
Digital-twin for particle-laden viscoelastic fluids: ML-Based 
models to predict the drag coefficient of random arrays of spheres

C. LOIRO1 ,C. FERNANDES1, G. H. MCKINLEY,2 S. A. FAROUGHI3,*

1Institute for Polymers and Composites, Department of Polymer Engineering, University of Minho, Portugal 
{b12374@dep.uminho.pt, cbpf@dep.uminho.pt }

2Hatsopoulos Microfluids Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, USA 
{gareth@mit.edu}

3Petrolern LLC, Atlanta, USA {faroughisalah@gmail.com}

CONCLUSIONS
• The ML models applied to predict the drag force of monodisperse spherical

particles translating in shear-thinning viscoelastic fluids, described by the
Giesekus model had good performance results. The model that best suits our
case study is the XGBoost model with the highest value of 𝑅𝑅2(0.9961) and the
lowest RMSE (0.0525).

• ML models can be a valuable predictive tool. Numerical simulations combined
with ML techniques can coexist (e.g. Eulerian-Lagrangian viscoelastic solver
where the drag coefficient 𝐶𝐶𝐷𝐷(𝑅𝑅𝑅𝑅,𝑊𝑊𝑊𝑊, 𝜁𝜁,𝛼𝛼,𝜙𝜙) is given by a ML model) for the
development of new promising possibilities in computational science and
engineering problems.
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• The model that best suits our case study is the XGBoost Model with the highest
value of 𝑅𝑅2 and lowest RMSE.

• The table shows that the ML models are accurate (𝑅𝑅2≥ 0.98 in all cases) with
low error values.

• We show the tested values (blue points), training values (green points) and the
predicted values (red points) and regression line (red line) for each model.

.

INTRODUCTION
• The dependence of normalized average fluid-particle force F on solid volume fraction and

on the rheology of non-Newtonian fluids needs to be characterized.

• Direct numerical simulations (DNS) were performed to obtain the drag coefficient of
random arrays of monodisperse spherical particles translating in shear-thinning
viscoelastic fluids, described by the Giesekus model.

• The normalized average fluid-particle force F is obtained as a function of the volume
fraction of dispersed solids 0 ≤ ∅ ≤ 0.2, Reynolds number Re ≤ 50, Weissenberg number
0 ≤ Wi ≤ 4, retardation ratio 0 < 𝜁𝜁 < 1 and mobility parameter 0 < α ≤ 0.5.

• The numerical results obtained from the large-scale computations enable us to develop a
meta-model, based on Machine Learning (ML) models, specifically, Random Forest [1],
Deep Neural Network [2] and XGBoost [3], for the fluid-particle drag force to be used in
particle-laden viscoelastic flows.

RESULTS AND DISCUSSION
1. DNS RESULTS

• Direct numerical simulations of the viscoelastic drag correction factor, 𝜒𝜒, for random
arrays of spheres translating in the shear-thinning Giesekus viscoelastic fluid model,
were performed.

𝜒𝜒 = 𝐶𝐶𝐷𝐷(𝑊𝑊𝑊𝑊)/𝐶𝐶𝐷𝐷 𝑊𝑊𝑊𝑊 = 0 = 𝐶𝐶𝐷𝐷(𝑊𝑊𝑊𝑊)/(24/𝑅𝑅𝑅𝑅)

U

2. DATA DRIVEN MODELS

• In these models, Random Forest (RF) [1], Deep Neural Network (DNN) [2] and Extreme
Gradient Boosting (XGBoost) [3] are considered. The dataset was divided into training and
validation subsets and then compared with the predicted drag coefficient with a percentage
80/20, respectively.

• In order to train and compare the performance of this three models, the accuracy is
evaluated with statistical indicators, RMSE (root-mean-square error), 𝑅𝑅2 (R-squared) and
MAPE (mean absolute percentage error).

• To evaluate the performance of the ML models, we present these indicators in the following
table:

Neural Network XGBoost Model Random Forest

RMSE 0.0786 0.0525 0.0823

𝑹𝑹𝟐𝟐 0.9908 0.9961 0.9910

MAPE 3.0875 1.9935 2.9586
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where 𝑦𝑦𝑖𝑖∗ are the observed values, �𝑦𝑦𝑖𝑖∗ is the mean of the observed values and 𝑦𝑦𝑖𝑖 are the
predicted values.
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