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1 Abstract
Moons orbiting within Saturn’s diffuse E-Ring cause cylindrical shadows to
appear inside the ring at high phase angles when the moons obscure sunlight
from areas behind them. These shadows can be observed in multiple images
taken on the Cassini-Huygens mission at high phase angles when the ring
material is scattering sunlight and dust in the area obstructed by the moon
does not scatter sunlight creating a shadow. On this preliminary analysis we
focus on the shadows of Enceladus and Tethys and show that this method is
viable for inferring local ring properties. Information about the size distribu-
tion and light scattering properties of the E-Ring particles can theoretically
be inferred from measurements. A preliminary analysis is presented with
the goal of investigating whether enough data is present and can meaningful
results be produced. A Python program was developed to analyze and ex-
tract data from the Cassini-Huygens mission images. This Program is used
to analyze shadows in images of the moons Enceladus and Tethys taken with
different filters and wavelengths at high phase angles.
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Figure 1: W1749713913 - Image from the Wide Angle Camera on the Cassini
Imaging Sub-System giving a clear view of a shadow produced behind Ence-
ladus in the E-Ring when the moon blocks the path of light. The image
has added geometry information produced with the help of the NAIF SPICE
toolkit (C. H. Acton, 1996).
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2 Introduction
The Saturnian system displays the most intricate ring system in the solar
system, with dense and thin inner rings which show a variety of very unique
features (Cuzzi et al., 2010; Spilker, 2019) and the dusty and diffuse outer
rings supplied by the outer moons by various means (Horányi et al., 2009;
Kempf et al., 2010; Verbiscer et al., 2009). Especially interesting are the
dusty outer rings that are dominated by small micron sized particles, and
of these the E-Ring is of special interest because of its unique formation
mechanism (Horányi et al., 2009; Ingersoll and Ewald, 2011; Tamayo et al.,
2016).

The E-Ring is proposed to mainly consist of water ice particles that are
supplied by the moon Enceladus orbiting inside the ring (Kempf et al., 2010;
Schmidt et al., 2008). The mechanism is very unique, water jets emerging
from the south pole of Enceladus through cracks in its ice shell, ejecting
material from inside the moon (Kempf et al., 2010; Porco, 2006; Schmidt et
al., 2008). The E-Ring has a very varied brightness profile that peaks around
the orbit of Enceladus and shows noticeable differences on different parts of
the ring (M. Hedman et al., 2012) and also the particle size distribution
varies in different ways in different parts of the ring (M. Hedman et al., 2012;
Horányi et al., 2009; Ingersoll and Ewald, 2011; Srama et al., 2011).

Different methods have been used to infer properties of these outer dusty
rings from observation with ground based telescopes, remote sensing and in-
situ measurements with the Cassini spacecraft (Horányi et al., 2009; Srama
et al., 2011; Tamayo et al., 2014; Ye et al., 2016). The largest ring on the
outskirts of the Saturnian system, the Peobe ring (Verbiscer et al., 2009), has
had its properties and particle size distribution inferred from similar research
on the shadows that are formed inside the ring when an object blocks the
path of light into a part of the ring in Tamayo et al., 2014 and Tamayo et al.,
2016 where using the shadow formed by Saturn on the Pheobe ring some of
the local ring properties were inferred, with a similar method used here. An
example of a shadow in the E-ring can be seen in Fig. 1 and a overview of
the mechanism behind it is detailed in the next section.

In this preliminary analysis similar method to Tamayo et al., 2014 and
Tamayo et al., 2016 is discussed and investigated. Firstly the analysis pro-
gram developed is presented and details and issues related to it are discussed.
Afterwards in section 6 the data analysis and results are presented. Lastly
the analysis is concluded with a summary of the results and conclusions,
including the evaluation of the methods used, and considerations for future
research on the topic. The interested reader can skip to section 6.3 for the
results.
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3 Background and Previous Research
Saturn’s E-Ring is special because it is fed by the moon Enceladus, through
polar jets ejecting particles from under the moon’s icy surface (Kempf et
al., 2010; Porco, 2006). There exists a good amount of research on the
size properties and distribution of E-Ring particles from measurements of
Cassini’s different instruments such as the Cosmic Dust Analyzer (Srama et
al., 2011, Kempf et al., 2010, Porco, 2006) and Imaging Sub-System (Ingersoll
and Ewald, 2011). The Cassini images have been used to infer the total mass
for the E-Ring in Ingersoll and Ewald, 2011 and it has been used extensively
in the studies of the Enceladus polar jets (Kempf et al., 2010; Porco, 2006;
Schmidt et al., 2008).

It has been shown that the E-Ring consists mainly of micron sized particles
and that it is replenished by the polar jets on the south pole of Enceladus
(Kempf et al., 2010; Srama et al., 2011), and E-Ring properties have been
constrained using images before as in Ingersoll and Ewald, 2011 where the
images of the E-Ring and the Enceladus plume were used. Also, research
on the brightness profile of the E-Ring inferred from images is available (M.
Hedman et al., 2012), but the data concerning the shadows in diffuse rings is
very limited. There exists research on shadows for the Pheobe ring presented
in Tamayo et al., 2014 and Tamayo et al., 2016, but only a single mention
of using moon shadows was found in Horányi et al., 2009 p.525. Thus,
while not completely novel, the method used is a new look into old data and
will hopefully provide another comparison point for previously existing data
and help in quantifying the goals and possible research questions for future
research.

This preliminary analysis will focus on shadows forming in the dusty E-ring
when moons orbiting inside it are viewed from a high phase angle, mean-
ing that the spacecraft is viewing a target from an angle very close to the
light/shadow axis, which is the straight line extending outwards from the
Sun and going through the target stellar body that is forming the shadow.
The shadows are seen because of a brightness difference between the part
of the ring that is receiving sunlight and the part that is behind the target.
This brightness difference is due to the dusty ring particles scattering re-
ceived sunlight that can then be observed by a camera on-board the Cassini
spacecraft, and due to the obstruction of sunlight a part of the ring directly
behind the path of light from the Sun to the target will be observed to have
decreased scattering that can be seen as a shadow in images like Fig. 1 and
is the same effect as is used in Tamayo et al., 2014 and Tamayo et al., 2016.
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4 Motivation
The presence of shadows in the images allows us to potentially gain some
information about the local properties of the E-Ring particles. If the data
is found to produce meaningful results, it will help in combination with the
Cosmic Dust Analyzer measurements from Cassini to constrain the particle
size distribution in the E-Ring. Depending on the solar elevation, the shad-
ows will be cast in an angle compared to the E-Ring ring plane and might
allow us to probe the particle properties not only in the ring plane, but how
they vary in different directions from the ring plane. Any data gained from
analyzing the shadows could be used to constrain models of the E-Ring parti-
cle distribution and size by comparing the properties of the shadows present
in the images to those of which would be produced by the model as was done
for the Pheobe ring in Tamayo et al., 2016. At this stage, it is important
to investigate data quality and investigate possible difficulties with data ac-
quisition, processing and analysis. Any further analysis would be subject to
research project with a much larger scope.

With the results from this preliminary analysis, it can hopefully be concluded
whether this approach is viable and is it be able to produce the required
data at sufficient precision to be useful for future research. It is important to
establish if a large enough dataset can be gathered from the images with a
measurable shadow present in them. It is important to confirm the ability to
produce data from different wavelengths and from different targets, and to
prove the viability of further more in-depth research projects and proposals
concerning the topic.

5 Software for the Analysis

5.1 Summary

In short, a program was developed to analyze images taken by the Cassini
spacecraft to analyze the shadow contrast produced by the moon orbiting
inside the E-Ring at high phase angles. The program is a general utility
program and is not restricted to using the Cassini mission data, and could
thus be used for analysis on other projects that need a similar toolkit.

The program provides features for viewing VICAR2 image files and per-
forming analysis tasks on them. Currently implemented features include
background subtraction, polynomial fitting to brightness profiles and image
geometry extraction and viewing.
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Figure 2: The main UI elements of the program visible. The image shows
the basic functionality of background subtraction and polynomial fitting to
image samples. The image geometry is displayed in a separate geometry
viewer window.
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5.2 Details on Implementation

In the following section several models and methods from Scikit (Pedregosa
et al., 2011) and Statsmodels (Seabold and Perktold, 2010) are used and
short hands for them are defined here:

• OLS (LR) – Linear regression model that performs ordinary least square
fits. This model is from Statsmodels and is used with a custom wrap-
per class to function with Sklearn since there are significant differences
between the apis of the two libraries used.

• RANSACRegressor (RR) – An outlier detection algorith for wrapping
any linear regression model. This model is used if outlier detection
is needed. The model will perform outlier detection as described by
the RANSAC-algorithm (Derpanis, 2005). This algorithm is extremely
good for data with a lot of outliers, and thus a perfect fit for the
background fitting tasks in the program (Choi et al., 2009).

• PolynomialFeatures (PF) – Used to generate polynomial features to the
learning sets to make the models fit to higher degree polynomials. No
bias included (include_bias = False).

• mean_squared_error (MSE) - Standard function from SKlearn library
that computes the Mean Squared Error between reference data and
predicted data.

The program uses pipelines from SKlearn in order to chain different opera-
tions together and form workflows for different tasks. The basic composition
of a pipeline used in curve fitting applications in the program is described
below:

input −→ PF −→ LR orRR −→ output. (1)

The necessity to readily obtain reliable metrics about function fits done by
the program led to the choice of using Statsmodels as the base model classes.
Statsmodels provides parameter standard error and many other metrics with-
out requiring custom solutions to get these metrics. It could be argued that
a similar accuracy could be reached by using curve_fit from the Scipy (Vir-
tanen et al., 2020) library, but it would mean implementing custom fitting
procedures for each task instead of using pipelines and ready made models.
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5.2.1 Image Area Inspector

Figure 3: Closeup of the image inspector after a polynomial fit has been
performed. The details about fits are presented above the inspection view and
the modeled polynomials are plotted in the view. In the plot two polynomial
fits can be seen, the gray line - Background Fit, and the black line - Shadow
Fit. Opaque dots represent pixel values and rings represents pixels detected
as outliers by the background fit. The same view is also visible in Fig. 2 where
the outlier feature of the right edge can be identified as an area corresponding
to overexposed pixels.

The image area inspector allows the inspection of a user configurable slice of
the image in either vertical or horizontal direction with configurable param-
eters.

• Width – The width of the inspection window from which data will be
averaged (1 + 2 · width)

• Window – The inspection window size, sets the x-axis of the image area
inspector (1 + 2 · window)

The program will perform a 2nd degree polynomial fit to the displayed data
in the inspector view, displayed in Fig. 3, when the user gives the program a
start and an end point. These fits represent the Shadow Fit and Background
Fit. Both fits will be displayed with equations reconstructed from the models
and the model error. In addition, background model outliers are displayed on
the produced plot. The models used are a LR model for the shadow fit and
a RR wrapped LR in which the RR model finds the most suitable LR model
by removing outliers from the background. The outlier detection can be seen
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in Fig. 3 where a part of the pixels in the image inspection area are marked
as outliers by the fitting routine and are thus excluded from final polynomial
fit, clearly highlighting the effectiveness of the RANSAC algorithm.

Shadow contrast calculation has its own error metric defined based on the
standard errors of fit parameters. Shadow contrast error is defined as the
square root of the sum of standard errors of background and foreground
models. The integral and contrast are estimated by taking x as absolute
truth and assuming no error in it. The error for contrast is taken from the
standard error calculation of the sum of two variables

∆contrast =

√︂
∆bg2

std +∆fg2

std (2)

where ∆ parameters express the standard error of estimate for the back-
ground and foreground fits. Integral error is modeled as having this same
error for each point on the integration interval and is evaluated as such with
the equation

∆Integral = (b− a) ·
√︂

∆bg2

std +∆fg2

std (3)

where b and a are the integration limits and ∆ parameters are the standard
errors for models. These metrics give a useful estimate of the total error.

5.2.2 Autofit

Additional analysis utilities were developed to analyze the shadow contrast
further in Cassini images. The developed routine called Autofit collects
shadow contrast data based on initial user input and extracted geometry
information from SPICE kernels. Collected data is presented as plots and
polynomial fitting is performed. This tool was used to perform the majority
of data analysis for this paper. An example is provided in Figure 9.

It should be noted that the error propagation from the contrast and integral
measurements is not modeled in the Autofit functions in the general case,
instead a regular ordinary least squares fit is performed with the help of
RANSAC doing outlier detection, but a single error accounting power law
model is implemented.

5.2.3 Background Subtraction

Background reduction is performed using the pipeline described earlier (1)
with RR model wrapping a LR base model. Input features are pixel x,y-
coordinates and additional features are generated by PF based on user in-
put. The trained model is used to produce a background model for the
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image, model outliers, and a background map, along with the MSE -error
from comparing the image data with the model predicted background. A
possible improvement of the model would be to employ a different fitting
scheme or employ an image de-convolution algorithm to to produce a back-
ground where the image brightness doesn’t get reduced below zero producing
artifacts (Puetter et al., 2005).

A similar approach is described shortly in the supplementary information
of Schmidt et al., 2008 where a polynomial background subtraction is per-
formed by excluding a region of the image around Enceladus completely. The
approach used here is different from the one in Schmidt et al., 2008 as it does
outlier detection automatically and is thus able to perform reduction without
user intervention. The drawback for this approach is that the performance
degrades as we move to foreground dominated data and increased computa-
tional cost (Choi et al., 2009). The approach introduced here work well on
the WAC (Wide Angle Camera) images, but does not perform well on NAC
(Narrow Angle Camera) images of he Cassini ISS (Imaging Sub-System), be-
cause the NAC images usually have the target covering a significant portion
of the image. The effect of large foreground objects in a blind fit is shown
in Fig. 4 where background subtraction is attempted on a NAC image with
a large part of the image consisting entirely of a foreground object, Ence-
ladus, leading to failed subtraction procedure where the routine identifies
around 90% of the whole image as outliers and fits a background based on a
very narrow slice of the image not representative of the actual background.
This result differs fundamentally from Fig. 5 where the routine was able
to produce a background that corresponds to the original image well and
identifying correct areas as outliers.

More work is needed on denoising images or alternatively stacking the im-
ages to produce a higher signal-to-noise ratio result. There are successful
examples of image stacking and denoising used on Earth based telescope sys-
tems (Gwyn, 2008) which could perhaps be adapted to use in Cassini images.
A comprehensive overview on image reconstruction, including denoising and
background subtraction is presented in Puetter et al., 2005 and is certainly
useful on further research on the topic. If the current machine learning ap-
proach is continued and is expanded upon Graff et al., 2014 offers in-depth
discussion on the topic and introduces a neural network training tool specif-
ically created for astronomy. For further analysis of low signal contrast data
the methods used in Tamayo et al., 2014 and Tamayo et al., 2016 could be
employed.
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Figure 4: Comparison of background subtracted image and original with His-
togram Equalization stretch showing the artifacts produced by background
reduction on a NAC image. In the middle the program generated background
model is seen and it is clear that the method does not perform well these
type of images as almost the whole image is labeled as an outlier (black)
in the background fit view in the middle. The parts actually used for the
background fit is the white ring showing in the background fit window in the
middle, corresponding to the edge of the white gradient in the subtracted
image. Even from the amount of outliers the model has detected (90% of
the image) it is clear that the routine has failed. The background subtracted
image is not usable for analysis as the reduction is not reliable, showing a
large contrast to the method used in Schmidt et al., 2008. In addition, the
stretched image shows a visible shadow, but also a very large noise thresh-
old, a prime candidate for denoising and stacking. The banding is caused
by the "2-Hz" noise, reduced by image calibration (Knowles et al., 2020).
The background was modeled as a 2nd degree polynomial. Do note that
due to the image stretching applied the pixels corresponding to the target
body are severely saturated and does not represent the true lighting condi-
tions of the image in any way. In the original image the sunlight can be
observed as a small patch of illuminated edge at the very right edge of the
target corresponding to a 164.44 degree phase angle and the shadow is sig-
nificantly foreshortened, protruding from the image towards the viewer if it
were visualized in 3d.
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Figure 5: Display of a generated background and the reference image. The
background model shows a black patch in the middle corresponding to over-
exposed pixels in the original image. In this case, the model successfully
identified Enceladus and its plume from the original image as outliers. The
background produced a well fitting model without large artifacts even though
the image geometry was complex due to the central brightness of the E-Ring.
The resulting effect on background is shown in Figure 8.

5.2.4 Provided Image Size Estimators

1. Raw Size at Target

2. Size at Ring Plane

Raw estimate is used by default and simply estimates the image dimensions
at target distance. Ring plane size estimator is based on the definition of
the IAU SATURN frame (Archinal et al., 2018), where the x,y-plane lies on
the axis of rotation. Rings and majority of the satellites orbit near or in
this plane (Goldreich and Tremaine, 1982; Harper and Taylor, 1993; M. M.
Hedman et al., n.d.). During development this proved to be a useful feature
for estimating image sizes on images taken high above the rings and ring
targeted images.

The ring intercept estimator displays image size at the IAU Saturn frame
x,y-plane, in which the main rings lie and the raw size is the image size at
the target distance, both based on the field of view vectors for the instrument
from the IK -kernels for the SPICE toolkit. The image size is calculated as a
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rectangle formed by these boundary vectors defining the instrument field of
view when they are all scaled to extend to the desired distance. For the ring
plane size estimator the scaling factor for the boundary vectors is defined by
calculating where the boundary vectors intersect the IAU Saturn x,y-plane.

Figure 6: Display of different size estimator geometries and how they are
reflected in 3d space. The dashed gray lines mark the boundary vectors for
the instrument retrieved from SPICE. The colored lines are the directions of
important landmarks. Yellow line marks the direction of the Sun and the
Blue line is the continuation of the Yellow line marking the position and
direction of the produced shadow. The red line points towards Saturn. The
rectangle formed by the dashed gray lines marks the projected image.

5.3 Additional Features

The program also provides additional features, such as extracting image ge-
ometry from Cassini kernels using the NAIF SPICE toolkit, which is dis-
played as image dimensions added to plots and an additional viewer for 3D
geometry. The image geometry is recovered with the help of embedded im-
age labels detailed in the VICAR format (Deen, 1992). These labels include
identification information of the image including the sequence and image ids
and instrument information and telemetry data about the instrument that
produced the data product.
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The program will use these embedded labels to find out properties contained
in the image labels embedded in the label structure as follows:

IMAGE −→ LABELS −→ PROPERTY −→ KEY −→ VALUE

The image time:

IDENTIFICATION −→ IMAGE_TIME

The exposure time:

INSTRUMENT −→ EXPOSURE_DURATION

The image filter list:

INSTRUMENT −→ FILTER_NAME

Figure 7: An image title from the program with additional information
added. The title contains the image time in UTC, the phase angle of the
target in the image given in degrees and extracted from SPICE, image fil-
ter list, exposure duration in seconds, offsets from the Saturn ring plane
(x,y-plane in IAU Saturn (Archinal et al., 2018)) in kilometers and informa-
tion about the shadow and its angles. The shadow angles presented are the
shadow angle in image, which is the angle between the shadow and the image
x-axis, the angle the shadow has with the image plane indicating the amount
of foreshortening, how much the shadow protrudes from the image, and the
shadow angle with the IAU Saturn ring plane.
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5.4 Development and Software Used

The program is freely available at https://github.com/joniumGit/moons.

The program is developed using Python 3 and it consists of two modules
vicarutil and vicarui. The first of the modules provides support for reading
the image files and second one provides the visualization and analysis of
the images. The name is inspired by the NASA Vicar image processing
system and the VICAR file format that it uses (Deen, 1992). The program
is developed with extension in mind, so that it could be extended to analyze
images from other missions if the toolkit is found useful for other research
projects.

Notable and important libraries used in the development are: Matplotlib
(Hunter, 2007), Astropy (Collaboration, 2018, Collaboration, 2013), Scikit
(Pedregosa et al., 2011) and Numpy (Harris et al., 2020). All the image
geometry data is produced with the NAIF Spice toolkit (C. H. Acton, 1996,
C. Acton et al., 2018) and the excellent Python wrapper created for it,
Spiceypy(Annex et al., 2020). Statistics for the fitting operations are pro-
vided by the models from Statsmodels (Seabold and Perktold, 2010).
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6 Analysis and Results

6.1 Data

The data used in this paper is obtained from The PDS Ring-Moon Systems
Node’s OPUS search service by the Ring-Moon Systems Node at PDS Data
System (Gordon et al., 2017). The initial data selection was done by visu-
ally inspecting promising images for any shadows present and choosing the
images with the clearest shadows. Enceladus had the largest amount of data
available and was thus selected for this analysis. The moon Tethys did not
have as much data available as Enceladus and the data quality was also not
as good, usually placing Tethys at the edges of images or the images were
missing lines or had a bad exposure time. The dataset contained some mis-
labeled data and data with low signal-to-noise ratio, but the reduced dataset
was sufficient for this preliminary analysis. All the images used are calibrated
versions of the images, using the CISSCAL pipeline version CISSCAL 4.0beta
as indicated by the accompanying .LBL files provided by OPUS. This version
of the software includes all important adjustments to the calibration pipeline,
excluding the latest polarizer calibrations (Knowles et al., 2020). The tables
contain two filters, because the Cassini ISS cameras have two filter wheels for
filter selection or combining (Porco et al., 2004). All of the data used here
is a combination of a clear filter accompanied by a color filter for a specific
wavelength or another clear filter. The wavelengths and names for each filter
used are presented in Table 1.

The task of producing meaningful data from the images is difficult. Pro-
ducing accurate error metrics was difficult during development. After initial
failures with error measurements the Statsmodels library was selected to
provide reliable Standard Error estimates for the fitted coefficients in the
program. This proved to especially useful for the Autofit-feature.

The dataset (2) of Enceladus does not include any images from the filters
IR2 (852 nm) and IR1 (740 nm) as all the images collected failed to display
any measurable shadow or the shadow resolution was too small to be used.
Datasets (4) and (5) do not include anything with wavelengths longer than
the IR1 filter as all the images failed to show measurable shadows for Tethys.
Wavelengths and filter information is gathered from Porco et al., 2004.

The following part shows processes used during the shadow analysis and lists
the datasets used.
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6.2 Methods

Images were first manually selected to be included in the datasets by in-
specting them for visible shadows. A single round of Autofit was run for
each image and the shadow contrast plot (Fig. 9), was inspected to ensure
that the image was able to be analyzed by the tool. These initial steps helped
narrow down the data from several tens of images to only a few promising
images per filter for each target. After the initial round of rejections the final
dataset was then manually inspected again and the most promising images
were selected for analysis.

For Tethys the analysis consisted of inspecting the shadow using the Autofit
procedure without fitting any functional forms to produce plots that display
the shadow contrast as a function of distance. For Enceladus a similar ap-
proach was selected, but instead of displaying shadow plots, an approach was
selected to inspect the "near" area seen in Fig. 8, which is the bright inner
area near Enceladus, and try to see if there is any noticeable differences in
different filters.

Filter λeff Description

CL1 634 Wide open, clear filter
CL2 634 Wide open, clear filter
BL1 463 Blue, color
GRN 568 Green, color
RED 647 Red, color
IR1 740 Infrared, color
IR3 917 Infrared, color

Table 1: The filters in Cassini ISS as described in Porco et al., 2004. The
wavelength used is the effective wavelegth given in the table in Porco et al.,
2004 p. 84
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DATASET 1: ENCELADUS 1 PHASE ANGLE 163± 3 DEG
Image ID Filters Exposure(s)

1749713913 CL1 BL1 320
1749716690 320

1749711485 CL1 CL2 22
1749714685 22
1749715000 22
1749717540 22

1749716028 CL1 RED 46
1749713251 46

1749715662 IR3 CL2 320

Table 2: Dataset 1 consisting of Enceladus targeted images with multiple
filters.

DATASET 2: ENCELADUS 2 PHASE ANGLE 162± 3 DEG
Image ID Filters Exposure(s)

1853519736 CL1 CL2 38
1853519911 68
1853523096 38

Table 3: Dataset 2 consists of additional Enceladus images, but with a sig-
nificantly different geometry compared to Dataset 1 in table 2.
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DATASET 3: TETHYS 1 173± 1 DEG
Image ID Filters Exposure(s)

1537013345 CL1 BL1 10
1537014673 10

1537013313 CL1 GRN 2
1537014641 2

1537013154 CL1 CL2 1
1537013194 4.6

1537013296 CL1 RED 2
1537014624 2

1537013395 CL1 IR1 2
1537014731 2

Table 4: Dataset 3 consists of Tethys images only. Contains mostly very
hard to analyze geometry with Tethys right at the image edge.

DATASET 4: TETHYS 2 168± 1 DEG
Image ID Filters Exposure(s)

1870759110 CL1 BL1 38

1870759142 CL1 GRN 6.80

1870759174 CL1 RED 46

Table 5: Dataset 4 consists of images of Tethys only
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Figure 8: W1749713913 - Image with almost horizontal shadow relative to
the image x-axis allows the comparison of shadow features easily. The plots
show the difference between background and shadow with (Lower Panel)
and without (Upper Panel) background subtraction applied. Two different
shadow regions can be identified from the lower panel where the shadow
contrast behaves differently indicating a change in the local ring properties.
In the magenta region the shadow contrast decreases along with the distance,
but the cyan region show the contrast staying near constant after initial drop-
off near the beginning. The cyan region roughly corresponds to the central
bright region around Enceladus’ orbit visible in Fig. 1. Explanation on the
metrics in the image title is presented in Fig. 7.
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Figure 9: A plot from the analysis tool Autofit trying to fit two lines describ-
ing a power law to the extracted shadow data. The magenta line represents
a log-linearized powerlaw and the Cyan line is a direct error accounting fit
for a power law. It can be seen that both fits are "bad" and that the shadow
contrast profile itself does not appear completely linear on a log-log scale
showing that the fit is ill-advised.
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6.3 Results

6.3.1 Enceladus

Some investigation was done to possible functional forms that might fit the
shadow data. In Fig. 9, the shadow contrast for the inner region near
Encelauds’ orbit is plotted on a log-log scale and a power law is fitted to
it. Trying a power law was based on the functional forms used in Tamayo
et al., 2014. No a-priori assumption of a power law can be done as there is
no need or direct reason for the shadow contrast fall-off to obey a power law.
The relation is purely empirical through trying different forms that might fit.
The shadow contrast is connected with the local ring properties and most
likely cannot be described by a single functional form as seen in Fig. 8 and
9. Fig. 9 shows that a single fit wouldn’t explain the shadow contrast, which
would make sense even from a visual inspection of the image as it shows ring
particle density variation as increased brightness near the orbit of Enceladus
corresponding to a higher particle density in that area, see Fig. 1, 8. The
profiles presented here could serve as the basis for further research as they
already show that the visually seen variations of the ring can be seen in the
shadow data.

Perhaps it would be possible to connect measurements from multiple images
where the shadow changes place to use methods already proven valid in
Tamayo et al., 2014 or use the stacking method described there. A short
experiment on stacking images was performed to see if a conical shadow could
be produced as a result as described in Tamayo et al., 2016, presented in Fig.
10, but the results were inconclusive. However, Fig. 10 does show that even a
simple stacking method can produce a noticeable improvement on the image
quality when assessing it in terms of visibility of the shadow. For the stacking
experiment 11x26s exposures sharing similar geometry were collected and
stacked by averaging them. The result showed a smooth background with the
dimmest stars removed completely, but produced artifacts from overexposed
pixels as seen in Fig. 10. These artifacts could certainly be removed to
produce a very smooth image containing nearly no stars or artifacts, with
only the E-Ring data remaining. An easy solution for an improved solution
would to take the iterative staking method from Tamayo et al., 2014 where
pixels are rejected if they are a certain number of standard deviations from
the mean, which should remove the stars.
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Figure 10: The result of stacking (Right Panel) versus a single frame (Left
Panel). An experiment was carried out to see if a stack could be produced
where the shadow changes position slightly in every frame to produce a
slightly conical shadow covering more area in the image, for which the result
was inconclusive. The end result was a success nevertheless as the stacking
removed most of the dim background artifacts and reduced noise, while still
maintaining the shadow shape, which was unexpected, due to the very good
alignment between the images. Due to the stack being a simple average of
the images, the brightest artifacts still remain as their effect was too large
even for a 11 image average. The time interval for the image stack is shown
at the top along with other image information detailed earlier in Fig. 7. The
information is fetched from the master image of the stack, which was defined
to be the first image in this case.
Images used (Calibrated): W1740486700, W1740486849, W1740486998,
W1740487147, W1740487296, W1740487445, W1740487594, W1740487743,
W1740487892, W1740488041, W1740488190.
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FILTER K ∆K A ∆A

BL1 −7.79 · 10−1 4.33 · 10−2 1.67 · 10−2 5.32 · 10−4

CL2 −8.39 · 10−1 7.61 · 10−2 2.84 · 10−3 2.06 · 10−3

RED −8.95 · 10−1 5.94 · 10−2 4.73 · 10−3 2.52 · 10−3

IR3 −8.17 · 10−1 8.78 · 10−2 1.82 · 10−3 1.23 · 10−3

CL2 −1.18 · 100 2.30 · 10−1 1.04 · 10−1 2.09 · 10−1

Table 6: Datasets 2 (Top) and 3 (Bottom) fitted parameters after attempting
to fit a power law to the central ring region shadow.

Having fitted the power law (y = AxK) to the available Enceladus data
as can be seen in table 6 we can conclude that the results seem comparable
for similar geometry, but show a significant difference in different geometry.
This means that images from one sequence could be compared together, but
making a comparison with another image sequence might be difficult. From
the top part of the table we can see slight variations in the coefficients, most of
which are within error margins of the other coefficients, but the A coefficient
showing a very high error. Due to the data showing significant difference
between different geometries, even though the inspected area did not change
and one of the parameters shows great variance, leads to the conclusion that
something has gone wrong during the fitting procedure. It could be that
the fits were badly placed or bad parameters used, but a more reasonable
explanations is the fact that the power law fit was achieved through empirical
testing on a limited number of images, so seeing it perform badly here is not
too surprising as it is needed to recall the earlier note that there should be
no assumption for a power law due to the shadow properties being connected
to the local ring properties which can vary in multiple ways and do not
necessary show characteristics of any simple functional form as there are
many things to take into account from proximity to Enceladus, to the local
plasma environment (Horányi et al., 2009; Kempf et al., 2010; Srama et al.,
2011).

The differences between the blue filter and the rest for both coefficients is
still significant and warrants more investigation. However, looking at Fig.
11 we can see that the shadow contrast profiles for both the red and blue
filters are quite alike, so it should be unlikely to find major differences in
coefficients when fitting to the data considering that their separation is on
the scale of ·10−7, which again points to a possible fault on the plotting
analysis presented in Table 6.
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Figure 11: Comparison of two image shadow contrasts in filters RED and
BL1. The shadows show a very similar profile for the whole distance along
the shadow. The blue plot has larger error, but the shapes of the plot are
nearly identical. It should be noted that since the plot shows the value of the
shadow contrast, that the blue plot is consistently higher than the red one
indicating that the blue image has a larger shadow contrast, perhaps due to
the slightly higher phase angle. In the figure the x-label start is referring to
the target of the image, in this case Enceladus.

6.3.2 Tethys

Following are the shadow contrast profiles produced for Tethys:
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Figure 12: Overview of extracted shadow contrast profiles for dataset 4 show-
ing the difficulty of extracting reliable data from a low resolution images. The
error margins are fairly large. The red line is marked to provide a comparison
point for shadow features and their relative locations, but has no physical
significance in the data.
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Figure 13: Extracted shadow profiles from dataset 3. The blue areas in the
left images represent the sampling area shown in the right side plots. The
black dots are measurement points and the gray area is the error margin.
The shadow plots show similar features as seen in Fig. 12
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For Tethys the analysis is a success. The produced shadow contrast plots
are able to show that there exists noticeable differences between different
filters. Looking at Fig. 12 and 13 we an see an interesting effect for both
datasets, the green and red filter consistently produce shadow profiles with
less error than any other filter and the shadow continues to be detectable to
a longer distance from the target. At this stage it is too early to say why
this happens, but it definitely warrants more investigation.

From Fig. 12 we can see that even the images where Tethys is right at the
edge can produce a shadow contrast profile. For further research Tethys
should be an area of interest as the local ring environment at the distance of
its orbit should be more regular than at Enceladus, where significant differ-
ences in the ring can be seen even on visual inspection (M. Hedman et al.,
2012; Ingersoll and Ewald, 2011; Ye et al., 2016). Here the previously much
discussed image processing methods from Tamayo et al., 2014 should be very
helpful for extracting more information about the shadows.

When looking at the figures 12 and 13 it is clear that the red and green
filters have produced a profile with much less error than the other filters.
This should warrant more research on the differences seen between different
filters, if the difference is visible at Tethys distance, then it certainly should
be observable at Enceladus too.

7 Conclusions and Further Research

7.1 Shadow Contrast

The preliminary analysis showed that it is feasible to extract shadow con-
trast from images and that it can be done in a reproducible way. The main
goals outlined for this paper were reached. The methods viability for further
research was demonstrated and that there is sufficient data available for a
in-depth analysis. On the assumption that the remaining problems with the
program, data and analysis methods can be solved, it is clear that the topic
has need for further analysis.

7.2 Considerations for Further Research

The available image data with easily analyzable shadows was sufficient for
this preliminary analysis. The main challenges working with the data were
the difficulties of working with noisy, low resolution and limited data analysis
tools. A more diverse dataset is needed if a more comprehensive analysis is
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to be performed. There is a lot of image data available on Enceladus and
with further analysis it can be used to constrain the shadow properties even
better and with higher accuracy in the future.

Except for Enceladus, the data on the other outer moons is limited. The
second most diverse dataset was of Tethys, but mostly low resolution data.
An analysis on the data quality and quantity for other outer moons needs
to be performed if the shadow properties are to be mapped on a larger area.
Any further researcher should expect and prepare to work with limited data,
limited in quality and quantity and variety. Also, it cannot be assured that
usable data is available for all filter combinations.

For further research on the topic, a more varied data set should be collected.
The dataset used here is limited and lacks variety in the filters used. Further
considerations should also include a way to stack or denoise low signal-to-
noise ratio images, so that they could be used for analysis, especially NAC
images are of interest here. A problem with some images is that the shadow
is visible on visual inspection, but gets lost in the noise when trying to
produce a shadow contrast graph for it, but this could be alleviated with the
previously mentioned denoising methods.

Any further research should find ways to combine these results to existing
research (Ingersoll and Ewald, 2011; Kempf et al., 2010; Porco, 2006).
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