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Energy efficiency is an important part of chemical process sustainability. Wasted energy 

contributes significantly to process costs and overall emissions. Therefore, contributions 

to improving energy efficiency in chemical processes are of value. The main objective of 

this thesis is the exploration of indirect energy efficiency monitoring methods and their 

compilation into a generalized framework. As part of the proposed framework, data-based 

modelling methods were explored and used to identify a model for estimating energy 

efficiency in a simulated process. The proposed framework can act as a potential tool in 

different practical applications with energy efficiency improvements as an objective. 

As a simulated test process for this thesis, the Tennessee Eastman process was utilized. 

This process is widely used in research, especially regarding fault diagnosis and control 

design. The process includes slow dynamics and nonlinearity, providing interesting 

challenges for research. Even though the process has been studied extensively, the energy 

efficiency aspect of the process has not been taken into account in research.  

The results of the thesis show that data-based models provide sufficient accuracy for real-

time estimation of energy efficiency for the Tennessee Eastman process. Parts of the 

proposed framework were tested with the explored methods, but some areas were beyond 

the scope of this thesis. As such, further research, for example prediction of the energy 

efficiency horizon, fault diagnosis and advanced process control, could be beneficial.  
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Energiatehokkuuden epäsuora monitorointi simuloidussa kemiallisessa prosessissa 
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Työn ohjaajat yliopistolla:  
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Energiatehokkuus on tärkeä osa kemiallisen teollisuuden kestävyyttä. Energian käytön 

tehottomuus näkyy merkittävästi kasvavina prosessikustannuksina ja kokonaispäästöinä. 

Toimet energiatehokkuuden nostamiseksi ovat siksi merkityksellisiä. Diplomityön 

päätavoitteena on erilaisten epäsuorien energiatehokkuuden seurantamenetelmien 

tutkiminen ja niiden kokoaminen yleistettävään menetelmäkehykseen. Datapohjaisia 

mallinnusmenetelmiä tutkitaan osana esitettyä kehystä, ja niitä hyödynnetään 

energiatehokkuutta arvioivan mallin muodostuksessa. Esitetty menetelmäkehys voi 

toimia mahdollisena työkaluna erilaisissa käyttökohteissa, joissa energiatehokkuuden 

parantaminen on päämääränä.  

Tutkittavana kohteena diplomityössä käytettiin simuloitua Tennessee Eastman 

prosessimallia. Vaikka prosessia on tutkittu laajasti, energiatehokkuuden tarkempi 

tarkastelu on jäänyt vajaaksi. Simuloitua prosessidataa hyödynnettiin tässä työssä 

prosessin energiatehokkuuden mallipohjaisen arvion muodostuksessa. Työssä 

analysoitiin myös mallinnuksen luotettavuuteen vaikuttavia tekijöitä, kuten opetusdatan 

rajallisuutta ja siitä seuraavaa mallin ekstrapolointia. 

 

Diplomityön tulokset osoittavat, että Tennessee Eastman prosessin energiatehokkuuden 

reaaliaikainen arviointi datapohjaisilla menetelmillä onnistuu riittävällä tarkkuudella. 

Esitetyn menetelmäkehyksen osia testattiin tutkituilla menetelmillä, mutta jotkin alueet 

jäivät työn ulkopuolelle. Tulevaisuuden mahdollisiin tutkimusalueisiin kuuluukin 

energiatehokkuuden ennustaminen, vikadiagnostiikka ja niitä yhdistävä kehittynyt 

prosessisäätö. 

Asiasanat: energiatehokkuus, Tennessee Eastman, digitalisaatio, epäsuora mittaus 
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EE Energy efficiency 

β Coefficient parameter 

ci  Concentration of component i  

cp,i  Heat capacity of i  

CW Cooling water 

d Euclidean distance 

DKL Kullback–Leibler divergence 

ε Residual 

F Scaled principal component matrix 

γ Coefficient vector 

ṁi Mass flow of i 

MAE Mean absolute error 

MAPE Mean absolute percentage error 

MLR Multiple linear regression 

MSE Mean squared error 

ρ Density 

PCA Principal component analysis 

PCR Principal component regression 

PLS Partial least squares 

Q̇i Flow of heat from i 

R Correlation coefficient 

RMSE Root mean squared error 

s Histogram intersection 

SECj Specific energy consumption for product j 

Ti Temperature of i 

TE Tennessee Eastman 

V̅i Volumetric flow of stream i  

VIF Variation inflation index 
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1  INTRODUCTION 

Chemical processes are very energy intensive with a high volume of production. Thus, 

even small improvements to energy efficiency decrease the amount of consumed energy 

significantly. In addition, the consumed energy covers a large fraction of the overall 

production costs, making energy efficiency improvement a worthy investment. Energy 

consumption reduction is also important for achieving sustainability and reducing 

emissions. 

The objective of this thesis is to explore methods for monitoring energy efficiency in an 

energy-intensive, multi-stage chemical process. Monitoring would allow for displaying 

the current and past status of operations to make necessary adjustments to minimize 

otherwise wasted energy. Data-based modelling methods could be utilized to estimate the 

current and future energy efficiency of a process instead of expensive or slower hardware 

measurements. The information provided by the model could then be refined and used to 

guide the process operators. In addition, fault diagnosis and optimal production planning 

could be performed by comparing the observed energy efficiency with the modelled 

energy efficiency horizon. For this aim, a model-based monitoring framework for energy 

efficiency is proposed.  

As the test problem for the framework, a benchmark simulator of a complex chemical 

process is utilized. The simulated data obtained is used to model energy efficiency. The 

studied process, namely Tennessee Eastman, is a chemical process that is widely used as 

a test case in academia. Even though the process has been extensively explored in 

research, the resulting debate still lacks the energy efficiency aspect.  

To develop the monitoring framework, a literature review was performed regarding 

energy monitoring applications and indirect monitoring methods, which is presented in 

Chapter 2. The test case for the thesis, namely the Tennessee Eastman benchmark model, 

is introduced in Chapter 3. Then, the proposed framework is synthesized from the 

explored methods, constructed into a flowsheet for energy efficiency monitoring, and 

possible applications for the framework are explored in Chapter 4. The indirect energy 

efficiency model is developed and analysed in Chapter 5, followed by conclusions drawn 

from the results presented in Chapter 6. Finally, the thesis is summarized in Chapter 7. 
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2 ENERGY EFFICIENCY 

Energy efficiency is an important and timely topic in process engineering. The chemical 

process industry often involves very high energy amounts and production volumes, and 

energy losses can add up to a substantial portion of process costs, besides the obvious 

impact on the environmental footprint. These processes have several successive sub-

processes requiring energy, often in the form of heat, for example distilling and reactor 

heating, or electricity, such as pressurizing compressors and pumps. Inefficient energy 

usage can also be seen to increase the amount of greenhouse gas emissions from processes 

(Akdag and Yıldırım 2020). Optimizing energy efficiency is therefore regarded as a smart 

action for both the business and the ecological side of the industry. In addition, 

governmental regulations, for example in Finland, require large companies to review the 

energy usage of their energy applications at least every four years. (FINLEX 2014) 

2.1 Definition 

Energy efficiency (EE) can be defined as the ratio of power and the production rate.  In 

this study, energy efficiency is defined as follows: 

𝐸𝐸 =
𝑃

𝑚̇
 ,     (1) 

where P (J/s) is the power consumption of the process, comprising the energy required 

for the process and any residual energy present within the process, and 𝑚̇  is the 

production rate of the end product (kg/s) minus the product loss caused by sub-standard 

product quality. The objective in optimizing energy efficiency is to minimize energy 

usage and maximize the obtained product within the specification range.  Losses within 

the process also reduce the overall energy efficiency, for example leaks and spills, 

insufficient product quality, and inefficient energy utilization. For example, control 

strategy (Nigitz et al. 2020), process design (Oh et al. 2018) and operator decisions (Chen 

et al. 2021) are all factors that affect the energy efficiency of a process. 
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2.2 Intelligent monitoring 

In the early 1980s, a complete set of measurements was required for energy management 

(Kaya and Keyes 1980). Development in energy efficiency monitoring has been 

substantial in this regard; intelligence can be integrated into energy efficiency monitoring 

by implementing soft sensors, namely data-based models or digital twins. In many 

industrial applications, direct monitoring of energy usage might be infeasible due to lack 

of measurements or the complex nature of the process, favouring computational methods 

and data fusion instead. Existing process measurements might allow for data-based 

models for estimating energy efficiency indirectly. Being able to predict the energy 

efficiency in a finite time horizon may further allow the dynamic optimization of the 

process. Improving product quality is another way to improve energy efficiency by 

reducing the amount of discarded product due to insufficient quality and reducing the 

need for recycle feeds (Luan et al. 2018). Some methods that have been implemented and 

studied for energy efficiency monitoring in process and manufacturing industries are 

explored in the following sections. 

2.2.1 Reported methods 

The energy efficiency and utilization of intelligent monitoring methods in production 

processes has been of great interest. Recently, energy efficiency has gained attention 

especially in the context of smart manufacturing and Industry 4.0  (Tesch da Silva et al. 

2020). A noticeable trend in research beyond mere optimizing of energy usage is 

exploring techniques of information management and reporting for higher levels of 

management. Accurate energy usage monitoring allows for improved energy 

management (Monjurul Hasan and Trianni 2020). Chemical processes in particular 

require robust process monitoring methods because of safety regulations, and usually 

quite strict product specifications (Farsang et al. 2014). 

Bauerdick et al. (2017) present a software framework for energy monitoring in machine 

tool manufacturing. Data acquired from sensors is aggregated and used for analysing 

energy usage. It was found that adjusting the start-up times for different machines allowed 

reduction of the maximum load peak on the energy grid. Bauerdick et al. (2017) also 

studied fault detection by analysing energy consumption and finding abnormalities in the 
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power demand. The fault scenario is identified by reduced power demand during 

machining process when compared to a reference work piece. 

Gontarz et al. (2015) implemented a soft-sensor approach for monitoring energy 

efficiency in a machine tool. Measurements are gathered from the machine with internal 

sensors, and necessary external sensors are implemented to calibrate and verify simulated 

models for the energy usage behaviour of machine tool components. The gathered data 

can be evaluated and parameterized. The energetic behaviour of machine tools can be 

identified and further optimized on the component level.  

Qin et al. (2017) introduced an Internet-of-Things-based framework for energy 

consumption. In their framework, energy consumption analysis is performed in a layered 

order. In the first layer data from the target system is extracted with sensors and 

components. The collected data is fed into the second layer, where gathered data is 

compared with the total energy consumption and attributes that relate to the total energy 

consumption. Any new attributes with relations to either of these are marked and the data 

related to that attribute is stored. The next layer displays the obtained data in different 

implementations. System energy consumption and prediction for energy use can be used 

to guide operators. Different analyses and reports on the system life cycle and energy 

sustainability can also be obtained from this layer.  

Tan et al. (2017) introduced a framework for Internet-of-Things-enabled, real-time 

monitoring of energy efficiency. This approach allows for data analysis techniques to 

identify abnormal energy usage by monitoring energy consumption and the amount of 

product obtained. Process efficiency is described by specific energy consumption, defined 

by the amount of energy used per product. Current performance is then compared to 

historical performance to find relative efficiency, and potential gaps are identified for 

energy efficiency improvement.  

A monitoring framework for estimating expected boiler efficiency is described in Nikula 

et al. (2016). The framework presented by the authors makes use of Multiple Linear 

Regression (MLR) for estimating energy efficiency. The MLR model was obtained using 

variables chosen by ranking, using mutual information and Shannon’s entropy. Process 

efficiency is estimated for each process state and deviations from the expected value are 

monitored and can be displayed for process operators and supervisors. The estimated 
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process efficiency is obtained by finding the maximum historical boiler efficiency for 

each process state. If the actual boiler efficiency is higher than expected, new efficiency 

values are assigned for the process states in real time, making the model highly adaptable.  

If the actual efficiency is lower than estimated, process states leading up to that point are 

diagnosed and variables with values outside the operational range during the diagnosed 

period are identified.  

A variety of tools and methods can be employed for estimating energy usage and 

efficiency. A literary review presented in Narciso and Martins (2020) concluded that 

neural networks are commonly used for energy efficiency and consumption forecasts (see 

e.g. Geng et al. 2017; Zhang et al. 2018). Other frequently observed methods are 

regression-based (Golkarnarenji et al. 2018) and fuzzy models (Geng et al. 2018). The 

number of published papers on machine learning in industrial energy efficiency has 

increased lately, proving the possibility for increased insight into energy efficiency 

monitoring using intelligent methods (Narciso and Martins 2020).  

2.2.2 Commercial solutions 

Companies are always interested in increasing profits and reducing energy usage is an 

important factor for achieving this goal. Many companies have noticed the possibility for 

business in this area and have started working on commercial solutions for monitoring 

and improving energy efficiency. Hence, a variety of commercial products already exist, 

two examples of which are described below. 

STRUCTese, developed by Bayer MaterialScience, is an energy efficiency management 

system. Current energy efficiency is analysed and potential improvements for energy 

savings are identified and evaluated. A major element of STRUCTese is the energy loss 

cascade, which provides easy reporting of energy usage for plant managers. Theoretical 

energy usage and measured energy losses are plotted and displayed, showing where more 

focus could be beneficial for improving overall energy efficiency. (Drumm et al. 2013) 

ABB has developed Energy Manager, an application for reducing energy costs and the 

carbon footprint. Energy Manager optimizes energy operations by reading data from 

different process systems. Monitoring and reporting can be used to identify areas of 
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improvement by comparing actual energy efficiency to targets. Energy consumption is 

predicted, allowing for energy scheduling and load planning. (ABB 2019) 
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3 TENNESSEE EASTMAN PROCESS 

The Tennessee Eastman (TE) process has been used as a case study for identifying a 

model for energy efficiency estimation in this work. The Tennessee Eastman process 

model was originally developed as a test case for the process control academic community 

by Downs and Vogel (1993). The process is a multistage, multi-product chemical process 

which is well suited for benchmarking. The model is based on an actual industrial 

chemical process, but accurate details have been left out to protect the proprietary nature 

of the process.  

3.1 Role as a benchmark 

The TE process has been used as a benchmark problem in many studies focusing on 

control design, optimization and fault diagnosis. Process nonlinearity and constraints 

related to the model have proved to be an interesting challenge for control design (Ricker 

1993; Ricker and Lee 1995a; Ricker and Lee 1995b). As an example, Jockenhövel et al. 

(2003) focused on the real-time dynamic optimization of the TE process with nonlinear 

programming. On the other hand, Golshan et al. (2005) minimized the process costs in 

real time with an optimization algorithm based on sequential quadratic programming 

method and first-order linear filters which adjust controller setpoints gradually in order 

to keep the process under control. A linear model predictive control strategy for the TE 

process was implemented in Jämsä (2018). A control strategy developed in Larsson et al. 

(2001) focuses on process optimization with self-optimizing control methods and 

emphasizing the importance of variable selection for control design. 

3.2 Process description 

The process produces two products (G, H) from four reactants (A, C, D, E) in a reactor. 

A by-product, F, is also produced by two additional reactions. The actual components are 

kept hidden to protect the proprietary nature of the process. A non-volatile catalyst 

dissolved in the liquid phase accelerates the gas phase reactions. The reactions are 

irreversible and exothermic, requiring constant cooling. The reactions are as follows: 
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A(g)+C(g)+D(g)→G(liq)   Product 1  (2) 

A(g)+C(g)+E(g)→H(liq)   Product 2   (3) 

A(g)+E(g)→F(liq)   By-product   (4) 

3D(g)→2F(liq)   By-product   (5) 

The above reactions (2)–(5) are a function of temperature, following the Arrhenius 

equation. The reaction for producing G is more sensitive to temperature due to a higher 

activation energy. The reactions can be considered as first-order in terms of reactant 

concentrations.  There are five main unit operations in the process. These are described 

after the process diagram, shown in Figure 1.  

 

Figure 1. Process and instrument diagram of the Tennessee Eastman process (adapted 

from Bathelt et al. 2015; Downs and Vogel 1993). 

 

Reactant gases are fed with feed streams A, D, and E to the reactor (R) where liquid 

products are produced. The temperature of the reactor can be controlled by the cooling 

water circulation. The gaseous reactor products are fed into a condenser (C), leaving the 

liquid phase in the reactor. A water-cooling system reduces the temperature in the 

condenser, condensing the gases into liquids. The non-condensed gaseous reactants are 

recycled back to the reactor with a vapour-liquid separator (VS). The pressure drop in the 
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stream is compensated with a compressor (CO) to maintain a constant pressure in the 

reactor. The inert and by-product components are mainly purged with the vapour from 

the vapour-liquid separator to avoid build-up in the system. The liquid products go into a 

stripper (S) where the remaining reactants are separated from the products and fed back 

into the reactor. (Downs and Vogel 1993)  

Downs and Vogel (1993) describe six modes of operation for the process at different 

product ratios in the final product stream. The base case, mode 1, produces products G 

and H at a ratio of 50/50 at a desired production rate. The process modes are described in 

more detail in Downs and Vogel (1993). The TE process also involves process 

constraints, primarily to protect the equipment. If the process conditions go out of control, 

the process is automatically shut down. (Downs and Vogel 1993) 

The process has 12 controlled and 41 measured variables. Of these measurements, 22 are 

continuous, while 19 of the measurements are delayed and have a different measurement 

frequency, caused by sampling and analysis of the streams. ‘Revision of the Tennessee 

Eastman Process Model’ by Bathelt et al. (2015) adds 32 additional measurement points 

for the process. In the process model, the process measurements have zero-mean white 

noise applied to them. All the variables previously mentioned, including the process 

constraints, are shown in Tables 5–7 in Appendix 1. 

3.3 Energy efficiency 

Like most chemical processes, the Tennessee Eastman process also includes energy- 

intensive sub-processes. Monitoring and optimizing these energy applications can allow 

for more economic operation. Even though the TE process has been widely used as a 

research subject, the energy efficiency aspect is still missing. The energy efficiency in the 

TE process can be defined as described in the following sections. 

The Tennessee Eastman process involves great amounts of energy being transferred. The 

exothermic reaction releases a lot of energy, which is captured in cooling water. Process 

modification to allow utilization of this heat would result in higher energy efficiency.  A 

constant steam flow in the stripper and the recycling and pressurization of gaseous 

components require a significant amount of energy. For optimal energy efficiency, the 
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energy consumed by the heating of the steam flow and the energy consumed by the 

compressor are to be minimized while maintaining desired output stream concentrations 

and keeping the process within its constraints.  

In this work, the energy efficiency of the TE process is calculated according to Equation 

(1) presented in Section 2.1, where specifically the energy used by the steam flow in the 

stripper and the compressor workload in the recycle flow are considered. It is assumed 

that the efficiencies of the compressor and reboiler for the stripper steam flow are 

constant. It can also be assumed that the energy losses in this case are insignificant from 

the energy efficiency monitoring point of view. In general, due to exothermic reactions 

and the need for cooling, the TE process may include several heat losses, but these are 

excluded from this thesis. The amount of product is obtained from the product stream. A 

minor amount of product loss occurs in the purge stream, approximately 0.5% of the 

amount obtained in the product stream. Hence, the effect of improving energy efficiency 

in the TE process by reducing production losses is also negligible and excluded from this 

work.  

In previous work by Jockenhövel et al. (2003), the original TE process model was 

modified by adding energy balances for the process, as described in Equations (6)–(8). 

𝑄̇𝑟 = 𝑚̇𝐶𝑊,𝑟𝑐𝑝,𝐶𝑊(𝑇𝐶𝑊,𝑟,𝑜𝑢𝑡 − 𝑇𝐶𝑊,𝑟,𝑖𝑛),   (6) 

𝑄̇𝑐 = 𝑚̇𝐶𝑊,𝑐𝑐𝑝,𝐶𝑊(𝑇𝐶𝑊,𝑐,𝑜𝑢𝑡 − 𝑇𝐶𝑊,𝑐,𝑖𝑛),   (7) 

𝑄̇𝑠𝑡𝑟 = 2258,717
𝑘𝐽

𝑘𝑔
𝑚̇𝑠𝑡𝑒𝑎𝑚,   (8) 

where 𝑚̇𝐶𝑊,𝑟 is the mass flow of the cooling water circuit for the reactor and 𝑚̇𝐶𝑊,𝑐 is the 

same for the condenser. The temperatures of the cooling water flow, 𝑇𝐶𝑊, are used for 

calculating the heat flow from the reactor ( 𝑄̇𝑟 ) and condenser ( 𝑄̇𝑐 ). However, the 

possibility of utilizing this energy is excluded from the process description and only the 

consumed energy is assessed for energy efficiency monitoring. The saturated steam flow 

to the stripper (𝑚̇𝑠𝑡𝑒𝑎𝑚) is assumed to be condensed completely at a constant temperature 

and the energy added to the stripper by the steam flow (𝑄̇𝑠𝑡𝑟) is estimated using Equation 

(8). The energy added by steam is obtained in respect to the steam flow and the stripper 
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heat duty in the base case mentioned in Downs and Vogel (1993). (Jockenhövel et al. 

2003) 

Additionally, the mass amount for the specific product considered must be obtained from 

the measured product stream volumetric flow. This can be performed using the following 

Equations (9) and (10): 

 𝑚̇𝑖 = 𝑦𝑖𝑚̇11,    (9) 

𝑚̇11 = 𝜌̅11𝑉̅11,    (10) 

where product mass flows 𝑚̇𝑖 can be obtained using Equation (9), where yi is the mass 

fraction of product i in the product stream with total mass flow ṁ11. The mass flow of the 

product stream can be calculated from Equation (10) with the average density 𝜌̅ and the 

volumetric flow V̅ of the product stream. 

3.4 Simulation model 

‘Revision of the Tennessee Eastman Process Model’ in Bathelt et al. (2015) provides 

additional measurements for monitoring the simulation. The added measurements, listed 

in Tables 8 and 9 of Appendix 1, also include delay- and disturbance-free measurements 

for process stream concentrations, process conditions inside the reactor and production 

costs. These additions allow for monitoring and supervision of the simulation and the 

internal states of the process. The modified process model also removes dependencies on 

the solver and time increment, increases the speed of the simulation and added outputs 

for monitoring the process disturbances. (Bathelt et al. 2015)  

In addition, the revised model allows the use of variable-step integration methods in 

simulation environments. In this work, the provided Simulink model was used, available 

from the Tennessee Eastman Challenge Archive by N.L. Ricker. The process model is 

written in C programming language and integrated into Simulink. (Ricker 2015) 

The Simulink model includes separate model files for the mode 1 and mode 3 operations 

described by Downs and Vogel (1993). Also included in the simulation package is the 

self-optimizing control strategy introduced in Larsson et al. (2001). In this work, the mode 
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1 simulation model was applied. The model requires inputs for the setpoints and 

disturbances, which are shown in Tables 5 and 11 of Appendix 1. The outputs provided 

by the model are listed in Tables 6, 8 and 9 of Appendix 1. Disturbance scenarios for the 

simulator can be controlled with an input vector, with coded values for enabled and 

disabled disturbances, using Boolean flags. These disturbances can be used for simulating 

fault scenarios for process diagnosis (Downs and Vogel 1993), but fault detection is 

beyond the focus of this work. 



19 

   

4 INDIRECT MONITORING METHOD 

The objective of this chapter is to propose a general framework for energy efficiency 

monitoring. The approaches discovered in the literature are synthesized and compiled to 

form a monitoring framework. The framework is described and portrayed as a flowchart 

in Section 4.1 (Figure 2). Later, data processing and modelling methods are explored as 

parts of the framework.  

4.1 Framework 

Process data must be obtained to develop a data-based energy efficiency estimator. The 

process data needs to be extensive enough to capture phenomena in different process 

states to guarantee a sufficiently accurate model. The data may be obtained from historical 

data – or for more accurate results, experimental process control may be performed to 

define the accurate operation range for the model (Sargent 2010). Process knowledge is 

used to find the energy applications within the process. For estimation, an energy 

efficiency metric needs to be formulated. The metric could be based on describing the 

ratio between the product obtained and energy used within the process (Tan et al. 2017). 

Existing energy usage measurements are examined and in the case of insufficient 

measurements, indirect monitoring is a possibility (Lin et al. 2007).  

By finding variables which influence the process energy efficiency, a model can be 

obtained for estimating energy efficiency from the chosen variables. An energy efficiency 

index describing the current energy efficiency in the process is estimated from direct or 

indirect measurements. If the available data is insufficient for estimation, it may be 

possible to include additional measurements in the process, as indicated in Figure 2. 

Further development could enable a predictive model for process energy efficiency, 

providing a horizon for future operations (see the lower right corner of Figure 2). Energy 

efficiency prediction can be further used for process control strategy and overall plant 

energy management. Advanced process control can be used to control the process for 

automatic energy efficiency optimization. Combining multiple predictive models from 

different processes can allow optimization of overall energy usage load and reduction in 

the spikes in power demand.  
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Process operators can use energy efficiency indicators to evaluate the state of the process 

and decide on necessary actions. If a lower-than-expected energy efficiency is identified 

by the operators, they can troubleshoot possible causes for the reduction in efficiency. If 

the reason for worse efficiency is a failure in the process, the fault might be found early, 

and in the best case an otherwise inevitable or unexpected process shutdown could be 

prevented. 

Energy efficiency reporting (Figure 2) can be done to record energy operations within a 

selected time period. Reports might enable the discovery of the sub-processes with the 

weakest energy efficiency. This can be used for planning maintenance and further process 

design, for example. In addition, reporting could provide more detailed information for 

process knowledge, for example by identifying process states and performed control 

practices with the best energy efficiency.  
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Figure 2. Flowchart of the proposed generalized process framework. Areas explored in 

this thesis are in the white boxes and areas for possible further research are in the boxes 

with grey backgrounds. 

 

Finally, the monitoring framework (Figure 2) would need to include methods for 

assessing the model performance continuously for more accurate energy efficiency 

estimation. By recognizing the estimation drift, previously unobserved process states can 

be identified and, with adaptation, accurately captured in the model.  
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4.2 Modelling 

Different data processing and modelling methods must be utilized for the framework. In 

the following sub-sections, some of the possible methods are explored for data pre-

processing, data division, variable selection, model identification and analysis of the 

model performance.  

4.2.1 Data pre-processing 

Measurement data is often incomplete, including possible measurement drift, false 

measurements and noise (Moatar et al. 2001). These inaccuracies can affect the model 

performance and need to be taken into account. One possibility for reducing the noise in 

measurement data is to take the average of multiple data points as a new data point. This 

is called downsampling by block averaging. This can also reduce the computation time 

of the model selection algorithms as the size of the data matrix is reduced.  A significant 

fraction of the obtained process measurements might be false, resulting in global or 

contextual outliers. Removal or replacement of these outliers is necessary to avoid 

modelling false phenomena. (García et al. 2015) 

Data can also include delays when comparing the variables with the output target vector. 

Finding the optimal delays for the model estimation is important. Different measurements 

can also have different delays, increasing the difficulty in finding the optimal delays for 

each variable. Delay estimation can be done by finding the amount of delay which best 

explains the target. This can be done using various methods, for example maximizing 

correlation or finding the delay which yields the maximum amount of mutual information 

(Kraskov et al. 2004) between the delayed variable vector and the target vector 

(Moddemeijer 1989). Chen et al. (2015) described an approach for estimating time delay 

in an irregularly sampled data set, utilizing a separable nonlinear least-squares method. 

(Chen et al. 2015; Wang et al. 2020) 

4.2.2 Data division 

Data must be split into separate, mutually exclusive sets for training and testing (also 

known as external validation) of the model, which is commonly known as the hold-out 

method (Kohavi, 1995). Possible pre-processing for the data must be performed before 
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the data split to avoid including information from the training data in the test data set. The 

split must be planned out to include sufficient data for both modelling steps while also 

including a representative variable range for training the model. If the model input space 

variables drift outside the trained range within the test set, model extrapolation occurs, 

referred to in the literature as covariate shift (Moreno-Torres et al. 2012). This could result 

in decreased model performance. 

Depending on the training method used in the modelling, training data could be split 

further. An internal validation set that is drawn from the training set for measuring the 

model error can be used for model training. This is necessary to reduce the risk of 

overfitting the model by stopping the training (Ying 2019), or regulating the number of 

input variables (Baumann 2003; Vuolio et al. 2020). Alternatively, k-fold cross-validation 

can be used for the model training. In k-fold cross-validation, the input data must be split 

into k number of folds, whereby the cross-validation is performed with each fold acting 

as the internal validation set for the training. (Kohavi 1995) 

4.2.3 Variable selection 

Variable selection must be performed for choosing the model input variables. 

Unnecessary variables can be omitted from the model. Including irrelevant or redundant 

variables might result in model overfitting and thus reduce the model performance. 

Possible collinearities can also be eliminated from the model inputs with variable 

selection, for example by including a variation inflation factor (VIF) index as a selection 

criterion (James et al. 2013). Another possibility is to use variable filtering based on the 

input space correlations (Guyon and Elisseeff 2003). Alternatively, partial least squares 

(PLS) or principal component regression could be used to eliminate the collinearities, as 

these use a projected input space in model estimation. (Dormann et al. 2013; Massy 1965; 

Wold et al. 1984).  

There are multiple ways to proceed with the variable selection. The most obvious one is 

exhaustive search, meaning that all possible combinations are evaluated. The exhaustive 

search can also be referred to as the best subset selection. However, due to exponential 

algorithm complexity (O(2n)), where n is the number of input variable candidates, it often 

appears impractical in real-life applications. (Guyon and Elisseeff 2003)  
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Manual selection of the variables relies on domain knowledge for selecting the relevant 

variables. In forward selection, the variables are added one by one to the model and 

discarded if the cross-validation statistics do not increase. The main disadvantage with 

the forward selection method is the possibility of staying at a local optimum and ignoring 

some possible selection combinations. Sorting the variables in order of importance could 

improve the algorithm. Another method would be backward elimination, which removes 

variables one at a time and the testing of a chosen criterion. Variations of these methods 

are also possible, for example adding multiple variables and removing them one by one, 

keeping the variables which improve the model performance. (Heinze et al. 2018; Vuolio 

2021; Xu and Zhang 2001)  

Variables can also be selected using a genetic algorithm, which explores possible variable 

combinations using random crossing and mutation. In genetic algorithms, the solution 

candidates are presented as a population of individuals, which are crossed with each other 

and mutated randomly. Genetic algorithms can be effective in avoiding local optima 

because they explore multiple objective function points in parallel. Due to the random 

nature of the method, multiple iterations of the selection process might be necessary to 

find the actual optimal solution. (Jarvis and Goodacre 2005; Vuolio 2021) 

4.2.4 Model identification 

The model is trained with the chosen variables within the training data set. In the case of 

multiple input variables, multiple linear regression (MLR) can be used to estimate a single 

output variable with the input variables, as expressed in the following Equation (11), 

𝑦 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝜀,   (11) 

where 𝑦 is the observed output, obtained from the bias 𝛽0 and coefficients 𝛽1, 𝛽2 … , 𝛽𝑛 

and the residual 𝜀. For the MLR model, the global optimum of the objective function with 

respect to the parameter space can be found by obtaining the analytical solution of the 

objective function. (Andrews 1974; Uyanık and Güler 2013)  

Principal component analysis (PCA) can be used for developing a principal component 

regression (PCR) model, which avoids the problem of collinear variables present in the 
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data by reducing the input data dimensionality with PCA. The method can be constructed 

as Equation (12),  

𝑦 = 𝛄𝐅 + 𝜀,     (12) 

where 𝛄 is the vector of coefficients and 𝐅 is the constructed scaled principal component 

matrix, utilizing PCA. However, PCR is dependent on the input data dimensions, 

requiring the re-estimation of the model if additional variables have to be introduced in 

the model input space. (Kawano et al. 2018; Massy 1965)  

Additionally, neural networks can be utilized for estimating outputs with multiple input 

signals. The input variable selection and training data for the neural network facilitates a 

variety of approaches. (Narciso and Martins 2020) 

4.2.5 Model performance and validation 

The identified model must be evaluated to verify its accuracy and applicability. The 

model performance is dependent on various factors, for example on its training process; 

if the model is overfitted for the training data, poor generalization capability can be 

expected. To assess the model performance realistically, an independent data set needs to 

be used in which the outputs of the final model are compared to the observed output in 

the independent test data. The results can be analysed visually and with figures of merit, 

namely error statistics, some of which are described below. (Vuolio 2021) 

In model performance evaluation the residuals are analysed, namely the differences 

between the modelled and observed values. The residuals can be used for calculating 

several statistics, including mean absolute error (MAE), mean absolute percentage error 

(MAPE), mean squared error (MSE) and root mean squared error (RMSE). These values 

describe the deviation of the estimation from the observed value. The correlation 

coefficient (R) value measures the linear correlation between the estimated and observed 

values for the output. The standard deviation of the estimation error describes the 

variation observed in the residuals, and it can be used to define a confidence interval for 

the estimated values. (Botchkarev 2018)  
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5 MODELLING RESULTS AND DISCUSSION 

In the following chapter, model changes and simulation are discussed. The simulated 

process data is generated, and the presented modelling methods are utilized for identifying 

a model for estimating energy efficiency in the TE process. Finally, the model 

performance is evaluated, and the results are further discussed. 

For this study, the effects of disturbances were not considered, so the disturbance flags of 

TE model were disabled. Instead, setpoint changes for the selected manipulated variables 

were used for the simulation scenario. These setpoint changes were necessary for 

simulating the TE process model in different process states and thus describing the energy 

efficiency in varying conditions. From the provided simulation package, the model with 

the base case operation conditions for the process was chosen for the subsequent 

simulations (mode 1 in Downs and Vogel (1993)). 

5.1 Data acquisition 

5.1.1 Configuration of simulated process for data generation 

In this work, the actual energy efficiency of the TE process was defined according to 

Equation (1) in Section 2.1 by comparing the amount of energy used by the compressor 

and steam flow with the amount of final products G and H produced. Energy use by the 

steam flow is estimated with Equation (8), as explained in Section 3.3, while compressor 

workload is a measured process variable, including some white noise. The amount of G 

and H produced can be obtained by calculating the mass flow of the products in the 

product stream. The simulator does not calculate energy usage and product mass flows 

by default, and thus the studying of energy efficiency demands additional calculations. 

To obtain reference data, namely values for energy efficiency, the following information 

is required: 
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• Product stream concentrations, 

• Product mass flows, 

• Stripper steam flow, 

• Amount of energy transferred between steam and stripper, and 

• Compressor workload for recycle flow pressurization. 

For the product stream concentrations, the values available in the simulation model were 

used. Product mass flows were calculated by multiplying the mass fractions of product 

stream (G or H) by the total mass flow of the stream. The mass fractions were directly 

obtained from the continuous monitoring outputs for molar fractions of the product 

stream, which were added to the model in Bathelt et al. (2015). The total mass flow was 

calculated by multiplying the volumetric flow measurement and the average density of 

the stream (see Equation 10), which was calculated from the molar fraction measurements 

and liquid densities for the components listed in Table 10 of Appendix 1. The steam mass 

flow rate is also monitored, and hence is available in the simulation model. Energy added 

to the stripper by steam is calculated with Equation (8), using the measured steam mass 

flow and assuming that the steam condenses completely at a constant temperature. The 

model outputs for product stream composition use the delay- and disturbance-free values 

added to the model in Bathelt et al. (2015) to create the reference value for the next steps. 

The energy efficiency estimated with the soft sensor model in this work is, however, 

calculated from simulated process outputs, some of which include noise and delay.  

5.1.2 Setpoints and data ranges 

For generating simulated process data, the process setpoints were adjusted to cause 

variance. Keeping the process in control is necessary in the process, so the setpoint 

changes needed to be kept reasonable. The base case for data comparison was obtained 

from the steady-state mode 1 operation described in Downs and Vogel (1993). Inputs and 

their ranges for the simulation study were chosen using first-order finite difference-based 

sensitivity analysis (Saltelli et al. 2000) and values reported in the literature (see Table 

2). The applied sensitivity index zi,j was calculated as follows: 

𝑧𝑖,𝑗 =
𝛥𝑆𝐸𝐶𝑗

𝛥𝑥𝑖
,     (13) 
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where ∆xi is the performed setpoint change for input variable i and ∆SECj is the observed 

change in energy consumption for product j. The energy consumption per amount of 

product in the product stream, specific energy consumption (SEC), was adapted for the 

process from the energy efficiency Equation (1), and calculated for each product G and 

H, then used as criteria for simulation input selection. The specific energy consumption 

sensitivity to certain setpoint changes was calculated with Equation (13) and presented in 

Table 1. The variables with the most significant effect on the specific energy consumption 

were selected to be changed in the simulation scenario. The selected variables were the 

production rate, stripper level, mole fraction of product G in product stream, mole 

fractions of A and C in the reactor feed stream and reactor temperature. 

Table 1. Variable ranges chosen for setpoint sensitivity analysis and sensitivities of the 

calculated specific energy consumptions. 

Setpoint Nominal 

value 

Minimum Maximum |zi,G| 

|zi,H| 

(Maximum) 

x10000 

|zi,G| 

|zi,H| 

(Minimum) 

x10000 

Production rate 

(m³/h) 

22.949 21.802 24.096 76.84 

143.4 

76.91 

124.01 

Stripper level (%) 50 25 87.5 33.87 

0.23 

0.04 

0.02 

Separator level (%) 50 25 70 1.97 

2.60 

0.10 

0.46 

Reactor level (%) 75 71.25 78.75 0.54 

9.55 

1.12 

4.00 

Reactor pressure 

(kPa) 

2705 2569.75 2975.5 0.12 

0.04 

0.03 

0.69 

Mole fraction G in 

product 

53.724 51.038 80.586 126.39 

703.48 

196.74 

254.78 

yA (Mole fraction 

A in reactor feed) 

54.956* 90% of 

nominal value 

120% of 

nominal value 

11.25 

16.77 

12.22 

29.78 

yAC (Mole fraction 

A & C in reactor 

32.188+ 

26.383 

90% of 

nominal value 

110% of 

nominal value 

18.59 

28.58 

16.82 

54.99 

Reactor temperature 

(°C) 

120.4 118.59 132.44 27.75 

38.79 

5.28 

12.68 

Recycle valve (%) 22.21 0 39.98 8.16 

15.23 

0.94 

3.49 

Steam valve 

position (%) 

47.45 0 100 3.43 

4.00 

5.03 

6.27 

Agitator setting (%) 50 0 100 0.07 

0.25 

0.10 

0.22 

* The molar fraction setpoint of reactor feed stream A used for the simulator model is 

obtained as follows: 

100⋅(𝐴 𝑚𝑜𝑙−%)

(𝐴 𝑚𝑜𝑙−%)+(𝐶 𝑚𝑜𝑙−%)
=

100⋅32.188

32.188+26.383
.  (14) 
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Data ranges for process simulation were chosen mainly by referencing the values used in 

the sensitivity analysis for keeping the process in control. The process description in 

Downs and Vogel (1993) gave examples for production rate and G mole fraction setpoint 

changes. Tran and Georgakis (2018) used similar ranges for production rate, stripper level 

and G mole fraction. The chosen reactor temperature range had a similar range to that in 

Tran and Georgakis (2018), but was adjusted to fit the base case used in this study. The 

mole fraction of G in the product was chosen within a small range to keep the process 

within the base case mode. Adjusting the G mole fraction also had the largest impact on 

specific energy consumption, having a major effect with a small change. The ranges for 

the chosen setpoints are shown in the following Table 2. 

Table 2. Chosen ranges for setpoint changes compared to values suggested in (Downs 

and Vogel 1993; Tran and Georgakis 2018). 

Setpoint Nominal value Minimum Maximum Range 

suggested in 

Tran and 

Georgakis 

(2018) 

Setpoint 

changes 

suggested in 

Downs and 

Vogel (1993) 

Production rate 

(m³/h) 

22.949 20.5 24 [20.5 24] -15% 

(14228 to 

12094 kg/h) 

Stripper level 

(%) 

50 40 60 [40 60] - 

Mole fraction G 

in product (mol 

%) 

53.724 51 57 [0.51 0.57] 50 G/50 H  

to 40 G/60 H 

yA (Mole 

fraction A in 

reactor feed) 

54.956 90% of 

nominal value 

120% of 

nominal value 

* - 

yAC (Mole 

fraction A+C in 

reactor feed) 

32.188+26.383 90% of 

nominal value 

110% of 

nominal value 

* - 

Reactor 

temperature (°C) 

120.4 118 125 [119.5 

126.5] 

- 

 

* Ranges for yA and yAC differ in Tran and Georgakis (2018) compared to the 

configured simulation model for this study. 

 

The value for the variables regarding reactor input stream composition (yA and yAC) was 

obtained differently in the simulation model used in this work than that described in Tran 
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and Georgakis (2018). As such, data ranges for these variables were chosen from the 

performed sensitivity analysis, where a stable control for the simulator model was found.  

5.1.3 Simulated data 

A sufficiently long simulation time is required to guarantee the capture of as many 

phenomena as possible. Because of the slow process dynamics, many hours of simulation 

were required. Fortunately, simulating 100 hours of the process took approximately 1.25 

minutes in real time. The simulation is demonstrated in Figure 3, where measurements 

for one of the selected variables for the generation of simulated data are presented.  

 

Figure 3. Measured variable 6 (reactor temperature) during the simulation period. Note 

that the observed variable was one of the controlled variables.  

 

The details for the generation of process data from the TE simulator were formulated as 

follows. A random number generator seed was set constant for the simulations for 

repeatability between simulations. To obtain a presentative data set of the process, the 

total simulation time was chosen to be two months (1440 hours). Setpoint changes were 

set to take place randomly between every 24 and 48 simulated hours, to simulate routine 

process operation. The random numbers were drawn from a uniform probability 
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distribution with the information given in Table 2. According to the slow dynamics, more 

frequent step changes would not guarantee reaching the steady state in the process before 

the next step change would be initiated. One to four variables were randomly selected to 

be adjusted at each step, using uniformly distributed random integers. When performing 

the next step change, the previously adjusted variables were set back to their nominal 

values to keep the process within the control range. The chosen variables were then set 

new random setpoints from an even distribution within the previously chosen control 

range.  

The simulated data was recorded every five seconds in simulation time, and consequently 

the obtained data points for the measured variables were saved in a matrix of 1036801x41 

in size. Specific energy consumptions for products G and H were calculated and saved in 

a matrix of 1036801x2 in size.  

5.2 Data-based model selection 

5.2.1 Data pre-processing 

Before any modelling was carried out, the process data was pre-processed to remove any 

abnormalities. The first 1000 data points were removed from the data due to the chaotic 

transient nature at the start of the simulation, which were present even without any 

setpoint adjustments. The removed 1000 data points corresponded to 83.33 minutes of 

simulation time, which was approximately 0.10% of the simulation period. However, 

because of the synthetic nature of the data, there was no measurement drift, which often 

takes place in a real process (Pou and Leblond 2019).  

The process data has white noise introduced to the measurements, so downsampling 

(Section 4.2) was carried out to reduce randomness in the data. At the same time the data 

matrix row dimension was reduced, allowing faster computation in the model selection 

phase. In this case, downsampling was executed using an average of eight data point sized 

blocks as the new data point, reducing the size of the measurement data matrix to 

129475x41. 
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5.2.2 Data splitting 

Before the first modelling steps, the obtained data was split into training and testing sets 

using the hold-out method (Section 4.2). Only the training set was used in the model 

selection, and the test set was left for subsequent analysis of the model performance. In 

this case, the remaining 30% of the data was left out for testing. Data splitting is 

demonstrated in Figure 4, where the red vertical line depicts the data split between the 

training and test sets for measured variable 19.  

 

  

Figure 4. Data division into training and test sets for measured variable 19. 

 

5.2.3 Variable selection and model identification 

For model variable selection, the simulated data was delayed by a chosen maximum 

amount (120 data points were chosen). Increasing the maximum delay amount removes 

some information from the delayed vector, due to the addition of zero values at the 

beginning of the vector. In this case, the selected 120 data points correspond to about 1.33 

hours of simulation. From the delayed set of vectors for each variable individually, the 

delay value indicating the highest mutual information (Section 4.2) with the energy 

efficiency target was coded with Boolean flags to be utilized in the variable selection 
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algorithm. The optimally delayed data was then split into folds for sequential k-fold cross-

validation (Section 4.2) to identify the model parameters. For the cross-validation, 30 

folds were utilized.  

A forward selection method (Section 4.2) was applied in selection of the model’s 

variables. Mutual information with the training data set output was utilized to rank the 

variables in descending order before the forward selection. The variables were added to 

the model, which was trained and evaluated with cross-validation.  As an evaluation 

metric for cross-validation, the mean of the cross-validation errors was used. The selected 

variables and delays were presented in a binary-coded vector to filter the data matrix X 

before the final model estimation. As shown in Figure 5, the final model outputs and the 

reference values are compared with the training data set when estimating the energy 

efficiency of production regarding product G.  

  

Figure 5. Model outputs in red compared to the reference energy efficiency outputs in 

black regarding the amount of product G with the training data set.  

 

The obtained final model was then tested with the independent test data. As above for the 

training data, the model outputs and the reference values are compared with the test data 

set in Figure 6. 
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Figure 6. Model outputs in red compared to the observed energy efficiency outputs in 

black regarding the amount of product G with the test data set.  

 

Next, the procedure was repeated to estimate the energy efficiency in the case of product 

H. The model outputs are compared to the training set when estimating the production 

energy efficiency regarding product H. The results are shown in Figure 7. 
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Figure 7. Model outputs in red compared to the observed energy efficiency outputs in 

black regarding the amount of product H with the training data set.  

 

The obtained model was then tested with the independent test data set. As shown in Figure 

8, as in the case with product G, a comparison was performed with the test data set for 

product H.  
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Figure 8. Model outputs in red compared to the observed energy efficiency outputs in 

black regarding the amount of product H with the test data set.  

 

The variables selected for the models with the forward selection algorithm are shown in 

Table 3. The identified MLR model for the energy efficiency contains 18 and 21 variables 

that were selected for product G and product H, respectively. It should be noted that the 

chosen variables were selected from a set of 41 variables, each with 120 possible delays. 

From these possibilities, the delay with the highest performance was chosen for each 

variable individually. 

Table 3. Variables selected for the identified models. 
 

Selected variables 

Product G 1 6 8 9 11 12 16 17 19 20 21 23 25 26 32 34 35 36 

Product H 1 7 8 10 11 13 14 16 17 20 21 22 23 25 26 27 28 29 31 34 38 

 

 

5.2.4 Model evaluation 

Model performance can be evaluated with a variety of statistics, as previously mentioned 

in Section 4.2.3. In this case, figures of merit in terms of RMSE, 2σ (two times standard 
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deviation), MAPE and R-value are presented in Table 4. Similar metrics for both models 

are observed, and the results suggest that the models have reasonable accuracy.  

Table 4. Figures of merit for the modelling results. 

Product 

Data set 

G 

Training 

G 

Test 

H 

Training 

H 

Test 

RMSE (kJ/metric ton) 1.5 1.6 1.5 1.6 

2σ (kJ/metric ton) 3.0 3.2 3.1 3.2 

MAPE (%) 1.6 1.7 1.6 1.6 

R 0.87 0.85 0.89 0.89 

 

 

The calculated 2σ from the training data can be used to calculate a 95.4% confidence 

interval for the models. The confidence interval for product component G is presented in 

Figure 9.  

 

 

Figure 9. Plot of the 95.4% confidence interval for the energy efficiency estimation for 

output component G with the test data. The estimation (in red) and confidence interval 

defined for it (in grey) are compared to the observed output (in blue). 
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The model outputs are shown in red and compared to the reference outputs in blue. The 

95.4% confidence interval for the model is shown in grey. Similarly to the case of product 

G, the confidence interval for the model regarding product H is presented in Figure 10.  

 

Figure 10. Plot of the 95.4% confidence interval for the energy efficiency estimation for 

output component H with the test data. The estimation (in red) and confidence interval 

defined for it (in grey) are compared to the observed output (in blue). 

 

5.3 Discussion 

According to the figures of merit shown in Table 4, both models performed sufficiently 

well, having an R-value of 0.85 and 0.89 for the independent test data set. For the same 

data, RMSE values of 1.6 kJ/metric ton were obtained for both of the models, which can 

be considered adequate for the purpose of estimating the energy efficiency for this 

process. The estimates are within ±3.2 kJ/metric ton of the observed energy efficiency 

with 95.4% confidence, as demonstrated in Figures 9 and 10 respectively.  

However, some areas of inaccuracy can be observed in Figures 6 and 8. In particular, for 

days 45–47 and 56–58 for both of the product components, G and H. These areas also 

reside near the limits of the 95.4% confidence interval shown in Figures 9 and 10. 
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Transient areas of energy efficiency also have some inaccuracies in the estimation, for 

example during day 47 in the case of product G. Therefore, a more detailed analysis of 

the model is needed.  

Data similarity between the training and test data sets can be compared for example with 

histogram intersection s (Patacchiola 2016), the Euclidean distance d (Cha 2008) and 

Kullback–Leibler divergence DKL (Kullback and Leibler 1951). The differences between 

the training and test data for variable 35 are presented in Figure 11, together with the data 

similarity metrics.  

 

Figure 11. Histogram of the training and test data sets for variable 35. 

 

The histogram intersection compares the areas of the data sets, obtaining a value of one 

with identical data. The Euclidean distance and Kullback–Leibler divergence gain a value 

of zero with identical data sets. As seen in Figure 11, with significant difference in the 

data sets, the histogram intersection has a value of 0.46502, a Euclidean distance of 1.07, 
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and a Kullback–Leibler divergence of 0.91352. As demonstrated for variable 35, the data 

differences and data similarity metrics for variable 1 are presented in Figure 12.  

 

Figure 12. Histogram of the training and test data sets for variable 1. 

 

The data shown in Figure 12 is nearly identical in the training and test data sets, displaying 

values close to the ideal values for the data similarity metrics.  

The data for the modelling was gathered using random setpoint changes rather than with 

systematic experimental design, with the goal of simulating a normally operating process. 

Maximum ranges for the variables may not therefore be taken into account in the training 

data due to the random nature of the setpoint changes. The effect of the performed data 

split is demonstrated for variable number 20 in Figure 13.  
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Figure 13. Data distribution for training and testing for variable number 20. 

 

As can be observed in Figures 11 and 13, the test data set includes variables outside the 

training data range for variables 20 and 35. Similar behaviour for other variables were 

observed, with some areas of the test data set reaching beyond the range within the 

training data. Hence the observed inaccuracy can be explained by model extrapolation 

rather than overfitting of the model.  

Discrepancy in the variables can also be observed by monitoring the minimum and 

maximum values of each variable. For example, in the training data set, the measured 

variable 20 has a minimum value of 315.1, while in the test data set the minimum value 

is 291.0. This can also be observed in Figure 13, where the test data set has significant 

time periods with values below the training data set. 

For a slow process, such as the TE process, a large amount of data is required to capture 

all the possible variable areas for training an accurate estimation model. The gathering of 

data needs to be continued to improve the accuracy of the model. By planning systematic 

experimentation for this purpose, most of the phenomena within a process could be 

captured accurately, but this may be difficult with slow and expensive chemical 

processes.  
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As noted in Table 3, the models for products G and H included slightly different selected 

variables. However, some common variables are present in each model, namely:  

• Feed rate,  

• Reactor level,  

• Product separator temperature,  

• Stripper pressure,  

• Stripper underflow (product stream),  

• Compressor workload,  

• Reactor cooling water outlet temperature,  

• Mole percentage of components A, C, D in reactor feed, and  

• Mole percentage of component F in product stream. 

It can then be assumed that the shared variables for the identified models are due to the 

common factors between the product components, mainly regarding reaction rates and 

the workload of the compressor and reboiler of the stripper steam flow. The variables not 

shared between the models can be attributed to the different reaction dynamics for the 

product components; the reaction for G was mentioned as being more sensitive to 

temperature due to a higher activation energy (Downs and Vogel 1993).  

To develop the energy efficiency metric in the TE process, it was assumed that losses in 

product, feed and energy were not significant. The heat energy required by the stripper 

was obtained based on the heat duty mentioned in the original process description, with 

the assumption that the steam flow fully condenses at a constant temperature. If the 

assumption turns out to be inaccurate, the energy addition via the steam flow will have 

been miscalculated. Due to the conservation of energy, less energy is transferred to the 

stripper if the steam flow only condenses partially. However, if the steam flow does fully 

condense, but a constant temperature is not kept, more energy is transferred to the stripper.  
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6 CONCLUSIONS 

In this study, as part of the proposed framework, a data-based energy efficiency estimator 

was created for the Tennessee Eastman process. The process was simulated for 60 days, 

and the gathered data was used for data-based models. The models identified for energy 

efficiency regarding two product components of the process performed sufficiently well. 

The developed model could be improved further by utilizing more advanced methods for 

variable selection, delay estimation and modelling. Nonlinear estimation and time series 

models could also be considered in order to obtain higher estimation accuracies. For this 

thesis, however, a multiple linear regression approach was used for modelling, and 

forward selection was used for variable selection, starting with the variables ranked 

highest according to shared mutual information. As shown in Narciso and Martins (2020) 

(Section 4.2), methods such as affinity propagation, PCA, PCR and PLS can be used to 

identify relevant data for energy efficiency. However, the observed deficiency in the 

current data might cause inaccuracies, even with more advanced methods. 

Another approach for further development of the estimation accuracy could be clustering. 

This method can be used to identify and classify different process operation points. 

Different models can then be developed for the different identified scenarios, allowing 

more accurate modelling results within each operating point. (Srinivasan et al. 2004)  

According to the TE model, energy released in the exothermic reactions is captured as 

heat in the cooling water circuits. The energy can be monitored by comparing the 

temperature difference between the input and output cooling streams in the reactor and 

condenser. Increased energy efficiency could be obtained by using this energy for some 

process units within the TE process by utilizing common energy integration methods such 

as Pinch analysis (Kemp 2007). Heating the stripper steam flow with the captured reaction 

heat may reduce, or even eliminate, the need for added energy to the stripper, improving 

energy efficiency. In the context of a complete chemical plant, the obtained heat can be 

transferred to different sections, and excess energy from other parts of the plant may be 

utilized in the TE process.  

The TE process has been widely used in research, mainly for topics such as fault detection 

and control design. The energy efficiency aspect of the TE process has been disregarded 
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in previous modelling, although similar accuracies for estimates of the general process 

states have been observed in related research (Sheta et al. 2019). The complex process 

proved to be suitable for energy efficiency monitoring with data-based models, adding to 

the wide variety of study areas the TE process is applicable to. Predictive modelling for 

energy efficiency and advanced process control are possible approaches for further study 

regarding this topic. Fault detection by observing decreased energy efficiency is also a 

potential research topic, as indicated in the suggested framework.  

The proposed framework can be considered as a tool for refining energy efficiency 

operations for other processes. By utilizing the discussed methods, energy usage could 

thus be monitored and controlled, enabling reduced emissions and process costs. With the 

addition of predictive models, the estimation of a future time horizon for energy 

efficiency would be possible, facilitating potential plantwide energy management and 

production planning. The prediction can be compared with the real-time (soft sensor) 

estimation of energy efficiency, and deviations from the prediction can be analysed. The 

predictive model can be updated with new information to further improve prediction 

accuracy and to reduce the extrapolation need of the model. Possible fault scenarios can 

also be identified from unexpected behaviour in energy usage.  



45 

   

7 SUMMARY 

Current practices for monitoring energy efficiency with indirect methods were examined 

in this thesis. Energy efficiency can be predicted with data-based models, utilizing direct 

or indirect measurements. Some of the observed methods were included in the proposed 

framework for energy efficiency monitoring and could be used as a potential tool for 

management of energy usage and development of energy efficiency estimators. The 

explored methods and procedures can be adapted and utilized in different practical 

applications. As part of the framework, general possibilities for improving the energy 

efficiency of a process were considered, such as operator decision support with visual 

indicators, fault diagnosis, advanced process control and production planning.  

Parts of the suggested framework were tested with a simulated process, namely the 

Tennessee Eastman model. This process has been widely used in research as a test case, 

providing a complex chemical process for a wide variety of fault detection and control 

practices. The energy efficiency aspect of the Tennessee Eastman process had, however, 

not previously been widely studied. Minor additions were introduced to the provided 

Tennessee Eastman model for calculating an energy efficiency metric.  

In the practical section, a real-time energy efficiency estimation for the Tennessee 

Eastman process was obtained through a multiple linear regression model. The model was 

identified from simulated data, from a period of 60 days. Model performance was then 

validated with an independent test set, separated from the data at the beginning. The 

models for estimating the energy efficiency regarding the two final products of the 

process performed sufficiently well with R values of 0.85 and 0.89, respectively. As the 

results obtained from the modelling showed, estimation of the energy efficiency within 

the Tennessee Eastman process with indirect measurements and a data-based approach is 

feasible.  

Real-time estimation of energy efficiency was performed as part of the monitoring 

framework. However, exploration of some areas of the proposed framework were 

excluded from this thesis. Therefore, further research in the other areas of the framework, 

such as predictive modelling of the energy efficiency horizon, advanced process control 

and fault diagnosis could be beneficial.  
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 Appendix 1. Tables for Tennessee Eastman model. 

Table 5. Process manipulated variables (Downs and Vogel 1993). 

Variable name Variable number Units 

D feed flow (stream 2) 1 kg/h 

E feed flow (stream 3) 2 kg/h 

A feed flow (stream 1) 3 1000 kg/h 

A and C feed flow (stream 4) 4 1000 kg/h 

Compressor recycle valve 5 % 

Purge valve (stream 9) 6 % 

Separator pot liquid flow (stream 10) 7 m³/h 

Stripper liquid product flow (stream 11) 8 m³/h 

Stripper steam valve 9 % 

Reactor cooling water flow 10 m³/h 

Condenser cooling water flow 11 m³/h 

Agitator speed 12 rpm 

 

 

Table 6. Process measured variables (Bathelt et al. 2015; Downs and Vogel 1993). 

Variable name Variable 

number 

Units Frequency Delay 

A feed (stream 1) 1 kscmh - - 

D feed (stream 2) 2 kg/h - - 

E feed (stream 3) 3 kg/h - - 

A and C feed (stream 4) 4 kscmh - - 

Recycle flow (stream 8) 5 kscmh - - 

Reactor feed rate (stream 6) 6 kscmh - - 

Reactor pressure 7 kPa gauge - - 

Reactor level 8 % - - 

Reactor temperature 9 °C - - 

Purge rate (stream 9) 10 kscmh - - 

Product separator temperature 11 °C - - 

Product separator level 12 % - - 

Product separator pressure 13 kPa gauge - - 

Product separator underflow (stream 10) 14 m³/h - - 

Stripper level 15 % - - 

Stripper pressure 16 kPa gauge - - 

Stripper underflow (stream 11) 17 m³/h - - 

Stripper temperature 18 °C - - 

Stripper steam flow 19 kg/h - - 

Compressor workload 20 kW - - 

Reactor cooling water outlet temperature 21 °C - - 

Condenser cooling water outlet temperature 22 °C - - 

Component A in stream 6 (Reactor feed) 23 mol % 0.1 h 0.1 h 

Component B in stream 6 24 mol % 0.1 h 0.1 h 

Component C in stream 6 25 mol % 0.1 h 0.1 h 

Component D in stream 6 26 mol % 0.1 h 0.1 h 

Component E in stream 6 27 mol % 0.1 h 0.1 h 
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Component F in stream 6 28 mol % 0.1 h 0.1 h 

Component A in stream 9 (Purge) 29 mol % 0.1 h 0.1 h 

Component B in stream 9 30 mol % 0.1 h 0.1 h 

Component C in stream 9 31 mol % 0.1 h 0.1 h 

Component D in stream 9 32 mol % 0.1 h 0.1 h 

Component E in stream 9 33 mol % 0.1 h 0.1 h 

Component F in stream 9 34 mol % 0.1 h 0.1 h 

Component G in stream 9 35 mol % 0.1 h 0.1 h 

Component H in stream 9 36 mol % 0.1 h 0.1 h 

Component D in stream 11 (Product) 37 mol % 0.25 h 0.25 h 

Component E in stream 11 38 mol % 0.25 h 0.25 h 

Component F in stream 11 39 mol % 0.25 h 0.25 h 

Component G in stream 11 40 mol % 0.25 h 0.25 h 

Component H in stream 11 41 mol % 0.25 h 0.25 h 

Temperature in stream 1 42 °C - - 

Temperature in stream 2 43 °C - - 

Temperature in stream 3 44 °C - - 

Temperature in stream 4 45 °C - - 

Reactor cooling water inlet temperature 46 °C - - 

Reactor cooling water flow 47 m³/h - - 

Condenser cooling water inlet temperature 48 °C - - 

Condenser cooling water flow 49 m³/h - - 

Component A in stream 1 50 mol % - - 

Component B in stream 1 51 mol % - - 

Component C in stream 1 52 mol % - - 

Component D in stream 1 53 mol % - - 

Component E in stream 1 54 mol % - - 

Component F in stream 1 55 mol % - - 

Component A in stream 2 56 mol % - - 

Component B in stream 2 57 mol % - - 

Component C in stream 2 58 mol % - - 

Component D in stream 2 59 mol % - - 

Component E in stream 2 60 mol % - - 

Component F in stream 2 61 mol % - - 

Component A in stream 3 62 mol % - - 

Component B in stream 3 63 mol % - - 

Component C in stream 3 64 mol % - - 

Component D in stream 3 65 mol % - - 

Component E in stream 3 66 mol % - - 

Component F in stream 3 67 mol % - - 

Component A in stream 4 68 mol % - - 

Component B in stream 4 69 mol % - - 

Component C in stream 4 70 mol % - - 

Component D in stream 4 71 mol % - - 

Component E in stream 4 72 mol % - - 

Component F in stream 4 73 mol % - - 
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Table 7. Process constraints (Downs and Vogel 1993). 

Process variable Normal operation 

Low limit 

 

High limit 

Shut down limit 

Low limit 

 

High limit 

Reactor pressure - 2895 kPa - 3000 kPa 

Reactor level 50% (11.8 m³) 100% (21.3 m³) 2.0 m³ 24.0 m³ 

Reactor temperature - 150°C - 175°C 

Product separator level 30% (3.3 m³) 100% (9.0 m³) 1.0 m³ 12.0 m³ 

Stripper base level 30% (3.5 m³) 100% (6.6 m³) 1.0 m³ 8.0 m³ 

 

 

Table 8. Process monitoring outputs (Bathelt et al. 2015). 

Description Number Unit 

Substance conversion rate (A) 1 kmol/h 

Substance conversion rate (B) 2 kmol/h 

Substance conversion rate (C) 3 kmol/h 

Substance conversion rate (D) 4 kmol/h 

Substance conversion rate (E) 5 kmol/h 

Substance conversion rate (F) 6 kmol/h 

Substance conversion rate (G) 7 kmol/h 

Substance conversion rate (H) 8 kmol/h 

Partial pressure of component A 9 kPa abs 

Partial pressure of component B 10 kPa abs 

Partial pressure of component C 11 kPa abs 

Partial pressure of component D 12 kPa abs 

Partial pressure of component E 13 kPa abs 

Partial pressure of component F 14 kPa abs 

Partial pressure of component G 15 kPa abs 

Delay-free and disturbance-free measurements of reactor feed analysis (A) 16 mol % 

Delay-free and disturbance-free measurements of reactor feed analysis (B) 17 mol % 

Delay-free and disturbance-free measurements of reactor feed analysis (C) 18 mol % 

Delay-free and disturbance-free measurements of reactor feed analysis (D) 19 mol % 

Delay-free and disturbance-free measurements of reactor feed analysis (E) 20 mol % 

Delay-free and disturbance-free measurements of reactor feed analysis (F) 21 mol % 

Delay-free and disturbance-free measurements of purge gas analysis (A) 22 mol % 

Delay-free and disturbance-free measurements of purge gas analysis (B) 23 mol % 

Delay-free and disturbance-free measurements of purge gas analysis (C) 24 mol % 

Delay-free and disturbance-free measurements of purge gas analysis (D) 25 mol % 

Delay-free and disturbance-free measurements of purge gas analysis (E) 26 mol % 

Delay-free and disturbance-free measurements of purge gas analysis (F) 27 mol % 
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Delay-free and disturbance-free measurements of purge gas analysis (G) 28 mol % 

Delay-free and disturbance-free measurements of purge gas analysis (H) 29 mol % 

Delay-free and disturbance-free measurements of product analysis (D) 30 mol % 

Delay-free and disturbance-free measurements of product analysis (E) 31 mol % 

Delay-free and disturbance-free measurements of product analysis (F) 32 mol % 

Delay-free and disturbance-free measurements of product analysis (G) 33 mol % 

Delay-free and disturbance-free measurements of product analysis (H) 34 mol % 

Delay-free and disturbance-free measurements of feed A analysis (A) 35 mol % 

Delay-free and disturbance-free measurements of feed A analysis (B) 36 mol % 

Delay-free and disturbance-free measurements of feed A analysis (C) 37 mol % 

Delay-free and disturbance-free measurements of feed A analysis (D) 38 mol % 

Delay-free and disturbance-free measurements of feed A analysis (E) 39 mol % 

Delay-free and disturbance-free measurements of feed A analysis (F) 40 mol % 

Delay-free and disturbance-free measurements of feed D analysis (A) 41 mol % 

Delay-free and disturbance-free measurements of feed D analysis (B) 42 mol % 

Delay-free and disturbance-free measurements of feed D analysis (C) 43 mol % 

Delay-free and disturbance-free measurements of feed D analysis (D) 44 mol % 

Delay-free and disturbance-free measurements of feed D analysis (E) 45 mol % 

Delay-free and disturbance-free measurements of feed D analysis (F) 46 mol % 

Delay-free and disturbance-free measurements of feed E analysis (A) 47 mol % 

Delay-free and disturbance-free measurements of feed E analysis (B) 48 mol % 

Delay-free and disturbance-free measurements of feed E analysis (C) 49 mol % 

Delay-free and disturbance-free measurements of feed E analysis (D) 50 mol % 

Delay-free and disturbance-free measurements of feed E analysis (E) 51 mol % 

Delay-free and disturbance-free measurements of feed E analysis (F) 52 mol % 

Delay-free and disturbance-free measurements of feed C analysis (A) 53 mol % 

Delay-free and disturbance-free measurements of feed C analysis (B) 54 mol % 

Delay-free and disturbance-free measurements of feed C analysis (C) 55 mol % 

Delay-free and disturbance-free measurements of feed C analysis (D) 56 mol % 

Delay-free and disturbance-free measurements of feed C analysis (E) 57 mol % 

Delay-free and disturbance-free measurements of feed C analysis (F) 58 mol % 

Production costs related to product amount based on measurements 59 ct/(kmol 

product) 

Production costs related to product amount based on disturbance-free 

process values 

60 ct/(kmol 

product) 

Production costs related to time based on measurements 61 $/h 

Production costs related to time based on disturbance-free process values 62 $/h 
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Table 9. Concentrations within process streams (Bathelt et al. 2015). 

Description Number Unit Description Number Unit 

Component A in stream 2 1 mol % Component A in stream 7 49 mol % 

Component B in stream 2 2 mol % Component B in stream 7 50 mol % 

Component C in stream 2 3 mol % Component C in stream 7 51 mol % 

Component D in stream 2 4 mol % Component D in stream 7 52 mol % 

Component E in stream 2 5 mol % Component E in stream 7 53 mol % 

Component F in stream 2 6 mol % Component F in stream 7 54 mol % 

Component G in stream 2 7 mol % Component G in stream 7 55 mol % 

Component H in stream 2 8 mol % Component H in stream 7 56 mol % 

Component A in stream 3 9 mol % Component A in stream 8 57 mol % 

Component B in stream 3 10 mol % Component B in stream 8 58 mol % 

Component C in stream 3 11 mol % Component C in stream 8 59 mol % 

Component D in stream 3 12 mol % Component D in stream 8 60 mol % 

Component E in stream 3 13 mol % Component E in stream 8 61 mol % 

Component F in stream 3 14 mol % Component F in stream 8 62 mol % 

Component G in stream 3 15 mol % Component G in stream 8 63 mol % 

Component H in stream 3 16 mol % Component H in stream 8 64 mol % 

Component A in stream 1 17 mol % Component A in stream 9 65 mol % 

Component B in stream 1 18 mol % Component B in stream 9 66 mol % 

Component C in stream 1 19 mol % Component C in stream 9 67 mol % 

Component D in stream 1 20 mol % Component D in stream 9 68 mol % 

Component E in stream 1 21 mol % Component E in stream 9 69 mol % 

Component F in stream 1 22 mol % Component F in stream 9 70 mol % 

Component G in stream 1 23 mol % Component G in stream 9 71 mol % 

Component H in stream 1 24 mol % Component H in stream 9 72 mol % 

Component A in stream 4 25 mol % Component A in stream 10 73 mol % 

Component B in stream 4 26 mol % Component B in stream 10 74 mol % 

Component C in stream 4 27 mol % Component C in stream 10 75 mol % 

Component D in stream 4 28 mol % Component D in stream 10 76 mol % 

Component E in stream 4 29 mol % Component E in stream 10 77 mol % 

Component F in stream 4 30 mol % Component F in stream 10 78 mol % 

Component G in stream 4 31 mol % Component G in stream 10 79 mol % 

Component H in stream 4 32 mol % Component H in stream 10 80 mol % 

Component A in stream 5 33 mol % Component A in stripper sump feed 81 mol % 

Component B in stream 5 34 mol % Component B in stripper sump feed 82 mol % 

Component C in stream 5 35 mol % Component C in stripper sump feed 83 mol % 

Component D in stream 5 36 mol % Component D in stripper sump feed 84 mol % 

Component E in stream 5 37 mol % Component E in stripper sump feed 85 mol % 

Component F in stream 5 38 mol % Component F in stripper sump feed 86 mol % 

Component G in stream 5 39 mol % Component G in stripper sump feed 87 mol % 

Component H in stream 5 40 mol % Component H in stripper sump feed 88 mol % 

Component A in stream 6 41 mol % Component A in stream 11 89 mol % 

Component B in stream 6 42 mol % Component B in stream 11 90 mol % 

Component C in stream 6 43 mol % Component C in stream 11 91 mol % 

Component D in stream 6 44 mol % Component D in stream 11 92 mol % 

Component E in stream 6 45 mol % Component E in stream 11 93 mol % 

Component F in stream 6 46 mol % Component F in stream 11 94 mol % 

Component G in stream 6 47 mol % Component G in stream 11 95 mol % 

Component H in stream 6 48 mol % Component H in stream 11 96 mol % 
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Table 10. Process component properties (Downs and Vogel 1993). 

Component Molecular 

weight 

Liquid density 

(kg/m³) 

Liquid heat 

capacity 

(kJ/(kg °C)) 

Vapour heat 

capacity 

(kJ/(kg °C)) 

Heat of 

vaporization 

(kJ/kg) 

A 2 - - 14.6 - 

B 25.4 - - 2.04 - 

C 28 - - 1.05 - 

D 32 299 7.66 1.85 202 

E 46 365 4.17 1.87 372 

F 48 328 4.45 2.02 372 

G 62 612 2.55 0.712 523 

H 76 617 2.45 0.628 486 

 

 

Table 11. Simulator model disturbances (Bathelt et al. 2015; Downs and Vogel 1993; 

Ricker 2015). 

Number Type Disturbed value 

1 Step A/C ratio of stream 4, B composition constant 

2 Step B composition of stream 4, A/C ratio constant 

3 Step D feed (stream 2) temperature 

4 Step Cooling water inlet temperature of reactor 

5 Step Cooling water inlet temperature of separator 

6 Step A feed loss (stream 1) 

7 Step C header pressure loss (stream 4) 

8 Random A/B/C composition of stream 4 

9 Random D feed (stream 2) temperature 

10 Random C feed (stream 4) temperature 

11 Random Cooling water inlet temperature of reactor 

12 Random Cooling water inlet temperature of separator 

13 Drift Reaction kinetics 

14 Stiction Cooling water outlet valve of reactor 

15 Stiction Cooling water outlet valve of separator 

16 Random (unknown); deviations of heat transfer within stripper (heat exchanger) 

17 Random (unknown); deviations of heat transfer within reactor 

18 Random (unknown); deviations of heat transfer within condenser 

19 Stiction (unknown); recycle valve of compressor, underflow separator (stream 10), 

underflow stripper (stream 11) and steam valve stripper 

20 Random (unknown) 
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21 Random A feed (stream 1) temperature 

22 Random E feed (stream 3) temperature 

23 Random A feed (stream 1) pressure (= flow) 

24 Random D feed (stream 2) pressure (= flow) 

25 Random E feed (stream 3) pressure (= flow) 

26 Random A & C feed (stream 4) pressure (= flow) 

27 Random Cooling water pressure (= flow) of reactor 

28 Random Cooling water pressure (= flow) of condenser 

 

 


