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ABSTRACT

In this work, the Internet of Things system is implemented for enabling distance
learning and laboratory work for an embedded systems programming course at
the University of Oulu. The system must meet the following three requirements.
The system receives and visualizes sensor data from the embedded device. The
system enables two-way communication with the cloud application and the
embedded device. The system can be connected via the public Internet, where
the system is managed through Kubernetes.

The architecture of the system is described in three different layers. The
perception layer contains embedded devices used to produce sensor data. The
components of the network layer process and transmit data. The cloud layer
includes data storage and further processing in the application, as well as data
visualization. The architecture of the implemented system consists of distributed
microservices that are deployed using container technology.

The system was tested on the basis of feedback collected from the beta version
implemented in autumn 2020, as well as use cases defined by the developers, which
were constructed from previously known problem areas. As a result, modular and
scalable future distance learning system for embedded systems was developed.

Keywords: Internet of Things, embedded systems, engineering education,
microservices, virtualization
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TIIVISTELMÄ

Tässä työssä suunnitellaan ja toteutetaan etäopiskelun sekä -laboratoriotyön
mahdollistava esineiden internetin järjestelmä sulautettujen järjestelmien
ohjelmoinnin kurssille Oulun yliopistossa. Järjestelmän tulee toteuttaa seuraavat
kolme vaatimusta. Järjestelmä vastaanottaa ja visualisoi anturitietoa sulautetulta
laitteelta. Järjestelmä mahdollistaa kaksisuuntaisen viestinnän pilvisovelluksen
ja sulautetun laitteen kanssa. Järjestelmään saa yhteyden julkisen Internetin
kautta, jossa järjestelmään hallinnoidaan Kubernetesin avulla.

Järjestelmän arkkitehtuuri kuvataan kolmena eri kerroksena. Havaintokerros
sisältää sulautettuja laitteita, joita käytetään anturitiedon tuottamiseen.
Verkkokerroksen komponentit käsittelevät ja välittävät dataa. Pilvikerros
sisältää tietojen tallennuksen ja jatkokäsittelyn sovelluksessa, sekä tietojen
visualisoinnin. Toteutetun järjestelmän arkkitehtuuri koostuu hajautetuista
mikropalveluista, jotka otetaan käyttöön konttiteknologian avulla.

Järjestelmää testattiin perustuen syksyllä 2020 toteutetusta kokeiluversiosta
kerättyyn palautteeseen sekä kehittäjien määrittelemiin käyttötapauksiin, jotka
luotiin hyödyntäen entuudestaan tunnettuja ongelma-alueita. Työn tuloksena
valmistui modulaarinen ja skaalautuva tulevaisuuden etäopetusjärjestelmä
sulautettujen järjestelmien ohjelmoinnin kursseille.

Avainsanat: esineiden internet, sulautetut järjestelmät, insinöörikoulutus,
mikropalvelut, virtualisaatio
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1. INTRODUCTION

The Internet of Things (IoT) has seen growing popularity over the last decade, with
even more connected devices present in everyday human life. Different sensors and
smart devices are used for example in home, industry, organizations, and health-care,
to monitor, manage and automate task that has traditionally required human actions.
[1]

Due to the COVID-19 pandemic, teaching courses with extensive lab work became
more difficult. Thus, the person in charge of the course had a plan of a system that
allows the course to be completed without restrictions imposed by COVID-19, while
providing jobs for students.

In this thesis, we design and implement a container-based solution for a cloud
application receiving sensor data from students embedded devices and enabling two-
way communication with the devices for course Computer Systems at the University of
Oulu. This platform will make it possible to deploy a course project environment for
remote learning. At the end, the application will be deployed publicly. Furthermore,
containers are orchestrated by Kubernetes distribution, RedHat OKD [2].

The rest of the thesis is organized as follows. Chapter 2 is about the background of
technologies used in this project. In Chapter 3 we present the application architecture
and Chapter 4 we present its implementation. All the testing is performed in Chapter
5, and the results are presented with a comprehensive data analysis. In chapter 6, we
discuss the realized design and implementation as well as the reasoning leading to the
presented solution and propose directions for future work. Lastly, Chapter 7 concludes
this thesis.
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2. RELATED WORK

Due to the pandemic, starting in December 2019, schools and universities in Finland
were temporary closed in March 2020, including University of Oulu. The abnormal
situation forced us to come up with better ways to carry out distance learning. The need
to make the course, Computer Systems, suitable for remote studying became evident.
During the course, students complete their own embedded programming project in
groups using the Texas Instruments SensorTag embedded device, requiring classroom
presence during exercises to enable interaction, including wireless communication,
capabilities of the device with its environment. Creating a cloud application for this
purpose makes it possible to comply with social distancing rules enforced by the public
institutions by spreading the gateway devices for testing wireless communication to a
larger area. It also makes it possible for some students to participate remotely, by using
their own computer as the gateway device.

This project also serves the purpose of finding what it takes to create an IoT
application for educational purposes, and how all this is utilized in education. Creating
new ideas for future courses or for adapting existing ones. The current development in
web technologies seems to be toward edge computing, and this gradual change should
also be visible in education.

During this section, the most relevant concepts to the project are described in
glancing detail to provide a view of where the project is situated in the present field.
The major concepts include the IoT, microservices, and web technologies, or in other
words, the web stack.

2.1. Internet of Things

IoT, a complex entity where numerous objects form a mesh to communicate with each
other and the outside world [3]. These objects, small pieces of well structured network,
are not always thought of as computers. They can be sensors, actuators, small devices,
and etc. The whole idea behind this, however, is to make various different tasks
automated and function without human intervention [1]. IoT is around us every day,
even if we do not think about its existence. Novel examples of IoT surrounding us
could be a smart lock at home, which keeps track of the state; locked or unlocked.
Another well illustrating example from IoT world is the weather aware thermostat,
which is able to adapt, no matter if it is a cold or warm day outside [4]. IoT is not
standardized, and there are not just one unique and universal definition for IoT; it is
rather context dependant [1].

The concept of IoT has been around for a long time, however, the term IoT was
first coined in 1999 by British technology pioneer, Kevin Ashton. Ashton wanted to
show the power of connected Radio Frequency IDentification tags. Since then, IoT
has become the one and only term for a system described above [5]. We have come
a long way since IoT started to gain popularity. In 2020, there are more IoT devices
than non-IoT, approximately 12 billion IoT devices are connected to the Internet. The
growing popularity of IoT shows no signs of slowing down. In fact, 30 billion devices
is expected in 2025 [6], whereas the most optimistic believe the number could be much
greater, even 100 billion devices has been proposed. The time will show the growth,
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Figure 1. The layers of IoT

but it is clear that new solutions for processing and transferring huge amounts of data
in a sustainable way is needed.

2.1.1. Layers

In IoT, there are more than just one definition what comes to the architecture models.
The most fundamental way to structure IoT is the protocol-based three layer model.
The five layer model is more suitable for researchers due to its more detailed way for
separating functionalities [7].

Cloud layer

The top layer of this three layer IoT architecture model. Data travels from the
perception layer, through edge layer, and finally reaches the cloud layer. This layer
contains powerful servers that are used to run services, and to process and store data.
These services are, for example, applications where to request data using a browser.

Edge layer

Edge layer is a part of the network layer, which consist of a core network layer and
edge layer, a middle man of IoT architecture. Data travels in both directions through
edge layer devices such as gateways, servers and access points. [8] Massive amounts
of data produced by IoT devices has forced to come up with new ways to approach data
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processing. For a long time, huge data centers located usually far from these physical
IoT devices, were responsible for all computing. Edge brings more computing power
closer to the place where it is needed, to the source of data, and allows real-time data
to be used in time critical operations.

In march 2015, the Internet Architecture Board released a set of networking
guidelines regarding smart objects.

In device-to-device model, at least two devices communicate directly using protocols
such as Bluetooth. Commonly used in smart homes, for example, from light bulb to
light bulb.

Alternatively, a smart device can connect with a cloud service directly, using Wi-Fi
for instance, allowing the user to establish connection from a client application to the
smart device. This is called device-to-cloud model.

Device-to-gateway connection is required in case where a smart device is not able
to connect directly with a cloud service, or if a local gateway is needed for some other
reason. Very common use-case is a watch that needs a smartphone to work at full
capacity.

In more complicated scenarios, data produced by a sensor might need some
supplement data from another sensor which may be located far away from sensor
one. At this point back-end data-sharing model comes into play. These backend
applications can share data, and produce wanted result by combining data from
multiple different sources. [1]

Perception layer

On the bottom of IoT network architecture, there is a layer containing a miscellaneous
set of heterogenous devices, “things”. This layer contains physical devices, and it is
called a perception layer as well as device layer. This layer is included in every IoT-
model. It consist of objects made specifically to produce data. The most common
device in this layer is a smart phone, including various different types of sensors such
as light intensity sensor, movement sensor, and microphone. [7]

2.1.2. Data Processing

IoT devices produce data more than ever, and the data has to be processed somehow.
A way that has prevailed for a little longer is the cloud computing model, which is now
losing its popularity to the fog computing model.

Fog

For the last couple of years, some changes towards the decentralized architecture
have been made already. Fog (Figure 3, a newcomer that emphasizes distributed data
processing is able to eg. offer more accurate real-time data by leaving out the phase
where all the data is transferred and processed in a cloud [7]. The word “fog” for
this concept was first presented by Cisco in 2014, a word that describes decentralized
network as an extension to a cloud computing paradigm [9].
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Figure 2. Fog computing architecture

Nodes of a fog computing network are usually located in wide area, and the
number of nodes is much greater than cloud data centers. Furthermore, they have
multiple advantages compared to cloud computing. For example, continuous internet
connectivity is not mandatory, and by using smaller hardware as gateways, switched,
servers, etc; it is possible to reduce power consumption. In addition, widely spread fog
nodes can be located close to perception layer devices. [10]

One important metric for fog computing is Quality of Service (QoS), which is
measured by four different parameters: connectivity, reliability, capacity, and delay.
[11]

Cloud

Private cloud was the predecessor of public cloud, which means that the services can
be bought with money, whereas, private cloud was usually located somewhere on the
company’s premises. There are significant advantages in using public cloud providers
from user’s perspective [12]:

• Availability of computing resources.

• Scalability of the services and applications.

• No need to invest in expensive hardware.

• Features such as security and reliability could be better.

These advantages are achieved by using virtualization techniques; virtual machines
(VMs) and containers [12]. VMs guarantee better availability, and easier maintenance
as well as installation of multiple different operating systems, and so, better utilization
of the hardware.
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Figure 3. Cloud computing architecture

2.2. Microservices

Microservices are independent small executable modules that communicate with other
microservices using messages, capable of being executed independently from other
modules. A single microservice typically performs a single well-defined task, and
many microservices can be used as application modules to create an application, called
a microservices architecture. This differs from traditional monolithic applications
because the traditional modules communicate using shared machine resources, and
are not independently executable after development. [13]

Microservices and the IoT share some goals: lightweight communication,
independent deployable software, a minimum of centralized management, and
independent development techniques and technologies [14]. The message-based
communication makes the microservices architecture easily distributable since the
messaging can naturally be done over the network. These distributed applications
can be easily scaled, maintained, and containerized [13]. The traditional server-side
applications run in centralized cloud, but the utilization of microservices allows getting
the data processing done closer to the end user in the edge or fog layer, decreasing
network load, shortening latency, and improving security.

2.2.1. Containers

Containers are also called operating system-level virtualization. They are based on a
concept of namespaces, which means that the resources available to a process appear
to them as if they have their own instance. These resources are only visible to the
processes within a namespace and processes from other namespaces cannot interfere
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with other namespaces. Nevertheless, processes still run on the host system and thus
all containers use the same kernel, so containers run only on specific hosts. [14]

Containers can be deployed with all of the required dependencies enclosed, without
worry of conflicting library versions. In addition, the container is the only environment
where the enclosed processes run, so running tests on the whole container prevents
execution environment problems. Scalability is also better with containers, since
starting and stopping multiple instances of each service is possible due to low overhead
of container virtualization, and microservices are highly decoupled. Due to these
reasons, containers are a good choice to meet the fluctuating demand in cloud and
edge layers. Solutions for managing containers, like Docker, also can fully automate
deployment. [14]

2.2.2. Orchestration

Container orchestration is the method which allows the user to define how the
containers should be coordinated in the cloud when a multi-container application is
deployed [15]. It defines the initial deployment of containers and the management
of multiple containers, meaning the user can create more instances of a service on
the fly to replace crashed containers or to balance traffic, and in the distributed setting,
orchestration also can move containers from server to server. In addition, orchestration
tools like Kubernetes abstract many aspects of deployment, and for example, abstract
the network aspect by providing the concept of a cluster. The containers within a
cluster essentially belong to the same subnet, and every container is reachable from
every other container within a cluster, even though they may not be normally reachable
from the servers running the cluster.

2.3. MERN

Web-based client applications for IoT systems are typically built using several different
technologies. One popular web technology combination is MERN, which stands for
MongoDB, Express.js, React.js and Node.js. This technology stack allows working
with only one programming language, JavaScript [16], by making the development
work easier due to focusing only on a single programming language.

React.js is an open-source ‘JavaScript library for building user interfaces‘.
Originally created by Jordan Walke, a software engineer at Facebook. Nowadays,
React has thousands of contributors to keep up with the pace [17].

Before User Interface (UI) frameworks, or libraries such as React.js, web
applications followed a round-trip model. While browsing through a website,
all the new content was fetched from a server every time the user, for instance,
requested a content update. In this way, the most of the logic were on servers, and
browser was used to render HyperText Markup Language (HTML), and execute small
scripts. There are still many applications following principles of this older round-trip
model.However, a new, and prevailing trend is to build applications to follow Single-
Page Application principles. Once a HTML document is retrieved from the server,
it will not be reloaded. For example, in React, Virtual Document Object Model is a
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Javascript object, and it is modified by JavaScript as well. Hypertext Transfer Protocol
(HTTP) to requests to Application Programming Interfaces (API) returns data, which
is then used in rerender of a content [18].

One very convenient feature in React is Javascript Extensible Markup Language
(JSX), which is a syntax extension to JavaScript, but looks very much like Hypertext
Markup Language (HTML). In this way, embedding JavaScript variables inside JSX
tags could be done, as well as functions, conditions or other JavaScript. In addition,
JSX includes built-in functionality to prevent injection attacks. Every time JSX is run
in browser, it has to be compiled down to a React function call, and finally React
elements [17].

MongoDB is a database where data is stored in documents, or in objects, instead
of rows and columns as in traditional Relational Database Managements Systems
(RDBMS). Collections in MongoDB is equivalent to tables in RDBMS. NoSQL
databases, like MongoDB has created for the need, and to perform better in some
areas than RDBMS, for example, scalability and speed [19].

One popular backend web application framework these days is minimal and flexible
Express.js, which is built on node.js, and can be used to share static content as well
as in routing. Express uses middleware functions for handling request objects, and
sending results back in response object [16].

Node.js is an open-source, cross-platform runtime environment for running, and
interpreting Javascript code. Utilizing the same engine that is running in Google
Chrome’s. Node.js is single threaded, and can work in a blocking, or non-blocking
way. Blocking means that a thread that starts an operation must wait until the operation
is finished. Non-blocking is asynchronous, which leads to better performance and
speed, since other operations get executed while waiting one to get finished [20].

2.4. Teaching IoT

Digitization of campuses and other educational institutions is propagating all over the
world. One form that embodies this is IoT, furthermore, there are also various different
ways to utilize it. For example, to empower professionals, or students in academic
fields. IoT may even be a start of something remarkable in educational institutes
by reforming old methods of teaching, and therefore, leaving the valuable time of
professors in something important, and by automating these everyday tasks. From the
students’ point of view, learning can boosted with a simple add on for the course, and
make learning compelling rather than by offering only the necessary to survive the
course. [21]

As an example of an IoT infrastructure, IoT platform was developed for thousands of
students in [22]. The hardware was a tailored sensor device, SenseBoard, containing
various electrical components such as LEDs, sensors, and a button. Sense, a brand
new visual programming language and environment, giving students a flying start.
And lastly, cloud-based application, using servers of university. That further connects
all sensing boards, and enable messaging between these devices. Sense environment
helps students without prior knowledge in programming to develop their first program
in short time, and rapidly scale up. As a result, students found good understanding in
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Figure 4. Five layer architecture used in [23]

programming basics at the end, and the course was highly valued based on the surveys.
Even though, the drop rate remained the same than in earlier years [22].

Since IoT is not just a one thing defined in a one way, there can be several ways to
form IoT systems. In [23], a system with five layers was built for educational purposes.
Depicted in Figure 4.

Functional blocks of IoT system defined in [24]:

1. IoT devices for producing data, or to function based on the data.

2. Servers for processing data.

3. Databases for storing data.

4. Applications for visualizing data.

5. Communication between these blocks, or within a block.

An example of key components covered in two courses that were offered in Lander
University. Embedded programming and Computer hardware play a huge role in IoT,
thus getting familiar with the basics of programming and hardware functionality will
help a lot in further studies. In addition, since IoT system are distributed, Networking
and communication as well Distributed computing have taken their places as a key
topics to cover for a comprehensive understanding of IoT systems. [25]

Due to the size, and constantly changing concept of IoT, it might be difficult to
choose the most valuable topics to cover in a course. A list created by [26] is a good
place to start, and it provides a great foundation for a course. The first subject to
cover is finding a way for students to think about IoT applications. A simple card
game may do the job, and help students get started. Other subjects to consider are the
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hardware to use, communication protocols, programming languages, non-traditional
user interfaces, cloud provider, and data analysis. In a list created by the authors in
[26], advise to go with widely used technologies that has large communities.

Unfortunately, IoT is not just an awesome, or world saving new thing, but
challenges within the field of IoT can be exigent. This includes areas such as cloud
computing, instructional technologies, mobility applications, security and privacy,
research computing, quality and ethics, and financing [21].
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3. DESIGN

In this section we present the project use cases and their requirements, project design
divided into two sections, and a short analysis of the design.

3.1. Project Objective

The main objectives defined for the project are:

• Receiving and visualizing multimodal sensor data from an IoT device.

• Two-way messaging between backend and an IoT device.

• Deployment into a public IoT infrastructure.

Analysis of these requirements leads to IoT system architecture with the
characteristic three layers. The cloud layer saves and visualizes sensor data, and holds
client applications. The edge layer holds gateways that relay messages between the
perception layer and the cloud layer. Finally, the perception or device layer holds
various IoT devices that send data to higher levels in the architecture.

3.2. System Functionality

Functionality of the system is largely governed by the use cases, briefly described in
the table below.

1. Students can use their embedded device to control their own avatar in a game by
sending wireless messages.

2. Messages that are sent from the client application can be received by the
student’s device.

3. It is possible to use an embedded device to wirelessly send sensor data to the
client application.

4. Sensor data can be visualized, for example, to help design a simple artificial
intelligence for gesture detection.

Next, the different design requirements will be discovered based on the objectives
and use cases, in the cloud, edge, and device layers.

The messages and sensor data need a database for storage, from which it can
then be viewed. A very flexible way to view the sensor data and various client
applications would be a web UI. For ease of use, the web UI will have to have
simple user authentication to select which messages should be viewed. Finally, the
third requirement about easy deployment can be satisfied by running the cloud layer in
Kubernetes, for instance.

In the edge or network layer, there are gateways and other possible gateway-
related infrastructure. A gateway is the component that interprets messages between
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two networks. Multiple gateway devices are needed if the deployment is required
to cover a large area, because of limited signal range. The responsibility of the
support infrastructure for gateways is to provide a way for them to easily and
scalably send messages between system components, and this can be achieved using a
publish/subscribe mechanism.

The final layer, the perception or device layer, has multiple IoT devices that contain
some sensors, and are capable of two-way communication with the gateway. With this
project, we will create a simple application in this layer to test various aspects of the
resulting system.

3.3. Analysis

The system is designed by following the latest state-of-the-art, thus one huge
backend service in the cloud layer is divided into multiple smaller and independent
microservices. To facilitate the workload caused by maintenance, and the process of
developing new system features in the future, we aimed to find as many entities as
possible. These entities can be scaled up or down, as well as removed without causing
the system to crash. Furthermore, new ones can be created and integrated into the
system. Despite of the advantages it is not the most efficient solution for a system of
this size to be divided into so many components. Luckily, the only focus was not to
build as efficient a system as possible, but increase the educational value.

As mentioned earlier; four different networking models for IoT have been released
in 2015. [1] One of these models is device-to-gateway model, which is the best fit
for this project. The gateway is possibly a software running on a piece of hardware.
However, the gateway can also be run on a laptop without a need to have hardware for
wireless communication, since the IoT devices can also use the Universal Serial Bus
(USB) connection. Nevertheless, the gateway component is used as a common point
for perception layer devices to send data.

The users will be programming the perception layer devices, and so are creating
the messages to communicate with the gateway. There is no given format for these
messages, but in this case it will have to be as user friendly as possible, for both the
ease of use and the resulting reduced chance of user error. Plain text format comes at
a cost of longer messages in a memory and capability constrained environment. For
this reason, the usage of existing formats, like JavaScript Object Notation (JSON),
is not preferred due to large overhead compared to a more custom approach. When
there are multiple gateways within signal range from each other, there is some concern
about where the messages should come from and go to. This could cause message
duplication if not handled correctly.

3.4. Architecture

Based on the analysis, and topics covered earlier, the architecture will be as follows.
There are three layers of IoT depicted in fig. 5 that represents the project architecture.
These layers can be divided into three different locations as well. The perception-
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Figure 5. Project architecture
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layer devices and network-layer components are local, and the rest of the components,
cloud-layer, are located much further.

The topmost layer in the project architecture is a React.js web application (Figure
5), which runs in a browser. Nginx, a web server among other things, is responsible
for sharing React.js static files. Nginx ingress controller is a gate to the application,
it exposes HTTP routes allowing an access to the Kubernetes cluster from outside
world. Furthermore, Ingress controller is responsible for routing request to a correct
microservice as well. [27]

The second layer that contains the back-end server, is not just one server, but many.
Account, Events, Log and Sensordata services. Each different concept forms its own
entity, a microservice, which is directly connected to the databases.

In the middle (Figure 5), there are databases. Each microservice will have its
own database, which is one of the principles when building microservice-based
applications. Databases are hosted by MongoDB Atlas, and further, AWS (Amazon
Web Services). The amount of data will be relatively small, at least at enterprise-level,
hence in this project each microservice has its own data collection, but not database. In
this way, scalability will remain good, and later if needed, switching from this model
to multiple database model, can be accomplished with little effort.

Below the databases, there are two components. Both components are able to
pass data in both directions, however, they focus on different types of data. The
last cloud layer component is a service broker node for managing traffic between
publisher/subscriber nodes as well as for managing access into the system.

Only two components are located on the network layer, right on the edge of the
network. A publisher/subscriber, which is able to process data, and therefore decide
whether it is worth sending data any further. The second component is a gateway that
works as an point for the data to move to and from the perception layer. The number
of gateways is not limited, but there has to be at least one.

On the bottom in the project architecture is the perception layer, or simply, the layer
that contains sensors, actuators, or any other smart devices. They can communicate
with the gateway, or with other devices. Devices in this layer are the source of data.

Each microservice (Figure 3 5 will be wrapped in a container, which later can be
scaled up or down by some orchestration tool. Or even create a new service instance
to replace the crashed one.
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4. IMPLEMENTATION

After the design phase comes implementation, but even before that, we had to have
a comprehensive conversation with the customer about technologies, devices, and
patterns to be used in this project. After this conversation, we ended up to choose
CSC Rahti container cloud to be the backend service provider in the cloud layer. On
the network layer, MQTT event-based communication was selected as the winner,
since its popularity and widespread use in IoT. A bit challenging part was to decide
how the gateway will be distributed to students, or should it be something else from
a distributable package. The following describes the implementation of the backend
in general, but since the focus of this thesis is in IoT and communication between
components, these areas are in covered in more detail.

4.1. Web Client

The client application is built using the web UI library React.js. The appealing
look comes mostly from the components of the popular UI framework, Material-UI.
In addition, several other libraries will be utilized in this project as well. React-
router, a collection of navigational components, added to this application for making
components render in the wanted order, as well as giving the correct URL to avoid an
otherwise mandatory refresh on the browser while navigating. Because of the nature
of React.js, it is a single-page application (SPA), meaning that there is only one actual
HTML file, embedded with JavaScript. As a result, moving from one view to the next
is technically just navigating in one HTML file.

To display personal data, it is required to have some way to link a user, or a group,
with a corresponding SensorTag. Even though the data produced by the SensorTag
is not sensitive, we decided to implement password authorization. As mentioned
earlier, nothing sensitive or identifying information is stored, but proper access control
reduces misuse of accounts, and therefore, students are able to finish their projects
with little unnecessary hassle. The downside here is that the registration is not limited
to students only, but every internet user is able to make an account, and login to the
application. This could be fixed by adding an extra field, where every student should
input a passcode given by the person in charge of the course, or every student gets a
pre-created account. But on the other hand, we do not want to make this application to
be an extra nuisance for the teacher.

The feature of sending events back and forth between a SensorTag, and a server
located in class, has been a part of the testing phase of the course in previous years.
That feature was implemented this year as well, but in a different way. This time, every
event will be pushed from a server to the client application using websockets, and this
all happens almost in real time. Like all the data retrieved from the database, client
application stores log messages in Redux store. The store is available for every react
component, and messages can be re-used in multiple different components.
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Figure 6. Application registration

Figure 7. A simple game for having good time while testing

Figure 8. Data diagram, data grid, and a list of events
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Figure 9. Message log on the right side, and a drawing board on the left

4.2. Backend

Design and implementation of a microservice-based system describes this project well,
thus we wanted to find as many entities as possible that could be separated reasonably
to be a microservice, even if the task was not that large. All the microservices in this
layer have an Express.js server running, and the server is listening constantly incoming
HTTP messages on the port dedicated to them. Even though all our server side code is
written in JavaScript, one of the good things in a microservice-based architecture is the
ease of switching programming languages and technologies between microservices. In
addition to the table below, authentication is implemented in all microservices. Instead
of calling users server for every protected endpoint, Passport.js is implemented to
check the validity of a JSON webtoken. Other features are listed and explained in
the table below.

All microservices listed above have their own database collection for storing and
retrieving data. Some of these collections are accessible from subscriber microservices
as well. Although all microservices should have a database that is not used by any other
microservice, in this case each microservice has a collection or two in some cases.

4.3. MQTT

There are two subscribers and one publisher directly connected to the database.
Functionality of these microservices is briefly described in the table below.

4.4. Gateway

In this chapter, the implementation of the gateway and the corresponding gateway
publisher/subscriber belonging to the network layer is described. For abbreviation, the
gateway publisher/subscriber shall be called the interface during this chapter. First, the
message formats between each component starting from the perception layer, up to the
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HTTP Microservices

Events Broadcasts SensorTag events to all clients that
have established a connection with Events-server
as well as forwards game results to the database.
Socket.io library is the tool used to achieve real-time
broadcasting. The library utilizes websockets, and
therefore, enables data to be pushed in real-time to
all clients.

Eventlog Ultimately, the only task for this service is to
keep listening changes in the message collection,
and almost immediately respond to that change by
pushing the data to all clients.

Sensordata Retrieves sensor data from the database.

Users Authorization and Authentication server, which is
responsible for registration, and login by creating web
tokens. These tokens contain encrypted information
about that account.

Table 1. HTTP microservices

MQTT Microservices

Sensordata Responsible for storing raw sensor data in a database.
And it subscribes a message with a topic of
sensordata

Eventlog Stores events ( UP, DOWN, RIGHT, LEFT ) to the
database. Retrieves game results from the database,
and forwards to broker. And it subscribes a message
with a topic of event

Broker Forwarding of all the valid data.

Gateway
pub/sub

Forwards and parses data to and from the gateway
connected via a serial connection. Has a rudimentary
UI to show state and errors, and to allow manual
intervention.

Table 2. MQTT microservices



25

broker, are given. Second, the main functionalities of the gateway and the interface are
explained. Finally, there are some notable mentions of the implementations of both
components.

The main flow of data goes from the perception layer to the cloud layer. The
data format for sending data from the perception layer to the gateway components
was selected to be the user friendly comma separated key-value pairs, described in
Appendix 1. The messaging between the gateway and the interface is done using the
Universal Asynchronous Receiver/Transmitter (UART), and messages from gateway
use a delimiter to signify end of message. In the gateway, the address of the sending
device is prepended to the message as a 16 bit little-endian integer, and then the
compound message is encoded using an escape character scheme to ensure the UART
delimiter character only appears at the end of the message, where it will be appended to
after encoding. The gateway is made to forward arbitrary bytes, so the escape character
scheme works by selecting two characters, which shall be called the escape character,
and the substitute for the UART delimiter. In the encoded message, an UART delimiter
preceded by n escape characters will be replaced by 2n + 1 escape characters and
a substitute character. A substitute character preceded by n escape characters will
be replaced by 2n escape characters and a substitute character. Any other string of
character preceded by escape characters will be unchanged. Messages sent in the other
direction have a fixed length and no encoding.

The interface component receives messages from the gateway, and sends the data
via MQTT to the MQTT broker in JSON format. The game control events are sent
right away with the device ID, message, and a corresponding time stamp according to
the interface, to the MQTT topic ’event’. The sensor data from multiple messages is
collected in the interface to a session, and which is then formed into a message when
the session is ended. This message is sent to the MQTT topic ’sensordata’, containing
the device ID, the time stamp for when the session has been started, lists of values
for each possible sensor for when it was recorded and a none value where the value is
missing, and a list of time stamps for each row of data, either sent from the device, or
otherwise relative to the session time stamp. Messages that come from the broker to
be sent via the gateway, are received on MQTT topic ’game’, describing the ID of the
target device, and boolean values for all messages that can be sent to the device.

There are a few important functionalities in the gateway. First of all, it is possible
to ask the gateway to respond with information about the gateway, and this is used
to identify a gateway device and make sure the serial connection works. The second
response request is the heartbeat functionality, where the gateway is periodically asked
to respond with a certain message to detect crashes, and the gateway uses it in reverse to
find if the interface is unreachable. Any other messages that don’t start with a specific
string of bytes are sent via 6LoWPAN to the address given in the 16 bit little-endian
integer in the beginning of the message. The final major function is the message buffer.
It is used to store messages, to make sure the probability of a message being dropped is
fairly low, and temporarily store messages if the interface is unreachable, for example.

The interface component does many tasks. A major part of the design of the interface
is that it will have to work connected with both the gateway and a client device if no
gateway is present, enabling a student to use the system with a single device. We
will begin by describing how the interface works when the gateway is connected, and
then conclude with how it works with only a perception layer device. First off, in the
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same order as during startup, the interface automatically connects to the gateway by
listing all serial ports with the associated Plug’n’Play (PnP) IDs and automatically tries
the ports with PnP IDs matching predefined patterns. Each matching port is tried by
requesting identification from the connected device, and if identification is received
and matches a pattern, the connection is completed. If the connection to the gateway
is broken at any time, the interface automatically attempts to find the next gateway
device.

After connection, the interface listens simultaneously for the gateway serial
connection and terminal input from user. The user can send messages to perception
layer devices manually, force reconnection, and change some other visual parameters.
Meanwhile, the messages from the gateway are decoded and displayed in a human
readable form, and then parsed according to the data format. Any errors from the
parsing phase are displayed in the terminal. Otherwise, the data is either stored in the
session cache or sent to the MQTT broker. Meanwhile, once every 15 seconds, the
heartbeat request is sent to the gateway to check if it has stopped working, and any
message send requests that come from the broker are forwarded to the gateway if the
interface has recently received messages from the device described in the send request.

As mentioned, the interface behavior changes slightly when the user wants to
connect a perception layer device to it, instead of the gateway. The automatic port
connection still is used if the user wants so, but identification and heartbeat messaging
are not used because they likely are not implemented in the device, and they are
not required in such a manual use case. Also, since the messages don’t come via
6LoWPAN, the device ID has to be added to each message as a key-value field. This
way, the interface works very much like a simple MQTT enabled serial terminal with
message parsing.

We will finish this chapter with some implementation details, starting with the
gateway. In our case, the course for which this backend is created for, uses the Texas
Instruments CC2650 SensorTag as the perception layer device. The SensorTags use
a custom communication library, so the natural choice for the gateway is another
SensorTag. Briefly, assuming some knowledge of the SensorTag code, to make it
possible to receive messages while sending data over UART, two different tasks are
used. The Texas Instruments Real-Time Operating System (TI-RTOS) implementation
of a ring buffer is used to store messages, which creates a small possibility for a
race condition, solved using semaphores. Because TI-RTOS is roughly a real-time
operating system, event handler functions have a very limited execution time, which is
solved by setting the program state machine to different states in the handler, and the
set state can then be responded to in a task.

The asynchronous nature of the interface program makes JavaScript a very attractive
language. The actual program is divided into five modules: The UART module,
MQTT communicator, port finder, message parser, and utility module. To increase
the usability of the interface, a simple configuration file is used to store important
constants and the different types of data fields, which can be easily customised to
match the theme of the final project of the course.
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4.5. SensorTag

Crucial to the evaluation of this project is the SensorTag in the role of the perception
layer device, which was implemented during this project. The code is based on the
course template, and includes a gesture detection algorithm used to play the game in
the web UI. During this chapter, the different features of the SensorTag are described.

The SensorTag is a state machine with six states for sending data at different
rates. These include two fast modes for sending sensor data every 50 milliseconds
from the pressure sensor, or from the pressure sensor, thermometer, accelerometer,
and gyrometer. The others include one slow mode for sending pressure data over a
longer period of time, a mode where hard coded test messages can be cycled through
manually, and a mode to try to use the gateway ping function to send data sequentially
when messages are lost to interference. The rest of the messages are sent using the
four-way gesture detection: These normally send the avatar movement commands to
the game, but with a modifier they send the sensor data session control commands,
and the ping message. At any time, the SensorTag can receive and display wireless
messages to see that the messages sent from the gateway are received.
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5. EVALUATION

What comes to the evaluation, the pandemic has taken us to a situation where we
need to make a lot of changes, especially in evaluation. In this chapter, we cover the
project evaluation, and all the tests performed. We have managed to divide these in
two different categories; system performance testing, and usability testing.

5.1. Evaluation Plan

A major part of evaluation are the test cases. Test cases will have to initially
demonstrate that the use cases are satisfied. To be able to test the use cases, the
registration and login has to be done. After this, use cases 1 and 2 can be tested
by attempting to play the game. The player should see the game on the website and be
able to win, lose, and receive the respective messages from the game. The testing of
use cases 3 and 4 is then done by sending sensor data, and seeing it displayed on the
website. The rest of the use cases can be tested by picking messages that will cover
much of the code associated with each case, and sending the messages from a client
SensorTag. The test cases are given below.

1. Registration and logging into the website.

2. Use cases 1 and 2: Send control messages, win and lose the game, see if loss and
win events can be received from game.

3. Use cases 3 and 4: Send sensor data. View sensor data on website. Is the graph
usable?

4. Sensor data session start and end functionality, with and without ping.

5. Error handling of mistyped message format.

6. Handling of unintended input messages.

During evaluation, the server components will be deployed to CSC Rahti and the
gateway will be running with a Raspberry Pi 3 model B.

5.2. Experimental Setup

The setup for tests and evaluation is as much as possible the same than it will be
later in production. On the cloud layer, every container that are communicating using
HTTP, are running in the container cloud CSC Rahti (Figure 5). Databases, or in this
case, database collections of this system rely on MongoDB Atlas. On the cloud layer,
publisher/subscriber components are running on RPi 3 (Raspberry Pi 3).

For testing purposes, gateway, and the publisher/subscriber component attached to it
are utilizing the RPi 3 as well. This component is located within a radius of ten meters
from the sensor device.
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At the perception layer, test are performed using SimpleLink CC2650 SensorTag.
To be exact, three of them sending messages at the same.

First three test-cases are carried out by a system user. Which is us in this case. Login
and registration was tested by using the application UI, and manually check valid and
invalid credentials. Test-case number 2 included one of us to use Sensortag to produce
some data, and another one inspecting result as well as in test-case 3.

The sensor data session message functionality (4), gateway interface error handling
(5), and UART delimiter escape character handling (6), are tested by sending various
predefined messages from a client SensorTag. The effects are then evaluated by
checking the results on the interface against the intended behavior described in
attachment SensorTag message format and having the received messages match the
sent ones. The test messages are selected to test the detection of errors in the key a
few times because it is the same for any key-value pair. Value error handling of each
different key is tested as each one uses a separate handler. Lastly, the UART message
delimiter escaping is tested with known problematic patterns. The wireless library
used by SensorTags has worked well, but the maximum message length will be good
to know for future reference. Finally, some messages are selected to try to intentionally
cause problems to the gateway.

5.3. Results

A major use case for the system is to view sent sensor data on the web UI and use it
to gain insights for tasks such as developing automated gesture detection. To test this
aspect, three graphs are generated and analyzed for usefulness in this section. The time
scale is represented in milliseconds.

Figure 10. Accelerometer values when quickly swung right and back again

In the first demonstrative graph (Figure 10), the SensorTag is in quick succession
moved rightward and returned to starting position, with the screen always pointing
upward. During this maneuver, the SensorTag is sending sensor data in about 50 to
60 millisecond intervals, surprisingly well corresponding with the task sleep being
set to 50 milliseconds in between each run. As the keen-eyed reader you might have
noticed the missing point at roughly 3.55K, which is due to the 6LoWPAN packet
being dropped between the SensorTags, as errors are quite frequent there.

The graph clearly shows constant acceleration before and after the gesture, with the
z axis prominently showing a value of −1, meaning that the gravitational acceleration
is along the z axis, and the unit of measure is acceleration divided by standard gravity.
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Figure 11. Pressure change when SensorTag is lifted 2 m and down again

Figure 12. SensorTag temperature curve

In the actual gesture, the largest reaction is seen along the x axis. The initial negative
acceleration is due to the SensorTag experiencing a pull to the left while it is being
pushed to the right, and this motion is arrested, and reversed, with the sharp peak in the
middle of the motion corresponding to the SensorTag experiencing a pull to the right.
The SensorTag is then brought to rest with the last negative experienced acceleration
roughly matching the first negative peak. This analysis tells us that the positive x axis
could be thought of as pointing to the right using the SensorTag’s frame of reference.
It can also be observed that the middle peak is approximately twice the height of the
smaller peaks, which is largely due to it being easier to apply larger force while the
movement is larger and more uncontrolled compared to the start and stop situations.
Finally, the correlating gesture along the z axis suggests that the movement was done
at a slight upward angle.

The SensorTag also has a barometer, which can be used to sense changes in altitude.
This is demonstrated in the second graph (Figure 11), which shows pressure data from
the SensorTag initially resting on the ground and then being lifted two meters and
being brought back down. While the barometer is not calibrated, as witnessed by the
abnormally large values on the left, the increase in altitude is clearly visible as the
drop in pressure. Representing this data visually would give the user an idea of the
dispersion of the measurements, vital for using the sensor in this way.

In the final graph (Figure 12), the SensorTag’s internal temperature is plotted to
show how it stabilizes. The data is gathered over a period of 28 minutes, which is
closer to using the system as a real IoT backend for a SensorTag that is monitoring
room temperature, for instance. How ever, this sort of graph could be used to predict
the time a SensorTag has been running, if the graph is predictable while the SensorTag
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is being used, or to find a model which could be used to predict the final running
temperature.

When the user comes to the web UI, they are greeted by a simplistic log in page.
A link on this page leads to the registration form, which is very similar to the log
in page, only requiring the SensorTag ID and a password. Currently only IDs four
numeric characters long, starting with a zero, are allowed, and there are no restrictions
for the password since the service is not hiding anything sensitive. On every tab of the
web page there are the unchanging elements familiar to many users: The page title,
username of the current user, and a vertical menu for different tabs. The main tab has
a clear log of recently received game events, which can be used to detect being logged
on using the wrong ID or sending messages using a different ID.

Continuing to playing the actual implemented game, the avatar does indeed move
when an event is sent from the client SensorTag. The delay between sending the
message, and seeing the avatar react to it is surprisingly small when taking the
architecture into account: Approximately under half a second, feeling almost real-
time. When an event causes the avatar to hit a wall, a subtle pop up is shown in the UI,
and a message is received by the client SensorTag informing about a lost game. When
the avatar moves to the villain’s space, the user is congratulated in the UI and with a
message received by the client SensorTag about the won game. What happens after a
game has been won might confuse the user because the game board is not randomized
again, and instead the avatar is left in the villain’s square. This happens because then
being able to have the game resend the win message makes it is easier to debug the
SensorTag, and the board is randomized only when a wall is hit or the page is refreshed.
It is notable, that if the game is running on multiple browsers, the SensorTag receives
messages from all instances, which are initialized at a random position. Currently the
backend only shows error messages in the interface which isn’t normally visible to the
end user, so debugging can be difficult if messages are sent in wrong format.

Test case three is passed: It is easy to send sensor data to the backend, and display
and use it effectively. The graph is clear albeit the point markers sometimes are too
large, the graphs of different sensors can be selected using radio buttons to help view
data from different scales, and the values of points can be examined by hovering
with a mouse and by using the data table. As seen in the data analysis section, the
graph is highly usable for examining data in order to find properties of gestures and
other interesting aspects. Notably, using wireless messages to log sensor data is much
faster than the previously used methods: Printing values to the debug console or even
utilizing the debugger watchpoint functionality. For example, this helps in gesture
detection design because with it the seen sensor data is gathered closer to the true
measurement frequency of data seen by the gesture detection algorithm.

The interface program between the gateway and the MQTT network is meant
to be somewhat user friendly. It automatically finds usable ports, and if required,
automatically connects to potential gateway SensorTags. This has been tested to work
on Linux and Windows 10, and the Plug’n’Play ID detection can be easily refined at
a later date. After the gateway is connected, the user can type and send messages
globally or to specific SensorTags, and the interface receives messages from the serial
port. If the SensorTag is disconnected, the port to it will be automatically reopened
when the SensorTag is connected again, making it easy to reboot a crashed gateway.
The received messages are shown completely, and message format errors are visible.
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The sensor data session logic works as intended with the ping. The results of the
mistyped message error handling are shown in appendix 2. To summarize, many
surprises came from the incorrect usage of two JavaScript functions that convert strings
to integers and floating point numbers, as they read into a number only the first numeric
characters before encountering a problem. In addition, two related problems were
found in the key-value parser: Passing two values to a key value handler passed an
undefined object into it.

Appendix 2 also has some messages used to test the wireless library and the escape
character scheme used for guaranteeing the UART message delimiter will not occur
inside the message body. It seems that the wireless library can send messages that
are only at most 116 bytes long, and this inadvertently revealed that the method of
suggesting valid keys when an unknown key is received doesn’t find a suggestion when
the key is too long. The most critical bug found was that the gateway SensorTag crashes
when a message of zero length is received. Lastly, the UART delimiter escape character
is accidentally removed from the end of message because it is mistakenly not added
there in the decoder.
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6. DISCUSSION

In this chapter we will discuss the limitations of the current implementation, reflect
on what we have learned during the project, and introduce possible future work.
Furthermore, go through changes and enhancements we could have done better, or
just differently.

6.1. Limitations

This section will discuss about the limitations of this system. There has always been
some main task in the course, Computer systems. This year it was a game where
an avatar is moved by SensorTag messages. Everything works well if just one client
application is open. In other words, if the same account is active in two different
windows, a feedback is sent back two times. This same behaviour causes SensorTag
to get message if the player actually did not hit the wall or caught the villain. This
disruptive bug occurs when a player does either of those two things. The one to blame
is an window that has accidentally left open. Therefore, this system does not allow
more than one client at a time to work properly.

A use with a mobile device is possible, but it comes with great limitations. Only
some of the UI components are responsive, and looks good on a small screen. Some
of the components are not even visible, but unintentionally slides behind of an another
component. Hence, it is recommended to use monitor resolution of at least 1920 x
1080 to get the full experience.

Up to this point we have not encountered any intentional misuse, but there is always
a risk. Everything relies on an ID of SensorTag. That ID has to be there during
registration, as well as every time when sending SensorTag messages. It is a four
digit code, and malicious person could create multiple accounts by using some four
digit codes. It would not cause any serious harm, but it would waste precious time
of the person in charge of the course, since that person would the one deleting those
fake accounts to allow real students to register their devices. The idea of two-stage
registration, which would have prevented such a misuse, was under consideration for
some time, however, that would have complicated things more than the benefits we
would have gained from it.

Real-time data is a common thing in IoT systems. This system differs from those
system by allowing data to be manually retrieved from the database, whilst a real-time
system would automatically push the data to the client application.

The fact remains that the ultimate goal was in achieving to build system which allows
students to carry out all assignments given during the course remotely. However, it can
be argued that this remote system requires too much extra effort from students to get it
up and running on their own hardware. But a little closer look reveals that the amount
of extra work is not overwhelming at all. In the contrary, we have written configuration
files to start all services with a single command. Thus, only task left for students is
to install Docker on their computers, and kick off the containers. A preconfigured
gateway could be obtained from the university, and all that remains is to plug it into a
computer.
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6.2. Reflections

To begin with, we started this project without having an exact plan. A plan that
would include functional requirements and visual appearance of the UI, endpoints,
or the number of microservices. We have been adding more features on the fly, which
has caused the system be unstable from time to time. However, we have been able
to restructure the project, and fix all the bugs that have appeared during testing. A
great help has been Computer Systems last fall, and students who actively gave us
constructive feedback. Without this prior knowledge of the potential problems we
may encounter, we would probably have implemented many things in a different
way. During fall semester, the beta version was tested by students. Back then, we
were able to receive all kinds of feedback regarding usability, system errors, visual
appearance, etc. We took this information, and made necessary changes to reach the
goal. One these fixes targeted to register form. Notwithstanding it was clear to us that
registration requires number zero (0) to be the first number, several students tried to do
the registration without the leading zero. Thus, we added that to the input validation.

There are several ways to achieve results that look the same to users as they do
now. However, we decided to approach this with the architecture described above.
Performance test results are promising; data sent from SensorTag is able to reach the
client application almost in real-time even though the distance can be hundreds, or
even thousands of kilometers. Furthermore, a use of multiple devices simultaneously
does not jam any of the components, which has been one of the issues in earlier years.

Here, we are handling time series data, so probably the best option would have been
to use a time series database, for example, InfluxDB. Currently the way we send and
store data is inflexible, and therefore, it forces us to make trade-offs. The data message
includes fields for every sensor, even if they are not needed at the moment. Those fields
get a value of null if that sensor is not producing any data. And the reason for that is a
difficulty of managing timestamps.

Another tricky choice to make was the need of real-time data, and how beneficial
it is for students. As it appears, we ended up to implement partially real-time system,
which enables some messages to be inspected in real-time using client application,
and some data to be requested manually from servers. In this way, students are able
to take their time with the data just created, without losing the data while new data is
constantly being received. Or another option is to do a manual lookup to the database.

Original design, and our local test environment included an Ingress controller
standing between the outside world and our microservices. While deploying this to
production servers, we found out that the production server of our choice does not
support Ingress controllers so far. However, there was another option for exposing
services externally, Routes. Hence, all services have an endpoint, which can be reached
directly without a proxy server. Nevertheless, we do not see that as a big downgrade for
security, since we are not handling personal data, or any sensitive data at all. Nothing
would have stopped us to run reverse-proxy in front of the services, but after having to
drop the Ingress controller, we just chose not to. Proxy would have give us a change
for better control of the system, for example, limit the number of requests, and hiding
real endpoints of services. Despite of exposing services, most of the data lies behind a
token-based authorization, and the data is not accessible without a valid token.
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One thing that was not entirely clear in the beginning is responsibilities of the
authentication service. Currently it is responsible for creating users, and assigning
tokens. It is not responsible for token validation. We chose to have a token validation
in every service, to avoid all the traffic going through the authentication service. In
next version, we probably would change that, and make one service to handle all of
that, and reduce the duplicate code in different services.

At the end, a small disappointment was encountered. The intention was to have
Service broker component running in cloud, but our container cloud provider did not
have support for that. Therefore, the responsibility for running the service broker
locally is left to the students. This does not affect to the goal of the project, but will
require a little extra work from students who want to do this at home.

What comes to the challenges, we had a fair share of them (listed in chapter 2.4)
during the project as well. From the very beginning, everything has been quite
straightforward. For example, the financial part is covered by the university of Oulu
itself. Therefore, quality of the course, and the cost of hardware will not be the anchor
here. Furthermore each student that would like to give a change to IoT is able to do so.
Instead of deploying the system on servers in university, we chose to utilize CSC Rahti
container cloud, free of charge for academic purposes. After all, only encountered
challenge from list is security and privacy. The way we would be able to identify
students was unclear for a long time. At the end, to solve multiple related issues we
chose to go with an approach where none of the students cannot be identified.

In chapter 2.4, there are presented possible topics for IoT courses. Compared to
Computer Systems, we are lacking with automated data analysis and IoT application
design. Nonetheless, complete project work requires data analysis indeed, but for now,
it has to be done manually. Although, it is better to keep it intact since the analysis is
important part of it. The rest is covered comprehensively.

6.3. Future Work

Future of this project worries us a little. After we are done with this project, who
will manage these services and databases, or create new add-ons every year. How the
monitoring will be carried out, and who is going to act if errors, or even warnings
occur. We do not know the future of this project, but there are a lot of things that could
be done to ease the workload in future.

Current documentation is written using inline-style, which is not a bad thing.
Although, it is clear, and enough in many cases, sometime it may be better for the
documentation to be written with a professional tool in addition to the inline-style.
This would allow the project to be outlined and get started quickly.

There still are many options left to improve the usability of the system. The students
will be most interested in what goes wrong with the messages they have sent, so the
error messages should be visible in the web UI, or, the lowest effort change would be
to have the gateway send abbreviated error messages back to the SensorTag that sent
the message. The original plans for the backend included having multiple gateways
to balance load and to lessen the impact of crashed gateways. The available gateways
and their locations could be best advertised on the web UI if multiple channels are
being used, but manually sent broadcast pings from SensorTags work as well. This
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could also be used to alert the course staff of malfunctioning gateways. Currently
the number of different names for sensors is limited, and some are missing, like the
magnetometer. This is because the other sensors require some special adjustments to
the sensor driver library code given on the course, and the students are not expected to
utilize them. However, there is a possibility that, with some changes to the database and
other components, the limited selection of sensor names could be relaxed by having
the user choose names for the sensors they will use. Finally, an undoubtedly wanted
feature would be a button to export the sensor data from the web UI as a file.

Furthermore, a pipeline would have been a major enhancement for the development
workflow by leaving the developer out of the process where the latest software version
is delivered. Even though this project may not get a full-time, or even part-time
developers after us, preconfigured pipeline would help the course staff a lot, so the staff
themselves could make quick patches to the code if necessary. In this way building,
testing, merging, delivery, and the rest of the wanted steps could be achieved with very
little effort, and production. Having these environments at each stage reduces the time
required for configuration. For example, URL is different in production than it is in
development, and switching URLs back and forth is absolutely redundant.

Even though loggers are implemented in microservices, they may not provide all
information that we might find useful, and so, we have pruned this section a bit.
The reason has been the lack of automation. Without any automation, reading logs
would require probably too much man power. Rahti offers a web-based application
for managing Kubernetes cluster. Application logs can be read using those tools while
pods are running in production. And for further use, logs can be directed to a file, or
automate a process that alerts if an error occurs.
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7. CONCLUSIONS

The goal was to develop a distributed microservice-based backend system for the
course Computer Systems. Not only because the course absolutely requires a real
life IoT system, but rather giving an opportunity for students to complete the course
remotely, including laboratory exercises as well as the project work. This work also
seeks to provide for a better overall picture about IoT, and to increase an educational
value of the course. Another aspect here was to offer something special, a game for
example. So far, the game is quite simple, but by just building an own controller using
SensorTag can enthuse students to keep creating new features for the controller.

Even though we reached the goal, sometimes every step felt like a new challenge,
and even made us question the design. One of the challenges we struggled with a
quite some time was switching from development to production, and all the things we
probably should consider felt a bit unclear. Mostly all this was caused by a huge range
of possible solutions to carry it out. At the end of the day, all microservices are running
firmly in the cloud without a need of constant checking, and ready for the actual target
group.

At the beginning of the project, there was discussion about utilizing the backend
created for this project as a start of a smart campus system. Indeed, in its current
form the system has limited usefulness but works on excessively powerful concepts,
meaning that the current backend could work as a proof-of-concept for developing a
larger application.
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Command fields sent from a client SensorTag

Key Value type and key explanation

id At most four hexadecimal characters. When the sending
SensorTag is directly connected to the interface, this must be
used to express the ID of the sending SensorTag. In wireless
communication, adding this field to the message is not required.

event String ( UP, DOWN, RIGHT, LEFT ). Game avatar control event.

time Integer. Timestamp of the current message. Can be used to give
a custom time for when a sensor value was recorded according to
the sending SensorTag.

ping Respond with a ’pong’ to the sending ID. Can be used to signify
that the message was handled without errors. This command is
the only exception to the key-value scheme.

session String ( start, end ). Start a sensor data session to collect sensor
data in the interface, with the x value being time timestamp, or
milliseconds from session start. The collected data is sent to the
database when the session ends and can be viewed by refreshing
the graph. The session can be started and ended in the same
message. Starting the session after a session has already been
started will empty the data buffer. The session will not end on its
own and an empty session cannot be ended.

Sensor data can be sent only when a session is open, among other fields. The
available sensor names are temp, humid, press, light, ax, ay, az,
gx, gy, gz and all are floating-point valued. Only required sensor values should
be sent, or missing values can be set to a constant like zero. One message corresponds
to one row of data, and if fields are repeated, only the last value will be recorded.
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Message examples

event:DOWN If the game is visible in a browser, this will move the
avatar down by one step.

ping,event:UP If game is visible, move avatar up by one step.
Replies with ’pong’ once the command has been
correctly executed in the interface.

session:start,temp:27.82,
session:end,ping

Start a sensor data session, write temperature value
27.82 into the open session, end the session and
write it to the database, and reply with ’pong’ once
the command has been correctly executed in the
interface. This will always work, regardless of any
previous session state.

event:RIGHT,light:208 Move the avatar right and record light level 208 into
an open sensor data session. Sending sensor data
with every event will give a graph of sent events once
the session ends.

Any error in the message format will result in the rest of the message contents being
lost. If this happens, the pingwill not be responded to. The maximum message length
is dictated by the wireless communication library used on the course: 127 bytes.
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The following messages were used to try to test the key-value error handling during
unintended usage.

Message Result (Default: Appropriate error message is seen)
"time:e34"
"tiem:34"
"i:0024"
"id:00g4,ping" Ping is sent to id:0000. This is due to JavaScript

Number.parseInt
"id:test"
"session:stop"
"sessio:start"
"event:Up"
"temp:a55.3"
"humid:52\"" No error is caused. Number.parseFloat reads all it

can
"hmid:12.7"
"press:2f" No error is caused
"light:0s0.0" No error is caused
"ax:"
"ay:–1"
"az:2\n" No error: Whitespace is trimmed intentionally
"gx:2\t" No error: Whitespace is trimmed intentionally
"gx: 2.1" No error: Whitespace is trimmed intentionally
"gy:,ping"
"gz:2.1:UP" Interestingly this results in an error message about

the value, but the value is undefined
"event::DOWN" Throws a TypeError about property ’trim’ of

undefined
"event:UP„ping"
"ping„"
"ping,"
":5"
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The following messages were used to test the UART connection between the gateway
and the interface. Long messages are abbreviated using Python list element repeat
syntax. The characters \xf0 - \xf2 are used for the escape character scheme to have the
character \xf2 only occur at the end, signifying end of UART message.

Message Result (Default: No errors
were made)

"a"*116 Key suggestion is not
found and "undefined" is
wrongly shown

"a"*117 Message was not sent.
This likely means that the
wireless library used on
the SensorTag cannot send
messages larger than 116
bytes

"\xf0"*115 + "\xf2"
"\x01"
"\x00" Crashes the gateway.

The method of testing
accidentally sends a
message of length zero,
leading to this discovery

"p\xf2ng"
"p\xf1i\xf1\xf2ng"
"p\xf1\xf0i\xf0\xf1\xf1\xf0\xf1\xf2ng\xf2"
"\xf2"
"\xf1"
"\xf0" Not received. The decoder

incorrectly removes it in
the interface

"\xf0test"
"\xf0\xf0\xf0" Not received. Removed by

decoder
"press:8\xf0" Last byte is removed by

decoder
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STAGE 1

Student Hours Contributions

Teemu Varsala (PM)
("BSc thesis")

30 h, 60 % Research, presentation, writing the report

Vili Pelttari ("ACP1
course")

24 h, 40 % Research, writing the report and
presentation

STAGE 2

Student Hours Contributions

Teemu Varsala (PM)
("BSc thesis")

95 h, 50 % Backend and frontend design, and
implementation, writing report

Vili Pelttari ("ACP1
course")

106 h, 50 % Gateway design, implementation, report
writing

STAGE 3

Student Hours Contributions

Teemu Varsala (PM)
("BSc thesis")

70 h, 50 % Research, Kubernetes implementation,
testing, writing

Vili Pelttari ("ACP1
course")

66 h, 50 % Testing, writing test code and report and
presentation

STAGE 4

Student Hours Contributions

Teemu Varsala (PM)
("BSc thesis")

80 h, 55 % Research, testing, writing, presentation

Vili Pelttari ("ACP1
course")

80 h, 45 % Code improvement, writing report and
presentation
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