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Abstract: The extrudate swell, i.e., the geometrical modifications that take place when the flowing
material leaves the confined flow inside a channel and moves freely without the restrictions that are
promoted by the walls, is a relevant phenomenon in several polymer processing techniques. For
instance, in profile extrusion, the extrudate cross-section is subjected to a number of distortions that
are motivated by the swell, which are very difficult to anticipate, especially for complex geometries.
As happens in many industrial processes, numerical modelling might provide useful information
to support design tasks, i.e., to allow for identifying the best strategy to compensate the changes
promoted by the extrudate swell. This study reports the development of an improved interface
tracking algorithm that employs the least-squares volume-to-point interpolation method for the grid
movement. The formulation is enriched further with the consistent second-order time-accurate non-
iterative Pressure-Implicit with Splitting of Operators (PISO) algorithm, which allows for efficiently
simulating free-surface flows. The accuracy and robustness of the proposed solver is illustrated
through the simulation of the steady planar and asymmetric extrudate swell flows of Newtonian
fluids. The role of inertia on the extrudate swell is studied, and the results that are obtained with
the newly improved solver show good agreement with reference data that are found in the scientific
literature.

Keywords: extrusion; extrudate swell; interface tracking; least-squares volume-to-point interpolation;
consistent PISO; finite volume method; OpenFOAM

1. Introduction

Free-surface flows are encountered in many polymer processing and environmental
applications [1,2]. Nevertheless, the variety of the analytical solutions for free-surface
flows is usually very limited, even for very simple cases [3]. On the other hand, the
experimental observations of real phenomena are onerous [3], and many experimental
techniques are suitable for single-phase flows and undergo many difficulties to be extended
to two-phase flows [4]. For these reasons, the use of numerical simulations to provide
useful information about free-surface flows would be of great advantage. Flows with
a free-surface are difficult to be modeled since the free-surface is a moving boundary,
whose location is merely known initially, and it has to be determined later during the
simulation [5]. There are different ways of modeling free-surface flows: the Interface
Tracking (IT) approach, in which the free-surface is tracked using a sharp interface, and a
dynamic computational grid is applied to follow the movement of the free-surface; and,
the Interface Capturing (IC) approach, in which the free-surface is not treated as a sharp
interface and, generally, the computational grid is static. Among the methods following
the IC approach, the Marker-And-Cell (MAC) [6] method is based on a finite difference
scheme applied to an Eulerian grid to solve the Navier–Stokes equations for the fluid flow
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motion, and resort to Lagrangian virtual particles to impose the movement at the free-
surface, which is based on the velocity interpolated from the Eulerian grid [7,8]. Although
the MAC method provides accurate information on the free-surface location [8,9], the
computational cost is enormous, because the number of particles needed to reconstruct the
free-surface is vast [5]. Instead of considering virtual Lagrangian particles to reconstruct
the free-surface, the Volume-of-Fluid (VoF) method [10] solves a transport equation to
calculate the volume fraction of each fluid present in the interface cells. Although the
VoF method is more efficient than the MAC method, and is more practical for complex
interface shapes, it considers the interface as a layer that usually covers one to three
computational cells [5]; therefore, it does not provide an exact location of the free-surface.
Despite many attempts to obtain the precise local curvature of the free-surface, when using
the VoF method [9,11–14], this disadvantage still remains. One of the attempts employed
to compute sharp interfaces for free-surface flows was implemented by Roenby et al. [15],
by using the so-called isoAdvector algorithm, which follows two-steps: first, it computes
an isosurface to evaluate the distribution of fluids inside the cells (known as the surface
reconstruction step); and second, it advects the face–interface intersection line to obtain
the time evolution within a time step of the submerged face area (known as the advection
step). The method provided very satisfactory results in terms of volume conservation,
boundedness, surface sharpness, and efficiency for two-dimensional and three-dimensional
problems on both structured and unstructured meshes. The Level-Set (LS) method, which
was proposed by Osher and Sethian [16], is another method that considers the contour
of a smooth scalar function to specify the location of the free-surface. In this method, the
value of the scalar function at a computational grid cell is often calculated based on the
signed distance function [11,17,18]. Although the transition of fluid properties through the
interface is smooth, it experiences difficulty if the curvature of the free-surface undergoes
rapid changes [8]; and, also there is a need to define a transition region with a finite
thickness [5]. Furthermore, mass conservation is an issue when using the LS method [5,8].

Because the VoF and LS methods are based on an implicit identification of the free-
surface through the volume fraction and distance function, respectively, they are commonly
called IC methods. From the reasoning that is explained above, the lack of prediction
of the exact location of the free-surface, the high computational cost, and the precise
calculation of the representation of surface forces (for example, surface tension) are the
general disadvantages of the IC methods. On the other hand, IT methods use an explicit
discretization of the interfacial discontinuity [19,20], which applies a body-fitted (boundary-
fitted) grid and the free-surface boundary is tracked using mesh movement. Because the
free-surface is treated as a sharp interface, it is the most accurate approach, albeit with
limitations on the deformation of the free-surface.

Although limited in their application, IT methods have an important role in the
numerical analyses of fundamental multiphase flows, such as the extrudate swell (or die
swell) phenomenon exhibited by viscous fluids exiting long slits or capillary dies [21–30].
Extrudate swell, which is also known as Barus effect [31], occurs when melted polymer
comes out of a die, where the size of the emerged polymer becomes different from the size
of the die. This even happens in Newtonian fluids due to the streamline rearrangements at
the die exit [32], which is around 13% for cylindrical channels and 19% for sheets at very
low Reynolds numbers, while, at high Reynolds numbers, the swell shrinks and, finally,
the Newtonian liquid comes out like a thinning jet. The extrudate swell of polymers is
usually in a very low range of Reynolds numbers from 10−4 to 10−2, and the swell ratio
can reach as high as 400% in specific cases, which are related to the viscoelastic character
of polymers. Experiments have shown that, when the die length is short enough, the
extrudate swell grows when compared to a case with the same mass flow rate, but a longer
die, which is commonly attributed to the memory of entrance. Thus, the swell in short
dies is a consequence of two components, the memory of entrance and also the normal
stress release at the die exit. In addition to these parameters, temperature also influences
extrudate swell. The thermal effects can increase the extrudate swell up to 15%. If the
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die temperature is lower than the melted polymer, the viscosity of the melted polymer
increases at the wall and, therefore, the flow becomes limited and it undergoes a lower
swell when compared to the case where the die temperature is higher than the melted
polymer, where the liquid is less viscous at the wall, which lubricates the flow and results
in a larger swell. Another important parameter for the polymer extrudate swell is the
molecular structure of the polymer, since the first normal stress difference that appears
at the die exit is affected by the molecular weight distribution. Furthermore, long chain
branching enhances extrudate swell in polymers [33].

It is crucial to know the dimension of the emerging polymer from the die, since it de-
termines the exact size of the extruded products; therefore, many attempts have been made
to obtain equations for anticipating the swell ratio [31,34]. As an example, Tanner [35]
introduced an equation for the swell ratio of a Maxwell-type constitutive equation of a
viscoelastic fluid, and then revised it several years later [36] while considering that the first
normal stress difference obeys N1 = kτm, where τ is the fluid shear stress and k and m are
model parameters, instead of the initial assumption N1 = constant× τ2. A large number of
investigations of the die swell phenomenon are reported in the literature, which goes from
two-dimensional (2D) to three-dimensional (3D) flows, from Newtonian to viscoelastic
fluids rheology or from isothermal to non-isothermal flows. Crochet and Keunings [21]
presented a 2D numerical investigation on slit die swell with three finite element meshes
and two different techniques, a mixed and an extended u− v− p methods, and concluded
that the swelling ratio depends upon the method that is used for its calculation and, for
a given method, it is highly dependent upon mesh refinement. Subsequently, Mitsoulis
et al. [22] used viscometric flow equations to simulate the swelling of viscoelastic fluids
from long slit and capillary dies. The obtained results showed that, even when using this
simple model for viscoelastic calculations, they were in good qualitative agreement with
other numerical simulations, which employ a constitutive equation satisfying tensorial
invariance, but accelerate the breakdown of the iterative scheme. Another work from the
group of J. Vlachopoulos was presented by Karagiannis et al. [23], which studied the
3D free surface die swell of a Newtonian fluid in different geometries, specifically square,
rectangular, equilateral triangular, bow-tie, and key-hole-shaped geometries. The obtained
results were compared with experimental measurements and other numerical calculations
with favourable agreement. The swelling ratios were found to strongly depend on the
die geometry. The group of Crouchet also presented calculations for steady state 3D free
surfaces of Newtonian and power-law fluids in the work of Wambersie and Crochet [24].
They combined a pseudo-transient marching technique, a decoupling algorithm, and a
conjugate gradient solver to reduce the cost of the 3D calculations. The method was em-
ployed to study the circular, square, and rectangular die-swell problems, where the effects
of inertia and shear-thinning were revealed. The works of Legat and Marchal [25,26]
addressed the prediction of 3D free surface extrudate flows with a fully implicit finite
element algorithm, in the sense that a Newton–Raphson scheme was applied to all vari-
ables and is geometrically general. The algorithm was employed to compute the extrudate
swell of a rectangular die and in various complex sections containing multiple corners.
The obtained results showed that the extrudate shape exhibits large deformations in the
vicinity of all re-entrant corners, which would not be possible to predict in 2D simula-
tions. Subsequently, the works of Georgiou and Boudouvis [27] and Mitsoulis et al. [28]
studied the effects of inertia, surface tension, gravity, slip, and compressibility for both
the 2D planar and axisymmetric extrudate-swell flows of Newtonian fluids. Recently, 3D
isothermal and non-isothermal viscoelastic flow calculations with a transient finite element
method for predicting extrudate swell of domains containing sharp edges were conducted
by Spanjaards et al. [29,30]. The obtained results showed that the extrudate swelling is
highly dependent on the rheological parameters and the constitutive model used, and
that the wall temperature of the die can lead to a change in the bending direction. All
of the presented works employed the finite element method to solve the problem of the
extrudate swell for Newtonian and viscoelastic fluids. The present work aims to revisit the
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Newtonian extrudate swell flow problem by using the finite volume method, which is the
core of the open-source computational library OpenFOAM [37].

When dealing with a steady state process, which is the case of profile extrusion, IT
is usually the best alternative, since it does not present the problems that are related to
interface diffusion inherent to the IC methods. OpenFOAM [37] comprises a solver to
simulate free-surface flows following an IT approach, which was proposed by Tuković
and Jasak [38]. One of the disadvantages generally raised to the IT methods is their
computational efficiency, and many attempts have been carried out in order to increase the
convergence rate of the pressure–velocity calculations [39–41]. Tuković et al. [41] proposed
a non-iterative Pressure-Implicit with Splitting of Operators (PISO) algorithm based on
extrapolation of mass flux, nodal velocity, and pressure from two previous time steps in
order to have an approximation of these quantities in the new time step, and obtained a
second order temporal accuracy in the cases with static and dynamic meshes.

This work aims to assess the capability of the solver that was developed
by Tuković and Jasak [38] with the non-iterative PISO algorithm proposed by Tuković
et al. [41] to efficiently simulate the extrudate swell phenomenon. For this purpose, the
developed solver couples the interfaceTrackingFvMesh and interTrackMeshMotion libraries
that are available in OpenFOAM [37] with the consistent second-order time-accurate non-
iterative PISO algorithm. A least-squares volume-to-point interpolation method for the
grid movement, which enables an efficient and accurate tracking of the free-surface motion,
is employed. The enhanced algorithm is used to simulate the steady-state Newtonian
extrudate swell problem in both planar and axisymmetric geometries for a parametric
study of the effects of inertia, and the obtained results are compared with the reference
data of Mitsoulis et al. [28]. Notice that, although the results presented here are limited to
Newtonian fluids, the effects which are discussed can be qualitatively applied to all fluids
(e.g., viscoelastic fluids). The main aim of this work is to present an open source finite
volume numerical framework that can handle the extrudate swell problem in an efficient
way, which can be extended in the future to allow simulating other fluids rheology.

2. Mathematical Formulation

In this section, the governing equations and numerical method employed for sim-
ulating the two-phase fluid flow with a sharp interface are described, while using the
finite-volume method and an interface tracking algorithm for the moving mesh. The
numerical scheme developed in this work is enhanced with the consistent second-order
time-accurate non-iterative PISO algorithm [39–41] to reduce the computational wall time
of the simulations and, for the moving mesh calculation, a Laplacian scheme is used with a
least-squares interpolation, which allows for robust and stable deformation of the interface.

2.1. Governing Equations

The mass and linear momentum conservation laws are the equations of motion gov-
erning the isothermal flow of incompressible Newtonian fluids inside an arbitrary volume
V bounded by a closed surface S, ∮

S

n · u dS = 0, (1)

d
dt

∫
V

u dV +
∮
S

n · (u− us)u dS =
∮
S

n · (ν∇u) dS−
∫
V

∇P dV, (2)

where n is the outward pointing unit normal vector on S, u is the fluid velocity, us is
the surface S velocity, ν is the fluid kinematic viscosity, and P is the kinematic pressure
obtained by subtracting the hydrostatic kinematic pressure Phydrostatic = g · r from the
absolute pressure, where g is the gravitational acceleration and r is the position vector.
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For an arbitrary moving volume, the relationship between the rate of change of the
volume V and the velocity us is defined by the geometrical (space) conservation law [42],

d
dt

∫
V

dV −
∮
S

n · us dS = 0. (3)

When considering that the fluid phases are immiscible, the fluid flow
Equations (1) and (2) can be used for each phase individually and, at the interface, the
proper boundary conditions must be used.

2.1.1. Kinematic Condition

The kinematic condition states that the fluid velocities on the two sides of the interface,
u1 f and u2 f , must be continuous (see Figure 1),

u1 f = u2 f . (4)

Figure 1. Representation of the interface with the mesh boundary faces.

2.1.2. Dynamic Condition

From the momentum conservation law follows the dynamic condition, which states
that forces acting on the fluid at the interface are in equilibrium. The general form of the
dynamic condition at the interface, which gives the fundamental relationship between the
jump in stress across an interface and the surface tension force, is given by,

[T2 − T1] · n = ∇sσ− σκn, (5)

where T1 and T2 are the stress tensors that are defined in terms of the local fluid pressure
and velocity fields, as T1 = −p1I+ ν1[∇u1 + (∇u1)

T ] and T2 = −p2I+ ν2[∇u2 + (∇u2)
T ],

respectively, σ is the interfacial tension and ∇s = [I− nn] · ∇ = ∇− n ∂
∂n is the tangen-

tial gradient operator, which appears because σ and n are only defined on the surface.
Equation (5) is a vectorial equation, which is often written in terms of its normal and
tangential components. We proceed by deriving the normal and tangential force balances
appropriately at a fluid–fluid interface that is characterized by an interfacial tension σ.

From the normal force balance follows the pressure jump across the interface [43],

p2 − p1 = σκ − 2(ν2 − ν1)∇s · u, (6)

where κ = −∇s · n is twice the mean curvature of the interface.
The tangential force balance yields a relation between the normal derivative of tan-

gential velocity on the two sides of the interface [43],

ν2[n · (∇ut)2]− ν1[n · (∇ut)1] = −∇sσ− n(ν2 − ν1)∇s · u− (ν2 − ν1)(∇su) · n, (7)

where ut = (I − nn) · u is the tangential velocity component.

2.2. Numerical Method

The numerical integration in time of the mathematical model that is described in
Section 2.1 is performed using a second order accurate implicit method, and the integral
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form of the fluid flow equations are discretized in space using a second order accurate
cell-centred unstructured finite volume method. Detailed information of the computational
domain discretization, of the mathematical model, and interface tracking procedure can
be found in Tuković and Jasak [38], being out of the scope of this work. Here, we devote
our attention to the improvements performed in the numerical algorithm related to both
efficiency and robustness of the calculations. For this purpose, the consistent non-iterative
PISO algorithm [39–41] was employed to assure the pressure–velocity coupling in the
calculation of the free surface flow studied in this work, and a least-squares volume-to-
point interpolation method to compute the interface motion, were newly-implemented in
the two-phase fluid-flow solver with a sharp interface.

2.2.1. Consistent Non-Iterative PISO Algorithm

The rate of convergence of the collocated PISO algorithm is known to be problem
dependent. In this segregated algorithm, a velocity correction term is neglected, which
affects the path to convergence or may either cause the divergence of the numerical
simulation, as a result of an exaggerated pressure correction field. Nevertheless, a common
remedy for alleviating this problem is to under relax the pressure field. However, the
rate of convergence remains a problem. In this work, we modified the original two-
phase flow interface tracking solver, which is based in the segregated PISO algorithm,
by approximating the velocity correction at the main grid point by a weighted average
of the velocity corrections at the neighboring locations, the so-called consistent PISO
algorithm [39–41].

A brief summary of the collocated PISO algorithm is described hereafter, along with
the modification performed to the original formulation, by using the consistent counterpart
of the algorithm, to improve the convergence rate of the calculations. A detailed analysis of
both algorithms can be found in Van Doormaal et al. [39], Issa [40] and Tuković et al. [41].
First, the discretized momentum equations are given by

uC + HC[u] = −Du
C(∇P)C + Bu

C, (8)

with

HC[u] = ∑
f=NB(C)

au
F

au
C

uF, (9)

which is a weighted average that consists of the contribution of the neighbor cell with
centroid F, au

F, and the contribution of the current cell with centroid C, au
C, to the velocity of

the neighbour cells uF. Notice that f refers to a face of the current cell, which shares it with
a neighbor cell. The transient term contribution Du

C and the source term contribution Bu
C

are defined as the vector operators:

Du
C =

VC
au

C
, (10)

Bu
C =

bu
C

au
C

, (11)

where VC is the volume of current cell C. Equation (8) is solved to obtain a momentum
conserving velocity field u∗. Subsequently, the mass flow rate, ṁ∗f , at the computational
element faces should be updated using the Rhie–Chow [44] interpolation,

ṁ∗f = u∗f · S f = u∗f · S f −Du
f

(
∇P(n)

f −∇P(n)
f

)
· S f , (12)
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which allows for obtaining a momentum satisfying the mass flow rate ṁ∗. Here, S f denotes
the normal face area vector and all of the values with an over bar are obtained by linear
interpolation between the values at points C and F. Subsequently, we assemble the pressure
correction equation [40],

∑
f=nb(C)

(
Du

f (∇P′) f · S f

)
= − ∑

f=nb(C)
ṁ∗f + ∑

f=nb(C)

 ∑
F=NB(C)

au
F

au
C

u′F

 · S f , (13)

and solve it to obtain a pressure correction field P′. In the original PISO algorithm, the last
term in the RHS of Equation (13) is neglected, which affects the convergence rate, because,
the larger this term, the higher the error present in the approximation at each iteration is.
Finally, the mass flow rate at the element faces (ṁ∗∗f ) and the pressure (P∗C) and velocity
(u∗∗C ) at the element centroids are updated with the corrected pressure field P′ by,

ṁ∗∗f = ṁ∗f + ṁ
′
f , ṁ

′
f = −Du

f∇P
′
f · S f , (14)

u∗∗C = u∗C + u
′
C, u

′
C = −Du

C(∇P
′
)C, (15)

P∗C = P(n)
C + αpP

′
C (16)

where the superscript (n) denotes the solution at time t = n and αp is the under relaxation
factor for the pressure correction values, which increases the robustness and convergence
behavior of the PISO algorithm.

Nevertheless, even when using under-relaxation factors in the PISO algorithm, the
convergence rate is problem dependent. To improve the efficiency of the two-phase fluid
flow calculations, we modified the original PISO algorithm by simply assuming that the
velocity correction at point C is the weighted average of the corrections at the neighboring
points,

u
′
C ≈

∑
F=NB(C)

au
Fu
′
F

∑
F=NB(C)

au
F
⇒ ∑

F=NB(C)
au

Fu
′
F ≈ u

′
C ∑

F=NB(C)
au

F, (17)

which can be written as,

∑
F=NB(C)

au
Fu
′
F

au
C
≈ u

′
C ∑

F=NB(C)

au
F

au
C

. (18)

Hence, the neglected term in the PISO algorithm (last term in the RHS of Equation (13))
is replaced by the approximate value that is given by Equation (18). Thus, in the consistent
PISO algorithm a smaller term is discarded, which allows for obtaining more accurate
velocity corrections with the momentum equations. Therefore, the convergence rate of the
consistent PISO algorithm is higher than the one of the original PISO algorithm. Notice that
our approach to simulate steady state free surfaces is, in fact, a time-dependent marching
technique that allows separately calculating the free surface movement and the other fields
at the different time steps, which reduces the number of iterations needed to converge to a
steady solution [24].

A detailed analysis regarding the numerical setup for the PISO algorithm allowed
for concluding that 10 outer corrector loops and three pressure–velocity correctors were
needed to obtain stable and converged iterative solutions for all the cases simulated in this
work. Additionally, for the PISO algorithm, the simulations only converged at maximum
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with a Courant number of 0.2, while using the consistent PISO algorithm the simulations
were performed with a Courant number of 1.

2.2.2. Least-Squares Volume-to-Point Interpolation

The mesh deformation is calculated using the Laplace mesh motion equation with
variable diffusivity [45]. The method discretizes the motion equation using the cell-centred
FV method, by which vertex displacements are obtained using a reconstruction procedure,
instead of the commonly employed FE discretization. Detailed information regarding this
procedure can be found in Tuković and Jasak [38] and Jasak and Tuković [45].

Following the work of Tuković et al. [46], we employ the weighted least-squares
method and linear fitting function to reconstruct the vertex displacements from the cell-
centre displacements of the cells surrounding the vertex, which increased the robustness of
the free-surface flows calculation. It is worth noting that, without the least-squares volume-
to-point interpolation, the original mesh motion algorithm available in OpenFOAM [37]
was not able to compute the mesh deformation that occurs in the simulations of the
extrudate swell flows presented in Section 3.

Consider the interpolation stencils for the internal (i) and the boundary (b) vertices
that are given in Figure 2. The former is constituted of all cells sharing the vertex, while, in
the latter, the boundary faces sharing the corresponding vertex are also included into the
stencil. In the vicinity of each vertex i (or boundary b), a linear interpolation function is
considered:

φ(r) = φi0 + Ci · (r− ri0), (19)

where Ci is the unknown coefficient vector, and the field value φi0 and the reference position
ri0 are obtained as the weighted average of cell-centre field and positions values, respectively:

φi0 =
∑n

j=1 wijφij

∑n
j=1 wij

, (20)

ri0 =
∑n

j=1 wijrij

∑n
j=1 wij

, (21)

where φij is the field value in the centre of cell j in the interpolation stencil of the vertex i, rij
is the centre of cell j in the interpolation stencil of the vertex i, and wij is the weighting factor
calculated as the inverse square distance between the position of vertex i and the centre
of cell j. Finally, to obtain the unknown coefficient vector, Ci, the weighted least-squares
method is employed:

Ci =

[(
XTWX

)−1
XTW

]
·Φi, (22)

where X is the n× 3 matrix whose row j is the position vector (rij − ri0) of the cell j in
the interpolation stencil of the vertex i, W is the diagonal matrix whose elements are the
weighting factors for all cells in the interpolation stencil of the vertex i, and Φi is the vector
constituted by the elements (φij − φi0) for all cells in the interpolation stencil of the vertex i.
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b4 b b3

b0

b1

i1

i2

i3

i4

i5

i0

i

b2

Figure 2. Finite volume mesh with an interpolation stencil for the vertex field value reconstruction.
The interpolation stencil is given for the internal vertex i and boundary vertex b.

3. Results and Discussion
3.1. Planar Extrudate Swell of Newtonian Fluids

The first benchmark case study that will be discussed is the planar extrudate swell of
Newtonian fluids. Figure 3 shows a schematic representation of the computational flow
domain, the boundary faces, and an indicative discretization mesh for the initial time-step
(t = 0) and at steady-state. Cartesian coordinates are employed for the description of the
planar flow domain, thus x = (x, y). The half width of the planar channel is denoted as H,
which is considered as the scaling length. The inlet plane is taken sufficiently far upstream
from the exit so that the flow is fully developed with a mean velocity U. Along the axis
of symmetry the standard symmetry conditions are imposed. At the solid die wall the
no-slip (tangential velocity is zero) and no penetration (normal velocity is zero) conditions
are imposed. At the free-surface the kinematic, Equation (4), and dynamic conditions,
Equations (6) and (7), are imposed. Finally, the outflow plane is taken sufficiently far
downstream from the exit, so that the flow is uniform. The die exit of the planar domain is
located at x = 5H from the inlet, and the outflow is located at x = 25H from the die exit.

In this section, we compare the results that were obtained with the newly-improved
interface tracking algorithm with those given by Tanner [1], Georgiou and Boudouvis [27]
and Mitsoulis et al. [28]. First, a mesh convergence sensitivity analysis is performed.
Table 1 summarizes the main characteristics of the meshes employed in this preliminary
study. The rectangular domain was initially discretized with 320 cells in the streamwise
(x), 37 cells in wall normal (y), and one cell in span-wise directions, with this mesh being
named M1. A linear stretch was employed in streamwise and wall normal directions to
have the highest resolution at downstream edge of the die (at S) with the largest to smallest
cell aspect ratio being equal to 2.5. An extensive investigation was carried out on the
necessary grid spacing aspect ratio, and it was concluded that this value was efficient
enough to track the free-surface. Five different meshes, designated M1, M2, M3, M4, and
M5, were found to be sufficient to obtain accurate results for this problem. Table 1 shows
the number of mesh elements used in each direction of the computational domain, the total
number of mesh elements, and the degree of freedom (dof) of the numerical algorithm for
each level of mesh refinement. Notice that each mesh is obtained from the preceding one
by multiplying the number of cells in each direction by a factor of 1.5.
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Figure 3. Schematic representation of the planar extrudate swell domain geometry and boundary
faces (a), of an indicative discretization mesh at the initial time-step t = 0 (b), and at steady-state (c).

Table 1. Finite volume mesh characteristics used in the simulations and Newtonian base results for the extrudate swell
ratio, χ, at Re = 0.1 while using the planar extrudate swell domain geometry.

Mesh Nx× Ny
No. of

Elements No. of Dof χ Error (%)

M1 320× 37 11,840 59,200 1.214 2.3
M2 480× 56 26,880 134,400 1.207 1.7
M3 720× 84 60,480 302,400 1.201 1.2
M4 1080× 126 136,080 680,400 1.198 0.9
M5 1620× 189 306,180 1,530,900 1.195 0.7

Extrapolated - - - 1.187
Mitsoulis et al. [28] - - - 1.186

Tanner [1] - - - 1.190 ± 0.002
Georgiou and Boudouvis

[27] - - - 1.186
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First, we compare our mesh convergence predictions of the steady-state swell ratio,
χ, with the results found in the scientific literature [1,27,28]. The swell ratio is defined
as the height of the free-surface away from the die exit, where the plug flow has been
established, divided by the die height, i.e., χ = h0/H. For the mesh convergence analysis,
we employed the Newtonian fluid at creeping flow conditions (Re = 0.1). Table 1 shows the
extrudate swell ratio for the different mesh resolutions. The accuracy of the developed code
is estimated via the application of Richardson’s extrapolation [47] to the limit, by using the
three most refined levels of mesh discretization. The extrapolated value of the swell ratio
is equal to χ = 1.187, similar to the reference data of Mitsoulis et al. [28], which reported
a value of χ = 1.186 using a FEM numerical algorithm, to the estimated extrapolated
value of Tanner [1] with χ = 1.190± 0.002, and to the converged results obtained by
Georgiou and Boudouvis [27] of χ = 1.186, as shown in Table 1. Additionally, notice
that the relative error calculated between the extrudate swell ratio obtained using M5 (the
most refined mesh) and the one extrapolated using the Richardson’s technique [47] is equal
to
(

χM5 − χExtrapolated

)
/χExtrapolated × 100 ≈ 0.7%. Additionally, notice that, even when

using M1 (the coarsest mesh), the relative error is only 2.3%. In terms of computational
wall time, the simulation of the planar extrudate swell with M1 and M5 took approximately
0.94 and 24.3 hours, respectively, where all of the computations were performed in parallel
using 80 processors on a computer with a 2.70 GHz Intel Xeon CPU E5-2680.

Subsequently, calculations for studying the robustness of the newly-improved inter-
face tracking algorithm were pursued, by increasing the Reynolds number (Re ≤ 10) in
the planar extrudate swell domain geometry. Figure 4 depicts the extrudate swell ratio, χ,
as a function of the Re number, where the blue square symbols are the results obtained by
the newly-improved interface tracking code using M5, and the dashed lines and red and
green square symbols are the results found in the scientific literature [1,27,28]. As can be
seen, the numerical results obtained are in very good agreement with the reference data.

Figure 4. Steady state extrudate swell ratio χ for the simulations using the planar extrudate swell
domain geometry of Newtonian fluids at Re = {0.1, 1, 2, 5, 7, 10}. Dashed lines, and red and green
square symbols represent the results obtained by Mitsoulis et al. [28], Georgiou and Boudouvis [27]
and Tanner [1], respectively, and the blue square symbols represent the results obtained by the
newly-improved interface tracking code.

Figure 5 shows the transient evolution of χ for the planar extrudate swell domain
geometry at Re = {0.1, 1, 2, 5, 7, 10}. The numerical results obtained for Re < 7 show an
undershoot in the values of χ, before reaching the steady-state value. For Re ≥ 7, after the
undershoot in the values of χ, an overshoot is present, and, ultimately, the steady-state
value is reached, being approximately 0.99. This increase of inertia allowed for verifying the
robustness of the improved interface-tracking algorithm, namely the Laplacian solver with
least-squares volume-to-point interpolation, to handle abrupt changes in the mesh motion.
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Figure 5. Transient evolution of extrudate swell ratio (χ) with dimensionless time (t/
(

H2/ν
)

for the simulation of the planar extrudate swell domain geometry of Newtonian fluids at
Re = {0.1, 1, 2, 5, 7, 10}.

The steady-state results for the primary field variables, magnitude of the velocity
vector |u|, and pressure field p, in the form of contours, are shown in Figures 6 and 7,
respectively, for the planar extrudate swell domain geometry, and at different Re numbers.
From a detailed inspection of Figures 6 and 7, we can see that inertia substantially reduces
the free-surface height, as already shown in Figure 4. This fact occurs, because inertia
pushes the material to the center of the domain, generating a peak of negative pressure in
the upper point near the die exit. This result was expected to occur due to the Poiseuille
flow that developed in the upstream region of the domain geometry [48]. Additionally, for
Re = 10, the contour of the magnitude of the velocity vector changes its behavior, when
compared to the lower Re number cases. It can be seen that the maximum values of the
velocity vector magnitude are extended after the die exit for the higher Re case. Finally,
regarding the pressure contours, we can see that the increase of inertia does not change
abruptly the pressure contours, and, at Re ≥ 7, we see an extension of the minimum
pressure values from the top corner of the die exit to the center of the channel, which seems
to cause the reduction in the free-surface height.

Figure 6. Steady state velocity vector magnitude contours for the planar extrudate swell flow of
Newtonian fluids, at Re = 0.1 (top), 1, 2, 5, 7, and Re = 10 (bottom).
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Figure 7. Steady state pressure contours for the planar extrudate swell flow of Newtonian fluids, at
Re = 0.1 (top), 1, 2, 5, 7, and Re = 10 (bottom).

Finally, the efficiency of the newly-improved interface-tracking solver was assessed
by comparing the required CPU wall time per time-step when using the original PISO
algorithm or the enhanced consistent-PISO algorithm. Table 2 shows a comparison of the
dimensionless time-step ∆t/(H2/ν) employed in the simulations of the planar extrudate
swell and the elapsed time per time-step that is required by both PISO and consistent PISO
algorithms for Re = {0.1, 1, 10}, while using mesh M5. For Re = 0.1, the consistent-PISO
algorithm allows using a time-step 21.4 times higher than the one that is used by the PISO
algorithm, and the CPU wall time per time-step that elapsed using the consistent-PISO
algorithm is approximately half of the one taken by the PISO algorithm. For Re = 1 and
Re = 10, the scenario is also favorable to the consistent-PISO algorithm to the detriment of
the PISO algorithm, which allows for concluding that the enhanced correction procedure
for the p−U fields is advantageous for efficiently simulating the extrudate swell problem.
Table 2 also shows the total calculation time in hours when using M5 and the consistent
PISO algorithm. As can be seen, all of the calculations finished in less than 1.5 days.

Table 2. Comparison of the dimensionless time-step ∆t/(H2/ν) employed in the simulations and the CPU wall time (s) per time-step
required by the PISO and consistent PISO algorithms for all Re, using mesh M5, for the planar extrudate swell flow of Newtonian fluids.

Re ∆t/(H2/ν) CPU Wall Time (s) Per Time-Step

C-PISO PISO C-PISO/PISO C-PISO PISO C-PISO/PISO Total calculation
time [h]

0.1 0.0685 0.0032 21.4 8 15 0.53 24.3
1 0.0069 0.0014 4.9 8 11 0.72 32.2
10 0.0007 0.0001 7.0 7 11 0.63 13.9

3.2. Axisymmetric Extrudate Swell of Newtonian Fluids

The second benchmark case study that is discussed in this work is the axisymmetric
extrudate swell of Newtonian fluids. Figure 8 shows a schematic representation of the
computational flow domain, the boundary faces, and an indicative discretization mesh
for the initial time-step (t = 0) and at steady-state. Polar coordinates are employed for
the description of the axisymmetric flow domain, thus x = (r, z). The half width of the
axisymmetric channel is denoted as R, which is considered to be the scaling length. The
boundary conditions imposed in the boundary faces are similar to the ones presented for
the planar extrudate swell case study, with the exception that, in the axisymmetric domain,
the two lateral boundary sides are considered to be wedge patches (i.e., the cylinder is
specified as a wedge of small angle, e.g., 5º and one cell thick running along the plane
of symmetry, straddling one of the coordinate planes), while, in the planar case study,
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they were considered as empty patches (i.e., this condition applies on each patch whose
plane is normal to the third dimension for which no solution is required); and, instead of
symmetryPlane at the bottom of the planar case, the axis of symmetry is considered as
empty patch. The die exit of the axisymmetric domain is located at z = 5R from the inlet,

and the outflow is located at z = 25R from the die exit.

(a)

(b)

r

x

6R

R

1.5R

0.5R

(c)

Figure 8. Schematic representation of the axisymmetric extrudate swell domain geometry and
boundary faces (a), of an indicative discretization mesh at the initial time-step t = 0 (b), and at
steady-state (c).

Figure 9 illustrates the extrudate swell ratio, χ, for different Re with mesh resolution
M5 (see Table 1) using the axisymmetric domain geometry. Similarly to the planar domain
geometry, generally, the extrudate swell ratio that is obtained by the newly-improved
interface tracking solver using the axisymmetric domain is in good agreement with the
reference data [1,27,28].



Polymers 2021, 13, 1305 15 of 20

Figure 9. Steady state extrudate swell ratio χ for the simulations using the axisymmetric extrudate swell
domain geometry of Newtonian fluids at Re = {0.1, 1, 2, 5, 7, 10}. Dashed lines, and red and green circle
symbols represent the results that were obtained by Mitsoulis et al. [28], Georgiou and Boudouvis [27]
and Tanner [1], respectively, and the blue circle symbols represent the results obtained by the
newly-improved interface tracking code.

Figure 10 shows the transient evolution of χ for the axisymmetric extrudate swell do-
main geometry at Re = {0.1, 1, 10}. Again, the numerical results obtained for Re < 7 show
an undershoot in the values of χ, before reaching the steady-state value. When comparing
with the planar case (see Figure 5), the magnitude of the undershoot is smaller for the
present case, which can be attributed to the round boundary surface of the axisymmetric
domain geometry. For Re ≥ 7, an almost imperceptible undershoot is present when using
the axisymmetric domain geometry (contrarily to the planar domain geometry), followed
by an overshoot, and ultimately the steady-state χ value is reached, being approximately
0.97 (2% less than the value that is obtained for the planar domain geometry).

Figure 10. Transient evolution of extrudate swell ratio (χ) with dimensionless time (t/
(

R2/ν
)

for the simulation of the axisymmetric extrudate swell domain geometry of Newtonian fluids at
Re = {0.1, 1, 2, 5, 7, 10}.

The steady-state results for the primary field variables, magnitude of the velocity
vector |u|, and pressure field p, in the form of contours are shown in Figures 11 and 12,
respectively, for the axisymmetric extrudate swell domain geometry and at different Re
numbers. From a detailed inspection of Figures 11 and 12, we can also see here that inertia
substantially reduces the free-surface height, as already shown in Figure 9. Additionally,
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when compared to the lower Re number cases, we can see that, only for Re = 10, the
contour of the magnitude of the velocity vector changes its behavior, where the maximum
values are extended until the die exit for the latter case. Again, the increase of inertia, does
not change abruptly the pressure contours, and only at Re = 10, we see an extension of the
minimum pressure contours from the top corner of the die exit to the center of the channels,
which seems to cause the reduction in the free-surface height (but with a lesser effect in the
axisymmetric domain geometry).

When comparing the contour results from both planar and axisymmetric extrudate
swell domain geometries, we can state that the maximum velocity vector magnitude
is obtained for the axisymmetric domain, being two times the magnitude of the inflow
average velocity, in contrast with the planar case, where it is only 1.5 times higher than
the magnitude of the inflow average velocity. This result was expected to occur due to
the Poiseuille flow, which is developed in the upstream channel of both domains [48].
Finally, regarding the pressure contours, we can see that, for the axisymmetric domain, the
computed maximum and minimum pressure values are symmetric, as expected, due to
domain symmetry, in contrast with the planar domain case, where the minimum pressure
value that is obtained is 3.5 times lesser than the maximum one. In both planar and
axisymmetric cases, as the Re increases the extrudate swell ratio and pressure decreases,
which physically states that the inertia forces stretch out the material and prevent the
swelling, with an immediate effect on the reduction of pressure losses [28].

Figure 11. Steady state velocity magnitude contour for axisymmetric swell flow of Newtonian fluids,
at Re = 0.1 (top), 1, 2, 5, 7 and Re = 10 (bottom).

Finally, Table 3 shows a comparison of the dimensionless time-step ∆t/(H2/ν) em-
ployed in the simulations of the axisymmetric extrudate swell and the CPU wall time (s)
per time-step required by both PISO and consistent PISO algorithms for Re = {0.1, 1, 10}
using mesh M5. For Re = 0.1, the consistent-PISO algorithm allows for using a time-step
21.0 times higher than the one used by the PISO algorithm, and the CPU wall time per
time-step elapsed using the consistent-PISO algorithm is 0.58 times the one taken by the
PISO algorithm. Again, for Re = 1 and Re = 10, the scenario is also favorable to the
consistent-PISO algorithm in detriment of PISO algorithm. Additionally, notice that, when
comparing with the values that are shown in Table 2, the ratios of CPU wall time per time-
step (C-PISO/PISO) are lower for the planar extrudate swell, which mean that the CPU
wall time gains using the C-PISO algorithm seems to be higher for non-smooth geometries.
Table 2 also shows the total calculation time in hours when using M5 and the consistent
PISO algorithm. As for the planar extrudate swell, all of the calculations finished in less
than 1.5 days.
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Figure 12. Steady state pressure contour for axisymmetric extrudate swell flow of Newtonian fluids,
at Re = 0.1 (top), 1, 2, 5, 7, and Re = 10 (bottom).

Table 3. A comparison of the dimensionless time-step ∆t/(R2/ν) employed in the simulations and the CPU wall time
(s) per time-step required by the PISO and consistent PISO algorithms for all Re, using mesh M5, for the axisymmetric
extrudate swell of Newtonian fluids.

Re ∆t/(R2/ν) CPU Wall Time (s) Per Time-Step

C-PISO PISO C-PISO/PISO C-PISO PISO C-PISO/PISO Total calculation
time [h]

0.1 0.0652 0.0031 21.0 7 12 0.58 22.4
1 0.0064 0.0013 4.9 7 9 0.78 30.4

10 0.0006 0.0001 6 5 9 0.56 11.6

4. Conclusions

A numerical formulation for efficient moving mesh interface tracking simulations of
free-surface flows was presented and implemented using the finite-volume method. The
implementation was performed in the open-source OpenFOAM framework [37], where
the interface is tracked in a semi-implicit manner inside the consistent second-order time-
accurate non-iterative Pressure-Implicit with Splitting of Operators (consistent PISO) algo-
rithm for the numerical solution of incompressible fluid flows. Additionally, the moving
mesh was adjusted to the time varying shape of the interface, using a Laplacian scheme
with a least-squares volume-to-point interpolation, which allowed for robust and stable
deformations of the interface.

The improved algorithm was assessed in terms of the accuracy and efficiency for
the fluid flow simulations in planar and axisymmetric extrudate swell of Newtonian
fluids. A mesh sensitivity analysis allowed for obtaining a grid refinement level from
which the calculated extrudate swell ratio differs from the extrapolated value of 0.7%.
Subsequently, the robustness of the numerical algorithm was pursued, increasing the
Reynolds number from Re = 0.1 to Re = 10. The extrudate swell ratio that was obtained
for both domains compared well with the results found in the scientific literature for
that range of Re. Additionally, the contours for the magnitude of the velocity vector and
pressure fields are also shown, and a detailed study of the contours reveals that the obtained
results are physically meaningful. Finally, the efficiency of the improved numerical solver
was evaluated by comparing the CPU wall time (s) per time-step for both the PISO and
consistent PISO algorithms. The results obtained allowed for concluding that the consistent-
PISO is, at maximum, 47% and 42% faster than the PISO algorithm for the planar and
axisymmetric extrudate swell domain geometries, respectively.
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In summary, the results presented here show that the newly-improved interface track-
ing code, developed using an open-source framework, can accurately and efficiently predict
the Newtonian extrudate swell. The code that was implemented here is being currently ex-
tended to handle viscoelastic fluid flow calculations and non-isothermal processes. For the
viscoelastic fluid flow calculations, we will use the quasi-linear Oldroyd-B and exponential
PTT rheological models. The former will be used due to the numerical instabilities that are
caused by the infinite polymeric stresses generated at singular points, which will verify
the robustness of the numerical implementation; and the latter will be used because it is
more suitable for approximating the behavior of polymer melts, where the extensibility
parameter introduces elongational and shear thinning in the fluid model. Additionally, the
solvent and polymeric viscosities and the relaxation time of the viscoelastic fluid will be
considered as temperature dependent, by employing the Williams–Landel–Ferry relation.
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