

Nguyen Thi Huong Thu

BEATING THE INDEX WITH DEEP LEARNING

A Method for Passive Investing and Systematic Active Investing

Master’s Thesis

Oulu Business School

May 2021

UNIVERSITY OF OULU ABSTRACT OF THE MASTER'S THESIS

Oulu Business School

Unit
Department of Finance
Author
Nguyen Thi Huong Thu

Supervisor
Conlin A., Postdoctoral researcher

Title
Beating the Index with Deep Learning: A Method for Passive Investing and Systematic Active

Investing
Subject

Finance
Type of the degree

Master’s Thesis
Time of publication

May 2021
Number of pages

87
Abstract

In index tracking, while the full replication requires holding all the asset constituents of the index in the

tracking portfolio, the sampling approach attempts to construct a tracking portfolio with a subset of

assets. Thus, sampling seems to be the approach of choice when considering the flexibility and

transaction costs. Two problems that need to be solved to implement the sampling approach are asset

selection and asset weighting. This study proposes a framework implemented in two stages: first

selecting the assets and then determining asset components’ weights. This study uses a deep

autoencoder model for stock selection. The study then applies the L2 regularization technique to set up

a quadratic programming problem to determine investment weights of stock components.

Since the tracking portfolio tends to underperform the market index after taking management costs into

accounts, the portfolio that can generate the excess returns over the index (index beating) brings more

competitive advantages to passive fund managers. Thus, the proposed framework attempts to construct

a portfolio with a small number of stocks that can both follow the market trends and generate excess

returns over the market index.

The framework successfully constructed a portfolio with ten stocks beating the S&P 500 index in any

given 1-year period with a justifiable risk level.

Keywords
indexing, portfolio, sampling, autoencoder, regularization
Additional information

CONTENTS

1 INTRODUCTION .. 7

2 LITERATURE REVIEW .. 12

2.1 Joint approach ... 13

2.1.1 Cardinality constrained optimization ... 13

2.1.2 Regularized optimization ... 14

2.2 Two-step approach .. 16

2.2.1 Asset selection ... 16

2.2.2 Asset weighting .. 21

3 THEORETICAL FRAMEWORK .. 23

3.1 Deep neural network ... 25

3.1.1 Cost function .. 28

3.1.2 Gradient-Based Learning ... 33

3.1.3 Back-Propagation ... 38

3.1.4 Activation function .. 42

3.2 Autoencoder ... 47

3.3 Relation of autoencoder and CAPM .. 50

3.4 Regularization in machine learning ... 51

4 DATA AND METHODOLOGY ... 53

4.1 Data ... 53

4.2 Methodology .. 53

4.2.1 Index tracking with joint portfolio ... 57

4.2.2 Index beating with joint portfolio .. 59

4.2.3 Index beating with sparse portfolio .. 59

4.2.4 Performance measurement ... 60

5 EMPIRICAL RESULTS .. 62

5.1 Index tracking with joint portfolio .. 64

5.1.1 Validation phase ... 64

5.1.2 Calibration phase ... 65

5.1.3 Testing phase ... 66

5.2 Index beating with joint portfolio .. 67

5.2.1 Validation phase ... 67

5.2.2 Calibration phase ... 68

5.2.3 Testing phase ... 69

5.3 Index beating with sparse portfolio ... 70

5.3.1 Validation phase ... 70

5.3.2 Calibration phase ... 71

5.3.3 Testing phase ... 72

6 CONCLUSIONS ... 81

REFERENCES ... 84

FIGURES

Figure 1. Overview of passive investing methods ... 13

Figure 2. Simple feedforward neural network ... 26

Figure 3. Deep feedforward neural network... 27

Figure 4. Euclidean distance between two points in two-dimensional space 29

Figure 5. An illustration of gradient descent (1) (adapted from Goodfellow, Bengio & Courville

2016, p. 83) ... 35

Figure 6. An illustration of gradient descent (2) ... 36

Figure 7. An illustration of critical points (adapted from Goodfellow, Bengio & Courville 2016,

p. 85) ... 37

Figure 8. Simple feedforward neural network ... 39

Figure 9. Tanh and Sigmoid functions .. 44

Figure 10. ReLu function .. 45

Figure 11. Leaky ReLu function .. 46

Figure 12. Shallow autoencoder ... 49

Figure 13. Deep autoencoder .. 50

Figure 14. Validation set method ... 52

Figure 15. Designed deep autoencoder model for stock selection ... 56

Figure 16. The procedure of autoencoder, validation, calibration and testing phases in a 5-year

period ... 60

Figure 17. Continuous dataset arrangement for training and testing during the entire 9-year

dataset .. 60

Figure 18. Original and decoded versions of the most communal stock .. 62

Figure 19. Original and decoded versions of the least communal stock ... 63

Figure 20. The ten most communal stocks based on reconstruction errors 63

Figure 21. The 35 least communal stocks based on reconstruction errors 63

Figure 22. Performances of 30 lambda values in the validation set .. 65

Figure 23. Invested weights of stock components of the three tracking portfolios 66

Figure 24. Cumulative returns of the index and the three tracking portfolios in the training set

 .. 66

Figure 25. Cumulative returns of the index and the three tracking portfolios in the test set 67

Figure 26. Performances of 30 lambda values in the validation set .. 68

Figure 27. Invested weights of stock components of the three beating portfolios 69

Figure 28. Cumulative returns of the index and the three beating portfolios in the training set . 69

Figure 29. Cumulative returns of the index and the three beating portfolios in the test set 70

Figure 30. Performances of 30 lambda values in the validation set .. 71

Figure 31. Invested weights of stock components of the beating sparse portfolio 71

Figure 32. Cumulative returns of the index and the beating sparse portfolio in the training set 72

Figure 33. Cumulative returns of the index and the beating sparse portfolio in the test set 72

Figure 34. Cumulative returns of the index and the three tracking portfolios in 2016 75

Figure 35. Cumulative returns of the index and the three beating portfolios in 2016 75

Figure 36. Cumulative returns of the index and the beating sparse portfolio in 2016 76

Figure 37. Cumulative returns of the index and the three tracking portfolios in 2017 76

Figure 38. Cumulative returns of the index and the three beating portfolios in 2017 76

Figure 39. Cumulative returns of the index and the beating sparse portfolio in 2017 77

Figure 40. Cumulative returns of the index and the three tracking portfolios in 2018 77

Figure 41. Cumulative returns of the index and the three beating portfolios in 2018 77

Figure 42. Cumulative returns of the index and the beating sparse portfolio in 2018 78

Figure 43. Cumulative returns of the index and the three tracking portfolios in 2019 78

Figure 44. Cumulative returns of the index and the three beating portfolios in 2019 78

Figure 45. Cumulative returns of the index and the beating sparse portfolio in 2019 79

Figure 46. Cumulative returns of the index and the three tracking portfolios in 2020 79

Figure 47. Cumulative returns of the index and the three beating portfolios in 2020 79

Figure 48. Cumulative returns of the index and the beating sparse portfolio in 2020 80

TABLES

Table 1. Example data .. 40

Table 2. Portfolio performance in 2016 ... 73

Table 3. Portfolio performance in 2017 ... 74

Table 4. Portfolio performance in 2018 ... 74

Table 5. Portfolio performance in 2019 ... 74

Table 6. Portfolio performance in 2020 ... 75

7

1 INTRODUCTION

Fund managers implementing the active investing strategy attempt to select the most

attractive assets in the portfolio based on their deep analysis and expertise (Beasley,

Meade & Chang, 2003). They also need to decide the right time to sell and buy those

assets to “beating” the market. The actively managed fund beats the market when the

fund’s returns are higher than the benchmark index’s returns. Rather than beating the

market, passive investing attempts to achieve the same returns of the market index i.e.

tracking the market index (Beasley et al., 2003). Passive fund managers do not buy

and sell assets in the tracking portfolio as frequently as active counterparts; they may

only rebalance the portfolio when the benchmark index is rebalanced or reconstituted.

Due to the high expenses spent for active management e.g. transaction costs from

multiple long and short active positions, the management fees of actively managed

funds are more expensive than that of passive ones. Moreover, the investment

managers’ decisions are not always accurate; their misjudgments can cause losses to

the portfolio investment. Thus, although active investing is more flexible and its

benchmark-outperforming target is tempting, the performance of active investing

tends to be poorer than the benchmark index (Heaton, Polson & Witte, 2017a). The

SPIVA US Scorecard published by S&P Dow Jones Indices in April 2020 reported

that 71% of large-cap US funds failed to beat the S&P500 index in 2019. The

performance of the actively managed funds becomes worse when it comes to a longer

investment horizon. Particularly, 88.99% and 90.46% of large-cap US funds have

underperformed the S&P500 index over a 10-year period and a 15-year period,

respectively. Due to the unsatisfactory performance on actively managed funds,

passive investing has obtained more investors’ attention recently.

Two common approaches used to track the index are synthetic replication and physical

replication (Maurer & Williams, 2015). The former focuses on derivative investing

such as options and swaps, while the latter directly invests in assets. As synthetic

replication involves contractual obligations, which contains the risk of defaulting

(counterparty risks), physical replication is a more transparent method that investors

can investigate the assets contained in the fund portfolio. Physical replication includes

8

two approaches that are full replication and sampling (Benidis, Feng & Palomar,

2018).

In the full replication approach, the fund managers hold all the index constituents in

the tracking portfolio (Benidis et al., 2018). This results in huge transaction costs. For

example, to track an equally weighted index, the tracking portfolio must be rebalanced

frequently to keep the weight constant when there is a change in stock price, which is

extremely costly if the tracking portfolio holds all the index constituents. The full

replication method can be inflexible as some index constituents cannot be traded in the

market due to their low liquidity. Moreover, the full replication method is inflexible

when the structure of the benchmark index is not fully exposed; investors, therefore,

cannot hold all the index constituents in their portfolios.

In contrast, the sampling approach is more flexible by only containing the most

representative securities of the underlying index in the tracking portfolio (Benidis et

al., 2018). Because only a subset of assets is selected, the sampling method can

mitigate the trading costs when the tracking index is rebalanced or reconstituted.

Although the sampling approach can generate large tracking errors, the sampling

approach seems to be more promising than the full replication approach when

considering the flexibility and transaction costs.

Although the passive management cost in the sampling approach is lower than the

active one, the fact that index funds only produce the same returns as the index makes

them underperform the market index by the number of management costs. Thus, using

the sampling approach to construct a portfolio that can produce an excess return over

market index (index beating) with bearable riskiness brings competitive advantages

for passive fund managers.

Two problems that need to be solved when constructing the tracking portfolio with the

sampling approach are how to select a subset of constituents of the underlying index

(asset selection) and how much to invest in each of them (asset weighting). Some treat

the two problems as a unified one (joint approach) while others solve them sequentially

(two-step approach).

9

A lot of studies in the literature have introduced different methods for both asset

selection and asset weighting. The methods of index tracking varied from the naïve

strategy to the heavy computation. The development of machine learning and deep

learning in the past few decades has significantly contributed to the evolution of index

tracking methods. Brodie, Daubechies and De Mol (2009), Wu, Yang and Liu (2014),

and Benidis, Feng and Palomar (2017) introduced a machine learning method called

regularization, solving both asset selection and asset weighting problems at once.

Focardi and Fabozzi (2014) applied the clustering method for asset selection typically.

To track the index, we may deal with the nonlinear interactions between the input and

the output of the relevant data, which does not follow any financial theory (e.g.,

interactions of portfolio returns and index returns). Deep learning provides the type of

model that can capture the nonlinear relationship between input and output. This type

of model is called a neural network containing several layers; the model is trained in

the way that the input data is gone and transformed through the layers of the neural

network to map with the output (Lecun, Bengio & Hinton, 2015). Furthermore, the

deep neural network is also applied to extract the features of data structure, which is

promising for solving the stock selection problem. Thus, deep learning is a potential

tool to deal with the problems in index tracking.

Heaton, Polson and Witte (2017b) pioneered in applying deep learning to build a

framework for constructing a portfolio beating Biotechnology IBB Index. In their

research, Heaton et al. (2017b) used an autoencoder for stock selection. Autoencoder

is a special type of neural network where the output used in training is also its input

(unsupervised learning method). Autoencoder is typically used in reducing the

dimension and extracting the feature of the input. Thus, by using the auto-encoder, we

can select stocks that share the most/least common information with the market,

thereby creating a portfolio mimicking the market index. After obtaining the desired

stocks from the autoencoder model, the paper again used neural networks to look for

the relationship between portfolio returns and index returns. The market-beating

strategy used in the research is to construct a portfolio with anti-correlations in the

large drawdown periods. They created a modified index returns by replacing the

original index’s returns ≤ -5% by exactly 5%. Then they used the modified index

returns to map with the portfolio returns in the training set, aiming to create a portfolio

10

specially generating returns higher than the index in the large drawdown of the market.

Then they tested the out-of-sample performance of the constructed portfolio in the test

set; the empirical results showed that their portfolio could beat the market index by

1% annually by containing at least 40 stocks.

Inspired by the success of Heaton et al. (2017b), this thesis applies the deep learning

framework to construct a portfolio with a small number of stocks aiming to beat the

market index. However, there are some differences between the framework used in

this thesis and Heaton et al.’s:

- First, the benchmark index in this research is the S&P500 index instead of the

Biotechnology IBB Index as in Heaton et al.’s.

- Second, while Heaton et al.’s study used the shallow architecture for the

autoencoder model, the thesis designs the deeper architecture for the

autoencoder network, which will be discussed in detail in the methodology

section.

- Third, after the stock selection step, the thesis does not use the neural network

to look for the relationship between the portfolio returns and index returns like

Heaton et al.’s. The reason is that the neural networks require the data to

transform through their multiple layers, which is not convenient for

determining the direct effect between portfolio returns and index returns. Thus,

determining invested weights of stock components is difficult in this approach.

Alternatively, the thesis determines the invested weights by solving a quadratic

programming problem capturing the direct relationship between portfolio

returns and index returns. Additionally, the thesis applies the L2 regularization

method to enhance the out-of-sample performance of the portfolio.

- Fourth, the market-beating strategy used in this thesis is different from Heaton

et al.’s. In Heaton et al.’s study, they attempted to beat the market by

constructing a portfolio typically generating higher returns than the index in

the large drawdown of the market. However, this required the portfolios to

contain at least 40 stocks to have a reliable prediction. Unlike Heaton et al.’s

study, the thesis does not attempt to construct a portfolio with anti-correlations

in the large drawdown periods. Alternatively, the thesis proposes a new

strategy for constructing a portfolio that can follow the market trends and

11

generally generates higher returns than the index. To do so, the thesis does not

use the original index returns for model training, but index returns added 2%.

- Fifth, the thesis desires to construct a portfolio beating the market by

containing only ten stocks (sparse portfolio).

- Sixth, to affirm the performance of the sparse portfolio, the thesis arranges a

continuous dataset for training and testing during the whole 9-year dataset to

obtain five different yearly performances.

The framework used in this thesis includes four phases: autoencoder phase, validation

phase, calibration phase, and testing phase. The autoencoder phase aims to select

desired stock components for the portfolio. The validation and calibration phases look

for investment weights of stock components. The testing phase examines the out-of-

sample performances of the beating portfolios.

The main research question of the thesis is “Could the application of deep learning

construct a sparse portfolio beating the S&P 500 Index?”.

The rest of the thesis is structured as follows: chapter two presents an overview of the

literature regarding the construction of the tracking portfolio with the sampling

approach. Chapter three provides the detailed theoretical framework used to construct

the methodology. Chapter four discusses the data and methodology. Chapter five

presents the empirical results. The conclusion is given in Chapter six.

12

2 LITERATURE REVIEW

Analysis of historical performances of actively managed funds shows that the majority

of them underperform the market in the long run (Rompotis, 2009). Thus, recently,

passive investing has been discussed widely in the literature. As discussed, two main

groups of methods used to track indices are synthetic replication and physical

replication. In physical replication, two approaches are commonly used are full

replication and sampling. Sampling seems to be the most promising approach amongst

passive investing approaches in terms of transparency, flexibility, and transaction

costs.

Two main problems that need to be solved when constructing the tracking portfolio

with the sampling method are how to select a subset of constituents of the underlying

index (asset selection) and how much to invest in each of them (asset weighing). Some

researchers unify these two problems to solve them at once (joint approach), while

others treat them as two separate problems and solve them in two steps (two-step

approach).

In the joint approach, people usually turn the two problems into an optimization

problem, which penalizes the cardinality of the tracking portfolio and provides the

solutions of investment weights at once. In mathematical optimization terminology,

the objective function is the function that we target to minimize or maximize. The

objective function in the joint approach is usually the function of tracking error that

is the difference between index’s returns and portfolio’s returns. Two sub-approaches

under the joint approach are cardinality constrained optimization and regularized

optimization.

In the two-step approach, we first select a subset of the assets and then allocate capital

for the selected assets. Sub-approaches for asset selection can be divided into three

groups: selection criteria, coverage of index structure, and optimized selection

(Karlow, 2012). For asset weighting, two sub-approaches used are heuristic weighting

and optimized weighting.

13

Figure 1. Overview of passive investing methods

2.1 Joint approach

2.1.1 Cardinality constrained optimization

Cardinality constraint is a constraint restricting the number of assets in the optimal

portfolio. Some studies added a cardinality constraint that limits K assets included in

the portfolio to objective functions. This is a mixed-integer nonlinear (quadratic)

programming problem, which does not have a computationally effective solving

algorithm (Chang, Meade & Beasley, 2000). Solving this problem can provide

solutions for both asset selection and asset weighting. The cardinality constrained

optimization was first applied in the mean-variance portfolio model, in which the

objective function was the portfolio’s variance (risk) function (Bienstock, 1996 &

Chang et al., 2000). Beasley et al. (2003) and Ruiz-Torrubiano and Suarez (2009) then

applied this cardinality constrained optimization in index tracking, in which the

Selection

criteria

Coverage of

index structure

Passive investing

Synthetic replication Physical replication

Fully replication Sampling

Asset selection Asset weighting

Optimized

selection

Heuristic

weighting

Optimized

weighting

Two-step approach Joint approach

Cardinality constrained

optimization

Regularized

optimization

14

objective function was the function of tracking error variance. Both groups of exact

and heuristic approaches have been proposed in the literature to solve the complex

mixed-integer nonlinear programming problem.

Bienstock (1996) followed the scholar of exact approaches presenting a branch-and-

cut algorithm. However, Cesarone, Scozzari and Tardella (2010) claimed that

Bienstock’s method does not work effectively for the small number of restricted assets.

Li, Sun and Wang (2006) introduced a convergent Lagrangian method to provide the

exact optimal solution for the mean-variance portfolio problem. These exact methods

can be generalized to apply in index tracking. However, Cesarone et al. (2013) claimed

that exact approaches only partly solve the cardinality constrained portfolio

optimization.

A lot of heuristic approaches have been proposed to solve the problem in index

tracking, such as threshold accepting by Gilli and Kellezi (2002), genetic algorithms

by Beasley et al. (2003), and Jeurissen and van den Berg (2008), simulated annealing

by Derigs and Nickel (2004), and hybrid algorithms by Fastrich, Paterlini and Winker

(2010), and Ruiz-Torrubiano and Suarez (2009), etc. However, the heuristic approach

does not guarantee that the optimal solutions will be found. Still, the proper setup of

the heuristic approach is able to find solutions close to the optimum (Karlow, 2012).

2.1.2 Regularized optimization

Mixed-integer nonlinear programming described in Section 2.1.1 is computationally

heavy and impractical to put in use (Benidis et al., 2017). Thus, some studies proposed

a more efficient algorithm to solve asset selection and asset allocation with the joint

approach. Their studies applied L0 regularization or L1 regularization technique into

the optimization problem to control the sparsity of the portfolio (Brodie et al. 2009,

Wu et al., 2014 and Benidis et al., 2017). Specifically, the objective function in their

study was constituted by L0 (or L1 regularization term) and the tracking error variance

function. The method with L0 regularization can be mathematically formulated as

follows (the term λ‖𝑤‖0 below will be replaced by λ‖𝑤‖1 in L1 regularization method):

15

𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤
1

𝑚
‖𝑅𝐼 − 𝑅𝑥𝑤‖2

2 + λ‖𝑤‖0

s.t. ∑ 𝑤𝑖 = 1𝑛
𝑖=1 ,

𝑤𝑖 ≥ 0

where and λ‖𝑤‖0 is a regularization term (regularizer); 𝑅𝐼 𝜖 ℝ𝑚 is a vector of index

returns in m periods; 𝑅𝑥 = [𝑅1, . . . , 𝑅𝑛] 𝜖 ℝ𝑚𝑥𝑛 is the return matrix of n component

stocks in m periods; w = [𝑤1, . . . , 𝑤𝑛] 𝜖 ℝ𝑛 is a vector of stock weights (so that 𝑅𝑥𝑤 is

the portfolio return).

While the constraint that all weights are positive restricts the short selling, the

constraint that weights sum up to one represents the budget constraint. λ is the tuning

hyperparameter which is priorly chosen and controls the sparsity of the portfolio.

When λ goes to ∞, the impact of the regularizer gets larger, and the estimated weights

of some assets approach zero. By enlarging the value of λ, we will get a sparser

portfolio i.e. portfolio with a much smaller number of stocks. Besides the joint

approach described above, Wu et al. (2014) also proposed the two-step approach that

first selected stocks by applying L1 regularization and then estimated the investment

weight of each stock by using nonnegative least squares. They argued that their joint

approach obtained poorer performance than their two-step approach.

However, Benidis et al. (2017) claimed that both L0 regularization and L1

regularization have their own problems in solving the asset selection problem. The

objective function with L0 regularizer is highly non-convex, which is not convenient

for finding minima. L1 regularization has a problem with the constraint that weights

need to sum up to unity. This constraint reduces the L1 regularizer λ‖w‖1 to a constant

λ which is irrelevant to control the portfolio sparsity.

Takeda, Niranjan, Gotoh and Kawahara (2013)’s formulation included both the L2

regularizer and the cardinality constraint. Unlike L0 or L1 regularization, L2

regularization does not encourage the sparsity of the model. Alternatively, L2

regularization can avoid large values of w, which can get rid of large variations. Thus,

the L2 regularizer in their formulation was responsible for enhancing the tracking

portfolio's out-of-sample performance. Cardinality constraint was added to the

16

formulation to solve the stock selection problem. They claimed that their method could

construct a portfolio containing a small number of stocks but still achieving good out-

of-sample performance. Their formulation is given as:

𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤
1

𝑚
‖𝑅𝐼 − 𝑅𝑥𝑤‖2

2 + λ‖𝑤‖2
2

s.t. ∑ 𝑤𝑖 = 1𝑛
𝑖=1 ,

𝑤𝑖 ≥ 0

‖𝑤‖0 ≤ 𝐾

where K is a positive integer limiting the number of assets in the portfolio.

However, as they included cardinality constraint in their optimization problem, Takeda

et al. (2013)’s method again faced the heavy computation problem of mixed-integer

nonlinear programming as discussed in Section 2.1.1.

2.2 Two-step approach

2.2.1 Asset selection

2.2.1.1 Selection criteria

In the selection criteria group of methods, a subset of assets is selected from the stock

universe based on the set criteria.

One common criterion used is the weights of the assets in the index. As assets with

larger weights in the index will contribute a larger impact on the variability of the

index, assets that have weights satisfying with the set threshold will be selected. For

example, if the tracking index is a capitalization-weighted index, the assets with the

largest market capitalization will be included in the tracking portfolio (Meade &

Salkin, 1989). When it comes to price-weighted indices, assets with smaller prices will

have smaller weights and therefore be omitted (Alexander & Dimitriu, 2004a).

17

Rey and Seiler (2001) extended the asset weight criterion by integrating information

of traded asset volumes into the market capitalization information. The assets that had

a higher turnover-to-market capitalization ratio would be selected in their study. In

fact, the research of Rey and Seiler showed that their combination method did not

enhance the tracking portfolio’s performance compared to the standalone

capitalization-weighted criterion.

Rafaely and Bennell (2006) believed that the portfolio would closely track the market

index if it could include the assets with larger contributions to the market index. They

measured the contribution of an asset by calculating the product of the mean historic

weight and the mean historic price of that asset. Assets with the larger product would

have a larger contribution to the underlying assets and therefore be selected.

Montfort, Visser and van Draat (2008) used the correlation between the individual

stock and stock universe as the selection criterion. They believed that assets with low

correlation with market index are not beneficial for tracking index. In contrast, assets

with a high correlation with the market index have a significant impact on the market

index. However, Dunis and Ho (2005) claimed that correlation analysis on returns only

reflects the short-run dependency between the asset components and market index.

Thus, the tracking portfolios constructed with the correlation criterion need to be

constantly rebalanced when the correlation varies. Such portfolio construction might

be costly and difficult to manage. Dunis and Ho proposed the concept of cointegration

as an alternative approach. They claimed that the cointegration reflects the long-term

co-movements of the price series. Therefore, they constructed a portfolio cointegrated

with the underlying index so that the tracking portfolio may not variate much from the

index in the long run. Dunis and Ho believed that constructing the portfolio with

cointegration analysis is not required to rebalance as frequently as one with correlation

analysis.

Sorensen, Miller and Ooi (2000) used the decision tree technique to build more

complex selecting criteria, including valuation, profitability, earnings, etc. They used

classification and regression tree (CART) analysis to detect which assets are likely to

outperform the index based on different criteria. A decision tree model used six

variables representing the criteria such as sales-to-price ratio, cash flow-to-price ratio,

18

return on assets, etc. to provide the probabilities of stock’s outperformance and stock’s

underperformance. The approach provided the framework to classify the performance

of stocks. Furthermore, the approach determined which criteria were important for the

performance classification.

2.2.1.2 Optimized selection

The methods under this group pick stocks by forming and solving an optimization

problem.

Avoiding the complexity of the mixed-integer nonlinear programming as discussed in

Section 2.1.1, Gaivoronski, Krylov and Van Der Wijst (2005) established a simple

method for stock selection. They first formulated the minimization problem with the

objective function of tracking error. They provided the weight solution for all the

constituents of the benchmark index by solving the optimization problem. After that,

assets with the largest weights were picked for the tracking portfolio. However, as

some stocks were highly correlated, the optimization problem formulated by

Gaivoronski et al. (2005) could allocate small weights to a whole group of those stocks.

Therefore, Montfort et al. (2008) claimed that this approach could lead to the omission

of the whole segment of stocks that were highly correlated with each other from the

tracking portfolio. Coleman, Li and Henniger (2006) suggested the reverse sequence

for the method. Instead of choosing stocks with the largest weights, they proposed to

exclude a very small number of stocks with the smallest weights, then repeating the

optimization problem for the rest until getting the desired number of stocks in the

tracking portfolio.

The strategy of selecting stocks with the largest weights was also implemented in Wu

et al. (2014)’s study. They added the regularizer into the tracking error variance

function to create the objective function, as discussed in Section 2.1.2. They

implemented both the joint approach and the two-step approach. In the two-step

approach, they first selected stocks by applying L1 regularization and then estimated

the investment weight of each stock by using nonnegative least squares. When

comparing with their joint approach, they claimed that the two-step approach obtained

19

a better performance. However, using L0 or L1 regularization for stock selection is not

thoroughly applicable in index tracking, as discussed in Section 2.1.2.

2.2.1.3 Coverage of index structure

The methods belong to this group attempt to construct a portfolio containing only

assets representing the index feature. Specifically, the methods will remove assets that

have the same information from the tracking portfolio. Thus, a portfolio containing a

subset of assets can still mostly cover the index structure.

Maginn, Tuttle, McLeavey and Pinto (2007, p. 425) used stratified sampling to mimic

the structure of the index. Based on the pre-defined features of the index, the method

separated the stock universe into different segments representing the index features.

For example, an index feature could be large market capitalization, medium market

capitalization, or small market capitalization; then, stocks would be categorized

according to such index feature. It is also possible to combine two or more features

together. For example, the feature of industry sectors could be combined with market

capitalization. Assets were then categorized in different groups of combined features,

such as the group of large-market-capitalization assets in the technology sector and the

group of small-market-capitalization assets in the health care sector, etc. The study

then selected the most representative asset of each group for the tracking portfolio.

Focardi and Fabozzi (2014) argued that the hierarchical clustering could reveal the

correlation and cointegration between stock constituents. They first used historic price

time series of stocks to calculate the Euclidean distance between clusters. Euclidean

distance in their study was the minimum price distance between all pairs of stock

elements. Stock components were then grouped in the different clusters based on the

Euclidean distance. After determining the optimal number of clusters, a tracking

portfolio was constructed by selecting one stock or a subset of stocks from each cluster

and calculating each asset’s weight. Focardi and Fabozzi introduced three basic

strategies. The first was a semi-automatic strategy that partly gave the stock selection

task to managers. The managers selected the stocks from clusters based on their

experience and judgment. The optimizer then calculated the weights of the selected

assets. The second was an automatic strategy that used the heuristic approach to pick

20

stocks e.g. picking stock based on the maximum return criterion. Then the optimizer

solved the asset weighting problem. The third was a fully quantitative strategy, in

which the optimizer solved both asset selection and asset weighting problems. Thus,

the third strategy requires heavy computation, especially in the case of selecting a

subset of stocks from each cluster.

Corielli and Marcellino (2006) used principal component analysis to extract needful

features from the input data. Principal component analysis extracts the input features

by reducing the input dimensionality. They first built a linear factor model for the

index, in which index prices were explained by several factors and an error term. The

linear factor model was determined by principal component analysis on the matrix of

stock prices. The number of factors was smaller than the dimensionality of the input.

Stocks correlated with the index factors were selected for the tracking portfolio so that

the tracking portfolio shared the same factor structure with the index. Alexander and

Dimitriu (2004b) also used principal component analysis to construct a tracking

portfolio. In their principal component analysis, the first principal component was the

linear combination between the input variables with maximum variation. Alexander

and Dimitriu claimed that the first principal component could capture the maximum

variation on the stock returns; they, therefore, constructed a tracking portfolio

replicating the first principal component instead of the market index.

Another method used for dimensionality reduction is autoencoder. Autoencoder is

unsupervised learning using an artificial neural network to extract the input features

and recreate the input itself based on the extract features (Goodfellow, Bengio & and

Courville 2016, p. 502). Autoencoder is processed in three steps: encoder, bottleneck

and decoder. In the encoding step, input is multiplied with an appropriate weight value

and added a bias term. The result of that calculation goes through an activation

function in the bottleneck layer to discover its latent state presentation. Finally, the

decoding step reproduces the input from the latent state presentation. The process of

autoencoder attempts to minimize the difference between the original input and

decoded input which is called the reconstruction error. Heaton et al. (2017b) used an

autoencoder for stock selection. They combined stocks with the smallest

reconstruction error and the largest reconstruction error to form the tracking portfolio.

They claimed that this portfolio construction could avoid selecting stocks containing

21

the same information. After constructing the portfolio, they used the artificial neural

network to map selected stocks’ returns with the index returns. Their empirical results

showed that their tracking portfolio could beat the Biotechnology IBB Index by 1%

annually.

2.2.2 Asset weighting

2.2.2.1 Heuristic weighting

Heuristic weighting is a weighting scheme built on simple and, arguably, rational rules.

The approach may allocate the assets in the portfolio based on the weighting

methodologies of the benchmark indices. For example, if the benchmark index is S&P

500, a capitalization-weighted index, then the heuristic-weighting method allocates the

portfolio assets based on their capitalization in the market (Larsen & Resnick, 1998).

Thus, we will have four heuristic weighting methods corresponding to four different

index weighting methodologies: capitalization weighting, price weighting, equal

weighting, and fundamental weighting.

The heuristic weighting approach is simple to apply; however, the approach may be

too naïve because it overlooks the correlation of assets in the index structure. Thus,

applying this approach in sampling may not bring the optimal results in index tracking.

2.2.2.2 Optimized weighting

Wu et al. (2014) used the linear regression fitting the portfolio returns to index returns

with the constraints on weights (short-selling restriction and weights summing up to

unity) to determine assets’ weights. This method is called a non-negative least square.

The least-square method fits the linear regression by minimizing the difference

between the input and the output variables i.e. minimizing tracking error variance. The

non-negative least square is given as:

𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤‖𝑅𝐼 − 𝑅𝑥𝑤‖2
2

s.t. ∑ 𝑤𝑖 = 1𝑛
𝑖=1 ,

𝑤𝑖 ≥ 0

22

where 𝑅𝐼 𝜖 ℝ𝑚 is a vector of index returns in m periods; 𝑅𝑥 = [𝑅1, . . . , 𝑅𝑛] 𝜖 ℝ𝑚𝑥𝑛 is

the return matrix of n component stocks in m periods; w = [𝑤1, . . . , 𝑤𝑛] 𝜖 ℝ𝑛 is a vector

of stock weights (so that 𝑅𝑥𝑤 is the portfolio return).

Tracking error and tracking error variance are the most common objective functions

in index tracking. However, Gaivoronski et al. (2005) and Rafaely and Bennell (2006)

used a less common tracking quality function, which is the difference between

portfolio values and index values, to determine investment weights.

The type of optimization problem varies depending on which tracking quality function

is used. It can be a quadratic optimization problem if the objective function is tracking

error variance or mean squared error (Roll, 1992 and Beasley et al., 2003). Or it can

be a linear optimization problem if the used measures are linear, such as mean absolute

deviation, maximal absolute deviation, etc. (Rudolf, Wolter & Zimmermann, 1999).

23

3 THEORETICAL FRAMEWORK

Since autoencoder is the type of deep neural network, Sections 3.1 and 3.2 provide the

theoretical framework of deep learning and autoencoder, which is used to construct

the methodology for solving the stock selection problem. The study discusses the

similarity between the traditional Capital Asset Pricing Model (CAPM) and the deep

autoencoder model in Section 3.3. Section 3.4 introduces the regularization technique

used to construct the stock weighting methodology.

Deep learning or deep neural network is a subset of machine learning. Like machine

learning, deep learning is also the learning algorithm that can learn from the experience

E when performing the task T to improve the performance measured by P (Mitchell

1997, p.99).

a) Task T in deep learning

There are different types of tasks solved by deep learning. The most common tasks in

deep learning are classification and regression problems. Performing the tasks in deep

learning is illustrated by how deep learning would process an example. The example

mentioned here means the vector x = [x1, x2,…, xn], where x1, x2,…, xn are n features

of the input. For example, if the input is the returns of ten different stocks in m periods,

ten stocks are called ten features, and the returns of ten stocks in one period is called

an example.

In the classification task, deep learning is asked to categorize the class of an example.

Binary classification and multi-class classification are two typical problems in the

classification task. Binary classification asks to classify an example to one of two

classes (e.g. classify whether an email is a spam or not). Multi-class classification has

more than two classes in its classification problem (e.g. classify whether an image is

an orange, an apple or a peach).

In the regression task, the problem that needs to be solved is to predict real-number

values when the input is given. One of the applications of this type of prediction is

algorithmic trading. For example, deep learning can perform the regression task of

24

predicting stock prices when macroeconomic variables and firm-specific

characteristics are given as the input.

b) Measure P in deep learning

The choice of performance measure P is associated with the task T. For the

classification problem, the performance measure P is usually the accuracy of the

models. The performance measure of accuracy is the percentage of predicted correct

examples over the total predicted examples. In the regression task, the performance

measure P is the error, which is the difference between the predicted values and the

true values.

c) Experience E in deep learning

Based on the experience that learning algorithms obtain during the learning process,

learning algorithms can be categorized into supervised learning algorithms and

unsupervised learning algorithms.

Supervised learning experiences the dataset containing many input features and a

label y associated with each example. The supervised learning experiences the

relationship between the input and the label y, so that the algorithms can predict output

y when an example is given. In other words, supervised learning attempts to estimate

the conditional probability distribution p(y | x). For example, using deep neural

networks to learn the relationship between index returns (label y) and stock

components’ returns (feature x) is supervised learning.

In contrast, there is no label y given in the dataset in unsupervised learning.

Unsupervised learning does not experience the relationship between the input x and

the label y. Unsupervised learning experiences the dataset including many input

features to discover the dataset structure. Or, put differently, unsupervised learning

aims to learn the entire probability distribution of the dataset i.e. the joint probability

distribution of all observed data points p(x). For example, in deep learning,

autoencoder is an unsupervised learning method. Autoencoder can explore the

structure of a given dataset by extracting the attributes of the dataset structure.

25

Therefore, autoencoder seems to be a promising method for selecting a subset of stocks

mimicking the index market structure.

From the above, when the thesis claims that it would like to use autoencoder for

solving stock selection problem, there are two main points to be noted:

- First, the stock selection is the regression task.

- Second, the autoencoder is the unsupervised learning method.

3.1 Deep neural network

Linear models limit the relationship between the input and the output to a linear form

and omit the interaction between input variables. Deep feedforward networks (or

feedforward neural networks or deep neural networks) attempt to enhance the linear

model performance by overcoming the linear model’s limitations. Feedforward neural

networks can explore the nonlinear relationship between the input and the output by

nonlinearly transforming the input and mapping the transformed input with the output.

In other words, input x is transformed through φ(x), where φ is a nonlinear

transformation, then this x’s new presentation φ(x) is mapped with the output y. We

need to determine the parameters doing this mapping task to build a deep neural

network model.

The function φ in neural networks is not necessarily a nonlinear transformation; it can

be a linear transformation. If a neural network only consists of linear transformation

functions, such neural network turns into the linear model. The function φ is called the

activation function. The activation function can appear in both the hidden layer and

the output layer in neural networks.

26

Figure 2. Simple feedforward neural network

The feedforward neural networks have “feedforward” in their name as the information

flows from the input layer, then is transformed in the hidden layer, and finally, the

transformed information in the hidden layer is used to produce the output. The nodes

that data and computations flow through are called neurons.

Figure 2 shows the simple feedforward neural network, including an input layer, a

hidden layer, and an output layer. This network has two inputs (x1 and x2) in its input

layer; two neurons (h1 and h2 nodes) in its hidden layer; and one output in its output

layer. The mapping procedure between the input and the output in this simple

feedforward neural network is described below.

First, the inputs are multiplied by the weight w; then such multiplications are summed

together and then are added the bias b, as details:

(𝑥1 ∗ 𝑤1) + (𝑥2 ∗ 𝑤2) + 𝑏1 (3.1)

(𝑥1 ∗ 𝑤3) + (𝑥2 ∗ 𝑤4) + 𝑏2 (3.2)

Then the sums will be gone through the hidden layer, in which the activation function

transforms the sums into h1 and h2:

ℎ1 = 𝑓1(𝑥1 ∗ 𝑤1 + 𝑥2 ∗ 𝑤2 + 𝑏1) (3.3)

ℎ2 = 𝑓1(𝑥1 ∗ 𝑤3 + 𝑥2 ∗ 𝑤4 + 𝑏2) (3.4)

27

Then h1 and h2 are again multiplied by the weight w. Such multiplications are summed

together and then are added the bias b, given as:

ℎ1 ∗ 𝑤5 + ℎ2 ∗ 𝑤6 + 𝑏3 (3.5)

Then the sum is transformed through the activation function in the output layer to

produce the output:

𝑜1 = 𝑓2(ℎ1 ∗ 𝑤5 + ℎ2 ∗ 𝑤6 + 𝑏3) (3.6)

The above illustration is the simple version of the feedforward neural network

consisting of only one hidden layer. The feedforward neural network can have multiple

hidden layers and those layers can consist of any number of neurons. The greater

number of hidden layers, the deeper the models. The “deep learning” terminology

comes from the neural network’s depth represented by the number of hidden layers.

Figure 3 illustrates the deeper feedforward neural network with multiple hidden layers,

multiple inputs and multiple outputs.

Figure 3. Deep feedforward neural network

28

Below is a summary of the feedforward neural network process.

When the input X and output Y are given, the feedforward neural network attempts to

find the parameters to map the input to the output through the layers. Let Z(l) denote

the information generated from the lth layer of the neural network i.e. Z(l) are extracted

features from the lth layer, so X = Z(0). Then the framework of the feedforward neural

network model is as follows:

𝑍1 = 𝑓1(𝑊1𝑋 + 𝑏1),

𝑍2 = 𝑓2(𝑊2𝑍1 + 𝑏2),

….

𝑍𝐿−1 = 𝑓𝐿−1(𝑊𝐿−1𝑍𝐿−2 + 𝑏𝐿−1),

𝑌̂ = 𝑓𝐿(𝑊𝐿𝑍𝐿−1 + 𝑏𝐿). (3.7)

where W is weight matrices and b is the bias vector.

In short:

𝑌̂ = 𝑓𝐿(𝑊𝐿𝑓𝐿−1(. . . 𝑊2𝑓1(𝑊1𝑋 + 𝑏1) + 𝑏2. . .) + 𝑏𝐿). (3.8)

The training problem of the feedforward neural network models is to find the model

parameters 𝑊̂ = (𝑊1, . . . , 𝑊𝐿) and 𝑏̂ = (𝑏1, . . . , 𝑏𝐿). The model parameters are

determined by minimizing the cost function that measures the difference between true

values and predicted values. The next section introduces the concept of the cost

function and how to choose the appropriate cost function in neural networks.

3.1.1 Cost function

The target function solved in minimization or maximization problems is called the

objective function. The goal in any predicting model is to minimize the error i.e. the

difference between the true values and the predicted values. The objective function

measuring the error of the models is called the cost function or loss function. The two

main types of a cost function using in training neural network models are mean squared

29

error and cross-entropy. The choice of cost function should suit the tasks that deep

learning attempts to perform. As discussed earlier, the main tasks in deep learning are

to solve regression and classification problems.

3.1.1.1 Mean squared error

The thesis first discusses Euclidean distance as it closely connects with mean squared

error. Euclidean distance is the most popular distance metric in machine learning.

Euclidean distance is used to measure the distance between the points in an n-

dimensional space.

Figure 4. Euclidean distance between two points in two-dimensional space

The Euclidean distance between point a and point b in the space is often denoted

as ‖a − b‖2 or simply as ‖a − b‖.

In the case of two-dimensional space described in Figure 4, the Euclidean distance

between point a and point b denoted as d(a, b) is given as:

d(a, b) = ‖𝑎 − 𝑏‖ = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 (3.9)

The Euclidean distance can be generalized in a N-dimensional space, where point A is

represented as (x1, x2, ..., xN) and point B is represented as (y1, y2, ..., yN). Then, the

Euclidean distance between point a and point b is given as:

30

 d(a, b) = ‖𝑎 − 𝑏‖ = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2+. . . +(𝑥𝑁 − 𝑦𝑁)2 (3.10)

A cost function can be defined as Euclidean distance measuring the distance between

the two vectors: vector of true values and vector of predicted values; then we call the

cost function as least squared error or L2 loss (L2 norm). Thus, L2 loss is formulated as

the square root of the sum of squared errors. The formula of L2 loss is described as

follows:

𝐿2 = ‖𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡‖ = √∑ (𝑦𝑖
𝑡𝑟𝑢𝑒 − 𝑦𝑖

𝑝𝑟𝑒𝑑)2𝑚
𝑖=1 (3.11)

where 𝑦𝑖
𝑝𝑟𝑒𝑑

 and 𝑦𝑖
𝑡𝑟𝑢𝑒are the predicted value and the true value of the output,

respectively when the ith example is given; m is the number of the training examples.

Mean squared error (MSE) is defined as the average of the sum of squared errors.

The MSE is described in the formula as follows:

MSE =
1

𝑚
∑ (𝑦𝑖

𝑡𝑟𝑢𝑒 − 𝑦𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡)2𝑚

𝑖 =
1

𝑚
‖𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡‖

2
 (3.12)

The formula of MSE (3.12) shows that MSE is the mean squared L2 loss. L2 loss and

MSE are basically the same concept which measures the distance between the

predicted value and the true value. Both L2 loss and MSE are used as the cost function

in machine learning and deep learning. Some people use the terms L2 loss and MSE

interchangeably.

As the regression problem is associated with predicting a real-valued output, MSE/ L2

loss is the most common cost function used for a regression problem. However, MSE/

L2 loss is badly defined in a classification problem as the classification predictive

model attempts to predict the discrete output variables. Alternatively, cross-entropy is

the common cost function used in a classification problem.

3.1.1.2 Maximum likelihood estimation

31

Before diving into the cross-entropy concept, the thesis first discusses maximum

likelihood estimation as it closely connects with the concept of cross-entropy.

Maximum likelihood estimation (MLE) is a statistical technique using some observed

data to estimate the parameters of a given probability distribution.

For unsupervised learning, considering a set of m examples of observation X = {x (1),

. . . , x(m)}, where each example is drawn independently from the same but unknown

probability distribution pdata(x) (so-called independent and identically distributed

assumption i.i.d.). MLE attempts to estimate the parameters of a probability

distribution function pmodel(x;θ) which best explains pdata(x), where θ is the parameters

of a probability distribution function. For example, in the normal distribution i.e.

Gaussian distribution, θ will represent two parameters: the mean and the standard

deviation.

When the assumption of i.i.d. is made, the total probability of all observed data is the

product of the probability of each data point individually. The maximum likelihood

estimator for θ is then described as:

𝜃𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜃

𝑝𝑚𝑜𝑑𝑒𝑙(𝑋; 𝜃) (3.13)

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝜃

∏ 𝑝𝑚𝑜𝑑𝑒𝑙
𝑚
𝑖=1 (𝑥(𝑖); 𝜃) (3.14)

However, as the product of many probabilities can be inconvenient for finding

optimum, the maximum likelihood estimator is transformed to the logarithm form

which does not affect its argmax value. By doing this, the product is transformed into

a sum:

𝜃𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜃

∑ 𝑙𝑜𝑔 𝑝𝑚𝑜𝑑𝑒𝑙
𝑚
𝑖=1 (𝑥(𝑖); 𝜃) (3.15)

The objective function in (3.15) can be divided by m to get another version of

maximum likelihood estimator without changing the argmax value. This version can

be expressed as an expectation to the distribution of the training data pˆdata:

https://statisticsbyjim.com/glossary/mean/

32

𝜃𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜃

E𝑥~𝑝𝑑𝑎𝑡𝑎 𝑙𝑜𝑔 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥; 𝜃) (3.16)

3.1.1.3 Cross-entropy

The above section interprets the MLE as a technique estimating the parameters of a

probability distribution function pmodel(x;θ) which best explains pdata(x). However,

there is another interpretation of MLE that can unravel the concept of cross-entropy.

MLE can be interpreted as the minimization of the dissimilarity between the

distribution of the training data (pˆdata) and the model distribution (pmodel(x;θ)). The

degree of the dissimilarity is given as:

Minimize E𝑥~𝑝𝑑𝑎𝑡𝑎[𝑙𝑜𝑔 𝑝̂𝑑𝑎𝑡𝑎(𝑥) − 𝑙𝑜𝑔 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)] (3.17)

𝑙𝑜𝑔 𝑝̂𝑑𝑎𝑡𝑎(𝑥) is the process of generating the training data that cannot be changed.

Thus, to minimize the objective function in (3.17), we only need to minimize the

negative log-likelihood:

Minimize − E𝑥~𝑝𝑑𝑎𝑡𝑎[𝑙𝑜𝑔 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)] (3.18)

which is the same as the maximization in equation (3.16).

The negative log-likelihood in (3.18) is called the cross-entropy between the

probability distribution of the training data pˆdata and the probability distribution

estimated by the model pmodel(x;θ). Thus, MLE is equivalent to minimizing the

negative log-likelihood and equivalent to minimizing the cross-entropy.

3.1.1.4 Relation of MSE and cross-entropy

If the probability distribution pdata(x) is assumed to follow a Gaussian (normal

distribution), then minimizing cross-entropy becomes:

33

Minimize − E𝑥~𝑝𝑑𝑎𝑡𝑎[𝑙𝑜𝑔 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)] (3.19)

≈ Minimize − E𝑥~𝑝𝑑𝑎𝑡𝑎 [𝑙𝑜𝑔
1

√2𝜋𝜎2
𝑒

−(𝑥𝑡𝑟𝑢𝑒 − 𝑥𝑡𝑒𝑠𝑡)2

2𝜎2]

≈ 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 −E𝑥~𝑝𝑑𝑎𝑡𝑎 [𝑙𝑜𝑔 (
1

√2𝜋𝜎2
) −

(𝑥𝑡𝑟𝑢𝑒 − 𝜇)2

2𝜎2
]

≈ 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 −E𝑥~𝑝𝑑𝑎𝑡𝑎 [𝑙𝑜𝑔 (
1

√2𝜋𝜎2
) −

(𝑥𝑡𝑟𝑢𝑒 −𝑥𝑡𝑒𝑠𝑡)2

2𝜎2]

≈ 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 E𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥𝑡𝑟𝑢𝑒 − 𝑥𝑡𝑒𝑠𝑡)2 (3.20)

where 𝜇 and 𝜎 are the estimated mean and the standard deviation of the probability

distribution pdata(x), respectively.

Recalling the MSE formula (3.12), we can see that when the target distribution is

assumed to follow a Gaussian, minimizing either MSE or cross-entropy leads to the

same optimum.

There are several points to be noted under this section:

- First, MLE is equivalent to minimizing the negative log-likelihood and

equivalent to minimizing the cross-entropy.

- Second, using either MSE or cross-entropy as a cost function leads to the same

optimum when the Gaussian distribution assumption is made. Thus, in the

regression problem, we can use either MSE or cross-entropy as a cost function.

After this section, we can understand the concept of cost function and how to choose

an appropriate cost function in the regression problem. The next sections will introduce

the techniques to solve the cost function: stochastic gradient descent and back-

propagation algorithms.

3.1.2 Gradient-Based Learning

3.1.2.1 Gradient Descent

Given a cost function J(𝜃) =
1

𝑚
∑ (𝑦(𝜃)𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡 − 𝑦𝑖
𝑡𝑟𝑢𝑒)2𝑚

𝑖 , where 𝜃 are parameters of

the deep neural network model including the weights w and the biases b, J’(𝜃) provides

https://statisticsbyjim.com/glossary/mean/

34

the slope (or gradient) of J(𝜃) at the point 𝜃. In other words, J’(𝜃) is the derivative of

function J shows how J changes when there is a unit change in 𝜃 at a specific point 𝜃.

Thus:

 J(𝜃 + 𝜖) ≈ J(𝜃) + 𝜖 J ‘(𝜃) (3.21)

where 𝜖 can be understood as the degree of the change of 𝜃 and J‘(𝜃) is the derivative

of J(𝜃). Another notation for J’(𝜃) is
𝑑𝐽(𝜃)

𝑑𝜃
.

We can adjust the movement direction of 𝜃 to reduce or increase the value of J based

on the sign of slope i.e. the sign of the function’s derivative J‘(𝜃). Thus, the derivative

of the objective function is widely used in solving the optimization problem. For the

purpose of convenient illustration, let simplify the cost function J(𝜃) =
1

2
𝜃2

representing the convex function. The detailed illustration is described in Figure 5; we

can see that J’(𝜃) < 0 when 𝜃 < 0, so J(𝜃) will decrease when we move 𝜃 rightward.

In contrast, J’(𝜃) > 0 when 𝜃 > 0, J(𝜃) will decrease when we move 𝜃 leftward. This

example illustrates that the sign of J(𝜃)’s derivative helps determine the movement

direction of 𝜃 to decrease J. Specifically, J is reduced when we move 𝜃 in small steps

with the sign opposite with its derivative:

𝐽(𝜃 − 𝜖 ∗ 𝑠𝑖𝑔𝑛(𝐽′(𝜃)) < 𝐽(𝜃) for small enough ϵ (3.22)

35

Figure 5. An illustration of gradient descent (1) (adapted from Goodfellow, Bengio & Courville

2016, p. 83)

As 𝜃 includes multiples variables of weights w and biases b. The gradient descent

technique can be generalized in the case of multiple 𝜃 by using the concept of partial

derivatives. The partial derivative is denoted as
𝜕𝐽(𝜃)

𝜕𝜃𝑗
 measuring the change in

J(𝜃) corresponding to a unit change of 𝜃j while other values of 𝜃 keep unchanged. The

gradient of J(𝜃) with multiple values of 𝜃 is a vector containing all the partial

derivatives with respect to 𝜃j. The gradient vector is given as:

∇𝜃𝐽(𝜃) = (
𝝏𝐽(𝜃)

𝝏𝜃1
, . . . ,

𝝏𝐽(𝜃)

𝝏𝜃𝐿
) (3.23)

where L is the number of layers in the model.

As is the case for cost function with single variable 𝜃 discussed above, we can decrease

function J(𝜃) in the case of multiple 𝜃 by moving 𝜃 in small steps in the opposite

direction with the gradient. This technique is called steepest descent or gradient

descent. The new point 𝜃′ after the movement is:

𝜃′ = 𝜃 − 𝜖∇𝜃𝐽(𝜃) (3.24)

36

where 𝝐 is the positive scalar value representing the size of the step; in machine

learning terminology, 𝝐 is called the learning rate. The value of J will descend

gradually for each iteration of the learning step described in Figure 6. The learning rate

𝝐 is a hyperparameter meaning that it must be priorly chosen by the operator of the

machine learning algorithm. The learning rate is chosen based on the features of the

problem and given data.

Figure 6. An illustration of gradient descent (2)

If the derivative J’(𝜃) at the point 𝜃 equals 0, then the derivative at such point gives

no indication for the movement direction of 𝜃. Such point is called a critical point or

a stationary point. In the problem with multidimensional 𝜃, the critical point of the

cost function is the point where all elements of the gradient vector at such point are

equal to zero. The critical point can be a local maximum, a local minimum or a saddle

point. We say a function J has a local minimum at the point 𝜃 when the values J at all

the neighboring points of 𝜃 is larger than J(𝜃). In contrast, a function J has a local

maximum at the point 𝜃 when the values of J at all the neighboring points of 𝜃 is

smaller than J(𝜃). A saddle point is a critical point but it is neither a maximum nor a

minimum, meaning that its neighbors are both lower and higher than itself. The local

minimum and the saddle point are illustrated in Figure 7.

A point where function J obtains the smallest value is a global minimum. The most

desired outcome when minimizing the cost function in deep learning is to find a global

37

minimum. However, it is difficult for optimization algorithms in deep learning to

determine the global minimum when the cost function has many local minima or

saddle points. In such scenario, we generally accept the found point that is significantly

low enough. This illustration is described in Figure 7.

Figure 7. An illustration of critical points (adapted from Goodfellow, Bengio & Courville 2016,

p. 85)

3.1.2.2 Stochastic Gradient Descent

In fact, when the training set is huge containing millions of examples, then the use of

gradient descent causes the expensive computation. Gradient descent must run through

all the examples in the training set for each update of the parameter 𝜃 in a particular

iteration. Each iteration when using gradient descent to train a regression model is

given as:

𝐽𝑡𝑟𝑎𝑖𝑛(𝜃) =
1

𝑚
∑ (𝑦𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡 − 𝑦𝑖
𝑡𝑟𝑢𝑒)2𝑚

𝑖 , (3.25)

𝑦𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = ∑ 𝜃𝑗𝑥𝑗

𝐿
𝑗=0 (3.26)

Repeat until convergence {

 𝜃𝑗 ∶= 𝜃𝑗 − 𝜖
2

𝑚
∑ (𝑦𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡 − 𝑦𝑖
𝑡𝑟𝑢𝑒)𝑥𝑖𝑗

𝑚
𝑖 (3.27)

 (for every 𝑗 = 0, , 𝐿)

 }

38

where m is the number of examples and L is the number of layers.

Stochastic gradient descent (SGD) is the extension of gradient descent to solve the

computation problem caused by the huge training set. SGD is essential for training

models in deep learning. In SGD, we need to run only a subset of examples for each

update of the parameter in a particular iteration. This helps to reduce the heavy

computation when using gradient descent in large training sets. A subset of examples

is called minibatch in SGD, which is a relatively small number of examples (m’)

compared to the huge number of examples (m) in training set; m’ is chosen by the

operator. Generally, a minibatch contains from one to a few hundred examples B =

{x(1), . . . , x(m’)}. In the regression model, the SGD algorithm for the minibatch of one

example i.e. 𝑚’ = 1 is formed as:

𝐽𝑡𝑟𝑎𝑖𝑛(𝜃) =
1

𝑚
∑ (𝑦𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡 − 𝑦𝑖
𝑡𝑟𝑢𝑒)2𝑚

𝑖 , (3.28)

𝑦𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = ∑ 𝜃𝑗𝑥𝑗

𝐿
𝐽=0 (3.29)

Repeat until convergence {

 for i := 1, . . . , 𝑚 {

 𝜃𝑗 ∶= 𝜃𝑗 − 2𝜖(𝑦𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡

 − 𝑦𝑖
𝑡𝑟𝑢𝑒)𝑥𝑖𝑗 (3.30)

 (for every 𝑗 = 0, , 𝐿)

 }

 }

As we know that the neural network model requires that the data be forwardly

transformed through multiple layers. Thus, it is required to go backward through each

layer to take the derivative of the cost function; this technique is called Back-

Propagation.

3.1.3 Back-Propagation

We have discussed the stochastic gradient descent algorithm finding the minimum of

a cost function. The main idea of the gradient descent technique is to look for the

partial derivative with respect to each model parameter
𝜕𝐽(𝜃)

𝜕𝜃𝑗
. Then we will base on the

39

sign of its partial derivative to determine which direction of the particular parameter

should move to reach the local minimum i.e. moving the parameter in multiple small

steps with the sign opposite with its partial derivative until convergence.

As the data is transformed through different activation functions in different layers in

the deep neural network, the partial derivative
𝜕𝐽(𝜃)

𝜕𝜃𝑗
 cannot be obtained

straightforwardly. The technique used to take the partial derivative
𝜕𝐽(𝜃)

𝜕𝜃𝑗
 in deep

learning is the backpropagation algorithm.

The backpropagation algorithm uses the chain rule method to compute the cost

function’s gradient with respect to each parameter
𝜕𝐽(𝜃)

𝜕𝜃𝑗
. The chain rule can be briefly

explained as follows: if a variable z depends on a variable y, and the variable y

depends on another variable x, then z, through the variable y, also depends on x i.e. if

z = f(y) and y = g(x), so that z = f(y) = f(g(x)). The chain rule then states that:

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥
 (3.31)

The thesis will go back with the example of the simple neural network at the beginning

of Section 3.1 to illustrate how the backpropagation algorithm uses the chain rule

method to find a local minimum of a cost function.

Figure 8. Simple feedforward neural network

40

To simplify the case, let all the activation functions in the output layer and the hidden

layer o1, h1 and h2 be all linear activations i.e. no transformation through the activation

function. Let the problem in the example in Section 3.1 be a regression problem; then

we know that the used cost function is MSE as discussed in Section 3.1.1. For the

purpose of illustration, the data is given with only one example as:

Table 1. Example data

No X1 X2 Y

1 2 3 1

To use gradient descent to find the local minimum, we first need to get the partial

derivative
𝜕𝐽

𝜕𝑤1
. Since w1 only affects h1 (not h2), we can apply the chain rule for

𝜕𝐽

𝜕𝑤1

as:

𝝏𝑱

𝝏𝒘𝟏
 =

𝝏𝑱

𝝏𝒚𝒑𝒓𝒆𝒅
 ∗

𝝏𝒚𝒑𝒓𝒆𝒅

𝝏𝒉𝟏
 ∗

𝝏𝒉𝟏

𝝏𝒘𝟏

The MSE for the single example is given as:

𝐽𝑡𝑟𝑎𝑖𝑛(𝜃) =
1

1
∑ (𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑)21

1

 = (𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑)2

 = (1 − 𝑦𝑝𝑟𝑒𝑑)2

Thus:

𝜕𝐽

𝜕𝑦𝑝𝑟𝑒𝑑
 = −2(1 − 𝑦𝑝𝑟𝑒𝑑)

As 𝑓2 is the linear activation, there is no transformation through 𝑓2. Thus, 𝑓2(ℎ1𝑤5 +

 ℎ2𝑤6 + 𝑏3) = ℎ1𝑤5 + ℎ2𝑤6 + 𝑏3. Thus:

𝑦𝑝𝑟𝑒𝑑 = 𝑜1 = 𝑓2(ℎ1 ∗ 𝑤5 + ℎ2 ∗ 𝑤6 + 𝑏3) = ℎ1𝑤5 + ℎ2𝑤6 + 𝑏3

41

Thus:

𝝏𝒚𝒑𝒓𝒆𝒅

𝝏𝒉𝟏
 =

𝜕𝑓2(ℎ1𝑤5 + ℎ2𝑤6 + 𝑏3)

𝜕ℎ1
 =

𝜕(ℎ1𝑤5 + ℎ2𝑤6 + 𝑏3)

𝜕ℎ1
 = 𝑤5

Similarly, since:

ℎ1 = 𝑓1(𝑥1 ∗ 𝑤1 + 𝑥2 ∗ 𝑤2 + 𝑏1) = 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏1

(as 𝑓1 is a linear activation function)

Thus:

𝝏𝒉𝟏

𝝏𝒘𝟏
 =

𝜕(𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏1)

𝜕𝑤1
 = 𝑥1 = 2

Let initialize all the weights w to 1 and all the biases b to 0. Then:

𝝏𝒚𝒑𝒓𝒆𝒅

𝝏𝒉𝟏
 = 𝑤5 = 1

ℎ1 = 𝑓1(𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏1) = 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏1 = 2 ∗ 1 + 3 ∗ 1 = 5

ℎ2 = 𝑓1(𝑥1𝑤3 + 𝑥2𝑤4 + 𝑏2) = 𝑥1𝑤3 + 𝑥2𝑤4 + 𝑏2 = 2 ∗ 1 + 3 ∗ 1 = 5

Thus:

𝑦𝑝𝑟𝑒𝑑 = 𝑜1 = 𝑓2(ℎ1 ∗ 𝑤5 + ℎ2 ∗ 𝑤6 + 𝑏3) = ℎ1𝑤5 + ℎ2𝑤6 + 𝑏3 = 5*1+5*1 = 10

Thus:

𝝏𝑱

𝝏𝒚𝒑𝒓𝒆𝒅
= −2(1 − 𝑦𝑝𝑟𝑒𝑑) = −2(1 − 10) = 18

Thus:

42

𝝏𝑱

𝝏𝒘𝟏
 =

𝜕𝐽

𝜕𝑦𝑝𝑟𝑒𝑑
 ∗

𝜕𝑦𝑝𝑟𝑒𝑑

𝜕ℎ1
 ∗

𝜕ℎ1

𝜕𝑤1
 = 18 ∗ 1 ∗ 2 = 36

Then the new 𝑤1’ = 𝑤1 − 𝜖 ∗ 36. Let say the learning rate 𝜖 = 0.01, then 𝑤1’ =

 1 − 0.01 ∗ 36 = 0.64.

After obtaining 𝑤1’, we do the same process as above repeatedly (e.g. calculating
𝜕𝐽

𝜕𝑤1
)

until obtaining the optimal 𝑤1
∗; optimal 𝑤1

∗ is the value such that
𝜕𝐽

𝜕𝑤1
∗ close to zero.

The optimal 𝑤2
∗, 𝑤3

∗, 𝑤4
∗, 𝑤5

∗, 𝑤6
∗, 𝑏1

∗, 𝑏2
∗ and 𝑏3

∗ will be found with the same process

for finding optimal 𝑤1
∗ as above. With the data containing only one example, this

procedure also illustrates the process of stochastic gradient descent algorithm with the

minibatch of one example.

3.1.4 Activation function

As discussed, the activation function can appear in both the hidden layer and the output

layer. Such activation function can be a linear transformation function or nonlinear

transformation function. The neural network is simply a linear model if all its layers

only consist of linear transformation functions. The neural network illustrated in

Section 3.1.3 turns into a linear regression model since its layers only consist of linear

activation functions. On the other hand, when the problem requires solving the

nonlinear relationship between the input and the output, the neural network layer must

consist of a nonlinear transformation function. This turns the deep neural into a

nonlinear model. There are different types of activation functions. The types of

activation functions for the hidden layer and the output layer are chosen based on

different principles.

As the choice of the activation function in the hidden layer affects the performance of

the neural network model, the activation function for the hidden layer will be chosen

if that activation function gives the best performance to the neural network model.

43

The activation function in the output layer is chosen based on the type of prediction

problems. To recall, two main types of prediction problems in deep learning are

regression and classification problems; classification problem consists of binary

classification and multi-class classification.

3.1.4.1 Activation function in the hidden layer

Some common nonlinear activation functions for the hidden layer are rectified linear

unit, logistic sigmoid and hyperbolic tangent. Although the principles of choosing an

activation function in the hidden layer have been an active point of discussion in the

literature, yet there have been no uniform theoretical guidelines. Thus, it is difficult to

determine which type of activation function in the hidden layer gives the best

performance for the models. However, in practice, the rectified linear unit is the

activation function widely used and accepted in the hidden layer. The thesis will go

through the basic concepts of the three said activation functions and explain why the

rectified linear unit is preferred in the hidden layer.

a) Logistic sigmoid and hyperbolic tangent

Traditionally, logistic sigmoid function (or sigmoid function in short) and hyperbolic

tangent function (or tanh function in short) are widely used in the hidden layers of the

neural network.

Sigmoid function f(z) maps z into the value ranging from 0 and 1. The formula of the

logistic sigmoid function is given as:

𝑓(𝑧) =
1

1 + 𝑒−𝑧
 (3.32)

In tanh function, the value z is transformed to a value ranging from -1 to 1. The tanh

function is mathematically defined as:

𝑓(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 (3.33)

44

The curves of both functions are visualized in Figure 9:

Figure 9. Tanh and Sigmoid functions

We have the derivatives of sigmoid function and tanh functions as:

𝑓′(𝑧) = (
1

1 + 𝑒−𝑧
)

′

 = 𝑓(𝑧) ∗ (1 − 𝑓(𝑧)) (3.34)

𝑓′(𝑧) = (
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
)

′

 = 1 − (𝑓(𝑧))2 (3.35)

From Figure 9, we can see that the sigmoid function saturates to 1 if the value of z is

very high or saturates to 0 if the value of z is very low. Thus, from equation (3.34),

when the value of z is very large and very small, the derivative of the sigmoid function

is zero.

Similarly, the tanh function saturates to 1 or -1 when z is very large or very small,

respectively. Thus, from equation (3.35), the derivative of the tanh function is also

zero when z is very large or very small.

Thus, once saturated, both the sigmoid function and the tanh function challenge the

gradient-based learning to determine which direction the weight parameters should

move to update the weights. This limitation is called the vanishing gradient problem

https://machinelearningmastery.com/how-to-fix-vanishing-gradients-using-the-rectified-linear-activation-function/

45

preventing deep networks from learning effectively. This problem of the sigmoid

function and the tanh function discourages users from using them in the hidden layer

nowadays.

b) Rectified linear unit

Rectified linear unit (or ReLu in short) is mathematically defined as f(z) = max(0, z).

Visually, ReLu function is described in Figure 10.

Figure 10. ReLu function

From the formula of ReLu and Figure 10, we can see that ReLu equals z for all positive

values of z and equals 0 for all negative values of z. This implies several advantages

of using ReLu in the neural network. First, using ReLu function in the hidden layer is

easy for optimization because it is so similar to a linear function and requires no

complicated math. Second, ReLu does not get saturated when z gets large or small.

Thus, ReLu does not have the vanishing gradient problem like sigmoid or tanh

functions.

However, being zero for all negative z values can cause the potential problem that

gradient-based methods cannot learn when z is negative. This is called the “dying

ReLU” problem. In practice, gradient-based learning still regularly performs well for

the neural network models using ReLu. However, if the “dying ReLU” problem does

happen, one option to solve the problem is to lower the learning rate.

https://machinelearningmastery.com/how-to-fix-vanishing-gradients-using-the-rectified-linear-activation-function/

46

Another choice for solving the “dying ReLU” problem is using variants of ReLu.

Leaky ReLu is one common variant of ReLu. In Leaky ReLu, when z is negative, f(z)

= 𝛼 ∗ 𝑧 (instead of 0, like in original ReLu), where 𝛼 is a small number, let say 0.01,

for example. Leaky ReLu removes the zero-slope parts of the original ReLu solving

the “dying ReLU” problem. Leaky ReLu can be visualized as:

Figure 11. Leaky ReLu function

3.1.4.2 Activation function in the output layer

As discussed above, the activation function in the output layer is chosen based on the

type of prediction problems. From Section 3.1.1, we know that the choice of the cost

function is directly related to the prediction problems. Thus, the type of the prediction

problem, the choice of activation function in the output layer and the cost function are

closely connected. The most common activation functions in the output layer are

linear, sigmoid and softmax.

a) Sigmoid and softmax output activation function

As introduced earlier in Section 3.1.4.1, the sigmoid function produces values ranging

from 0 to 1 i.e. the sigmoid function converts the input z into one that can be interpreted

as a probability. Thus, the sigmoid function is commonly used in the output layer when

the problem is the binary classification problem as the binary classes are represented

as either 0 or 1. Specifically, the class is predicted as 0 if the output layer returns a

https://deepai.org/machine-learning-glossary-and-terms/probability

47

value smaller than 0.5; otherwise, the model gives the prediction of 1. The softmax

activation function produces discrete values ranging from 0 and 1, and all the values

sum up to 1. As such, this type of activation function is suitable for multi-class

classification. The softmax function is given as 𝑓(zi) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗

, where 𝑧𝑖 is the input

vector’s element and K is the number of classes in the multi-class classifier.

b) Linear output activation function

The linear activation function in the output layer does not transform the values derived

from the hidden layer i.e. the values from the hidden layer are exactly themselves in

the output layer. Since the output variable of the regression problem is a numerical

value, the linear activation function is typically used in the output layer when the

prediction problem is a regression problem. The cost function in this type of problem

is either cross-entropy or MSE as discussed in Section 3.1.1.

3.2 Autoencoder

Autoencoders are an unsupervised learning method using the neural network model.

The autoencoder is known as the unsupervised learning algorithm as the output used

for training the neural network model is also its input. Thus, the autoencoders can be

viewed as a special case of feedforward networks that can be trained with all the same

processes and techniques such as minibatch gradient descent, back-propagation, etc.,

introduced in the earlier sections. Autoencoders are often used as a dimensionality

reduction or feature-extracting tool. In autoencoder terminology, the neural network

can be viewed as an encoder-decoder architecture. The encoder part compresses the

high dimensional input to a new representation with a lower dimension (latent state

representation). The layer that does such dimensionality-reduced task is called the

bottleneck layer. Then latent state representation in the bottleneck layer is

reconstructed to the original-high-dimensionality data in the decoder part.

Figure 12 describes the shallow architecture autoencoder with a single hidden layer,

in which the autoencoder task is done by one single layer encoder and one single layer

decoder. Given a training set containing m examples {x(1),x(2),…,x(m)} and each

48

example has n features, thus an example of training set X = [x1, x2,…, xn]. After training

through the shallow autoencoder, the output is given as X’ = [x’1, x’2,…, x’n]. Let Zl

denote the information generated from the lth layer of the neural network i.e. Zl is

extracted feature from the lth layer, so X = Z0. Then the shallow autoencoder model is

explicitly given as:

𝑍1 = 𝑓1(𝑊1𝑋 + 𝑏1), (3.36)

𝑋′̂ = 𝑓2(𝑊2𝑍1 + 𝑏2). (3.37)

where W is weight matrices, and b is the bias vector.

As the problem in autoencoder is the regression problem, the cost function in

autoencoder is L2 loss - the concept that we discussed in Section 3.1.1. It is the two-

norm difference between the input vector and the output vector over m examples

(reconstruction error). Let L2j is the reconstruction error between the original feature

xj and the reconstructed x’j (xj and x’j are the vectors with the length of m). Then the

reconstruction error of the feature xj is given as:

𝐿2𝑗 = ‖𝑥𝑗 − 𝑥′𝑗‖ = √(𝑥𝑗
1 − 𝑥′𝑗

1)2 + (𝑥𝑗
2 − 𝑥′𝑗

2)2+. . . + (𝑥𝑗
𝑚 − 𝑥′𝑗

𝑚)2 =

 √∑ (𝑥𝑗 − 𝑥′𝑗)
2𝑚

𝑖=1 (3.38)

49

Figure 12. Shallow autoencoder

In fact, using deep encoders and decoders brings many advantages. The depth of the

neural network (or autoencoder) can exponentially reduce the amount of training data

required to learn some functions (Goodfellow, Bengio & Courville 2016, pp. 508-509).

Experimentally, autoencoders with deep architecture perform compression much

better than those with shallow architecture (Hinton and Salakhutdinov, 2006). The

example of deep autoencoders is given in Figure 13, which has a two-layer encoder

and a two-layer decoder. The decoded X’ in the deep autoencoder is given as:

𝑋′̂ = 𝑓𝐿(𝑊𝐿𝑓𝐿−1(. . . 𝑊2𝑓1(𝑊1𝑋 + 𝑏1) + 𝑏2. . .) + 𝑏𝐿). (3.39)

where L is a number of layers of the deep autoencoder.

50

Figure 13. Deep autoencoder

3.3 Relation of autoencoder and CAPM

In the traditional Capital Asset Pricing Model (CAPM) by Sharpe (1963), the asset

returns (𝑟𝑖) are regressed on the benchmark returns (𝑟𝑏):

𝑟𝑖 = 𝛼 + 𝛽𝑟𝑏 (3.40)

However, as (3.40) is a linear model, it may miss the non-linearities between the

benchmark returns and asset returns.

Considering applying autoencoder to investigate the relationship between the market

index and stock constituent for solving the asset selection problem. The training data

set contains m examples or m periods {x(1),x(2),…,x(m)}. Each example is the returns

of n stock constituents on each trading period denoted as x = [x1, …, xn] (where n

represents the number of the index’s constituents or stock universe).

51

From the theoretical framework of the deep autoencoder, we can see that the

information of the stock universe is compressed in the latent state presentation in the

bottleneck layer. Thus, the latent state presentation can represent the market index

information. After obtaining the market index information, the decoder part of the

autoencoder network reflects the relationship between the market index and individual

stock constituents. The decoder part does the same task as the CAPM model. However,

while the CAPM model investigates the linear interaction between the returns of the

benchmark and the asset, the deep autoencoder studies the nonlinear relationship

between them.

We can apply the nonlinear relationship investigation of deep autoencoder to solve the

asset selection problem in index tracking. The reconstruction error √∑ (𝑥𝑗 − 𝑥′𝑗)
2𝑚

𝑖=1

can measure the similarity of a stock constituent with the market index, in which the

stock with smaller reconstruction errors will have more common information with the

market index. This investigation constructs a portfolio that can mimic the index

structure.

3.4 Regularization in machine learning

The desired outcome in model training is a good performance in the test data.

However, the model with good in-sample performance can experience poor out-of-

sample performance due to the overfitting problem. The overfitting happens because

the models attempt too hard to capture the noise in the training data which does not

represent the true properties of the data. Regularization is a technique making the

training models more flexible, thereby preventing the overfitting problem.

There are different regularization methods. One common method is L2 regularization

(or ridge regression) introduced by Hoerl and Kennard (1988). The L2 regularization

method introduced a more stable cost function than least squared errors by including

a shrinkage quantity given as:

𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤‖𝑦(𝑤)𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒‖2
2 + λ‖𝑤‖2

2 (3.41)

52

The training model now attempts to minimize the cost function added a penalty or a

regularizer λ‖w‖2
2 , where λ is the tuning hyperparameter that is priorly chosen. The λ

controls the flexibility level of the training model. When λ = 0, the penalty term has

no effect, then the cost function turns into least squared errors which can cause the

overfitting problem. The greater λ values give smaller estimated weights. When λ goes

to ∞, the impact of the penalty term gets larger, and the estimated weights of some

specific features approach zero, making the model more parsimonious.

The new problems come up: how to choose the good hyperparameter λ?. The cross-

validation approach is used to solve this problem. One common method in the cross-

validation approach is the validation set method. In the validation set method, we

need a validation set separated from the training set to examine how well the λ value

works. Figure 14 illustrates how the dataset is divided in the validation set method.

The dataset is divided into three groups: training set looking for λ (blue set), validation

set looking for λ (orange set) and test set looking for the out-of-sample performance

of the model (green set). First, we try different λ values in the blue set to generate

different training models (each model is associated with each λ). Then we examine

how well each model performs in the orange set. The λ will be chosen if its model

obtains the smallest error in the validation set. Once the λ has been chosen for the

model, we use the yellow set (blue set + orange set) for model training. Then this

training model will be tested in the green set to obtain the out-of-sample performance.

Figure 14. Validation set method

Training set to look for λ Validation set to look for λ Test set to look for out-of-

sample performance

Test set to look for out-of-

sample performance

Training set to look for a training model used in test set

53

4 DATA AND METHODOLOGY

4.1 Data

The research first lists stock constituents contained in the S&P500 index and then

obtains their weekly closing prices, which are used as the input for the autoencoder

phase. The weekly closing prices of stock constituents and S&P500 index in the 9-

year period from 1 January 2012 to 31 December 2020 are obtained from the Yahoo!

Finance website’s data. To avoid missing data and ensure the empirical results are

reliable, the principles of obtaining the stock constituents for the autoencoder phase

are:

(i) The data of obtained stock constituents must be present during the whole

investigated period to ensure there is no missing data; and

(ii) Obtained stock constituents keep unchanged their names during the whole

investigated period to ensure no mergers, no acquisitions, etc. have been

made; and

(iii) Obtained stock must be constituted in the S&P500 index during the whole

investigated period to ensure that the obtained stocks have not been ejected

from the constituents of the S&P500 index.

With the said principles, the final number of obtained stock constituents is 463 (stock

universe).

4.2 Methodology

As discussed in Section 2, the current methods under the joint approach are not optimal

for tracking index as they often require heavy computation or are even irrelevant due

to the weight constraint in index tracking. Thus, the two-step approach offers more

applicable methods with less computational costs. The methodology is designed to

construct a portfolio that can (i) follow the trends of the market index; and (ii) produce

an excess return over the market index (index beating).

As introduced earlier, autoencoders can extract features of the input to the latent state

presentation which can be used to discover the dataset’s structure. Thus, autoencoder

54

is a prominent method for select a subset of stocks mimicking the index market

structure. Furthermore, the deep autoencoder can provide better performance than the

shallow one. Therefore, the research designs the deep architecture for the autoencoder

model to select a subset of stock tracking the market index.

The study did use the returns of stock constituents to train in the deep autoencoder

model; however, the model did not give the desired results. The very slight differences

between return values may make the gradient descent algorithm failed in finding the

reliable local optimum of the cost function. Thus, alternatively, the study trains closing

prices of 463 stocks with the deep autoencoder model to select stock from the stock

universe for the tracking portfolio. The training data set contains m examples

{x(1),x(2),…,x(m)} (where m = weekly periods in the training set). Each example is the

closing prices of n stock constituents on each trading week denoted as x = [x1, …, xn]

(where n = 463 representing the number of the stock universe).

Gradient descent algorithm can get stuck in finding the local minimum when values of

one or more features are much larger than the rest. As normalization scales the features

in a specific range, it can speed up the gradient descent algorithm i.e., making the

convergence of the cost function easier than one without normalization (Troiano,

Bhandari & Villa 2020, p. 151). Min-max normalization is one common normalization

method used in data analysis, which rescales the original data into the range [a, b].

According to Troiano, Bhandari & Villa (2020, p. 151), closing prices of universe

stocks are rescaled by min-max normalization in the [0, 1] range. For a given range [0,

1], the initial closing prices are rescaled as:

𝑥𝑛𝑜𝑟𝑚(𝑖,𝑚) = 𝑎 +
𝑥𝑖,𝑚 − 𝑚𝑖𝑛(𝑥𝑖)

𝑚𝑎𝑥(𝑥𝑖) − 𝑚𝑖𝑛(𝑥𝑖)
(𝑏 − 𝑎)

 = 0 +
𝑥𝑖,𝑚 − 𝑚𝑖𝑛(𝑥𝑖)

𝑚𝑎𝑥(𝑥𝑖) − 𝑚𝑖𝑛(𝑥𝑖)
(1 − 0) =

𝑥𝑖,𝑡 − 𝑚𝑖𝑛(𝑥𝑖)

𝑚𝑎𝑥(𝑥𝑖) − 𝑚𝑖𝑛(𝑥𝑖)
 (4.1)

where 𝑥𝑖,𝑚 is the weekly closing price of stock i in week m, and 𝑥𝑛𝑜𝑟𝑚(𝑖,𝑚) is a

normalized price of stock i in week m.

55

The architecture of the deep autoencoder model is designed as in Figure 15. The

numbers of hidden layers and neurons in the architecture are decided after assessing

the error of multiple model trials. The deep autoencoder has three hidden layers. The

1st hidden layer has eight neurons, the 2nd hidden layer (the bottleneck layer) has four

neurons, and the last hidden layer has eight neurons. As ReLu has advantages over

other activation functions discussed in Section 3.1.4, ReLu is chosen as the activation

function in all three hidden layers. As the problem is the regression problem, the

selected activation function for the output layer is the linear function (in line with

Section 3.1.4). The input X is mapped with the output X’ through the deep autoencoder

with five layers, where the input layer is the 0th layer and the output layer is the 4th

layer as follows:

𝑋′̂ = 𝑓4(𝑊4𝑓3(𝑊3𝑓2(𝑊2𝑓1(𝑊1𝑋 + 𝑏1) + 𝑏2) + 𝑏3) + 𝑏4).

where W is weight matrices; b is the bias vector and f is the activation function.

56

Figure 15. Designed deep autoencoder model for stock selection

As this is a regression problem, the cost function of the model is L2 loss (or

reconstruction error) (in line with Section 3.1.1). The L2 loss or reconstruction error of

the j-th stock is the total two-norm difference between the original normalized closing

prices the reconstructed normalized closing prices over m periods:

𝐿2𝑗 = ‖𝑥𝑗 − 𝑥′
𝑗‖ = √(𝑥𝑗

1 − 𝑥′
𝑗
1)

2
+ (𝑥𝑗

2 − 𝑥′
𝑗
2)

2
+. . . + (𝑥𝑗

𝑚 − 𝑥′
𝑗
𝑚)

2

= √∑ (𝑥𝑗
𝑖 − 𝑥′𝑗

𝑖)2𝑚
𝑖=1 (4.2)

The model is tuned with a learning rate = 0.01 and minibatch = 6.

57

After reconstructing X to get the output X’, the reconstruction errors of 463 stocks are

obtained. The stock with a small reconstruction error represents the proximity of its

decoded version to its origin. The small reconstruction error of one stock also indicates

the high similarity of such stock to the stock universe. In contrast, stocks with large

construction errors share less common information with the stock universe. The

research ranks the 463 stocks from one with the smallest reconstruction error (the most

communal stock) to one with the largest reconstruction error (the least communal

stock). According to Heaton et al., containing stocks with the same information does

not provide more market information; thus, medium-communal stocks are not included

in the portfolio. Therefore, the study constructs the tracking portfolios with the most

communal stocks and the least communal stocks.

4.2.1 Index tracking with joint portfolio

The thesis first constructs the tracking portfolios with the capability of following the

market trends. Three different tracking portfolios are constructed by combining the

most communal stock and the least communal stocks (tracking joint portfolio). After

assessing the portfolio performances in different sizes and combinations, the study

decides to construct three portfolios containing 25 stocks (S25), 35 stocks (S35) and

45 stocks (S45), respectively. All S25, S35 and S45 contain the ten most communal

stocks. The remaining components of S25, S35 and S45 are the 15, 25 and 35 least

communal stocks, respectively.

Heaton et al. (2017b) did not discuss how assets were weighted in their research. After

obtaining a subset of stocks for the tracking portfolio, they used selected stocks’

returns as input and index returns as output to train the feedforward neural network

model. As the input (stock returns) went through a nonlinear activation function in the

hidden layers to map with the output (index returns), the training neural network model

could not obtain the direct effect of stocks on the index. Furthermore, it is needed to

put some constraints on the invested weights to make the model plausible in real life

i.e. all the weights sum up to one and each weight must not be negative. However, no

constraints were made in the feedforward neural network of Heaton et al., making their

study less applicable in a practical sense.

58

Thus, differing from Heaton et al.’s study, this research implements the validation

phase and the calibration phase for stock weighting. Invested weights of stock

components are determined by solving a quadratic programming problem, in which

the objective function for minimizing is tracking error variance. To avoid overfitting

problem i.e. enhancing the out-of-sample performance, the research incorporates L2

regularization term introduced in Section 3.4 into the objective function. The research

also adds a constraint restricting short selling (non-negative stock weights) and a

constraint that all weights sum up to unity. The quadratic programming problem is

defined as follows:

𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤‖𝑅𝐼 − 𝑅𝑥𝑤‖2
2 + λ‖𝑤‖2

2 (4.3)

s.t. ∑ 𝑤𝑖 = 1𝑛
𝑖=1 ,

𝑤𝑖 ≥ 0

where 𝑅𝐼 𝜖 ℝ𝑚 is a vector of index returns in m periods; 𝑅𝑥 = [𝑅1, . . . , 𝑅𝑛] 𝜖 ℝ𝑚𝑥𝑛 is

the return matrix of n component stocks in m periods; w = [𝑤1, . . . , 𝑤𝑛] 𝜖 ℝ𝑛 is a vector

of stock weights (so that 𝑅𝑥𝑤 is the portfolio return); and λ‖𝑤‖2
2 is a regularization

term (regularizer).

The chronological order for stock weighting is conducted as follows: First, the

arithmetic returns of the selected stocks (from autoencoder phase) and the index are

calculated from the closing prices as:

 𝑟𝑖,𝑚 =
𝑥𝑖,𝑚 – 𝑥𝑖,𝑚−1

𝑥𝑖,𝑚−1
 (4.4)

where 𝑟𝑖,𝑚 is the return of stock i or the index in week m; and 𝑥𝑖,𝑚 is the weekly closing

price of stock i or index in week m.

Next, we need to define the value of λ before solving the problem (4.3). The value of

λ is determined in the validation phase. The 4-year set in the validation phase is

divided into two subsets: a 3-year training set and a 1-year validation set. In the 3-

year training set, the research trains the model with 30 different values of λ ranging

from 0.001 to 0.03 (spacing between values is 0.001). As a result, the research has 30

59

training models corresponding to 30 values of λ for each portfolio. The research uses

the 1-year validation set to evaluate how each model performs; the value of λ will be

chosen if its model has the smallest error in the validation set.

After determining the appropriate value of λ, the research uses a 4-year set to solve the

problem (4.3) (calibration phase). Finally, in the testing phase, the research tests the

performance of the training model drawn from the calibration phase in the 1-year

testing set.

4.2.2 Index beating with joint portfolio

The thesis next constructs the portfolios generating excess returns over the index.

Three beating portfolios are constructed by containing the same stocks as the three

joint tracking portfolios. However, to beat the market, the invested weights of the three

beating portfolios are determined by using index returns RI added 2% in model training

instead of original RI (joint beating portfolio). The purpose of this added 2% is to

look for the invested weights generating portfolio returns higher than the index returns.

The problem (4.3) turns to:

𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤‖(𝑅𝐼 + 2%) − 𝑅𝑥𝑤‖2
2 + λ‖𝑤‖2

2 (4.5)

s.t. ∑ 𝑤𝑖 = 1𝑛
𝑖=1 ,

𝑤𝑖 ≥ 0.

4.2.3 Index beating with sparse portfolio

While constructing three joint portfolios beating the market, it is observed that the

proportion of the most communal stocks’ invested weights are dominant over the least

communal stocks’. This implies that it is possible to construct a portfolio containing

only the most communal stocks beating the market. Thus, the research next constructs

a portfolio beating the market containing only the ten most communal stocks (the

sparse portfolio). The research constructs the sparse portfolio with the same process as

the joint beating portfolio set in Section 4.2.2.

60

The procedure of the four phases in the 5-year dataset is briefly described in Figure

16. This process continues for five years to obtain five different yearly performances

to affirm the out-of-sample performance of the portfolios. Continuous dataset

arrangement for training and testing during the whole 9-year period is described in

Figure 17.

Figure 16. The procedure of autoencoder, validation, calibration and testing phases in a 5-year

period

Figure 17. Continuous dataset arrangement for training and testing during the entire 9-year

dataset

4.2.4 Performance measurement

We evaluate the performances of constructed portfolios with two measurements:

cumulative abnormal return and beta. While cumulative abnormal return measures the

61

portfolio performance in generating excess returns over the market index, beta

measures the portfolios’ volatility relative to the market index i.e. risk measuring.

The equation for calculating the cumulative abnormal return is:

𝐶𝐴𝑅 = ∑ (𝑅𝑥𝑤 − 𝑅𝐼)𝑚
𝑗=1 (4.6)

where 𝑅𝐼 𝜖 ℝ𝑚 is a vector of index returns in m periods of the test set; 𝑅𝑥 =

[𝑅1, . . . , 𝑅𝑛]𝜖 ℝ𝑚𝑥𝑛 is the return matrix of n component stocks in m periods of the test

set; w = [𝑤1, . . . , 𝑤𝑛] 𝜖 ℝ𝑛 is a vector of stock weights (so that 𝑅𝑥𝑤 is the portfolio

return);

Beta is calculated as:

𝐵𝑒𝑡𝑎 =
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑅𝑃, 𝑅𝐼)

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑅𝐼)
 (4.7)

where 𝑅𝐼 and 𝑅𝑃 are the index return and the portfolio return in the test set,

respectively.

62

5 EMPIRICAL RESULTS

As described in the methodology section, the research implements the process

continuously for five years to obtain five different yearly performances. As examining

the out-of-sample performance of the portfolio in the large drawdown of the market in

2020 caused by Covid-19 is interesting, the research specifically represents the four-

phase process to obtain the portfolio performance in 2020. The portfolio performances

in other prediction years are briefly represented after that.

In the autoencoder phase, the stocks were sorted from the lowest reconstruction errors

to the largest ones to determine their communal rankings. Figures 18 and 19 describe

how the decoded versions of the most communal stock and the least communal stock

fit their original data in the 4-year set from 01.01.2016 to 31.12.2019, where MSFT

and EIX share the most and the least common information with the stock universe,

respectively. Figures 20 and 21 show the ten most communal stocks and the 35 least

communal stocks, respectively, which are used to construct three different portfolios

described in Section 4.2.

Figure 18. Original and decoded versions of the most communal stock

63

Figure 19. Original and decoded versions of the least communal stock

Figure 20. The ten most communal stocks based on reconstruction errors

Figure 21. The 35 least communal stocks based on reconstruction errors

64

5.1 Index tracking with joint portfolio

5.1.1 Validation phase

After the autoencoder phase, the three portfolios are constructed from the selected

stocks. Then we have three accordingly different models in the validation phase,

namely as S25, S35 and S45. As lambda in L2 regularization method controls the out-

of-sample performance of the three models, this phase aims to look for the most

appropriate lambda values over 30 values ranging from 0.001 to 0.03 (with the spacing

between values is 0.001) for the following problems:

Portfolio S25: 𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤‖𝑅𝐼 − 𝑅𝑥_𝑆25𝑤‖
2

2
 + λ‖𝑤‖2

2 (5.1)

Portfolio S35: 𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤‖𝑅𝐼 − 𝑅𝑥_𝑆35𝑤‖
2

2
 + λ‖𝑤‖2

2 (5.2)

Portfolio S45: 𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤‖𝑅𝐼 − 𝑅𝑥_𝑆45𝑤‖
2

2
 + λ‖𝑤‖2

2 (5.3)

s.t. ∑ 𝑤𝑖 = 1𝑛
𝑖=1 ,

𝑤𝑖 ≥ 0

In the 3-year training set of validation phase from 01.01.2016 to 31.12.2018, the thesis

substitutes each value of lambda to the three models (5.1), (5.2) and (5.3) to look for

the model parameters. Then, each model will have 30 sub-models corresponding to 30

lambda values. The value of lambda is picked if its sub-model has the smallest error

in the validation set. Based on the performances of 30 sub-models in the 1-year

validation set from 01.01.2019 to 31.12.2019 illustrated in Figure 22, the most

appropriate lambda values for S25, S35 and S45 are 0.021, 0.019 and 0.018,

respectively.

65

Figure 22. Performances of 30 lambda values in the validation set

5.1.2 Calibration phase

After selecting the appropriate lambda values for the three models S25, S35 and S45.

The weights of stock components in the three portfolios are computed by solving the

following minimization problems:

Portfolio S25: 𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤‖𝑅𝐼 − 𝑅𝑥_𝑆25𝑤‖
2

2
+ 0.021‖𝑤‖2

2 (5.4)

Portfolio S35: 𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤‖𝑅𝐼 − 𝑅𝑥_𝑆35𝑤‖
2

2
 + 0.019‖𝑤‖2

2 (5.5)

Portfolio S45: 𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤‖𝑅𝐼 − 𝑅𝑥_𝑆45𝑤‖
2

2
+ 0.018‖𝑤‖2

2 (5.6)

s.t. ∑ 𝑤𝑖 = 1𝑛
𝑖=1 ,

𝑤𝑖 ≥ 0

where 𝑅𝐼 and 𝑅𝑥 are index returns and stock components’ returns over the 4-year

training period from 01.01.2016 to 31.12.2019.

Figure 23 shows the invested weights of stock components of each portfolio. The

cumulative returns of the index and the three portfolios in the training period are

illustrated in Figure 24. We can see that the three portfolios can track the trend of the

index return over the training period.

66

Figure 23. Invested weights of stock components of the three tracking portfolios

Figure 24. Cumulative returns of the index and the three tracking portfolios in the training set

5.1.3 Testing phase

We examine the out-of-sample performance of the three tracking portfolios i.e. their

index-tracking ability in the test set. Figure 25 describes the out-of-sample

performances of the three tracking portfolios in the 1-year period from 01.01.2020 to

31.12.2020. It is observed that all three tracking portfolios can follow the trends of the

67

market. We witness the large drawdown in March 2020 caused by Covid 19. The

cumulative return lines of the three portfolios were relatively below the market index’s

after the large drawdown. Thus, tracking portfolios tend to underperform the market

index in the period having a large drawdown.

Figure 25. Cumulative returns of the index and the three tracking portfolios in the test set

5.2 Index beating with joint portfolio

The return lines of the three portfolios need to be lifted above the return line of the

index to beat the market. Thus, the thesis does not use original index returns RI for

model training, but RI added 2%. The problems (5.1), (5.2) and (5.2) turn to:

Portfolio S25: 𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤‖(𝑅𝐼 + 2%) − 𝑅𝑥_𝑆25𝑤‖
2

2
 + λ‖𝑤‖2

2 (5.7)

Portfolio S35: 𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤‖(𝑅𝐼 + 2%) − 𝑅𝑥_𝑆35𝑤‖
2

2
 + λ‖𝑤‖2

2 (5.8)

Portfolio S45: 𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤‖(𝑅𝐼 + 2%) − 𝑅𝑥_𝑆45𝑤‖
2

2
+ λ‖𝑤‖2

2 (5.9)

s.t. ∑ 𝑤𝑖 = 1𝑛
𝑖=1 ,

𝑤𝑖 ≥ 0

5.2.1 Validation phase

Like the validation phase in Section 5.1, the three most appropriate lambda values are

selected based on the validation set method. However, this section looks for the lambda

values for the three portfolio models by solving the problems (5.7), (5.8) and (5.9).

68

Figure 26 shows the performances of 30 sub-models corresponding to 30 lambda

values in the validation set, where the most appropriate lambda values for S25, S35

and S45 are 0.025, 0.02 and 0.016, respectively.

Figure 26. Performances of 30 lambda values in the validation set

5.2.2 Calibration phase

The study determines the invested weights of stock components by solving the

following problem:

Portfolio S25: 𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤 ‖(𝑅𝐼 + 2%) − 𝑅𝑥_𝑆25𝑤‖
2

2
 + 0.025‖𝑤‖2

2 (5.10)

Portfolio S35: 𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤‖(𝑅𝐼 + 2%) − 𝑅𝑥_𝑆35𝑤‖
2

2
+ 0.02‖𝑤‖2

2 (5.11)

Portfolio S45: 𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤‖(𝑅𝐼 + 2%) − 𝑅𝑥_𝑆45𝑤‖
2

2
 + 0.016‖𝑤‖2

2 (5.12)

s.t. ∑ 𝑤𝑖 = 1𝑛
𝑖=1 ,

𝑤𝑖 ≥ 0

Figure 27 shows the invested weights of stock components of the three portfolios for

index beating. It is noticed that the ten most communal stocks account for the largest

weight proportion while the least communal stocks’ weights are insignificant. This

observation leads to the analysis of beating the market with only ten most communal

stocks illustrated in Section 5.3. Figure 28 shows that the return lines of the three

portfolios can track the trend of the market and are well above the return line of the

69

index over the training period. We next examine their out-of-sample performances in

the test set.

Figure 27. Invested weights of stock components of the three beating portfolios

Figure 28. Cumulative returns of the index and the three beating portfolios in the training set

5.2.3 Testing phase

This phase tests the out-of-sample performances of the three beating portfolios

described in Figure 29. We can see that all the three return lines of the beating

portfolios were well above the return line of the market index in the test period as

70

expected. This indicates that beating portfolios did constantly beat the market index

over a 1-year-period despite the large drawdown of the market in March 2020 due to

Covid-19. As of the end of 2020, the cumulative return of the index was 14.3% while

the cumulative returns of the S25, S35, S45 were 21.1%, 21.1% and 22.5%,

respectively. Replacing original index returns by index return added 2% in training set

does construct portfolios generating returns higher than index returns in the test set.

Another comment can be made that although the three portfolios have different sizes,

the portfolio with a smaller number of stocks does not perform less well than the one

with a larger number of stocks.

Figure 29. Cumulative returns of the index and the three beating portfolios in the test set

5.3 Index beating with sparse portfolio

As discussed earlier in Section 5.2, the ten most communal stocks account for most of

the invested weight proportion described in Figure 27. This induces the construction

of a beating portfolio containing only ten most communal stocks (sparse portfolio).

The process of constructing the sparse portfolio S10 is implemented the same as joint

beating portfolios’ set in Section 5.2.

5.3.1 Validation phase

Basing on the performances of 30 lambdas in the validation set illustrated in Figure

30, the most appropriate lambda value for S10 is 0.024.

71

Figure 30. Performances of 30 lambda values in the validation set

5.3.2 Calibration phase

The invested weights of stock components of the sparse portfolio are provided by

solving this:

Portfolio S10: 𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤‖(𝑅𝐼 + 2%) − 𝑅𝑥_𝑆10𝑤‖
2

2
 + 0.024‖𝑤‖2

2 (5.13)

s.t. ∑ 𝑤𝑖 = 1𝑛
𝑖=1 ,

𝑤𝑖 ≥ 0

Figure 31 shows the invested weights of stock components of the sparse portfolio

while the in-sample performance of the sparse portfolio is described in Figure 32.

Figure 31. Invested weights of stock components of the beating sparse portfolio

72

Figure 32. Cumulative returns of the index and the beating sparse portfolio in the training set

5.3.3 Testing phase

Figure 33 shows that although the sparse portfolio contains only ten stocks, it could

outperform the index constantly over the test set despite the large drawdown of the

market in March 2020 due to Covid-19. As of the end of 2020, the cumulative return

of the index was 14.3% while the cumulative return of the sparse portfolio was 23.8%.

Figure 33. Cumulative returns of the index and the beating sparse portfolio in the test set

The tables below report cumulative abnormal returns and beta values of the portfolios

in five prediction years. The five annual performances are also visualized in the

corresponding figures.

73

The results show that all the beating portfolios S10, S25, S35 and S45 consistently

beat the market index in all five prediction years with the cumulative abnormal returns

ranging from 3.8% to 12.8%. The beta values of all the beating portfolios in five

prediction years were close to and below one (ranging from 0.83 to 1) except for the

beating portfolios’ beta values in 2020. In 2020, both tracking and beating portfolios

were more volatile than the market index with beta values around 1.1. Thus, the

constructed portfolios tend to be more volatile than usual in the period with large

drawdowns.

The portfolio with a smaller number of stocks did not perform less well than the

portfolio with a larger number of stocks. The sparse portfolio with ten stocks even had

better performance than beating joint portfolios with 25, 35 and 45 stocks in four out

of five years that are 2016, 2017, 2019 and 2020 in terms of cumulative abnormal

returns. The beta value range of the sparse portfolio was similar with beating joint

portfolios’ from 0.83 to 1 (except for sparse portfolio’s beta in 2020 with the value of

1.1). The outperformance of the sparse portfolio indicates that since the most

communal stocks share the most common information with the index, they contain

enough information to follow the market trends without the additional information

from the least communal stocks.

Thus, the sparse portfolio with ten stocks can outperform the market index with

acceptable riskiness. However, the sparse portfolio can be a risky investment in the

large drawdown period.

Table 2. Portfolio performance in 2016

 SP500’s

cumulative

return (%)

Portfolio’s

cumulative return

(%)

Cumulative abnormal

returns (%)

Beta

Tracking S25

9.11

15.67 6.56 0.97

Tracking S35 16.05 6.94 1.02

Tracking S45 18.1 8.99 0.96

Beating S25 12.98 3.87 0.97

Beating S35 12.95 3.84 0.98

Beating S45 12.95 3.84 0.97

Beating S10 13.22 4.11 0.96

74

Table 3. Portfolio performance in 2017

 SP500’s

cumulative

return (%)

Portfolio’s

cumulative return

(%)

Cumulative

abnormal returns

(%)

Beta

Tracking S25

20.32

24.99 4.67 0.99

Tracking S35 24.39 4.07 0.97

Tracking S45 22.98 2.66 0.97

Beating S25 29.73 9.41 0.85

Beating S35 28.47 8.15 0.98

Beating S45 28.65 8.33 0.89

Beating S10 27.74 7.42 0.83

Table 4. Portfolio performance in 2018

 SP500’s

cumulative

return (%)

Portfolio’s

cumulative return

(%)

Cumulative

abnormal returns

(%)

Beta

Tracking S25

-8.01

-6.80 1.21 0.96

Tracking S35 -13.09 -5.08 0.91

Tracking S45 -9.41 -1.40 0.94

Beating S25 -3.27 4.74 0.87

Beating S35 -2.28 5.73 0.87

Beating S45 -2.07 5.94 0.88

Beating S10 -2.99 5.02 0.88

Table 5. Portfolio performance in 2019

 SP500’s

cumulative

return (%)

Portfolio’s

cumulative return

(%)

Cumulative

abnormal returns

(%)

Beta

Tracking S25

24.50

32.19 7.69 0.97

Tracking S35 33.48 8.98 0.92

Tracking S45 31.32 6.82 0.90

Beating S25 36.58 12.08 0.96

Beating S35 37.00 12.50 0.94

Beating S45 36.50 12.00 0.92

Beating S10 37.28 12.78 1.00

75

Table 6. Portfolio performance in 2020

 SP500’s

cumulative

return (%)

Portfolio’s

cumulative return

(%)

Cumulative abnormal

returns (%)

Beta

Tracking S25

14.30

12.97 -1.33 1.09

Tracking S35 14.53 0.23 1.12

Tracking S45 13.47 -0.83 1.13

Beating S25 21.07 6.77 1.10

Beating S35 21.07 6.77 1.11

Beating S45 22.50 8.20 1.11

Beating S10 23.82 9.52 1.10

Figure 34. Cumulative returns of the index and the three tracking portfolios in 2016

Figure 35. Cumulative returns of the index and the three beating portfolios in 2016

76

Figure 36. Cumulative returns of the index and the beating sparse portfolio in 2016

Figure 37. Cumulative returns of the index and the three tracking portfolios in 2017

Figure 38. Cumulative returns of the index and the three beating portfolios in 2017

77

Figure 39. Cumulative returns of the index and the beating sparse portfolio in 2017

Figure 40. Cumulative returns of the index and the three tracking portfolios in 2018

Figure 41. Cumulative returns of the index and the three beating portfolios in 2018

78

Figure 42. Cumulative returns of the index and the beating sparse portfolio in 2018

Figure 43. Cumulative returns of the index and the three tracking portfolios in 2019

Figure 44. Cumulative returns of the index and the three beating portfolios in 2019

79

Figure 45. Cumulative returns of the index and the beating sparse portfolio in 2019

Figure 46. Cumulative returns of the index and the three tracking portfolios in 2020

Figure 47. Cumulative returns of the index and the three beating portfolios in 2020

80

Figure 48. Cumulative returns of the index and the beating sparse portfolio in 2020

81

6 CONCLUSIONS

This thesis proposes a framework to construct a sparse portfolio with ten stocks beating

the market index by implementing a two-step approach. Inspired by Heaton et al.’s

(2017b) success, the thesis used the autoencoder model for stock selection; however,

our designed networks are deeper than Heaton et al.’s. For stock weighting, the

invested weights of selected stock components were determined by solving the

quadratic programming problem; the thesis additionally applied L2 regularization

method to enhance the out-of-sample performance of the portfolios. A beating

portfolio constructed under the sampling approach should both follow the trend of the

market index and produce excess returns over the market index. As such, the thesis

first constructed the tracking portfolio that can follow the market trend. After that, the

thesis enhanced the tracking portfolios’ performance by modifying the stock

components’ weights of the tracking portfolio. To affirm the out-of-sample

performance of the constructed portfolios, the thesis arranged training and test periods

continuously to obtain five different annual performances.

Deep autoencoder provides us the ranking of stock information based on its

reconstruction error. The stocks that share the most common information with the

market index would obtain small construction errors (the most communal stocks). In

contrast, stocks obtaining large construction errors would share less common

information with the market (the least communal stocks).

Therefore, the thesis constructed three tracking portfolios containing both the most and

the least communal stocks to mimic the S&P500 index (joint tracking portfolio). The

three tracking portfolios contain 25, 35 and 45 stocks, respectively. The empirical

results show that all three portfolios can follow the market trends in all five prediction

years. However, the tracking portfolios tend to underperform the index in the large

drawdown period.

After examining that the selected stocks in the tracking portfolio can follow the market

trends, the thesis next constructed the three portfolios beating the index with the same

stocks as tracking portfolios (joint beating portfolios). The thesis then used index

returns added 2% in model training to look for stocks’ weights. The empirical results

82

show that all three joint beating portfolios can consistently beat the index in any given

1-year period even in the large drawdown in terms of cumulative abnormal returns.

When taking the risk measure beta into consideration, all three joint beating portfolios

have an acceptable risk level, which beta values below and close to one. However, the

joint beating portfolios can be a risky investment in the large drawdown period with

the beta values around 1.1.

Although the three portfolios containing a different number of stocks, the portfolio

with a smaller number of stocks does not perform less well than the one with a larger

number of stocks. Moreover, the most communal stocks account for most of the

invested weights’ proportion while invested weights of the least communal stocks are

insignificant. These observations indicate that when a certain number of stocks

included in the portfolio contains enough information to follow the market trends,

including more stocks in the portfolio is irrelevant.

Such indication induced the thesis to construct a sparse portfolio containing only the

ten most communal stocks. Despite only containing only ten stocks, the sparse

portfolio does not perform less well than joint beating portfolios containing 25, 35 and

45 stocks in terms of both excess returns and riskiness in all five prediction years. Like

the joint beating portfolios, the sparse portfolio is an inconsiderable-risk investment

with beta values normally below and close to one (except for the beta value of 1.1 in

the large drawdown period).

Thus, the thesis can answer the research question that the application of deep learning

can construct a sparse portfolio beating the market index in any given 1-year period

with justifiable riskiness. The thesis supports Heaton et al.’s study that the deep

learning framework can solve the problem in indexing. Heaton et al. claimed that the

portfolio with a larger number of stocks would obtain better performance. Their

portfolio needs to contain at least 40 stocks to have a reliable prediction. However, our

study showed that the portfolio with a smaller number of stocks does not perform less

well than the one with a larger number of stocks. This difference may indicate that our

deeper autoencoder provides better capability in selecting the representative subset of

stocks.

83

This result brings competitive advantages for passive fund managers in many ways.

First, the sparse portfolio is more economical than actively managed funds in terms of

management cost as the sparse portfolio is not required to rebalance at least in a 1-year

period. Second, the sparse portfolio contains only ten stocks which can save the

rebalancing and investment expenses compared to the full replication approach. Third,

the sparse portfolio is more beneficial than the normal tracking portfolio by generating

excess returns over the market index. Particularly, after deducting management cost,

the sparse portfolio still outperforms the market index while the tracking portfolio

tends to underperform the market index. The framework of sparse portfolio

construction not only benefits the fund managers but also offers individual investors

the accessible method to construct their own portfolio beating the index with only ten

stocks. However, the sparse portfolio can be risky in the large drawdown period;

investors should make judicious decisions on the sparse portfolio’s investment.

The study examined the performance of the sparse portfolio in a 1-year period. Further

study can investigate the out-of-sample performance of the sparse portfolio in a longer

horizon as well as the rebalancing or other improving strategies when the sparse

portfolio starts experiencing a disappointing performance. Controlling the riskiness of

the portfolio to obtain the beta value below one in the large drawdown period is also

another direction for future study.

84

REFERENCES

Alexander, C., & Dimitriu, A. (2004a). A comparison of cointegration and tracking

error models for mutual funds and hedge funds. ISMA Centre Discussion Papers

in Finance, 4, 1-26. Retrieved from https://core.ac.uk/download/pdf/6565375.pdf

Alexander, C. & Dimitriu, A. (2004b). Equity indexing: Optimize your passive

investments. Quantitative Finance, 4, (3), pp. C30-C33.

https://doi.org/10.1088/1469-7688/4/3/F01

Beasley, J. E., Meade, N. & Chang, T. -J. (2003). An evolutionary heuristic for the

index tracking problem. European Journal of Operational Research. Elsevier, vol.

148(3), pages 621-643, August. https://doi.org/10.1016/S0377-2217(02)00425-3

Benidis, K., Feng, Y., & Palomar, D. P. (2017). Sparse portfolios for high dimensional

financial index tracking. IEEE Transactions on signal processing, 66(1), 155-170.

https://doi.org/10.1109/TSP.2017.2762286

Benidis, K., Feng, Y., & Palomar, D. P. (2018). Optimization methods for financial

index tracking: From theory to practice. Foundations and Trends® in

Optimization, 3(3), 171-279. http://dx.doi.org/10.1561/2400000021

Bienstock, D. (1996). Computational study of a family of mixed-integer quadratic

programming problems, Math. Program. 74 (1996), 121–140.

https://doi.org/10.1007/BF02592208

Brodie, J., Daubechies, I., De Mol, C., Giannone, D., & Loris, I. (2009). Sparse and

stable Markowitz portfolios. Proceedings of the National Academy of

Sciences, 106(30), 12267-12272. https://doi.org/10.1073/pnas.0904287106

Cesarone, F., Scozzari, A., & Tardella, F. (2011). Portfolio selection problems in

practice: a comparison between linear and quadratic optimization models. arXiv

preprint arXiv:1105.3594. Retrieved from

https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1007%2Fs10287-

014-0210-1&v=902f3e79

Chang, T.J., Meade, N., Beasley, J.E. & Sharaiha, Y.M. (2000). Heuristics for

cardinality constrained portfolio optimisation. Computers & Operations Research

27(13):1271-1302. https://doi.org/10.1016/S0305-0548(99)00074-X

Chopra, V. K., & Ziemba, W. T. (2013). The effect of errors in means, variances, and

covariances on optimal portfolio choice. In Handbook of the fundamentals of

financial decision making: Part I (pp. 365-373).

https://doi.org/10.1142/9789814417358_0021

Coleman, T. F., Li, Y., & Henniger, J. (2006). Minimizing tracking error while

restricting the number of assets. Journal of Risk, 8(4), 33.

https://doi.org/10.21314/JOR.2006.134

https://ideas.repec.org/a/eee/ejores/v148y2003i3p621-643.html
https://ideas.repec.org/a/eee/ejores/v148y2003i3p621-643.html
https://ideas.repec.org/s/eee/ejores.html

85

Corielli, F. & Marcellino, M. (2006). Factor based index tracking. Journal of Banking

& Finance, 30, (8), pp.2215-2233. https://doi.org/10.1016/j.jbankfin.2005.07.012

Derigs, U., & Nickel, N. H. (2004). On a local-search heuristic for a class of tracking

error minimization problems in portfolio management. Annals of Operations

Research, 131(1), 45-77. https://doi.org/10.1023/B:ANOR.0000039512.98833.5a

Dunis, C.L. & Ho, R. (2005). Cointegration portfolios of European equities for index

tracking and market neutral strategies. Journal of Asset Management, 6, (1), pp.

33-52. https://doi.org/10.1057/palgrave.jam.2240164

Fastrich, B., Paterlini, S., & Winker, P. (2014). Cardinality versus q-norm constraints

for index tracking. Quantitative Finance, 14(11), 2019-2032.

https://doi.org/10.1080/14697688.2012.691986

Focardi, S.M., Fabozzi, F.J., 2004. A methodology for index tracking based on time

series clustering. Quantitative Finance, 4, (4), pp. 417-425.

https://doi.org/10.1080/14697680400008668

Gaivoronski, A.A., Krylov, S. & Van Der Wijst, N. (2005). Optimal portfolio selection

and dynamic benchmark tracking. European Journal of Operational Research,

163, (1), pp. 115-131. https://doi.org/10.1016/j.ejor.2003.12.001

Gilli, M., & Këllezi, E. (2002). The threshold accepting heuristic for index tracking.

In Financial engineering, e-commerce and supply chain (pp. 1-18). Springer,

Boston, MA. https://doi.org/10.1007/978-1-4757-5226-7_1

Goodfellow I., Bengio, Y. & and Courville A.(2016). Deep Learning. MIT Press.

Heaton, J. B., Polson, N., & Witte, J. H. (2017a). Why indexing works. Applied

Stochastic Models in Business and Industry. Vol 33, 690–693.

https://doi.org/10.1002/asmb.2271

Heaton, J. B., Polson, N., & Witte, J. H. (2017b). Deep learning for finance: deep

portfolios. Applied Stochastic Models in Business and Industry. John Wiley &

Sons, vol. 33(1), pages 3-12, January. https://doi.org/10.1002/asmb.2209

Hinton, G. E. and Salakhutdinov, R. (2006). Reducing the dimensionality of data with

neural networks. Science, 313(5786), 504–507. 509, 524, 528, 529, 534.

https://doi.org/10.1126/science.1127647

Hoerl, A., & Kennard, R. (1988). Ridge regression, in ‘encyclopedia of statistical

sciences’, vol. 8. Wiley, New York. https://doi.org/10.1002/0471667196.ess2280

Jeurissen, R, van den Berg, J. (2008). Optimized index tracking using a hybrid genetic

algorithm. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World

Congress on Computational Intelligence). Hong Kong.

https://doi.org/10.1109/CEC.2008.4631108

https://ideas.repec.org/a/wly/apsmbi/v33y2017i1p3-12.html
https://ideas.repec.org/a/wly/apsmbi/v33y2017i1p3-12.html
https://ideas.repec.org/s/wly/apsmbi.html

86

Karlow, D. (2012). Comparison and Development of Methods for Index Tracking.

Frankfurt School of Finance & Management. Retrieved from https://d-

nb.info/1054242275/34

Larsen, G. A., & Resnick, B. G. (1998). Empirical insights on indexing: How

capitalization, stratification and weighting can affect tracking error. Journal of

Portfolio Management, 25(1), 51. https://doi.org/10.3905/jpm.1998.409656

LeCun, Y., Bengio, Y. & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–

444. https://doi.org/10.1038/nature14539

Li, D., Sun, X. & Wang, J. (2006). Optimal lot solution to cardinality constrained mean

variance formulation for portfolio selection, Math. Finance 16 (2006), 83–101.

https://doi.org/10.1111/j.1467-9965.2006.00262.x

Liu B. (2019). SPIVA U.S. Scorecard. S&P Dow Jones Indices LLC. Retrieved from

https://www.spglobal.com/spdji/en/documents/spiva/spiva-us-mid-year-2019.pdf

Maginn, J. L., Tuttle, D. L., McLeavey, D. W., & Pinto, J. E. (Eds.). (2007). Managing

investment portfolios: a dynamic process (Vol. 3). John Wiley & Sons.

Markowitz, H.M. (1952). Portfolio Selection. Journal of Finance, 7, 77-91.

https://doi.org/10.1111/j.1540-6261.1952.tb01525.x

Maurer, F., & Williams, S. O. (2015). Physically versus Synthetically Replicated

Trackers: Is There a Difference in Terms of Risk?. Journal of Applied Business

Research (JABR), 31(1), 131-146. https://doi.org/10.19030/jabr.v31i1.8996

Meade, N., & Salkin, G. R. (1990). Developing and maintaining an equity index

fund. Journal of the Operational Research Society, 41(7), 599-607.

https://doi.org/10.1057/jors.1990.84

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, New York.

Montfort, K., Visser, E. & van Draat, L.F. (2008). Index tracking by means of

optimized sampling. The Journal of Portfolio Management, 34, (2), pp. 143-152.

https://doi.org/10.3905/jpm.2008.701625

Rafaely, B. & Bennell, J.A. (2006). Optimisation of FTSE 100 tracker funds: A

comparison of genetic algorithms and quadratic programming. Managerial

Finance, 32, (6), pp. 477-492. https://doi.org/10.1108/03074350610666210

Rey, D.M. & Seiler, D. (2001). Indexation and tracking errors. WWZ, Department of

Finance, Working Paper, (2/01). Retrieved from

https://www.econbiz.de/archiv1/2009/95490_indexation_trackingerrors.pdf

Roll, R. (1992). A mean/variance analysis of tracking error. The Journal of Portfolio

Management, 18, (4), pp. 13-22. https://doi.org/10.3905/jpm.1992.701922

87

Rompotis, G. G. (2009). Active vs. passive management: New evidence from

exchange traded funds. Passive Management: New Evidence from Exchange

Traded Funds (February 4, 2009). http://dx.doi.org/10.2139/ssrn.1337708

Rudolf, M., Wolter, H.J. & Zimmermann, H. (1999). A linear model for tracking error

minimization. Journal of Banking & Finance, 23, (1), pp. 85-103.

https://doi.org/10.1016/S0378-4266(98)00076-4

Ruiz-Torrubiano, R., & Suárez, A. (2009). A hybrid optimization approach to index

tracking. Annals of Operations Research, 166(1), 57-71.

https://doi.org/10.1007/s10479-008-0404-4

Sharpe, W. F. (1963). A simplified model for portfolio analysis. Management

science, 9(2), 277-293. https://doi.org/10.1287/mnsc.9.2.277

Sorensen, E.H., Miller, K.L. & Ooi, C.K. (2000). The decision tree approach to stock

selection. The Journal of Portfolio Management, 27, (1), pp. 42-52.

https://doi.org/10.3905/jpm.2000.319781

Takeda, A., Niranjan, M., Gotoh, J. Y., & Kawahara, Y. (2013). Simultaneous pursuit

of out-of-sample performance and sparsity in index tracking

portfolios. Computational Management Science, 10(1), 21-49.

https://doi.org/10.1007/s10287-012-0158-y

Troiano, L., Bhandari, A. & Villa, E.M. (2020). Hands-On Deep Learning for Finance.

Packt Publishing Ltd. Livery Pl

Wu, L., Yang, Y., & Liu, H. (2014). Nonnegative-lasso and application in index

tracking. Computational Statistics & Data Analysis, 70, 116-126.

https://doi.org/10.1016/j.csda.2013.08.012

	1 INTRODUCTION
	2 LITERATURE REVIEW
	2.1 Joint approach
	2.1.1 Cardinality constrained optimization
	2.1.2 Regularized optimization

	2.2 Two-step approach
	2.2.1 Asset selection
	2.2.2 Asset weighting

	3 THEORETICAL FRAMEWORK
	3.1 Deep neural network
	3.1.1 Cost function
	3.1.2 Gradient-Based Learning
	3.1.3 Back-Propagation
	3.1.4 Activation function

	3.2 Autoencoder
	3.3 Relation of autoencoder and CAPM
	3.4 Regularization in machine learning

	4 DATA AND METHODOLOGY
	4.1 Data
	4.2 Methodology
	4.2.1 Index tracking with joint portfolio
	4.2.2 Index beating with joint portfolio
	4.2.3 Index beating with sparse portfolio
	4.2.4 Performance measurement

	5 EMPIRICAL RESULTS
	5.1 Index tracking with joint portfolio
	5.1.1 Validation phase
	5.1.2 Calibration phase
	5.1.3 Testing phase

	5.2 Index beating with joint portfolio
	5.2.1 Validation phase
	5.2.2 Calibration phase
	5.2.3 Testing phase

	5.3 Index beating with sparse portfolio
	5.3.1 Validation phase
	5.3.2 Calibration phase
	5.3.3 Testing phase

	6 CONCLUSIONS
	REFERENCES

