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Abstract 

Background. Controlling the interfacial concentrations of antioxidants (AOs) in O/W 

emulsions can be regarded as an unique approach for increasing the efficiency of AOs 

in inhibiting the oxidation of lipids. Classical methods to determine the AO distribution 

in binary systems cannot be employed and their distribution needs to be assessed in the 

intact emulsion.  

 

Results. We have employed well-established kinetic methods to determine the 

distribution of a homologous series of AOs derived of chlorogenic acid in olive oil-in-

water emulsions and analyse the effects of AO hydrophobicity on their distributions and 

their efficiencies. Results indicate that the variations in the efficiency of chlorogenates 

in emulsions are due to differences in their interfacial concentrations. Their interfacial 

concentrations, (AOI), were much higher (20-150-fold) than their stoichiometric 

concentrations. On the other hand, their concentrations in the oil region were 1.5-0.1 

fold. Results also show the complex effect of the oil to water ratio employed in the 

preparation of the emulsions on the (AOI) values.  

 

Conclusion. Results highlight the key role of the interfacial region and of its 

composition (interfacial AO molarity, emulsifier concentration, oil to water ratio) in 

interpreting the efficiency of AOs in inhibiting lipid oxidation in emulsions. Thus, a 

careful modulation (adjustment?) of these parameters is necessary to ensure an optimum 

AO efficiency. 
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Introduction  

 

Oxidative stress has been recognized as a key factor in accelerating the aging process 

and in the development and progression of chronic diseases such as cancers, diabetes, 

neurodegenerative and cardiovascular diseases.1 The development of such pathologies 

generally is a consequence of an increase in radical production or a decrease in 

antioxidant defenses, leading to the oxidative alteration of important biomolecules such 

as proteins, lipids, carbohydrates and nucleic acids.2-5  

 

Natural polyphenols present in diet are considered to be one of the most important 

bioactive agents that may help to prevent, or slow down, the progression of the 

oxidative damage. Their efficiency depends on their chemical nature – mainly the 

number and position of substituents – but also on their local availability, limiting their 

applications in functional foods or medicine.6-8 Multiphasic System such as emulsions, 

membranes and cells are multiphasic, with regions of different solvent properties. Thus, 

polyphenols may exhibit differential solubility in each region of the system, partitioning 

between the different regions. Therefore, their availability is not necessarily the same 

and may vary widely from one compound to another. The most abundant polyphenols in 

our diet, or the most reactive against radicals, are not necessarily the most efficient 

antioxidants (AOs). Therefore, Understanding the effects of compartmentalization is 

crucial to predict their efficiency and in the search of efficient AOs for a given system 

or application.  

 

The hydrophobicity of the AOs can be modulated by grafting alkyl chains of varying 

length (1-20 carbon atoms)9-16 to polyphenolic moieties. This strategy has been 

exploited for years to analyze the effects of hydrophobicity on their various biological 

activities, allowing the evaluation of a series of homologous compounds bearing the 

same reactive moieties but different hydrophobicities.17,18 By employing a pseudophase 

kinetic model, we were able to determine the distribution of a series of AOs derived 

from hydroxytyrosol in intact oil-in-water emulsions and demonstrated that there is a 

direct relationship between the efficiency of AOs and the percentage of AO in the 

interfacial region of the emulsion (Figure 1A).19 This fundamental result implies that the 

efficiency of AOs can be, in principle, increased by fine-tuning their hydrophobicity to 

achieve the maximum interfacial concentrations. The effects of hydrophobicity on the 
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efficiency of a series of homologous antioxidants were examined in a series of recent 

papers14,19-22 (Figure 1B) and similar nonlinear variations as those shown in Figure 1A 

were found. Depending on the parental AO, the optimal alkyl chain length to achieve 

the highest interfacial concentration has varied from three to eight carbon atoms. 

Unfortunately, predicting the optimal chain length of an alkyl group grafted to an AO is 

not possible because no relationship between the hydrophobicity of a molecule and its 

efficiency has been established so far. 

 

 

  

 

 Figure 1. (A) Variation of the time to reach 0.5% conjugated dienes and the values of 

the percentages of AOs in the interfacial region of 4.6 (O/W) olive oil-in-water 

emulsions, %AOI, with the number of C atoms at I = 0.01 for a series of 

hydroxytyrosol esters. Extracted from reference19. (B) Variation of %AOI of 4.6 (O/W) 

olive oil-in-water emulsions showing the non-linear variation of %AOI with the 

hydrophobicity of the AOs(-caffeates,-hydroxytyrosol esters,-gallates).14,16,19,22  

 

 

Prediction of the most efficient AO in an emulsified system is difficult because the AO 

efficiency depends, among others, on their distribution between the different regions of 

the emulsion. Their distribution depends, in turn, on the relative solubility in the 

regions, which is controlled by both the differences in solvation and on the capabilities 

of the AOs of intra- and intermolecular hydrogen bonding with the solvent. In 

emulsions, three regions with different solvent properties, the aqueous, interfacial and 
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oil regions, can be distinguished and setting the relative importance of each contribution 

cannot be easily established. Thus, the key questions remain unsolved and structure-

reactivity relationships need to be investigated for each series of AOs and oils under 

various experimental conditions.  

 

Herein, we investigate the antioxidant efficiency and the distribution in model 

emulsions composed of olive oil, water and the non-ionic surfactant Tween 20 of a 

series of n-alkyl chlorogenates (Scheme 1). Chlorogenic acid (CGA) is a natural 

antioxidant present in the human diet. Several epidemiological studies have linked CGA 

consumption to a wide range of health benefits, including neuroprotection, 

cardioprotection and anti-inflammatory activity.23,24 However, its high hydrophilicity 

prevents its application as an antioxidant because of its low bioavailability in protecting 

lipid tissues. However, modulation of its hydrophilic-lipophilic balance (HLB) by 

lipophilization may provide an opportunity to improve its antioxidant properties.  

 

 

 

Scheme 1. Structures of chlorogenic acid (CGA) and its ester derivatives (C1-C16) 

employed in this work.  

 

 

2. Materials and Methods 

  

2.1. Chemicals and Materials 

All chemicals were of the highest purity available and used as received. 2,2 Diphenyl-1-

picrylhydrazyl (DPPH), chlorogenic acid (CGA), the fatty alcohols employed in the 
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preparation of CGA esters and the surfactant polyoxyethylene (20) sorbitan monolaurate 

(Tween 20)  were from Acros Organics or Aldrich. Olive oil, stripped of natural 

tocopherols and phenols, was prepared from commercial virgin olive oil by washing it 

with a 0.5 M NaOH solution and passing it twice through an aluminium oxide column. 

Complete removal of tocopherols was confirmed by HPLC according to the IUPAC 

method 2.432. Details can be found elsewhere.25  

All aqueous solutions were prepared by employing Milli-Q grade water ( < 0.1 mScm-

1). The acidity of aqueous phase was controlled by employing citric acid/citrate buffer 

(0.04 M, pH 3.65). Solutions of the coupling agent N-(1-naphthyl)ethylenediamine 

(NED, Aldrich) were prepared in a 50:50 (v/v) BuOH:EtOH mixture to give [NED] = 

0.02 M.  

4-Hexadecylbenzenediazonium tetrafluoroborate, 16-ArN2BF4, was prepared under 

non-aqueous conditions as described in a published method26 from commercial 4-

hexadecylaniline (Aldrich, 97%) and was stored in the dark at low temperature to 

minimize their decomposition.  

 

2.2. Synthesis of chlorogenic fatty acid esters. 

Chlorogenate esters (C2-C4) were synthesized by chemical acylation of the carboxylic 

group following the procedure described by Reis et al.27 The method was modified for 

the synthesis of the C6-C16 derivatives (enzymatic acylation) as described in the 

Supplementary Material. Final yields (purified compounds, purity > 98%) were 65-75% 

for the C1-C4 derivatives and 50-65% for the C6-C16 derivatives. In all cases, 1H and 

13C NMR spectra of the synthetized chlorogenates were in accordance with the 

literature.28  

 

2.3. Preparation of oil-in-water emulsion.  

Olive oil-in-water emulsions (4:6, O/W) were prepared by mixing stripped olive oil, 

acidic water (0.04 M citrate buffer, pH 3.65) and Tween 20 as emulsifier (I = 0.5 - 

4%). The mixture was stirred at high speed at room temperature with the aid of a 

Polytronic PT-1600 homogenizer. 

 

2.4.   Methods 
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2.4.1. DPPH radical scavenging efficiency of chlorogenates.  

The effects of the length of the alkyl chain of chlorogenates on the radical scavenging 

efficiency were investigated in bulk EtOH solution by exploiting the ability of 

polyphenols to reduce the DPPH radical.  The relative antiradical activity was assessed 

by the EC50 value, defined as concentration of AO required to lower the initial DPPH 

concentration by 50%.14,22 Details can be found elsewhere14,22 and in the Supplementary 

Material. Results summarized in Table 1 show that the EC50 value is independent of the 

length of the alkyl tail of the esters (<5% at time 5 min) with an average value for CGA 

and its esters of 0.244 ± 0.004  mole AO/mole DPPH at T = 25.0 ± 0.1ºC.  

 

 

2.4.2. Cyclic voltammetry. 

The voltammetric working solutions were prepared, in the electrochemical cell, by 

diluting 0.1 mL of the stock solution (10 mM in ethanol) in 10 ml of aqueous buffer 

(potassium dihydrogen phosphate/phosphoric acid 0.1 M, pH 3.65). Final AO 

concentrations were 0.1 mM. The effects of emulsifier on the first anodic potential of 

the AOs was checked by carrying out auxiliary experiments both in the presence and 

absence of Tween 20. See Supplementary Material for details. Results displayed in 

Table 1 show that values for the first anodic potential are independent of the length of 

the alkyl tail of the esters, in keeping with the results found when employing the DPPH 

assay and didn’t change even in the presence of the emulsifier. 

 

The voltammetric working solutions were prepared, in the electrochemical cell, by 

diluting 0.1 mL of the stock solution (10 mM in ethanol) in 10 ml of aqueous buffer 

(potassium dihydrogen phosphate/phosphoric acid 0.1 M, pH 3.65). Final AO 

concentrations were 0.1 mM. The effects of emulsifier on the first anodic potential of 

the AOs was checked by carrying out auxiliary experiments both in the presence and 

absence of Tween 20. See Supplementary Material for details. Results displayed in 

Table 1 show that values for the first anodic potential are independent of the length of 

the alkyl tail of the esters, in keeping with the results found when employing the DPPH 

assay and didn’t change even in the presence of the emulsifier. 
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2.4.3. Antioxidant efficiency in olive oil emulsions. 

Antioxidant efficiency in emulsions was determined as in previous works.14,22 Olive oil-

in-water emulsions (4:6, O/W) were prepared as above in the presence and absence of 

chlorogenates (final AO concentration of 0.24 mM in total volume). Emulsions with no 

added antioxidant were used as the control. Samples were thermostated at T = 60ºC and 

vortexed for one minute every 12 hours to minimize creaming. After each vortex, a 50 

l aliquot of the emulsion was diluted to 10 ml with ethanol and the absorbance at 233 

nm was measured. The level of oxidation of emulsions was monitored by determination 

of the conjugated dienes (CDs) according to the AOCS Official Method Ti 1a 64.  

 

2.4.4. Determining the partition constant, PW
O, of chlorogenates in binary olive oil-

water mixtures. 

The partition constants of chlorogenates in binary olive-water mixtures, PW
O, were 

determined in the absence of emulsifier by employing the same shake-flask method as 

described in previous works.14,22,29 PW
O values were estimated by employing equation 1 

where the parentheses ( ) indicate the concentration of AO in moles per litre of phase 

volume, VW and VO are the volumes of the aqueous and oil phases, respectively.  

 

O O W

W W O

(AO ) (%AO )

(AO ) (%AO )

O

W

V
P

V
       (1) 

 

2.4.5. Determining the partition constants and distribution of chlorogenates in 

intact olive oil-in-water emulsions: application of the pseudophase kinetic model. 

Chlorogenates distribute in a different extent between the oil, interfacial, or aqueous 

regions of emulsions depending upon their HLB, Scheme 2, and their distribution is 

defined by the partition constants between the oil-interfacial, PO
I, and aqueous-

interfacial, PW
I, regions (Equations 2 and 3).  

 

  
 

 
II

O

O

AO
P

AO
      (2)  

 

 
II

W

W

AO
P

AO
     (3)  

 

The distribution of the chlorogenates was determined in the intact emulsions by 

employing a well-established kinetic method which exploits the rapid reaction between 
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the chlorogenates and the specifically synthethized chemical probe, 4-

hexadecylbenzenediazonium (16-ArN2
+) ion. The probe is located in the interfacial 

region of emulsions because 16-ArN2
+ is itself an ionic surfactant and because it is oil 

and water insoluble (Scheme 2). Details of the method and the kinetic treatment are 

given elsewhere30 and are briefly described in the Supplementary Material.  

 

 

 

 

Scheme 2. Representation of an emulsion showing the aqueous, oil and interfacial 

regions, the location of the reactive group of the hydrophobic ArN2
+ ions and the 

distribution of the AO. Subscripts O, I, and W region indicate the oil, interfacial and 

aqueous regions, respectively, and  is the volume fraction of a region 

(=Vregion/Vtotal) 

 

Statistical Analysis. Kinetic experiments were run in duplicate or triplicate for 2-3 t1/2. 

The kobs values were within ± 7 – 9 % with typical correlation coefficients of > 0.995. 

Reported partition constants in binary oil-water systems were the average of 6-8 

replicates. All the DPPH radical scavenging assays and cyclic voltammetry experiments 

were run at least in quadruplicate. All oxidation experiments were run in triplicate. 

SPSS 21.0 software was used for statistical analysis by one-way analysis of variance 
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(ANOVA, with Tukey’s HSD multiple comparison) with the level of significance set at 

P < 0.05.  

 

 

 

 

 

RESULTS AND DISCUSSION 

 

3.1. Oxidative stability of olive oil-in-water emulsions: antioxidant efficiency 

 

Figure 2A shows the typical oxidation kinetic plots found for the chlorogenates as a 

function of their alkyl chain length. The relative efficiency was determined by 

measuring the time required to increase the CD content by 0.5%, both in the absence 

(control experiment) and in the presence of AOs. Measurements were carried out after 

the propagation step had been initiated (dashed line in Figure 2A), and its variation with 

the length of the alkyl chain is plotted in Figure 2B.  

 

The efficiency does not correlate with the hydrophobicity of AOs, increasing with 

increasing length of the alkyl chain to maximum, after which a decrease is observed. 

This phenomenological, parabola-like, variation of the efficiency is the so-called “cut 

off” effect already reported by us16,19-22,31 and others,9,10,13,32 for several series of 

homologous AOs bearing the same reactive moiety but of different hydrophobicities. 

Our results are also qualitatively similar to those reported by Laguerre et al. in Brij 35 

stabilized sunflower oil-in water emulsions.10 
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Figure 2. (A) Oxidation kinetic plot in 4:6 (O/W) olive oil-in-water emulsions showing 

the increase in the conjugated dienes (%CD) content with time at T = 60ºC. ([AOT] = 

0.24 mM in the total volume and 1% Tween 20, -control, -CGA, -C1, -C2, -

C3, -C4, -C8, -C10, -C12, -C16). (B) Time required for an increase in the 

formation of conjugated dienes of 0.5% as a function of the alkyl chain length of 

chlorogenates.  

 

Figure 2 shows important differences in the efficiency of chlorogenates in inhibiting the 

oxidation of the lipids in the olive oil emulsions. We note that the AOs employed here 

constitute a set of AOs bearing the same reactive group but of different hydrophobicity, 

and that we previously demonstrated the negligible effect of the alkyl chain length of 

the chlorogenates on the EC50 values and on the anodic peak potential values. However, 

changes in the hydrophobicity of AOs also change their relative solubilities in the oil, 

interfacial and water regions and, as a consequence, in their partitioning. Thus, the 

observed changes in the AO efficiency, Figure 2, can be eventually attributed to 

changes in their concentrations. To test this hypothesis, we determined the distributions 

of chlorogenates in the same intact emulsions as those employed in the oxidation 

experiments. 

 

3.2. Distribution of chlorogenates in binary oil-water mixtures and in olive oil-in-

water emulsions: partition constants and interfacial concentrations. 
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The partition constants of CGA derivatives in binary olive oil–water mixtures, PW
O, are 

a thermodynamic measure of the relative hydrophobicity and hydrophilicity of a 

compound.  They provide preliminary qualitative estimations of how AOs distribute in 

emulsions. Their values, Table 1, were determined at T = 25 ºC as described in the 

experimental section 2.4.4.   

 

Results show that short chain (C1-C4) CGA derivatives are quite soluble in water, with 

low PW
O values in the 10-3 – 10-2 order of magnitude. As a consequence of the presence 

of the highly hydrophilic quinic moiety, the value for CGA is much smaller than those 

found for caffeic (PW
O =0.02) and for gallic (PW

O =0.03) acids in olive oil-water 

mixtures at the same temperature.14,22 As expected, PW
O values increase upon increasing 

the hydrophobicity of AO. 
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  CGA C2 C4 C8 C10 C12 C16 

EC50 

5 min 0.243 ± 0.004 0.243± 0.003 0.248 ± 0.003 0.244 ± 0.003 0.242 ± 0.004 0.249 ± 0.006 0.237 ± 0.006 

15 min 0.235 ± 0.005 0.217 ± 0.005 0.234 ± 0.002 0.234 ± 0.004 0.228 ± 0.005 0.238 ± 0.004 0.223  ± 0.006 

60 min 0.234 ± 0.006 0.172 ± 0.012 0.179 ± 0.005 0.184 ± 0.008 0.176  ± 0.009 0.189 ± 0.005 0.161 ± 0.005 

Ep,a (mV) 0% Tween 20 0.391 0.410 0.397 0.406 0.393 0.398 0.390 

 2% Tween 20 0.398 0.403 0.400 0.409 0.394 0.407 0.400 

Binary PW
O (6.8 ± 0.4)10-3 0.086 ± 0.002 0.073 ±0.002 19.6 ± 0.6 26.8 ± 0.9 35.1±1.3 298.5 ± 11.4 

E
m

u
ls

io
n

 

O
/W

 

PW
I 40±4 78± 12 141±31 ---- --- --- --- 

PO
I --- --- --- 111 ± 17 124 ± 13 159 ± 16 89 ± 6 

102kI(M
-1s-1) 1.49±0.07 6.15 ± 0.28 7.77 ± 0.30 7.71 ± 0.17 --- 5.60± 0.60 5.38 ± 0.07 

Table 1. EC50 (mole AO/mole DPPH●) values obtained at different reaction times with a level of significance P < 0.05 and anodic potential (Ep,a) 

vs Ag/AgCl measured at a glassy carbon electrode for 10-4 M solutions of compounds in buffer solution in the absence and presence of 2% 

Tween 20. PW
O values in binary olive oil-water systems, in the absence of emulsifier, PO

I and PW
I values and the rate constant in the interfacial 

region, kI in olive oil emulsions. 
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Because of the differential hydrophobicity of the CGA derivatives, their distribution 

between the oil, aqueous and interfacial regions of the emulsions is expected to be 

different, their partitioning depending on their hydrophilic-lipophilic balance (HLB). 

The PO
I, PW

I and kI values displayed in Table 1 were obtained from the variations of the 

observed rate constant, kobs, for the reaction between 16-ArN2
+ and the chlorogenates 

with the surfactant volume fraction I as described elsewhere (section 2.4.5 and 

references therein).  

 

Consistent with the predictions of equations S1-S3, Figure 3 shows that kobs values 

decrease asymptotically 3 to 6-fold upon increasing the emulsifier volume fraction from 

ΦI =0.005 to ΦI =0.04 (Supplementary Material). The straight lines shown in Figure 3 

are plots of 1/kobs vs ΦI. The slopes and intercepts for the linear fits of 1/kobs vs ΦI were 

used to calculate the PW
I, PO

I and kI values.  

 

         

Figure 3. Representative plots of the variation of kobs (curved lines) and 1/kobs (straight 

lines) with ΦI for the different chlorogenates (-CGA, -C2, -C4, -C8, -C10, -

C12, -C16) in 4:6 olive oil−water emulsions. Solid lines are the theoretical curves 

obtained by fitting the experimental data to equations S1-S3 (Supplementary Material) 

and to their reciprocals. pH 3.6 (citric acid−citrate buffer, 0.04 M), [AO] = 1.8-2×10−3 

M, [16-ArN2
+]∼3.0×10−4 M, T = 25°C. 

 

Values for kI are not required to estimate PW
I and PO

I values, but they can provide 

insights into the impact of the medium or mechanistic changes of the reaction of 

16ArN2
+ with chlorogenates. Table 1 shows that kI values for the CGA derivatives are 
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independent of the chain length of the chlorogenates, with an average value of kI 

6.52±1.03%, suggesting that the reactive moiety of the antioxidants is located in the 

interfacial region of the emulsion. 

 

PW
I and PO

I values, Table 1, range from 40 to 160, indicating that all chlorogenates have 

a natural tendency to incorporate into the interfacial region of the emulsion (the Gibbs 

free energy for the transfer process from the oil or aqueous to the interfacial region is 

negative). However, the trend is different and depends on the hydrophobicity of the 

CGA derivatives. PW
I values increase with increasing HLB of AO from PW

I = 41 

(CGA) to 141 (C4). In contrast, PO
I values increase with increasing hydrophobicity up 

to a maximum at the C12, after which these values decrease.  

 

Since PW
I and PO

I are known values, the percentage of the antioxidant in the oil, 

aqueous and interfacial regions of the olive oil emulsions (%AOO, %AOW, %AOI, 

respectively) were calculated using equations S4-S6 (Supplementary Material). Figure 4 

shows the variation of the percentage of chlorogenates in the aqueous (4A), interfacial 

(4B) and oil (4C) regions with the surfactant volume fraction I. For any of the AOs, 

%AOw and %AOO decrease upon increasing I, while %AOI increase. For example, 

%CGAw decreases from 80% (I = 0.005) to %CGAW = 30 when I = 0.45, while 

%CGAI increases from  20% (I = 0.005) to   70% (I = 0.45).  

The effects of hydrophobicity are more complex. Contrary to what happens in the oil 

region, in the aqueous region, %AOW decreases upon increasing the hydrophobicity. In 

the interfacial region, the variation in %AOI does not correlate with the hydrophobicity 

of the AOs. %AOI Increases upon increasing the hydrophobicity of the AOs up to a 

maximum at the C12, after which it decreases, following the order %CGA<%C2<%C4 

%C16<%C8<%C10<%C12, Figure 5. The effects of the alkyl chain length on %AOI 

are more significant at lower than at higher I, because at high I most of the AOs are 

already located at the interfacial region, Figure 5. 
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Figure 4. Distribution of chlorogenates between the aqueous (A), interfacial (B), and oil 

(C) regions of 4:6 (O/W) olive oil emulsions.  

 

 

 

Figure 5. Effects of the hydrophobicity of AO on %AOI of olive oil-in-water emulsions 

at three I values. 

 

The rate of the reaction between the AOs and the lipid radicals depends, among others, 

on the concentrations of AOs at the reaction site, which is the interfacial region. The 

effective concentrations of AOs at the regions of emulsions are not the same as the 

stoichiometric concentrations. This results from AOs partitioning in different extents 

between the aqueous, interfacial and oil regions and the volume of the each region is 

different from the total volume of the emulsion. Thus, we calculated the concentrations 
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of AOs in the interfacial and oil regions, (AOI) and (AOO) respectively, by employing 

equations 4 and 5 (parenthesis means concentration in moles of AO per liter of the each 

region).   

 

 
 I

I T

I

%AO
(AO ) AO

Φ
  (4)               

 
 o T

O

%AO
(AO ) AO

Φ

O
      (5) 

The variations of (AOO) and (AOI) with I are shown in Figure 6A and 6B. For any of 

the AOs, the interfacial molarities are much higher (20-150 fold) than their 

stoichiometric AO concentrations ([AOT]2.4x10-4M), while those in the oil region are 

0.1-1.5 fold. (AOI) also decreases asymptotically (6-8 fold) upon increasing I from I 

= 0.005 to I = 0.04 because interfacial concentrations depend on both %AOI and I, in 

equation 4, and both parameters work in opposite directions and the increase in the 

surfactant volume fraction is greater than the increase in %AOI. For example, an 

increase in I from 0.005 to 0.5 would increase the interfacial volume VI by a factor of 

100, but would increase %AOI by only 2 - 4 fold (Figure 4B). On the other hand, as I 

increases the fraction of AO in the interfacial region approaches a plateau, Figure 4B, 

and eventually becomes independent of I because the AO is incorporated to the 

interfacial region.  

 

To get a better feeling on how hydrophobicity and the oil to water ratio (O/W) 

employed in the preparation of the emulsion affects the interfacial concentrations, we 

plotted the variations of (AOI) with the length of the alkyl chain at three representative 

O/W ratios, Figure 6C.  For any O/W ratio, the variation of (AOI) with the 

hydrophobicity of the chlorogenates is parabolic-like, with a maximum at the C12 

derivative. Note that the variation of (AOI) with the number of C atoms in the alkyl 

chain is more significant at lower than at higher O/W ratios. At relatively high O/W 

ratios (4:6 and 5:5), the differences in (AOI) for the C4-C12 derivatives are almost 

negligible, suggesting that the O/W ratio may change the efficiency order. These results 

are preliminary but they are currently being analyzed in detail and will be part of future 

reports. Taken together, the results suggest that changes in either the emulsifier volume 

fraction and in the O/W ratio may change significantly the interfacial concentrations of 

the antioxidants, thus affecting their antioxidant efficiency.  
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Figure 6. Variation  of the  concentration of chlorogenates in the oil (A) and interfacial 

(B) regions of 4:6 olive oil-in-water emulsions with the emulsifier volume fraction, 

I.(C) Effect of hydrophobicity of chlorogenates on their interfacial concentrations 

(AOI) at different O/W ratio. The concentrations given in parenthesis, ( ), refer to the 

moles of AO per litre of the oil (O) and interfacial (I) regions. Added concentration, 

[AOT] = 0.24 mM, refers to the number of moles of AO per litre of the total volume of 

the emulsion. 

 

3.3. Structure-reactivity relationships: the role of hydrophobicity 

 

Figure 6B shows that, for 4:6 emulsions, the highest interfacial concentration is 

achieved for the C12 derivative, which is the same antioxidant that shows the higher 

efficiency in the same emulsions, Figure 2B. This suggests that there may be a similar 

relationship to that found for other series of homologous antioxidants, between the 

antioxidant efficiency of chlorogenates and their interfacial concentrations.14,16,19-22 

Thus, we plotted the variations in the interfacial concentrations and the relative 

antioxidant efficiency (defined as time required to reach an increase in the CD content 

of 0.5%, figure 2) with the length of the alkyl chain of chlorogenates, Figure 7A. Both 

variations parallel each other, providing physical evidence that the observed variations 

in the antioxidant efficiency are a consequence of the differential distribution, i.e., 

interfacial concentrations of the antioxidants in the emulsion. The variation of either the 

antioxidant efficiency, or the interfacial concentration, with the length of the alkyl chain 

of AOs is usually called the “cut off effect”. This term has been employed to describe 
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the variations of biological activities of a series of compounds bearing the same reactive 

moiety but of different hydrophobicities.  

 

For comparative purposes, Figure 7B displays the variations in the interfacial 

concentrations of a series of esters derived from caffeic acid (CA) and CGA.  The 

solubility of CA in water is lower than that of CGA as is shown by the PW
O values 

obtained in the same binary systems (PW
O = 0.02 for CA21 and PW

O = 0.007 for CGA) 

and thus CA is more hydrophobic than CGA. Hence, one can expect the interfacial 

concentrations of chlorogenates to be lower than those of the CA derivatives, as 

illustrated in Figure 7B.  However, due to the larger percentage of CA derivatives in the 

interfacial region, the relative increase in the interfacial concentrations on going from 

the acid to the C12 ester derivative is more significant for CGA than for CA (a 3-fold 

increase for CGA compared to a 1.3 fold for CA).  

 

 

     

 

Figure 7. (A) Effect of alkyl chain length on the interfacial concentrations and 

antioxidant efficiency of chlorogenates in 4:6 (O/W) emulsions containing 1% Tween 

20. Values extracted from Figures 2 and 6. (B) Effects of the alkyl chain length on the 

interfacial concentration of chlorogenates (--) and caffeates (--) relative to 

stoichiometric AO concentration in 4:6 (O/W) emulsions (I=0.5%). The 

concentrations given in parenthesis, ( ), refer to the moles of AO per litre of the 

interfacial region and [AOT] refers to the number of moles of AO per litre of the total 

volume of the emulsion. 
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4. Conclusions 

 

In accordance with our previous work,16,19-21 the distribution results show that the non-

linear effect of the hydrophobicity of chlorogenates in emulsions is due to their 

differential affinities towards the interfacial region and affect their antioxidant 

efficiency (verifica se é isto que se queria dizer).  

The results highlight the importance of the interfacial region in controlling the 

antioxidant efficiency. We can emphasis the following aspects:  

1) An increase in the HLB of AOs promote their incorporation in the interfacial regions 

of oil-in-water emulsions, but only up to a point (C12) because a further increase in 

their HLB may make them to be more soluble in the oil region than in the interfacial 

one; 

2) HLB of antioxidant and emulsifier concentration (I) are both the main parameters 

controlling the distribution of all chlorogenates, i.e., a careful choice of both parameters 

is crucial because they strongly affect the availability of AOs at the reaction site; 

3) Changing the O/W ratio from 4:6 (O/W) to 1:9 (O/W) significantly increase the 

incorporation of very hydrophobic chlorogenates (C8-C16) into the interfacial region of 

a model emulsion;  

4) Due to the higher solubility of CGA in water, changing the HLB of chlorogenates 

significantly increases their interfacial concentration in a higher extend than that 

observed for caffeates. These results support the hypothesis that changing HLB of an 

AO modules significantly the interfacial concentration of very hydrophilic AOs but not 

so much of AOs of intermediate hydrophobicity;  

5) Another important result is that the interfacial concentration of all chlorogenates is 

higher than the bulk concentration (for example, 115-fold higher than the stoichiometric 

concentration for C8 at I =0.005), highlighting that the compartmentalization effects 

play a key role in defining the antioxidant response against the oxidation of 

biomolecules.   

 

Finally, we would like to stress that controlling the interfacial antioxidant 

concentrations of dietary phenolic antioxidants can lead to a more efficient antioxidants 

in multiphasic systems and can allow the better usage of the existing natural AOs. 

Future research must be directed towards screening the parameters that control the 
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optimum length of non-polar chains, the type of lipid radicals employed, the emulsifier 

nature and O/W ratio among others. Verifica se isto que se quer dizer  
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