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Geometallurgy is more often used for a concentrator plant design. Geometallurgy 

determines the metallurgical response of ore before the ore is feed to a plant. In a 

processing plant, the feed keeps changing due to the heterogeneity of ore deposits. There 

is ore variability in different parts of a deposit, so the optimum blending is critical to 

provide a constant feed. The study of different blends enables to predict the plant 

performance.  

The thesis' main objective is to study the effect of ore variations and blends on flotation 

performance. The productivity of HSC Chemistry ®’s flowsheet simulation module for 

the prediction of flotation kinetics for blends, is studied. The second objective is the 

investigation of the effect of ore pre-sorting on flotation kinetics. 

This thesis work is conducted using four samples from Sotkamo Silver Oy: malmi, sorter 

feed, sorter product, and ore 60. The experimental part includes crushing, grinding, 

sample splitting, grinding calibration tests, flotation tests for each sample, simulation of 

flotation tests, blends preparation, blend flotation tests and simulation of blend flotation.  

In terms of grindability, the sorter feed and sorter product samples are similar. The 

specific grinding energy of the malmi is 10% less than the sorter feed and sorter product. 

Ore 60 is the softest in terms of grindability. Both galena and sphalerite in the Malmi 

sample are oxidized, while Ore 60 has oxidized more completely as compared to the 

malmi. Sorter product is least oxidized while sorter feed is slightly higher oxidized than 

sorter product. Sorter feed and sorter product are similar in terms of flotation kinetics, 

having similar recoveries. Malmi sample also has good recoveries of galena and 

dyscrasite. Ore 60 has the lowest recovery of galena and the highest recovery of pyrite. 



 

The flotation in ore 60 is complex due to oxidation and the presence of slimes. The 

experimental and simulated recoveries of blends are close to each other. The blend of 

malmi and sorter product resulted in higher experimental grades of valuable minerals and 

lower grades of gangue than the simulated grades. The blends of ore 60 with malmi and 

sorter product have a higher experimental grade of gangue and lower experimental grade 

of ore minerals than simulated grades. The predictivity of simulation is close to the 

experimental results; hence HSC’s simulation module tool is productive to predict the 

kinetics of blends.  

Keywords: Geometallurgy model, simulation, blends, flotation, Taivaljärvi deposit, Plant 

design 
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1 INTRODUCTION: 

Geometallurgy combines geological and metallurgical information to create a predictive 

geometallurgical model for a mineral processing plant (Lamberg, 2011). It is critical for 

the effective utilization of mineral reserves/resources and risk management. The use of 

geometallurgy for the design of process plants is becoming more and more common. Due 

to lower grades and more complexity of the new ore deposits, there is no room for errors 

in a process chain, and more efficient utilization of the ore body is critical.  It provides 

comprehensive knowledge of the ore body, including the metallurgical response. It also 

enables effective utilization of the ore body. Forecasted metallurgical performance helps 

to tune the process plant accordingly. Comprehensive knowledge of the ore body enables 

controlled mining and better-controlled mineral processing. Geometallurgy makes room 

for implementing new technologies and helps in economic optimization and lower risk in 

the process chain.  

A geometallurgical program contains the following steps shown in Figure 1. Lamberg, 

(2011) modified the steps after (Bulled & McInnes, 2005,  David, 2007 and Dobby et al., 

2004). A geometallurgical program starts with the collection of geological data. 

Geological data contains drilling, outcrop study, drill core logging, chemical analysis, and 

other analysis. The second step is the collection of metallurgical samples with the help of 

geological data. In the third step, the metallurgical samples are tested in the laboratory to 

get metallurgical performances. In the fourth step, the geological data and metallurgical 

data are used to develop geometallurgical domains. The fifth step is the development of 

miasmatical relationships to derive metallurgical parameters over the geometallurgical 

domains. The sixth step is developing a process model in which the models for unit 

operation are derived using metallurgical parameters. In the seventh step, the plant 

simulation models are generated based on the process model. The last step is the 

calibration of the models. 
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Figure 1 Steps of a geometallurgical program, modified from (Lamberg, 2011) 

 

Lamberg, (2011) proposed a particle-based geometallurgical model which considered 

particles and minerals from beginning to end, shown in Figure 2. This particle-based 

model contains a geological model, particle breakage model, and unit process models. 

The geological model provides quantitative mineralogy of ore blocks. A particle breakage 

model describes the type of particles generated during the breakage of different ore 

blocks. While the unit process models forecast the behavior of particles and minerals 

under other unit processes.  

 

Figure 2 Particle-based geometallurgical model (Lamberg, 2011) 
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This thesis is focused on the effect of ore variations and ore blends on metallurgical 

performance by using experimental test work and HSC simulations. The main research 

questions are: 

• Effect of ore variations and blends on flotation performance, can be simulated?  

• May the product of sorting before flotation bank affect flotation kinetics? 

This thesis work is conducted using four samples and their blends from Sotkamo Silver 

Oy. These four samples include main ore, sorter feed, sorter product, and oxidized ore60. 

The Sotkamo Silver’s rougher and scavenger of Pb/Ag flotation circuit are targeted for 

this study.  

The objective of the thesis is to know the effect of ore variation and ore blends on a 

processing plant. The feed to a processing plant is not uniform due to variation in an 

orebody. The low-grade ore is usually processed with a high-grade ore in the form of 

blends. It may affect comminution and separation processes. So, it is critical to know the 

metallurgical response to ore variation and ore blends. In this thesis, the flotation response 

is studied for different ore types and blends. 

The experimental and simulation work is validated. The grinding calibration curves are 

validated by conducting one extra grinding test. The experimental P80 of the additional 

grinding test is compared to modeled P80. Flotation results are validated by comparing 

back-calculated grades of elements and minerals with analyzed feed analysis. Blend 

flotation results are validated similarly. Simulation results are validated by comparing 

with the experiment blends flotation results.  

The experiment work of this thesis started with sample preparation. Grinding calibration 

tests are conducted to find grinding time for the required P80. In addition, each ore type's 

grindability tests were conducted using mergan grindability test method (Niitti, 1973).  

The mergan test method is based on wet batch grinding and measurement of energy 

consumption and mill revolution. The mergan test can be used to calculate the operating 

work index and approximation to the bond work index (Heiskari et al., 2019). Reference 

flotation tests are conducted for each ore type and their blends. The concentrate and 

tailings are analyzed using Inductively coupled plasma (ICP) analysis. Inductively 

coupled plasma optical emission spectroscopy (ICP-OES) was used to analyze the main 

elements and inductively coupled plasma mass spectroscopy (ICP-MS) and ICP-OES are 
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used for Ag analysis, depending on the silver content in the sample. The elemental data 

from ICP analysis is converted into modal mineralogy using HSC-Geo module, and HSC-

Sim module is used for the simulation of reference flotation and blends flotation results. 
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2 LITERATURE REVIEW: 

2.1 Taivaljärvi Zn-Pb-Ag-Au ore 

2.1.1 Regional Geology 

The Taivaljärvi Zn-Pb-Ag-Au ore is located in the Archean area of eastern Finland and 

the southern part of the greenstone belt. Greenstone belt is divided into Suomussalmi, 

Kuhmo and Tipasjärvi belts. The Taivaljärvi area is the part if Tipasjärvi belt (Papunen 

et al., 1989). The Geological map of Tipasjärvi is shown in Figure 3. 

 

Figure 3 Geology of Tipasjärvi and location of the Taivaljärvi area  (Lindborg et al., 

2015) 

 

The Archean granitoid area around the greenstone belt is quite heterogenous. This area 

varies from stromatic and nebulitic migmatitic gneisses to discrete felsic plutons. The 

granodiorite-granite associations and tonalite-trondhjemite-gneiss surround the 

Tipasjärvi area and are considered the basement of greenstone belt, shown in Figure 4. It 

is observed that the bulk of granitoids is younger than the greenstone belt. The study 

shows short crustal residence time for granitoids. The greenstone area was deformed and 

metamorphosed in many phases, having Proterozoic as the younger phase. Due to 
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metamorphism, the rock-forming minerals are metamorphic, but the primary textures are 

still preserved and can be observed. The greenstone belt is composed of 80% of mafic, 

ultramafic, and felsic volcanic rocks. The remaining 20% include mica gneisses, 

metasedimentary rocks, black schist, banded iron formation, and mafic-ultramafic 

intrusive rocks.  

 

Figure 4 Stratigraphy of Tipasjärvi belt and lithologic succession of Taivaljärvi 

formation (Lindborg et al., 2015) 

 

The Tipasjärvi belt is subdivided into four lithostratigraphic formations, shown in Figure 

4. This scheme is based on field observations and interpretation of successive deformation 

phases. The Koivumäki formation is the lowermost and composed of felsic metatuffs. 

The Taivaljärvi felsic volcanics are also included in the Koivumäki formation. The 

Vuoriniemi formation overlies the Koivumäki formation and varies lithologically from 

tholeiitic metatuffs and lavas to graphitic black schist, banded iron formation, dacitic 

metatuffs, and mafic metalavas. The Kallio formation overlies the Vuoriniemi formation 

and is composed of ultramafic komatiitic lavas. The Kokkoniemi formation is the 

uppermost and composed of mica schist, weathering product of underlying volcanic 

rocks. The Koivumäki formation is dated as 2828 ± 3 Ma. The Kokkoniemi sedimentary 

unit is dated as 2.75Ga.  

The Taivaljärvi formation has rocks that vary from massive quartz-porphyries, volcanic 

breccias, and layered felsic tuffs. The folding sequence of Taivaljärvi is sub-vertical to 
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steeply dipping east. Drilling data indicated the younger direction eastward. Sotkamo 

Silver ore is located in the middle of volcanic succession. Several quartz veins 

characterize the ore zone.  

Geochemical and mineralogical studies indicated potassic and magnesian hydrothermal 

alterations. The mineralized zone has a quartz-kyanite layer about 100m above. K-Mg 

alteration is found in the felsic rock, which occurs between silver deposit and layer of 

quartz-kyanite. The intense isoclinal folding and over-thrusting cause the bringing of old 

greenstone rock into the upper contact zone. The basal contact of TTG gneisses and 

Taivaljärvi formation is not outcropped, hence studies through drilling data.  

2.1.2 The ore deposit 

The subcrop is 500m long and 5-110m wide. The dipping of the ore body is 65-degree 

NE and plunges 60 degrees to S-SW. The depth of the ore body is 600m. The GTK’s deep 

geophysical surveys indicated that the mineralization continues till 2km depth  (Niskanen, 

2013). The model is demonstrated in Figure 5. 

 

Figure 5 Taivaljärvi Silver mien deposit model, Red=measured, indicated, and inferred 

resources. Cyan= extension of mineralization. Blue=mine decline and green=drill hole 

traces (Niskanen, 2012) 

 

Meyer & Davies (2012) completed the feasibility studies in May 2012. Afterward, the 

mineral resources were updated according to the Australian Code to report exploration 

results, mineral resources, and ore reserves (JORC-code 2012). The updated mineral 

resources and reserves on 31st December 2020 are shown in Table 1. 
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Table 1 Mineral resources and ore reserves of Sotkamo Silver Oy (Sotkamo.com) 

Mineral Resources 

  
Tons (Kt) 

Ag 

 (g/t) 

Au  

(g/t) Pb (%) Zn (%) 

Measured 2351 79 0,21 0,29 0,63 

Indicated 3385 79 0,23 0,29 0,63 

Total (Measured + indicated) 5736 79 0,22 0,29 0,63 

Inferred 4220 61 0,17 0,2 0,47 

Ore Reserves 

Proved 937 109 0,33 0,32 0,67 

Probable 922 148 0,55 0,62 1,33 

Total (Proved + Probable) 1859 129 0,44 0,47 1 

 

Papunen, et al. (1989) indicated the heterogenous mineralization. It comprises four 

parallel layers with different composition and metal ratios. These mineralized layers are 

classified as D, C, B, and A layers, shown in Figure 6. Layer A and B contain mineable 

ore.  

 

Figure 6 Cross section of the Taivaljärvi deposit (Papunen et al., 1989) 

 

Layer A is the uppermost layer with 4-8m thickness. At a depth of 150-200m, there is a 

discontinuity in layer A. This layer contains an abundant amount of ankerite and quartz 

veins. The texture of the body is banded, Pb-Zn rich, and has a high amount of iron 
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sulfides. This body is rich in silver but has a lower amount of Pb and Zn than other ore 

bodies.  

Layer B is relatively continuous and has a depth of up to 500m. The thickness varies 

between 4-8m. Galena and sphalerite occur as banded dissemination together with pyrite, 

pyrrhotite in quartz ankerite veins. The host rock is composed of banded quartz-sericite 

schist with a higher amount of quartz-carbonate veins.  

Layer C is not widespread and has an average of 5m thickness. The sulfides have a texture 

of thin bands. Layer D has 5m thickness as well and is the lowermost layer and abundant 

in sulfide minerals. (Papunen et al., Tuokko, 1989) 

2.1.3 Ore mineralogy 

The ore mineralogy of Taivaljärvi is described by Papunen et al. (1989). The ore minerals 

include dyscrasite, freibergite, pyrargyrite, native silver, gold, galena, sphalerite, and 

chalcopyrite. The other identified minerals include pyrite, arsenopyrite, pyrrhotite, 

covellite, cubanite, gudmundite, acanthite, miargyrite, freieslebenite, bournonite, 

scheelite, native antimony, and native bismuth. The grain size of Ag-bearing minerals 

varies between 0.01-0.1mm, while the grain size of common sulfide minerals varies 

between 0.1-0.5mm. The galena and silver minerals occur in quartz-carbonate veins and 

band and are most abundant in the uppermost ore zone. The ore has a 5-8% sulfide 

content, and pyrite and pyrrhotite contain more than 50% of the sulfides.  

Pyrite, pyrrhotite, and arsenopyrite are the main iron minerals. Pyrite is dominant and 

occurs in all types of ore in the form of euhedral cubes. Pyrrhotite occurs in quartz-

ankerite veins, C and D ores. Arsenopyrite rarely occurs in the form of banded 

disseminations.  

Sphalerite occurs throughout the deposit. It appears as bands with iron sulfide and galena. 

In ankerite veins, sphalerite occurs together with galena and other ore minerals.  

Galena occurs as inclusions in ankerite and as bands in iron sulfides, chalcopyrite, and 

sphalerite. Galena also contains inclusions of silver minerals, and silver content in galena 

varies between 0.01-1.7%.  
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Chalcopyrite also occurs throughout the deposit with a grain size that varies between 

0.02-0.1mm. It occurs as intergrowth with silver minerals in a silver-rich part of the ore. 

Chalcopyrite also occurs together with pyrrhotite, galena, and sphalerite in calc-silicate 

layers. Chalcopyrite may also include silver up to 6.8%.  

Freibergite and dyscrasite are the two most common silver minerals. Freibergite occurs 

together with galena and dyscrasite as disseminated and intergrowth in the quartz ankerite 

veins. The grain size varies between 0.03-0.06mm. Silver replaces copper in the 

freibergite tetrahedrite series. Dyscrasite occurs together with freibergite, galena, 

chalcopyrite, and native antimony in quartz ankerite veins. Grain size varies between 

0.01-0.1mm, and it appears throughout the deposit.  

Freieslebenite is a trace mineral found in A and B ores as inclusions in galena.  Silver-

copper replacement is also found in this mineral.  

Pyrargyrite occurs as a thin coating on the fractures of galena ankerite quartz veins. It 

also appears as inclusions in the galena boundaries. The grain size varies between 0.01 to 

0.03mm.  

Native silver and alloys with gold and antimony are also found and considered as 

accessories. Alloys exist together with galena and other silver minerals. These alloys also 

occur as fracture fillings of other minerals. The grain size varies between 0.01-0.05mm. 

(Papunen et al., 1989). 

2.1.4 History of the mining 

This Zn-Pb-Ag-Au mineralization was indicated in 1980 by researchers from the 

University of Oulu. The research group found several Ag-Au-Zn boulders along the 

lakeside. They conducted percussion drilling and bedrock sampling. The drilling results 

indicated a 500m mineralization up ice direction.  Kajaani Oy secured the mineral rights 

in 1980. A diamond drilling campaign started during 1981-1989. This drilling covers the 

ore body 40-100m wide, 500m long, and 650m below the surface. A joint venture of 

Kajaani Oy and Outokumpu Oy resulted in the construction of a 2,6km long and a 350m 

long ventilation shaft between 1988-1990. The feasibility study was completed in 1991, 

and due to lower commodities prices, the project was put down. Sotkamo silver applied 

for the claim reservation in 2005. Sotkamo Silver Oy also applied for the claims over the 
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silver deposit in 2006, and the claims were issued in 2007. Since 2006 the Sotkamo Silver 

Oy brought this deposit to production in 2019 (Lindborg et al., 2015). 

2.1.5 Mineral processing and metallurgy 

Lab-scale processing tests were conducted during the 1980s at GTK MinTek, former 

Outokumpu laboratory. Metallurgical research and mineral processing tests were 

conducted during the feasibility studies in 1991. It has been reported that the ore is 

amenable to using standard flotation techniques. In early 2007 GTK conducted other 

processing tests to upgrade metallurgical tests and to make processing flowcharts for 

Sotkamo Silver Oy. Additional pilot plants tests were conducted by GTK in 2011 

(Lindborg et al., 2015) 

The test results revealed that the ore is amenable to flotation. Pb-Ag and Zn concentrate 

can achieve acceptable recoveries and grades. These tests were performed at P80 (80% 

passing) of 75 µm. It was concluded that gravity processing has no benefits over flotation.  

In a locked cycle, the achieved Ag and Au recoveries were 76.2 and 90%. About 7% 

silver was recovered in zinc concentrate. The recovery of Zn in zinc concentrate was 

90.8% at a grade of 51% Zn. Pyrite concentrate aimed to reduce the sulfur content in the 

tailing for beneficial tailings disposal. The pyrite concentrate has a 6% Ag recovery. 

These processing details were updated in the feasibility studies. The final processing 

flowsheet is based on crushing, grinding, flotation, filtration scheme. The suggested 

mining method was sublevel stopping and backfill (Lindborg et al., 2015). 

2.2 Comminution 

Comminution is the process of particle size reduction by blasting, crushing, and grinding. 

Comminution is used to liberate ore minerals from gangue minerals and reduce the 

particle size to make them suitable for downstream separation processes. Each separation 

technique has an optimum particle size for efficient work, shown in  Figure 7 (Drzymala, 

2007). 
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Figure 7 Size ranges for optimum processing for each separation technique (Drzymala, 

2007) 

 

The comminution process can be challenging for low-grade and complex ores. The typical 

interlocking types are shown in Figure 8 (Kelly, 1982). Under-grinding causes liberation 

issues while over-grinding causes more energy consumption and production of slimes 

which can cause difficulties in downstream processes. There is always a requirement for 

optimum grinding to keep a balance between liberation, energy, and particle size.  

 

Figure 8 Types of interlocking of ore minerals in gangue minerals, Black=ore mineral, 

White= gangue mineral (Kelly, 1982) 

 

The particle size P80 (80% passing) can be achieved using comminution tests. A 

comparison between multiple comminution test methods was made by (Mwanga et al., 
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2015), based on geometallurgical approach, shown in Table 2. He also concluded that for 

a geometallurgical program, none of the previous comminution tests fulfill all the 

requirements. He used a small lab ball mill and different coefficients to downscale the 

Bond ball mill process, technique names as geometallurgical comminution test. Bond ball 

mill tests are widely used due to their repeatability. The bond work index helps in the 

simulation, modeling, and designing of new grinding circuits.  

Table 2 Comparison of comminution test methods based on geometallugical approach, 

(1) Simplicity, (2) repeatability, (3) sample preparation, (4) time exposure and cost, (5) 

sample amount, (6) parameters can be used in modelling and simulation, (7) can be 

extended to mineral liberation (Mwanga et al., 2015) 

Fracture Test Method 

Suitable Criteria for Geometallurgical test (-=adverse, 

+=acceptable, +=advantage 

1 2 3 4 5 6 7 

Unconfined compressive 

strength test + 0 - 0 + - - 

Point load test + 0 0 0 + - - 

Brazilian test + 0 - 0 + - - 

Drop weight test 0 0 - - - + 0 

Ultra Fast load cell test - 0 0 0 - + 0 

Twin pendulum test - - 0 0 0 + 0 

Split Hopkinson test - 0 - - - 0 0 

Rotary breakage test - + 0 0 0 + 0 

Bond ball mill test 0 + 0 0 - + + 

Bond rod mill test 0 + 0 0 - + + 

Single pass test e.g. Mergan 

mill + + 0 - - + + 

2.2.1 Comminution indices 

Comminution indices are the outcome of the comminution tests and can be used 

quantitatively in simulation and modeling. There are four most common indices e.g., bond 

ball mill work index, bond ball mill work index, sag power index, and Macpherson 

autogenous work index.   

Bond ball mill work index (BWi) provides the measure of energy (kWh) used in a ball 

mill to grind one ton of material. The unit is kWh/t, and it can be calculated using the 

bond ball mill test (Bond, 1961). Bond work index can be used in simulation, modeling, 

and designing of grinding circuits. The bond work index values all around the word 

(ARMC database) show an average of 14.6 kWh/t and a median of 14.8 kWh/t (Mcken 

& Williams, 2005). 
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The bond rod mill work index (RWi) provides the energy consumed to grind one ton of 

material in a rod mill.  Bond (1961) referred to bond rod mill work index as resistance to 

crushing and grinding. Mcken & Williams (2005) state that the average and median 

values are 14.8 kWh/t for previous bond rod mill tests conducted (ARMC database).  The 

Bond rod work index can also be used to simulate, model, and design rod mills.  

Sag power index (SPI) measures the time required for sample reduction from P80 of 

12.7mm to P80 of 1.7mm, developed by John Starkey (Starkey & Dobby, 1996). High 

values of SPI indicated harder ore and lower values indicate a softer ore. The Spi was 

transformed to kWh/t and used by MinnovEX for designing (Dobby et al., 2001). 

Macpherson autogenous work index (AWi) is measured from Macpherson autogenous 

grindability test, developed by  MacPherson & Turner (1978). This grindability test is 

based on a small-scale AG/SAG steady-state mill. AWi is calculated by using power 

draw, particle size distribution, and throughput. The typical values for AWi are in the 

range of 3-7 (Mcken & Williams, 2005). 

2.2.2 Mergan Grindability test method 

Mergan test method was developed by Niitti (1973) in Outokumpu. The mergan test 

method is a wet batch grinding test method. There are aspects of the mergan tests to 

follow: (Niitti, 1973) 

• The energy consumption is measurable 

• The test is performed till the final fineness as required by the industrial need. 

• The test procedure is simple and fast.  

In this method, the mill size is 268 x 268 mm. The speed can vary between a wide range. 

The energy consumed by the mill is constantly measured through torque measurements. 

The mill revolution speed is also continuously measured. The optimum mill charge 

includes 22Kg of steel balls. He also concluded that the efficient ball charge comprises 

15 and 40mm balls. The pulp density is between 60-70% solids. The mill speed is 70% 

to the critical speed. (Niitti, 1973) 

The mergan test requires a crushed feed of size -4mm. The particle size distribution is 

calculated using sieving, and surface area is calculated using rapid permeability analysis. 
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The energy is calculated directly from the mill. The material is then ground to the required 

fineness, and mill revolutions are noted. The grinding energy measured can be used to 

calculate the mergan work Index (W-Wi). The mergan work index can be calculated using 

the Equation below. (Niitti, 1973) 

                           𝑴 − 𝑾𝒊 = 𝑬𝟎( 
√𝑭𝟖𝟎

√𝑭𝟖𝟎−√𝑷𝟖𝟎
)√

𝑷𝟖𝟎

𝟏𝟎𝟎
                     

Where           M - Wi is mergan work index (kWh/t) 

                      𝐸0 is Energy consumption (kWh/t) 

 

The energy consumption during the mill revolution is found variable. At the start, the 

energy consumption is increased by up to 10% to the original value. The energy 

consumption tends to decrease after a couple of hundred revolutions, and after 2500 

revolutions, the mill energy consumption levels to 20-35% lower than the original value. 

The variation in energy consumption is due to the friction condition inside the mill (Niitti, 

1973). 

The grinding energy is also dependent on the material ground. Wet grinding is 30-50% 

more efficient than dry grinding. It is also concluded that it is impossible to determine the 

wet grindability based on a dry grinding test. The mergan test should be carried out to the 

same grinding fineness as actual fineness required in the process (Heiskari et al., 2019). 

2.3  Flotation 

Flotation is a most versatile and vital separation technique that enabled the processing of 

complex, low-grade, and large tonnage ores. It is considered an improvement of the 

modern metallurgical era (Wills & Finch, 2016). Flotation is a physico-chemical process 

that uses the surface chemistry of the valuable and gangue mineral. The previous 

uncomical deposits became feasible due to flotation technology (Wills & Napier-Munn, 

2005). In direct flotation, the valuable hydrophobic minerals are attached with air bubbles 

and rise to the top and collected in the froth, while hydrophilic minerals stay at the bottom. 

In a reverse-flotation, the unwanted gangue is floated while valuable mineral is depressed 

and stay at the bottom. Flotation was patented in 1906 and developed for the flotation of 

sulfide minerals. The scope is expended for the flotation of oxides and low-grade sulfide 

ores (Napier-Munn & Wills, 2005).   
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Flotation utilizes the difference in surface properties of the minerals. Reagents are used 

to modify the surface properties. Flotation involves solid, liquid, and gas phases. The 

particles float the top by attachment with the air bubbles, entrainment in the water, and 

entrainment between the particles. The recovery of flotation is dependent on the 

attachment of valuable minerals to the air bubble. The principle of flotation is shown in 

Figure 9. The air bubbles are released at the bottom of the container. The hydrophobic 

particles are attached with bubbles and rise to the top and collected in the froth during 

bubbles rise. The hydrophilic gangue stays at the bottom and is collected separately 

(Napier-Munn & Wills, 2005).  

 

Figure 9 Principle of flotation (Napier-Munn & Wills, 2005) 

 

All minerals do not have ideal surface properties; hence, flotation reagents modify the 

surface properties. The collectors are essential and widely used. The collectors are 

adsorbed to the mineral surface and make it hydrophobic. The frothers are used to create 

a stable froth. The regulators are used to control the pH and control the flotation process 

(Napier-Munn & Wills, 2005). 

The collectors are used to achieve the required hydrophobicity of the minerals. The 

collectors are organic compounds and contain polar and non-polar parts. The polar part 

attaches to the mineral surface, and the non-polar part improves the hydrophobicity of the 

mineral, shown in Figure 10. The collectors are either ionizing or non-ionizing 

compounds. Ionizing collectors dissociate into ions in the water, while non-ionizing 

collectors are insoluble in water and cover the surface of minerals to make it hydrophobic. 
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The ionizing collectors are further classified into cationic and anionic collectors, 

depending on the ions produced. Cations produce a water repellent effect in the water and 

the polar group is based on pentavalent nitrogen (amines). Anionic collectors are further 

classified into oxyhydryl and sulphydryl. The polar group of oxyhydryl collectors 

contains organic and sulpho-acid anions. The sulphydryl collectors are widely used and 

contain bivalent sulfur in the polar group. The xanthates-sulphydryl collectors are famous 

for sulfide flotation. The classification of collectors is shown in Figure 11. The collector’s 

concentration should be optimum for maximum recovery. Excessive concentration of a 

collector causes the formation of multilayers on the mineral surface, and hence the 

hydrophobicity and the mineral recovery decreased. The lower concentration does not 

make particles hydrophobic enough to be attached and recovered by the air bubbles 

(Napier-Munn & Wills, 2005). 

 

Figure 10 Adsorption of collect on a mineral surface (Napier-Munn & Wills, 2005) 

 

 

Figure 11 Classification of collectors (Napier-Munn & Wills, 2005) 
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The frothers are used for the stability of air bubbles and to make a stable froth. Stable 

froth is essential to reduce the entrainment of gangue minerals and to improve flotation 

kinetics. A frother should have enough stability to carry floated particles to a collecting 

launder. Frothers and ionic collectors are similar chemically, and some collectors also 

have a frothing effect, e.g., oleates are powerful frothers. The frothers are heteropolar 

organic reagents which are adsorbed at the air-water interface to stabilize air bubble. The 

non-polar part of the frothers is oriented towards air and the polar part towards the water, 

shown in Figure 12A. The frothers include one of the groups shown in Figure 12B. 

Natural frothers like pine oil are effective frothers, while many synthetic frothers are 

common in use due to their high stability (Napier-Munn & Wills, 2005). 

 

Figure 12 A = action of frother, B = Frother groups (Napier-Munn & Wills, 2005) 

 

The modifiers are also called regulators, used to modify the action of a collector in a 

selective flotation. The modifiers include activators, depressants, and pH modifiers.  

Activators are used to modify the mineral surface to ease the action of a collector. The 

activators are water-soluble and produce ions in water which alter the surface of the 

minerals. A typical example is the activation of zinc by copper in sphalerite flotation. 

Copper sulfate is used as an activating in sphalerite flotation. Copper sulfate is soluble in 

water and generates copper ions. The copper sulfate deposit on the mineral surface and 

then xanthates can efficiently react with copper, make sphalerite hydrophobic, and easily 

float. Depressants are used to create certain minerals hydrophilic and depress during a 

flotation. A natural depressant is very fine particles called slimes. Slimes cover the surface 

of a mineral and prevent the action of a collector and flotation. There are many types of 

depressants, e.g., inorganic and polymeric depressants. Zinc sulfate and cyanides are 

A B 
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more commonly used. Cyanide is toxic, expensive, and challenging in handling (Napier-

Munn & Wills, 2005). 

The pH plays a significant role during flotation. The stability of reagents and is pH-

dependent. In a selective flotation, pH and reagent concentration play an important role 

together. An alkaline medium is the most suitable for flotation due to the stability of most 

collectors and the minimal corrosion effect to the flotation cells. pH regulators are cheaper 

and hence used in a significant amount to lower the concentration of collectors. A 

relationship between the concentration of the collector and pH value is shown in Figure 

13 (Napier-Munn & Wills, 2005). 

 

Figure 13 Relationship between the concentration of collector and pH for pyrite, galena, 

and chalcopyrite at constant [DTP−]/[OH−] (Zanin et al., 2019) 

 

Lime is an effective and economic pH modifier used in selective flotation (Zanin et al., 

2019). Sodium cyanide (NaCN) is a commonly used depressant. Cyanide is toxic and 

effective; hence the concentration of cyanide used in flotation is significant for the 

economy and environment. A relationship between the concentration of NaCN and pH 

for different minerals is shown in Figure 14. Hence there should be an optimum balance 

between pH, reagents concentration, and flotation kinetics (Zanin et al., 2019). 
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Figure 14 Relationship between NaCN and pH at 25 mg/L potassium ethyl-xanthate 

(Zanin et al., 2019) 

2.4 Flotation of lead-zinc ores 

Most of the world’s lead-zinc deposits contain finely disseminated bands of galena and 

sphalerite with varying pyrite amounts (Bulatovic, 2007). Galena and sphalerite are the 

major ore minerals despite some trace minerals (cerussite, anglesite, marmatite, and 

smithsonite). Two-stage selective flotation is widely used to separate galena from 

sphalerite. As usually sphalerite is found in a significant percentage, the zinc and iron 

minerals are depressed in the first stage, and lead minerals are floated. In the second stage, 

sphalerite is activated by adding heavy metal ions in the lead tailings and floated. The 

metal ions replace zinc at the sphalerite surface. Then the activated surface reacts with 

collectors and makes sphalerite water repellent. 

The flotation of galena usually takes place at a pH of 9-12. Lime as a cheaper and effective 

pH modifier, is used to control the alkalinity of the solution and maintain pH between 10-

12. Lime helps to depress pyrite. The most effective depressants for the sphalerite are 

sodium cyanide and zinc sulfate. Sodium cyanide has a higher selectivity and depresses 

pyrite and sphalerite. Sodium cyanide and zinc sulfate can be used alone or together and 

usually added to the grinding circuit. Being toxic and able to dissolve silver and gold, 

sodium cyanide is replaced by zinc sulfate in many plants. Xanthates are most widely 

used for the flotation of lead-zinc ores. After the first stage of galena flotation, the tailings 

are treated with copper sulfate to activate the surface of sphalerite. Isopropyl xanthate is 

the more effective collector for the activated sphalerite flotation (Napier-Munn & Wills, 

2005). 
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 An example of an Ag-Pb-Zn processing flowsheet is shown in Figure 15 (Silver, 2021). 

In Sotkamo Silver, the ore is crushed and ground. After grinding, Ag-Pb flotation takes 

place, and sphalerite and pyrite are depressed during this step. In the second step, the 

sphalerite is activated and floated from lead tailings. After sphalerite flotation, the tailings 

are used to float pyrite to reduce the environmental effect of the final tailings. This plant 

produces Ag/Pb, Zn, and pyrite concentrate.  

 

Figure 15 Sotkamo Silver mineral processing flowsheet (Silver, 2021) 

 

A study was conducted by Singh et al. (2004) about the effect of different parameters on 

the selective flotation of lead-zinc ore. It is concluded that the particle size affects the 

recovery of lead and zinc minerals, shown in Figure 16A. Sodium cyanide and zinc sulfate 

together are depressants for the zinc minerals during lead floatation. It is concluded that 

at the beginning, the increase in depressant dosage caused higher lead recovery and grade. 

Further increase in depressant -dosage cause depression of lead, shown in Figure 16B. 

The effect of collector dosage on zinc grade and recovery is also studied. It is concluded 

that the increase in dosage of a collector caused higher zinc recovery while further 

increase in dosage caused a sharp decrease in the zinc recovery, shown in Figure 16C. 

The effect of pH on zinc recovery is also studied. It is concluded that the increase in pH 

causes higher zinc recovery. Further increase in pH caused a sharp decrease in the zinc 

recovery, shown in Figure 16D (Singh et al., 2004). 



30 

 

Figure 16 A= effect of particle size on recovery of lead and zinc, B= effect of dosage of 

depressant on the flotation of lead minerals, C= effect of collector dosage on zinc 

flotation, D= effect of pH on zinc flotation, regenerated from Singh et al., (2004) 

2.5 Flotation Reagents used 

2.5.1 Aerophine 3418A 

Aerophine 3418A is used as a collector in the flotation tests. Aerophone 3418A is an 

aqueous solution of sodium-diisobutyl dithiophosphinate. It is phosphine-based collector 

and developed for copper and activated zinc flotation. Due to its higher selectivity is used 

for complex ores, polymetallic, and massive sulfide ore (Pecina-Treviño et al., 2003). 

 

Figure 17 Chemical structure of sodium-diisobutyl dithiophosphinate (Pecina-Treviño 

et al., 2003) 

 

A B 

C D 
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Aerophone 3418A can be used as a sole collector or as a staged addition for optimum 

selectivity and control. It has no frothing properties and gives advantages to some plants. 

Mingione P., (1991) conducted lab-scale flotation tests of Cu-Zn ore using Xanthate and 

Aerophone 3418A.  He concluded that due to the higher selectivity of Aerophone 3418A, 

improved grade/recovery of Cu was obtained. 

During the Taivaljärvi mine feasibility study, it was concluded that the aerophone 3418A 

shows better flotation performance for rougher flotation (Meyer & Davies, 2012).  

2.5.2 MIBC (Methyl Isobutyl Carbinol) 

MIBC is used commonly as a frother in flotation, hence used as a frother in the flotation 

work. 

Veras et al. (2014) conducted a study related to comparing three frothers: MIBC, Pine oil, 

and Polyglycolic ether. He concluded that the MIBC has greater frothing power and 

efficient in the prevention of coalescence between bubbles. He also concluded that the 

MIBC has the highest selectivity potential as compared to pine oil and polyglycolic ether.  

According to the Taivaljärvi mine feasibility study, the MIBC was selected as a frother 

for lead and zinc flotation circuit (Meyer & Davies, 2012).  

2.5.3 Zinc sulfate 

Zinc sulfate is used as a depressant for sphalerite. Zinc sulfate makes the sphalerite 

surface more hydrophilic and depresses it during the galena flotation (CUI et al., 2020). 

2.5.4 Calcium oxide (CaO) 

CaO is used as a pH modifier to increase and adjust pH during flotation to keep pH under 

the recommended limit of 11.5 to 12. The pH is essential for selective flotation. The pH 

indicates the surface charge and reagents adsorptions on the mineral surface. Hence pH 

should be adjusted in the optimum range to get the required flotation kinetics (Foroutan 

et al., 2021).  

2.5.5 Ore blends 

The metallurgical properties of the ore may vary significantly within the deposit. It is 

always challenging to feed the plant with an optimum blend. Processing plants require a 

constant feed (grade) to obtain maximum grades and recoveries. The variations in the 
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feed of a plant may lead to excessive adjustments to the plant and lower throughputs, 

grades, and recoveries. The ore variations may affect circuits’ communication regarding 

throughputs and mineral separation circuits in terms of grades and recoveries. Since 

comminution is the most energy-consuming part of the process, it consumes around 75% 

of total energy  (States et al., 2004). It is crucial to have reasonable control over feed 

grades using proper blends. The blends are also used to process low-grade ore with high-

grade ore for efficient resource utilization. In the mineral industry, it is essential to know 

the metallurgical response of different blends of ores (Käyhkö, 2019)(Talikka et al., 2018) 

(Liipo et al., 2019). 

Many researchers studied the effect of ore blends on metallurgical response.  Tonder, 

Deglon, & Napier-munn (2010) studied the impact of ore blends on the mineral 

processing of platinum ores. The flotation recovery of blends of Salene (x1) and 

Townlands (x4) ores is shown in Figure 18. Xi is the good ore head grades while x4 was 

classified as bad ore with lower head grades. A nonlinear trend was obtained between 

recovery and ore blends. They also concluded that the relationship between grindability 

and ore blends is linear.  

 

Figure 18  A plot of Recovery vs a mixture of salene (x1) and townlands (x4) ore. The 

x-axis represents the proportion of x1 ore in the x4 ore. 

 

Marcelo & Kallemback, (2013) studied the effect of ore blends on grindability, shown in 

Figure 19. It is concluded that there is a relatively linear relationship between the Bond 

ball mill work index and the blends. It is also concluded that the Bond ball mill work 

index of blends is usually higher than the weighted Bond ball mill work index of 

individual ore types.  
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Figure 19 Variation of Bond ball mill work index vs proportion of hard component in 

the feed. 

 

Wikedzi et al. (2018) also conducted a study related to the low-grade sulfide gold ore 

blends, and their breakage and liberation characteristics. It was concluded that there was 

a minor effect of blends on liberation. It is also concluded that the grindability is 

correlated to the quartz content. A linear relationship was found between ore blends and 

grindability, shown in Figure 20 

 

Figure 20 Quartz content vs work index 

 

2.6 Flotation models  

The efficiency of different types of separation processes in mineral processing is 

subjected to their capabilities of distinguishing desired microscopic particles from the 
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bulk. Some prominent industrial floating practices include floatation deinking, mineral 

separation, plastics separation, removal of radioactive contaminates, carbon extraction 

and waste-water treatment, etc. Out of these, water treatment and minerals separation 

processes are in wider acceptance across the globe. The former one has used dissolved 

air flotation (DAF) with comparatively smaller bubbles (50-100 µm targeted on 1-10 µm 

particles) whereas, the later used dispersed air floatation (DAF) with slightly bigger 

dimension bubbles (500-2500 µm targeted on 150-200 µm particles). However, the 

operating principles applied to floatation cells, after hydrophobicising the target minerals, 

are similar in all the above-mentioned processes. Three such generalized sequences of the 

separation processes are: 

I. Aeration (Introduction of air bubbles in a system) 

II. Mixing (Optimization of bubble-particle interaction) 

III. Separation (Skimming of bubble-particle aggregates from the bulk) 

The floating process is often considered an ‘intense interactive engineering system’ due 

to the interdependence of the process on various factors and parameters, such as chemical, 

equipment, operational, reagent dosages, particle sizes, interaction intensity etc. An 

overview of such dependent factors is shown in Figure 21. 

 

Figure 21. Different Factors contributing to Flotation Process (Gharai & Venugopal, 

2016) 

 

Since of beginning of the modern industrial revolution, simulation-based modeling 

practices are in huge demand. Models prior to the practical implementation provide 

information about the experiments' performance, efficiency, and reliability. Similarly, 
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floating models are also beneficial for performance escalation and predictive maintenance 

of industrial operations (Gharai & Venugopal, 2016). 

2.6.1 Modelling Approaches: 

The initial floating model was expressed in ‘exponential function of time’ (like chemical 

kinetic model) i.e.  

                        
𝑑𝑁1

𝑑𝑡
=  𝑓(𝑘, 𝑁𝑖) = −𝑘1𝑁1

𝑚 − 𝑘2𝑁2
𝑛 

Where           
𝑑𝑁1

𝑑𝑡
 is the change in particle concentration w.r.t. time 

                      𝑘𝑖 is the rate constant(s) 

                      𝑚, 𝑛 are the order of the process 

 

Recoveries of individual species can be calculated using the following equation: 

            𝑅 =
𝑘𝜏

1+𝑘𝜏
  

 

𝑊ℎ𝑒𝑟𝑒            𝑘, 𝜏 are rate constant & residence time respectively 

 

Based on overall process and sub-processes of flotation, models are broadly categorized 

into ‘macro-scale’ and ‘micro-scale’. A general classification of flotation models is 

shown in Figure 22 (Gharai & Venugopal, 2016). 
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Figure 22. General Classification of Flotation models (Gharai & Venugopal, 2016) 

2.6.2 Macro-Scale Models 

A.  Theoretical models 

It involves theoretical assumptions and complex equations to analyze possible events in 

the flotation process (Gharai & Venugopal, 2016). 

1) Phenomenological models 

These models are derived from the conservation of mass, momentum, and energy 

equations. Such models are used to correlate the causes and effects of the flotation 

process. 

i. Population Balance models 

It is a 3-phase model that represents mineralogical species and particle size based on 

their state in the slurry. This model uses kinetic equations and hydrodynamic 

considerations to simulate the effects i.e. flow-rate, pulp level, agitation. This process 

is effective for bubble size estimation. The flotation cell is modeled in 2 zones: 

Impeller zone (where bubble breakage happens) and Bulk zone (bubble coalescence). 

ii. Probabilistic models 
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These models use the rectangular distribution of rate constant as shown in equation 1, 

also known as ‘Klimpel model’. 

            𝑅𝑡 = 𝑅 [1 − (
1

−𝐾𝑅 .𝑡
) {1 −  𝑒−𝐾𝑅 .𝑡} ]                                                         (1) 

Where           𝐾𝑅 is rectangular rate of coefficient 

          R is  recovery after flotation time ‘t’ 

It provides information about the relative occurrence of various sub-processes i.e. 

collision, adhesion, and detachment, which uses probability theory in modelling, as 

shown in equation 2 (Schuman method). 

            𝑃𝑥 =  𝑃𝑐 . 𝑃𝑎 . 𝐹. [𝑥]. 𝑉                                                                                  (2) 

Where           𝑃𝑥  is probability of Success (related to recovery rate of  particles). 

          𝑃𝑐  is probability of particle − bubble collision 

                      𝑃𝑎𝑖𝑠 𝑝robability of particle − adhesion respectively 

                         𝐹 𝑖𝑠 𝑓orth stability factor 

          𝑉 𝑖𝑠 𝑐ell volume 

A modification has done by Tomlinson and Fleming in equation 2 by adding few terms, 

shown in equation 3. 

            𝐹 =  𝑃𝑒 . 𝑃𝑓                                                                                                (3) 

Where            𝑃𝑒  is probability of levitation to the base of the forth. 

                      𝑃𝑓 𝑖𝑠 𝑝robability of drainage from the forth 

 

iii. Kinetic models 

Intrinsically, Flotation is a rate process and such models use ODEs to define the kinetics 

of bubble particle collision and coalescence as shown in equation 4. 

 

                        
𝑑𝐶

𝑑𝑡
=  −𝐾𝑛𝐶𝑛𝐶𝑏

𝑚                                                                                       (4) 
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 where            𝐶 𝑖𝑠 𝑐oncentration of particles (
𝑀

𝑉
) 

                      𝐶𝑏 𝑖𝑠 𝑐oncentration of bubbles 

                      𝐾 𝑖𝑠 𝑓lotation rate constant 

          𝑛, 𝑚 𝑎𝑟𝑒 respective orders. 

There are 3 approaches to define flotation rate constant:  

▪ First-order kinetics (when n = 1) 

𝑑𝐶

𝑑𝑡
=  −𝐾1𝐶 

𝑊ℎ𝑒𝑟𝑒            𝐾1  is first order rate constant 

 

Recovery can be calculated using equation 5. 

                𝑅 =  𝑅∞ (1 − 𝑒−𝐾1𝑡)                                                                                (5) 

 

Where           𝑅 𝑖𝑠 𝑐umulative recovery after time t 

                      𝑅∞ is maximum recovery after prologed flotation time 

 

Equation 5 can be extended to a 3-component kinetics model (Nguyen & Schulze) with 

respect to the types of feeds (fast, slow and non-floating components), shown in equation 

6. 

𝑅 = 1 − 𝑚𝑓 exp(−𝐾𝑓𝑡) − 𝑚𝑠 exp(−𝐾𝑠𝑡) − 𝑚𝑡𝑎𝑖𝑙                                   (6) 

 

Where 𝑚𝑓 , 𝑚𝑠 𝑎𝑛𝑑 𝑚𝑡𝑎𝑖𝑙  are the mass fractions of fast, slow and non −

                  floating components respectively. 

 

▪ Second-order kinetics (when n = 2) 

               
𝑑𝐶

𝑑𝑡
=  −𝐾2𝐶2                                                                                               (7) 

 

              Where            𝐾2  is first order rate constant                   
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Then, the second-order flotation kinetics equation becomes: 

𝑅 =
𝑅∞

2  𝐾2𝑡

1 + 𝑅∞ 𝐾2𝑡
 

 

▪ Nonintegral-order kinetics 

One of kinetic models by Imauzimi & Inoue, incorporating gauge recovery in the froth 

(𝑅𝑔), shown in equation 8. 

                      𝑅 =  𝑅∞ (1 − 𝑒−𝐾𝑡) +   𝑅𝑔(1 −  𝑅∞)                                                     (8) 

 

where              𝑅∞ is recovery at infinite time 

R is flotation recovery  

Another equation considering the probabilities of occurrences for single-bubble flotation 

experiment by Nguyen et al. is shown in equation 9. 

𝑅 = 1 − exp[−𝑃𝑐𝑃𝑎𝑡(1 − 𝑃𝑑𝑒𝑡)(1 +  
𝑉

𝑈
)]                                                 (9) 

 

where             𝑃𝑐 𝑖𝑠 𝑝robability of collision 

                         𝑃𝑎𝑡 𝑖𝑠 𝑝robability of attachment 

                         𝑃𝑑𝑒𝑡 𝑖𝑠 𝑝robability of detachment 

    V is particle settling velocity 

  U is bubble rising velocity 

A list of various flotation models based on kinetics is shown in  Table 3. 

Table 3 Flotation models based on kinetics (Gharai & Venugopal, 2016) 

Models Classical kinetic models Equations 

Model 1 1st-order kinetic model 𝑅 = 𝑅∞(1 − 𝑒−𝑘𝑡) 

Model 2 1st-order flotation model with 

rectangular distribution of 

floatability 

𝑅 = 𝑅∞(
1

𝑘2𝑡
(1 − 𝑒−𝑘𝑡)) 
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Model 3 1st-order 2-stage kinetic 

model 𝑅 = 𝑅∞[(
𝑘3

𝑘3 + 𝑘3
∗) (1 − 𝑒−𝑘3

∗𝑡)

− (
𝑘3

∗

𝑘3 + 𝑘3
∗) (1

− 𝑒−𝑘3𝑡)] 

Model 4 1st-order reversible kinetic 

model 
𝑅 =

𝑘4𝑅∞

(𝑘4 + 𝑘−4)
[1 − 𝑒−(𝑘4+𝑘−4)𝑡] 

Model 5 Fully mixed reactor model 
𝑅 =  𝑅∞(1 −

1

1 +
𝑡

𝑘5

] 

Model 6 

 

Gas/solid kinetic adsorption 
model 

𝑅 =  
𝑘6𝑡

(1 + 𝑘6𝑡)𝑚
 

Model 7 Improved gas/solid 

adsorption model 
𝑅 =  𝑅∞[

𝑘7𝑡

1 + 𝑘7𝑡
] 

Model 8 2nd-order kinetic model 
𝑅 = [

𝑅∞
2 𝑘∞𝑡

1 + 𝑅∞𝑘𝑡
] 

Model 9 2nd-order kinetic model with 

rectangular distribution of 

floatability 

𝑅 = 𝑅∞[1 −  
1

𝑘9𝑡
{ln(1 − 𝑘9𝑡)}] 

Model 10 Three parameters fast and 

slow floating component 
𝑅 = (1 − ∅)(1 − 𝑒

−𝑘
10𝑓𝑡 ) + ∅(1

− 𝑒−𝑘
10𝑠𝑡 ) 

Model 11 Four parameters fast and slow 

floating component 
𝑅 = (𝑅∞ − ∅)(1 − 𝑒

−𝑘
11𝑓𝑡 ) + ∅(1

− 𝑒−𝑘
11𝑠𝑡 ) 

Model 12 Three parameters kinetic 

model with particle 

floatability proportional to 

sized distribution 

𝑅 = 𝑅∞(1 −
𝑒−𝑘

12𝑠𝑡 − 𝑒−𝑘
12𝑢𝑡

𝑘12𝑢 − 𝑘12𝑠𝑡
) 

Model 13 Three parameter gamma 

distribution 
𝑅 = 𝑅∞(1 − (

𝜆

𝜆 + 1
) 𝑝) 

 

 

 

▪ Multi-phase modeling 

If the rate of constants of the floated particles follow a continuous distribution, then the 

recovery rate (R) will be given by equation 10. 

            𝑅 =  𝑅∞ [1 −  ∫ 𝐹(𝑘)
∞

0
exp(−𝑘𝑡)𝑑𝑘]                                                    (10) 
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Where           𝑅∞ is ultimate recovery at infinite time 

F (k) is continuous distribution function 

In a batch flotation process, mineral recovery at any time is given by equation 11. 

              𝑅 =  𝑅∞ [ ∫ {1 − exp(−𝑘𝑡)} 𝐹(𝑘)𝑑𝑘
∞

0
]                                                 (11) 

 

Where           1 − exp(−𝑘𝑡)   shows the first order recovery process. 

F (k) is rate constant distribution function for mineral species. 

In general, for a continuous flotation process, mineral recovery (R) follows equation 12. 

                                            𝑅 =  𝑅∞ [ ∬ (1 −  𝑒−𝐾𝑡∞

0
)𝐹(𝑘)𝐸(𝑡)𝑑𝑘 𝑑𝑡]                                             (12) 

Where           𝐹(𝑘) 𝑖𝑠 𝑟ate constant distribution 

𝐸(𝑡) 𝑖𝑠 𝑟esidence time distribution function for continuous processes 

According to Woodburn & Loveday, (1965), Gamma distribution (with parameters a, b) 

can represent different types of processes from exponential decay to normal distribution 

shown in equation 13. 

                  𝐹(𝑘) =  
𝑏𝑎+1

Г(𝑎+1)
 . 𝐾𝑎 . 𝑒−𝑏𝑘                                                                       (13) 

Rectangular flotation distribution is given as: 

𝐹(𝑘) =  
1

𝑘𝑚𝑎𝑥
 , 0 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥 

                        𝐹(𝑘) = 0, 0 > 𝑘 >  𝑘𝑚𝑎𝑥 

 

Where           𝑘𝑚𝑎𝑥  is the maximum flotation rate constant. 

Weibull (Rosin-Rammler) distribution is shown in equation 14. 

    𝐹(𝑘) =  
𝑛

𝑘𝑚
 (

𝑘

𝑘𝑚
)𝑛−1. 𝑒

−(
𝑘

𝑘𝑚
)𝑛

                                                                     (14) 

 

    Where           n is shape factor 
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𝑘𝑚 𝑖𝑠 𝑠cale factor of dsitribution 

In (Yianatos et al., 2010), rectangular distribution and Gamma distribution of mineral 

recovery in batch test is given by the equation 15 and 16 respectively. Flotation recovery 

of continuous process using Gamma distribution is shown in equation 17. 

                  𝑅 = 𝑅∞(1 − 
1− 𝑒− 𝑘𝑚𝑎𝑥𝑡

 𝑘𝑚𝑎𝑥.𝑡
)                                                                                  (15) 

                  𝑅 = 𝑅∞[1 − (
𝑏

 𝑏+𝑡
)𝑎+1]                                                                                (16) 

                  𝑅 =  𝑅∞ [ 1 − ∫ {𝐸(𝑡).
∞

0
(

𝑏

 𝑏+𝑡
)𝑎+1 . 𝑑𝑡]                                                     (17) 

 

2) Empirical models 

These models use batch/plant data to relate floatation rate constant values to each 

component in the system. The model is defined in equation 18 (with assumption that the 

material has both fast and slow components).  

                        𝑅𝑡 = (1 − 𝐹𝑠){1 −  𝑒−𝑘𝑓𝑡} +  𝐹𝑠{1 −  𝑒−𝑘𝑠𝑡}                                        (18) 

                    Where           𝑅𝑡  is fraction of  recovery at time 𝑡 

𝐹𝑠 𝑖𝑠  Fraction of slow floating components 

                           𝑘𝑓 , 𝑘𝑠 𝑖𝑠 Rate coefficients for fast and slow floating respectively 

 

            𝑅(𝑡) = ∑ 𝑚𝑖( 1 − 𝑒−𝑘𝑖𝑡)𝑛
𝑖−1                                                                    (19) 

 

Where           𝑅(𝑡) is overall recovery at time 𝑡 

            𝑚𝑖 𝑖𝑠 𝑝roportion of a mineral in each component 

𝑘𝑖  𝑖𝑠 𝑟ate constant of each component 

Based on  Runge et al., (1998), recovery can be calculated for batch flotation test data and 

for plant data using equation 19 and 20. 

                                        𝑅(𝑡) = ∑ 𝑚𝑖( 
𝑘𝑖𝜏

1+𝑘𝑖𝜏
)𝑛

𝑖−1                                                                           (20) 

 

                                      Where           𝜏 𝑖𝑠 𝑟esidence time for all the cells 
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Based on Newcombe formula as shown in equation 21, kinetic rate constant (K) can be 

linked within settling zone. 

                                            𝐾𝑖 =  𝛼𝑖𝑒
−𝛽𝑖𝜏𝑠                                                                                         (21) 

 

Where           𝜏𝑠 is residence time within the settling zone 

α, β are empirical fitted parameters for each size class i 

In empirical models, froth being the most important factor, can be calculated using 

equation 22 (Gorain et al.). 

                                              𝑅𝑓 = 𝑒−𝛽𝜏𝑓                                                                                               (22) 

 

Where           𝜏𝑓 is air retention time in the forth 

β is dependent parameter on pulp properties 

 

B. Deterministic models 

Surface forces and hydrodynamics 

Using the extended DLVO theory, Yoon & Mao, (1996) has proposed a model of two 

important equations. Equation 23 represents a first order flotation model whereas 

equation 24 is modified by considering all dominant surface forces. 

     𝑘 = 0.25 𝑆𝑏 [ 1.5 +  
4𝑅𝑒0.72

15
] (

𝑅1

𝑅2
)2 𝑒

−
𝐸1
𝐸𝑘   X [1 − exp (−

𝛾𝑙𝑣𝜋𝑅1
2(1−𝑐𝑜𝑠𝜃)2)+ 𝐸1

𝐸𝑘
′ )]         (23) 

Where           𝑆𝑏 𝑖𝑠 𝑠uperficial surface area rate of bubbles 

                      𝑅𝑒 𝑖𝑠 𝑟eynolds number of the bubble 

𝑅1 𝑖𝑠 𝑠ize of the particle 

𝑅2 𝑖𝑠 size of the bubble 

𝐸1 𝑖𝑠 𝑒nergy barrier 

𝐸𝑘 is kinetic energies of the macroscopic particles 

𝛾𝑙𝑣 𝑖𝑠 𝑠urface free energy at liquid/vapor  interface 

𝜃 𝑖𝑠  𝑐ontact angle. 

𝐸𝑘
′  𝑖𝑠 𝑘inetic energy that tears off the bubble surface  
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       𝑘 = 0.25 𝑆𝑏 [ 1.5 +  
4𝑅𝑒0.72

15
] (

𝑅1

𝑅2
)2 𝑒

−
𝐸1
𝐸𝑘   X [1 − exp (−

𝑊𝑎+ 𝐸1

𝐸𝑘
′ ]               (24) 

Duan et al., (2003) has proposed a model for chalcopyrite ore considering various 

efficiencies and frequencies of collision. However, it doesn’t account for the effects of 

the surface forces, shown in equation 25. 

                  𝑘 = −2.39 
𝐺𝑓𝑟

𝑑𝑏.𝑉𝑐𝑒𝑙𝑙
 [

0.33 𝜀
4
9𝑑𝑏

7
9

𝑣
1
3

 (
∆𝜌𝑏

𝜌𝑓𝑙
) .

1

𝑣𝑏
] 𝐸𝑐𝐸𝑎𝐸𝑠.                                     (25) 

 

Where           𝐺𝑓𝑟 𝑖𝑠 𝑔as flow rate (𝑐𝑚3/𝑚𝑖𝑛)   

                                    𝜀  𝑖𝑠 𝑡urbulent dissipation rate (
𝑐𝑚3

𝑠2 ) 

                        𝐸𝑐, 𝐸𝑎 , 𝐸𝑠are efficiencies of collision, attachment and Stability  

                        𝑣 𝑖𝑠 𝑓luid kinematic velocity (𝑐𝑚2/𝑠)  

                        ρ is density of particle, fluid and bubble  

A model by Jameson et al., (1977) and Laskowski & Ralston, (1992) based on no-

turbulence environment is shown in equation in 26. 

                                                      𝐾 = 1.5 
𝐺𝑓𝑟 .ℎ

𝑑𝑏.𝑉𝑐𝑒𝑙𝑙
 𝐸𝑐𝐸𝑎                                                                             (26) 

 

                                      Where            ℎ 𝑖𝑠 ℎeight of the flotation cell  

Another semi-empirical model by Sherrell, (2004) , considering probability of attachment 

in turbulent environment, is shown in equation 27. 

                                                    𝐾 = 𝛽𝑁𝑏𝑃𝐴(1 −  𝑃𝐷)𝑅𝐹                                                                         (27) 

 

Where           𝛽 𝑖𝑠 𝑐ollision kernel (𝑚3. 𝑠−1)  

                                        𝑁𝑏 𝑖𝑠 𝑛umber density of bubbles (per 𝑚−3)  

          𝑃𝐴 is probability of Attachment 

𝑃𝐷 𝑖𝑠 𝑝robability of Detachment 

𝑅𝐹 𝑖𝑠 𝑓orth recovery factor 
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A recent model for flotation rate constant based on CFD simulation by Karimi et al., 

(2014) is shown in equation 28. 

            𝑘 = −
7.5

𝜋
 

𝐺𝑓𝑟

𝑑𝑏.𝑉𝑟
 [

0.33 𝜀
4
9𝑑𝑏

7
9

𝑣
1
3

 (
𝜌𝑝−𝜌𝑓

𝜌𝑓
) .

1

𝑢𝑖
] 𝐸𝑐𝐸𝑎𝐸𝑠.                                        (28) 

 

                              Where           𝑉𝑟 𝑖𝑠 𝑟eference volume (𝑐𝑚3) 

𝑢𝑖  is turbulent fluid velocity (cm/s) 

Entertainment factor 

Mathematically, entertainment can be defined as the ratio of free gangue recovery (𝑅𝑔) 

to the water recovery (𝑅𝑤) as shown in equation 29 (Gharai & Venugopal, 2016). 

                                                  𝑅𝑔  = 𝐸𝑁𝑇. 𝑅𝑤                                                                                       (29) 

Recovery equation considering the entertainment factor for true flotation (by Savassi) is 

given in equation 30. Another model by Savassi, known as compartment model, shown 

in equation 31, which account for simultaneous contribution of flotation and 

entertainment factor in a conventional flotation cell. 

                                          𝑅 =
𝑃𝑆𝑏𝜏 𝑅𝑓(1− 𝑅𝑤)+𝐸𝑁𝑇.𝑅𝑤

(1+𝑃𝑆𝑏𝜏 𝑅𝑓)+ 𝐸𝑁𝑇.𝑅𝑤
                                                                       (30) 

                                          𝑅 =
𝐾𝑐𝑧.𝜏𝑐𝑧𝑅𝑓(1− 𝑅𝑤)+𝐸𝑁𝑇.𝑅𝑤

(1+𝐾𝑐𝑧.𝜏𝑐𝑧𝑅𝑓).(1− 𝑅𝑤)+ 𝐸𝑁𝑇.𝑅𝑤
                                                             (31) 

Veras et al., (2014) has given an expression for froth recovery (𝑅𝑓) including the 

mechanical entertainment is shown in equation 32. 

            𝑅𝑓 = (1 − 𝐸𝑁𝑇. 𝑅𝑤𝑓) exp(−𝛽. 𝜏𝑓) +  𝐸𝑁𝑇. 𝑅𝑤𝑓                                    (32) 

 

Where           𝑅𝑤𝑓  is water recovery in froth 

Residence time distribution 
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There are 2 models to analyze the residence time distribution results. Such distributions 

are helpful in measuring the gas, liquid, and solid-particle flow patterns in flotation cells 

(Gharai & Venugopal, 2016). 

The axial dispersion model 

If the mixing is very minimal, then this model is considered. 

Axial dispersion model can be calculated using equation 33. The dimensionless form of 

the same equation is shown in equation 34. 

                                        
𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2 − 𝑢
𝜕𝐶

𝜕𝑥
                                                                                    (33) 

 

Where           𝐶 𝑖𝑠 𝑐oncentration of species 

𝐷 𝑖𝑠 𝑎xial dispersion coefficient  

                                          𝑥 𝑖𝑠 𝑑istance along which the concentration varies  

 

                        
𝜕𝐶

𝜕𝜃
= 𝑁𝑑

𝜕2𝐶

𝜕𝑧2 −
𝜕𝐶

𝜕𝑧
 ;   𝑁𝑑 = 𝐷/µ𝐿                                                              (34) 

 

Where            𝑁𝑑  𝑖𝑠 𝑑imensionless dispersion number  

𝐿 𝑖𝑠 𝑙ength of the vessel  

                                                𝑧 𝑖𝑠 𝑑istance along the linear dimension  

The mixed zone model 

This model is used for a series of perfectly mixed zones. A theoretical residence time 

distribution profile for ‘N’ cells in series is shown in equation 35 (Gharai & Venugopal, 

2016). 

                      𝐸(𝜃) =  
𝑁(𝑁𝜃)𝑁−1

(𝑁−1)!
exp(−𝑁𝜃) ; 𝑁 =  

𝜏2

𝜎2                                                   (35) 

 

Where           𝜎2is variance of experimental residence time distribution  

𝜏 𝑖𝑠 𝑚ean residence time  

This model estimates the changes in feed properties. Recovery of each mineral phase 

across the cell (𝑅𝑐𝑒𝑙𝑙) is shown in equation 36. 
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                                                𝑅𝑐𝑒𝑙𝑙 = 𝑅𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑  
(100− 𝑅𝑒𝑛𝑡)

100
 + 𝑅𝑒𝑛𝑡                                                       (36) 

Where             𝑅𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑  𝑖𝑠 𝑟ecovery of mineral  to concentrate 

𝑅𝑒𝑛𝑡 ∶  Recovery of mineral phases by entertainment  

2.7 Validation and verification of simulation models 

Simulation models are often used nowadays. These are used for problem-solving and to 

help in decision-making. The simulation model needs to be verified and validated. 

Verification ensures that the model results are correct, while validation ensures that the 

results are accurate and consistent. Absolute validation of a model over a complete 

domain is costly; hence, the model's evaluation is conducted until the results generate 

sufficient confidence.  A confidence model is shown in Figure 23. The value of the model 

is increased with the increase in the cost. Hence sufficient tests are conducted to get 

acceptable confidence in the model results (Sargent, 2010). 

 

Figure 23 Model confidence, cost, and value relation (Sargent, 2010) 

2.7.1 Model development process 

There are two common approaches for model development, and one is a simple view 

while the other uses a complex theory (Sargent, 2010). A simplified version of a model 

development process is shown in Figure 24 (Sargent, 1981). Problem entity is the 

prominent phenomenon to be modeled. A conceptual model is the mathematical/logical 

form of the problem entity, developed by the analysis and modeling phase. The 

computerized model implements the conceptual model in a computer form, developed by 

a programming and implementation phase. Conceptual model validation makes sure that 

the theories and assumptions are correct and the model representation of the problem 
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entity is accurate. Computerized model verification is essential to ensure that the 

programming and implementation of the conceptual model are reasonable. Operation 

validity ensures the reliability of the computer’s model outputs. Data validity deals with 

data validation for each phase of the modeling (Sargent, 2010). 

 

Figure 24 Simple model development process (Sargent, 2010) 

2.7.2 Validation techniques 

Sargent (2010) states that the following techniques and tests are used to verify and 

validate a model.  This process of validation and verification is repeated till the results 

are satisfactory.   Changes in a model require verification and validation process again. 

▪ Animation 

▪ Comparison 

▪ Degenerate test 

▪ Event validity 

▪ Extreme condition test 

▪ Face validity 

▪ Historical data validation 

▪ Historical methods 

▪ Internal validity 

▪ Multistage validity 

▪ Operational graphics 

▪ Sensitivity analysis 

▪ Predictive validation 

▪ Traces 

▪ Turning tests 
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In animation, the model is displayed graphically, and operational behavior is motioned. 

In comparison, the outputs of the model are compared with the previous valid models. 

During degenerate tests, the model is tested for different parameters and input values. In 

event validity, the model’s output is compared with the actual values. Extreme condition 

tests are conducted to check the optimum range of the model. In face validity, the model 

is validated with individual knowledge. Historical data is used to validate the model. 

Historical validation methods of rationalism, empiricism and positive economics are used 

to validate the model. Stochastic variability in the model is studied in internal validity. In 

multistage validation, the previous validation methods are used for the multistage 

validation. A graphical representation is used to analyze the results of simulation runs. 

The model's sensitivity analysis is tested with a wide range of input parameters, and the 

model’s response is studied. In predictive validation, the model’s outcome is validated 

using experimental system data. In the trace analysis, the validity of the model is checked 

for the specific entities. In turning tests, the model is validated by a knowledgeable person 

based on experimental and model outputs (Sargent, 2010). 
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3 EXPERIMENTAL WORK: 

The experimental test work was carried out at the Metso Outotec Research Center Pori 

from February to May 2021. The experimental test work includes sample preparation, 

grinding calibration tests, Flotation tests, blends preparation. Mineral processing 

laboratory, analytical laboratory, and pilot plant were used for the experimental part of 

this thesis.  

Metso Outotec Research Center Pori can perform laboratory-scale testing, simulate a 

potential flowsheet, and bench/pilot scale runs. The focused areas are product 

development, process research, innovations, research services, and research method 

development.  

3.1 Laboratory equipment 

3.1.1 Crusher 

Primary crushing was done using a bigger-scale crusher in Metso Outotec Pilot Plant, 

Pori. A jaw crusher was used to reduce the sample to -1mm.  

3.1.2 Ball mill 

The laboratory ball mill (215 mm height and 205 mm diameter) was used for the grinding 

test, shown in Figure 25. The grinding was required for grinding calibration tests and the 

flotation tests. The ball mill and the grinding media are made up of mild steel. The 

grinding media include 27mm (3337g) and 19mm (8187g) balls.  
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Figure 25 Laboratory ball mill and ball charge 

3.1.3 Slurry divider 

The slurry divider was used for the wet sample splitting, as shown in Figure 26. It divides 

the slurry into two similar portions of 1/12 and one part of 10/12. During grinding 

calibrations tests, the slurry divider was used to split the ground sample for the sieve 

analysis.   

 

Figure 26 Slurry divider 

3.1.4 Wet-sieve analysis 

The wet-sieve analysis machine is used for the sieving tests, shown in Figure 27. It is 

based on hand sieving in an ultra-sonic bath, made by FinnSonic. The batches (-1mm) 

were ground using a ball mill, and then sieving was conducted to find the P80 for each 
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grinding time. Our target P80 was 90µm; hence we used 212, 150, 106, 75, 53, and 20 

µm sieves. 

 

Figure 27 Ultrasonic sieving machine 

3.1.5 Flotation machine 

Outotec GTK LabCell was used for the flotation tests, shown in Figure 28. This machine 

works automatically, and scrapper rate, impeller speed, airflow, nitrogen flow, and water 

flow can be adjusted. The cell sizes and related settings are shown in Table 4. The 4L cell 

is dedicated to the flotation tests to determine the kinetics of flotation. A pH meter was 

used to measure and adjust the pH of the flotation. 

Table 4 GTK LabCell operating parameters 

Cell size Impeller Diameter Air flowrate Froth building time 

l mm l/min s 

2 45 1300 15 

4 45 1800 20 

8 60 1200 25 

12 60 1450 30 
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Figure 28 Outotec GTK LabCel flotation machine 

3.1.6 Rotary sample splitter 

A dry rotary sample splitter is used for dry sample splitting, shown in Figure 29. The 

batches prepared at the crushing plant have masses in the range of 1.6-1.9Kg. Our 

required batch size was 1.8 Kg; hence we used this splitter to adjust the batch masses and 

to prepare blends.  

 

Figure 29 Rotary sample splitter 

3.1.7 Ring mill 

A ring mill was used to pulverize samples for ICP analysis. ICP analysis is used for the 

flotation concentrates, tailings, and samples for mineralogical studies. 
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3.1.8 Vacuum and pressure filters 

Pressure and vacuum filters were used for dewatering during flotation and grinding tests, 

shown in Figure 30 

 

Figure 30 Pressure and vacuum filters 

3.1.9 Elemental analysis equipment  

Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to 

analyze Pb, Zn, Cu, and Fe. Inductively coupled plasma mass spectroscopy (ICP-MS) 

and ICP-OES were used to analyze Ag in the samples. Sulfur was analuzed by combustion 

method. 

3.2 Sample preparation 

3.2.1 Ore samples 

Four types of ores from Sotkamo were investigated. The weight of each primary sample 

and the differences of elemental composition is shown in Table 5.  
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Table 5 Mass and elemental composition of primary samples 

Sample Name Malmi Sorter Feed Sorter Product Ore 60 

Sample weight 

(Kg) 
140 130 125 194 

Ag (ppm) 43 48 129 170 

Pb (%) 0,1 0,22 0,61 0,29 

Zn (%) 0,3 0,62 1,72 0,87 

Fe (%) 3,69 3 4 3,81 

S (%) 2,3 1,9 3,1 1,03 

 

3.2.2 Primary sample preparation 

The required batch size is 1.8Kg (-1mm). The sample preparation includes crushing, 

screening, and sample splitting. 

The sample preparation starts with crushing. The crushed material is screened using a 

3.35mm screen. The oversize material (+3.35mm) is recirculated to the crusher feed. The 

undersize material (-3.35mm) is divided into four portions. Two portions are stored for 

future use, while the third portion is divided into 5Kg batches for mergan grindability 

tests. The fourth portion is further crushed. The crushed material is screened with a 1mm 

screen, and oversize material (+1mm) is recirculated to the crusher feed. The under-size 

material (-1mm) is then further divided into 1.8Kg bathes. The sample preparation 

flowsheet is shown in Figure 31. 
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Figure 31 Sample preparation flowsheet 

3.2.3 Sample preparation for Mineralogical studies 

One batch of mass around 1.8Kg (-1mm) was ground till the P80= 90µm. The grinding 

conditions are the same as for the flotation test. After grinding, this sample is dried in an 

oven at 60℃. This dried ground sample is divided into 6 portions, and out of six, two 

parts are mixed and further divided into 8 portions (about 75g each). One out of 8 parts 

is ground in the ring mill for sample preparation of ICP analysis. The following analysis 

took place: 

• ICP-OES: Pb, Zn, Cu, Fe, Sb, As, and Ag after total dissolution 

• ICP-OES: Fe after bromine-methanol dissolution 

• ICP-MS: Au, Ag after total dissolution 

• Combustion: S + C 

• XRD from bulk samples 

Six out of 8 portions are mixed and sieved using 212, 150, 106, 75, 45, and 20 µm sieves. 

Half sieved products are sent for sample preparation for SEM, and half is ground in the 

ring mill for the following analysis: 

• ICP-OES: Pb, Zn, Cu, Fe, Sb, As after total dissolution 

• ICP-OES: Fe after bromine-methanol dissolution 

• ICP-MS: Au, Ag after total dissolution 
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• Combustion: S + C 

• XRD from -20µm fraction 

The last 1/8 fraction is reserved. 

3.3 Grinding calibration test work: 

The required P80 for each ore sample is 90µm. To calculate grinding time for the required 

P80, each sample's grinding calibration test was done. The mild steel laboratory ball mill 

was used. The ball charge includes 27mm (3337g) and 19mm (8187g) balls. The solids 

content was 65% solids. The grinding time was 5, 10, 20 minutes. The P80 for each 

grinding time is plotted and modeled. The grinding residence time for P80=90 µm is 

calculated using the model obtained from P80 vs grinding time.  

The procedure starts with the cleaning of the ball mill by grinding sand for 10 minutes. 

After mill cleaning, each sample of 1.8Kg is ground under the required grinding condition 

for 5 minutes. After grinding, the sample is divided into a sub-sample of 20-50g using a 

slurry divider. This subsample is wet-sieved using 212, 150, 106, 75, 53, and 20 µm 

sieves. The fraction retained on each sieve is filtered and dried. After drying, the weight 

of each size fraction is measured, and P80 is calculated. After the first grinding cycle, the 

size fractions are mixed back to the main sample and then the main sample is filtered 

using a pressure filter. After filtration, the weight of the filtered cake is measured, and 

required water is added to obtain the 65% solids for the next grinding cycle of 10 minutes. 

The same procedure is repeated for the next grinding cycle of 20 minutes. A graph 

between grinding time and P80 is made and modeled to get an equation having grinding 

time as an input and P80 as an output. This equation is used to obtain a grinding time for 

the required P80 of 90µm. The same procedure is repeated for each ore type. 

3.4 Flotation Test work: 

Kinetic flotation tests were conducted for each type of ore and blend. The 4-liter flotation 

cell was used with an impeller speed of 1800 rpm, air flowrate of 3 l/min, and scrapper 

rate every 4 seconds. Tap water was used for grinding and flotation of each sample. The 

percent of solids in grinding and flotation were 65% and 35%, respectively. The required 

pH range is 11.5 to 12. The flotation times of RF1, RF2, RF3, RF4, RF5, and RF6 were 
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1, 2, 3, 6, 6, and 6 minutes respectively, with a total flotation time of 24 minutes. The 

flotation reagents and dosages are shown in Table 6. The CaO and depressant are added 

in the grinding stage. The first dosage of collector and frother is added to the conditioning 

cell, and the second dosage is added after 3 minutes of flotation. 

Table 6 Flotation reagents 

Cell 

pH Adjustment Depressant Collector Frother 

CaO (g/t) 

ZnSO4 

(g/t) 

Aerophine 

3418A(g/t) 

MIBC 

(g/t) 

Ball Mill 1000 1000     

Conditioner     17,6 4 

Third Flotation 

Cell     3,3 6 

 

The procedure starts with the cleaning of the ball mill. After cleaning each sample of 

1.8Kg with 65% solids, 1000g/t of CaO and 1000g/t of ZnSO4 is ground for calculated 

grinding time. After grinding, the flotation tests start with the conditioning. Before adding 

reagents, the required tap water is added to get the necessary slurry level in the flotation 

cell. First, the collector is added and conditioned for two minutes, followed by frother 

addition with one-minute conditioning. After conditioning, the airflow is started, and 20 

seconds are given for froth built up. Then the scrapping of froth is started for one minute 

in the first cell. The first and second concentrate is collected for one and two minutes of 

flotation, respectively. After collection of the first two concentrates, the airflow is 

stopped, and the second dosage of collector and frother is added with a one-minute 

conditioning time for each. After conditioning, the flotation started again, and further 

concentrates were collected after 3, 6, 6, and 6 minutes of flotation, respectively. The tap 

water is added whenever required during flotation. The pH was noted and kept in the 

range of 11.5 to 12 using CaO. At the end of the flotation, we got six concentrates and 

one final tailing. 

The same procedure is repeated for each ore type and blends. The weighted average 

grinding time for each blend is used, as shown in Table 8. There are six flotation cells in 

the flowsheet, as shown in Figure 32, showing the six partial times of flotation. 
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Figure 32 Flotation flowsheet 

3.5 Blends Scheme 

Various ore blends were prepared to conduct the flotation test. The malmi, sorter product, 

and Ore 60 were used. Blends are made between two types of ore at 25%, 50%, and 75% 

portions. The 9 blends obtained and composition in weight percentage are shown in Table 

7. The blend I contains 25% malmi and 75% sorter product. However, blend II has 50% 

malmi and 50% sorter product. The sample mass for grinding and flotation is 1.8Kg hence 

the subsamples of each ore are prepared using a rotary sample splitter. The actual masses 

of subsample used for blending are shown in Table 8. 

Table 7 Blending plan 

Name Malmi Sorter product Ore 60 

Blend I 25 % 75 %   

Blend II 50 % 50 %   

Blend III 75 % 25 %   

Blend IV 75 %   25 % 

Blend V 50 %   50 % 

Blend VI 25 %   75 % 

Blend VII   75 % 25 % 

Blend VIII   50 % 50 % 

Blend IX   25 % 75 % 

 

The grinding times for malmi, sorter product, and ore 60 are 12, 14, and 9 minutes. To 

find the grinding time of each blend, we took an assumption that the grinding time is 

proportional to the percentage of each ore type used e.g., the grinding time for blend I is 



60 

25% of malmi grinding time (12 minutes) and 75% of grinding time (14 minutes) of sorter 

product. The weighted average grinding time calculated for each blend is shown in Table 

8. 

Table 8 Average grinding times and exact masses used 

Name 

Avg. Grinding time for 

P80=90µ (min) Ore (g) Sorter product (g) 

Ore 60 

(g) 

Blend I 13,50 448,5 1351,6 
 

Blend II 13,00 898 902,1 
 

Blend III 12,50 1351,2 448,8 
 

Blend IV 11,25 1347,6 
 

451,6 

Blend V 10,50 904,4 
 

901,4 

Blend VI 9,75 449,2 
 

1349,3 

Blend 

VII 
12,75 

 
1350,8 448,6 

Blend 

VIII 
11,50 

 
901,7 900,5 

Blend IX 10,25 
 

450,7 1349,1 

 

Using the blend plan of Table 7 we can make three series, as shown in Table 9. Series 1 

contains blends of sorter product sample and malmi sample, including 0-100% of each 

sample. Series 2 contains blends of malmi and ore 60 samples. While series 3 contains 

blends of sorter product and ore 60 samples.  
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Table 9 Series of blends 

Series Name Blend name Blend structure 

Series 1 

Sorter product 100% Sorter product + 0% malmi 

Blend I 75% Sorter product + 25% malmi 

Blend II 50% Sorter product + 50% malmi 

Blend III 25% Sorter product + 75% malmi 

Ore 0% Sorter product + 100% malmi 

   

Series 2 

Ore 100% malmi + 0% Ore 60 

Blend IV 75% malmi + 25% Ore 60 

Blend V 50% malmi + 50% Ore 60 

Blend VI 25% malmi + 75% Ore 60 

Ore 60 0% malmi + 100% Ore 60 

   

Series 3 

Sorter product 100% Sorter product + 0% Ore 60 

Blend VII 75% Sorter product + 25% Ore 60 

Blend VIII 50% Sorter product + 50% Ore 60 

Blend IX 25% Sorter product + 75% Ore 60 

Ore 60 0% Sorter product + 100% Ore 60 

 

3.6 Element to Mineral Conversion: 

Elemental analysis was conducted for the flotation concentrates and tailings. Inductively 

coupled plasma optical emission spectroscopy (ICP-OES) was used to analyze Pb, Zn, 

Cu, and Fe. Inductively coupled plasma mass spectroscopy (ICP-MS) was used for the 

analysis of Ag. Sulfur was determined using combustion analysis. After elemental 

analysis, the elemental data was transformed into minerals using HSC-Geo. Concluding 

from mineralogical studies, the simplified mineralogy of ore samples is shown in Table 

10. There are multiple Ag minerals, and for simplicity, dyscrasite is representing all Ag 

minerals. Sphalerite is the only mineral containing mainly Zn. At the same time, galena 

and chalcopyrite include Pb and Cu mainly. Pyrite is calculated based on the remaining 

S. Quartz represents the group of non-sulfide gangue minerals (NSG). According to 

previous studies, it is also indicated that pyrite and galena contain traces of Ag, as shown 

in Table 10. 
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Table 10 List Minerals and distribution of elements for Sotkamo Silver 

Minerals 

Si 

(%) 

O 

(%) 

Fe 

(%) Cu (%) Zn (%) Pb (%) S (%) 

Sb 

(%) 

Ag 

(%) 

Dyscrasite        23,93 74,64 

Sphalerite   6,30  61,02  32,68   

Pyrite   46,55    53,45  0,0039 

Galena      86,6 13,4  0,092 

Chalcopyrite   30,43 34,63   34,94   

Quartz 46,74 53,26        

 

Two rounds were used for element to mineral conversion, shown in Table 11. First-round 

contains dyscrasite, galena, sphalerite, pyrite, and chalcopyrite. The elements used in the 

first round are Ag, Pb, Zn, S, and Cu. In the second round, all the remaining minerals are 

classified as non-sulfide gangue.  

Table 11 Rounds in for element to mineral conversion 

Round 1 Round 2 

Minerals Elements Minerals Elements 

Dyscrasite Ag % Quartz  Sum = 100% 

Galena Pb %   

Sphalerite Zn %   

Pyrite S %   

Chalcopyrite  Cu %   

 

3.7 Simulation of flotation test work 

HSC Sim module is used for the simulation of reference flotation tests and blends 

flotation tests. The flowsheet used for the reference flotation test is shown in Figure 32. 

First of all, the elemental grades of each stream are converted to simplified mineral groups 

shown in Table 10, using the recipe shown in Table 11. Since we have experimental data 

for each concentrate stream and final tailings stream, HSC mass balance module is used 

to calculate the values of other streams, including the feed stream. After mass balance, 

the HSC Sim model fit tool is used to calculate the kinetic parameter for each flotation 

test. The rectangular distribution model is used due to the lower mass pull of the 

concentrated. The kinetic curves are fitted by adjusting Rinf and Kmax values. The example 

of fitted curves for galena in the sorter product sample is shown in Figure 33. The kinetic 
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curves for other main minerals in all samples are shown in appendix D. The kinetic 

parameters calculated for all samples, including each mineral, are shown in Table 19. 

 

Figure 33 Kinetic curves for galena calculate by HSC Sim model fit tool 

 

After calculating kinetic parameters for each ore type, the simulation is performed using 

the same flowsheet shown in Figure 32. The input parameters for the feed stream contain 

solids flowrate, percent solids, mineral distribution, and particle size distribution. The 

kinetic parameters were used in the conditioner’s model. The flotation residence times 

were defined for each cell parameter.  

The flowsheet for blends has few modifications, an example of blend I is shown in Figure 

34. The feed of blend I contains 75% sorter feed and 25% malmi sample, as described in 

Table 7. The two different feeds are connected to a mixing unit before connecting to the 

conditioner. Since we have different values of kinetic parameters for each feed type, the 

minerals in each feed type are specified according to the sample type, an example of blend 
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I is shown in Table 12. The minerals of sorter products are named with (_P) to specify as 

minerals of the sorter product sample. The minerals of malmi sample are defined with 

(_M) to identify these minerals as minerals of malmi sample. The names of the minerals 

in each feed are modified, but the mineral composition is the same. The kinetic parameters 

are also described according to the minerals of each stream, shown in  Table 13. 

 

Figure 34 Simulation flowsheet for blend 1 

 

Table 12 Minerals distribution for each feed (Blend I) 

Sorter product 

minerals Bulk Unit Malmi minerals Bulk Unit 

Sp_P 2,913024 % Sp_M 0,559621 % 

Py_P 3,502692 % Py_M 4,35987 % 

Dys_P 0,014535 % Dys_M 0,004996 % 

Gn_P 0,780108 % Gn_M 0,135754 % 

Ccp_P 0,0804 % Ccp_M 0,049208 % 

Qtz_P 92,70924 % Qtz_M 94,89055 % 

 

Table 13 Distribution of kinetic parameters according to the mineral distribution of each 

feed type (blend I) 

Rectangular 

Distribution 

Sorter product minerals 

Sp_P Py_P Dys_P Gn_P Ccp_P Qtz_P 

Rinf (%) 26,5 8,5 87,504 92,851 66,128 6,3 

Kmax (1/min) 0,377 0,331 1,63 4,031 3 0,08 

 Malmi minerals 

 Sp_M Py_M Dys_M Gn_M Ccp_M Qtz_M 

Rinf (%) 24 6,9 81 83,6 43 3,69 

Kmax (1/min) 0,65 0,5 2,1 5,926 4,3 0,1 
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4 RESULTS AND DISCUSSIONS 

4.1 Mineralogical studies 

The mineralogical study of Sotkamo Silver’s samples is conducted by Dr. Jussi Liipo, 

Director, Geometallurgy & Mineralogy at Metso Outotec Research Center Pori, as a part 

of an ongoing project and this thesis. 

Four samples from Sotkamo (malmi, sorter feed, sorter product, and ore 60, cf. Table 

5Table 5 for composition of each) are used for the mineralogical studies. The P80 of 

malmi, sorter feed, sorter product, and ore 60 are 89 µm, 82 µm, 88 µm, and 89 µm 

respectively, as shown in Table 14, the particle size distribution is shown in Figure 35.  

 

Table 14 P80 of studied samples 

Sample ID P80 (µm) 

Malmi 89 

Sorter feed 82 

Sorter product 88 

Ore 60 89 

 

 

Figure 35 Particle size distribution of studied samples 

4.1.1 Mineralogy 

The main minerals are quartz, dolomite, muscovite, and pyrite, identified by XRD. The 

other minerals identified include ankerite and clinochlore. The main silver minerals 

include dyscrasite, freibergite, diaphorite, argentotetrahedrite. Pygrargyrite and hessite 
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are the minor silver minerals, while the secondary minerals include achantite, 

allargentum, and native silver. Galena, pyrite, and pyrrhotite also contain 920ppm, 

36ppm, and 39ppm of silver. Silver minerals are primarily associated with galena. The 

different modes of occurrences of silver are shown in Figure 36. 

 

Figure 36 a) malmi, +106µm, diaphorite (3-7) inclusions in galena, b) malmi, 75/106, 

relatively large freibergite (1-2, 12-13), galena (3-4, 8-11) - dyscrasite (5-7) - dolomite 

(14) -particle, c) Sorter Product, 45/75, dyscrasite inclusions in galena, d) Sorter 

Product, 20/45, symplectic intergrowth of galena (1-2) and hessite (3) with dyscrasite 

(4)- native antimony (5)- rimmed by acanthite (6); e) Ore 60, 45/75, ) allargentum (1-2) 

inclusions in native silver and Ore 60,20/45, liberated pyrargyrite grain 
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Galena is the main primary lead mineral, occurring as euhedral grains and fine grain 

inclusions in gangue minerals, shown in Figure 37. The composition of the galena is 

stoichiometric. The minor lead minerals include diaphorite and bournonite. The 

secondary lead minerals include hydroxylpyromorphite and mawbyite-type minerals. 

Alteration of galena to plattnerite is found.  

 

Figure 37  Sorter Product, +106μm, a) liberated euhedral galena grain and b) fine-

grained galena and diaphorite inclusions in dolomite 

 

Sphalerite is the main zinc mineral with an average iron content of 6.3%. The other 

impurities in sphalerite are below the analytical method's detection limit (0.1%). Other 

encountered minerals include abundant pyrite with accessory chalcopyrite and pyrrhotite. 

A minor amount of cubanite, arsenopyrite, and covellite is also found. In addition, native 

grains of antimony, ullmannite, and valentinite were encountered.  

4.1.2 Chemical composition 

The chemical composition of the studied samples was analyzed using bulk and by-size 

samples. The bulk malmi sample contains 43ppm silver, 0.1% lead, 0.3% zinc, and 2.3% 

sulfur. The distribution of main elements by size in the ore sample is shown in Figure 38. 
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It is observed that the silver and lead minerals are enriched in the finest size fraction while 

the iron is enriched in the coarsest size fraction.  

 

Figure 38 Mass distribution of main elements by size in the malmi sample 

 

Sorter feed bulk sample contains 48ppm silver, 0.2% lead, 0.6% zinc, and 1.9% sulfur. 

The mass distribution of main elements by size is shown in Figure 39. A similar trend of 

higher concentration of silver and lead mineral in finest size fraction is found, while the 

iron is enriched in coarsest size fraction.   

 

Figure 39 Mass distribution of main elements by size in the sorter feed sample 

 

The bulk sample of the sorter product contains 129ppm silver, 0.6% lead, 1.7% zinc, and 

3.1% sulfur. The mass distribution of main elements by size is shown in Figure 40. The 

silver and lead are enriched in the finest size fraction, while the iron is enriched in the 

coarsest size fraction.  
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Figure 40 Mass distribution of main elements by size in the sorter product sample 

 

The bulk sample of ore 60 contains 170ppm silver, 0.3% lead, 0.87% zinc, and 1% sulfur. 

Compared to other samples, ore 60 has higher silver, zinc, and lead content while lower 

sulfur content. The mass distribution main elements by size are shown in Figure 41. Silver 

and lead are enriched in the finest size fraction, while iron and zinc are enriched in the 

coarsest size fraction.  

 

Figure 41 Mass distribution of ore 60 sample by size 

4.1.3 Mineral composition 

All four sample from Sotkamo Silver contains quartz, muscovite, dolomite, and pyrite as 

the main sulfide mineral, as shown in Table 15. Dyscrasite is the main silver mineral 

carrying 93% of the silver. While remaining 7% silver is distributed in galena and pyrite. 

Galena and sphalerite are the main lead and zinc minerals. The lead and zinc oxide 

minerals carry 0.6-21.5% lead content and 0.7-15.9% zinc content. Ore 60 has lower 

pyrite and dolomite content while higher quartz and muscovite content than other 
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samples. As a comparison between sorter feed and sorter product, the sorter product has 

higher grades of valuable minerals. Due to pre-sorting sum of valuable minerals improved 

from 1.25% to 3.52%. 

Table 15 Mineral composition of bulk samples, ore represents malmi sample 

Sample  Malmi Sorter feed Sorter product Ore 60 
Mineral composition  

Dyscrasite ppm 54 60 162 224 

Galena % 0,092 0,234 0,700 0,286 

Plattnerite % 0,025 0,020 0,004 0,043 

Sphalerite % 0,407 0,941 2,748 1,418 

Zincite % 0,058 0,057 0,053 0,008 

      

Pyrite % 3,62 2,54 3,27 0,93 

Pyrrhotite % 0,47 0,49 0,81 0,05 

Chalcopyrite % 0,02 0,03 0,05 0,04 

Arsenopyrite % 0,15 0,03 0,13 0,00 

Muscovite % 22,59 21,16 18,60 26,38 

Dolomite % 9,21 5,6 9,98 1,84 

Quartz % 63,35 68.9 63,64 68,99 

 

Malmi sample contains 54ppm dyscrasite, 0.09%, 0.4% sphalerite and 3.6% pyrite. 

Dyscrasite and galena are in higher content in the finest fraction. While the coarsest size 

fraction has enriched pyrite, shown in Figure 42. 

 

Figure 42 Distribution of the main mineral in malmi sample 

 

Figure 43 demonstrates the distribution of main minerals by size in sorter feed. This 

sample contains 60ppm dyscrasite, 0.2% galena, 0.9% sphalerite and 2.5% sphalerite. The 



71 

main mineral distribution by size is shown in Figure 43. A similar trend of enriched 

dyscrasite and galena is found in the finest fraction.  

 

Figure 43 Distribution of main minerals by size in sorter feed 

 

Sorter product contains 162ppm dyscrasite, 0.7% galena, 2.7% sphalerite and 3.3% 

pyrite. The distribution of main minerals by size is shown in Figure 44. Dyscrasite and 

galena are enriched in the finest size fraction, while pyrite is enriched in the coarsest size 

fraction. 

 

Figure 44 Distribution of main minerals by size in sorter product 

 

Ore 60 bulk sample contains 224ppm dyscrasite, 0.3% galena, 1.4% sphalerite and 0.9% 

pyrite. The distribution of main minerals by size is shown in Figure 45. Dyscrasite and 

galena re enriches in the finest size fraction, while pyrite is enriched in the coarsest size 

fraction. The finest size fraction has a negligible content of pyrite. The coarsest size 

fraction has lower sphalerite, galena, and dyscrasite content.  
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Figure 45 Distribution of main minerals by size in ore 60 

 

Diagnostic EDTA leaching results represent the degree of oxidation in all four bulk 

samples, shown in Figure 46. It is observed that the galena and sphalerite in malmi sample 

are relatively more oxidized as compared to ore 60 and other samples. However, Ore 60 

has higher oxidation of lead mineral and lowest oxidation of zinc mineral. Sorter product 

contains the lowest oxidation of lead and zinc minerals. 

 

Figure 46 EDTA analysis for zinc and lead, based on duplicate samples, ore represents 

malmi sample 

4.2 Mergan grindability tests 

The mergan grindiability tests for four Sotkamo Silver’s ore (Malmi, sorter feed, sorter 

product, and ore 60) samples were conducted by Mr. Hannu Heiskari, Research and 
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Process Support Engineer at Metso Outotec Research Center Pori. The tests aim to 

compare the grinadability of different samples, calculating specific grinding energy for 

required p80, and estimate bond ball mill work index for each sample. The samples were 

prepared to have a fineness of 100% -3.35mm. The target P80 is 90 µm. The particle size 

distribution of each sample is calculated using 3350, 2360, 1180, 600, 300, 150, 106, 90, 

and 75 µm sieves. The P80 is shown in Table 16. The specific grinding energy and P80 

after 300, 600, and 900 revolutions are calculated. The plot between specific grinding 

energy and P80 is shown in Figure 47. This model between specific grinding energy and 

p80 calculates the required specific grinding energy for p80 of 90µm. The specific 

grinding energy for required P80, operating work index, and estimated bond work index 

is shown in Table 16. 

It is observed that there is no variability in the grindability of the sorter feed and sorter 

product sample. However, the malmi sample requires approximately 10% less energy 

than sorter feed and sorter product. Ore 60 requires less energy to grind and hence the 

softest sample among others with an approximate bond work index value of 4 kWh/t. The 

approximate bond work index value for sorter feed and sorter product is 7.5 kWh/t. The 

bond work index value of the malmi sample is 6.7 kWh/t. Based on the results, all the 

samples can be considered soft in terms of grinding.  
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Figure 47 Specific grinding energy vs p80 for all four samples 

 

Table 16 Mergan test results 

Sample ID Malmi 

Sorter 

feed 

Sorter 

product Ore 60 

F80 (µm) 1516 1457 1353 1734 

P80 (µm) 90 90 90 9000 

Specific grinding energy (SGE, kWh/t) 4.13 4.57 4.53 2.33 

Operating work index (kWh/t) 5.18 5.77 5.79 2.87 

Bond work index estimation (kWh/t) 6.7 7.5 7.5 3.7 

4.3 Grinding calibration tests 

Grinding calibration tests were conducted for each ore sample to calculate the required 

grinding for P80=90µm. Each sample is ground for 5, 10, and 20 minutes and P80 is 

calculated for each grinding time. Ore 60 sample was ground for 5, 10, and 15 minutes 

since the required P80 was obtained below 10 minutes of grinding. The P80 for each ore 

and grinding time is shown in Table 17. A model is generated for each ore type, shown 

in Figure 48 and Figure 49. This model for each ore type is used to calculate the grinding 
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time for P80 around 90 µm, shown in Table 18. According to the model, the malmi sample 

needs 12 minutes of grinding to get P80 of 90,1 µm. Sorter feed, sorter product, and ore 

60 require 13, 14, and 9 minutes to get P80 of 90.8, 88.8, and 88.6 µm, respectively. To 

validate the models, one extra grinding test is conducted for each ore type, shown as 

triangular points in Figure 48 and Figure 49 where the experimental P80 matches the 

modeled P80 for that grinding time.  

Table 17 Grinding time and P80 for each ore type 

Malmi 

Grind time (min) P80 (µm) 

5 109 

10 95 

20 75 

12 91 

Ore 60 

5 103 

10 87 

15 75 

9 89 

Sorter Feed 

5 118 

10 99 

20 78 

15,5 82 

Sorter Product 

5 127 

10 101 

20 78 

14 91 
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Figure 48 P80 vs grinding time for malmi and sorter feed 
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Figure 49 P80 vs grinding time for sorter product and ore 60 

 

Table 18 Grinding time for required p80 of each ore sample 

Sample ID Grinding time (min) P80 (um) 

Malmi 
12 90.1 

Sorter feed 
13 90.8 

Sorter product 
14 88.8 

Ore 60 
9 88.6 
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4.4 Reference flotation tests 

Kinetic flotation tests are conducted for each ore type following the reference reagent 

recipe stated in Table 6, and the flowsheet showed in Figure 32. The flotation kinetic 

parameters for main minerals in all four samples are shown in Table 19.  

Table 19 Flotation kinetic parameters for reference flotation tests 

 Sphalerite Pyrite Dyscrasite Galena Chalcopyrite NSG 

Malmi 
R Inf 24 6,9 81 83,6 43 3,69 

k Max 0,65 0,50 2,10 5,93 4,30 0,10 

Sorter feed 
R Inf 39,0 10,3 84,2 95,2 50,1 5,7 

k Max 0,46 0,36 1,50 4,09 2,40 0,07 

Sorter 

product 

R Inf 25,3 7,9 88,7 95,8 66,4 5,0 

k Max 0,17 0,12 1,07 2,59 2,28 0,05 

Ore 60 
R Inf 34,5 25,8 78,5 60,3 51,2 4,1 

k Max 0,55 0,40 1,00 2,50 2,00 0,12 

 

The graph of mass pull versus flotation time for each sample is shown in Figure 50. It is 

observed that the mass pull of sorter feed, sorter product, and ore 60 is similar and the 

final mass pull at 24 minutes of flotation is in the range of 3.76-3.87%. Malmi sample has 

a lower mass pull than other samples, with a value of 2.83% in the final concentrate. The 

lower mass pull of the malmi sample is due to the lower content of sulfide ore minerals 

and higher oxidation.  

 

Figure 50 Mass pull for reference flotation tests  
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The recoveries of dyscrasite in all four flotation tests are shown in Figure 51. The 

recovery of dyscrasite in the final concentrate of sorter product is 88.0%, the highest as 

compared to other samples. 80.55 and 83.20% dyscrasite is recovered in the final 

concentrate of malmi and sorter feed sample, respectively. The recovery of dyscrasite in 

the final concentrate of ore 60 sample is 77.11%. The highest recovery of dyscrasite 

reflect the silver minerals are associated with galena particularly sorter product (0.61% 

Pb). The ore 60 with high silver grade but low lead grade and oxidized galena resulted in 

lowest recovery of dyscrasite. Also, there is high muscovite content (26.38%, shown in 

Table 15) on the ore 60 that could be coating particles (as a thin layer), reducing the 

recovery and competition of adsorption of collector. 

 The Ag grade in malmi and sorter feed sample is lower, with a value of 43 and 48 ppm 

respectively, hence the recovery of dyscrasite is 5% less than sorter product. The grade-

recovery curves for dyscrasite are also shown in Figure 52. Malmi and sorter feed samples 

are similar in terms of grade and recovery. The dyscrasite grades in the final concentrates 

of sorter product and ore 60 are 0.38% and 0.43%, respectively. The higher concentrate 

grade of dyscrasite in the sorter product is due adequate flotation condition for selective 

flotation of lead and silver minerals. In case of Ore 60, the higher concentrate grade of 

dyscrasite could be due to liberated silver minerals, and secondary silver minerals which 

float selectively and are not associated with oxidized galena.   

 

Figure 51 Recoveries of dyscrasite in reference flotation tests 
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Figure 52 Grade-recovery curves of dyscrasite in reference flotation tests 

 

The recoveries of galena in each reference flotation test are shown in Figure 53. About 

95% galena is recovered in the samples of sorter feed and sorter product. The maximum 

recovery of galena in the final concentrate of malmi sample is 83.5%. The lower recovery 

of galena in malmi sample is due to the highest oxidation (up to 25%) of galena in the 

malmi sample, shown in Figure 46. The other reason for the lower recovery of galena is 

the lead grade of 0.1% in the malmi feed, while the lead grades in the sorter feed and 

sorter product are 0.22 and 0.61%. The recovery of galena in ore 60 is more complicated, 

and the maximum recovery in the final concentrate is 60.5%. The ore 60 has about 16% 

oxidation of lead, causing a lower recovery of galena. The other reason for the most 

inadequate recovery of galena in ore 60 is the presence of slimes during the flotation. The 

slimes in ore 60 resulted due to the 26.38% muscovite, oxidation, and lowest bond work 

index of ore 60 sample.  It is also observed that the infinity recovery for galena is reached 

for all samples due to higher flotation rate constants, shown in Table 19. 
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Figure 53 Recoveries of galena in reference flotation tests 

 

The grade recovery curves of galena in reference flotation tests are shown in Figure 54. 

The grade of galena in the final concentrate of the sorter product is 19.11%. At the same 

time, the grade of galena in the final concentrate of the sorter feed is about 6%. The reason 

behind similar recoveries and different grades of galena in sorter feed and sorter product 

is the grade of lead in the feed samples. Sorter product has about three times higher feed 

grade of lead (0.61%) than the galena grade in sorter feed (0.22%). The malmi sample 

has the lowest galena grade of 4% in the final concentrate because of the lowest lead 

grade of 0.1% in the feed. The grade of galena in the final concentrate of ore 60 is 5.3%.  

 

Figure 54 Grade-recovery curves of galena in reference flotation tests 
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The recoveries of sphalerite in each ore type are shown in Figure 55. The sorter feed 

sample has the highest recovery of sphalerite (36.5%) in the final concentrate. The 

recovery of sphalerite in the final concentrate of ore 60 is about 33%. The recoveries of 

sphalerite in malmi and sorter product are 23.3% and 20.3%, respectively. The higher 

recovery of sphalerite in ore 60 is due to the higher oxidation and presence of slimes. In 

this oxidized sample, the sphalerite surface is activated due to the presence of ions and 

slimes, affecting the efficiency of the collector and depressant. Sorter product sample is 

least oxidized; hence depression of sphalerite is effective. Despite the higher oxidation of 

malmi sample, the lower recovery of sphalerite is due to the lowest zinc grade (0.3%) in 

the malmi sample. These sphalerite recoveries are acceptable at this stage because the 

cleaner circuit is not included in this studies and sphalerite is further depressed using 

sodium cyanide.  

 

Figure 55 Recoveries of sphalerite in reference flotation tests 

 

The Grade-recovery curves of sphalerite in reference flotation tests are shown in Figure 

56. The malmi sample has the lowest grade (4.6%) of sphalerite in the final concentrate. 

The zinc grade in the malmi feed is the lowest with a value of 0.3%. The sequence of zinc 

grades in the fee are malmi < sorter feed < ore 60 < sorter product. A similar sequence of 

zinc grade is found in the final concentrate i.e. malmi < sorter feed < ore 60 < sorter 

product. The grade of zinc in the feed is determining the grade of zinc in the final 

concentrate.  
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Figure 56 Grade-recovery curves of sphalerite in reference flotation tests 

 

The recoveries of pyrite in each reference flotation test are shown in Figure 57. The 

recoveries of pyrite in sorter product, sorter feed, and malmi samples are 5.7%, 9.4%, and 

6.5%, respectively. The depression of pyrite in these three samples is good at the pH of 

11.5-12. The lowest pyrite recovery in the final concentrate of the sorter product resulted 

from the lowest oxidation.  

The recovery of pyrite in the final concentrate of ore 60 is 24.1%. The activation of pyrite 

in ore 60 resulted due to higher oxidation and the presence of slimes. Due to the presence 

of slimes, the reagent's efficiency decreased. Due to the higher oxidation of ore 60, the 

pH during the flotation decreased up to 11 which caused activation of pyrite. Another 

reason for the highest pyrite recovery in ore 60 is the distribution of pyrite in ore 60. 

About 60% pyrite is distributed in the +75µm size fraction. The presence of sulfides in 

this size fraction of oxidized ore has more probability of floating. 
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Figure 57 Recoveries of pyrite in reference flotation tests 

 

The grade-recovery curves of NSG are shown in Figure 58. Sorter product and malmi 

samples have a similar gangue recovery of 2.4% in the final concentrate. The grades of 

NSG in the final concentrates of sorter product and malmi samples are 58% and 80.5%, 

respectively. A higher grade of NSG in the final concentrate of malmi sample resulted 

from higher oxidation of malmi sample and fewer sulfide minerals compared to the sorter 

product. Sorter feed and ore 60 samples showed a similar grade-recovery curve of NSG. 

The grades of NSG in the final concentrates of sorter feed and ore 60 are 3.1% and 2.9%, 

respectively. The recoveries of NSG in the final concentrates of ore 60 are about 76% and 

74%, respectively. The similar grade-recovery curves of sorter feed and ore 60 resulted 

from 5% higher NSG content in ore 60 feed and higher oxidation of ore 60 sample than 

the sorter feed sample.  

 

Figure 58 Grade-recovery curves of NSG in reference flotation tests 
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The galena-sphalerite selectivity curves are shown in Figure 59. These curves are 

essential since we are floating galena and depressing sphalerite in this rougher-scavenger 

circuit. The sorter product has an efficient galena-sphalerite selectivity curve with a 

maximum galena recovery of 95.8% and the lowest sphalerite recovery of 20.3%. Malmi 

sample has 3% higher sphalerite recovery but about 10% lower recovery of galena than 

the sorter product sample. Sorter feed and sorter product have higher sphalerite recoveries 

of 33-37%, but the galena recovery in sorter feed is about 95%, similar to sorter product. 

Ore 60 has the lowest galena recovery of 60.5% and almost 35% of sphalerite.  

 

Figure 59 Galena vs sphalerite selectivity curves for each sample 

 

The flotation results are validated by comparing bulk grades with back-calculated grades, 

shown in Figure 60. The R2 varies between 0.90 to 1. The R2 of Pb and Zn are close to 1, 

showing a good correlation.  

The data tables for flotation results are shown in appendix C. 
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Figure 60 Flotation results validation 

4.5 Simulation of reference flotation tests 

The simulation results of reference flotation tests are promising and well correlated to the 

experimental flotation tests. In this part, a comparison between simulated and 

experimental flotation tests is made. Data tables are shown in appendix E. 

A comparison between the simulated and experimental mass pulls of all four samples is 

shown in Figure 61. The simulated mass pull is represented by a solid line with cross 

points, while the triangular points represent the experimental mass pull. The overall 

experimental mass pulls fit well to the simulated mass pulls. The mass pulls in all four 

samples are in the range of 3-4%.  

 More specific observations show that the simulated mass pulls of malmi sample correlate 

to the experimental mass pulls with R2 values of 0.9922. The experimental mass pull in 

malmi at 18 minutes of flotation is slightly lower than the simulated mass pull. The 

simulated mass pulls of the sorter product sample also show a good fit to the experimental 

mass pulls with a R2 value of 0.9898, a slight deviation of mass pull at 10 minutes of 

flotation caused a slightly lower R2 value. The same trend can be observed for ore 60 and 

sorter feed with R2 values of 0.9925 and 0.9898, respectively. Overall, the simulated mass 

pulls fit the experimental mass pulls with R2 ranging from 0.9844 to 0.9925.  
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Figure 61 Comparison between the simulated and experimental mass pull of four 

Sotkamo Silver's samples 

4.5.1 Malmi samples 

The comparisons between experimental and simulated grades and recoveries of dyscrasite 

and galena are shown in Figure 62. The kinetic rate of simulated recoveries of dyscrasite 

is slightly faster than the experimental recoveries. Still, after 10 minutes of flotation, the 

simulated and experimental recoveries show a good fit with an overall R2 value of 0.9125. 

The experimental and simulated grades of dyscrasite offer a good fit with R2 value of 

9812, except for the first point where the simulated grade is about 0.1% higher than the 

experimental grade. A similar trend can be observed for the galena grade and recovery 

with R2 values of 0.9595 and 9311, respectively.  

R2 = 0.9922 R2 = 0.9844 

R2 = 0.9925 R2 = 0.9898 
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Figure 62 Comparison between experimental and simulated grade and recovery of 

dyscrasite and galena in ore samples 

 

The comparisons between simulated and experimental grades and recoveries of sphalerite 

and NSG are shown in Figure 63. The comparison between experimental and simulated 

recoveries of sphalerite shows a good fit with R2 value of 0.9682. This R2 value resulted 

from the deviation of the first point where the simulated recovery is slightly lower than 

the experimental recovery. A similar trend can be observed in the sphalerite grade, with 

an R2 value of 0.9814. The first point has a slightly lower simulated grade than the 

experimental grade of sphalerite. The simulated grades and recoveries of NSG show a 

better fit to the experimental observations with R2 values of 0.9913 and 0.9931, 

respectively.  

R2 = 0.9152 R2 = 0.9812 

R2 = 0.9311 R2 = 0.9594 
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Figure 63 Comparison between experimental and simulated grade and recovery of 

sphalerite and NSG in malmi sample 

 

4.5.2 Sorter feed 

The comparison between experimental and simulated grades and recoveries of dyscrasite 

and galena are shown in Figure 64. The fit between experimental and simulated recoveries 

of dyscrasite shows an R2 value of 0.9741. The lower R2 resulted from underestimating 

dyscrasite simulated recovery. While the comparison between dyscrasite grades in 

simulated and experimental results show a better for with an R2 value of 0.9897, a slight 

deviation of the third point at 6 minutes of flotation can be observed. There is a perfect 

fit between simulated and experimental recoveries of galena in sorter feed with an R2 

value of 0.9941. the fit between simulated and experimental grades of galena is 

reasonably acceptable with an R2 value of 0.9774, resulting in slight deviations at the first 

and second points.  

R2 = 0.9931 

R2 = 0.9682 R2 = 0.9814 

R2 = 0.9913 
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Figure 64 Comparison between experimental and simulated grade and recovery of 

dyscrasite and galena in sorter feed samples 

 

The comparisons between simulated and experimental grades-recoveries of NSG are 

demonstrated in Figure 65. In the case of NSG recoveries, the fit between experimental 

and simulated observations is better with R2 value of 0.9893. A good fit with slight 

deviations can be observed for the experimental and simulated grades of NSG with an R2 

value of 0.9855.   

 

Figure 65 Comparison between experimental and simulated grade and recovery of NSG 

in sorter feed samples 

 

R2 = 0.9741 

R2 = 0.9941 

R2 = 0.9897 

R2 = 0.9774 

R2 = 0.9893 R2 = 0.9855 
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4.5.3 Sorter product 

The comparisons between experimental and simulated grades and recoveries of dyscrasite 

and galena are shown in Figure 66. Dyscrasite and galena recoveries show a similar trend 

with R2 values of 0.8621 and 0.8808, respectively, where the first and last three 

observations show a good fit while the second observations show the underestimation of 

experimental recoveries of dyscrasite and galena. There is a perfect fit between the 

simulated and experimental grades of dyscrasite with an R2 value of 0.9929. The fit 

between experimental and simulated grades of galena has an R2 value of 0.9839.  

 

Figure 66 comparison between experimental and simulated grade and recovery of 

dyscrasite and galena in sorter product samples 

 

The experimental and simulated grades and recoveries of NSG are shown in Figure 67. 

Overall, there is a decent fit for the grades and recoveries of NSG with R2 values of 0.9935 

and 0.9885, respectively. Some deviations can be observed in the case of NSG recoveries, 

while the simulated grades of NSG perfectly fit the experimental grades of NSG.   

R2 = 0.8621 R2 = 0.9929 

R2 = 0.8808 R2 = 0.9839 
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Figure 67 Comparison between experimental and simulated grade and recovery of NSG 

in sorter product samples 

4.5.4 Ore 60 

The comparisons between the experimental and simulated grades and recoveries of 

dyscrasite and galena are shown in Figure 68. The recoveries of dyscrasite and galena 

show a similar and decent fit with R2 values of 0.9775 and 0.9693, respectively. The 

experimental recoveries of dyscrasite and galena at the first point are slightly higher than 

the simulated recoveries.  

The grades of dyscrasite show a good fit (R2 = 0.9855) between experimental and 

simulated values except for the second point, where the experimental value is slightly 

lower than the simulated value. There is also a satisfactory fit (R2 = 0.9865) between 

experimental and simulated grades of galena, where the experimental grades of the first 

three observations are slightly lower. 

R2 = 0.9885 R2 = 0.9935 
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Figure 68 Comparison between experimental and simulated grade and recovery of 

dyscrasite and galena in ore 60 samples 

 

The grade and recovery curves of NSG show a similar trend between experimental and 

simulated observations, where the first three experimental observations have slightly 

higher values and the last three observations have somewhat lower values. The R2 values 

for recovery and grade fit are 0.9904 and 0.9896, respectively. 

 

Figure 69 Comparison between experimental and simulated grade and recovery of NSG 

in ore 60 samples 

R2 = 0.9775 R2 = 0.9855 

R2 = 0.9693 R2 = 0.9865 

R2 = 0.9895 R2 = 0.9904 
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4.6 Blends flotation test results 

The flotation results of blends are presented according to the blend series explained in 

Table 9. The results are divided into three series. All flotation tests of blends are 

conducted at similar conditions and reagent dosages. The flotation kinetic for blends are 

presented in this section. 

4.6.1 Blends of sorter product and malmi 

Blend I, Blend II, and Blend III contain sorter product and malmi samples at different 

proportions, as shown in Table 7. The flotation kinetic parameters for Blend I, Blend II, 

and Blend III are shown in Table 20. Data tables are shown in appendix C. 

 

Table 20 Flotation kinetic parameters of Blend I, Blend II, and Blend III 

 Sphalerite Pyrite Dyscrasite Galena Chalcopyrite NSG 

Blend I 
R Inf 23,0 6,3 86,1 96,2 60,8 2,3 

k Max 0,40 0,35 1,80 4,90 4,16 0,13 

Blend II 
R Inf 24,0 5,4 82,9 94,8 55,8 2,3 

k Max 0,43 0,39 1,50 4,00 3,50 0,09 

Blend III 
R Inf 22,5 4,9 76,0 92,2 49,0 2,2 

k Max 0,59 0,60 2,40 5,61 4,23 0,12 

 

The dyscrasite recovery curves for blend I, blend II, and blend III are illustrated in Figure 

70. The recoveries of dyscrasite in the final concentrate of blend I, blend II, and blend III 

are 85.9%, 82.3%, and 76.3%, respectively. These dyscrasite recoveries are closer to the 

infinity recoveries, as shown in Table 20. The highest dyscrasite recovery of blend I 

resulted from the higher proportion of sorter product in this blend. In blend II, the 

dyscrasite recovery is lowest due to the higher proportion of malmi. A higher proportion 

of sorter product in a blend results in a higher dyscrasite recovery. Since the recovery of 

dyscrasite in the sorter product sample is about 8% higher than the malmi sample in 

reference flotation tests.  
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Figure 70 Dyscrasite recovery in the blend I, blend II, and blend III 

 

The dyscrasite grade plots of blend I, blend II, and blend III are illustrated in Figure 71. 

The dyscrasite grade in the final concentrate of blend I is 0.423%, the highest compared 

to other blends. Blend III has the lowest grade of dyscrasite with a value of 0.284%. A 

higher proportion of sorter product in a blend resulted in a higher dyscrasite grade in the 

final concentrate. The reason is the 0.24% higher dyscrasite grade in sorter product 

compared to malmi sample in reference flotation tests.  

 

Figure 71 Dyscrasite grade in the blend I, blend II, and blend III 

 

The galena recovery plots for blend I, blend II, and blend III are illustrated in Figure 72. 

The recoveries of galena in the final concentrate of blend I, blend II, and blend III are 

96.3%, 94.8%, and 92.5%, respectively. These galena recoveries at 24 minutes of 
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flotation are very close to the infinity recoveries as shown in Table 20, like dyscrasite 

recoveries. The highest galena recovery of blend I resulted due to the higher proportion 

of sorter product in this blend. In blend II, the galena recovery is lowest due to the higher 

proportion of malmi. A higher proportion of sorter product in a blend results in a higher 

galena recovery. The recovery of dyscrasite in the sorter product sample is about 12.5% 

higher than the malmi sample in reference flotation tests. 

 

Figure 72 Galena recovery in the blend I, blend II, and blend III 

 

The galena grade plots of blend I, blend II, and blend III are illustrated in Figure 73. The 

galena grade in the final concentrate of blend I is 20.2%, the highest compared to other 

blends. Blend III has the lowest grade of galena with a value of 11.4%. A higher 

proportion of sorter product in the blend resulted in a higher galena grade in the final 

concentrate. The reason is the 15% higher galena grade in the sorter product as compared 

to malmi in reference flotation tests.  
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Figure 73 Galena grade in the blend I, blend II, and blend III 

 

The recoveries of NSG in blend I, blend II, and blend III are almost similar at 1 and 24 

minutes of flotation with 0.1% difference, as illustrated in Figure 74. The blend I has a 

maximum gangue recovery of 1.64%. The recovery in the final concentrate of blend II is 

about 1.6%. Blend III has a gangue recovery of 1.53% at 24 minutes of flotation.  

 

Figure 74 NSG recovery in the blend I, blend II, and blend III 

 

The grade of NSG in blend III is 67.8% in the final concentrate, as illustrated in Figure 

75, which is the highest compared to other blends. Blend I has the lowest NSG grade of 

53.2%. The blend I and blend II show similar NSG grades with a highest-grade difference 
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of 5% at 24 minutes of flotation. The highest proportion of malmi in a blend results in a 

higher grade of NSG in the concentrate.  

 

Figure 75 NSG grade in the blend I, blend II, and blend III 

4.6.2 Blends of malmi and ore 60 

The blend IV, blend V, and blend VI contain malmi and ore 60 samples at different 

proportions, as shown in Table 7. The flotation kinetic parameters for blend IV, blend V, 

and blend VI are shown in Table 21.  

Table 21 Flotation kinetic parameters of Blend IV, Blend V, and Blend VI 

  Sphalerite Pyrite Dyscrasite Galena Chalcopyrite NSG 

Blend IV 
R Inf 27,0 6,0 78,0 65,5 42,5 4,3 

k Max 0,41 0,24 1,05 1,80 2,28 0,10 

Blend V 
R Inf 34,0 9,3 80,0 70,0 47,0 5,3 

k Max 0,68 0,52 1,61 4,19 3,00 0,10 

Blend VI 
R Inf 32,0 9,0 78,0 66,0 50,0 6,7 

k Max 0,70 0,58 1,81 4,25 3,31 0,08 

 

The dyscrasite recoveries for blend V and blend VI are similar (about 49%) at the first 

point of 1-minute flotation. At this point, the dyscrasite recovery in blend IV is 38.3%. 

The differences in the dyscrasite recovery between all blends decrease after 6-minutes of 

flotation. In the final concentrate at 24 minutes of flotation, the dyscrasite recovery in 

blend IV and blend VI is almost 77%. At this point, the recovery of dyscrasite in blend V 

is about 2% higher than the other two blends.  
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Figure 76 Dyscrasite recovery in blend IV, blend V and blend VI 

 

The dyscrasite grades of blend IV, blend V and, blend VI at one minute of flotation are 

0.74%, 0.96%, and 1.18%, respectively, illustrated in Figure 77. This difference in grade 

decreases with an increase in the flotation time. At 24-minutes flotation, the grade 

difference between the three blends is about 0.08%, with the range of 0.21 to 0.28%. The 

grades and recoveries of dyscrasite in the final concentrate for all three blends are close.   

 

Figure 77 Dyscrasite grade in blend IV, blend V, and blend VI 

 

The recoveries of galena in blend IV, blend V and blend VI are demonstrated in Figure 

78. The final recoveries of blend IV and blend VI are almost alike, about 66%. At this 

point, the recovery of blend V is 70.1%. The dyscrasite recovery in blend VI at one minute 
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of flotation is 39%, while at this point, the recoveries dyscrasite in blend V and blend VI 

are more than 54%. There is a sharp increase in the dyscrasite recovery till 6-minutes 

flotation, slightly increased in further flotation. The difference in the dyscrasite recovery 

between the three blends is about 4% in the final concentrate.  

 

Figure 78 Galena recovery in blend IV, blend V and blend VI 

 

There is about a 7% grade difference of galena between three blends at one minute of 

flotation, shown in Figure 79. With further flotation, the grade difference is decreased, 

and in the final concentrate, the grade difference is about 0.5%. The galena grade in the 

final concentrate of three blends is 3.6 to 4.14%. After 12 minutes of flotation, the galena 

grades in all three blends are close to each other.  

 

Figure 79 Galena grade in blend IV, blend V and blend VI 
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The recoveries of the NSG in the final concentrate of blend IV, blend V, and blend VI are 

in the range of 2.8% to 4%, as demonstrated in Figure 80. At the beginning of the 

flotation, the NSG-recovery difference is slight and increases gradually with further 

flotation. The recovery of NSG in the blend IV is about 2.8%. The NSG recovery in blend 

V and blend VI are about 3.7% and 4%, respectively. The increase of ore 60 proportion 

in a blend caused higher NSG recovery directly.  The presence of more oxidized ore in 

the blend caused a higher recovery of gangue in the final concentrate.  

 

Figure 80 NSG recovery in blend IV, blend V and blend VI 

 

The grades of NSG in blend IV, blend V, and blend VI are shown in Figure 81. The grade 

difference of NSG between the three blends is about 14% at the start of the flotation, and 

this difference decreased gradually with further flotation. At the last three points, the 

grades of NSG are roughly similar in all blends. In the final concentrate, the NSG grades 

are in the range of 83% to 84.3%.  
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Figure 81 NSG grade in blend IV, blend V and blend VI 

4.6.3 Blends of sorter product and ore 60 

The blend VII, blend VIII, and blend IX contain sorter product and ore 60 samples at 

different proportions, as shown in Table 7. The flotation kinetic parameters for blend IV, 

blend V, and blend VI are shown in Table 22.  

Table 22 Flotation kinetic parameters of Blend VII, Blend VIII, and Blend IX 

 
Sphalerite Pyrite Dyscrasite Galena Chalcopyrite NSG 

Blend VII 
R Inf 25,7 7,4 88,9 92,3 63,8 5,5 

k Max 0,45 0,45 1,90 4,00 3,00 0,10 

Blend VIII 
R Inf 25,7 9,5 84,6 85,3 59,5 5,1 

k Max 0,57 0,65 1,80 4,00 3,00 0,12 

Blend IX 
R Inf 27,2 14,2 81,2 76,7 56,0 5,4 

k Max 0,58 0,54 1,60 5,23 2,50 0,10 

 

The dyscrasite recoveries in blend VII, blend VIII, and blend IX are illustrated in Figure 

82. The final recovery of dyscrasite in blend VII is 88.5%, the highest among the other 

two blends. The dyscrasite final recovery in blend VII is 84.1%, while the dyscrasite 

recovery in blend IX is 80.9%. The increase in the proportion of ore 60 in a blend caused 

a lower recovery of dyscrasite in the final concentrate. The reason is the 11% lower 

dyscrasite recovery in ore 60 compared to sorter product in reference flotation tests.   
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Figure 82 Dyscrasite recovery in Blend VII, Blend VIII, and Blend IX 

 

There is about a 0.33% grade difference of dyscrasite between blend VII, blend VIII, and 

blend IX at one minute of flotation, illustrated in Figure 83. With further flotation, the 

grade difference is decreased, and in the final concentrate, the grade difference is about 

0.06%. The dyscrasite grade in the final concentrate of three blends is in the range of 

0.3% to 0.36%%. After 6 minutes of flotation, the dyscrasite grades in blend VII and 

blend VIII are close to each other with a difference of 0.02%. 

 

Figure 83 Dyscrasite grade in Blend VII, Blend VIII, and Blend IX 

 

The galena recovery curves for blend VII, blend VIII, and blend IX are illustrated in 

Figure 84. The recoveries of galena in the final concentrate of blend VII, blend VIII, and 
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blend IX are 91.8%, 85.1%, and 77.6%, respectively. These galena recoveries are closer 

to the infinity recoveries, as shown in Table 22. The highest galena recovery of blend VII 

resulted from the higher proportion of the sorter product. In blend VIII, the galena 

recovery is lowest due to the higher proportion of ore 60. The higher proportion of sorter 

product in this blend results in a higher galena recovery. Since the recovery of galena in 

sorter product is about 35% higher than the ore 60 sample.  

 

Figure 84 Galena recovery in Blend VII, Blend VIII, and Blend IX 

 

The galena grades in blend VII, blend VIII, and blend IX are 11.9%, 9.5%, and 7.32%, 

respectively, as shown in Figure 85. The higher content of ore 60 in the blend resulted in 

a lower grade of galena in the final concentrate. The reason is the 13.8% higher galena 

grade as compared to ore 60 in reference flotation tests.  
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Figure 85 Galena grade in Blend VII, Blend VIII, and Blend IX 

 

All three blends show similar NSG recovery over the flotation time, as shown in Figure 

86. The maximum NSG recovery in the final concentrates of all blends is about 3.6%. 

Hence different proportions of sorter product and ore 60 show no effect on the NSG 

recovery.  

 

Figure 86 NSG recovery in Blend VII, Blend VIII, and Blend IX 

The grades distribution of NSG in blend VII, blend VIII and blend IX are demonstrated 

in Figure 87. In the final concentrate, the grades of blend VII, blend VIII, and blend IX 

are 69.3%, 73.4, and 76.4%, respectively. A higher proportion of ore 60 in the blend 

resulted in a higher grade of NSG in the concentrate.  
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Figure 87 NSG grade in Blend VII, Blend VIII, and Blend IX 

 

4.7 Comparison between simulated and experimental blends-flotation 

tests  

The flotation and simulation results of the blend series explained in Table 9 are presented. 

The results are divided into three series. All flotation tests of blends are conducted at 

similar conditions and reagent dosages. Here, the grades and recoveries after 24 minutes 

of flotation are compared. The comparison between simulated and experimental results 

over flotation times are shown in appendix A. The horizontal axis of the graphs shows 

blend series while the primary y-axis and secondary y-axis show recoveries and grades, 

respectively. The simulated recoveries are presented solid bars, while experimental 

recoveries are presented as pattern pars. Solid lines represent the experimental grades 

with triangular points, and solid lines show simulated grades with cross points.   

The data tables are shown in appendix E. The graphs for sphalerite and pyrite are shown 

in appendix B. 

4.7.1 Blend series 1 

The blend series 1 include sorter product, blend I, blend II, blend III, and malmi sample, 

simulated and experimental results of dyscrasite are demonstrated in Figure 88. The 

simulated and experimental grades/ recoveries of malmi and sorter product are almost 

similar. The recovery difference is about 0.44%, while the grade difference is below 

0.04%. The recovery difference between simulated and experiment results of blend I is 
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about 0.8%, raised to 8% till blend III. The more content of malmi in a blend resulted in 

the lower experimental recovery of dyscrasite. The simulated recoveries between sorter 

product and malmi are uniformly distributed in 80.5% to 88%. The grade difference varies 

between 0.08 to 0.11% for blend I, blend II, and blend III. Compared to the simulated 

grades, the blends of sorter product and malmi result in higher experimental dyscraside 

grades. In comparison, the experimental recoveries in these blends are lower than the 

simulated recoveries.  

 

Figure 88 Comparison between simulated and experimental grades-recoveries of 
dyscrasite in blend series 1 

 

The simulated and experimental flotation results of galena are demonstrated in Figure 89. 

The simulated and experimental grades and recoveries of both malmi and sorter product 

are almost similar. The recovery difference is about 0.08%, while the grade difference is 

below 1.12%. The recovery difference between simulated and experiment blend I result 

is about 1.2%, about 1% in blend II and blend III. The blends of sorter product and malmi 

have similar simulated and experimental galena recoveries, with about 1% difference. 

The simulated recoveries between sorter product and malmi are uniformly distributed in 

95.75% to 83.6%. The simulated and experimental recoveries/grades of galena are 

decreased with an increase in the malmi content of the blend. The simulated grades 

between sorter product and malmi are uniformly distributed in the range of 20.23% to 

4.01%. The galena grade difference between blend I, blend II and blend III varies between 

2.4% to 3.1%. The blends of sorter product and malmi result in higher experimental 
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galena grades compared to the simulated. While the experimental recoveries in these 

blends slightly higher than the simulated recoveries.  

 

Figure 89 Comparison between simulated and experimental grades-recoveries of galena 
in blend series 1 

 

The simulated and experimental flotation results of NSG are demonstrated in Figure 90. 

The simulated and experimental grades and recoveries of malmi and sorter product are 

almost similar. The recovery difference is about 0.1%, while the grade difference is below 

1%. The recovery difference between simulated and experimental blend I result is 0.61%, 

about 0.8% in blend II and blend III.The blends of sorter product and malmi have similar 

simulated and experimental NSG recoveries, with about 0.8% difference. The simulated 

recoveries between sorter product and malmi are uniformly distributed in the range of 

2.26% to 2.4%. The simulated and experimental recoveries/grades of NSG are increased 

with an increase in the malmi content of the blend. The simulated grades between sorter 

product and malmi are uniformly distributed in the range of 56.8% to 80.5%. The NSG 

grade difference between blend I, blend II, and blend III varies between 6.5 to 11%. The 

blends of sorter product and malmi result in lower experimental NSG grades compared 

to the simulated. While the simulated recoveries in these blends slightly higher than the 

experimental recoveries. The lower experimental NSG grade of blends resulted in a 

higher experimental grade of sulfide minerals than simulation results, shown in Figure 

88, Figure 89, and Figure 90. 
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Figure 90 Comparison between simulated and experimental grades-recoveries of NSG 
in blend series 1 

4.7.2 Blend series 2 

The blend series 2 include malmi, blend IV, blend V, blend VI, and ore 60 sample. 

Simulated and experimental results of dyscrasite are demonstrated in Figure 91. The 

simulated and experimental grades/ recoveries of malmi and ore 60 are almost similar. 

The recovery difference is about 0.34%, while the grade difference is negligible. The 

recovery difference between simulated and experiment results of blend IV is about 0.57%, 

raised to 1.5% in blend V. The simulated recoveries between ore 60 and malmi are 

uniformly distributed in the range of 77.18% to 80.81%. The grade difference varies 

between 0.03 to 0.09% for blend IV, blend V and blend VI. The blends of ore 60 and 

malmi result in the lower experimental dyscrasite grades as compared to the simulated 

grades. In comparison, the experimental recoveries in these blends are close to the 

simulated recoveries.  
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Figure 91 Comparison between simulated and experimental grades-recoveries of 

dyscrasite in blend series 2 

 

The simulated and experimental flotation results of galena blend series 2 are demonstrated 

in Figure 92. The simulated and experimental grades and recoveries of malmi and ore 60 

are almost similar. The recovery difference is about 0.1%, while the grade difference is 

below 1%. The recovery difference between simulated and experimental results of blend 

IV is 7.5%, about 3% in blend V and blend VI. The simulated recoveries between ore 60 

and malmi are uniformly distributed in the range of 60.26% to 83.6%. The simulated and 

experimental recoveries of galena are decreased with an increase in the ore 60 content of 

the blend. The simulated grades between ore 60 and malmi are uniformly distributed in 

the range of 5.28 % to 4%. The galena grade difference between blend IV, blend V, and 

blend VI varies between 0.8% to 1%. The blends of ore 60 and malmi result in the lower 

experimental galena grades compared to the simulated. While the simulated recoveries in 

these blends slightly lower than the experimental recoveries in blend V and blend VI.  
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Figure 92 Comparison between simulated and experimental grades-recoveries of galena 
in blend series 2 

 

The simulated and experimental flotation results of NSG in blend series 2 are 

demonstrated in Figure 93. The simulated and experimental grades and recoveries of 

malmi and ore 60 are almost similar. The recovery difference is negligible, while the 

grade difference is below 0.01%. The recovery difference between simulated and 

experimental blend IV results is 0.31%, about 1% in blend V and blend VI. The simulated 

recoveries between ore 60 and malmi are uniformly distributed in the range of 2.99% to 

2.4%. The simulated and experimental recoveries of NSG are increased with an increase 

in the ore 60 content of the blend. The simulated grades between ore 60 and malmi are 

uniformly distributed in the range of 74.46% to 80.48%. The NSG grade difference 

between blend IV, blend V and blend VI varies between 5.7% to 7.8%. The blends of ore 

60 and malmi result in higher experimental NSG grades and recoveries as compared to 

the simulated.  The higher experimental NSG grade of blends resulted in a lower 

experimental grade of sulfide minerals as compared to simulation results, shown in Figure 

91, Figure 92, and Figure 93. 
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Figure 93 Comparison between simulated and experimental grades-recoveries of NSG 

in blend series 2 

4.7.3 Blend series 3 

The blend series 3 include sorter product, blend VII, blend VIII, blend IX, and ore 60 

sample. Simulated and experimental results of dyscrasite are demonstrated in Figure 94. 

The simulated and experimental grades/ recoveries of sorter product and ore 60 are almost 

similar. The recovery difference is about 0.44%, while the grade difference is 0.04%. The 

recovery difference between simulated and experiment results of blend VII is about 4.4%, 

raised to 1.8% in IX. The simulated recoveries between ore 60 and sorter product are 

uniformly distributed in the range of 77.18% to 87.53%. The grade difference varies 

between 0.04 to 0.07% for blend VII, blend VIII, and blend IX. The blends of ore 60 and 

sorter product result in the lower experimental dyscrasite grades as compared to the 

simulated grades. In comparison, the experimental recoveries in these blends are slightly 

higher than the simulated recoveries. 
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Rec_Exp 2,40 2,83 3,71 4,00 2,88

Rec_Sim 2,40 2,52 2,64 2,76 2,88
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Figure 94 Comparison between simulated and experimental grades-recoveries of 
dyscrasite in blend series 3 

 

The simulated and experimental flotation results of galena in blend series 3 are 

demonstrated in Figure 95. The simulated and experimental grades and recoveries of 

sorter product and ore 60 are almost similar. The recovery difference is about 0.28%, 

while the grade difference is below 1.2%. The recovery difference between simulated and 

experimental results of blend VII is 0.5%, about 0.2% in blend VIII, and 1.7% in blend 

IX. The simulated recoveries between ore 60 and sorter products are uniformly distributed 

in the range of 60.26% to 95.75%. The simulated and experimental recoveries/grades of 

galena are decreased with an increase in the ore 60 content of the blend. The simulated 

grades between ore 60 and sorter product are uniformly distributed in the range of 5.28 

% to 20.23%. The galena grade difference between blend VII, blend VIII and blend IX 

varies between 4.7% to 1.7%. The blends of ore 60 and sorter product result in the lower 

experimental galena grades/recoveries as compared to the simulated.  
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Figure 95 Comparison between simulated and experimental grades-recoveries of galena 
in blend series 3 

 

The simulated and experimental flotation results of NSG in blend series 3 are 

demonstrated in Figure 96. The simulated and experimental grades and recoveries of 

sorter product and ore 60 are almost similar. The recovery difference is about 0.1%, while 

the grade difference is below 1.1%. The recovery difference between simulated and 

experimental blend VII results is 1.2%, about 1% in blend VIII and blend IX. The 

simulated recoveries between ore 60 and sorter product are uniformly distributed in the 

range of 2.88% to 2.26%. The simulated and experimental recoveries of NSG are 

increased with an increase in the ore 60 content of the blend. The simulated grades 

between ore 60 and sorter product are uniformly distributed in the range of 74.46% to 

56.83%. The NSG grade difference between blend VII, blend VIII and blend IX varies 

between 8.3% to 6.38%. The blends of ore 60 and sorter product result in higher 

experimental NSG grades and recoveries as compared to the simulated.  The higher 

experimental NSG grade of blends resulted in a lower experimental grade of sulfide 

minerals as compared to simulation results, shown in Figure 94, Figure 95, and Figure 

96. 
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Figure 96 Comparison between simulated and experimental grades-recoveries of NSG 
in blend series 3 
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5 CONCLUSIONS AND RECOMMENDATIONS 

The variability of four types of ore from Sotkamo and the blend of those in different ratios 

were studied and validation of simulation models (rectangular distribution model) for ore 

blends was carried out. The response of different ore and blends were carried out under 

similar conditions of flotation. Finding first their grindability (classic and Mergan 

methods). Results were evaluated by modelling, and simulations.  

The grinding calibration test for each ore sample determined the relation between particle 

size and grinding time. A comparison of the grindability of different samples, specific 

grinding energy for required p80 calculation, and bond ball mill work index were obtained 

with the Mergan grindability tests. Flotation tests demonstrated the kinetic response of 

each sample and their blends.  Depending on flotation kinetic parameters of each ore type, 

the flotation response for each blend is predicted using simulation. 

The four samples tested contain different grades of silver, lead, and zinc as valuable 

elements in the form of sulphide minerals and various degrees of oxidation. Iron and NSG 

are the non-valuable. Silver and lead minerals are enriched in the finest size fraction, 

while iron minerals are enriched in the coarsest size fraction. Malmi and sorter feed are 

low-grade ores while sorter product and ore 60 higher-grade ores. Malmi is the highest 

oxidized ore with 25% lead and 16% zinc oxidation. Ore 60 has up to 16% lead oxidation 

and 1% zinc oxidation. Sorter product has less than 5% oxidation of lead and zinc. Sorter 

feed has up to 11% Pb oxidation and 7.5% Zn oxidation.  

Mergan tests concluded that the sorter feed and sorter product have a similar estimated 

bond work index of 7.5 kWh/t. The estimated bond work index of malmi is 6.7 kWh/t, 

10% lower than the sorter feed and sorter product. The ore 60 is the softest with an 

estimated bond work index of 3.7 kWh/t. A similar grindability trend is found in grinding 

calibration tests.  

In reference to flotation tests, the sorter product has 88% dyscrasite recovery. The high 

grade and recovery when using this type of ore were obtained as it has better quality and 

it is less oxidized which is resulted by pre-sorting stage that has a positive effect. Malmi 

and sorter feed have recoveries around 83%. Ore 60 has the lowest recovery of 77%. The 

recovery of galena in sorter feed and sorter product is about 95%. Malmi has the recovery 
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of 80%, while Ore 60 has the lowest galena recovery of 60.5%. The lowest recoveries of 

dyscrasite and galena in Ore 60 reflect the high oxidation and presence of slimes in this 

sample. The higher muscovite content of Ore 60 affected the reagent’s effectiveness by 

making a thin layer at the particle surface.  The flotation of Ore is considered challenging 

to achieve comparative recoveries and grades.  

In terms of mineralogy, the pre-sorting of sorter feed resulted in higher grades of ore 

minerals. The sum of valuable minerals improved from 1.25% to 3.27%. Pre-sorting also 

resulted in higher pyrite and dolomite content, while the content of quartz and muscovite 

decreased. There are no effects of pre-sorting on grindability. Hence the specific grinding 

energy and estimated bond work index are similar for sorter feed and sorter product. The 

behind is the higher content of gangue i.e. 98.75% in sorter feed and 96.73%. A slight 

difference in gangue content resulted in no effect on grindability.  In terms of flotation 

kinetics, pre-sorting resulted in similar galena recovery and 5% higher dyscrasite 

recovery, minor impact on flotation kinetics.    

There is a good comparison between experimental and simulated flotation results. The 

flotation kinetics for each blend are different, and the sample's content in a blend impacted 

the flotation kinetics. The higher content of malmi in sorter product causes lower 

recoveries and grades. The higher content of Ore 60 in malmi and sorter product cause 

lower recoveries in the final concentrate.  

The simulation of blends shows similar recoveries as compared to experimental 

recoveries. While the experimental grades of ore minerals in blend series 1 are higher 

than the simulated grades. The grade of gangue in experimental tests is lower than the 

simulated grades of blend series 1. Thus, the lower gangue grade resulted in a higher 

grade of ore minerals in the final concentrate of blend series 1. The experimental grades 

of ore minerals in blend series 2 and 3 are lower than the simulated grade. In these series, 

the experimental gangue grade is higher than the simulated grade. The higher grade of 

gangue causes a lower grade of ore minerals in experimental tests. The presence of ore 

60 in a blend cause higher gangue grade and lower grades of ore minerals due to the 

presence of slimes and oxidation.  

In general, the HSC’s simulation module is predictive for the blend’s flotation 

simulations. In this study, the comparison between simulated and experimental floatation 

results is good. For blends simulation, the higher grade of gauge in experimental tests 
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affected the estimation of grade, due to low mass pull of concentrate (3-4%). At the same 

time, the simulated and experimental recovers are close to each other.  

The recommendation for further study is to blend more than two ore and test the flotation 

kinetics and simulations. The ore 60 is oxidized and flotation recoveries of ore minerals 

are lower, hence this ore should be studied for different dosages of and removal of slimes 

to achieve maximum recovery.  Once the new recipe is developed for ore 60, blends of 

ore 60 should be studied using the new flotation recipe. Another recommendation is to 

conduct the grindability tests for the blends. The mixing of soft and hard ores might cause 

under/over-grinding; hence, the impact of grindability of blends on flotation kinetics 

should be studied. Despite using standard procedures and equipment, the reproducibility 

should be examined by conducting multiple similar tests. Multiple blend tests can provide 

the variance for the flotation results, which can help in simulation and modeling f the 

results. In this study, rougher and scavenger is studied. Hence cleaner tests should be 

conducted with recirculation to overprint the actual plant process.  
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6 SUMMARY 

Geometallurgical models are more often used in concentrator plants. Geometallurgy is 

essential for efficient resource utilization and risk management. Geometallurgy provides 

comprehensive knowledge of ore bodies, including metallurgical response before the 

deposits are mined. High-grade ore deposits are already extracted, and new low-grade 

complex deposits offer no room for errors. Hence efficient resource utilization is 

essential.  

Heterogeneity of ore deposits usually causes the variable feed to a process plant. The 

performance of the processing plant is affected by the variation in the feed. Optimum and 

controlled processing requires a uniform feed to a plant. The ore from different parts of a 

deposit is different, and optimum blending is often to provide a controlled feed. Blends 

are commonly used, and investigation of metallurgical performance of blends helps 

predict the metallurgical response of processing plant and enables effective mineral 

processing and resource utilization.  

The main objective of the thesis is to investigate the productivity of simulation for the 

prediction of flotation response of different types of ore and their blends. In addition, the 

effect of ore pre-sorting on grindability and flotation response is studied.  The main 

research questions are: 

• Effect of ore variations and blends on flotation performance, can be simulated?  

• May the product of sorting before flotation bank affect flotation kinetics? 

The literature review includes the previous comprehensive study of the Taivaljärvi ore 

deposit. The traditional lead-zinc flotation practices are also reviewed. Earlier studies 

about blends conclude that the ore blends present linear grindability response while 

recovery response is non-linear. A chapter about available flotation models is also 

presented.   

This thesis work is conducted using four samples from Sotkamo Silver Oy: malmi, sorter 

feed, sorter product, and ore 60. Grinding calibration tests were conducted to study the 

relationship between grinding times and particle size for each sample. Mergan 

grindability tests were conducted for each ore type for sample classification based on 

grindability. Mineralogical studies for each sample are conducted to study elemental and 
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mineral distribution in each sample. EDTA analysis is used to study the oxidation of lead 

and zinc. Reference flotation tests were conducted to study the flotation kinetics of each 

sample. The reference flotation tests were simulated using HSC Chemistry ® software. 

Nine blends are prepared using three different ore types. The kinetic flotation tests were 

conducted to study the kinetics of each blend. The blend’s flotation tests are simulated 

and compared to the experimental tests, to investigate the productivity of the simulations.  

Sorter product and sorter feed samples are similar in terms of grindability and recoveries, 

hence presorting of ore is not affecting upstream processes. Malmi sample has 10% less 

specific grinding energy than sorter feed and sorter product. Ore 60 is the softest in terms 

of grindability as compared to other samples. Both galena and sphalerite in malmi sample 

are oxidized. Ore 60 is oxidated more completely as compared to malmi sample. Sorter 

product is least oxidized. The sorter feed is slightly higher oxidized than sorter product. 

Good recoveries were achieved for sorter product, malmi and sorter feed samples. Ore 60 

has the lowest galena recovery and highest pyrite recovery. Hence the flotation of ore 60 

is complex due to oxidation and the presence of slimes (higher muscovite content). There 

was a good comparison between experimental flotation tests and simulation. The 

experimental and simulated recoveries of blends are close to each other. The blends of 

malmi and sorter product resulted in lower gangue grade and higher grade of ore minerals 

as compared to the simulated results. In contrast, the blends of ore 60 with malmi and 

sorter product resulted in higher experimental gangue grade and lower grade of ore 

minerals as compared to simulated blend’s grades. The lower mass pull of concentrate 

(3-4%) and low grade of ore minerals resulted in slightly different experimental grades 

than simulated grades. In addition, oxidation and presence of slimes also affected blends 

flotation kinetics. The simulation results are close to the experimental results. Hence HSC 

simulation module can be used for the prediction of blend's flotation kinetics. 

The recommendations include further investigation and recipe adjustment for the 

oxidized Ore 60 sample. Blends of more than two types of ores should be studied. The 

grindability tests for each blend should be conducted to investigate the blend’s 

grindability. Multiple blends flotation tests should be undertaken to study the variance of 

flotation results. The cleaner flotation tests should be undertaken to study overall response 

of lead-silver flotation circuit along with rougher and scavenger flotation.  
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8 APPENDICES 

Appendix A 

Blends simulated and experimental flotation results over flotation time 
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Appendix B 

Comparison of simulated and experimental grades and recoveries in blend series: 

Blend series 1 
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Blend series 3 

 

 

 

Appendix C 

In this section the mass balance for experimental flotation tests is presented 
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Appendix D 

The modelling of flotation kinetic parameters for minerals in each sample are presented 

here.  
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Appendix E 

In this section the simulation results are presented. 
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