2.58b)

where r1 and r2 stand for the donor and acceptor positions in space, respectively, and
indices j and k stand for the j-th and k-th degenerate state of ψD and ψA, respectively.
Similar normalization follows for the excited states labelled by ω′D and ω′A.
For transitions to a continuum of finite states, the Fermi’s golden rule is written as

dγD→A =
2π

h̄

∣∣∣〈Ψi|H1|Ψ f 〉
∣∣∣2 δ(Ei − E f )dν f (2.59)

where Ei = ω′D + ωA and E f = ωD + ω′A, and dν f denotes the interval of values of all
quantum numbers necessary for the complete definition of the final states. If these
states are degenerate, labelling them just by their energies is not sufficient. In our case,
dν f is equal to dω′AdωD plus a sum over these degenerate states, from 1 to g f = g′AgD

such as, ∫
dν f =

g′A

∑
k′=1

gD

∑
j=1

∫
dω′A

∫
dωD (2.60)

where g′A corresponds to the degeneracy of the excited acceptor states and gD to the
degeneracy of the lower energy (unexcited) donor states. Also, we will take an average
over the initial states, which also form a continuum (see Figure 10), in a similar way
by using the following expression

gA

∑
k=1

g′D

∑
j′=1

∫
dωApA(ωA)

∫
dω′Dp′D(ω

′
D)

1
gAg′D

(2.61)

where p′D(ω
′
D) and pA(ωA) are probability functions which describe the probabilities

that the donor is in the particular (excited) energy state denoted by ω′D and that the
acceptor is in energy (ground) state ωA.
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Introducing equations 2.60 and 2.61 in equation 2.59 gives the transition probability
integrated over a continuum of finite states as

γD→A =
2π

h̄
1

gAg′D

gA,g′D

∑
k,j′

g′A,gD

∑
k′,j

∫ ∞

0
dωApA(ωA)

∫ ∞

0
dω′Dp′D(ω

′
D)
∫

∆ω
dωD

∫
∆ω′

dω′A

×
∣∣〈H1(ω

′
D, j′, ωA, k; ωD, j, ω′A, k′)〉

∣∣2 δ
[
(ω′D −ωD)− (ω′A −ωA)

]
(2.62)

where 〈H1〉 denotes the dipole-dipole interaction Hamiltonian’s matrix element be-
tween the initial state Ψi(r1, r2; ω′D, j′, ωA, k) and the final state Ψ f (r1, r2; ωD, j, ω′A, k′)
of two uncorrelated electrons16. The delta function in Equation 2.62 removes one
integration, by defining E ≡ ω′ −ω, and we have

γD→A =
2π

h̄
1

gAg′D

gA,g′D

∑
k,j′

g′A,gD

∑
k′,j

∫
∆E

dE
∫ ∞

0
dωApA(ωA)

∫ ∞

0
dω′Dp′D(ω

′
D)

×
∣∣〈H1(ω

′
D, j′, ωA, k; ω′D − E, j, ωA + E, k′)〉

∣∣2 .

(2.63)

The interval of integration is the sum of broadenings of the ground and excited levels,
∆E = ∆ω′ + ∆ω; if the broadenings are different for donor and acceptor, the larger
one should be taken, in order to integrate over the broadest possible energy range at
which there is resonance between the donor and acceptor states.

Dipole-dipole interaction

In the dipole-dipole approximation we assume that the donor has an allowed transition,
so that the dipole term for the donor has the largest contribution, compared with
higher order interactions. As calculated in Chapter 2.3.1, in the case of discrete levels,
the matrix element 〈H1〉 would be equal to

〈H1〉 =
1

η2R3

[
(dA · dD)− 3(dA · n)(dD · n)

]
(2.64)

16 This means one can divide the states such as Ψi(r1, r2; ω′D, j′, ωA, k) = ψ′D(r1; ω′D, j′)⊗ ψA(r2; ωA, k) and
Ψ f (r1, r2; ωD, j, ω′A, k′) = ψD(r1; ωD, j)⊗ ψ′A(r2; ω′A, k′).
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where R is the donor-acceptor distance, n = R/R, η =
√

ε1 is the refractive index of
the medium and dA and dD are the transient dipole moments of the corresponding
discrete transitions.

For the case of continuum, due to the normalization of the wavefunctions, shown in
equation 2.58, we replace in equation 2.64:

dA → P(k,k′)
A (ωA, ωA + E)

dD → P(j′,j)
D (ω′D, ω′D − E)

(2.65)

where the quantities P can be interpreted as spectral densities of such dipole moments,
because of the wavefunctions have here dimensions of (energy× volume)−1/2. An-
gular averaging of

∣∣〈H1〉
∣∣2, as in the case of vectors dA and dD presented in Chapter

2.3.1, yields:

〈∣∣〈H1〉
∣∣2〉 =

2
3η4R6

∣∣∣P(k,k′)
A (ωA, ωA + E)

∣∣∣2 ∣∣∣∣P(j′,j)
D (ω′D, ω′D − E)

∣∣∣∣2 . (2.66)

Substituting equation 2.66 in equation 2.63 yields

γD→A =
4π

3h̄η4R6

∫
∆E

dE

×


gA

∑
k=1

g′A

∑
k′=1

∫ ∞

0
dωApA(ωA)

∣∣∣P(k,k′)
A (ωA, ωA + E)

∣∣∣2


×


gD

∑
j=1

g′D

∑
j′=1

∫ ∞

0
dω′Dp′D(ω

′
D)

∣∣∣∣P(j′,j)
D (ω′D, ω′D − E)

∣∣∣∣2
 .

(2.67)

Now we shall show that the same squared moduli of PA and PD of equation 2.67
appear in the absorption and emission spectra of the acceptor and donor, respectively.

From equation 2.41 of Chapter 2.1, the spontaneous emission rate of a point emitter
located inside a medium with a refractive index η is given by

γ(E) =
4E3η

3h̄4c3
|d|2 . (2.68)
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Equation 2.68 is valid in the case of a two-level system, with inter-level distance E. If
the levels are broadened, equation 2.68 can be generalized in the same way as equation
2.54, of Chapter 2.3.2, for the FRET rate and we need to introduce the emission spectral
density,Wem. Considering the broadened energy bands of the donor emitter, we have:

W em
D (E) =

1
g′D

gD

∑
j=1

g′D

∑
j′=1

4E3η3

3h̄4c3

∫ ∞

0
dω′DpD(ω

′
D)

∣∣∣∣P(j′,j)
D (ω′D, ω′D − E)

∣∣∣∣2 . (2.69)

Notice that

∫
Wem

D (E)dE = τ−1
D , (2.70)

where τD is the radiative lifetime of the excited donor.
The absorption cross-section, σabs, is defined as [72]:

σabs ≡ Wabs∣∣〈S〉∣∣ (2.71)

where Wabs is the absorbed power and 〈S〉 is the time-averaged Poynting vector of
the incident wave, with its the modulus equal to [72]

∣∣〈S〉∣∣ = cη

8π
|E0|2 (2.72)

where |E0| is the field amplitude. For a two-level system, σabs can be related to the
spontaneous emission rate as follows [9]

σabs(E) = h̄3

(
πc
Eη

)2

γ(E)δ(ω′ −ω− E) (2.73)

where ω′ and ω denote the excited and ground state energies. One can generalize
equation 2.73 for a unexcited acceptor with broadened energy bands in a similar way
as equation 2.69, as follows

σabs
A (E) =

4π2E
3h̄cη

1
gA

gA

∑
k=1

g′A

∑
k′=1

∫ ∞

0
dωApA(ωA)

∣∣∣P(k,k′)
A (ωA, ωA + E)

∣∣∣2 (2.74)

Using the results of equations 2.69 and 2.74 in equation 2.67, we find

γD→A =
3h̄4c4

4πR6η4

∫
∆E

dE
Wem

D (E)σabs(E)
E4 . (2.75)
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Following Dexter, we may introduce normalized dimensionless lineshapes of donor
emission, such as

f em
D (E) = τ−1

D · Wem
D (E) (2.76)

so that
∫

f em
D (E)dE = 1, and

Fabs
A (E) = Q−1 · σabs(E) (2.77)

where
Q =

∫
σabs(E)dE (2.78)

is the area under the absorption curve of the acceptor. With these lineshapes we get:

γD→A =
3h̄4c4Q

4πR6η4τD

∫
dE

f em
D (E)Fabs

A (E)
E4 . (2.79)

One can write equation 2.79, by defining the Förster radius, R0, in the form

γD→A =
1

τD

(
R0

R

)6

(2.80)

with

R6
0 ≡

3h̄4c4Q
4πη4

∫
dE

f em
D (E)Fabs

A (E)
E4 (2.81)

The formula for R0 of equation 2.81 it is precisely the form in which it is written in
reference [73]. In the case of QDots, however, this formula is of limited use. The
individual spectra of single QDots (or a very small number of them) are not obtained
in experiments; it is observed the broad emission and absorption spectra of large
ensembles of QDots, with size broadening and considerable Stokes energy shift. Thus,
the typical Förster radius calculation in QDot ensembles may induce errors and wrong
values for the calculated Förster radius.
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2.5 fret in 3-dimensional qdot ensembles

Let us assume a system of two quantum dots: a donor QDot at position rD and a
acceptor QDot at a position rA. Let us assume that the donor is at the origin of the
coordinate system, i.e, rD = 0. The rate of resonance energy transfer between donor
and acceptor QDots, γ(RA), is given, as seen in Chapter 2.4 17 , by

γ(RA) =
1

τD

(
R0

RA

)6

, (2.82)

where RA = |rA − rD| = |rA|, τD is the decay time of the isolated donor and R0 is the
Förster radius. The description of FRET in this system relies on the donor survival
probability, i.e, the probability of the donor QDot being in its excited state at time t,
which is given by [71]:

φ(t, RA) = exp
[
−t · γ(RA)

]
. (2.83)

When N acceptors, for only one donor emitter, are included one introduces N possible
donor decay channels. If the acceptors behave independently from each other, then
we consider N two-particle systems. The excited donor survival probability is now
given by:

φ(t; R1, R2, ..., RN) = e−tγ(R1) · e−tγ(R2) · ...e−tγ(RN)

=
N

∏
i=1

exp[−tγ(Ri)]
(2.84)

The number of acceptors for each site i (assuming that the distance between accep-
tors in each individual site is very small) may vary. For instance, the probability of
finding one acceptor at ri may be small. Therefore, one must define a distribution
function g(ri, j), which defines the probability of having j acceptors at a distance ri.
Since the acceptors behave independently from each other, the distribution function
can be described by a Poisson distribution, with a mean equal to the mean number
of acceptors ∆nA(ri) (defined as ∆nA = driCA(ri), where CA(ri) is the number of
acceptors per unit volume):

g(ri, j) = e−∆nA(ri)
∆nj

A(ri)

j!
. (2.85)

17 Unlike as it is presented in Chapter 2.4, here γD→A ≡ γ, for notation simplicity.
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The donor survival probability with j acceptors at same distance ri is given by:

φj,Ri(t) =
[
e−tγ(Ri)

]j
(2.86)

Introducing the distribution function g(ri, j) the donor survival probability is rear-
ranged, and it is given by the average of f (t) over all possible j-values, weighted by
g(ri, j):

φRi(t) =
∞

∑
j=0

g(ri, j)φj,Ri(t)

=
∞

∑
j=0

g(ri, j)
[
e−tγ(Ri)

]j
(2.87)

Finally, the contribution of all acceptors at different distances yields the donor decay
probability as

φ(t) = ∏
Ri

φRi(t)

= ∏
Ri

 ∞

∑
j=0

g(ri, j)
[
e−tγ(Ri)

]j
 (2.88)

Using Poisson’s distribution, i.e, equation 2.85, in the equation 2.88 gives

φ(t) =∏
Ri

e−∆nA(ri)
∞

∑
j=0

1
j!

[
∆nA(ri)e−tγ(Ri)

]j


=∏

Ri

{
e−∆nA(ri)e∆nA(ri) exp[−tγ(Ri)]

}

= exp

−∆nA(ri)∑
Ri

[
1− exp(−tγ(Ri))

]

(2.89)

where, in the second step of the derivation the Maclaurin series ex = ∑j xj/j! was
used. Considering that the donor is inside a continuous restricted space with volume
V, the sum in equation 2.89 can be transformed to an integral form:

φ(t) = exp

(
−
∫

V
dr CA (r)

{
1− exp

[
−tγ

(
|r|
)]})

. (2.90)

This integral is performed over the volume of the sample containing acceptors with
concentration CA (r). This donor decay probability will greatly depend on the con-
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centration of the acceptors and their distribution over the sample. To describe real
systems of colloidal QDots, one must determine the distribution of acceptors, which
is usually is not possible, so an assumption has to be made. Here two reasonably
possible distributions are presented. Other more complex structures were studied by
Farinha et al [71].

2.5.1 Homogeneous Distribution

If we consider a homogeneous concentration of acceptors in 3D space, CA (r) = C0,
Equation 2.90 can be simplified, using spherical coordinates:

φ (t) = exp
(
−C0

∫ π

−π
dϕ

∫ π

0
dθ sin θ

∫ ∞

Re

dr{1− exp[−γ(r)t]} r2
)

, (2.91)

where the lower limit Re is the donor-acceptor encounter distance, i.e, their minimum
approach distance, usually taken to be the sum of the donor and the acceptor van
der Waals radii [71]. Here we take the approximation Re → 0, assuming a particle
ensemble where interaction distances are much bigger than the QDot average radius.
Using Equation 2.82, the former equation yields:

φ (t) = exp

−4πC0

∫ ∞

0
dr

1− exp

[
−
(

R0

r

)6 t
τD

] r2



= exp

(
−4

3
π3/2C0R3

0

(
t

τD

)1/2
)

.

(2.92)

Using the last equation, the donor decay rate is given by:

f (t) = I0 exp (−t/τD) · φ(t)

= I0 exp

(
− t

τD
− 4

3
π3/2C0R3

0

(
t

τD

)1/2
)

,

= I0 exp

−
(

t
τD

)1/2
[(

t
τD

)1/2

+
√

πN0

] .

(2.93)
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where I0 is the amplitude of the donor decay, which depends on the (assumed
homogeneous) 3D concentration of donor emitters, and N0 is the number of acceptors
in a homogeneous sphere with Förster radius R0. This expression resembles the
stretched-exponential decay curve for fixed β = 1/2 (see chapter 2.6).

2.5.2 "Fixed-shell" Distribution

This distribution places the acceptors in a shell of radius a, with a single a single
donor in the centre of the sphere. Thus, the concentration CA(r) is defined as

CA(r) =
N

4πa2 δ(r− a), (2.94)

where N is the number of acceptors. Introducing equation 2.94 in 2.90, using spherical
coordinates, yields

φshell = exp
(
− N

4πa2

∫ π

−π
dϕ

∫ π

0
dθ sin θ

∫ ∞

0
dr δ(r− a)

{
1− exp

[
−tγ(r)

]}
r2
)

= exp

−N

1− exp

[
−
(

R0

a

)6 t
τD

]
 .

(2.95)
The donor total decay function for the fixed-shell distribution is then given by:

ID(t) = I0 exp (−t/τD) · φshell(t)

= I0 exp

− t
τD
− N

1− exp

[
−
(

R0

a

)6 t
τD

] .
(2.96)

If one assumes that, for large volumes, the concentration of acceptors in a shell
distribution is approximately equal to the concentration an homogeneous distribution,
one can define the number of acceptors N as

N =
4
3

πC0a3,
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where C0 is the homogeneous distribution of acceptors, as considered in chapter 2.5.1.
With this definition, equation 2.96 can be rewritten as

ID(t) = I0 exp

− t
τD
− 4

3
πC0R3

0

(
R0

a

)−3
1− exp

[
−
(

R0

a

)6 t
τD

]
= I0 exp

− t
τD
− N0

(
R0

a

)−3
1− exp

[
−
(

R0

a

)6 t
τD

] ,

(2.97)

where N0 is the number of acceptors in a sphere of radius R0, N0 = 4
3 πC0R0

3. These
definitions let us relate all parameters of the decay function of the homogeneous
distribution and the decay function of the "fixed-shell" distribution, and introduces
the parameter a, i.e, the distance of the shell of acceptors to the donor.

2.6 photoluminescence decay in qdots

After a short laser pulse which excites QDots, they emit light, with decreasing intensity,
over a considerable time. This temporal evolution is called photoluminescence decay
kinetics. It is determined by the the light emission itself, i.e, the radiative decay, and a
number of non-radiative decay mechanisms, of which FRET is an example, because it
moves the excitation to another class of emitters, the acceptors. For historical reasons,
point emitters (such as QDots or dye molecules) sometimes are called fluorophores.

This chapter reviews the theoretical description of decay kinetics of QDots.

2.6.1 Decay time in fluorophores

A sample containing a fluorophore is excited with a infinitely sharp pulse of light,
i.e, a delta function [12]. This yields an initial population n0 of fluorophores in the
excited state. The excited state population decays with a rate Γ + Γnr according, in
first approximation, to

dn(t)
dt

= (Γ + Γnr)n(t), (2.98)



2.6. Photoluminescence decay in QDots 43

where n(t) is the number of excited QDots at time t after excitation, Γ is the emissive
decay rate and Γnr is the non-radiative decay rate. Emission is a random event, and
each excited fluorophore has the same probability of emitting in a given period of time.

The lifetime, i.e., the inverse of the decay rate, is the average time a fluorophore
remains in its excited state following excitation. This can be interpreted as the average
time in the excited state 〈t〉, which value is obtained by averaging t over the intensity
decay of the fluorophore, I(t), such as:

〈t〉 =
∫ ∞

0 tI(t)dt∫ ∞
0 I(t)dt

(2.99)

In fluorescence experiments one does not observe the number of excited QDots.
Instead one sees the fluorescence intensity I(t). The decay of the fraction of excited
emitters n(t′)/n(0) at time t′ is described with cumulative distribution function
[1− n(t′)/n(0)], where n(0) is the concentration of excited emitters at t′ = 0 [74].
The concentration n(t′) for t′ → ∞ tends to zero, so the cumulative function varies
between 1 (for t′ → ∞) and 0 (for t′ → 0). The reliability function and the probability
function, g(t), the former related with the decay curve, are related as follows:

∫ t′

0
g(t)dt = 1− n(t′)

n(0)
(2.100)

Equation 2.100 shows that the decrease of the concentration of the excited emitters
at time t′ is equal to the integral of all previous decay events. So, the fluorescence
intensity is not necessarily proportional with the concentration of excited emitters.

2.6.2 Decay models

The decay behaviour of quantum dots may vary and depend on their environment.
Different types of QDots will have a different decay rate behaviour as well. Some
QDots, such as CdSe, have a single-exponential trend whilst other type of QDots show
a multi-exponential, or even non-exponential, decay over time. This will influence the
response function I(t).

In the literature there are several proposed decay functions, that include

1. Single-exponential decay;
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2. Bi-exponential decay;

3. Log-normal distribution of decay rates;

4. Stretched exponential decay, or Kohlrausch function.

single-exponential function : A single-exponential decay function I(t) is
defined as,

I(t) = I0 e−Γt. (2.101)

As fitting parameters equation 2.101 has the scaling factor I0 and the decay rate Γ.

bi-exponential decay : The bi-exponential model is written as:

I(t) = I1 e−Γ1t + I2 e−Γ2t, (2.102)

containing four fitting parameters, namely the scaling factors I0 and I1 and the decay
rates Γ1 and Γ2.

It is possible to generalize the behaviour of the last equations to an integral [74] and
use a distribution function φ(Γ) to describe the scaling factor for each value of Γ. The
expression is given by

I(t) =
∫ ∞

0
dΓ φ(Γ)e−Γt. (2.103)

log-normal distribution of decay rates : The log-normal distribution of
decay rates φLN(Γ) was successfully employed to fit decay decay curves from CdSe
quantum dots inside titania inverse opals (same found in PbS QDot suspension in
toluene) [13, 74]. The function φLN(Γ) is defined as

φLN(Γ) = A exp

− ln2(Γ/Γm f )

ω2

 , (2.104)

where Γm f is the most frequent decay rate and ω is the dimensionless width parameter
which is related to the width of the distribution as its 1/e height ∆Γ via:

∆Γ = 2Γm f sinh(ω). (2.105)
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Thus, the decay curve ILN(t), i.e., the response function, for a log-normal distribution
is given by:

ILN(t) =
∫ ∞

0
dΓ φLN(Γ)e−Γt

=
∫ ∞

0
dΓ exp

− ln2(Γ/Γm f )

ω2 − Γt

 (2.106)

stretched-exponential function Other widely decay model in the literature
is the stretched-exponential function, or Kohlrausch function [74, 75], defined as:

I(t) = exp
(
−(Γt)β

)
exp(−Γt) (2.107)

where β is a stretch parameter, which varies between 0 and 1.

2.6.3 Non-exponential decay in QDots

Non-exponential photoluminescence decay profiles may come from the interaction
of QDot ensembles with the surrounding environment, which may lead to an infi-
nite distribution of rate constants. One way used to find the underlying probability
distribution function of rate constants is to calculate the integral equation for QDot
photoluminescence decays. Another approach is by choosing a known mathematical
function as the distribution function of rate constants. However, one must carry
special attention to the chosen mathematical function since, though it may fit well the
experimental decay profile of QDots, it may not show physical significance for the
system (log-normal distribution, for example) [75].

As presented in Chapter 2.6.2, one of the most conveniently used mathematical
functions for the distribution of rate constants is the Kohlrausch, or stretched expo-
nential, function. The stretched exponential function is reported to have firm grounds
in the description of the luminescence intensity decay in condensed matter [75], first
derived by Förster from models of luminescence quenching

ID(t) = exp
(
− t

τD

)
exp

[
−P

(
t

τD

)β
]

, (2.108)
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where the first exponential term represents the exponential part of the kinetics, de-
termined by the intrinsic radiative and nonradiative transitions in the species under
study, and the second term accounts for the relaxation part, shaped by Förster resonant
energy transfer (FRET) or FRET-type mechanisms. In the former equation, equation
τD is lifetime of the excited state of the donor in the absence of the acceptor (or
quencher), β is a stretch parameter, which varies between 0 and 1, and the parameter
P is proportional to the concentration of acceptors, and depends on the Förster radius.

Other implemented functions have in consideration the existence of trap states in
QDots, which may come from structural defects or dangling bonds. A model was
developed by Bodunov et al where a QDot ensemble is surrounded by N identical
traps (hole or electron traps) which can trap an electron (or hole) with a finite trapping
rate k1 and released afterwards to the QDot with rate k2 [75].

A QDot ensemble is characterized by a certain distribution of quantum dot sizes,
where the size of the QDs relates with the band gap energy of this semiconductor
particles. This distribution can approximately be described by a Gaussian function,
such as

F(E) =
1√
2πσ

exp

(
− (E− E0)

2

2σ2

)
, (2.109)

where E0 is the average energy of the QDots and σ is the width of the distribution.
One may argue that non-radiative transitions in the ensemble occur at a rate k, which
is a function of energy E, k = k(E). By averaging the luminescence decay contribution
of all QDots leads to a non-exponential behaviour

IQD(t) =
∫ ∞

−∞
exp

(
− t

τ
− k(E)t

)
F(E)dE = exp

(
− t

τ

)
IQDrel(t),

IQDrel(t) =
∫ +∞

−∞
exp(−k(E)t)F(E)dE.

(2.110)
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3.1 time-correlated single photon counting (tcspc)

Time-Correlated Single Photon Counting (abbreviated as TCSPC) is a time-resolved
technique which fundamentally is based on the detection and timing of single emitted
photons. This single photon detection technique uses the fact that the light intensity
is so low that the probability of detecting one photon is very small. Thus, it is not
necessary to consider the possibility of detecting multiple photons in one signal period,
hence the single-photon detection nature of TCSPC [10]. The time from the emission
of the photon to the arrival to the detector is recorded and, this way, histograms of
counts as a function of the arrival time are produced after repeated photon detection
periods (see Figure 11). Since the single-photon probability detection is so low, there
is not detected any photon in many photon detection periods. Detection periods
with more than one photon are very rare [10]. TCSPC is an effective technique to
study photoluminescence properties of QDots. Some other applications of TCSPC are
fluorescence microscopy on biological macromolecules and cellular imaging [12].

The heart of this method is a time-to-amplitude converter (TAC), which can be
considered as a very fast stopwatch (see Figure 12). The sample is repetitively excited
using a pulsed light source, like a pulsed laser or flash lamp 1. Each pulse is optically
monitored, using an high-speed photo-diode or photo-multiplier (PMT), to create a
start signal that triggers the voltage ramp in the TAC. The voltage ramp is stopped
when the first fluorescence photon from the sample is detected. The voltage ramp
produced in the TAC is proportional to the time between the start and stop signals2.
A multichannel analyser (MCA) converts the voltage into a time channel using an

1 Typical instrumentation for TCSPC uses high repetition rate mode-locked picosecond (ps) or femto-
second (fs) pulsed laser sources [12, 10] and pulsed LEDs [12].

2 In practice, the start and stop signals can be reversed, since the probability of a detecting an initial
laser pulse is much greater than the probability of detecting the single photon, thus guarantees that the
counting is stopped at each laser pulse.
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Figure 11: General principle of the Time-Correlated Single Photon Counting technique (TC-
SPC). Image obtained from reference [10].

analog-to-digital converter (ADC). As summing over many pulses, the MCA produces
a probability histogram of counts versus time channels [12].

The signal conversion by the ADC holds the voltage during a period of time at
which no other photon can be detected. This is known as the electronic dead time
of the detector. The dead time ranges between 10 microseconds in older systems to
around 120 nanoseconds in more recent TCSPC electronics [12]. Depending on the
desired accuracy, the light intensity must be limited to detect 0.1 to 0.01 photons per
signal period [10, 12], since the dead time in the electronics prevents detection of
another photon resulting from the same excitation pulse. If many photons arrive at
the same time, and only one is counted, the intensity statistics is distorted, which is
named "photon pile-up".

Another important feature in TCSPC is the use of the rising edge of the photo-
electron pulse, generated in the photomultiplier, for timing. This allows the PMT’s
phototubes with nanosecond pulse widths to provide sub-nanosecond resolution [12].

There are typically three components associated with an intensity decay. These are:

1. instrument response function L(tk);

2. sample’s response function N(tk);
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Figure 12: Operation principle of a time-to-amplitude converter (TAC). Image obtained from
reference [11].

3. calculated decay function Nc(tk).

All three functions are described in terms of discrete times (tk) because the counted
photons are collected into channels/bins, each with a known time (tk) time and width
(∆t). The instrument response function L(tk) is the response of the instrument to
a zero-lifetime sample. This curve is typically collected using a dilute scattering
solution such as colloidal silica and no emission filter [12]. This decay represents
the shortest time profile which can be measured by the instrument. Afterwards, the
measured curve is the intensity decay of the sample itself N(tk), as it is recorded with
no prior signal processing. The last curve, Nc(tk), is calculated data, which is the
modelled function. This curve represents a convolution of the instrument response
function L(tk) with the impulse response function I(t), which is the intensity decay
law. The fitted function is the time profile expected for a given intensity decay when
one considers the form of the instrument response function L(tk). By choosing the
proper impulse response function I(t) one gets the form of N(tk) as close as possible.

3.1.1 Convolution integral

As mentioned, in TCSPC the measured intensity N(tk) is a convolution of the instru-
ment response function L(tk) with the sample’s response signature I(t). In reality,
most instrument response functions are 0.5 to 2 ns wide [12]. We can consider the
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Figure 13: Convolution of an instrument response function L(tk) with the sample’s response
signature I(t) to yield the measured data N(tk). Figure obtained from reference
[12].

excitation pulse to be a series of δ-functions with different amplitudes. Each δ-function
excitation is assumed to excite an impulse response at tk, such as:

Ik(t) = L(tk)I(t− tk)∆t, (3.1)

where L(tk) is the instrument response function, I(t − tk) is the sample response
function beginning at t = tk. The measured decay N(tk) is the sum of the impulse
responses created by all the individual δ-function excitation pulses created by all the
individual δ-function excitation pulses occurring until tk,

N(tk) =
t=tk

∑
t=0

Ik(t) =
t=tk

∑
t=0

L(tk)I(t− tk)∆t (3.2)

For small values of ∆t, we can re-write the equation as an integral:

N(t) =
∫ t

0
L(t′)I(t− t′)dt′ (3.3)

This expression says that the intensity measured experimentally at time t is a sum of
the intensities of all δ-function excitation pulse that occur until time t. The important
factor now is to find the impulse response function I(t) witch best matches the
experimental data. In Chapter 2.5 and Chapter 2.6 some theoretical background
regarding the adequate fit of impulse functions, or decay functions, for photoexcited
colloidal QDots is presented.

3.1.2 Working with near-infrared lasers on quantum dot samples

At near-infrared wavelengths it is useful to find the ratio FNIR between the number of
detected quantum dot emission events, NQDE, and the number of excitation pulses, NE.
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Accounting the average background 〈B〉 for an TCSPC experiment with a measured
data set M(ti), FNIR is defined as [13]

FNIR =
NQDE

NE
=

∑i(M(ti)− 〈B〉)
NE

. (3.4)

For good signal to noise ratios FNIR should be as large as possible [13]. However, too
large values will cause photon pile-up at the dead time of counting module. The upper
limit for FNIR is determined by the dynamical behaviour of the system of interest. For
PbSe quantum dots, for instance, it was shown that for FNIR > 1% the goodness of
the fit deviates significantly from χ2

red = 1 [13]. For FNIR < 1% it was observed that
χ2

red ≈ 1.

The χ2
red is defined as:

χ2
red ≡

1
N − p

χ2 =
1

N − p

N

∑
i=1

(D f (ti)− I(ti))
2

σ2
D f
(ti)

(3.5)

Here, ti was chosen as the running parameter, N is the number of data point, p is the
number of adjustable parameters, D f (ti) is the measured data of the ith time bin, I(ti)

is the corresponding value from the fitting model and σ2
D f
(ti) is the variance of the

datum at time ti. If a model I(t) fits the experimental data well, then the equation 3.5
should result in χ2

red = 1.

3.2 optical table setup for tcspc and emission spectrum studies

In this chapter is presented a description of the experimental setup used to study
the photoluminescence properties of colloidal PbS QDots samples. The experimental
setup was made over an optical table, whose goal lied on acquiring sample’s emission
spectra and produce TCSPC measurements.

main components of setup

1. PicoQuant PL-800B laser driver + PicoQuant LDH-C 690 diode laser head (685
nm laser pulse - NIR spectral range);

2. HP Function Generator;

3. Piezoelectric XYZ stage sample holder;
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4. Thorlabs XYZ translation stage;

5. Small NA objective

6. Nikon High NA objective

7. Spectrometer Acton SP500i;

8. 85 grooves/mm blazed diffraction grating = 1.3 µm;

9. 900 grooves/mm holographic diffraction grating = High IR;

10. PicoQuant PicoHarp300 TCSPC system;

11. Photomultiplier;

12. Liquid nitrogen cooled CCD 1D array dentector;

pulsed laser The pulsed laser beam is generated with the PicoQuant 800-B laser
driver with a 685 nm laser head. The laser driver is externally triggered using a
function generator, in order to produce pulsed beams with variable repetition rate. In
the work made on this report a range of repetition rates from 32 kHz until 200 kHz
was used.

alignment In the laser setup, the incoming laser beam targets a small NA ob-
jective, positioned over a XYZ translation stage, which focus the laser beam into the
sample, held on a piezoelectric stage. The emitted light from the sample strikes a
collecting high NA objective, which produces a wide beam that strikes the spectrom-
eter. One of the most important stages in the laser setup alignment lies in aligning
the small NA objective with the XYZ stage in order to overlap the focus points of the
two objectives. The piezoelectric stage lets find the position of the sample where the
collected signal is maximum.

The beam collection is made in the spectrometer, using a 900 groves/mm holo-
graphic diffraction grating. This grating has a very small spacing between grooves,
and, therefore, most of the incoming light coming in different wavelengths will prefer-
entially be refracted to a specific angle. This way, all light is focused in a small amount
of pixels, being easier to detect a signal in the CCD sensor. The incoming data from
the CCD sensor is processed on a PC with the software WinSpec.
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Figure 14: Scheme of the setup for Time Correlated Single Photon Counting (TCSPC) experi-
ments. [13]

emission spectra After alignment of the laser, to detect the emission spectra
of the samples it is used a 85 grooves/mm blazed diffraction grating inside the
spectrometer. To scan different wavelengths of incoming light the grating rotated
tilted. The diffracted wavelengths are targeted into the CCD sensor. Data is transferred
into a PC and collected in the software WinSpec.

collection of tcspc histograms To produce time-resolved photon counting
measurements, the 85 grooves/mm blazed diffraction grating is used inside the
spectrometer, with the same procedure as with the collection of emission spectra. A
small mirror tilts the diffracted light into a photomultiplier (PMT), producing an 800V
amplification signal. The PicoQuant PicoHarp 300 TCSPC system (PH) has the built-in
time-to-amplitude converter (TAC), multichannel analyser and the analog-to-digital
converter (ADC).

The TCSPC system (see Figure 14) detects a small signal from the initial laser pulse,
using a photodiode (PD), which triggers the voltage ramp of the TAC. The signal
coming from the PMT stops the voltage ramp, and the TAC translates the voltage
ramp into a time gap. The collected data in the TSCPC system is further processed in
the software PicoHarp 300, proprietary of PicoQuant.

3.3 binding of quantum dots via molecular linkers

The chemical process of cross-linking QDots, also known as QDot binding, at nanome-
tre distance is of utmost experimental importance for introducing a non-radiative
energy transfer mechanism such as FRET into the QDot system. Thus, fundamental
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control of the cross-linking process is needed in order to proceed with experimental
TCSPC and emission spectra measurements.

The colloidal PbS QDot samples used in the experiments in this thesis are capped
with glutathione and were cross-linked with EDC and NHS molecules. Water-soluble
glutathione capped PbS QDots were reported by Deng et al [76] to have a high
quantum yield (> 30%), favourable storage stability, high photostability and low
cytotoxicity, i.e, low toxicity to biological cells. The interaction of EDC and NHS
molecules with the glutathione capping produce the QDot binding. In this chapter, a
brief description of the interacting molecules, as well as the chemistry procedure used
for the PbS QDot binding, are presented.

3.3.1 Interacting molecules

glutathione Glutathione (abbreviated as GSH) is an antioxidant in plants, ani-
mals, fungi, and some bacteria and archaea. Its molecular formula is C10H17N3O6S
[77]. It is a tripeptide with a gamma peptide linkage between the carboxyl group of
the glutamate side chain and cysteine. The molecular structure of GHS is presented on
Figure 15 with highlighted the aminoacids, the amide bond between both aminoacids
and the carboxyl groups, which stay on the edges of the molecule chain. These
carboxyl groups lay are the main functional groups which interact with neighbouring
molecules, along with the amide group.

Glutamate Cysteine

Amide bondCarboxyl group Carboxyl group

Figure 15: The molecular structure of Glutathione. Figure adapted from reference [14].

edc and n-hydroxysulfosuccinimide (nhs) EDC (1- Ethyl- 3- (3- dimethy-
laminopropyl)carbodiimide) is the most popular, water-soluble, carbodiimide used for
conjugating biological substances containing carboxylates and amines [15, 78]. It is



3.3. Binding of quantum dots via molecular linkers 55

used as a carboxyl activating agent for the coupling of primary amides to yield amide
bonds. Its application in particle and surface conjugation goes along with the use of
N-Hydroxysuccinimide (abbreviated as NHS). NHS enables the control and modi-
fication of carbodiimide crosslinking reactions involving activation of carboxylates
(—COOH) for conjugation with primary amines (—NH2) [16].

(a) (b)

Figure 16: Cross-linker molecules: a) 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC),
and b) N-Hydroxysuccinimide (NHS). Figures obtained from references [15, 16].

3.3.2 Covalent binding with carboxyl functionality: EDC/NHS coupling

The covalent conjugation of QDots and molecules appear when there is a reaction
of the correspondent functional groups. The most well-studied and easy-to-perform
method for attaching QDots together, having a biomolecular shell surrounding them,
makes use of the zero-length crosslinker carbodiimide such as EDC. A zero-length
crosslinker mediates the conjugation of two molecules by adding no additional atoms
[77, 78]. The molecular conjugation can happen by direct formation of an amide
bond between amide groups on the QDot, which in this experiment is surrounded
with a shell of glutathione, and the carboxyl groups on of another molecule (the
EDC molecule). In practice, this chemistry is usually applied in conjunction with the
addition of NHS to form a stable active intermediate by converting it in an ester and
greatly increase coupling efficiency [78]. This reaction is pH dependent and requires
a large excess of EDC due to the latter’s extremely rapid competing hydrolysis, i.e.,
chemical breakdown due to reaction with water.
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3.3.3 Chemistry procedure: Inter-particle linking of lead sulfide (PbS) quantum dots via
EDC/NHS chemistry

The goal of the chemistry experiments of this report is to perform an inter-particle
linking between two quantum dot suspensions. The organic shell on the quantum dots
is glutathione (GSH). Via EDC/NHS chemistry the quantum dots are cross-linked.
After the activation of the carboxylic acid groups to form the NHS-ester, the ester can
nucleophilic attack the amine groups within the glutathione ligand to form the amide.
The following experiment protocol here presented was provided by Andreas Schulz
MSc and the chemistry experiments were performed, with the essential guidance from
Richard Egberink BSc.

chemicals and qdot-suspensions :

• A - PbS-GSH-1100-20 (1072 nm emission max., 10 nmol/L);

• B - PbS-GSH-1200-20 (1211 nm emission max., 10 nmol/L);

• C - PbS-GSH-1300-20 (1261 nm emission max., 10 nmol/L);

• 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), 155.25 g/mol for EDC,
and 191.70 g/mol for the Hydrochloride;

• N-Hydroxysuccinimide (NHS, 115.09 g/mol).

ansatz (example for coupling of suspension a with suspension b)

• 1× 100 ¯L of PbS-GSH-1100-20 (1 nmol);

• 1× 100 ¯L of PbS-GSH-1200-20 (1 nmol);

• 1× 1.9 mg of EDC;

• 1× 1.15 mg of NHS.

experimental procedure From each of the two stock quantum dot suspensions
that are used for the coupling, 100 µL are filled via an Eppendorf-pipette into an
Eppendorf-flask (0.5 µL total volume capacity). In second flask 1.9 mg of EDC is
dissolved in 1 mL degassed milli-Q water and the solution is vortexed until the EDC
is completely dissolved. 10 µL of the EDC solution is added to the flask with the
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suspension mixture and is vortexed. In a third flask 1.15 mg of NHS is dissolved and
the solution is vortexed until the NHS is completely dissolved. 10 µL of the NHS
solution is added to the suspension mixture and is vortexed. The resulting suspension
is carefully filled into a (10× 10) cm2 acrylic cuvette and enclosed with a cuvette cap
surrounded by Parafilm.
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E X P E R I M E N TA L R E S U LT S A N D D I S C U S S I O N

To proceed with laboratory experiments, three PbS colloidal QDot samples, bought
from the company Mesolight, were used. Each sample was labelled with a corre-
sponding letter, A, B or C. The vendor provided information about the three samples
regarding the peak wavelength of the emission spectra and their full width at half
maximum (FWHM)1. These information are given in Table 1, and they serve as a
guideline to what to expect from the samples’ studies.

Table 1: Info provived by the company Mesolight regarding the emission spectrum peak
wavelength and full width at half maximum (FWHM) for each PbS QDot sample
used.

Peak position (nm) FWHM (nm)
A - Mesolight1071 1071 130
B - Mesolight1211 1211 168
C - Mesolight1261 1261 130

With the obtained samples, several cross-linking experiments were made, using ED-
C/NHS coupling, with the method described in Chapter 3.3.3. Using the nomenclature
defined in Table 1, the following combined samples were made:

1. A+B

2. A+C

3. B+C

4. B+B

The study of different combinations of QDot samples in cross-linking experiments had
the goal to detect the most efficient sample setup for Förster resonance energy transfer

1 The typical emission spectrum of a well-manufactured QDot sample approximates a Gaussian-shaped
curve, resembling the ones presented on Figure 3 of chapter 1.1.

59
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(FRET) studies2. Emission spectra3 (presented in Chapter 4.1) and time resolved decay
measurements, using TCSPC4, (presented in Chapter 4.2) were acquired for samples
with and without cross-link chemistry. The cross-linked samples were measured at
various QDot aggregation stages, in order to find evidence for FRET in these samples.

4.1 emission spectra

Samples with no cross-linking

The emission spectra of 3 samples of QDots, A, B and C are shown in Figure 17
(see page 61). Information, regarding the used laser average power and the laser
repetition rate, is found in the figure. Looking into the spectrum of sample B,
i.e., Figure 17b, one clear emission peak is observed. The position of this peak is
λ = (1215.300± 0.004) nm or ν̃ = (8228.4± 0.1) cm−1 and the full width at half
maximum (FWHM) is (141± 1) nm. This peak’s wavelength and its FWHM are quite
similar to the parameters provided in Table 1, thus being in good agreement with
the vendor’s data, which corresponds to the ground state exciton. Considering these
two observations, one can conclude that this sample is in good conditions to proceed
cross-linking experiments. Thus, only cross-linked samples based on sample B will
be presented, which shall be called as sample B+B. From the spectra of A and C
(Figures 17a and 17c respectively), it is noticeable in both spectra the presence of
three distinct peaks, which seem to appear in the same position in the frequency
spectrum. Recalling the information presented in Table 1, one should have found
a single peak for A (at λ = 1071 nm or ν̃ ≈ 9337 cm−1) and for C (at λ = 1261 nm
or ν̃ ≈ 7930 cm−1). Therefore, these spectra do not show the expected behaviour of
well-processed QDot samples. Since both spectra A and C are very similar, it is likely
that these samples degraded by the time when these experiments were made. Because
of this, the study of cross-linking with samples involving samples A and C will not
be further discussed, and further cross-linking studies will be focused in sample B.
Samples based in the sample B with and without cross-linker will be named as "Only
B" and "B+B", respectively, throughout this chapter.

2 As seen in Chapters 1.3 and 2.4, the necessary condition for FRET is that the donor’s emission and
acceptor’s absorption spectra overlap.The combination of different emission peak wavelength samples
in the experiment let us increase the spectral overlap in order to increase FRET efficiency.

3 The technique used for spectra measurements is presented in Chapter 3.2.
4 The Time-Correlated Single Photon Counting technique (TCSPC) is explained in Chapter 3.1 and

experimental setup is presented in Chapter 3.2.
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Figure 17: Emission spectra in function of wavenumber, ν̃, i.e, frequency divided by te speed
of light (translated into wavelength, λ, in the top line) of the PbS quantum dot
samples studied: a) Sample A, b) Sample B, c) Sample C.
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Sample B+B

In Figure 18 (see page 63) emission spectra of a B+B sample (i.e, a sample B with
cross-linker), collected at different aggregation times ∆t after the start of the binding
chemistry, are shown. Two ∆t ranges are shown in two distinct graphs - Figure 18a
for ∆t = [13, 80] minutes and Figure 18b for ∆t = [80, 900] minutes.

Figure 18a shows a consistent decrease in the peak intensity of the spectrum with
increasing ∆t. Comparing with the trend found in Figure 18b, for ∆t higher than
80 minutes, neglecting the spectra for ∆t = 900 minutes, it seems that the emission
spectrum of B+B remained stable over the ∆t = [80, 114] minute range. So, the
∆t = [13, 80] minute range is of greatest interest.

At ∆t = 900 minutes (see Figure 18b) there is a considerable blue shift of the
emission spectrum. The second peak at ν̃ ≈ 8900 cm−1 becomes the highest emission
peak of the spectrum and the overall emission spectra reaches higher counts than
before. This may be a sign of sample degradation or secondary effects due to a
presumable high QDot agglomeration or even QDot deterioration.

From Figure 18a, it seems that the spectra of the B+B sample got broader for
∆t = 80 minutes, though there is no significant sign of increase of emission for lower
wavenumbers. The presence of increasing emission at lower wavenumbers could mean
the presence of a non-radiative energy transfer mechanism like FRET, but there is no
evidence for such behaviour in these experimental results.

In Figure 19 (see page 64) two spectra of the B+B sample collected at different
times ∆t are overlapped with the spectrum of sample Only B (i.e, sample B with no
cross-linker). Comparing the ν̃ = [8200, 9200] cm−1 range, one can find a difference
between the spectra accounting for the overall increase in counts for the B+B sample
comparing with the Only B sample and a slight increase of the relative intensity
of the secondary peak at ν̃ ≈ 8900cm−1. For the sample B+B, the main emission
peak shows a very slight red-shift, smaller than the length scale of the graph, and a
small spectrum broadening for lower frequencies. These very small variations are not
reliable to assume a change in QDot behaviour due to the cross-linker. On the other
hand, the secondary peak shows a blue-shift with increasing integration time ∆t. This
shift can be considered as a side effect of the introduction of the cross-linker, due to
its interaction with the protecting glutathione cap of the QDots, which could lead to
increasing sample deterioration.
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Figure 18: Emission spectra of B+B sample collected at different times ∆t after the start of the
cross-linking chemistry: a) ∆t = [13, 80] minutes b) ∆t = [80, 900] minutes.
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Figure 19: Overlap of B+B Spectra with Sample B with no cross-linking (Only B).

A red-shift in emission spectra could mean an energy transfer related to the FRET
mechanism, since it would mean an increasing emission rate from the acceptors, at
lower wavenumber, and a luminescence quenching of donors, at higher wavenumber.
Figure 20 shows a graph of the wavenumber of the emission peak versus the time
∆t, in log-scale. The dashed red lines correspond to the emission peak measured
for Only B (See Figure 19), including upper and lower error. For lower ∆t the peak
wavenumber are in the range of the peak wavenumber of Only B. For higher ∆t, the
last two data points show a small decrease in peak wavenumber. However, considering
the significantly large error bar of the values, arriving from an insufficient signal to
noise ratio, the discrepancy is not sufficient to assume a systematic variation and, thus,
an evidence of FRET cannot be found with these results.

Concluding, the study of emission spectra shows that the cross-linker did not
produce significant and systematic changes in the main emission peak, thus not
revealing clear evidences of FRET, in the studied sample. On the other hand, it is
observed that the introduction of the cross-linker increases the sample deterioration,
increasingly observed for longer aggregation time at higher wavenumbers.
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Figure 20: Peak of B+B sample versus time ∆t after the start of the cross-linking chemistry.
The dashed red lines correspond to the position of the emission peak measured for
sample B with no cross-linking - Only B (See Figure 19), including upper and lower
error.

4.2 time-resolved decay : data fitting with theoretical decay func-
tions

The decay rate observed in photoluminescence kinetics, the type of time-resolved
measurements here presented, is related to the total decay rate, which involves all
known decay mechanisms of the system [74]. For the cross-linked samples, the FRET
decay mechanism, ΓFRET, is a relevant contribution for the total decay rate. Recalling
Equation 1.3 from Chapter 1.3, the total decay rate Γ can be written as the sum:

Γ = ΓFRET + Γrad + Γnr, (4.1)

and the efficiency for FRET, ηFRET, can be written as:

ηFRET =
ΓFRET

ΓFRET + Γrad + Γnr
= 1− ΓD

ΓDA
(4.2)

where ΓDA is the total decay rate of the donor-acceptor sample (here, the cross-linked
QDot sample B+B) and ΓD is the total decay rate of the only donor sample (here, the
non cross-linked QDot sample Only B), and

ΓFRET = ΓDA − ΓD. (4.3)
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Figure 21: Comparison between experimental photoluminescence kinetics from: a) Sample
Only B (with no cross-linker), and b) Sample B+B (with cross-linker). The y axis,
representing the number of single photon counts per bin, is set in the logarithmic
scale. Both kinetics were detected at the light wavenumber ν̃ = 8333 cm−1.

In order to study the decay rate of the samples Only B (sample B without cross-
linker) and B+B (sample B with cross-linker), time-resolved measurements, using the
TCSPC technique, were performed. Data were acquired for various wavenumbers ν̃,
close to the emission peak wavenumber of the samples.

A first qualitative study can be done by comparing side-by-side the experimental
photoluminescence kinetics of a non-cross-linked QDot sample with a cross-linked
one. In Figure 21 it is presented a comparison between the photoluminescence kinetics
of sample Only B and sample B+B for the wavenumber ν̃ = 8333 cm−1, where the y
axis, representing the number of single photon counts per bin, is set in the logarithmic
scale. Between the arrival times 0µs and 1µs, it is visible that sample B+B decays faster
than sample Only B, at an apparent non-exponential rate. This observation shows that
the QDot cross-linking is producing a change in the decay channels for the studied
samples, changing a exponential-shaped decay curve into a non-exponential one, and
it can be related to a possible presence of a FRET mechanism.

To yield a systematic study of the data, all experimental kinetics were adjusted with
a log-normal distribution decay function, using equation 2.104 of Chapter 2.6.2, and
a homogeneous acceptor distribution decay function, equation 2.93 of Chapter 2.5.1.
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The study of FRET efficiency with the obtained fitting results, by using equation 4.2,
lets us find possible evidence of FRET in the cross-linked QDot samples.

4.2.1 Log-normal distribution of decay rates function

Retrieving from Chapter 2.6.2, the log-normal distribution of decay rates decay func-
tion, ILN(t), is given by

ILN(t) = A

∫ ∞

0
dΓ exp

− ln2(Γ/Γm f )

ω2 − Γt

 (4.4)

where A is a normalization constant, Γm f is the most frequent decay rate and ω is the
dimensionless width parameter which is related to the width of the distribution as its
1/e height ∆Γ via:

∆Γ = 2Γm f sinh(ω). (4.5)

A custom Matlab fitting program was produced in order to find values of A, Γm f and
∆Γ which match best the experimental kinetics.

In Figure 22 (see page 68) two time-resolved histograms of the number of photon
counts in function of the arrival time for the sample B+B are shown, each at different
wavenumbers. For ν̃ = 8333 cm−1 (Figure 22a) the log-normal distribution matches
rather well. At ν̃ = 9091 cm−1 (Figure 22b), the model also matches well and the
obtained width ∆Γ is very large since the decay is strongly non-exponential. It should
be noted that in the emission spectra of B+B (see Figure 18) the secondary peak lies
close to the wavelength ν̃ = 9091 cm−1. So, one can conclude that this secondary peak
doesn’t come from well behaved quantum dots.

Regarding the parameters found from the fits in Figure 22 we only consider the range
of wavenumbers under ν̃ = 9091 cm−1 to avoid complications from the secondary
peak. In Figure 23a (see page 69) we plot the most frequent decay rate, Γm f , as a
function of wavenumber, ν̃, for three different time-spans ∆t, i.e. different QDot
aggregation stages. These results are compared with the behaviour of the sample Only
B. It is observed an overall systematic increase of Γm f for the cross-linked B+B sample
comparing with Only B, as well as an observable trend of increase of the overall decay
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a)
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Figure 22: Time correlated measurements of sample B+B for two different wavenumbers:
a) ν̃ = 8333 cm−1 (λ = 1200nm) (χ2 ≈ 1.04), b) ν̃ = 9091 cm−1 (λ = 1100nm)
(χ2 ≈ 1.02) . Log-normal distributions are fitted with red lines.
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Figure 23: Results from the fitting of the log-normal distribution decay function in kinetics of
sample B+B, in function of light wavenumber ν̃ for three different QDot aggregation
stages ∆t: a) Most frequent decay rate, Γm f . Here it is compared the behaviour of
sample B+B with the sample Only B (in purple); b) Measured FRET decay rate,
ΓFRET; c) Measured efficiency of FRET, ηFRET. The grey horizontal dashed lines
indicate the upper and lower bounds of ηFRET.
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rate for consecutive aggregation stages 5. One must carefully argue the nature of
this difference between the sample B+B and the sample Only B. The study of FRET
decay rate and FRET efficiency, using equations 4.2 and 4.3, helps us understand the
experimental data.

In Figures 23b and 23c the FRET rate, ΓFRET, and the FRET efficiency, ηFRET, are
plotted in function of light wavenumber ν̃, respectively. Most of the obtained values
of ΓFRET range approximately between 0µs−1 < ΓFRET < 1µs−1, and most of the
calculated values of ηFRET lie over the range of 0 < ηFRET < 40%. The obtained results
show evidences of FRET on the cross-linked samples. They also show, from efficiency
results, that FRET efficiency is higher for increasing light wavenumber, which agrees
with the idea that FRET occurs from small QDots to big QDots. There is also a
noticeable average increase of ηFRET with increasing number of acceptors for a single
donor aggregation time, ∆t, which can indicate that there is a increase acceptors due
to increasing QDot aggregation. However, the considerable data upper bound errors,
does not let us picture a very clear and precise description of the system. By fitting
the data with another decay function one might achieve better results.

4.2.2 Homogeneous acceptor distribution decay function

The homogeneous acceptor distribution decay function is derived in Chapter 2.5.1 by
assuming an homogeneous 3D distribution of acceptor QDots in a colloidal sample. It
is derived as:

ID(t) = I0 exp
(
−Γt− 4

3
π3/2C0R3

0 (Γt)1/2
)

,

= I0 exp
{
− (Γt)1/2

[
(Γt)1/2 +

√
πN0

]}
,

(4.6)

where Γ is the sample decay rate and N0 = 4/3πR3
0C0 is interpreted as the number

of acceptors inside a Förster sphere of radius R0. A custom Matlab fitting program
was produced in order to find values of Γ and N0 which suit best the experimental

5 From Figure 23a it is also observed that the decay rate Γm f is inversely proportional to the light
wavenumber ν̃, as seen with other experiments with lead chalcogenide QDots [13, 42]. This trend goes
against Fermi’s golden rule, which predicts a proportional relation. The origin of this phenomenon
is undetermined, although one may suggest that the trend can come from complex trap states of the
QDots.
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kinetics 6.

In Figure 24 two examples of fitted kinetics for the sample B+B can be found.
Figure 24a presents a kinetics fit for light wavenumber ν̃ = 8333cm−1 and Figure 24b
presents a kinetics fit for ν̃ = 9091cm−1. As shown with the fitting with a log-normal
distribution in Figure 22 of Chapter 4.2.1, the fitting with the stretched exponential
was unsuccessful for ν̃ = 9091cm−1, since the error values for Γ and N0 are higher than
the values themselves. Regarding the fitting of the kinetics for ν̃ = 8333cm−1 (Figure
24a), the fitting of the homogeneous distribution was well implemented, yielding
normal values of Γ and N0. The same was found over the range of wavenumbers
bellow ν̃ = 9091cm−1 in the four experiments shown in this work.

The four data sets in comparison are the three measurements of sample B+B at
different aggregation times ∆t and sample Only B, which results of kinetic fit of decay
parameters Γ and N0, in function of light wavenumber ν̃, are presented in Figures 25a
and 25b, respectively. First analysing the decay rate results (Figure 25a), the Only B
sample, i.e, the purple dotted line, shows consistent smaller values of the decay rate in
comparison with the B+B sample at different aggregation times in the range of smaller
wavenumbers ν̃ = ]7692, 8196[ cm−1, while the opposite is observed in the range of
higher wavenumbers ν̃ = [8333, 8772] cm−1. This change may indicate a change of
behaviour of the cross-linked QDots (B+B sample) for higher light wavenumbers.

Plotting the FRET decay rate and FRET efficiency (Figures 25c and 25d, respectively),
one observes that, for the region of higher wavenumbers, both ΓFRET and ηFRET yield
negative values. These values do not hold physical meaning, since there negative val-
ues are not defined for FRET. On the other hand, the region for smaller wavenumbers
ν̃ = ]7692, 8196[ cm−1 has positive ΓFRET and ηFRET throughout its range. This may
indicate the sample B+B is well behaved only for lower wavenumbers.

It is observed that there is a decreasing of ΓFRET and ηFRET with increasing wavenum-
ber. Since FRET efficiency is expected to be higher for higher energy QDots, this result
is difficult to interpret. On another hand, values of N0 for the same wavenumber range
(Figure 25b) imply that the number of available acceptors for FRET in a single donor
increases with increasing wavenumber. This way, there is a observable contradiction
between the results of Figures 25b and 25d, and thus, no clear image of FRET is
presented.

6 The Matlab code used for fitting the homogeneous acceptor distribution decay function is presented in
Appendix C.1.
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In conclusion, the results presented throughout this chapter hold interpretation
struggles and, therefore, are not conclusive. Firstly, the emission spectra of cross-
linked QDots has been shown to lack relevant differences comparing with the emission
spectra of non-cross-linked QDots. Secondly, the fitting of theoretical decay curves into
photoluminescence kinetics has showed to hold technical issues, mainly regarding the
adjustment of the decay curves. Here, the fitting of log-normal distribution function
yielded different results, although with greater error, to the ones presented with the
fitting of the homogeneous acceptor distribution function. This analysis shows that the
fitting of the homogeneous acceptor distribution decay function holds interpretation
struggles, however it fitted parameters Γ and N0 with average lower error than with
the log-normal distribution. The study of FRET efficiency has shown an evidence of
FRET in the studied samples using the log-normal distribution, however the obtained
results hold considerable error fluctuation. An alternative (statistical) analysis is
presented on Chapter 5.
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Figure 24: Time correlated measurements of sample B+B for two different wavenumbers: a)
ν̃ = 8333 cm−1 (λ = 1200nm) (χ2 ≈ 1.03), b) ν̃ = 9091 cm−1 (λ = 1100nm) .
Homogeneous distribution decay functions are fitted with red lines. A graph of the
residuals of the data fit is shown.
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Figure 25: Results from the fitting of the homogenous acceptor distribution decay function
in kinetics of sample B+B, in function of light wavenumber ν̃ for three different
QDot aggregation stages ∆t: a) Most frequent decay rate, Γm f . Here it is compared
the behaviour of sample B+B with the sample Only B (in purple); b) Number of
acceptor QDots N0, inside a sphere of radius R0; c) Measured FRET decay rate,
ΓFRET; d) Measured efficiency of FRET, ηFRET. The grey horizontal dashed lines
indicate the upper and lower bounds of ηFRET.
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S TAT I S T I C A L M O M E N T S O F Q UA N T U M D O T S I N
P H O T O L U M I N E S C E N C E K I N E T I C S

From the results obtained by fitting a theoretical decay function into experimental
photoluminescence kinetics, it has been concluded that the reliability of such fitting is
low, for this experimental work; thus no clear evidence of the FRET mechanism has
been obtained. As an alternative approach, we shall compare the statistical moments
of the photoluminescence decays. The statistical moment of order n is given as:

〈
tn〉 ≡ ∫ ∞

0 f (t)tndt∫ ∞
0 f (t)dt

, (5.1)

where f (t) is the measured decay histogram and n must be a positive integer. The first
moment 〈t〉 is known as the average decay time, the second order

〈
t2
〉

is the mean
square-value of the decay, which is related to the second central moment, or variance
D, D =

〈
t2
〉
− 〈t〉2 [79]. The third momentum,

〈
t3
〉

, is described as the measure of
the skewness, i.e, the measure of asymmetry of the time-resolved distribution, and the
fourth moment,

〈
t4
〉

, is interpreted as the kurtosis, i.e, the measure of heaviness of
the tail of the distribution compared to the normal distribution of the same variance
[80]. Higher order moments are harder to interpret, but they give description of other
shape parameters. By studying the moments of the photoluminescence kinetics and
finding correlation with the moments of known theoretical decay curves one can attain
a more detailed knowledge of the way QDots bind together.

5.1 statistical moments of theoretical decay functions

First, a study of the statistical moments of the known analytical decay functions is
required, in order to draw a physical intuition of the experimental results. In this

75
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section some of the decay functions discussed throughout this thesis are analysed,
namely: the single-exponential function, the homogeneous distribution decay function,
the fixed-shell distribution decay function, and the log-normal distribution decay
function1. A relevant quantity to study is the ratio between different moments Rn,
defined as:

Rn ≡
〈tn〉 /

〈
tn−1

〉
〈
tn−1

〉
/
〈
tn−2

〉 =
〈tn〉

〈
tn−2

〉
〈
tn−1

〉2 , (5.2)

where n, n− 1 and n− 2 are required to be non-negative integers. As will be seen
below, this ratio gives a simple trend for each of the mentioned theoretical decay
functions, and it will be the main function studied during the hole chapter.

5.1.1 Single exponential function

For the single exponential function ( f (t) = exp(−t/τD)), the moment of order n is
given by:

〈
tn〉 =

∫ ∞
0 dt exp

(
− t

τD

)
tn∫ ∞

0 dt exp
(
− t

τD

)
= τn

D n!

(5.3)

By using equation 5.2, the ratio Rn is simply given by

Rn =
n

n− 1
. (5.4)

The red line in Figure 26 represents graphically the behaviour of equation 5.4, i.e, the
values of Rn in the range n ∈ [2,+∞[, where n is as a positive integer. In this range,
one easily finds that the values of Rn are in the range Rn ∈ [2, 1[, with an asymptote
at Rn = 1. This result shows that the function Rn for the single-exponential function
depends only on the order n, and it does not depend on the decay time, τD. Thus,
any time-resolved data which is well described by a single-exponential function must
show a behaviour of Rn similar to Figure 26.

1 The homogeneous distribution and fixed-shell distribution decay functions are derived in Chapter 2.5,
and the single exponential and log-normal distribution decay functions are presented in Chapter 2.6.2.
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Figure 26: Ratio of moments Rn for the single exponential function.

5.1.2 Homogeneous distribution decay function

In Chapter 2.5.1 a decay function for which it assumes a homogeneous spatial distri-
bution of acceptors around a donor was derived:

I(t) = I0 exp

[
− t

τD
−
√

πN0

(
t

τD

)1/2
]

,

where N0 is the number of acceptors in a sphere of Förster radius R0 and I0 is the
amplitude of the function. This expression is similar to the one found in the literature,
known as the stretched-exponential function, with fixed β = 1/2 (see Chapter 2.6).
The moment of order n, 〈tn〉 is given by:

〈
tn〉 =

∫ ∞
0 dt exp

[
−
(

t
τD

)
−
√

πN0

(
t

τD

)1/2
]

tn

∫ ∞
0 dt exp

[
−
(

t
τD

)
−
√

πN0

(
t

τD

)1/2
] . (5.5)

Analysing the integral in the nominator in equation 5.5 (here it is assumed P =
√

πN0):
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∫ ∞

0
dt exp

[
−
(

t
τD

)
− P

(
t

τD

)1/2
]

tn

= exp

(
P2

4

) ∫ ∞

0
dt exp

−
[(

t
τD

)1/2

+
P
2

]2

+
P2

4

 tn

=2τn+1
D exp

(
P2

4

) ∫ ∞

P/2
du
(

u− P
2

)2n+1

exp(−u2)

=22n−1 Γ(2n + 2) U

(
n + 1,

1
2

,
P2

4

)
,

where the substitution u = (t/τD)
1/2 + P/2 was used, Γ(z) is the Euler gamma

function and U(a, b, z) is the confluent hypergeometric function [81]. Since the de-
nominator of equation 5.5 is the same for 〈tn〉, 〈tn−1〉 and 〈tn−2〉, the ratio Rn for the
homogeneous distribution decay function is simply given by:

Rn(N0) =
Γ(2n−2)Γ(2n+2) U

(
n−1, 1

2 , (
√

πN0)
2

4

)
U
(

n+1, 1
2 , (
√

πN0)
2

4

)
Γ(2n)2 U

(
n, 1

2 , (
√

πN0)
2

4

)2 (5.6)

This equation can be simplified further noting that the Euler gamma function Γ(s),
where s is a positive integer, can be written as Γ(s) = (s− 1)!. Thus, the ratio Rn is
rewritten as

Rn(N0) =

(1 + 2
2n−1

) U
(

n−1, 1
2 , (
√

πN0)
2

4

)
U
(

n+1, 1
2 , (
√

πN0)
2

4

)
U
(

n, 1
2 , (
√

πN0)
2

4

)2

 n
n− 1

. (5.7)

As for the single-exponential function, the quantity Rn for this decay function does
not depend on the decay time τD. On the other hand, this function depends on the
variable N0, related with the number of acceptors in a sphere of Förster radius R0.
The ratio Rn for the homogeneous distribution function is proportional to the ratio
Rn of the single exponential, equation 5.4, and for N0 = 0 the Rn ratio coincides with
that for the single exponential function. Since the confluent hypergeometric function
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is a complicated function to analytically interpret, numerical calculations were used
to understand the influence of the variable N0 on the quantity Rn. In Figure 27a and
Figure 27b (see page 81) one can observe that the increase of N0 leads to a stretch of
the function Rn. However, the stretch saturates for values higher than N0 = 30.

5.1.3 Fixed-Shell distribution decay function

In Chapter 2.5.2, a decay function which assumes a distribution of acceptors on a
fixed-radius shell around a donor was derived:

ID(t) = I0 exp

− t
τD
− N0

(
R0

a

)−3
1− exp

[
−
(

R0

a

)6 t
τD

]
= I0 exp

{
−Γt− N0α−3

[
1− e−α6Γt

]}
,

where N0 again is the number of acceptors in a sphere of Förster radius R0, a is the
radius of the acceptor shell, Γ = 1/τD and α = R0/a. In this model, since the variable
α is dependent of the ratio between R0 and a, the experimental data fitting and the
study of statistical moments with this function can directly determine the average
interaction distance between a donor and a acceptor in a sample.

The statistical moment of order n for this function is given by:

〈
tn〉 =

∫ ∞
0 dt tn exp

{
−Γt− N0α−3

[
1− e−α6Γt

]}
∫ ∞

0 dt exp
{
−Γt− N0α−3

[
1− e−α6Γt

]} . (5.8)

The integral in the nominator cannot be calculated analytically. Therefore, numerical
integration was used by setting certain values of the constants Γ, N0 and α, in order to
study the ratio of moments Rn. Let us study each parameter mentioned, in order to
understand its influence on equation 5.8.

In Figures 27c and 27d (see page 81), the ratio of moments Rn for varying number
of acceptors N0, from N0 = 0 to N0 = 40, is plotted. Other parameters remained
constant, α = 1 and Γ = 2µs−1 2. For N0 = 0 one observes that the Rn coincides
with that for the single exponential function, as it is expected for a QDot system
with no acceptors. For N0 ≤ 5 (see Figure 27c) the left tail of the function increases

2 The value of Γ = 2 µs−1 is close to the decay rate of PbS QDots, thus it was the value chosen to test the
function. For the obtained values of Γ see Figure 23a and Figure 25a in Chapter 4.2.
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exponentially with the increase of N0, whereas the right hand side of the function, that
is, for n ≥ 8 does not vary considerably. Direct comparison with the homogeneous
distribution function can be made by looking at Figure 27a, where one can observe
that there is an overall increase of Rn with increasing N0. For N0 > 5, a peak emerges,
lying over higher values of n and with increasing amplitude, by the increase of N0.
Its behaviour is considerably different from the Rn function for the homogeneous
acceptor distribution decay function, for the same values of N0 (see Figure 27b).

In order to study the α parameter influence, the variation of R2 with varying α was
calculated. In Figure 28 it can be seen that R2 has a sharp peak around α ≈ 1. To
the same end, relevant data, which can show intense presence of FRET, should lie
around values of α = 1 (remember that α = R0/a, where a is the distance between
a donor and a acceptor QDot). Therefore, with this conclusion, the Rn function has
been studied for values around α = 1.

In Figure 29 graphs of the ratio of moments Rn for different values of α ∈ [0.80, 1.20],
with fixed N0 and Γ = 2µs−1 for each graph, are plotted. It can be seen that the
change of α yields different results for different values of N0. For N0 = 5, (see Figure
29a and Figure 29b) the change of α leads to a change of the left tail of the function.
On the other hand, for N0 = 10 and N0 = 20 (Figures 29c, 29d, 29e and 29f), the
value of α determines the position and the amplitude of the emerged peak of Rn for
intermediate values of n. For higher values of α, the peak position lies at lower values
of n and the peak amplitude is increased.

Concluding, the parameters N0 and α both influence the Rn function for the shell
distribution in terms of the amplitude and peak position. However, the increase of α

leads to an inverse effect compared to that of N0, in terms of peak position. A careful
choice of the values of α and N0 is required to fit experimental data. Notice that this
Rn is independent of the decay rate Γ 3.

5.1.4 Log-normal distribution decay function

The theoretical decay curve of the log-normal distribution is the following:

f (t) =
∫ ∞

0
dΓ exp

(
− ln2(Γ/Γmf)

ω2

)
exp(−Γt), (5.9)

3 Such observation comes from several trial numerical calculations performed with different values of Γ.
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Figure 27: Ratio of moments Rn, with varying number of acceptors N0 inside a sphere of
Förster radius R0, for two theoretical acceptor distributions: the homogeneous and
fixed-shell ones.
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Figure 28: Variation of the ratio of moments R2 in function of the parameter α, with N0 = 1
and Γ = 2µs−1.

where the integral is over different decay rates Γ and Γmf is the most frequent decay
rate. The equation for the n-th order statistical moment of the log-normal distribution
is:

〈
tn〉 =

∫ ∞
0 dΓ exp

(
− ln2(Γ/Γm f )

ω2

) [∫ ∞
0 dt exp(−Γt)tn

]
∫ ∞

0 dΓ exp
(
− ln2(Γ/Γm f )

ω2

) [∫ ∞
0 dt exp(−Γt)

] . (5.10)

The integrals in the denominator of equation 5.10 give the following result:

∫ ∞

0
dΓ exp

(
−

ln2(Γ/Γm f )

ω2

)[∫ ∞

0
dt exp(−Γt)

]
=
∫ ∞

0
dΓ exp

(
−

ln2(Γ/Γm f )

ω2

)
· 1

Γ

=
∫ +∞

−∞
dx exp

(
− x2

ω2

)

= ω
√

π

where, in the second step of the derivation, the change of variable x = ln(Γ/Γmf) was
performed. The integrals in the nominator yield:
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Figure 29: Ratio of moments Rn for the fixed-shell distribution decay function, for values of α
in the range α ∈ [0.80, 1.20]
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∫ ∞

0
dΓ exp

− ln2(Γ/Γm f )

ω2

[∫ ∞

0
dt exp(−Γt)tn

]

=
∫ ∞

0
dΓ exp

− ln2(Γ/Γm f )

ω2

[ dn

dΓn

∫ ∞

0
dt(−1)n exp(−Γt)

]

= n!
∫ ∞

0
dΓ exp

− ln2(Γ/Γm f )

ω2

 1
Γn+1

= n!
1

Γn
mf

∫ +∞

−∞
dx exp

(
− x2

ω2

)
exp(−nx)

= ω
√

π

n! Γ−n
mf exp

(
ω2n2

4

)
where the same change of variable as for the denominator, x = ln(Γ/Γmf), was used.
This way, the moment of order n for the log-normal distribution is given by:

〈
tn〉 = Γ−n

mf exp

(
ω2n2

4

)
n! (5.11)

By inserting equation 5.11 into equation 5.2, one finds the ratio Rn for the log-normal
distribution, given by

Rn =
Γ−n

mf Γ(−n+2)
mf

Γ(−2n+2)
mf

exp

{
ω2

4

[
n2 + (n− 2)2 − 2(n− 1)2

]} n
n− 1

= exp

(
ω2

2

)
n

n− 1

(5.12)

In Figure 30 the ratio Rn versus the order n for equation 5.12 is plotted for multiple
values of width ω. One can observe that an increase in ω leads to an overall exponen-
tial positive shift in the ratio Rn, which is equivalent to a shift of the Rn ratio for the
single exponential function. By comparing equation 5.3 with equation 5.12 one sees
the latter equation is equivalent to eq. 5.3 multiplied by exp (ω2/2).
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Figure 30: Ratio of moments Rn for the log-normal distribution decay function, for different
values of the width parameter ω.

5.2 study of statistical moments of experimental data sets

For data sets, the range of integration for equation 5.1 lies between the initial time bin
t0, e.g., the time for which the number of arriving photons is maximum, and the final
time bin t f , which is the maximum resolution of the experiment. So, equation 5.1 is
treated regarding its range of integration and assuming that f (t) is now a data set of
histogram counts in discrete instants of time:

〈
tn〉 = ∫ t f

t0
f (t)tndt∫ t f

t0
f (t)dt

, (5.13)

A way to calculate integrals in equation 5.13 is by using numerical integration via
Simpson’s rule, which approximates the function f (t) by a quadratic polynomial
over pairs of sub-intervals [82]. A custom Matlab code was implemented in order to
proceed with the numerical integration of the statistical moments using Simpson’s
rule (See Appendix C.2) and those results were used to calculate the ratio of moments
Rn by using equation 5.2 (see Appendix C.3). In the following section, a discussion of
the results of calculating the Rn ratio for the experimental decay measurements will
be presented.
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5.3 discussion of the statistical moments analysis’ results

5.3.1 Best fit distribution

In this sub-chapter, two of the PbS QDot samples will be studied and compared
regarding their statistical moments. The two samples are Only B (PbS QDots with
no cross-linking) and B+B (PbS QDots with chemical linker), for three different
aggregation times ∆t 4. Thus, four sets of data are to be compared. Four different
emission wavelengths were studied in this work: 1140 nm, 1160 nm, 1200 nm and 1240
nm (see Figure 31) 5. For each wavelength, statistical moments were calculated for
each experiment using the respective time-resolved experimental data and applying
the numerical integration method described in Chapter 5.2.
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Figure 31: Emission spectra for the two samples studied - Only B and B+B - as shown in the
previous chapter. Here the four arrows mark four different regions of the spectra
for which statistical moments were calculated.

Figure 32 presents the ratio Rn based on the four experimental results for the four
different wavelengths. In red, blue and green dotted lines are presented the values
of Rn for the B+B sample for different aggregation times, ∆t = [18− 27] minutes,

4 See Chapter 4 for the sample’s nomenclature description.
5 Opposite to the study of the emission spectra and photoluminescence kinetics in Chapter 4, light

wavelength was preferred to light wavenumber in the description of the samples’ spectra.
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∆t = [46− 74] minutes and ∆t = [120− 148] minutes, respectively. The purple dotted
lines present the values of Rn for the sample Only B.

Let us analyse each graph carefully. In Figure 32a, for wavelength 1140 nm, inte-
gration works well until n = 7, yielding negative values for bigger n. The reason
for this negative integral values is unclear. For small n, the values of Rn of the B+B
sample are consistently higher comparing with the Only B sample. This rise correlates
with the increase of the number of acceptor molecules available for FRET, described
by the homogeneous acceptor distribution decay function. On the other hand, the
appearance of a small peak at n = 5 for the red dotted data can only be related to the
behaviour of the shell-type acceptor distribution function.
In Figure 32b, for wavelength 1160 nm, integration of data works well besides for the
red line between values of n ∈ [6, 8]. The dotted lines related with the B+B sample
display higher values of Rn for n ∈ [2, 4] comparing with the Only B data, although the
same behaviour cannot be seen for higher n, where the sample Only B shows a slight
convexity and overall higher value of Rn for n ∈ [5, 10]. The only studied function
that can explain this appearance is the shell-type distribution decay function, which
might mean that some energy transfer indeed have been occurring at this wavelength
for the studied sample.
In Figure 32c, for wavelength 1200 nm, since it lies closer to the peak emission of
the samples, one could expect more consistent results. It can be observed that the
experimental values of Rn lie over the minimum value of Rn = 1, which is the same
trend found for the theoretical distributions studied. It can be seen as well that the
Only B data lies within the range Rn ∈ [1, 2]. This is a sign that the Only B results
can be approximately described by a single-exponential function, which means that
there is no relevant energy transfer before introducing the chemical linker. As in the
Figures 32a and 32b, sample B+B shows considerably higher values of Rn for small
n (n ∈ [2, 4]) comparing with the values for the Only B sample, while the opposite
is observed for higher n (n ∈ [5, 10]). This change for higher n could be explained
for the shell-type acceptor distribution function, which might indicate a change of
donor-acceptor distance. The blue and green dotted lines, ∆t = [46− 74] minutes and
∆t = [120− 148] minutes respectively, are considerably overlapped through the whole
range of n, which might indicate that the linked QDot system did not considerably
evolve during the interval between the two aggregation times, for this particular
wavelength.
In Figure 32d, for wavelength 1240 nm, it is noticeable a convexity on the red dotted
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line, sample B+B for ∆t = [18− 27] minutes, for values of n ∈ [4, 10]. As before, the
shell-type acceptor distribution function is suitable to explain such maximum. Let
us focus on the blue and green dotted lines, which refer to two different aggregation
times of sample B+B. The green dotted line shows higher Rn comparing with the blue
dotted line, for n ∈ [2, 3], while the opposite is observed for n ∈ [4, 10]. The reason
could be that the acceptor distribution might have changed over time. In the top right
corner of Figure 33 a comparison between the theoretical functions is presented, with
N0 = 3, where an intersection can be observed. Another possibility could be that the
donor-acceptor distance, which alters the parameter α, has changed over time. As it
can be seen in Figure 33, the change of α promoted an intersection between different
Rn plots.

From the previous qualitative analysis regarding Figure 32, one can select one of
the theoretical functions, analysed in Chapter 5.1, which best describes the ratio Rn

experimental results. The single exponential decay corresponds to a function of Rn

which does not depend on other parameters and only lies in the range Rn ∈ [2, 1[
for n ∈ [2,+∞[. In the majority of the studied situations, this function was better
suited to describe the data for the Only B sample (i.e, without QDot cross-linker). In
Figure 33 one example is shown, where we can observe that the single exponential
function compares well with the purple dotted line, for the Only B sample. The
homogeneous acceptor distribution decay function can explain the stretch of the Rn

function, although it cannot model the maximum seen in some experimental data
for the B+B sample. On the other hand, the shell-type acceptor distribution function
can predict the appearance of this new peak, alongside with the stretch of the left
tail of the Rn function and the intersection of two "experimental" Rn curves. Finally,
the log-normal distribution has a function of Rn which introduces an exponential
positive upward shift with the increasing width parameter ω, shifting the position of
the asymptote n = 1. Such an effect is not present in the obtained data.

Therefore, here it is concluded that the shell acceptor distribution decay function
is the only one among the considered theoretical functions that can describe most
of the experimental results. It is adjustable, since it has two parameters, α and N0,
and allows for a clear physical interpretation. It is also the only studied function that
models the peak in the Rn function for higher number of acceptors, N0. In Figure
34 the shell-type distribution function was adjusted to reproduce the experimental
data, which had a maximum (the same data as the red dotted line in Figure 32d), and
the same experimental trend was found, on the contrary to what was observed with
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Figure 32: Calculated Rn for four different emission wavelengths: a) 1140 nm, b) 1160 nm, c)
1200 nm and d) 1240 nm. Error bars, though proportionally small to the values
of Rn, are presented in each dot. In figure b), for n ∈ [6, 8] the red curve presents
negative values, which are not presented in the plot.
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Figure 33: Experimental results for the ratio Rn for λ = 1240nm. In the top right corner some
Rn functions based on theoretical decay functions are presented.

the homogeneous acceptor distribution function, for the same number of acceptors,
N0. By finding suitable values of α and N0 one can track the average donor-acceptor
distance and the acceptor concentration at the time-stages of the experiment. Knowing
that N0 = 4/3πC0R3

0 and α = R0/a, where C0 is the acceptor concentration per unit
volume, the Förster radius R0 and the donor-acceptor distance a can be calculated as

R 3
0 =

3
4πC0

N0 and a =
R0

α
. (5.14)

In order to find the values of R0 and a, one has to estimate first the acceptor
concentration C0 on the QDot system, which will be done in the next sub-section.

5.3.2 Determining the experimental Förster radius and the average donor-acceptor distance

From the information provided in Chapter 3.3.3 regarding the purchased solution of
PbS QDots, one can determine the concentration of PbS QDots of the stock sample Ci:

Ci =
1nmol
100µL

=
10−9 · 6× 1023

10−7m3 = 6× 1021 m−3 (5.15)
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Figure 34: Comparison of data curve obtained from experimental results with theoretical
decay models.

Due to the addition of the EDC and NHS chemicals, the solution was 10 % diluted.
Thus the concentration of PbS QDots CPbS is

CPbS =
Ci

1.1
' 5.5.× 1021 m−3 (5.16)

Of course, not all of these QDots can serve as acceptors for a given donor QDots.
Only the QDots that resonantly match the donor’s emission spectrum can effectively
participate in FRET. For a single donor QDot of radius RD, QDots of a certain range
of radius, ∆RA, are suitable acceptors matching the exciton transition energy of the
donor. The centre of this interval is slightly shifted to larger R due to the Stokes
shift between the emission and absorption, although this shift is not very large for an
individual QDot. The acceptor range ∆RA can be estimated in the following way:

∆RA =

∣∣∣∣dE
dR

∣∣∣∣−1
∣∣∣∣∣
R=R̄A

∆E, (5.17)

where E is the QDot exciton energy, ∆E = ∆ED + ∆EA is the width of the energy
interval where the donor emission spectra and the acceptor emission spectrum overlap
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and R̄A is the centre of the interval of the size range of suitable acceptors, ∆RA. E is
given by

E(R) = Eg +
h̄2

2µ
R−2 − βR−1, (5.18)

where Eg is the bulk band-gap energy, µ is the exciton’s reduced effective mass and β

is a constant. The last term represents the electron-hole Coulomb interaction6. R̄A can
be defined as

R̄A = RD +

∣∣∣∣dE
dR

∣∣∣∣−1
∣∣∣∣∣
R=RD

∆Es (5.19)

where ∆Es is the Stokes shift for the donor QDot.

The acceptor concentration, C0, can be evaluated as

C0 = CPbS · f (RD)∆RA, (5.20)

where f (RD) is the normalized distribution function of QDot radius. The Gaussian
function approximates this distribution, and it is defined as

f (R) =
1√

2πσ2
R

exp

−1
2

(
R− R̄

σR

)2
 , (5.21)

where σR is the QDot size dispersion, i.e, standard deviation and R̄ is the most
probable QDot radius, which determines the absorption peak.

A rough estimate of C0 can be performed. Neglecting the last term in Equation 5.18
7, one has:

dE
dR

= − h̄2

µR3 =
2
R

[
Eg − E(R)

]
. (5.22)

6 The exciton effective mass was defined by assuming m∗e = m∗h, as seen for PbS QDots. See Chapter 2.1
for the derivation of the elements of Equation 5.18.

7 In Chapter 2.1 it was affirmed that PbS QDots lie on the strong confinement regime. Thus, neglecting
the exciton Coulomb interaction is a valid approximation.
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If the Stokes shift is also neglected, one has from Equation 5.19 that R̄A ' RD. Using
the result of Eq. 5.22 in Eq. 5.17 assuming negligible Stokes shift, one has that

∆RA

R̄A
' ∆RA

RD
=

{
2

RD

[
Eg − E(RD)

]}−1

∆E · 1
RD

=
∆E

2
[

Eg − E(RD)
] (5.23)

This ratio depends on the excitation wavelength, which determines RD. Using Eqs.
5.21 and 5.23 in Eq. 5.20 defines the acceptor concentration C0 as

C0 = η(RD)CPbS (5.24)

where

η(R) =
RD√
2πσ2

R

exp

−1
2

(
R− R̄

σR

)2
 ∆E

2
[

E(RD)− Eg

] . (5.25)

For instance, for donors being the most probable sized QDots, RD = R̄. Thus, from
Eq. 5.25,

η(R̄) =
R̄√

2πσ2
R

∆E

2
[

E(R̄)− Eg

] (5.26)

Now, one has to estimate the values of R̄, E(R̄) and σR from experimental data,
namely for sample Only B. Assuming ∆E ≈ 1meV we find that η ≈ 10−2 and,
therefore, C0 ≈ 10−2 CPbS ' 5.5× 10−8nm−3 8. This value means that the average
distance between uniformly distributed QDot acceptors (and also their typical distance
from a donor) is r0 ∼ C−1/3

0 ' 263nm, which is too large to have non-radiative energy
transfer such as FRET in the QDot system. This is expected in a sample of homogenous
dispersed colloidal QDots (e.g. the sample Only B, studied in this chapter). The
average distance, r0, is reduced with the aggregation of QDots, stimulated by adding
the chemical linker (e.g. the sample B+B, studied in this chapter). Such an aggregate
(or cluster) must have a size large enough to include N QDots, of which about
ηNQD ≈ 5× 10−3N will be suitable acceptors for the donor dot located in the centre of
the sphere (see Figure 35). In this case, of course, the donor-acceptor separations are
not the same for all acceptors in the cluster, but, if the aggregate is compact, typical
donor-acceptor distances, RA = |rA − rD|, are of the order of the cluster radius, ac.

8 The calculation of η can be found in Appendix B.1.
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Acceptors
QDots

Donor
Qdots

ac

Figure 35: 2-dimensional schematic of a QDot spherical cluster, with radius ac. In the centre
of the sphere, in an orange circle, lies the donor QDot and, surrounding this donor,
in vivid red circles, are presented several acceptor QDots.

Indeed, we can calculate the average donor-acceptor distance, 〈RA〉, in a spherical
cluster of volume Vc =

4
3 πa3

c as

〈RA〉 =
∫

Vc
RAdVc

Vc

=

∫ ac
0 RA

3dRA

a3
c/3

=
3
4

ac

(5.27)

Since, from Eq. 5.27, 〈RA〉 is of the range of the cluster radius, the fixed-shell model
can still be used in our estimates.

Based on the fixed-shell acceptor distribution function, in a sphere of radius ac =

R0/α there should be

N =
N0

η
(5.28)

QDots (where η is given by equation 5.26) , of which N0 will be suitable acceptors for
the donor located in the centre of the sphere. Here it is assumed the interpretation of
Figure 35, where ac is now the typical QDot cluster size. We can write N as all the
QDots packed inside a sphere of radius ac as it follows:

N =
4π
3 a3

c
4π
3 R̄3

· FF (5.29)
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where FF is the filling factor, which describes the volume fraction occupied by QDots
in an agglomerate. For instance, for hexagonal close packing of spheres (assuming
spherical QDots), FF = 0.74. Combining Eqs. 5.28 and 5.29 we have that

ac = R̄ 3

√
N0

η FF
. (5.30)

By using η ≈ 10−2, the value of N0 = 7.3 and α = 0.85, found with the fit of the
shell acceptor distribution function (presented in Figure 34) and assuming R̄ ' 2.1nm
(calculated in Appendix B.1) gives an estimate of the cluster radius of ac ' 21nm.
From the result of Eq. 5.27, the average acceptor distance is estimated as 〈RA〉 ' 16nm.
Since R0 = αac, the estimated Förster distance for the PbS QDot sample is around
R0 ' 18nm.

One can compare this estimate with values of R0 reported in the literature. Clark et
al [83] estimated the Förster radius of (8.0± 0.7)nm and a QDot separation distance
around 5− 6nm in oleic acid caped PbS QDots tightly packed into glass films. Bose et
al [84] estimated the Förster radius of 12− 13nm for a QDot separation distance of
10nm in PbS QDots solids over silicon wafers. Both estimates, as the authors affirm,
were calculated based on QDot absorption and emission spectra and using the formula
presented in equation 2.56 of Chapter 2.4. The estimate here presented for the Förster
radius in colloidal PbS QDots is just slightly higher than the ones found by Clark et al
and Bose et al. Further studies on statistical moments of photoluminescence kinetics
of QDot aggregates should consider a modification of the fixed-shell distribution
function in order to increase the accuracy of the obtained parameter values.

Further study of this experimental data could also include the fitting of the (modi-
fied) fixed-shell distribution function onto the remaining data presented on Figure 32,
including other stages of the QDot binding process, in order to detect with detail the
fluctuation of cluster size and the influence of FRET with increasing aggregation time.
However, one can observe from the results that FRET is more efficient during the
stage of aggregation ∆t = [18− 27] minutes, due to the presence of a Rn peak, which
is strongly correlated with a greater number of acceptors at a distance R ≤ R0 from
the donor, N0. For further aggregation stages, the efficiency of FRET is considerably
lower, related with a decrease of N0.





6

C O N C L U S I O N

This research project had the goal to detect the evidence of FRET mechanism in a
colloidal solution of cross-linked PbS quantum dots, which emit light in the infrared
range of the light’s spectrum. The experiments here described are one of the first
known attempts to study this non-radiative energy transfer mechanism in an infrared
system of colloidal quantum dots.

Measurements of emission spectra of three PbS quantum dot samples, with different
QDot size distributions, from company Mesolight, labeled here as samples A, B, and
C, showed a rather broad emission band with the broadening related with particle
size dispersion (the results are presented in Chapter 4.1). This broadening was high
enough to conclude that there was contamination in samples A and C. Further study
was focused on sample B that showed a single exciton band in its emission spectrum,
and it was used to produce cross-linked QDot samples using NHS/EDC Chemistry.

For the cross-linked QDot samples, numerous emission spectra were collected at
different QDot aggregation times ∆t, which results are presented in Chapter 4.1.
The evolution of the sample with increasing ∆t showed fluctuating peak intensities,
which might have come from slight density fluctuations in the sample spectra, and a
negligible change in the peak position of the spectra. The FRET mechanism would
represent an energy redistribution of the emitted light, since larger gap smaller sized
QDots would transfer their energy to smaller gap larger sized ones by dipole-dipole
coupling mechanism, which would produce a red-shift in the emission spectrum.
Therefore, the FRET mechanism is not readily observable in our steady-state emission
spectra.

The fit of the samples’ luminescence kinetics (see Chapter 4.2) has shown different
results by using two different theoretical decay functions. The fitting of data with a
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phenomenological log-normal distribution of decay rates showed an increased decay
rate for the cross-linked QDot sample compared with the non-cross-linked sample.
From this result the FRET efficiency, ηFRET, was estimated in the range of values
0% < ηFRET < 40%, for several light wavenumbers studied. This result indicates an
evidence of FRET in the cross-linked QDot sample, and presented increasing FRET
efficiency for longer aggregation times. However, a considerable error fluctuation of
the measured efficiency caused reasonable uncertainty in the obtained results. The fit
with a homogeneous acceptor distribution decay function (the stretched exponential
function), which function was derived in Chapter 2.5.1, produced fitted values of
decay rate with overall smaller error fluctuation. However, for light wavenumbers,
the FRET efficiency yielded negative values, which result does not hold physical
meaning. Including other contradicting results from this decay function fit, the overall
obtained picture of FRET in the cross-linked samples is unclear, which increases doubt
concerning the data obtained by the fitting of the luminescence kinetics.

Yet, it seems to have been possible to get a evidence of FRET processes taking place
in the studied system, where the QDot cross-linking introduces correlations in spatial
positions of QDots, and some of these correlated dots may form donor-acceptor pairs.
The developed analysis of statistical moments of the emission decay kinetics, applied
to several model functions (such as single- and stretched-exponential decays) and
also to the experimental data, allowed for showing, in Chapter 5, that the linking
does affect the emission decay kinetics. The found changes in the distribution of
the statistical moments of the experimental is compatible, at a certain stage of QDot
cross-linking, with the formation of a small cluster of acceptors around a donor
QDot, approximately reproduced by a shell model. With this decay model, further
understanding of the QDot system has been found including estimates of the aver-
age donor-acceptor distance and the Förster radius. While from the decay function
fitting a clear picture of FRET was not found, the study of statistical moments of
the decay kinetics proved to be a promising alternative data treatment approach as
demonstrated in the study of cross-linked PbS colloidal QDots performed in this thesis.

Some considerations and suggestions for future experiments can be pointed out. A
possible cause for low evidence of FRET is the excitation laser wavelength used (685
nm red laser), since the incoming light is strongly absorbed for virtually all sizes of
PbS quantum dots of the solution. This way, in the cross-linked QDot system, both
donor and acceptor can be in excited states. This may reduce the possibility to observe
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the FRET mechanism. Embedding PbS QDots in films of multiple layers (as described
by C.Blum et al [85]) could be a better strategy to excite selectively the donor quantum
dots and increase the likelihood to observe the FRET mechanism. Other limitation
from the experiment might have been the option of cross-linking QDots only from
one sample with a specific QDot size distribution. Due to Stokes’ shift, the overlap
of the emission spectrum and absorption spectrum might not have been optimal in
the experiments performed, which might have lowered the efficiency of the FRET
mechanism.

Regarding the cross-linked sample production, different concentrations of the used
linker (EDC/NHS) could be studied, in order to better understand the linker’s role
on the change of the emission spectra of the samples and on the number of decay
channels of the QDot aggregates. Other studies can be made by placing PbS QDots at
higher density media, for instance on a substrate. From the data analysis perspective,
further studies of the statistical moments of photoluminescence kinetics can be made
by considering decay functions related with different donor-acceptor geometries.
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A
D E R I VAT I O N O F S O M E T H E O R E T I C A L R E L AT I O N S U S E D I N
T H E T H E S I S

a.1 description of electric field normal modes in terms of green

function dyadics

This derivation aims to describe the partial local density of states in terms of the

Green’s function
↔
G. This function, applied on electric fields, gives the electric field

at position r due to a point dipole (described by a delta function) at position r0 [63].
Thereafter, this expression is used to describe the spontaneous decay rate γ of a two-
level quantum emitter in terms of a Green dyadic 1. From chapter 2.2, the spontaneous
decay is expressed as

γ =
4π2ω

3h̄ε1
|d|2ρp (r0, nd, ω0) , (A.1)

where ρp is the partial local density of states, defined as:

ρp (r0, nd, ω0) = 3 ∑
k

[
nd ·

(
uk ⊗ u∗k

)
· nd

]
δ (ωk −ω0) , (A.2)

where nd is the unit vector of the transition dipole moment d, and uk are the normal
modes of the electric field Ek. In this appendix the relation between these normal
modes and its Green’s function will be derived.

The electric field’s normal modes np are position and frequency dependent, and
they satisfy the wave equation:

∇×∇× uk (r, ωk)−
ω2

k
c2 uk (r, ωk) = 0, (A.3)

1 A dyad is a second order tensor.
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and they fulfil the orthogonality relation

∫
V

dr uku∗k’ = δk,k’ (A.4)

where the integration runs over all mode’s volume V and δk,k’ is the Kronecker delta.

One can expand the Green’s function
↔
G in terms of the normal modes [9]:

↔
G (r, r’, ω) = ∑

k
Ak(r’, ω)uk(r, ωk), (A.5)

where r′ is the electric field source position and r is the position where is measured the
electric field. The vectorial coefficients Ak are still to be determined. The definition of
the Green function is given by the Helmholtz equation [9, 63]:

∇×∇×
↔
G
(
r, r′; ω

)
− ω2

c2

↔
G
(
r, r′; ω

)
=
↔
I δ
(
r− r′

)
, (A.6)

where
↔
I is the unit dyad. Introducing the expansion of equation A.5 into equation

A.6 gives:

∑
k

Ak(r′, ω)

[
∇×∇× uk(r, ωk)−

ω2

c2 uk(r, ωk)

]
=
↔
I δ(r− r′)

⇒∑
k

Ak(r′, ω)

[
ω2

k
c2 −

ω2

c2

]
uk(r, ωk) =

↔
I δ(r− r′),

(A.7)

where in the last step the relation of equation A.3 was used. Multiplying both sides of
the equation by u∗k′(r

′, ωk′) and integrating over the whole mode volume gives:

∑k Ak(r′, ω)

[
ω2

k
c2 − ω2

c2

] ∫
dr u∗k′(r

′, ωk′)u
∗
k(r, ωk) =

↔
I
∫

dr δ(r− r′)u∗k′(r, ωk′) (A.8)

By making use of the orthogonality relations, i.e, using equation A.4, the coefficients
Ak(r′, ω) can be defined as:

Ak′(r
′, ω) = c2 u∗k′(r

′, ωk′)

ω2
k′
−ω2

. (A.9)
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One can use the result of equation A.9 in equation A.5 by substituting k′ ≡ k, and it
yields

↔
G
(
r, r′; ω

)
= ∑

k
c2 u∗k

(
r′, ωk

)
uk (r, ωk)

ω2
k −ω2

= ∑
k

c2

2ωk
u∗k
(
r′, ωk

)
uk (r, ωk)

(
1

ωk −ω
+

1
ωk + ω

) (A.10)

One can introduce an imaginary part with positive modulus value η in the frequency,
i.e, ω ≡ ω + iη, and set the Green function as the limit to which η goes to zero, as
follows

↔
G
(
r, r′; ω

)
= lim

η→0
∑
k

c2

2ωk
u∗k
(
r′, ωk

)
uk (r, ωk)

(
1

ωk −ω− iη
+

1
ωk + ω + iη

)
(A.11)

To proceed one uses the following mathematical identity, named as the Sokhotski-
Plemelj formula, which can be proved by complex integration [86]:

lim
η→0

(
1

x± iη

)
= P

(
1
x

)
∓ iπδ(x) (A.12)

where P(1/x) is the Cauchy principal value and η is a positive real number. With this
formula one can divide the Green function of equation A.11 into two parts: real-valued
part and the imaginary-valued part of the Green function. Thus, using equation A.12
in equation A.11 one can obtain the imaginary part of the Green function as

Im
↔
G
(
r, r′; ω

)
= ∑k

πc2

2ωk
u∗k
(
r′, ωk

)
uk (r, ωk)

[
δ(ω−ωk) + δ(ω + ωk)

]
. (A.13)

In the previous equation, the Dirac delta restricts all values of ωk to ω, which let us
remove the ωk of the denominator out of the sum. If only assuming positive mode
frequencies the δ(ω + ωk) terms is not considered, and equation A.13 reduces to

Im
↔
G (r, r′; ω) =

πc2

2ω ∑
k

u∗k
(
r′, ωk

)
uk (r, ωk) δ(ω−ωk). (A.14)
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Now one has to relate equation A.14 with the partial local density of states in equation
A.2. If the Green function is evaluated at the origin of the source, i.e, for r = r′ = r0,
and ω = ω0:

6ω0

πc2 Im
↔
G (r0, r0; ω0) = 3 ∑

k
u∗k(r0, ωk)uk(r0, ωk)δ(ωk −ω0). (A.15)

Therefore the partial local density of states can be rewritten as function of the imagi-
nary part of the Green function, which gives the final result:

ρp(r0, ω0) =
6ω0η2

πc2

[
np ·

{
Im
↔
G (r0, r0; ω0)

}
· np

]
, (A.16)

where c is redefined as c ≡ c/η, where η is the refractive index of the propagating
medium.
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a.2 energy transfer matrix element derivation

This derivation is reproduced form the dissertation of Filipa Peres, reference [66].
From chapter 2.3.1 we have the energy transfer matrix element, Mi→ f , given by

Mi→ f = ∑k,λ

{
〈 f |Ĥ(r=rA)

QD |I1〉〈I1|Ĥ
(r=rD)
QD |i〉

E(D)
nili
−h̄ωk

− 〈 f |Ĥ
(r=rD)
QD |I2〉〈I2|Ĥ

(r=rA)
QD |i〉

E(D)
nili

+h̄ωk

}
, (A.17)

where rA and rD are the acceptor QDot and donor QDot positions, respectively, Ĥ(r=rA)
QD

and Ĥ(r=rD)
QD indicate the position where the Hamiltonian is interacting with the virtual

photon. The initial and final states, |i〉 and | f 〉 respectively, and the virtual states, |I1〉
and |I2〉, are defined as

|i〉 = |Dnilimi〉 |Aground〉 |Nk,λ〉 ;

| f 〉 = |Dground〉 |An f l f m f
〉 |Nk,λ〉 ;

|I1〉 = |Dground〉 |Aground〉 |Nk,λ + 1〉 ;

|I2〉 = |Dnilimi〉 |An f l f m f
〉 |Nk,λ + 1〉 .

(A.18)

The Hamiltonian is defined as in equation 2.44 of chapter 2.3.1 as

Ĥr
QD ≡ −d̂QD · Êk,λ(r), (A.19)

where d̂QD is the electric dipole momentum operator, induced on the quantum dot
by the electric field measured in position r, Êk,λ(r), which can be rewritten with the
construction and annihilation harmonic oscillators, â†

k,λ and âk,λ respectively, as

Êk,λ(r) ≡ i
(

2πh̄ωk

Vε1

)1/2 {
ek,λ âk,λei(k·r−ωkt) − e∗k,λ â†

k,λe−i(k·r−ωkt)
}

, (A.20)

where ek and e∗k are the electromagnetic radiation polarization vectors, ε1 is the effec-
tive dielectric constant of the surrounding medium and V is an arbitrary quantization
volume.
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Let us develop the bra-kets from equation A.17 using the definition of the Hamil-
tonean in equation A.19 with the electric field operator defined in equation A.20. The
bra-ket 〈 f |Ĥ(r=rA)

QD |I1〉 yields

〈 f |Ĥ(r=rA)
QD |I1〉 = −i

(
2πh̄ωk

Vε1

)1/2
〈 f |d̂A ·

{
ek,λ âk,λei(k·rA−ωkt) − e∗k,λ â†

k,λe−i(k·rA−ωkt)
}
|I1〉 (A.21)

In the previous equation, the operator dA only operates on the partial states |Aground〉
and |Anilimi〉. The ladder operators, âk,λ and â†

k,λ operate on the partial photon states
|Nk,λ〉 such as âk,λ |Nk,λ〉 =

√
Nk,λ |Nk,λ − 1〉 and â†

k,λ |Nk,λ〉 =
√

Nk,λ + 1 |Nk,λ + 1〉.
This way, equation A.21 is rewritten as

〈 f |Ĥ(r=rA)
QD |I1〉 =− i

(
2πh̄ωk

Vε1

)1/2

〈An f l f m f
|d̂A|Aground〉 ·

·
{

ek,λei(k·rA−ωkt) 〈Nk,λ|âk,λ|Nk,λ + 1〉 − . . .

− e∗k,λe−i(k·rA−ωkt) 〈Nk,λ|â†
k,λ|Nk,λ + 1〉

}
(A.22)

Only the first term of the curly brackets is non-zero. As in chapter 2.3.1, let us
assume, without losing generality, that Nk,λ = 0. Defining, as well, d( f ,g.)

A ≡
〈An f l f m f

|d̂A|Aground〉, equation A.22 is written as follows

〈 f |Ĥ(r=rA)
QD |I1〉 = −i

(
2πh̄ωk

Vε1

)1/2 (
d( f ,v.)

A · ek,λ

)
ei(k·rA−ωkt) (A.23)

A similar procedure is taken for the remaining bra-kets of equation A.17. Thus, this
equation is rewritten as

Mi→ f =
2π

Vε1
∑
k,λ

h̄ωk


(

d( f ,v.)
A · ek,λ

) (
d(v.,i)

D · e∗k,λ

)
E(D)

nili
− h̄ωk

eik·R − . . .

−

(
d(v.,i)

D · ek,λ

) (
d( f ,v)

A · e∗k,λ

)
E(D)

nili
− h̄ωk

eik·R

,

(A.24)
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where d(v.,g)
D ≡ 〈Dground|d̂D|Dnilimi〉 and R = rA − rD. The matrix elements d(g.,i)

D and

d( f ,g.)
A will be further written as dD and dA, respectively, for notation simplicity. The

sum over all polarizations is given by [5]

∑
λ

(
dA · ek,λ

) (
dD · e∗k,λ

)
= ∑

α,β
(δαβ − k̂αk̂β)dα

Adβ
D (A.25)

where k̂α,β = kα,β/k and {α, β} ≡ x, y, z. Introducing this result into equation A.24
yields

Mi→ f =
2π

Vε1
∑
k

h̄ωk

 eik·R

E(D)
nili
− h̄ωk

− e−ik·R

E(D)
nili

+ h̄ωk

∑
α,β

(δαβ − k̂αk̂β)dα
Adβ

D. (A.26)

The sum over k can be transformed into a volume integral over the wavevector space,
as follows

∑
k
→ V

(2π)3

∫
dk. (A.27)

Using the dispersion relation, ωk ≡ k c√
ε1

, equation A.26 is now rewritten as

Mi→ f =
1

(2π)2ε1

∫
dk h̄c√

ε1
k

{
eik·R

E(D)
nili
− h̄c√

ε1
k
− e−ik·R

E(D)
nili

+ h̄c√
ε1

k

}
∑α,β(δαβ − k̂αk̂β)dα

Adβ
D (A.28)

If one takes that the vector R is aligned along the z axis, one has that k ·R = Rk cos θ.
One can also make the change of variable − cos θ = z and define the constant
q =

√
ε1

h̄c E(D)
nili

This way, the matrix element is equal to

Mi→ f =
1

(2π)2ε1

∫ 2π

0

∫ 1

−1

∫ ∞

0
dφ dz dk k3

{
eikRz

q− k
− e−ikRz

q + k

}
∑
α,β

(δαβ − k̂αk̂β)dα
Adβ

D

=
1

πε1

∫ ∞

0
dk

k4

q2 − k2

∫ 1

−1
dz eikRz ∑

α,β
(δαβ − k̂αk̂β)dα

Adβ
D

(A.29)
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The integral calculation of equation A.29 can be devided into two integrals,

I1 =
1

πε1

∫ ∞

0
dk

k4

q2 − k2

∫ 1

−1
dz eikRz ∑

α,β
δαβdα

Adβ
D

= −dA · dD

ε1
q3 1

qR
eiqR,

(A.30)

and

I2 = − 1
πε1

dk
k4

q2 − k2

∫ 1

−1
dz eikRz ∑

α,β
k̂αk̂βdα

Adβ
D

= −q3

ε1

dA · dD

(
i

(qR)2 −
1

(qR)3

)
+ dAdD cos A cos D

(
− 1

qR
− 3i

(qR)2 +
3

(qR)3

) eiqR

(A.31)
where A and D are the angles between the vector R and the dipole moment matrix
element of the acceptor QDot, dA, and of the donor QDot, dD, respectively. Summing
the results form the two integrals, the energy transfer matrix element is in shorthand
written as

Mi→ f =
1
ε1

dATdD , (A.32)

where the tensor T is defined as,

Tαβ ≡ −q3
[

A
(
qR
)

δαβ + B
(
qR
)

nαnβ

]
eiqR, (A.33)

with A(x) = 1
x + i

x2 − 1
x3 , B(x) = − 1

x −
3i
x2 +

3
x3 , q =

√
ε1

h̄c Enl and nα,β = Rα,β/R is the
unit vector of R, i.e., n = R/R.
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a.3 average of the energy transfer matrix element

From equation 2.51 of Chapter 2.3.1, the resonant energy transfer matrix element
between a donor and acceptor in the near-field approximation is given by

Mi→ f =
1

ε1R3

{
(dA · dD)− 3(dA · n)(dD · n)

}
. (A.34)

where dD and dA are the donor and acceptor transition dipole moments, respectively,
R is the donor-acceptor distance, n is the unit vector of R, such that n = R/R, and ε1

is the dielectric constant of the surrounding medium. One assumes that the dipole
moments dD and dA are randomly oriented in space. This is true for QDots made of

an isotropic or highly symmetric material. Consequently, in order to calculate
∣∣∣Mi→ f

∣∣∣2
it is usually considered the average term

〈∣∣∣Mi→ f

∣∣∣2〉, as follows

〈∣∣∣Mi→ f

∣∣∣2〉 =
1

ε 2
1 R6

〈∣∣(dA · dD)− 3(dA · n)(dD · n)
∣∣2〉 (A.35)

In this appendix we calculate the average in the right hand side of equation A.35. By
expanding the squared modulus term, one has

〈∣∣(dA · dD)− 3(dA · n)(dD · n)
∣∣2〉 =

=
〈[

(dA · dD)− 3(dA · n)(dD · n)
]
·
[
(d∗A · d∗D)− 3(d∗A · n)(d∗D · n)

]〉
= 〈(dA · dD)(d∗A · d∗D)〉 − 3〈(d∗A · n)(d∗D · n)(dA · dD)〉

− 3〈(dA · n)(dD · n)(d∗A · d∗D)〉+ 9〈(dA · n)(d∗A · n)(dD · n)(d∗D · n)〉

(A.36)

As in Appendix A.2, it is assumed the vector R (and, therefore the unit vector n) is
aligned with the z axis. The same vector R makes an angle A with dA and an angle D
with dD. The angle between both dipoles dA and an angle D with dD is γ (See Figure
36).
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Figure 36: Schematic for the orientation of the transtion dipole moments dA and dD in relation
to the donor-acceptor distance vector R, aligned with the z axis.

Let us calculate all individual average terms that contribute to equation A.36. The
first term gives

〈
(dA · dD)(d∗A · d∗D)

〉
= |dA|2|dD|2

〈
(cos γ)2

〉
= |dA|2|dD|2

1
4π

∫ 2π

0
dφγ

∫ π

0
dγ (cos γ)2 sin γdγ =

1
3
|dA|2|dD|2

(A.37)

and the last term gives

〈
(dA · n)(d∗A · n)(dD · n)(d∗D · n)

〉
= |dA|2|dD|2

〈
(cos A)2

〉 〈
(cos D)2

〉
= |dA|2|dD|2

(
1
3
× 1

3

)

=
1
9
|dA|2|dD|2

(A.38)
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The two middle terms 〈(d∗A · n)(d∗D · n)(dA · dD)〉 and 〈(dA · n)(dD · n)(d∗A · d∗D)〉
yield the same average value and, in order to relate γ with the angles A and D, we
have the relation [61]

cos γ = cos A cos D + sin A sin D cos(φA − φD). (A.39)

This way, using the relation in equation A.39, each middle term yields

〈(d∗A · n)(d∗D · n)(dA · dD)〉 = |dA|2|dD|2 〈cos γ cos A cos D〉

= |dA|2|dD|2
{〈

(cos A)2(cos D)2
〉
+
〈
cos A sin A cos D sin D cos(φA − φD)

〉}

= |dA|2|dD|2
(

1
9
+ 0
)

=
1
9
|dA|2|dD|2 .

(A.40)
Using results of equations A.37, A.38 and A.40 in equation A.36 gives

〈∣∣(dA · dD)− 3(dA · n)(dD · n)
∣∣2〉 = |dA|2|dD|2

(
1
3
− 6

9
+ 1
)

=
2
3
|dA|2|dD|2 .

(A.41)

Using the result of equation A.41 in equation A.35 gives the final result〈∣∣∣Mi→ f

∣∣∣2〉 =
2

3ε2
1R6 |dA|2|dD|2 . (A.42)
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C A L C U L AT I O N S F R O M E X P E R I M E N TA L D ATA

b.1 calculation of the acceptor concentration and the average

qdot size in colloidal qdot sample "only b"

Here we present the calculation of the ratio of acceptors QDots and the total number
of QDots, described by the function η, for the sample Only B. From Chapter 5.3.2, the
ratio η, assuming the donor radius as being the most probable QDot radius, R̄, related
with absorption peak, is given by

η(R̄) =
R̄√

2πσ2
R

∆E

2
[

E(R̄)− Eg

] (B.1)

where σR is the QDot size dispersion, i.e, standard deviation, ∆E is the width of the
energy interval where the donor emission spectra and the acceptor emission spectrum
overlap, E(R̄) is the exciton energy for the most probable QDot radius and Eg is the
bulk band-gap energy.

The ratio R̄/σR is equivalent to find the ratio k̄/σk, where k is the wavenumber, as
found on the experimental spectrum of sample Only B. In Figure 37 it is presented the
position of the peak wave number k̄ and values of k1 and k2 such that the full width
at half maximum, FWHM, is given by FWHM = |k2 − k1|. The FWHM is related
with the standard deviation as FWHM = 2

√
2 ln(2)σk. The estimated values of these

values are k̄ ≈ 8220cm−1, k1 ≈ 7800cm−1 and k2 ≈ 8760cm−1. This way the ratio k̄/σk

is valued as

k̄
σk

=
8220cm−1

(8760− 7800)cm−1 2
√

2 ln(2) ' 20.2 (B.2)
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Figure 37: Estimation of the full width at half maximum an peak centre of the spectrum of the
PbS sample Only B.

The calculation of E(R̄) is equivalent to the calculation of E(k̄), and it is given, in
eV, by

E(k̄) =
1240

107k̄−1 =
1240

107 × (8220cm−1)−1 ' 1.02eV (B.3)

Using the results of Equations B.2 and B.3 into Equation B.1, assuming ∆E ≈ 10−3eV
and Eg = 0.41eV, i.e, the bulk PbS band-gap energy, we find the ratio η is estimated as

η =
20.2× 10−3

2
√

2π(1.02− 0.41)
' 0.007 ≈ 10−2. (B.4)

The calculation of R̄ is possible by using the experimental sizing curve presented in
Equation 1.2 in Chapter 1.2, defined as

E(d) = 0.41 +
1

0.0252 d2 + 0.283 R
, (B.5)

where d = 2R, is the QDot diameter. Assuming E(d̄) = E(k̄) is known, R̄ is calculated
by solving the quadratic formula

0.0252 d̄2 + 0.283 d̄− 1
E(k̄)− 0.41

= 0, (B.6)
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where, from Equation B.3, E(k̄) ' 1.02eV. Solving Equation B.6 gives only one real
positive value which is

R̄ =
d
2
' 2.1 nm (B.7)
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C O M P U TAT I O N A L W O R K

c.1 matlab code for fitting photoluminescence kinetics

function output = homFit(counts, us_bin, start_bin, end_bin)

% I(t) = A exp[-(B*t)^(1/2)*((B*t)^(1/2)+4/3*pi*D)] + C

% A - Amplitude

% B - Decay rate of donor emitter

% C - Background constant

% D - C_0 * R_0^3 (should give the number of acceptors at the Forster

radius distance

% Formula used as derived in the thesis

% Generating array for all recorded time bins

time = (0:(end_bin - start_bin))’*us_bin;

% Find number of analysed kinetics in a single run of the code, defined as N

if iscell(counts)

N = length(counts);

else

N = 1;

counts = {counts}; % Convert array to cell, easier to loop

end

% Generating matrices for all parameters and confidence interval bounds

amplitude = zeros(N, 1); % A parameter

damplitude = zeros(N, 1); % A parameter 95% C.I.
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gam = zeros(N, 1); % B parameter

dgam = zeros(N, 1); % B parameter 95% C.I.

tau = zeros(N, 1); % 1/B parameter

dtau = zeros(N, 1); % 1/B parameter 95% C.I.

background = zeros(N, 1); % C parameter

dbackground = zeros(N, 1); % C parameter 95% C.I.

NA = zeros(N, 1); % D parameter

dNA = zeros(N, 1); % D parameter 95% C.I.

chi2 = zeros(N, 1); % Chi reduced squared (fit quality)

coef = cell(N, 1); % All parameters [A, B, C]

conf = cell(N, 1); % All 95% C.I. for [A, B, C]

initials = cell(N, 1); % Initial fit parameters [A, B, C]

fit_out = cell(N, 1); % Output of fit function (debugging)

fit_gof = cell(N, 1); % Gof of fit function (debugging)

fit_fitobject = cell(N, 1); % Fitobject of fit function (debugging)

fprintf(’Fitting %d datasets:\n’, N);

for i = 1:N

% Cutting counts by start and end bin

fit_counts = counts{i}(start_bin:end_bin);

n_background = round((end_bin - start_bin - 1)/10);

background_guess = mean(fit_counts(end - n_background:end));

%The code has two fitting stages: At first the B and D parameters are

fitted, and then all variables are fitted.

%Setting up initial parameters

Dinit = 4;

Cinit = background_guess; % First value of counts should be arround

the value of background

Binit = 1; % Initial one microsecond assumption

Ainit = mean(fit_counts(1:20)) - Cinit; % Peak amplitude above noise

%Setting options for the 1st fit

fo_init = fitoptions(’Method’, ’NonlinearLeastSquares’,...

’StartPoint’, [Binit, Dinit], ...

’Lower’, [0,0], ... % Important!

’DiffMinChange’, 1e-8, ...
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’TolX’, 1e-6, ...

’TolFun’, 1e-6, ...

’MaxFunEvals’, 500, ...

’MaxIter’, 1000);

ft_init = fittype(@(B, D, x)

Ainit.*exp(-((B.*x).^(0.5).*((B.*x).^(0.5)+(4/3)*pi*D))) + Cinit,

’options’, fo_init);

%Fitting

fitobject_init = fit(time, fit_counts, ft_init);

%Setting the fit results equal to the initial parameters

Binit = fitobject_init.B;

Dinit = fitobject_init.D;

if Binit > 20

Binit = 1;

end

% Adding initials to output

initials{i} = [Ainit, Binit, Cinit, Dinit];

% Fit options and equation for second and final fit

fo = fitoptions(’Method’, ’NonlinearLeastSquares’,...

’StartPoint’, [Ainit, Binit, Cinit, Dinit], ...

’Lower’, [0,0,0,0], ... % Important!

’DiffMinChange’, 1e-8, ...

’TolX’, 1e-6, ...

’TolFun’, 1e-6, ...

’MaxFunEvals’, 500, ...

’MaxIter’, 1000);

ft = fittype(@(A, B, C, D, x)

A.*exp(-((B.*x).^(0.5).*((B.*x).^(0.5)+(4/3)*pi*D))) + C, ’options’,

fo);

% Fitting

[fitobject, gof, out] = fit(time, fit_counts, ft);
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coef{i} = coeffvalues(fitobject);

conf{i} = confbounds(fitobject);

% Calculating chi squared.

chi2(i) = sum((fit_counts - fitobject(time)).^2./fit_counts)/...

(length(fit_counts) - length(coef{i}));

% Adding readable parameters

amplitude(i) = coef{i}(1);

damplitude(i) = conf{i}(1);

gam(i) = coef{i}(2);

dgam(i) = conf{i}(2);

NA(i) = coef{i}(4);

dNA(i) = conf{i}(4);

tau(i) = 1/gam(i); % tau = 1/B

dtau(i) = tau(i)^2*dgam(i); % dtau = (1/B)^2*dB

background(i) = coef{i}(3);

dbackground(i) = conf{i}(3);

% Adding fitting output for debugging purposes

fit_out{i} = out;

fit_gof{i} = gof;

fit_fitobject{i} = fitobject;

% Increasing progress counter

fprintf(’Fitted dataset %d/%d.\n’, i, N)

end

% Adding parameters to output struct

output.amplitude = amplitude;

output.damplitude = damplitude;

output.gamma = gam;

output.dgamma = dgam;

output.tau = tau;

output.dtau = dtau;

output.NA = NA;

output.dNA = dNA;

output.background = background;
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output.dbackground = dbackground;

output.chi2 = chi2;

output.coef = coef;

output.conf = conf;

output.initials = initials;

output.fit_out = fit_out;

output.fit_gof = fit_gof;

output.fit_fitobject = fit_fitobject;

function cibounds = confbounds(fun, level)

%CONFBOUNDS Confidence interval bounds for the coefficients of a fit result

object.

% CIBOUNDS = CONFBOUNDS(FITRESULT) returns 95% confidence bounds for the

% coefficient estimates, e.g. A = COEFFS(1) +- CIBOUNDS(1)

%

% CIBOUNDS = CONFBOUNDS(FITRESULT,LEVEL) specifies the confidence level.

% LEVEL must be between 0 and 1, and has a default value of 0.95.

% Copyright 2001-2008 The MathWorks, Inc. Modified by Matthijs Velsink,

COPS, University of Twente.

if nargin < 2

level = 0.95;

end

if length(level) ~= 1 || ~isnumeric(level) || level <= 0 || level >= 1

error(message(’curvefit:confint:invalidConfLevel’));

end

ci = confint(fun, level);

cibounds = (ci(2, :) - ci(1, :))/2;
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c.2 numerical integration of experimental data

Using the Simpson’s rule, the integration of the function f (t), over a range t0 to t f , is
approximated in the following way:

∫ t f

t0

f (t)dt =
h
3
[

f0 + 4( f1 + f3 + f5 + · · ·+ f2n−1) + 2( f2 + f4 + · · ·+ f2n−2) + f2n
]

. (C.1)

The truncation error of the numerical integral I, ∆I, i.e, the error due to the implicit
approximation with the Simpson’s rule is given by:

∆I ≤ (t f − t0)h4M/180, (C.2)

where h is the width of the sub-intervals and M is the upper bound of the fourth
derivative of the function | f (iv)(t)|, in which t must be in the range t0 to t f .

The following Matlab code describes the manual implementation of the Simpson’s
rule in the experimental data, including the calculation of the truncation error of
equation C.2.

function output =simpsInt(X,Y)

%Manual implentation of Simpson’s rule to numerical integration

%

%Simpson’s rule is based on using a quadratic polynomial approximation to

the function f(x) over a pair of subintervals.

%

% Joao Martins 10/2019

if size(X)~= size(Y)

error(’Dimensions should be the same!’);

end

m=size(X,1)-1; %size of fit must have an odd number of values

if (m/2)~=floor(m/2)

error(’Value of m must be even!’);

end

h=(X(end)-X(1))/m;

c=ones(1,size(Y,1));

c(2:2:size(c,2)-1)=4;
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c(3:2:size(c,2)-2)=2;

I=h/3*c*Y;

%Calculate maximum bound error

M=max(gradient(gradient(gradient(gradient(Y)))));

Ierror=(X(end)-X(1))*h.^4*M/180;

output.I = I;

output.Ierror = Ierror;

c.3 statistical moment calculation of experimental data

function output = MomentFit(counts, us_bin, start_bin, end_bin,n)

if iscell(counts)

N = length(counts);

else

N = 1;

counts = {counts}; % Convert array to cell, easier to loop

end

time = (0:(end_bin-start_bin))’*us_bin;

decays = zeros(N,2*n);

for i=1:N

fits = counts {i}(start_bin:end_bin);

n_background = round((end_bin - start_bin - 1)/10);

background_guess = mean(fits(end - n_background:end));

fits = fits - background_guess;

for j=1:n

numerator = fits.*(time.^j);

denominator = fits;

%Using manualy implemented Simpson rule to numerical integration (see code

simpsInt)

int_num = simpsInt(time,numerator);
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int_den = simpsInt(time,denominator);

decays(i,j) = int_num.I/int_den.I;

decays(i,n+j) = decays(i,j)*sqrt((int_num.Ierror/int_num.I)^2 +

(int_den.Ierror/int_den.I)^2); %error

end

end

output.gamma = decays;

output.decay = time;

The use of the Simpson’s rule on the studied experimental data over simpler meth-
ods of numerical integration, such as the trapezoidal rule, showed a very significant
increase in accuracy in calculating the ratio of moments Rn, which was found to be of
great importance when calculating higher order moments (see Figure 38).
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Figure 38: Comparison of results for the ratio Rn of an experimental decay curve for two types

of numerical integration: trapezoidal rule (in red) and Simpson’s rule (in blue). The
use of the Simpson rule for higher moments n shows a clear advantage to the use
of the trapezoidal rule, since it increases the accuracy of the numerical integration.
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[24] S. Brkić, “Applicability of Quantum Dots in Biomedical Science Applicability of
Quantum Dots in Biomedical Science,” 2017.

[25] P. Patnaik, Handbook of inorganic chemicals, vol. 40. McGraw-Hill, 2003.

[26] Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in polymers. From
molecules to bulk solids,” The Journal of Chemical Physics, vol. 87, no. 12,
pp. 7315–7322, 1987.

[27] M. A. Hines and G. D. Scholes, “Colloidal PbS Nanocrystals with Size-Tunable
Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the
Particle Size Distribution,” Advanced Materials, vol. 15, no. 21, pp. 1844–1849,
2003.

[28] K. K. Nanda, F. E. Kruis, H. Fissan, and S. N. Behera, “Effective mass
approximation for two extreme semiconductors: Band gap of PbS and CuBr
nanoparticles,” Journal of Applied Physics, vol. 95, no. 9, pp. 5035–5041, 2004.

[29] Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in polymers. From
molecules to bulk solids,” vol. 87, no. 12, pp. 7315–7322, 1987.

[30] I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric
function of colloidal lead chalcogenide quantum dots obtained by a
Kramers-Krönig analysis of the absorbance spectrum,” Physical Review B -
Condensed Matter and Materials Physics, vol. 81, no. 23, pp. 1–7, 2010.

[31] J. H. Song and S. Jeong, “Colloidal quantum dot based solar cells: from materials
to devices,” Nano Convergence, vol. 4, no. 1, pp. 1–8, 2017.

[32] R. S. Kane, R. E. Cohen, and R. Silbey, “Theoretical study of the electronic
structure of PbS nanoclusters,” Journal of Physical Chemistry, vol. 100, no. 19,
pp. 7928–7932, 1996.

[33] D. Kumar, S. Chaudhary, and D. K. Pandya, “Fabrication of PbS quantum dots
and their applications in solar cells based on ZnO nanorod arrays,” AIP
Conference Proceedings, vol. 1953, pp. 1–5, 2018.

[34] F. W. Wise, “Lead salt quantum dots: The limit of strong quantum confinement,”
Accounts of Chemical Research, vol. 33, no. 11, pp. 773–780, 2000.



130 bibliography

[35] Y. Liu, D. Kim, O. P. Morris, D. Zhitomirsky, and J. C. Grossman, “Origins of the
Stokes Shift in PbS Quantum Dots: Impact of Polydispersity, Ligands, and
Defects,” ACS Nano, vol. 12, no. 3, pp. 2838–2845, 2018.

[36] O. Voznyy, L. Levina, F. Fan, G. Walters, J. Z. Fan, A. Kiani, A. H. Ip, S. M. Thon,
A. H. Proppe, M. Liu, and E. H. Sargent, “Origins of Stokes Shift in PbS
Nanocrystals,” Nano Letters, vol. 17, no. 12, pp. 7191–7195, 2017.

[37] T. Walsh, J. Miloszewski, U. Aeberhard, and S. Tomić, “Electronic states of
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