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• We modelled NDVI productivity of ri-
parian plants from Sentinel 2 images.

• Inter-annual seasonality differed be-
tween drier and wetter years.

• Broadleaved, coniferous and grasslands
forests were intercompared.

• NDVI productivity was influenced by
annual rainfall and vegetation type.
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Riparian areas in the Cantabrian Atlantic ecoregion (northwest Portugal) play a key role in soil formation and
conservation, regulation of nutrient and water cycle, creation of landscape aesthetic value and the preservation
of biodiversity. Themaintenance of their ecological integrity is crucial given the ever increase inmultiple anthro-
pogenic (water demand and agriculture) and climatic pressures (droughts and extreme events).We developed a
transferable remote sensing approach, taking advantage of the latest freely available technologies (Sentinel-2
and Copernicus Land products), to detect intra-annual and inter-annual changes in riparian vegetation produc-
tivity at the river basin scale related to water stress. This study has used the normalized difference vegetation
index (NDVI) to investigate riparian vegetation productivity dynamics on three different vegetation types (conif-
erous, broadleaved and grassland) over the past 5 years (2015–2019). Our results indicated that inter-annual
seasonality differed between drier (2017) and wetter (2016) years. We found that intra-annual dynamics of
NDVI were influenced by the longitudinal river zonation. Our model ranked first (r2m = 0.73) showed that
the productivity of riparian vegetation during the dry season was positively influenced by annual rainfall and
by the type of riparian vegetation. The emergent long lags between climatic variation and riparian plant produc-
tivity provides opportunities to forecast early warnings of climatically-driven impacts. In addition, the different
average productivity levels among vegetation types should be consideredwhen assessing climatic impacts on ri-
parian vegetation. Future applications of Sentinel 2 products could seek to distinguish riparian areas that are
likely to be more vulnerable to changes in the annual water balance from those that are more resistant under
longer-term changes in climate.
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1. Introduction

Riparian zones represent transitional areas occurring between land
and freshwater ecosystems, that provide many ecosystem functions
and services related to water quality, microclimate regulation, struc-
tural habitat for wildlife, energy base for the food web, and bank stabil-
ity (Naiman et al., 2005). Particularly, riparian plants represent a
primary energy source for in-stream consumers, especially in headwa-
ter sections, having a strong influence on the structure of freshwater
communities (e.g. macroinvertebrate shredders; Ono et al., 2020).
Moreover, the composition and structure of riparian vegetation can af-
fect the suitability of habitat for riparian predators as well as the terres-
trial stages of aquatic organisms (Larsen et al., 2015). Riparian
vegetation provides shade and regulates microclimate conditions,
which can influence the activity and dispersal patterns of several adult
aquatic insects (e.g. Ephemeroptera, Plecoptera and Trichoptera) and
amphibians (Collier and Smith, 2000; Briers et al., 2003; Kominoski
and Rosemond, 2012). In addition, riparian vegetation can capture and
filter surface runoff due to physical impact of living and dead plants
on hydraulics, mitigating impacts of sedimentation or nutrients on
aquatic ecosystems (Dosskey et al., 2010). However, riparian ecosys-
tems are exposed to multiple anthropogenic pressures, such as agricul-
ture, climate change or hydromorphological alterations, which
deteriorate their health (Bruno et al., 2016; Stella and Bendix, 2019)
and may trigger cascading environmental effects and long-term conse-
quences related to water quality, flowmoderation, soil erosion and bio-
diversity conservation (Swanson et al., 2017).

Climate change is expected to cause shifts in precipitation and
stream runoff patterns, including extreme differences between high
and low streamflow, reduce groundwater recharge, alter nutrient dy-
namics and ecosystem functions (Johnson et al., 2012; Raymondi
et al., 2013). Drought is one of the most dramatic consequences of cli-
mate change with impacts on the biosphere. Although drought events
are common in arid or semi-arid and Mediterranean climate regions,
with documented impacts on freshwater ecosystems (e.g. Bond et al.,
2008), these events are intensifying across the globe even in humid
and temperate regions (Gómez-Gener et al., 2020; Masante et al.,
2018). This may be the case of northwest Portugal, located in a transi-
tion between Mediterranean and Atlantic climate, where mean annual
rainfall can be greater than 2500 mm (Trigo and Da Camara, 2000). In-
deed, in this region, a strong reduction in mean precipitation and dura-
tion of the rainy season is expected to occur according to climate change
scenarios (IPCC, 2014; Miranda et al., 2002; Nunes et al., 2019).

These changes in climate may lead to significant alterations in sev-
eral physiological aspects and phenophases of riparian plants, such as,
leaf unfolding and flowering of plants in spring or colour changing
and leaf fall in autumn (Gordo and Sanz, 2010). The effects of changing
climate have been also associated with a considerable increase in the
susceptibility of riparian plant species to pathogens and insect pests,
leading to regional tree die-offs (Breshears et al., 2005) and changes in
the distribution of vegetation (Bodner and Robles, 2017). Moreover,
physiological performance of plant responses to climate stress may
vary between different plant species and tissues (Garssen et al., 2014;
Sun et al., 2020). For example, willows (Salix sp.) are considered more
sensitive to drought than cottonwoods (Populus sp.), due to their
smaller seed size and a slower growth of roots (Amlin and Rood,
2002). In addition, gradual climate change may lead to long-term
destabilisation of grassland and forest communities, favoring forest spe-
cies with slower phanerophyte dynamics (Barros et al., 2018).

Since some changes may occur gradually and others may occur epi-
sodically (e.g., wildfire), long-termmonitoring is needed to detect accu-
rately where, when, and how climatic effects occur for riparian
vegetation (Dwire et al., 2018) and to better discern the influences of in-
terannual climatic variability from management, disturbance, or other
human activities (Albano et al., 2020). However, due to the spatial ar-
rangement, dynamism and inaccessibility of riparian ecosystems,
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collecting data in field studies can be difficult and labour-intensive, es-
pecially for large areas (i.e. at the river basin scale or for more than
100 km of a river) (Johansen et al., 2007).

Remote sensing techniques have been recognized as a convenient
way to obtain continuous data, over a variety of scales and resolutions,
and have been recently used for studying fluvial environments, espe-
cially the riparian zones (Tomsett and Leyland, 2019). Traditionally,
the Land Satellite (Landsat) ThematicMapper (TM), the French Systeme
Pour L'Observation de la Terre (SPOT) and the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) have proven ef-
fective for mapping wide riparian buffers, land cover, and changes in
large coastal watersheds (Goetz, 2006; Klemas, 2014). Recent advances
in techniques and satellite programs have generated an increased avail-
ability of very high-resolution data that will help to better assess links
between riparian vegetation main traits (e.g., biomass productivity,
phenology) and climatic variability and extremes. Among the free-
available satellite programs, the polar-orbiting Landsat-8 (launched
2013), Sentinel-2A (launched 2015) and Sentinel-2B (launched 2017)
sensors offer high resolution satellite images (10 m to 30 m) multi-
spectral global coverage providing images of the Earth's entire surface
every fewdays (Li and Roy, 2017; Sudmanns et al., 2019). This increased
frequency of image acquisition together with the advances in the ability
to process data provides new opportunities for detecting rapid or
gradual riparian vegetation changes. For instance, these techniques
allow for a better characterization of riparian vegetation properties
(e.g., diversity, biomass, health) and dynamics (e.g., phenology and
phenophases) than it was previously possible (Goetz, 2006). When
using remote sensing, vegetation phenology is typically monitored by
means of time series of spectral vegetation indices that provide a rapid
and non-destructive method to estimate the fraction of photosyntheti-
cally active radiation absorbed by Earth's vegetation (Novillo et al.,
2019). Among the high number of vegetation indices, the Normalized
Difference Vegetation Index (NDVI) has been frequently used to assess
long-term trends of vegetation (Peng et al., 2012), to monitor system
primary productivity over time (Stöckli and Vidale, 2004) and, more re-
cently, to investigate productivity–diversity relationship (Wang et al.,
2016; Rocchini et al., 2018; Torresani et al., 2019). In addition, NDVI
anomaly has been correlated to pant growth reduction, loss of green
coverage and eventual tree mortality in response to environmental
change (Camarero et al., 2015; Lloret et al., 2016; Breshears et al.,
2005; Rajah et al., 2019; Gouveia et al., 2017; Senf et al., 2020). Focusing
more specifically on remote-sensed studies that investigated relation-
ships between riparian vegetation health and climatic variability and
extremes, a linear relationship between NDVI and antecedent rainfall
periods has been documented in arid to semi-arid regions, where high
temperature and water stress are common (Wang et al., 2003; Fu and
Burgher, 2015; Birtwistle et al., 2016; Albano et al., 2020). In contrast,
less documented are NDVI responses to climate variability, in humid
and temperate regions, where water stress is an emerging threat
(Gómez-Gener et al., 2020; Masante et al., 2018). In addition, previous
studies have suggested that themajor climatic factors affectingNDVI re-
sponse may vary among climatic regions, riparian vegetation structure
andmanagement type (Huntington et al., 2016; Fesenmyer et al., 2018).

In this study, we developed a transferable remote sensing approach
aiming to i) detect intra-annual and inter-annual changes in riparian
vegetation productivity at the river basin scale related to water stress,
ii) assess how climatic variability (rainfall) and catchment attributes
(elevation, vegetation type and management) influence the riparian
vegetation productivity during the dry season. We employed temporal
analysis (from2015 to2019) based on the long-termNormalizedDiffer-
ence Vegetation Index (NDVI) data sets derived from Sentinel-2 sensors
in order to detect changes in the long-termvegetation productivity of ri-
parian zones. We expect that decreased precipitation will increase
water stress and induce loss of NDVI-based primary productivity on ri-
parian plants. Specifically, we hypothesize that: (i) Increasing water
stress inhibit plant growth and photosynthesis, influencing the duration
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of vegetation greenness across seasons, with detectable intra-annual
changes in NDVI; (ii) productivity of riparian zoneduring the dry season
increases when more precipitation is accumulated over long periods of
time, i.e. the higher the precipitation along the year, the higher the
water storage and the NDVI; and (iii) water stress responses differ
among riparian tree forest with higher stability of forests than grass-
lands due to the slower phanerophyte dynamics (they grow slower,
live longer and mature later).

2. Materials and methods

2.1. Case Study: Cávado River basin

All study sites are at the Cávado River basin in the north Portugal
(Fig. 1). This basin occupies an area of 1589 km2, with a mean elevation
of 564mwith several peaks of 1500m, and an average population density
of ca. 200 inhabitants/km2 (minimumof 22 atMontalegre andmaximum
of 1770 at Braga) (Vieira et al., 1998). The annual average precipitation is
Fig. 1. Locations of the study plots along the Cávado River basin (northwest Portugal): Portugal
vegetation cover (B); detail of two 100m×100msampling squares (the green grid represents v
in this figure legend, the reader is referred to the web version of this article.)
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2348 mm, 42% of which is concentrated in the months of December,
January and February. Mean annual air temperatures is 12.7 °C, with a
maximum average temperatures of 16.2 °C and a minimum average of
8.3 °C (Portal do Clima http://portaldoclima.pt/en/, Trigo and Da
Camara, 2000). The water is intensively used for hydropower generation,
domestic and industrial water supply and agricultural irrigation.
Main tributaries are the Rabagão River (left side, with a drainage area of
257 Km2) and the Homem River (right side, with a drainage area of
246 km2). According to the conceptual geobotanical proposals of Rivas-
Martínez et al. (2017), the Cávado river basin cross two different biogeo-
graphic region of the Iberian Peninsula: primarily, the Cantabrian Atlantic
Subprovince and to the smallest extent, the Atlantic Orolusitanian
Subprovince. We focused our study on the distribution of the three
mayor riparian vegetation types of the Cantabrian Atlantic landscape
(Amigo et al., 2017): coniferous forest, broadleaved forests and grass-
lands. These forests play a key role in soil formation and conservation,
the regulation of nutrient cycle and the water cycle, the production of
various goods and services (e.g. firewood, timber and wild mushrooms),
andmain rivers (A); sub-regional study site: Cavado river catchment and sampling sites of
ectorized Sentinel-2 20m×20mpixels) (C). (For interpretation of the references to colour

http://portaldoclima.pt/en/
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the creation of aesthetic and landscape value (mostly associatedwith for-
est and agrosystemmosaics) and the preservation of biodiversity. Partic-
ularly, coniferous forests are dominated by presence of Pinus pinaster.
Native broadleaved forests are dominated by presence of Quercus robur
and Quercus pyrenaica followed by Alnus glutinosa, Salix atrocinerea,
Laurus nobilis and Crataegus monogyna, that characterize the Galicio-
Portuguese oak woods (Habitat 9230 sensu Habitats Directive, European
Commission, 1992; European Commission, 2013); A. glutinosa, Fraxinus
excelsior, Osmunda regalis and S. atrocinerea, that characterize the Alluvial
forests Osmundo-Alnion (Habitat 91E0 sensu Habitats Directive,
European Commission, 1992; European Commission, 2013). However,
broadleaved forests also include Eucalyptus globulus, since the native for-
ests in Northern Spain and Northern Portugal have been replaced gradu-
ally and widely by Eucalyptus plantations. Perennial Grasslands are
dominated by the presence of Arrenatherum elatius that characterize the
Molinio-Arrhenatheretea association (Habitat 6510 sensu Habitats
Directive, European Commission, 1992; European Commission, 2013),
and of wet meadow species (Lotus pedunculatus, Juncus acutiflorus,
Cyperus longus, Cardamine pratensis) that characterize the Cynosurion as-
sociation (Habitat 6410 sensu Habitats Directive, European Commission,
1992; European Commission, 2013).

2.2. Materials

2.2.1. Copernicus land monitoring service: Riparian Zone
The Riparian Zone (RZ) is a local Copernicus LandMonitoring Service

(CLMS - https://land.copernicus.eu/local/riparian-zones) Open Access
product that supports the objectives of many European legislations,
such as the Birds and Habitats Directives (European Commission,
1992; European Commission, 2009), the Water Framework Directive
(European Commission, 2000) and the Floods Directive (European
Commission, 2007). RZ consists of three products: Delineation of Ripar-
ian Zone (DRZ), Land Cover/Land Use (RZ LC/LU) and Green Linear Ele-
ments (GLE). Particularly RZ LC/LU provides very detailed information
of the riparian environment (LC/LU classes and its characteristics)
along large and medium sized rivers (Piedelobo et al., 2019).

We used RZ LC/LU to derive the distribution of Coniferous forest,
Grasslands and Broadleaved forest within our study area.

2.2.2. Sentinel-2 multispectral imagery
The presented work used Sentinel-2 satellite data (S2A MSI L1C),

since it offers freely available high spatial resolution images (10 m to
20 m) and multi-spectral global coverage with high temporal
resolution.

We selected 1 scene (T29TNG tile) per month for the period of July
2015 (Sentinel-2A was lunched on 23 June 2015) to December 2019,
with the lowest amount of noise (e.g., shadows and clouds). Therefore,
scenes having a cloud cover higher than 15%, including those with par-
tial presence of noisewithin the study areas (e.g. upper part of the basin
comparing to the lower), were discarded to avoid misinterpretation of
the results. Particularly, the high temporal resolution (10 days using
one satellite, 5 days using two) offered by Sentinel-2 products, allow
us to have more chance to achieve completely cloud-free scenes. This
resulted in 43 valid observations (date of Sentinel-2 images used are re-
ported in Table S2), acquired from the EarthExplorer (EE) user interface
(https://earthexplorer.usgs.gov/) developedbyUnited States Geological
Survey (USGS).

2.2.3. Ancillary data
Since there are few long-termweather stations within our study area

and where available the data series provided is largely incomplete
(https://snirh.apambiente.pt), we used gridded 5 km temperature and
precipitation dataset (2015–2019) implemented within the CLIMALERT
project (www.climalert.eu). The underlying station data set is the global
surface summary of day (GSOD v7, https://www.ncei.noaa.gov/data/
global-summary-of-the-day). Spatial fields have been generated using
4

external drift kriging with elevation as additional information. In
Table S1 we resume the main characteristics of input products and data
used in the proposed methodology.

2.3. Methodology

The proposed steps deliver a transferable remote sensing approach
(Fig. 2) based on Open Access data to detect intra-annual and inter-
annual changes in riparian vegetation productivity at the river basin
scale related to water stress.

2.3.1. Pre-processing
To assure that the main input RZ LC/LU were suitably characterizing

the riparian areas in the case study area, they were cross-checked with
Google Earth satellite's high-resolution images, loaded in QGIS via the
QuickMapServices plugin. Successively, twenty plots (100 × 100 m)
were placed within each riparian vegetation class following a sampling
design similar to other studies (Rocchini et al., 2016; Rocchini
et al., 2018; Torresani et al., 2019). In this way, we assure a better fit
(up-scaling) among the higher spatial resolution of Sentinel data and
the coarser resolution of RZ LU/LC and climatic data used,without losing
information in terms of correlation between spectral variability and
species diversity (Rocchini et al., 2010; Schmidtlein and Fassnacht,
2017). In addition, to avoid mixed pixel (water-vegetation), that could
lead to data misinterpretation (over representation in NDVI means),
study plots were cross-checked and validated based on intersection of
study plots with river network and evaluating the influence of the can-
opy and the river width in doubtful cases with Google Earth satellite's
high-resolution images.

Based on MAES concept (Mapping & Assessment of Ecosystems and
their Services) and using the Level 2 and 3 of Hierarchical Nomenclature
associated with the RZ LC/LU layer, information on management type
were derived characterizing each study plots into natural/semi-natural
or cultivated/managed areas. Specifically, in natural areas, the vegeta-
tive cover is in balance with the abiotic and biotic forces of its biotope;
in semi-natural areas, vegetation is defined as not planted by humans
but influenced by human actions (e.g., grazing); whereas in cultivated
and managed areas, vegetation is considered artificial and requires
human activities to maintain it in the long term (Di Gregorio, 2005).

Digital Surface Models (DSM's) were also used, to derive altitude
values for each study plots. In addition, to assess if river longitudinal zo-
nation influence NDVI-based primary productivity, study plots were
grouped into three river sections (upper, middle and lower), taking
into account their spatial proximity.

Concerning satellite data, all 43 images were pre-processed for at-
mospheric correction, using Dark Object Substract 1 (DOS1) correction
carried out with the Semi-Automatic Classification plugin (Congedo,
2016) in QGIS.

Concerning precipitation data, we firstly extract monthly data of the
covered period using QGIS. Successively, for each year, we calculated
several cumulative rainfall metrics for different periods by summing
upmonth input data:May–July (rain spring); February–April (rainwin-
ter); November–January (rain autumn). Annual rainfall amounts
(rain_12m) were computed, starting from 1 month before the
beginning of the dry periods (August), as determined below. This one-
month lead was introduced in order to take into account the lag be-
tween photosynthetic activity variations and those of rainfall (adapted
from Camberlin et al., 2007).

All the analyses were performed in QGIS 3.10.12 (Quantum GIS
Development Team, 2009).

2.3.2. Processing and outputs

2.3.2.1. Calculation and multitemporal analysis of phenological variable
(NDVI). Following atmospheric correction, NDVI was calculated for all
43 images as per Eq. (1) using bands 4 and 8 in Sentinel-2 which have

https://land.copernicus.eu/local/riparian-zones
https://earthexplorer.usgs.gov/
https://snirh.apambiente.pt
http://www.climalert.eu
https://www.ncei.noaa.gov/data/global-summary-of-the-day
https://www.ncei.noaa.gov/data/global-summary-of-the-day


Fig. 2. Flowchart of the proposedmethodology based on RS approach to detect intra-annual and inter-annual changes in riparian vegetation productivity at the river basin scale related to
water stress. 1Cross-check validation of suitability of RZ LC/LU based on Google Earth satellite's high-resolution images. 2Cross-check validation based on intersection of study plots with
river network and inspection with Google Earth satellite's high-resolution images.
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been calibrated to sense radiation in the visible (Red) and near-infrared
(NIR) regions of the spectrum respectively.

NDVI ¼ NIR−Redð Þ= NIRþ Redð Þ ð1Þ

NDVI values range between −1.0 and 1.0 with values nearing zero
and below indicating features which are not vegetated such as water,
snow, ice, clouds and barren surfaces. Next, using the derived NDVI ras-
ters (at 10 m pixel size), for each plot we extracted the average NDVI
values within the plot area (100 × 100 m in our case) representing
our NDVI value in respect to the local riparian vegetation class.

2.3.2.2. Modelled intra-annual and inter-annual changes in NDVI. Firstly,
to estimate intra-annual and inter-annual variation in overall riparian
vegetation productivity (NDVI), we used General Additive Models
(GAM) based onmonthly data averaged by spatial group (n=132), ac-
counting the 3 major riparian vegetation types (grasslands, conifer,
broadleaved) of our case study region.

GAMs included year, month and spatial group data and an interac-
tion between month and year as predictors. Month was smoothed
using a cubic spline (k = 12) to capture seasonal variation. We tested
Table 1
Candidate models tested with LME (alt = altitude (masl); veg_type Riparian Vegetation Classe
natural or cultivated/managed areas); rain_m=monthly rain (August); rain_aut= cumulative
lative rainfall during winter; rain_m:veg_type = Interaction among monthly rain and veg type

Type of model Model

Exclusively catchment (river basin attributes) Model 1
Model 2

Exclusively climatic (rainfall metrics) Model 3
Model 4
Model 5
Model 6

Mixed (climatic + catchment) Model 7
Model 8
Model 9

5

the inclusion of the interaction and the appropriateness of GAM respect
to a linear model with the same set of predictors using Akaike Informa-
tion Criterion (AICc) for small samples. To conduct GAMs, we used the
mgcv R library (Wood, 2017).

Secondly, we used linear mixed-effect models (LME) and a multi-
model inference approach (Burnham and Anderson, 2002) to explore
if inter-annual changes in NDVI during the dry season were explained
by catchment aspects, riparian vegetation type and/or climate. We fo-
cused on August NDVI values because it is the month of maximum hy-
drologic stress over the hydrological year (Trigo and Da Camara, 2000).

We first built nine LME, including (as fixed factors): exclusively
catchment features (altitude, riparian vegetation type andmanagement
type), exclusively climatic predictors (with different rainfall metrics), or
a combination of them, including also interactions between climate and
riparian vegetation type (Table 1). Interactions allow testing if climate
have similar effects across riparian land-uses. Plot was included as ran-
dom factor to account for multiple measures taken at the same site. To
avoid collinearity, we excluded maximum temperature from climatic
predictors as it was highly correlated with rainfall variables (Pearson
r > |0.70|). Second, based on AICc, we ranked the nine alternative
models according to their AICc values and retain those with a difference
s (Coniferous, Grassland or Broadleaved); man_type =Management Type (natural/semi-
rainfall during autumn; rain_spn= cumulative rainfall during spring; rain_win= cumu-
; rain_12m:veg_type = Interaction among year rain and veg type).

Candidate models

alt+veg_type,+man_type
rain_m
rain_12m
rain_aut+ rain_spn+rain_win
alt+lveg_type,+man_type+ rain_m
alt+lveg_type,+man_type+rain_m+rain_m:veg_type
alt+lveg_type,+man_type+rain_12m
alt+veg_type,+man_typee+rain_m+rain_12m:lveg_type
alt+veg_type,+man_type+rain_aut+rain_spn+rain_win
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of AICc ≤ 2 respect to the model showing the model ranking first
(Burnham and Anderson, 2002). We also derived total model explained
variance (r2) and Akaike weights (w) for each model to inform on the
explanatory capacity and the relative likelihood of each model, respec-
tively. For each LME model, two measures of goodness-of-fit were esti-
mated (Nakagawa and Schielzeth, 2013): marginal goodness-of-fit
(r2m) indicates the variance explained only by the fixed factors, while
conditional goodness-of-fit (r2c) shows the variance accounted for by
both fixed and random terms. In all cases, model residuals were visually
assessed to verify linear model assumptions (Zuur et al., 2009).

For final GAM and LMEmodels, we also checked the spatial autocor-
relation structure of themodels' residuals usingMoran's Index (Moran's
I) based on each site's coordinates. When the Moran's I values were
significantly higher than I> |0.50|, we added a residual spatial autocor-
relation covariate (RAC) as predictor to capture the spatial effects non-
considered by the fixed factors (Crase et al., 2012). This RAC term con-
siders the correlation between the residuals at a given plot and those
from its neighbouring locations. For final GAM and LME models, we
found a temporal dependence in the model residual. In these cases,
we added an autoregressive integrated moving average (ARIMA) term
to account for the lack of temporal independence of residuals.

3. Results

3.1. Inter-annual and intra-annual climatic and riparian vegetation NDVI
patterns

Concerning climatic patterns, 2016 was the wettest year of the se-
ries,with a total of 1400mmof rainfall, whereas the 2017was the driest
with a total of 800 mm (Fig. 3a). The highest average temperature was
recorded during 2018, followed by 2016 and 2017 (Fig. 3b). In contrast,
cooler mean temperatures were found during 2015 and 2019 (Fig. 3b).
Inter-annual variability of NDVI values, derived from Sentinel 2, is
shown in Fig. 3c. Overall, NDVI values were lower during the driest
year (2017) compared to the other years of the analysed temporal se-
ries. Outputs from the GAMs for modelled intra-annual changes in
NDVI are shown in Fig. 4. Year, month, spatial group and the interaction
between month and year were significant predictors of NDVI dynamics
(details in Table S3). When looking at intra-annual patterns, NDVI
values were generally higher in the middle and lower section of the
basin compared to the upper section. Intra-annual dynamics showed
marked variations across years, but they all showed maximum NDVI
from March to September (Fig. 4); NDVI started to decrease during au-
tumn and showed minimum values during winter. However, the stud-
ied seasonal dynamics differed inter-annually. The seasonal maximum
NDVI occurred in summer 2016 (NDVI = 0.73 ± 0.09), whereas mini-
mum occurred in winter 2017 (NDVI = 0.40 ± 0.14). In 2018, high
Fig. 3. Interannual variability of annual rainfall (a), m
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values of NDVI were maintained until November and then decreased
in December. A similar seasonal behaviour was found in 2016. In con-
trast, in 2017 NDVI started decreasing earlier in August.

3.2. Catchment and climate influence on NDVI during the dry season

Model ranked first included both climatic (12 month precipitation)
and catchment variables (riparian vegetation types and elevation), but
no interactions between them (Model 7; ΔAICc < 2; r2m = 0.73;
Table 2). Model ranking also suggests that 12 month precipitation is a
better predictor of NDVI than seasonal precipitation. Ourmodel ranking
also shows that interactions between climatic and catchment variables
had low support. Exclusively climatic models tended to explain lower
amounts of NDVI variance (r2c = 4–11%) than exclusively catchment
models (r2c = 39%), while those including both types of variables had
the most explanatory capacity. Precipitation, either annual or seasonal,
tended to have a positive influence on NDVI.

When accounting for spatial autocorrelation in the model ranking
first (Table 3), 12month precipitation and vegetation typewere still sig-
nificant and explained 51% of the variance (Fig. 5). In this model, annual
rainfall amounts (12 month precipitation) had a significant positive re-
lationship with NDVI, although NDVI showed different levels for each
vegetation type. Broadleaved vegetation type tends to have highest
NDVI, conifers were linked to higher NDVI than grasslands. However,
same effect (slope) across vegetation types was detected (Table 3;
Fig. 5). Altitude and management type (natural/seminatural or culti-
vated/managed areas) were not significantly related to NDVI. Through
the end of the dry season, NDVI values were consistently highest for
broadleaved forest, intermediate for coniferous and lowest for grassland
(Fig. 5).

4. Discussion

Our results clearly showed that NDVI-based primary productivity
has observable and quantifiable seasonality as revealed by Sentinel 2
satellite remote sensing. Marked seasonal changes between spring/
summer and autumn/winter were common to all years with minimum
values occurring during autumn/winter, and maximum values occur-
ring during the spring/summer season in all years. However, differences
in NDVI curves were detected between the wettest (2016 and 2018)
and the driest (2017) years. These patterns suggest that the decrease
in water availability may influence the duration of greenness that can
be interpreted as a surrogate of the length of the growing season (Fu
et al., 2014; Badr et al., 2015). Particularly, drought has generally been
associated with reduced leaf longevity in deciduous species, depending
on the length and severity of the drought (Leuzinger et al., 2005;
Estiarte and Peñuelas, 2015). Therefore, NDVI loss can be used as a
aximum average temperature (b) and NDVI (c).



Fig. 4.Modelled intra-annual and spatial trends of riparian vegetation NDVI along the Cávado river basin derived from General Additive Models (GAMs). Month was smoothed using a
cubic spline (k = 12) to capture seasonal variation.
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practical tool to illustrate relevant ecological consequences of water
stress on riparian plants, i.e., loss of photosynthetic activity, crown
partial dieback, complete or partial foliage drop and reduction leaf
longevity.

In our study, NDVI-based primary productivity recovered quickly
after the driest year, suggesting high resilience of riparian plants to cli-
mate variability. Such high resilience could be explained by the fact
that many riparian plants are adapted to hydrologic and climatic distur-
bances andmay tolerate both seasonal and annual variation in environ-
mental conditions (Naiman and Decamps, 1997; Stromberg et al., 2013;
Bruno et al., 2016). For example, rapid root extension, reduction in leaf
size, crown dieback and branch abscission are common for riparian
trees and potentially reduce the stress related to seasonally-variable
water content (Stella et al., 2013).

In this study, we found that river longitudinal zonation influence
NDVI-based primary productivity with higher NDVI values occurring
in the middle and lower sections of the river basin. Such result can be
explained considering two aspects: firstly, the commonly observed
Table 2
Model rankings and r2 for the relationship among NDVI, catchments attributes and rainfall me
goodness-of-fit; alt = altitude (masl); veg_type Riparian Vegetation Classes (coniferous, grass
managed areas); rain_m=monthly rain (August); rain_aut = cumulative rainfall during autu
winter; rain_m:veg_type = Interaction among monthly rain and veg type; rain_12m:veg_type

Type of model Candidate models

Mixed (7) alt+veg_type,+man_type+rain_12m
Mixed (8) alt+veg_type,+man_type+rain_12m:veg_type
Mixed (9) alt+veg_type,e+Rain_aut+rain_spn+rain_win
Exclusively climatic (3) rain_12m
Exclusively climatic (4) rain_aut+rain_spn+rain_win
Mixed (6) alt+veg_type,+man_type+rain_m+rain_m:veg_type
Mixed (5) alt+veg_type,+man_type+rain_m
Exclusively catchment (1) alt+veg_type,+man_type
Exclusively climatic (2) rain_m
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unimodal pattern of riparian species richness with peaks in the middle
reaches of a river (Renöfält et al., 2005; Catford and Jansson, 2014); sec-
ondly, the relationship between species richness and productivity
(Wang et al., 2016; Torresani et al., 2019). In other words, plots with
high riparian species richness may tend to have a higher mean NDVI
and lower variation in NDVI than plotswith low species richness. Unfor-
tunately, due to the lack of field data such hypothesis needs to be con-
firmed in further research.

Based on our statistical models, NDVI-based primary productivity
during the dry season was positively influenced by annual rainfall for
all vegetation types and the response varied slightly among types
(broadleaved, coniferous, and grassland). This pattern was not influ-
enced by elevation. Our results also suggest that reductions in annual
rainfall severely reduced the productivity of riparian vegetation even
in a humid Atlantic climate region. Regional decrease in vegetation pro-
ductivity (NDVI) in southern Europe was detected during the 2003
drought episode and exhibited important differences between forest
types (Gobron et al., 2005; Lobo and Maisongrande, 2005; Lloret et al.,
trics, in summer (august), 2015–2019 (r2c = conditional goodness-of-fit; r2m=marginal
land or broadleaved); man_type= Management Type (natural/seminatural or cultivated/
mn; rain_spn = cumulative rainfall during spring; rain_win = cumulative rainfall during
= Interaction among year rain and veg type).

r2c r2m df logLik AIC Delta Weight

0.50 0.73 8 380.00 −744.00 0.00 0.80
0.50 0.73 10 380.55 −741.10 2.90 0.19
0.49 0.72 10 377.24 −734.48 9.52 0.01
0.11 0.72 4 355.11 −702.22 41.78 0.00
0.11 0.72 6 352.28 −692.57 51.43 0.00
0.44 0.66 10 352.85 −685.70 58.30 0.00
0.43 0.65 8 349.33 −682.65 61.35 0.00
0.39 0.60 7 333.65 −653.30 90.70 0.00
0.04 0.65 4 323.23 −638.47 105.53 0.00



Table 3
Significance of fixed effect terms of the best supported model. Significant p-Values are bolded.

Estimate Std. error df t-Value p-Value

(Intercept) 0.56141 0.02366 239 23.73 0.000
rain_12m 0.00018 0.00002 239 10.64 <0.001
alt −0.00003 0.00003 54 −1.23 0.225
veg_type_typeConiferous −0.04830 0.01896 54 −2.55 0.014
veg_type_typeGrassland −0.15953 0.01964 54 −8.12 <0.001
man_type_typenatural/seminatural areas −0.01855 0.01594 54 −1.16 0.250
ac 0.02004 0.00775 54 2.59 0.012
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2007). Higher anomalies were detected in herbaceous than in woody
vegetation, and in deciduous than in evergreen broadleaf forests (Lobo
and Maisongrande, 2005). Among coniferous forests, NDVI decreased
in Mediterranean (Pinus halepensis) and mesic (Pinus sylvestris) forests,
while it did not change significantly in mountain (Pinus uncinata) pine
forests (Lloret et al., 2007). According to Barros et al. (2018), drought
impacts on structural stability showed that forests were generally
more stable than grasslands due to a slower phanerophyte dynamics
and because established canopies reduced drought intensity and
protected communities from extreme drought effects. However, in con-
trast to that predicted, we found no differences between forest types
and grasslands in terms of responses to the reduction in annual rainfall
(Table 3), but differences in the average NDVI levels among vegetation
types (broadleaved > conifer > grassland, Fig. 5). These results suggest
that changes in riparian vegetation types can severely reduce the pro-
ductivity of these areas. Considering that riparian zones are the main
source of carbon to streams (Lamberti et al., 2017; Ledesma et al.,
2018), lower productivity would lead to lower concentration of stream
dissolved organic carbon in the catchment (Mzobe et al., 2018)with po-
tential implications to the functioning of these freshwater ecosystems
(Warren et al., 2016).

Our results also confirm that variables describing rainfall occurring
over shorter periods or seasons had a lower influence on NDVI than ac-
cumulated annual rainfall. Moreover, NDVI was significantly correlated
with precipitation accumulated during previous periods of the year. Soil
water conditions are well known to be one of the foremost drivers of
species composition, biomass and plant phenology (Wang et al.,
2019). Particularly, soil moisture levels are strongly influenced not
only by precipitation accumulated during the current growing season,
but also by precipitation accumulated over a relatively long period of
Fig. 5. Relationship between NDVI (August) against cumulative precipitation 12 month
per Vegetation Type (Coniferous, Grassland, Broadleaved) at the Cávado river basin.
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time (Wang et al., 2003). Therefore, the more precipitation is stored
along the year, the higher NDVI is expected even at the end of the dry
season. Indeed, our findings suggest long lags (ca. 1-year time lag) be-
tween climatic variation and productivity of riparian vegetation.

5. Conclusion

In this study, we demonstrate that Sentinel 2 derived products have
the matching temporal and spatial resolution to assess and monitor
riparian ecosystem response to water stress, offering an inexpensive
and consistentmeans of simulated time series, that could be updated reg-
ularly. The emergent long lags between climatic variation (e.g., annual
precipitation) and productivity of riparian vegetation can provide inter-
esting opportunities for forecast NDVI-based primary productivity during
the dry season and develop early warnings of productivity anomalies.
However, thedifferent average levels of productivity of grasslands, conifer
and broadleaved vegetation, depicted in our study, should be considered
when assessing climatic impacts on riparian vegetation. Our findings can
further help to distinguish those riparian areas that are likely to be more
vulnerable to changes in the annual water balance from those that are
more resistant under longer-term changes in climate. Although our infer-
ences are limited to our study area, the approach described here are read-
ily transferable to other regions, particularly in understudied or data-
scarce regions. Finally, this approach, taking advantage of the latest freely
available technologies, can support the development of relevant, timely,
robust and accessible information that helps policy makers and public
users to prioritize management actions for riparian areas and evaluating
their effectiveness to improve adaptation to climate change.
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