
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Valtteri Vuorio

EVALUATION OF LEARNING-BASED
TECHNIQUES IN NOVEL VIEW SYNTHESIS

Master’s Thesis
Degree Programme in Computer Science and Engineering

June 2021

Vuorio V. (2021) Evaluation of Learning-Based Techniques in Novel View
Synthesis. University of Oulu, Degree Programme in Computer Science and
Engineering, 62 p.

ABSTRACT

Novel view synthesis is a long-standing topic at the intersection of computer
vision and computer graphics, where the fundamental goal is to synthesize an
image from a novel viewpoint given a sparse set of reference images. The
rapid development of deep learning has introduced a wide range of new ideas
and methods in novel view synthesis where parts of the synthesis process
are considered as a supervised learning problem. Specifically, neural scene
representations paired with volume rendering have achieved state of the art
results in novel view synthesis, but still remains a nascent field facing a lack of
literature.

This thesis presents an overview of learning-based view synthesis, experiments
with state-of-the-art view synthesis methods, evaluates them quantitatively and
qualitatively and finally discusses their properties. Furthermore, we introduce
a novel multi-view stereo dataset captured with a hand-held camera and
demonstrate the process of collecting and preparing multi-view stereo datasets
for view synthesis.

The findings in this thesis indicate that learning-based view synthesis
methods excel at synthesizing plausible views from challenging scenes, including
situations with complex geometry as well as transparent and reflective materials.
Furthermore, we found that it is possible to render such scenes in real-time and
greatly reduce the time to prepare a scene for view synthesis by using a pre-
trained network that aggregates information from nearby views.

Keywords: deep learning, image-based rendering, machine learning, neural
rendering, computer vision, computer graphics

Vuorio V. (2021) Koneoppimisen soveltaminen uuden näkymän synteesissä. Oulun
yliopisto, Tietotekniikan tutkinto-ohjelma, 62 s.

TIIVISTELMÄ

Uuden näkymän synteesi on pitkäaikainen aihe konenäön ja tietokonegrafiikan
risteyksessä, jossa tavoitteena on syntetisoida kuva uudesta näkökulmasta
annetun kuvajoukon perusteella. Syväoppimisen nopea kehitys on synnyttänyt
laajan kirjon uusia ideoita ja menetelmiä uuden näkymän synteesissä, jossa
osia synteesiprosessista pidetään valvottuna oppimisongelmana. Erityisesti
neuraaliset tilaesitykset yhdistettynä tilavuusrenderointiin ovat saavuttaneet
huippuluokan tuloksia uuden näkymän synteesissä, mutta aihe on vielä kehittyvä
tieteenala.

Tässä opinnäytetyössä esitetään yleiskatsaus oppimispohjaiseen näkymän
synteesiin, suoritetaan kokeellista tutkimusta uusimmilla synteesimenetelmillä,
arvioidaan niitä kvantitatiivisesti ja kvalitatiivisesti sekä lopuksi keskustellaan
niiden ominaisuuksista. Lisäksi esitellään uusi stereokuvien muodostama
tietoainesto ja esitetään prosessi, jolla kerätään ja valmistellaan kyseisiä
tietoaineistoja näkymän synteesiä varten.

Työssä havaitaan, että oppimispohjaiset näkymäsynteesimenetelmät piirtävät
erittäin aidolta näyttäviä näkymiä tietoaineiston pohjalta jopa tilanteissa, missä
esiintyy monimutkaista geometriaa sekä läpinäkyviä ja heijastavia materiaaleja.
Lisäksi havaitsimme, että syntetisointi on mahdollista suorittaa reaaliajassa ja
että syntetisoinnin valmisteluaikaa voidaan myös lyhentää käyttämällä ennalta
koulutettua verkkoa, joka kokoaa tietoja läheisistä näkymistä.

Avainsanat: syväoppiminen, kuvapohjainen renderointi, koneoppiminen,
neuraalinen renderointi, konenäkö, tietokonegrafiikka

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS
1. INTRODUCTION... 8

1.1. Objective of the Thesis .. 8
1.2. Structure of the Thesis .. 9

2. NOVEL VIEW SYNTHESIS... 10
2.1. Problem Definition.. 10
2.2. Traditional View Synthesis .. 10

2.2.1. Light Field Rendering.. 11
2.2.2. Image-Based Rendering... 11

2.3. Limitations of Traditional View Synthesis .. 12
3. LEARNING-BASED VIEW SYNTHESIS ... 14

3.1. Deep Learning .. 14
3.1.1. Deep Neural Networks .. 14
3.1.2. Training DNNs.. 15
3.1.3. Evaluating DNNs .. 16
3.1.4. Common DNN Architectures ... 16

3.2. Image-Based Rendering .. 17
3.2.1. Neural Image-Based Rendering.. 17
3.2.2. Neural Re-Rendering... 18

3.3. Volumetric Representations ... 18
3.3.1. Multi-Plane Images ... 18
3.3.2. Voxel Grids... 21

3.4. Implicit Neural Representations ... 21
3.4.1. Coordinate-Based Neural Representations................................. 21
3.4.2. Neural Radiance Fields .. 22
3.4.3. Other Neural Representations... 24

4. DATA COLLECTION... 25
4.1. Data Collection Process... 25

4.1.1. Image Acquisition ... 25
4.1.2. Calibration.. 26
4.1.3. Structure from Motion ... 27

4.2. Collected Datasets .. 27
5. EXPERIMENTS... 30

5.1. NeRF and NeRF--... 30
5.1.1. Overview .. 30
5.1.2. Network Architecture .. 31
5.1.3. Training Details .. 31

5.2. NeX... 33
5.2.1. Overview .. 33

5.2.2. Network Architecture .. 34
5.2.3. Training Details .. 35

5.3. IBR-Net ... 35
5.3.1. Overview .. 35
5.3.2. Network Architecture .. 35
5.3.3. Training Details .. 37

6. EVALUATION ... 38
6.1. Metrics... 38

6.1.1. PNSR ... 38
6.1.2. SSIM.. 38
6.1.3. LPIPS... 39

6.2. Comparison .. 39
6.3. Additional Experiments... 44

7. DISCUSSION .. 48
7.1. Results of the Comparison... 48
7.2. Results of the Additional Experiments.. 49
7.3. Limitations of the Study .. 49
7.4. Implications and Future Research Directions .. 50

8. CONCLUSION .. 52
9. REFERENCES ... 53
10. APPENDIX .. 59

A. OpenCV Camera Calibration... 59
B. Minimal NeRF implementation with PyTorch... 59

FOREWORD

This thesis was conducted between March 2021 to June 2021 at the Center for Machine
Vision and Signal Analysis (CMVS) in University of Oulu. I want to thank professor
Janne Heikkilä for the opportunity to work on this exciting topic and for the helpful
comments and feedback during the writing of this thesis. I would also like to thank
PhD researcher Phong Nguyen for his technical supervision, insights and guidance
during this work.

Oulu, June 5th, 2021

Valtteri Vuorio

LIST OF ABBREVIATIONS

3D Three Dimensional Space
CNN Convolutional Neural Network
DNN Deep Neural Network
IBR Image-based Rendering
LPIPS Learned Perceptual Image Patch Similarity
MLP Multi-layer Perceptron
MPI Multi-plane Image
MSE Mean-squared Error
MVS Multi-view Stereo
NVS Novel View Synthesis
PSNR Peak-to-signal Noise Ratio
RGB Red, Green, Blue
ReLU Rectified Linear Unit
SfM Structure from Motion
SSIM Structural Similarity Index

8

1. INTRODUCTION

Novel view synthesis (NVS) is a long-standing topic at the intersection of computer
vision and computer graphics, where the fundamental goal is to synthesize an
image from a novel viewpoint given a sparse set of reference images. View
synthesis algorithms use information from co-located images to render photo-realistic
images from arbitrary viewpoints, enabling applications, e.g., in virtual navigation,
telepresence or product visualization. Furthermore, recent work has demonstrated the
possibility of extending view synthesis algorithms to many of the characteristics of
a traditional computer graphics pipeline, including relighting, scene composition and
real-time rendering. The development and adoption of view synthesis algorithms could
have far reaching implications in society, as it enables a way to automate the process of
modeling and rendering digital replicas of real-world environments, objects and human
beings.

Many of the recent advancements in novel view synthesis can be attributed to the
on-going revolution in deep learning. Deep learning is a methodology that aims to
solve computational problems by training multi-layer networks to automatically learn
feature representations from vast amounts of data and make informed decisions on
their own. The deep learning revolution is a consequence of increasing amounts of
available data and the advent of sophisticated deep learning frameworks that leverage
automatic differentiation and modern graphics cards to let end users design and
optimize increasingly complex networks. Deep learning has been shown to be effective
for solving complex and ill-posed tasks when large amounts of supervised input-output
data is available. This fits the goal of novel view synthesis quite well, as the problem
is ill-posed and a set of viewpoint-image pairs can be considered as supervised data.

The rapid development of deep learning paired with the long tradition of work in
classical computer vision has introduced a wide range of new ideas and methods
in novel view synthesis where parts of the synthesis process are considered as a
supervised learning problem and replaced with deep neural networks. However, there
is a general lack of literature that reviews this new field as a whole and it is far from
obvious what kind of network architecture and scene representation is most suitable for
a particular use-case. We aim to answer that question by reviewing the field as a whole
and by introducing a novel dataset that is used to conduct quantitative and qualitative
analysis on a wide range of methods. Furthermore, we aim to demonstrate from first
principles how to replicate the results with data captured from a hand-held camera.

1.1. Objective of the Thesis

The first objective of this thesis is to provide an overview of state of the art methods
in learning-based view synthesis. We categorize the lines of work based on their
underlying scene representation and provide a concise summary of the underlying
concepts. After reviewing the state of the art in learning-based view synthesis we
choose and review a selected number of open-source methods for further evaluation.

The second objective is to collect and prepare a novel multi-view stereo dataset
for the purposes of evaluating the selected open-source methods, demonstrating best
practices for collecting such datasets with a hand-held camera.

9

Finally, the third objective is to evaluate the selected open-source methods by
conducting a quantitative and qualitative comparison and by experimenting with their
properties using the collected dataset. We discuss in detail how the selected methods
relate to each other, identify the context where each one is most applicable, as well as
consider their potential applications and future research directions.

1.2. Structure of the Thesis

This thesis consists of seven chapters:

• Chapter 2 introduces the concept of novel view synthesis, reviews how the
problem has been approached historically, and identifies some limitations of
traditional view synthesis to establish the motivation behind learning-based
techniques.

• Chapter 3 continues on the topic of novel view synthesis by first introducing the
concept of deep learning and then reviewing literature that adopts deep learning
and deep neural networks as part of the view synthesis process.

• Chapter 4 covers the data collection part of this thesis, demonstrating the practice
of collecting and preparing a multi-view stereo dataset for the purposes of this
thesis and presents the collected dataset.

• Chapter 5 describes the experimental setting in which we evaluate state of the
art methods in learning-based novel view synthesis.

• Chapter 6 evaluates and compares the results of the conducted experiments both
quantitatively and qualitatively.

• Chapter 7 discusses the results, implications and limitations of the conducted
experiments and considers future research directions in learning-based novel
view synthesis.

• Finally, the main contributions of the thesis are summarized in Chapter 8.

10

2. NOVEL VIEW SYNTHESIS

This chapter introduces the concept of novel view synthesis and reviews how the
problem has been approached historically. Finally, we discuss some limitations of
traditional view synthesis to establish the motivation behind learning-based techniques.

2.1. Problem Definition

The fundamental goal of novel view synthesis is to render an image from a novel
viewpoint given a sparse set of reference images and corresponding camera poses,
illustrated in Figure 1. As opposed to traditional computer graphics where the scene is
constructed from hand-crafted 3D models, the goal of view synthesis algorithms is to
use images captured from the real world as a medium for rendering scenes. The idea
of using images as a rendering medium has remained a challenging and long-standing
topic in academia due to a number of challenges. Some of the key challenges include
camera pose estimation, inferring the geometric structure of the scene, modeling
view-dependent lightning and gracefully handling missing information. In addition
to synthesizing plausible views, the practicality of the algorithm imposes additional
challenges, such as achieving fast rendering speed and low memory footprint.

Figure 1. The goal of view synthesis is to render a target view given a set of source
views and corresponding camera poses.

2.2. Traditional View Synthesis

The ways that novel view synthesis has been approached historically can be
categorized to two different approaches, light field rendering and image-based
rendering. The first, light field rendering, is based on directly interpolating between
densely sampled images and the second, image-based rendering (IBR), takes advantage
of geometrical information derived from multi-view stereo to synthesize views.

11

2.2.1. Light Field Rendering

Early work in novel view synthesis [1] acknowledges that the novel view synthesis
problem can be reframed as approximating a light field representation, which is a
continuous 5-dimensional function that returns incoming radiance L originating from
the scene for a given position x and view direction d:

L = L(x,d) (1)

The light field captures the flow of light in the scene, making it possible to render
novel views by sampling it from desired locations. Given a collection of source
views and camera poses that densely cover the parameter space, the light field can
be discretized into a regular grid and interpolated between samples to synthesize novel
views [2] [3]. This discretization can be further reduced to a 4-dimensional grid by
noting that radiance stays constant along a ray in free space. This approach was termed
as the lumigraph [3], in which the light field of an enclosed scene is discretized using
bounding planes, illustrated in Figure 2. However, this approach works only with a
sufficiently dense collection of images. Chai et. al. [4] quantified this requirement by
showing that light field rendering has a fundamental minimum sampling rate.

Figure 2. 2D-projection of the 4D-lumigraph. Any position and direction (x,d) within
the scene is associated with a ray from (s, t) to (u, v). The light field is stored in
discrete form in the two planes.

2.2.2. Image-Based Rendering

Image-based rendering refers to novel view synthesis techniques that utilize a
geometrical estimate of the scene along with nearby views to synthesize novel views.
The development of structure from motion (SfM) and multi-view stereo (MVS)
algorithms introduced a reliable way to estimate the camera poses and geometry of
the scene from a set of images, which became a foundational technique for image-
based rendering. The goal of SfM is to find the parameters of each camera and the 3D
coordinates of shared points in the scene. The traditional way of solving this problem
involves an image correspondence search and an incremental reconstruction procedure,
explained in more detail, e.g., in [5]. Multi-view stereo builds upon this technique by

12

associating each pixel of the source views with a globally consistent depth value [6].
The end result is a dense point cloud that can be further refined into a textured mesh
using e.g. Delaunay triangulation [7].

Traditional IBR algorithms utilize MVS to estimate the surface geometry of the
scene and use it to reproject nearby images into a novel viewpoint [8] [9]. As illustrated
in Figure 3, the reprojection process involves projecting the pixels of nearby images to
the surface geometry and back to the target view. The reprojected pixels can possibly
overlap and end up in sub-pixel locations, which is handled by aligning the pixels
with the target view by means of, e.g., inverse bilinear interpolation and then using a
blending operation to form the final image.

Figure 3. An overview of the process behind traditional image-based rendering.

The blending operation varies between authors, for example, Chaurasia et. al. [8]
specifies the weights by camera orientation and the reliability of depth information at
each pixel. Later works improve the geometry estimation with various modifications
to MVS such as per-view meshes [10] and modeling depth uncertainty [11].

2.3. Limitations of Traditional View Synthesis

While the two discussed approaches can synthesize plausible views, they are limited
in various aspects and have room for improvement. The approach of light field
interpolation is only feasible when working with a sufficiently dense collection of
images, as pointed out by Chai et. al [4]. Given the required sampling rate and the
the high memory cost of discretizing the parameter space, light field rendering does
not lend itself to large-scale scenes.

Image-based rendering is more scalable and can be integrated to existing graphics
engines, however it struggles with it’s own set of issues. Firstly, it is fundamentally
limited by the accuracy of the reconstructed surface geometry. Scenes involving

13

detailed geometry and view-dependent materials are especially challenging for SfM
and MVS to reconstruct, producing noisy or spurious geometry as well as missing
regions. The blending process is at best a crude approximation to the various ways light
can scatter from a surface, especially in scenarios with challenging light interactions
such as reflection and refraction.

In summary, synthesizing views from scenes involving sparse views, detailed
geometry or view-dependent materials remains a challenging task for traditional view
synthesis and is one of the reasons why deep learning was later explored as a way to
address the above mentioned issues.

14

3. LEARNING-BASED VIEW SYNTHESIS

This chapter continues on the topic of novel view synthesis by first introducing the
concept of deep learning and then moving on to view synthesis methodologies that
utilize deep neural networks as part of the view synthesis process. We categorize such
methodologies into three lines of work, namely, image-based rendering, volumetric
representations and neural scene representations.

3.1. Deep Learning

Deep learning is a subset of machine learning that aims to solve computational
problems by training multi-layer networks to automatically learn feature
representations from vast amounts of data and make informed decisions on their
own [12]. The common way to approach a problem with deep learning is to reframe
it as a supervised learning problem. Given a dataset of input-output pairs (xi,yi),
supervised learning aims to find a computational model Fθ(x) that predicts y for any
given x. The success of the model Fθ is measured with an appropriate loss function
L, such that the problem is considered solved when L is minimal with respect to the
model parameters θ:

θ = argmin
θ

∑
i

L(Fθ(xi),yi) (2)

Next, we look at deep neural networks as the choice of Fθ and how the above
expression is minimized using first-order optimization techniques.

3.1.1. Deep Neural Networks

Deep neural networks (DNN) refer to models that are constructed by compositing
several non-linear functions known as layers. Most network architectures define the
layer as an affine transformation Wx + b followed by a non-linear scalar function
σ, also known as the activation function, applied element-wise. In this case, the
parameters θ are stored in W and b, which are known as the weights and bias of
the layer.

f(x) = σ(Wx+ b) (3)

Assuming that N layers are applied in series, we arrive at what is called a feed-
forward neural network:

F(x) = f1 ◦ · · · ◦ fN(x) (4)

In practice, deep neural networks are not restricted to the feed-forward model and
can have arbitrary inter-connections in the form of a directed graph, which consists
of input variables, parameters and differentiable operations. An example of this is
demonstrated in Figure 4.

15

Figure 4. A deep neural network can be viewed as a directed graph, which consists of
input variables, parameters θi and differentiable operations fi.

3.1.2. Training DNNs

Training a DNN is the process of finding the parameters of the network that minimize
the loss function as in Equation 2. After initializing the parameters of the network,
the process begins by iteratively evaluating the network and loss function with training
samples and updating the parameters with a first-order optimization technique. First-
order optimization relies on the fact that for a given parameter θi, the gradient of the
loss function with respect to said parameter points outwards from a local minimum. In
other words, updating the parameter in the opposite direction should move towards a
local minimum, which is adopted as the strategy to find the optimal parameters:

θi ← θi − α
∂L
∂θi

(5)

This update step is repeated for a number of times using a suitable learning rate α,
until the loss reaches a sufficiently small value. The process is also known as gradient
descent, which has been later improved with more advanced schemes such as AdaGrad
[13] and ADAM [14].

Computing the gradient itself can be done with finite difference approximation,
however this is quite inefficient as it requires a network evaluation for each
perturbation. Instead, we can exploit the fact that each individual operation is
differentiable and use the chain rule from calculus to evaluate the gradients more
efficiently. To clarify the meaning of derivative for multi-dimensional functions, we
define it as a matrix of component-wise elementary derivatives:

∂f

∂x
=

∂f1
∂x1

. . . ∂fm
∂x1...

∂f1
∂xn

. . . ∂fm
∂xn

 (6)

16

The above matrix is also known as the Jacobian matrix. Applying the chain rule from
calculus, we arrive at the following expression for the gradient of the loss function with
respect to a given parameter:

∂L
∂θi

=
∂fi
∂θi

∂L
∂fi

=
∂fi
∂θi

[child nodes∑
j

∂fj
∂fi

∂L
∂fj

]
(7)

In order to evaluate this expression, we start from the loss node and propagate
backwards to each parameter in the computational graph, computing the Jacobian of
each operation with respect to it’s input along the way. This process is commonly
known as backpropagation [15].

3.1.3. Evaluating DNNs

Measuring the success of a trained model Fθ using the training set (xi,yi) can lead to
misleading results if the network happens to learn the data points, i.e. Fθ(xi) ≈ yi,
but fails to interpolate between values. An unbiased way to evaluate the model is to
leave out a proportion of the samples from the training set and specifically use them
to evaluate the success of the model. In novel view synthesis, this translates to leaving
out a specific number of images from the training process and comparing them against
the corresponding synthesized views using a suitable metric.

3.1.4. Common DNN Architectures

The DNN architectures that are relevant for this thesis are multi-layer perceptrons
(MLP), convolutional neural networks (CNN) and sequence models.

Multi-layer perceptrons: MLPs [16] are characterized by a series of layers where
the weight matrix is fully connected, i.e. each element in the matrix are non-zero and
trainable. Because a fully connected weight matrix is computationally demanding,
these networks typically operate on low-dimensional data. Historically, MLPs were
used for classification tasks and are recently used to represent continuous signals [17],
including continuous scene representations for novel view synthesis [18].

Convolutional neural networks: CNNs [19] were originally designed for image
classification tasks and are characterized by a sparse weight matrix that operates within
local image patches. Advanced CNNs such as ResNet [20] and U-Net [21] incorporate
skip connections and batch normalization to improve convergence. In addition to
classification, CNNs have seen a variety of uses in other domains, such as depth
estimation, feature extraction and generative models.

Sequence models: Sequence models are networks that are designed to operate on
variable length sequences. In order to reason about variable length input, sequence
models adopt mechanisms such as feedback connections (e.g. long-short term memory
network (LSTM) [22], gated recurrence unit (GRU) [23]) and multi-head attention
(e.g. Transformer [24]). Sequence models have seen use in a wide range of domains,
including natural language processing, machine translation and recently in novel view
synthesis [25] [26].

17

3.2. Image-Based Rendering

In this section, we begin looking at novel view synthesis methodologies that utilize
deep learning and deep neural networks by starting from approaches that have common
qualities with traditional image-based rendering, discussed in Section 2.2.2.

3.2.1. Neural Image-Based Rendering

Neural image-based rendering strives to improve many of the steps taken in classical
image-based rendering by augmenting or replacing parts of the view synthesis with
supervised learning models. The first of these methods use classical 3D reconstruction
to estimate the geometry of the scene and incorporate CNN-architectures to improve
the blending process for the reprojected source views [27] [28] [29]. Specifically,
Hedman et. al. [27] proposed to use a U-Net type CNN architecture to predict blending
weights. An overview of this process is shown in Figure 5. Riegler et. al. [28] proposed
a similar scheme where the source views are sent to a CNN encoder to extract image
features, which are then fed to a GRU-based recurrent network for predicting blending
weights. Finally, Thies et. al. [29] improved on rendering view-dependent effects by
separately synthesizing diffuse and view-dependent components.

Figure 5. Overview of view synthesis using a blending network. The reprojected
source views are sent to a blending network which predicts blending weights. The
image is synthesized by adding together the weighted colors of each reprojected source
view.

The above discussed methods successfully improve the blending process, removes
the need for hand-crafted heuristics and can degrade more gracefully when faced with
a lack of information. However, these are still limited to the accuracy of the 3D
reconstruction and suffer from flickering when moving around the scene because the
networks are not trained for temporal consistency.

Later works experiment with alternatives to classical 3D reconstruction by
incorporating geometry estimation into the network architecture [30][31]. Choi et.
al. [30] and Nguyen et. al. [31] predict a depth probability volume from each source
view which are then warped into the target view by means of a homography. Finally,
most recent work predicts density instead of depth and synthesizes the view via volume
rendering [26].

18

3.2.2. Neural Re-Rendering

Neural re-rendering is a relatively short line of work that is similar to neural image-
based rendering and was inspired by recent work in image-to-image translation [32].
Instead of directly using information from source images these methods opt to use
a textured mesh [33] or a colored point cloud [34] [35] obtained from classical
3D reconstruction. These methods render the proxy geometry, i.e. point cloud or
mesh, into graphics buffers using a traditional rasterizer and then send the result to
a convolutional neural network to synthesize the final image. The purpose of the re-
rendering network is to learn a mapping from graphics buffers such as color and depth
into a plausible view. An image translation CNN [32] can be trained to perform this
task, however later works show an improvement by equipping the proxy geometry
with trainable latent codes to let the network learn additional features such as view-
dependent lighting [33] [35]. An overview of this process is shown in Figure 6. Similar
to early methods in neural image-based rendering, these methods are limited to the
accuracy of the 3D reconstruction and suffer from flickering when moving around
the scene. In addition, the re-rendering network needs to be trained for each scene
separately.

Figure 6. Overview of view synthesis using a re-rendering network. The 3D
reconstruction is equipped with trainable latent codes which are rasterized into a
graphics buffer. The graphics buffers are translated into the target view using the re-
rendering network.

3.3. Volumetric Representations

In this section, we review a line of work in learning-based novel view synthesis where
the scene is stored in an intermediate volumetric representation. Next, we will review
two main categories of such representations, multi-plane images and voxel grids.

3.3.1. Multi-Plane Images

A multi-plane image is a stack of RGBα images that are placed along a view frustrum
at a fixed range of depths, where α is the opacity of the pixel. The way these images
are positioned in space is demonstrated in Figure 7.

19

Figure 7. 2D-projection of the multi-plane image representation.

The multi-plane image representation (MPI) was popularized by Zhou et. al. [36]
as a way to synthesize views from forward facing scenes. Given a camera ray that
intersects each image at depth d = 1, · · ·, D, the projected color c is formed by
compositing each intersected color cd in front-to-back fashion:

c =
D∑
d=1

αdcd

D∏
i=d+1

(1− αi) (8)

Zhou et. al. demonstrated that using a homography to warp each plane in the MPI to
a target viewpoint and compositing the warped planes with Equation 8 is an effective
way to synthesize views in a differentiable manner. Their method involves training a
CNN to predict an MPI from stereo images. The input to their CNN is a stereo image
pair, in which the camera pose of the second image is implicitly encoded as input by
computing a plane sweep volume that reprojects it to the first image. The network
is trained in end-to-end fashion by predicting the MPI and projecting it to a target
image using a homography and alpha compositing as in Equation 8. This method is
summarized in Figure 8.

Subsequent work [37] [38] addresses the fact that MPIs alone cannot model view-
dependent effects in a reliable way. Specifically, Mildenhall et. al. [37] proposed to
blend between multiple MPIs and [37] Wizadwongsa et. al. [38] proposed to store
linear combinations of basis functions in the MPI instead of colors [38].

In addition to multi-plane images, other researchers have considered alternative
image formats such as spherical [39] and cylindrical [40] image representations to
synthesize views from outward facing 360° scenes. This approach is in essence similar
except for a different warping scheme and finds use in a stereo setup of 360° cameras.
An example of a multi-sphere image is visualized in Figure 9.

The key advantage of multi-plane images is that they can be readily stored in image
formats and integrated to graphics engines for real-time rendering without the need
to evaluate a neural network. However, these representation are relatively limited in
terms of translational movement in the scene.

20

Figure 8. MPI prediction and view synthesis with stereo images: A stereo image pair
is sent to an encoder-decoder CNN that predicts color and alpha planes. The camera
pose of the second image is implicitly encoded as input by computing a plane sweep
volume that reprojects it to the first image. The target view is synthesized by projecting
the MPI to the target pose via a homography, then compositing the projected colors
with the alpha values.

Figure 9. 2D-projection of the multi-sphere image representation.

21

3.3.2. Voxel Grids

A voxel grid stores information about the scene in a cartesian grid-like structure.
Unlike multi-plane images, voxel grids are not limited to forward facing scenes and
can potentially describe any type of scene within a bounded volume.

Sitzmann et. al. [41] and Nguyen et. al. [42] proposed to use convolutional
neural networks to encode images into a voxel grid of latent codes and project the grid
representation back to a novel viewpoint. However, the problem with this approach
is that the grid is very limited in terms of resolution to fit all of the latent codes in
memory. Later, Nguyen et. al. [43] demonstrated a method to compose scenes by
encoding each object to a separate voxel grid.

Instead of using a convolutional network to project latent codes, Lombardi et. al.
[44] introduced a method where a convolutional network predicts a RGBα grid, which
is then rendered to a novel view via volume rendering. In addition, they address
the memory limitation of the voxel grid by accessing the volume indirectly using a
warp field. More recently, others have experimented with sparse voxel octrees [45],
illustrated in Figure 10, to store and render voxels in a more efficient manner [46] [47].
While sparse voxel octrees are more challenging to work with than cartesian grids,
they take significantly less memory to store and are faster to render.

Figure 10. An octree is constructed by recursively subdividing a volume into 8 octants
while pruning octants that contain empty space.

3.4. Implicit Neural Representations

Implicit neural representations store information about the scene in the weights of a
neural network. In this section, we review the concept of coordinate-based neural
representations and how they are utilized in novel view synthesis in the form of
radiance fields, which have become a promising research direction in neural scene
representations. Finally, we look at other neural scene representations used in NVS.

3.4.1. Coordinate-Based Neural Representations

Coordinate-based neural representations have recently seen attention as an alternative
to discrete 3D-representations such as point clouds to describe 3D shapes. Coordinate-
based neural representations are networks that are conditioned on spatial coordinates
such as position and direction which output a continuous quantity that implicitly
describes the geometry of the scene. Early work in this area considered occupancy

22

fields [48] as well as signed distance fields [49] where the geometry is defined as
the level-set of these quantities. This work, however, was restricted to explicit 3D
information, e.g, point clouds or meshes, as the supervisory signal. Later on, more
advanced differentiable rendering networks [50] [51] enabled to use images as the
supervisory signal. Finally, the introduction of radiance fields paired with volume
rendering was found to be a promising direction for differentiable rendering [18]. It
was speculated that volume rendering widens the basin of convergence, enabling the
discovery of good solutions [44].

A common choice of network architecture for these representations are multi-layer
perceptrons with ReLU activation. While ReLU is computationally convenient, it was
found that using ReLU for this purpose causes the network to struggle at modeling
high frequency content [52] [17]. To counter this issue, Tancik et. al. [52] showed that
mapping the input coordinates to a frequency domain γ(x) as a pre-processing step
lets the network converge much more rapidly:

γ(x) = (cos(20πx), sin(20πx), · · ·, cos(2L−1πx), sin(2L−1πx)) (9)

This mapping, known as a positional encoding, was found to increase the
performance of MLPs at expressing low-dimensional functions. The parameter L
controls the amount of under- and overfitting, ideally chosen to achieve a balance
between the two extremes. Note that in Equation 9, x should be normalized to
[−1, 1]. Alternatively, Sitzmann et. al. showed that using a sine activation function
in place of ReLU achieves similar results [17]. A summary of coordinate-based neural
representations using the above mapping is shown in Figure 11.

Figure 11. Coordinate-based neural representations can model the scene as an implicit
function and synthesize views using a differentiable rendering scheme.

The disadvantage of using MLPs to model scenes is that training and evaluating them
is rather time consuming, as they need to be trained for each scene separately. Recent
research tries to address the slow training by using learned initializations [53] and
the slow evaluation by caching the scene into volumetric representations after training
[47] [54]. Since MLPs are continuous, they are not limited to a specific resolution and
instead their memory footprint scales in terms of signal complexity.

3.4.2. Neural Radiance Fields

Neural radiance fields are a class of coordinate-based neural representations that have
recently seen attention as a simple and effective method for differentiable rendering.

23

Encoding a radiance field within the weights of a neural network was popularized by
Mildenhall et. al. [18]. A neural radiance field encodes the scene as a function of
position x and view direction d, returning the predicted radiance and density (C, σ) at
that point. Rendering an image from a radiance field involves volume rendering. Given
a camera ray r(t), the synthesized color is evaluated by approximating a volumetric
integral previously known from classical volume rendering [55]:

c =

∫ tfar

tnear

T (t)σ(r(t))C(r(t)) dt (10)

T (t) = exp(−
∫ t

tnear

σ(r(t)) dt) (11)

Both of these integrals can be approximated with a finite sampling scheme and hence
the method is end-to-end differentiable. The process of synthesizing a color with a
neural radiance field is demonstrated in Figure 12.

Figure 12. Volume rendering with a neural radiance field parametrized by a MLP. At
each sample along the camera ray, the position and direction coordinates are encoded
as in Equation 9 and sent to a MLP to predict color and density. The colors and
densities at each sample are used to approximate the volume integral in Equation 10
which is the predicted target color.

Later on, a vast amount of research has been dedicated on improving and extending
neural radiance fields to various directions.

Acceleration: A number of works address the slow rendering time, since evaluating
a multi-layer perceptron at each point in the ray is rather time consuming. Liu et.
al. [46] proposed to decompose the radiance field into a sparse voxel octree where
each vertex stores a local radiance field. Others have noted that a radiance field can
be factorized into position- and view dependent components. This greatly reduces the
memory requirements when stored in a volumetric representation, enabling real-time
rendering [54] [47].

Robustness: Martin et. al [56] and Zhang et. al. [57] improve the original
model at synthesizing views in challenging scenarios such as scenes with photometric
inconsistencies, occluders [56] and scenes with unbounded background content [57].

Strong prior: Some authors note that the original model fails to synthesize views
from scenes with only a few images, and address this issue by imposing a strong prior

24

on the scene by encoding each pixel with additional features using CNN-architectures.
[58]

Relighting and scene composition: Srinivasan et. al. [59] experiment with explicit
light scattering models, in which the volume integral is more akin to the rendering
equation [60] , enabling ways to relight the scene. Guo et. al. [61] address scene
composition by fitting a radiance field separately to each object and demonstrating
how to compose radiance fields.

Videos and dynamic scenes: A number of authors note that radiance fields can
be conditioned on time, enabling view synthesis on dynamic scenes by training the
network on video content [62] [63].

Camera estimation: Finally, Wang et. al. [64] experiment with a method to jointly
determine the radiance field and camera poses from a set of images by converting the
intrinsic and extrinsic parameters of the virtual camera into trainable parameters.

3.4.3. Other Neural Representations

Finally, some authors have considered implicit neural representations that encode a
fully abstract description of the scene [65] [25]. The Generative Query Network
introduced by Eslami et. al. [65] is a encoder-decoder type of architecture that takes in
a set of posed images as input and produces a scene representation by averaging each
encoded representation. The decoder is conditioned on a camera pose to synthesize
an image from a novel viewpoint and interestingly, they demonstrate that scenes
can be composited and edited by performing algebraic operations on different scene
representations. Nguyen et. al. [25] improve on this method by using a Transformer
architecture to predict views in a sequential manner.

25

4. DATA COLLECTION

In this chapter, we describe the process of collecting and preparing multi-view stereo
datasets for novel view synthesis and present the datasets that were collected for the
purposes of this thesis.

4.1. Data Collection Process

When collecting multi-view stereo datasets, the goal is to capture a consistent set of
images from the scene and to obtain an accurate estimate of the intrinsic and extrinsic
parameters of the camera associated with each image.

4.1.1. Image Acquisition

In order to capture images from the scene in a consistent way, it is worth looking
at some of the properties of the imaging device and how they relate to multi-view
consistency:

ISO: ISO is a measure of how much the electronic signal of the image sensor is
amplified. A high ISO value can produce noisy images and therefore, ISO should be
kept low to reduce noise in the image. A well lit environment is essential for capturing
bright images with low ISO.

Shutter speed: Shutter speed is the length of time the camera sensor is exposed to
light. Using a long shutter speed can lead to blurry images, which is not desirable for
consistent results.

Autoexposure: Autoexposure is a setting that automatically adjusts ISO and shutter
speed to keep the brightness of the image constant. For consistent results, it is essential
to disable autoexposure for the duration of the capture.

Focus distance and autofocus: Focus distance is a property of the lens that affects
the distance in which objects in the scene are in focus, i.e. not blurry. Autofocus is a
setting that automatically adjusts the focus distance. This affects the focal length of the
lens and breaks the assumption that camera parameters stay fixed during the capture.
Using a fixed focus distance should be preferred if possible.

Image format: Finally, exporting the images in a compressed format, such as JPG,
should be avoided, and instead prefer uncompressed formats such as PNG and RAW.

As for this thesis, we use a Samsung A50 mobile phone as the choice of camera and
the OpenCamera Android application to capture images, shown in Figure 13. For each
scene, we follow the above guidelines, keeping autoexposure and focus distance fixed.
However, the images are stored in JPG format because of limitations imposed by the
manufacturer. The details of the camera are summarized in Table 1.

Megapixels Image width Image height Aperture Focal length (mm)
25 5685 4249 f/1.7 26

Table 1. Specifications for the camera used in this thesis (Samsung A50).

26

Figure 13. The OpenCamera Android application. Top left corner: ISO 179 and shutter
speed 1/25 [s]. Bottom left corner: Option to keep ISO and shutter speed fixed. Bottom
center: Slider to change the focus distance.

4.1.2. Calibration

Most novel view synthesis algorithms work under the assumption that the extrinsic
and intrinsic parameters of the camera corresponding to each image are known. Next,
we review the meaning of intrinsic parameters and describe the process of finding the
intrinsic parameters of the camera without prior information.

The intrinsic parameters describe how a point (x, y, z)T in the camera coordinate
system is projected to the image plane coordinates (u, v). In an ideal pinhole model,
this projection is parametrized by focal lengths fx, fy and principal point offset cx, cy:(

u
v

)
=

(
fxx

′ + cx
fyy
′ + cy

)
=

(
fx

x
z
+ cx

fy
y
z
+ cy

)
(12)

However, the ideal pinhole model is a simplification as lenses have a varying amount
of distortion. To better describe the way real-world lenses project, we add additional
degrees of freedom to the camera model. Here, we adopt a distortion model with two
degrees of freedom for radial distortion k and tangential distortion p:

x′distorted = x(1 + k1r
2 + k2r

4) + (2p1xy + p22(r
2 + 2x2)) (13)

y′distorted = y(1 + k1r
2 + k2r

4) + (2p2xy + p21(r
2 + 2y2)) (14)

Where r2 = (x′)2 + (y′)2. Substituting the above to Equation 12, we have(
u
v

)
=

(
fxx

′
distorted + cx

fyy
′
distorted + cy

)
(15)

Obtaining these parameters can be done using a point correspondence algorithm,
where the idea is to take several pictures of an object with known 3D correspondences,

27

for example a chessboard, and minimize a re-projection error with respect to the
parameters. For the camera used in this thesis, we obtained the parameters by taking
50 images of a chessboard and using an open source implementation of the above
mentioned point correspondence algorithm [66]. The related script for obtaining the
intrinsic parameters is presented in Appendix A. In Figure 14 we see a few examples
of the images used for point correspondence, and in Table 2 the obtained parameters.

fx fy cx cy k1 k2 p1 p2 RMS [px]
4426 4435 2881 2202 0.091 -0.209 0.006 0.000 1.158

Table 2. Estimated camera coefficients and reprojection error.

Figure 14. A few examples of the chessboard calibration images. The detected corner
points are shown as red dots.

4.1.3. Structure from Motion

Structure from motion is a widely used algorithm to find the extrinsic parameters of
the camera, i.e. camera poses, corresponding to each image. In this thesis, we use
COLMAP [5] which is an open-source implementation of SfM. COLMAP can also
be used to refine the estimated intrinsics, estimate intrinsics without prior information,
undistort images and generate a 3D reconstruction of the scene.

For each captured scene, we provide COLMAP with the images and estimated
intrinsics and run the algorithm with default settings. After obtaining the camera
poses, we let COLMAP undistort the images with the refined intrinsics, which
converts the images into an idealized pinhole model by solving Equation 13 and
14. This is important because most novel view synthesis algorithms assume that
the images originate from an ideal pinhole camera model. In Figure 17, we see an
example of camera motion estimated by COLMAP for a forward-facing scene and the
reconstructed point cloud and in Figure 18, we see an example of how COLMAP can
create a 3D reconstruction of the scene.

4.2. Collected Datasets

The goal of the data collection was to capture a handful of different types of scenes,
including forward facing scenes (Figure 17, Left) and inward facing scenes (Figure
17, Right). All of the scenes have different background and some of them have more

28

challenging geometries and materials, such as shiny objects. A total of 6 scenes were
collected with 30-90 images each, summarized in Table 3. The file structure of the
dataset is seen in Figure 15.

Name # Train # Val. Description
Classroom 1 42 6 A forward-facing scene of a classroom.
Classroom 2 30 6 A forward-facing scene of a classroom.
Cafeteria 42 6 A forward-facing scene of a cafeteria.
Bike 66 6 An inward-facing scene of a bike.
Printer 48 6 An inward-facing scene of a printer.
Vase 90 6 An inward facing-scene of a glass vase.

Table 3. A summary of the collected scenes, including the number of images used for
training and evaluation.

Figure 15. File structure of the collected dataset. "cameras.bin" contains the intrinsic
parameters of the camera, "images.bin" contains a list of filenames corresponding
to each image and "points3D.bin" contains the camera pose and a list of 3D points
associated with each image.

29

Figure 16. Example image from each scene. From left to right: Classroom 1,
Classroom 2, Cafeteria, Bike, Printer, Vase.

Figure 17. Screenshots from COLMAP showing the pattern of camera motion and
point cloud for a forward-facing scene (Left) and an inward-facing scene (Right).

Figure 18. Left: Example image from the "printer" scene. Middle: Dense point cloud
reconstruction by COLMAP, Right: A 3d mesh obtained from the point cloud via
Delaunay triangulation

30

5. EXPERIMENTS

In this chapter, we describe the setting in which we evaluate and experiment with
state of the art methods in learning-based novel view synthesis. The experiments are
carried out with carefully selected and recently published open-source methods, which
are NeRF [18], NeRF−− [64], NeX [38] and IBR-Net [26]. The reasoning behind
these choices is a combination of availability, time limitations, date of release and
functionality. Most importantly, each one have unique characteristics that relate to the
discussed methodologies in learning-based novel view synthesis, namely, image-based
rendering, volumetric representations and implicit neural representations.

5.1. NeRF and NeRF--

5.1.1. Overview

The first view synthesis method that is adopted for experimentation is NeRF1[18],
which falls into the class of coordinate-based neural representations and specifically
neural radiance fields discussed in Section 3.4.2. Synthesizing a novel view with NeRF
involves training a multi-layer perceptron that returns radiance C and density σ for a
given position and view direction in the scene. NeRF synthesizes a target color c
by querying the MLP along a camera ray r(t) and evaluating the volume integral in
Equation 10 using the following approximation:

c ≈
N∑
i=1

T (ti)αiC(r(ti)) (16)

αi = 1− e−σ(r(ti))δ (17)

T (ti) =
i∏

j=1

1− αi (18)

The samples ti lie along the camera ray and are drawn from a stratified uniform
distribution to increase coverage over multiple training iterations. Furthermore, NeRF
chooses to optimize two different networks, a coarse and a fine network, in which
the coarse network samples the radiance field in the above described manner and the
fine network samples ti from a distribution that is proportional to previously obtained
weights, i.e. pi = Tiσi∑

i Tiσi
. This lets the fine network allocate the majority of samples

in locations that are most likely to contribute to the integral. The parameters of the
model are optimized with stochastic gradient descent, specifically ADAM, against the
ground truth pixel value cgt.

L = ||c− cgt||22 (19)

1https://github.com/yenchenlin/nerf-pytorch

https://github.com/yenchenlin/nerf-pytorch

31

The second method to be adopted for experimentation is NeRF−−2[64], which
builds upon the original NeRF by parametrizing the camera model in addition to the
network weights to jointly optimize the radiance field and camera poses. Note that in
this thesis, we use COLMAP for acquiring the camera poses and this approach is purely
used for experimentation. Specifically, NeRF−− parametrizes the origin, rotation and
focal lengths of the camera associated with each image. The view direction associated
with a color at coordinates u, v is then obtained using the standard pinhole camera
model:

du,v = R̂i(
u− W

2

f̂x
,
v − H

2

f̂y
,−1)T (20)

Here (W,H) is the resolution of the image and (f̂y, f̂y) are the parametrized focal
lengths. The rotation matrix R̂i needs to be parametrized as a function of axis and
angle, which is conveniently done using Rodrigues’ rotation formula:

R̂ = I+
sin(α)

α

 0 −ψ2 ψ1

ψ2 0 −ψ0

−ψ1 ψ0 0

+
1− cos(α)

α2

 0 −ψ2 ψ1

ψ2 0 −ψ0

−ψ1 ψ0 0

2

(21)

Where (α, ψ0, ψ1, ψ2) are the trainable parameters.

5.1.2. Network Architecture

The network architecture of NeRF is a multi-layer perceptron that takes as input the
position and direction coordinates along a camera ray. The coordinates are encoded as
described in Equation 9, with the choice of L = 10 for position coordinates and L = 4
for view direction coordinates in this thesis. The model predicts a color and density
value for the given position and direction encodings, which are then integrated along
the ray to predict the final color as in Equation 16. The MLP architecture is shown
in Figure 19. A minimal example of this model written in PyTorch is presented line
by line in Appendix B. In NeRF−−, the network architecture is the same, except the
position and direction encodings are dependent on the parameters of the camera model.

5.1.3. Training Details

Iterations, samples and learning rate: The NeRF model was trained on the collected
datasets with 4096 rays per iteration, for a varying number of iterations per scene,
shown in Table 4. The coarse network was trained with 64 samples and fine network
with 128, both with initial learning rate of 0,5 ∗ 10−4 decayed over the course of
training.

Inverse depth sampling experiment: To explore the effect of different sampling
strategies, the Bike scene was trained additionally without inverse depth sampling, in

2https://github.com/ActiveVisionLab/nerfmm

https://github.com/ActiveVisionLab/nerfmm

32

Figure 19. The MLP architecture of NeRF used in this thesis. The input to this network
are the position and direction coordinates of the camera ray at a specific sample, where
each coordinate is normalized between [−1, 1] and encoded as in Equation 9. In
this thesis, we use L = 10 for position coordinates and L = 4 for view direction
coordinates, for a total dimension of 60 for positional encoding and 24 for directional
encoding.

which samples are drawn linearly in disparity rather than depth. Note that in all other
scenarios inverse depth sampling is used.

Calibration experiment: To explore the practical advantage of manual camera
calibration, the Classroom 2 scene was trained additionally without providing the
estimated camera intrinsics (Table 2) to COLMAP, resulting in slightly different
camera poses.

NeRF−−: The NeRF−− model was trained in 3 different settings for the
Classroom 2 scene. In the first scenario, the poses are set to identity. In the second
scenario, the poses are fixed to poses estimated by COLMAP. In the third scenario, the
poses estimated by COLMAP are refined by NeRF−−. The model was trained with
1024 rays per image for 4000 epochs.

Scene Iterations Image scale
Classroom 1 200000 0.250
Classroom 2 80000 0.250
Cafeteria 80000 0.250
Printer 80000 0.250
Bike 200000 0.250
Vase 200000 0.167

Table 4. Total iterations and image downscale factor for each scene trained with NeRF.

The training loss over time for the Classroom scene is plotted in Figure 20. For
other scenes the loss converged in a similar way, omitted for brevity. The training
process took roughly 18 hours for Classroom 1, Bike and Vase, and roughly 8 hours
for Classroom 2, Cafeteria and Printer, using a single Tesla P100 graphics card.

33

Figure 20. NeRF: Measured MSE over time for the Classroom scene.

5.2. NeX

5.2.1. Overview

The third view synthesis method that is adopted for experimentation is NeX3[38],
which is characterized by it’s volumetric scene representation and specifically the
multi-plane image discussed in Section 3.3.1. Instead of directly storing color
information in the MPI, NeX chooses to store position-dependent basis coefficients
k(x, y, d) and view direction dependent basis functions b(ω) separately as a way to
store view-dependent effects, where (x, y) are the image coordinates, d is the plane
depth and ω is the view direction. The view-dependent color c is then regressed as a
linear combination of these values:

c = k0(x, y, d) +
N∑
i=1

ki(x, y, d)bi(ω) (22)

Training NeX for view synthesis involves using a homography to warp each plane
in the MPI representation to a target viewpoint. After applying the homography, the
image coordinates (x, y) and plane depth d of the warped planes are sampled and
sent to a multi-layer perceptron that returns opacity and basis coefficients. Similarly,
the view direction is encoded and sent to another MLP that predicts basis functions.
This process is summarized in Figure 21. Finally, the target view is synthesized by
regressing the color (Equation 22) and using alpha composition as in Equation 8. In
this thesis, we use a total of 16 planes for the MPI and a total of 8 basis functions.

The parameters of the model are optimized with ADAM using L2-loss between the
ground-truth image Igt and synthesized image I , including a regularization term with
the respective gradients:

L = ||Igt − I||22 + λ||∇Igt −∇I||22 (23)

After training, the obtained basis coefficients and basis functions can be stored
explicitly in images and integrated to graphics engines, such as WebGL, for fast
rendering. This way, the views can be synthesized by only using a homography, color
regression and alpha composition.

3https://github.com/nex-mpi/nex-code

https://github.com/nex-mpi/nex-code

34

Figure 21. Training NeX for view synthesis: The MPI coordinate system is projected
to a target pose via a homography warping. The warped planes are sampled at image
coordinates (x, y) and plane depth d, which are encoded as in Equation 9 and sent
to a MLP that predicts basis coefficients and opacity. Similarly, the view direction is
encoded and sent to another MLP that predicts basis functions. The colors at each
plane depth d are regressed with Equation 22 and composited to the target color with
alpha composition (Equation 8).

5.2.2. Network Architecture

The network architecture of NeX is a factorized multi-layer perceptron that takes
as input the image coordinates (x, y), plane depth d and view direction ω. The
coordinates are encoded as described in Equation 9, with the choice of L = 10 for
image coordinates, L = 8 for depth and L = 3 for view direction coordinates in this
thesis. The model predicts the basis functions and basis coefficients separately which
are then used to predict the color as in Equation 22. The MLP architecture is shown in
Figure 22.

Figure 22. The MLP architecture of NeX used in this thesis. The input to this network
are the image coordinates and plane depth, denoted together as position, and the view
direction coordinates. Each coordinate is normalized between [−1, 1] and encoded as
in Equation 9. In this thesis, we use L = 10 for image coordinates, L = 8 for depth
and L = 3 for view direction, for a total dimension of 56 for positional encoding and
18 for directional encoding.

35

5.2.3. Training Details

The NeX model was trained on each of the collected scenes using 8000 rays per image
for 1000 iterations, with a learning rate of 10−3 decayed over the course of training.
The training loss over time for the Classroom scene is plotted in Figure 23. For other
scenes the loss converged in a similar way, omitted for brevity. The training process
took roughly 9 hours for each scene using a single Tesla P100 graphics card.

Figure 23. NeX: Measured MSE over time for the Classroom scene.

5.3. IBR-Net

5.3.1. Overview

The final method that is adopted for experimentation is IBR-Net4[26]. IBR-Net can
be categorized as neural image-based rendering discussed in Section 3.2.1 in the sense
that it directly aggregates information from nearby images to synthesize views. Similar
to NeRF, synthesizing a novel view with IBR-Net involves volume rendering along a
camera ray. At each sample along the ray, IBR-Net aggregates information from each
source view which are sent to a network that predicts color and density features. The
density features are sent to a Transformer that predicts density at each sample. This
process is illustrated in Figure 24. The density and color are then integrated along the
camera ray as in Equation 16 to form the synthesized color. Furthermore, IBR-Net
optimizes two different networks, a coarse and a fine network, in the same way as in
NeRF discussed in Section 5.1.1. The rendering loss function of IBR-Net is also the
same as in NeRF.

5.3.2. Network Architecture

Compared to NeRF and NeX, the network architecture of IBR-Net (MLP*) is more
involved, containing several sub-networks. Starting from the source images, each
image is sent to a ResNet-34 [20] to extract image features. The aggregated image
features are then sent to a network illustrated in Figure 25 which outputs color and
density features Fi. Finally, the density features are sent to a Transformer which
outputs the final density.

4https://github.com/googleinterns/IBRNet

https://github.com/googleinterns/IBRNet

36

Figure 24. Overview of IBR-Net. At each sample along the ray, IBR-Net aggregates
information from each source view which are sent to the denoted MLP* network,
explained in more detail in Section 5.3.2, that predicts color and density features.
The density features are sent to a Transformer which outputs the final density at each
sample.

Figure 25. The MLP* -network. The image features P are sent to a MLP that outputs
multi-view aware features. These features are then sent to another MLP along with
relative view directions D to produce blending weights. Finally, the blending weights
are combined with the corresponding source colors C to form the predicted color.

37

5.3.3. Training Details

In this thesis, we used a pre-trained IBR-Net that was trained on a variety of multi-view
stereo datasets. The pre-trained network was reportedly trained on eight V100 GPUs
for about a day, which should be considerably more FLOPS than we used for NeRF
and NeX. As for inference, the number of aggregated source views was fixed at 10
and the amount of coarse and fine samples were set to 64. Additionally, the Cafeteria
scene was evaluated with varying amount of aggregated source views (2, 4, 6, 8, 10)
to explore how this affects the quality of synthesized views.

38

6. EVALUATION

In this chapter, we present the results of the conducted experiments and compare the
results quantitatively and qualitatively. First however, we review the adopted metrics
used for evaluating the selected methods.

6.1. Metrics

Measuring the success of a view synthesis algorithm to produce plausible and realistic
views requires a metric of perceptual similarity between a synthesized and a ground
truth image. The metrics that are adopted in this thesis are are peak-to-signal noise
ratio (PSNR), structural similarity index (SSIM) [67] and learned perceptual image
patch similarity (LPIPS) [68].

6.1.1. PNSR

The first one of these, PSNR, is a commonly used metric to measure the reconstruction
quality of images and is directly related to the mean squared error (MSE). Denoting
image resolution as (W , H) and assuming that each color lies in [0, 1]3, the MSE
and PSNR between a ground truth RGB-image Igt and a synthesized RGB-image I is
defined as:

MSE =
1

3WH

H∑
j=1

W∑
i=1

||Ii,j − Igt
i,j||22 (24)

PSNR = 20 log10(max(I))− 10 log10(MSE) = −10 log10(MSE) (25)

6.1.2. SSIM

The second metric, SSIM, improves on measuring perceptual similarity by noting that
the human perceptual system is highly sensitive to variation in structural information.
SSIM models the structure, contrast and luminance between images by using statistical
features, specifically, the mean µI , variance σ2

I and covariance σIgt,I of both images:

SSIM =
(2µIgtµI + C1)(2σIgt,I + C2)

(µ2
Igt + µ2

I + C1)(σ2
Igt + σ2

I + C2)
(26)

To clarify, C1 and C2 are small constants to prevent divergence. The above
expression is computed locally using a gaussian window of size 11x11 and averaged
for each region to get the final result. In this thesis, we use an open source
implementation of SSIM5 [69] where C1 = 0,01 and C2 = 0,03.

5https://www.tensorflow.org/api_docs/python/tf/image/ssim

https://www.tensorflow.org/api_docs/python/tf/image/ssim

39

6.1.3. LPIPS

The final metric, LPIPS, is based on comparing distances between feature
representations obtained from the layers of a deep neural network. To give some
background, it was discovered that DNNs trained on image prediction and modeling
tasks have the emergent property of learning feature representations that correlate
exceptionally well with human judgement. LPIPS uses this property to compare
images by feeding both images to such a network, aggregating the output of
intermediate layers yl and finally computing their average euclidean distance:

LPIPS =

layers∑
l

1

WlHl

(Wl,Hl)∑
(i,j)

||wl � (yli,j − ŷli,j)||22 (27)

Here yl and ŷl are the activations of the network at layer l for Igt and I , respectively.
The dot product� associated with weight wl is a channel-wise weighted sum, in which
the weights wl are optimized by fine-tuning the network with a small network that
predicts perceptual judgement based on a human-annotated dataset. In this thesis, we
use an open source implementation of LPIPS6 [70] using a trained VGG-architecture
[71] as the base network.

6.2. Comparison

The comparison of the trained NeRF, NeX and IBR-Net models was carried out by
synthesizing views using the camera poses that correspond to each validation image
and then averaging the perceptual metrics for each scene and method. In addition to
perceptual metrics, we provide qualitative comparison for each scene and method.

In Tables 5, 6, and 7, we see the results for the forward-facing scenes (Classroom 1,
Classroom 2 and Cafeteria) using NeRF, NeX and IBR-Net. The qualitative results are
seen in Figures 19-24.

Method PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 21.96 .7688 .5892
NeX 24.62 .8071 .5304
IBR-Net 25.44 .8342 .4006

Table 5. The average PSNR, SSIM, and LPIPS for the Classroom 1 -scene.

Method PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 25.83 .8476 .4871
NeX 24.37 .8231 .4808
IBR-Net 20.95 .8067 .4291

Table 6. The average PSNR, SSIM, and LPIPS for the Classroom 2 -scene.

6https://github.com/alexlee-gk/lpips-tensorflow

https://github.com/alexlee-gk/lpips-tensorflow

40

Method PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 23.34 .7482 .4406
NeX 23.30 .8016 .3730
IBR-Net 20.71 .7541 .3247

Table 7. The average PSNR, SSIM, and LPIPS for the Cafeteria -scene.

Similarly, the result for inward-facing scenes (Printer, Bike, Vase) using NeRF and
IBR-Net are seen in Tables 8, 9 and 10. The qualitative results are seen in Figures
25-29.

Method PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 25.87 .7148 .6100
IBR-Net 26.85 .7970 .3611

Table 8. The average PSNR, SSIM, and LPIPS for the Printer -scene.

Method PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 20.53 .5991 .5612
IBR-Net 20.70 .6872 .3586

Table 9. The average PSNR, SSIM, and LPIPS for the Bike -scene.

Method PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 26.74 .8478 .4643
IBR-Net 23.49 .8414 .4589

Table 10. The average PSNR, SSIM, and LPIPS for the Vase -scene.

Finally, the rendering time of each method was measured and compared in Table 11.
The rendering time did not change significantly across scenes, which is why the time
is reported for the Classroom 1 scene only. For NeX, we additionally measured the
rendering time for the cached MPI in their WebGL viewer using NVIDIA RTX 2080.

Method Render time [seconds]
NeRF 116.0
NeX 15.39
NeX (WebGL) 0.016
IBR-Net 145.0

Table 11. Average rendering time for the Classroom 1 scene.

41

Figure 26. Qualitative comparison for the Classroom 1 scene. From left to right:
Ground truth, NeRF, NeX, IBR-Net.

Figure 27. Zoom-in at the projector in the Classroom 1 scene. From left to right:
Ground truth, NeRF, NeX, IBR-Net.

Figure 28. Qualitative comparison for the Classroom 2 scene. From left to right:
Ground truth, NeRF, NeX, IBR-Net.

Figure 29. Zoom-in below the table in the Classroom 2 scene. From left to right:
Ground truth, NeRF, NeX, IBR-Net.

Figure 30. Qualitative comparison for the Cafeteria scene. From left to right: Ground
truth, NeRF, NeX, IBR-Net.

42

Figure 31. Zoom-in at the reflection in the Cafeteria scene. From left to right: Ground
truth, NeRF, NeX, IBR-Net.

Figure 32. Qualitative comparison for the Printer scene. From left to right: Ground
truth, NeRF, IBR-Net.

Figure 33. Zoom-in near the paper tray in the Printer scene. From left to right: Ground
truth, NeRF, IBR-Net.

Figure 34. Qualitative comparison for the Bike scene. From left to right: Ground truth,
NeRF , IBR-Net.

43

Figure 35. Zoom-in at the bench in the Bike scene. From left to right: Ground truth,
NeRF, IBR-Net.

Figure 36. Qualitative comparison for the Vase scene. From left to right: Ground truth,
NeRF, IBR-Net.

Figure 37. Zoom-in at the vase in the Vase scene. From left to right: Ground truth,
NeRF, IBR-Net.

44

6.3. Additional Experiments

Next, we present the evaluation of additional experiments carried out with NeRF,
NeRF−−, NeX and IBR-Net.

Inverse depth sampling experiment: To explore the effect of different sampling
strategies, the Bike scene was trained an additional time using NeRF without inverse
depth sampling, in which samples are drawn linearly in disparity rather than depth.
The results are seen in Table 12 and the qualitative results in Figures 38 and 39.

Method PSNR ↑ SSIM ↑ LPIPS ↓
NeRF (Regular sampling) 20.41 .5844 .5927
NeRF (Inverse depth sampling) 20.53 .5991 .5612

Table 12. Inverse depth sampling experiment: The average PSNR, SSIM, and LPIPS
for the Bike -scene.

Calibration experiment: To explore the practical advantage of manual camera
calibration, the Classroom 2 scene was trained with NeRF additionally without
providing the estimated camera intrinsics (Table 2) to COLMAP, resulting in slightly
different camera poses. The results for this experiment are seen in Table 13 and the
qualitative results in Figure 40.

Method PSNR ↑ SSIM ↑ LPIPS ↓
NeRF (with calibration) 25.83 .8476 .4871
NeRF (without calibration) 23.65 .7868 .5781

Table 13. Calibration experiment: The average PSNR, SSIM, and LPIPS for the
Classroom 2 -scene.

NeRF−−: The evaluation process for NeRF−− was less straightforward. The
camera poses that NeRF−− learns during the training process lie in a different space
than the poses obtained from COLMAP and hence the pose of the evaluated image
cannot be directly rendered. The workaround for this was to fix the weights of the
network and optimize for the pose that minimizes MSE with respect to the validation
image. The validation pose was searched for 1000 epochs for each validation image,
then the corresponding view was rendered and evaluated against the validation image.
The results are seen in Table 14 and the qualitative results are seen in Figure 41.

Method PSNR ↑ SSIM ↑ LPIPS ↓
NeRF−−, Identity 13.05 .5746 .7398
NeRF−−, COLMAP 14.15 .6262 .6734
NeRF−−, Refined COLMAP 14.16 .6281 .6727

Table 14. NeRF−−: The average PSNR, SSIM, and LPIPS for the Classroom 2 -scene
in three scenarios: Poses initialized from identity, fixed poses obtained from COLMAP
and refined poses obtained from COLMAP.

Number of images experiment: Finally, the Cafeteria scene was evaluated
additionally with IBR-Net using varying amount of aggregated source views (2, 4,

45

6, 8, 10) to explore how this affects the quality of synthesized views. The results of
this experiment are seen in Table 15 and the qualitative results in Figures 42 and 43.

Num. images PSNR ↑ SSIM ↑ LPIPS ↓
2 14.95 .5876 .4766
4 19.29 .7126 .3635
6 20.41 .7442 .3341
8 20.44 .7502 .3284
10 20.71 .7541 .3247

Table 15. Number of images experiment. The average PSNR, SSIM, and LPIPS for
the Cafeteria scene using IBR-Net with varying number of aggregated source views.

Figure 38. Inverse depth sampling experiment. From left to right: Ground truth, NeRF
with linear sampling, NeRF with inverse depth sampling.

Figure 39. Inverse depth sampling experiment. Zoom-in at the pedal in the Bike scene.
From left to right: Ground truth, NeRF with linear sampling, NeRF with inverse depth
sampling.

46

Figure 40. Calibration experiment: From left to right: Ground truth, NeRF with
poses obtained by providing COLMAP with prior intrinsics, NeRF with poses obtained
without providing prior intrinsics to COLMAP.

Figure 41. NeRF−−. From left to right: Ground truth, NeRF−−with poses initialized
from identity, NeRF−− with poses initialized from COLMAP, NeRF−− with fixed
poses from COLMAP.

Figure 42. Number of images experiment. From left to right: Ground truth, IBR-Net
(2), IBR-Net (4), IBR-Net (6), IBR-Net (8) , IBR-Net (10).

47

Figure 43. Number of images experiment. Zoom in at the reflection. From left to right:
Ground truth, IBR-Net (2), IBR-Net (4), IBR-Net (6), IBR-Net (8), IBR-Net (10).

48

7. DISCUSSION

In this chapter, we discuss the advantages, disadvantages and implications of different
techniques in learning-based view synthesis based on the findings in this thesis. We
discuss the results and limitations of the conducted experiments and finally consider
the implications and future research directions.

7.1. Results of the Comparison

In the experimentation part of this thesis, we collected a variety of multi-view stereo
datasets for the purposes of view synthesis and experimented with state of the art
learning-based view synthesis algorithms, namely, NeRF, NeRF−−, NeX and IBR-
Net. Overall, the quantitative and qualitative results show that each of the methods are
capable of synthesizing plausible views from novel viewpoints, including situations
with complex geometry as well as transparent (Figure 29) and reflective materials
(Figure 23).

First, we address the overall results of the perceptual comparison. In terms of LPIPS,
IBR-Net synthesized the most plausible views apart from a few outliers. However,
in terms of PSNR, NeRF and NeX performed better in some scenarios. Looking at
the qualitative results partly explains the conflicting results of the PSNR and LPIPS
metrics, when considering the fact that PSNR places much less emphasis on blur when
differentiating between images. IBR-Net clearly excels at preserving sharp details,
while NeRF and NeX does not preserve sharp details as well, producing blurry views
across all scenes. Increasing the number of iterations should however, increase the
capability of NeRF and NeX to synthesize sharper views. Especially in dark and
ambiguous regions, NeRF and NeX tend to degrade in a way that resembles blur. On
the other hand, IBR-Net tends to generate spurious texture and anomalies instead (e.g.
in Figure 30). In addition, when IBR-Net is faced in a situation where none of the
aggregated images reach a region of the synthesized view, the region is rendered as
black (Figure 22), whereas NeRF and NeX degrade somewhat gracefully.

The measured rendering times (Table 12) show that NeX is suited for real-time
rendering when using the cached representation in WebGL. When using the network
to synthesize views, NeX is also the fastest. As for NeRF and IBR-Net, the latter takes
roughly 25% more time synthesize a novel view, which is understandable given the
massive size of the network.

Moving on to the required amount of time to train a scene, IBR-Net is clearly most
convenient given the pre-trained network. The pretrained network seems to translate
very well to scenes outside of the training set, as was the case in these experiments. As
for NeRF and NeX, these methods are not suited for pre-training. The latter converged
more rapidly, taking just 1 hour to reach MSE < 0.05, whereas for NeRF it took roughly
10 hours to reach the same level (Figures 13 and 15).

The type of scene that NeRF and IBR-Net were compatible with are both forward-
facing and inward-facing scenes, while NeX was limited to only forward-facing scenes
due to the inherent limitations of the multi-plane image representation. The limitations
of NeRF and IBR-Net in outdoor scenes is revealed in the Bike scene, where both
methods struggle to reproduce the background content (Figure 33).

49

Speculating about the scalability of each method, NeX can easily run into memory
limitations for larger scenes, as the resolution of the multi-plane images need to be
increased as well. Both NeX and NeRF are limited in terms of signal complexity due
to the fact that a fixed-size network is being used to implicitly represent the whole
scene. IBR-Net is a promising approach for arbitrarily large scenes because it only
uses information around a local region of the scene to synthesize a view.

7.2. Results of the Additional Experiments

Next, we discuss the results of the additional experiments presented in Section 6.3.
Inverse depth sampling experiment: The result of the inverse depth sampling

experiment (Table 10, Figure 27) highlights the importance of choosing an appropriate
sampling strategy for volume rendering. All of the metrics are improved when using
inverse depth sampling and the qualitative results show that using linear sampling can
miss important details near the camera as more samples are allocated near the outskirts
of the scene.

Calibration experiment: The results of the calibration experiment (Table 11,
Figure 30) indicate that using camera poses obtained by providing manually calibrated
intrinsics to COLMAP, as opposed to letting COLMAP estimate them automatically,
causes a significant improvement on the synthesized views. This is unfortunate for
applications where manual calibration is not available and highlights the importance
of using alternative methods to obtain accurate intrinsics in this situation. One potential
solution is the approach of NeRF−−, which can be used to refine prior estimates of
the camera parameters.

NeRF−−: The experiments carried out with NeRF−− (Table 14, Figure 40) show
that refining the camera poses obtained from e.g. COLMAP can synthesize slightly
better views compared to the situation where the camera parameters are fixed. This can
especially be useful in scenarios where the camera parameters are not entirely accurate.
Initializing the camera poses from identity seems to be a challenging task for NeRF−−
and having some prior estimate greatly improves the results. The weak quantitative
scores are explained by the validation pose search, in which the network is optimized
to find the pose that minimizes MSE with respect to the validation image. Looking
at the qualitative results, we see that the camera poses that were found are slightly
offset from the true camera pose, which affects the metrics significantly. Increasing
the amount of iterations should however, alleviate this issue.

Number of source views experiment: The experiment carried out with IBR-Net, in
which the number of source views is varied (Table 15, Figures 42-43) show that IBR-
Net can synthesize a plausible view with even just a few images. Increasing the number
of source views from 6 resulted in diminishing returns, improving only slightly.

7.3. Limitations of the Study

The experiments conducted in this thesis were limited in some aspects. Firstly,
the required time to train the applied networks was rather long and computationally
demanding, which in turn limited the scale and amount of scenes to experiment with in

50

the time frame of this thesis. Second, all of the collected scenes were relatively small-
scale ranging from 36-100 images. Third, when evaluating the methods there was no
consideration of target poses that deviate far away from the scene. This is because
each validation image had at least one nearby image in the training set. Finally, some
of the methodologies discussed in the earlier part of this thesis were left out of the
experimentation. Specifically, early methods in neural image-based rendering, neural
re-rendering and other volumetric representations such as multi-sphere images and
voxel grids.

7.4. Implications and Future Research Directions

Starting from coordinate based neural representations, we have seen that using
radiance fields with volumetric rendering is an effective way to perform learning
based view synthesis on scenes that are derived from image datasets. Compared
to other geometrical representations such as 3D meshes and point clouds, neural
radiance fields have become a promising way to store and synthesize views. As
we have discussed in Section 3.4.2, an accelerating amount of research has been
devoted to extending the scope of neural radiance fields, including relighting, scene
composition, dynamic scenes and camera estimation. On the other hand, coordinate
based neural representations are still time-consuming to train, and by themselves are
slow to evaluate.

The slow rendering time of the above discussed networks can be solved by
factorizing the network into position and view dependent components and then storing
it to a volumetric data structure, e.g. multi-plane image as we have seen in NeX.
In addition to multi-plane images, a number of alternatives have been proposed for
other types of scenes, such as multi-plane spheres or octrees. An important research
direction is how to store large-scale scenes in these data structures and how to update
them in real-time for dynamic content. However, it is still possible that conventional
3D models will see use as a format for real-time rendering in novel view synthesis.
The view synthesis algorithms used in this thesis can reliably estimate the geometry
of the scene, which can be turned into a 3D model with e.g. the marching cubes
algorithm [72]. Another research direction is how to encode view-dependent lighting
and challenging geometry to such 3D models.

The arduous process of training a neural radiance field for each scene is partly solved
by image-based rendering networks that aggregate nearby images to synthesize a local
radiance field, as we have seen with IBR-Net. This approach is suited for pre-training
and in addition, the network can focus on relevant parts of the scene to synthesize more
detailed views. Combining volumetric data structures with image-based rendering
networks would be a step towards applications that can rapidly construct and render
radiance fields.

None of the experimented methods perform particularly well when faced with
missing information, especially in situations where the target view contains scene
content that was not seen during training. An important research direction is how
to predict scene content in these missing regions, similar to generative adversarial
networks that perform in-painting.

51

The use cases of learning-based novel view synthesis remains to be seen, but looking
at current trends there are a number of directions the technology has potential to create
innovation. Specifically in product visualization, the technology could let customers
interact with products or assets in a fully interactive manner, for example by means
of a virtual store or a virtual house tour. A similar application is virtual navigation,
in which the user could explore a large-scale scene, such as a construction site or an
office space. Aerial photography could be used for even larger scenes.

The advancements of current research in the field suggests that the technology could
become a new medium for movies and video games. By using a multi-camera setup,
the technology could be used to create interactive films where the viewer can freely
move around and rewind the content. The technology could see some use in video
game as well, by using assets derived from real-world images. However, the available
software solutions that encapsulate the process of creating and rendering scenes
with learning-based novel view synthesis is virtually non-existent. The creation of
innovative software applications, akin to 3D modeling and photogrammetry software,
is essential for widespread adoption of the technology.

52

8. CONCLUSION

This thesis has reviewed the concept of novel view synthesis, deep learning and
surveyed novel view synthesis methodologies that utilize deep neural networks to
synthesize views. We collected a novel multi-view stereo dataset for the purposes
of view synthesis and demonstrated the process of collecting and preparing such
datasets using a hand-held camera. The collected dataset contains a total of 6 scenes,
roughly 40-100 images per scene, including different types of camera motion and
scene content. The experimental part of this thesis adopted state of the art methods
in learning-based novel view synthesis, namely, NeRF, NeRF−−, NeX and IBR-Net.
The methods were compared quantitatively and qualitatively using the collected dataset
and in addition, we experimented with some of their intrinsic properties to gain further
insight on their performance.

The results show that each of the methods are capable of synthesizing plausible
views from novel viewpoints, including situations with complex geometry as well as
transparent and reflective materials. We have shown that using manually calibrated
camera intrinsics resulted in significant improvement in synthesized views. The
experiments done with NeRF−− reveal an interesting alternative to COLMAP for
estimating camera poses from a set of images. The method could especially be
useful when the camera parameters are not entirely accurate and need to be refined.
However, compared to COLMAP the method is not very succesful at estimating
camera poses without prior information. The results from NeX show that factorized
neural representations are well suited for view synthesis and can be readily stored in
a volumetric representation that enables fast rendering and portability to conventional
graphics engines, such as WebGL. Finally, the results from IBR-Net show that using
a pre-trained network that aggregates information from nearby views can replace
the arduous process of training a neural radiance field for each scene, which is
more scalable and greatly reduces the time to prepare a scene for view synthesis.
Furthermore, IBR-Net excelled at preserving fine details of the scene even with just
a few reference images, whereas NeRF and NeX was more prone to synthesize blurry
views.

53

9. REFERENCES

[1] McMillan L. & Bishop G. (1995) Plenoptic modeling: An image-based rendering
system. In: Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques, pp. 39–46.

[2] Levoy M. & Hanrahan P. (1996) Light field rendering. In: Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques, pp. 31–42.

[3] Gortler S.J., Grzeszczuk R., Szeliski R. & Cohen M.F. (1996) The lumigraph. In:
Proceedings of the 23rd annual conference on Computer graphics and interactive
techniques, pp. 43–54.

[4] Chai J.X., Tong X., Chan S.C. & Shum H.Y. (2000) Plenoptic sampling. In:
Proceedings of the 27th annual conference on Computer graphics and interactive
techniques, pp. 307–318.

[5] Schonberger J.L. & Frahm J.M. (2016) Structure-from-motion revisited. In:
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 4104–4113.

[6] Goesele M., Curless B. & Seitz S.M. (2006) Multi-view stereo revisited. In:
2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), vol. 2, IEEE, vol. 2, pp. 2402–2409.

[7] Delaunay B., Vide S., Lamémoire A. & De Georges V. (1934) Bulletin
de l’académie des sciences de l’urss. Classe des sciences mathématiques et
naturelles 6, pp. 793–800.

[8] Chaurasia G., Duchene S., Sorkine-Hornung O. & Drettakis G. (2013)
Depth synthesis and local warps for plausible image-based navigation. ACM
Transactions on Graphics (TOG) 32, pp. 1–12.

[9] Goesele M., Ackermann J., Fuhrmann S., Haubold C., Klowsky R., Steedly D.
& Szeliski R. (2010) Ambient point clouds for view interpolation. In: ACM
SIGGRAPH 2010 papers, pp. 1–6.

[10] Hedman P., Ritschel T., Drettakis G. & Brostow G. (2016) Scalable inside-out
image-based rendering. ACM Transactions on Graphics (TOG) 35, pp. 1–11.

[11] Penner E. & Zhang L. (2017) Soft 3d reconstruction for view synthesis. ACM
Transactions on Graphics (TOG) 36, pp. 1–11.

[12] LeCun Y., Bengio Y. & Hinton G. (2015) Deep learning. nature 521, pp. 436–444.

[13] Duchi J., Hazan E. & Singer Y. (2011) Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research 12.

[14] Kingma D.P. & Ba J. (2014) Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 .

54

[15] Hecht-Nielsen R. (1992) Theory of the backpropagation neural network. In:
Neural networks for perception, Elsevier, pp. 65–93.

[16] Ramchoun H., Idrissi M.A.J., Ghanou Y. & Ettaouil M. (2016) Multilayer
perceptron: Architecture optimization and training. IJIMAI 4, pp. 26–30.

[17] Sitzmann V., Martel J., Bergman A., Lindell D. & Wetzstein G. (2020) Implicit
neural representations with periodic activation functions. Advances in Neural
Information Processing Systems 33.

[18] Mildenhall B., Srinivasan P.P., Tancik M., Barron J.T., Ramamoorthi R. & Ng R.
(2020) Nerf: Representing scenes as neural radiance fields for view synthesis. In:
European Conference on Computer Vision, Springer, pp. 405–421.

[19] O’Shea K. & Nash R. (2015) An introduction to convolutional neural networks.
arXiv preprint arXiv:1511.08458 .

[20] He K., Zhang X., Ren S. & Sun J. (2016) Deep residual learning for image
recognition. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770–778.

[21] Ronneberger O., Fischer P. & Brox T. (2015) U-net: Convolutional networks for
biomedical image segmentation. In: International Conference on Medical image
computing and computer-assisted intervention, Springer, pp. 234–241.

[22] Gers F.A., Schmidhuber J. & Cummins F. (1999) Learning to forget: Continual
prediction with lstm .

[23] Chung J., Gulcehre C., Cho K. & Bengio Y. (2015) Gated feedback recurrent
neural networks. In: International conference on machine learning, PMLR, pp.
2067–2075.

[24] Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.N.,
Kaiser L. & Polosukhin I. (2017) Attention is all you need. arXiv preprint
arXiv:1706.03762 .

[25] Nguyen-Ha P., Huynh L., Rahtu E. & Heikkila J. (2020) Sequential view
synthesis with transformer. In: Proceedings of the Asian Conference on
Computer Vision.

[26] Wang Q., Wang Z., Genova K., Srinivasan P., Zhou H., Barron J.T., Martin-
Brualla R., Snavely N. & Funkhouser T. (2021) Ibrnet: Learning multi-view
image-based rendering. arXiv preprint arXiv:2102.13090 .

[27] Hedman P., Philip J., Price T., Frahm J.M., Drettakis G. & Brostow G. (2018)
Deep blending for free-viewpoint image-based rendering. ACM Transactions on
Graphics (TOG) 37, pp. 1–15.

[28] Riegler G. & Koltun V. (2020) Free view synthesis. In: European Conference on
Computer Vision, Springer, pp. 623–640.

55

[29] Thies J., Zollhöfer M., Theobalt C., Stamminger M. & Nießner M. (2018) Ignor:
Image-guided neural object rendering. arXiv preprint arXiv:1811.10720 .

[30] Choi I., Gallo O., Troccoli A., Kim M.H. & Kautz J. (2019) Extreme view
synthesis. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 7781–7790.

[31] Nguyen P., Karnewar A., Huynh L., Rahtu E., Matas J. & Heikkila J. (2020)
Rgbd-net: Predicting color and depth images for novel views synthesis. arXiv
preprint arXiv:2011.14398 .

[32] Isola P., Zhu J.Y., Zhou T. & Efros A.A. (2017) Image-to-image translation with
conditional adversarial networks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1125–1134.

[33] Thies J., Zollhöfer M. & Nießner M. (2019) Deferred neural rendering: Image
synthesis using neural textures. ACM Transactions on Graphics (TOG) 38, pp.
1–12.

[34] Meshry M., Goldman D.B., Khamis S., Hoppe H., Pandey R., Snavely N. &
Martin-Brualla R. (2019) Neural rerendering in the wild. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6878–
6887.

[35] Aliev K.A., Ulyanov D. & Lempitsky V. (2019) Neural point-based graphics.
arXiv preprint arXiv:1906.08240 2, p. 4.

[36] Zhou T., Tucker R., Flynn J., Fyffe G. & Snavely N. (2018) Stereo
magnification: Learning view synthesis using multiplane images. arXiv preprint
arXiv:1805.09817 .

[37] Mildenhall B., Srinivasan P.P., Ortiz-Cayon R., Kalantari N.K., Ramamoorthi R.,
Ng R. & Kar A. (2019) Local light field fusion: Practical view synthesis with
prescriptive sampling guidelines. ACM Transactions on Graphics (TOG) 38, pp.
1–14.

[38] Wizadwongsa S., Phongthawee P., Yenphraphai J. & Suwajanakorn S. (2021)
Nex: Real-time view synthesis with neural basis expansion. arXiv preprint
arXiv:2103.05606 .

[39] Attal B., Ling S., Gokaslan A., Richardt C. & Tompkin J. (2020) Matryodshka:
Real-time 6dof video view synthesis using multi-sphere images. In: European
Conference on Computer Vision, Springer, pp. 441–459.

[40] Hold-Geoffroy Y., DiVerdi S., Sun Q., Sunkavalli K. & Ramamoorthi R. Deep
multi depth panoramas for view synthesis .

[41] Sitzmann V., Thies J., Heide F., Nießner M., Wetzstein G. & Zollhofer M. (2019)
Deepvoxels: Learning persistent 3d feature embeddings. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2437–
2446.

56

[42] Nguyen-Phuoc T., Li C., Theis L., Richardt C. & Yang Y.L. (2019)
Hologan: Unsupervised learning of 3d representations from natural images. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
7588–7597.

[43] Nguyen-Phuoc T., Richardt C., Mai L., Yang Y.L. & Mitra N. (2020) Blockgan:
Learning 3d object-aware scene representations from unlabelled images. arXiv
preprint arXiv:2002.08988 .

[44] Lombardi S., Simon T., Saragih J., Schwartz G., Lehrmann A. & Sheikh Y.
(2019) Neural volumes: Learning dynamic renderable volumes from images.
arXiv preprint arXiv:1906.07751 .

[45] Laine S. & Karras T. (2010) Efficient sparse voxel octrees. IEEE Transactions on
Visualization and Computer Graphics 17, pp. 1048–1059.

[46] Liu L., Gu J., Lin K.Z., Chua T.S. & Theobalt C. (2020) Neural sparse voxel
fields. arXiv preprint arXiv:2007.11571 .

[47] Yu A., Li R., Tancik M., Li H., Ng R. & Kanazawa A. (2021) Plenoctrees for
real-time rendering of neural radiance fields. arXiv preprint arXiv:2103.14024 .

[48] Mescheder L., Oechsle M., Niemeyer M., Nowozin S. & Geiger A. (2019)
Occupancy networks: Learning 3d reconstruction in function space. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4460–4470.

[49] Park J.J., Florence P., Straub J., Newcombe R. & Lovegrove S. (2019) Deepsdf:
Learning continuous signed distance functions for shape representation. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 165–174.

[50] Sitzmann V., Zollhöfer M. & Wetzstein G. (2019) Scene representation networks:
Continuous 3d-structure-aware neural scene representations. arXiv preprint
arXiv:1906.01618 .

[51] Niemeyer M., Mescheder L., Oechsle M. & Geiger A. (2020) Differentiable
volumetric rendering: Learning implicit 3d representations without 3d
supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 3504–3515.

[52] Tancik M., Srinivasan P.P., Mildenhall B., Fridovich-Keil S., Raghavan N.,
Singhal U., Ramamoorthi R., Barron J.T. & Ng R. (2020) Fourier features let
networks learn high frequency functions in low dimensional domains. arXiv
preprint arXiv:2006.10739 .

[53] Tancik M., Mildenhall B., Wang T., Schmidt D., Srinivasan P.P., Barron J.T.
& Ng R. (2020) Learned initializations for optimizing coordinate-based neural
representations. arXiv preprint arXiv:2012.02189 .

57

[54] Garbin S.J., Kowalski M., Johnson M., Shotton J. & Valentin J. (2021) Fastnerf:
High-fidelity neural rendering at 200fps. arXiv preprint arXiv:2103.10380 .

[55] Kajiya J.T. & Von Herzen B.P. (1984) Ray tracing volume densities. ACM
SIGGRAPH computer graphics 18, pp. 165–174.

[56] Martin-Brualla R., Radwan N., Sajjadi M.S., Barron J.T., Dosovitskiy A. &
Duckworth D. (2020) Nerf in the wild: Neural radiance fields for unconstrained
photo collections. arXiv preprint arXiv:2008.02268 .

[57] Zhang K., Riegler G., Snavely N. & Koltun V. (2020) Nerf++: Analyzing and
improving neural radiance fields. arXiv preprint arXiv:2010.07492 .

[58] Yu A., Ye V., Tancik M. & Kanazawa A. (2020) pixelnerf: Neural radiance fields
from one or few images. arXiv preprint arXiv:2012.02190 .

[59] Srinivasan P.P., Deng B., Zhang X., Tancik M., Mildenhall B. & Barron J.T.
(2020) Nerv: Neural reflectance and visibility fields for relighting and view
synthesis. arXiv preprint arXiv:2012.03927 .

[60] Kajiya J.T. (1986) The rendering equation. In: Proceedings of the 13th annual
conference on Computer graphics and interactive techniques, pp. 143–150.

[61] Guo M., Fathi A., Wu J. & Funkhouser T. (2020) Object-centric neural scene
rendering. arXiv preprint arXiv:2012.08503 .

[62] Xian W., Huang J.B., Kopf J. & Kim C. (2020) Space-time neural irradiance
fields for free-viewpoint video. arXiv preprint arXiv:2011.12950 .

[63] Park K., Sinha U., Barron J.T., Bouaziz S., Goldman D.B., Seitz S.M. & Brualla
R.M. (2020) Deformable neural radiance fields. arXiv preprint arXiv:2011.12948
.

[64] Wang Z., Wu S., Xie W., Chen M. & Prisacariu V.A. (2021) Nerf −−:
Neural radiance fields without known camera parameters. arXiv preprint
arXiv:2102.07064 .

[65] Eslami S.A., Rezende D.J., Besse F., Viola F., Morcos A.S., Garnelo M.,
Ruderman A., Rusu A.A., Danihelka I., Gregor K. et al. (2018) Neural scene
representation and rendering. Science 360, pp. 1204–1210.

[66] Opencv calibration tutorial. https://docs.opencv.org/master/dc/
dbb/tutorial_py_calibration.html.

[67] Wang Z., Bovik A.C., Sheikh H.R. & Simoncelli E.P. (2004) Image quality
assessment: from error visibility to structural similarity. IEEE transactions on
image processing 13, pp. 600–612.

[68] Zhang R., Isola P., Efros A.A., Shechtman E. & Wang O. (2018) The
unreasonable effectiveness of deep features as a perceptual metric. In:
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 586–595.

https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html

58

[69] Tensorflow ssim implementation. https://www.tensorflow.org/api_
docs/python/tf/image/ssim.

[70] Tensorflow lpips implementation. https://github.com/alexlee-gk/
lpips-tensorflow.

[71] Simonyan K. & Zisserman A. (2014) Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556 .

[72] Lorensen W.E. & Cline H.E. (1987) Marching cubes: A high resolution 3d
surface construction algorithm. ACM siggraph computer graphics 21, pp. 163–
169.

https://www.tensorflow.org/api_docs/python/tf/image/ssim
https://www.tensorflow.org/api_docs/python/tf/image/ssim
https://github.com/alexlee-gk/lpips-tensorflow
https://github.com/alexlee-gk/lpips-tensorflow

59

10. APPENDIX

A. OpenCV Camera Calibration

The following Python script implements the calibration procedure discussed in
Section 4.1.2. The output of this script are the estimated camera intrinsics. This
implementation is largely based on the OpenCV calibration tutorial7 [66].
import numpy as np
import cv2 as cv
import glob
import matplotlib.pyplot as plt

width = 11 # Chessboard width
height = 7 # Chessboard height
image_folder = "./images" # Folder containing the calibration images
image_format = "jpg" # Image format of the calibration images

objp = np.zeros((width*height,3), np.float32)
objp[:,:2] = np.mgrid[0:width,0:height].T.reshape(-1,2)
objpoints = []
imgpoints = []
images = glob.glob(image_folder + "/*." + image_format)

Find chessboard corners and plot the results
for fname in images:

img = cv.imread(fname)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
ret, corners = cv.findChessboardCornersSB(gray, (width, height), None)
if ret == True:

objpoints.append(objp)
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
sp_corners = cv.cornerSubPix(gray, corners, (11,11), (-1,-1), criteria)
imgpoints.append(sp_corners)
plt.scatter(sp_corners.T[0], sp_corners.T[1], c="red", s=4.0)
plt.imshow(gray, cmap="gray")
plt.show()

Calibrate the camera and print the results
ret, mtx, dist, rvecs, tvecs = cv.calibrateCamera(objpoints, imgpoints, gray.shape

[::-1], None, None, flags=cv.CALIB_FIX_K3)
print("Camera matrix", mtx)
print("Distortion coefficients: ", dist)
print("RMS: ", ret)

B. Minimal NeRF implementation with PyTorch

The following program is a minimal PyTorch implementation of NeRF [18]. Note
that the purpose of this program is not to exactly reproduce the original paper and
it is missing many of the advanced features. This program serves as a practical
demonstration of how to create and train a neural radiance field using PyTorch.
import torch
import numpy as np
import math
import time
import os
from torch import nn
from torch.utils.data import Dataset, DataLoader
from torch.nn import functional as F
from PIL import Image

7https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.
html

https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html

60

class NeRF(nn.Module):

def __init__(self, min_bounds, max_bounds, num_enc_p=10, num_enc_d=4,
num_channels=256):
super(NeRF, self).__init__()
self.num_enc_p = num_enc_p
self.num_enc_d = num_enc_d
self.num_channels = num_channels
self.min_bounds = min_bounds
self.max_bounds = max_bounds
self.layers = nn.ModuleList([

self.layer(6 * num_enc_p, num_channels),
self.layer(num_channels, num_channels),
self.layer(num_channels, num_channels),
self.layer(num_channels, num_channels),
self.layer(num_channels, num_channels),
self.layer(6 * num_enc_p + num_channels, num_channels),
self.layer(num_channels, num_channels),
self.layer(num_channels, num_channels),
self.layer(num_channels, num_channels + 1, act_fn = torch.nn.Identity),
self.layer(6 * num_enc_d + num_channels, num_channels // 2),
self.layer(num_channels // 2, 3, act_fn = torch.nn.Sigmoid)

])

def layer(self, in_features, out_features, act_fn = torch.nn.ReLU):
return nn.Sequential(

torch.nn.Linear(in_features, out_features),
act_fn()

)

def get_rays(self, image, camera_pose, focal):
W = image.shape[1]
H = image.shape[0]
i, j = torch.meshgrid(torch.linspace(0, W-1, W), torch.linspace(0, H-1, H))
lat = (i - W/2) / W
lon = (j - H/2) / H
dirs = torch.stack([(i - (W - 1) * 0.5) / focal, -(j - (H - 1) * 0.5) / focal

, -torch.ones_like(i)], -1)
rays_d = torch.sum(dirs[..., np.newaxis, :] * camera_pose[:3,:3], -1)
rays_d = rays_d.permute((1, 0, 2)) # (w, h, ch) -> (h, w, ch)
rays_d = torch.reshape(rays_d, [-1,3])
rays_d = rays_d / torch.sqrt(torch.sum(torch.square(rays_d), dim=1))[:,None]
rays_o = camera_pose[:3,-1].expand(rays_d.shape)
gt_colors = image.reshape([-1, 3])
return [rays_o, rays_d, gt_colors]

def box_intersection(self, positions, directions):
inv_directions = 1 / directions
t0 = (self.min_bounds - positions) * inv_directions
t1 = (self.max_bounds - positions) * inv_directions
tmax, _ = torch.min(torch.max(t0, t1), dim=1)
return tmax

def render_rays(self, positions, directions, num_samples):
device = positions.device
batch_size = positions.shape[0]
path_length = self.box_intersection(positions, directions)
samples = torch.arange(1, num_samples + 1).to(device) / num_samples
p = positions[:,None,:] + directions[:,None,:] * samples[None,:,None] *

path_length[:,None,None]
p_flat = torch.reshape(p, (-1, 3)).float()
d = directions.expand((num_samples, batch_size, 3)).permute((1, 0, 2))
d_flat = torch.reshape(d, (-1, 3)).float()
colors, densities = self.forward(p_flat, d_flat)
colors = colors.reshape((batch_size, num_samples, 3))
densities = densities.reshape(d.shape[:-1])
delta = path_length / num_samples
batch_ones = torch.ones((batch_size, 1)).to(device)
alpha = 1.0 - torch.exp(-1.0 * densities * delta[:,None])
T = torch.cumprod(torch.cat([batch_ones, 1.0 - alpha], -1), -1)[:, :-1]
weights = T * alpha

61

projected_colors = torch.sum(weights[:,:,None] * colors, dim=1)
depth = torch.sum(weights * samples, dim=1)
return [projected_colors, depth, weights]

def encode(self, x, L):
device = x.device
batch_size = x.shape[0]
f = ((2.0 ** torch.arange(0, L))).to(device)
f = f.expand((batch_size, 3, L))
f = torch.cat([torch.cos(math.pi * f * x[:,:,None]), torch.sin(math.pi * f *

x[:,:,None])], dim=2)
return f.reshape((batch_size, -1))

def forward(self, p, d):
p_normalized = -1. + 2. * (p - self.min_bounds) / (self.max_bounds - self.

min_bounds)
p_enc = self.encode(p_normalized, self.num_enc_p);
d_enc = self.encode(d, self.num_enc_d);
res1 = self.layers[0](p_enc)
res2 = self.layers[1](res1)
res3 = self.layers[2](res2)
res4 = self.layers[3](res3)
res5 = self.layers[4](res4)
res6 = self.layers[5](torch.cat([p_enc, res5], dim=1))
res7 = self.layers[6](res6)
res8 = self.layers[7](res7)
res9 = self.layers[8](res8)
density = F.relu(res9[:,0])
res10 = self.layers[9](torch.cat([res9[:,1:], d_enc], dim=1))
color = self.layers[10](res10)
return [color, density]

class MVSDataset(Dataset):

def __init__(self, root_dir):
self.root_dir = root_dir
self.poses = torch.from_numpy(np.load(root_dir + "/poses.npy"))
self.focal = 220.836477965

def __len__(self):
filenames = [f for f in os.listdir(self.root_dir) if (f[-3:] in ["jpg", "png

"])]
return len(filenames)

def __getitem__(self, idx):
if torch.is_tensor(idx): idx = idx.tolist()[0]
img_path = self.root_dir + "/gt-%d.png" % (idx % self.__len__())
image = Image.open(img_path) # (h, w, ch)
image = torch.from_numpy(np.array(image)) / (256.0 - 1.0)
pose = self.poses[idx]
focal = self.focal
return [image[:,:,:-1], pose, focal]

Instantiate dataset & model
cuda = True
device = torch.device("cuda") if (cuda) else torch.device("cpu")
dataset = MVSDataset("./datasets/dragon")
min_bounds = torch.Tensor([-10, -10, -10]).to(device)
max_bounds = torch.Tensor([10, 10, 10]).to(device)
model = NeRF(min_bounds, max_bounds)
if (cuda): model.cuda()
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Total model parameters: %d" % total_params)
print("Total images: %d" % len(dataset))
print("Image size: %s" % str(dataset[0][0].shape))
print("Focal length: %s" % str(dataset[0][2]))

Training variables
optimizer = torch.optim.Adam(model.parameters(), lr=5e-4)
iterations = 1
rays_per_batch = 2**11

62

num_samples = 256
all_positions = []
all_directions = []
all_gt_colors = []

Gather all rays
for i in range(len(dataset)):

image, pose, focal = dataset[i]
positions, directions, gt_colors = model.get_rays(image, pose, focal)
all_positions.append(positions)
all_directions.append(directions)
all_gt_colors.append(gt_colors)

Concatenate all rays
all_positions = torch.cat(all_positions, dim=0)
all_directions = torch.cat(all_directions, dim=0)
all_gt_colors = torch.cat(all_gt_colors, dim=0)

Shuffle rays
shuffle = torch.randperm(all_positions.shape[0])
all_positions = all_positions[shuffle]
all_directions = all_directions[shuffle]
all_gt_colors = all_gt_colors[shuffle]

Training loop
rays_per_iteration = all_positions.shape[0]
for i in range(iterations):

current_idx = 0
while(current_idx < rays_per_iteration):

optimizer.zero_grad()
indices = torch.arange(current_idx, min(all_positions.shape[0], current_idx +

rays_per_batch))
positions = all_positions[indices].to(device)
directions = all_directions[indices].to(device)
colors, depths, weights = model.render_rays(positions, directions,

num_samples)
gt = all_gt_colors[indices].to(device)
loss = torch.mean(torch.square(colors - gt))
loss.backward()
current_idx += rays_per_batch
optimizer.step()
print(’iteration: %d, loss: %.4f, ray count: %.2f%%’ % (i, loss.item(), 100 *

current_idx / rays_per_iteration))
torch.save(model.state_dict(), "model-%d.pth" % i)

Figure 44. Results from the minimal NeRF program trained on a synthetic dataset.

	
	
	

	
	
	
	
	

	

	
	
	
	
	
	

	
	
	

	
	
	

	
	
	
	

	
	
	
	
	

	

	
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	
	

	
	

	
	
	
	
	

	
	REFERENCES
	
	A. OpenCV Camera Calibration
	B. Minimal NeRF implementation with PyTorch

