
Impactful contributions of usability practitioners
to open source software projects: a multiple case

study

University of Oulu

Faculty of Information Technology and

Electrical Engineering / Degree

Programme of Information Processing

Science

Master’s Thesis

Janne Niemelä

1.6.2021

2

Abstract

Open source software (OSS) has been described as being designed by and for technically

advanced users. As OSS has been gaining popularity among non-technical users, concern

about its usability has been raised, as it is difficult for technically-minded developers to

design for average users. Hiring usability experts to represent the needs of average users

has been used in commercial software development as an effective solution for improving

usability. It has been also suggested as a way of addressing the usability issues of OSS,

but it has been observed that it is often difficult for usability experts to contribute to OSS

so that their work has a major impact on the usability of the software.

In this thesis, a multiple case study of four usability interventions was conducted. The

cases were a part of a larger research program called UKKOSS, which aims to test ways

how usability experts can meaningfully contribute to OSS by conducting usability

interventions, where student teams act as usability practitioners who enter OSS projects

and carry out usability work on them. This study examined how OSS developers reacted

to four of those usability interventions by examining the data gathered during those

interventions. The analysed data included documents, such as summary reports,

communication logs, project plans, and reports on the conducted usability activities. The

larger goal of studying these cases was to gather information on how usability

practitioners can conduct impactful usability work on OSS projects. The outcomes of the

cases were examined through the lens of prior research, and the factors that may have

contributed to the success of the cases were examined through cross-case analysis.

The developers welcomed the usability work of the usability teams in generally all of the

four cases, but the actual impacts the interventions had varied from none of the suggested

usability changes being implemented to most of them being implemented to the software.

The outcomes of the most successful cases suggest that an approach where usability

practitioners implement their suggested changes themselves after discussing about them

with the core developers, establishing trust with the developers by contacting them via

voice call or video conferencing instead of using only asynchronous communication, and

making usability reports as persuasive as possible by including user testing metrics which

strengthen the validity of the issues, should be studied further to evaluate if they can have

a positive effect on the impact of the work of usability practitioners. The main

contributions of this research were supporting the prior research on the obstacles faced

by usability experts entering OSS projects by supporting it with empirical evidence and

proposing new areas of research on the subject based on the outcomes of the cases.

Keywords
Open source software, usability, UKKOSS, OSS

Supervisor
PhD, university lecturer, Mikko Rajanen

3

Foreword

I would like to thank my supervisor Dr. Mikko Rajanen for guiding my work and

managing the UKKOSS research programme of which usability intervention cases were

examined in this thesis, thus making this research possible. I would like to also thank all

the other students who participated in the UKKOSS projects 14-17 and gathered valuable

research data which was analysed in this thesis, and Dr. Raija Halonen for teaching me

the basics of conducting scientific research.

Janne Niemelä

Oulu, June 1, 2021

4

Contents

Abstract .. 2

Foreword .. 3
Contents.. 4

1. Introduction .. 5
2. Prior research ... 7

2.1 Open source software ... 7
2.1.1 The history of open source software .. 8

2.1.2 OSS development process ... 10
2.1.3 Motivations for participation in OSS development 11

2.1.4 The hierarchical structure and decision-making in OSS projects 12
2.2 Usability .. 15

2.2.1 User/human-centered design.. 16
2.2.2 Usability engineering methods .. 17

2.3 Usability in OSS projects ... 19
2.3.1 Usability issues in OSS ... 19

2.3.2 Usability practitioners’ barriers to contributing in OSS projects........... 21
2.3.3 UKKOSS research programme .. 25

3. Research methods ... 29
3.1 UKKOSS research programme as the basis of research 29

3.2 Research question .. 29
3.3 Case study process ... 29

3.3.1 Design and planning .. 29
3.3.2 Collecting data .. 31

3.3.3 Analysis .. 32
3.3.4 Reporting .. 33

4. UKKOSS usability intervention cases .. 34
4.1 Case 1: UKKOSS 14 (Mumble) ... 34

4.2 Case 2: UKKOSS 15 (Task Coach) .. 34
4.3 Case 3: UKKOSS 16 (HandBrake) ... 35

4.4 Case 4: UKKOSS 17 (Streama) .. 36
4.5 Summary .. 36

5. Findings ... 39
5.1 How did the open source software communities react to usability

improvement activities conducted by external usability practitioners? 39
5.1.1 Reactions to UKKOSS 14 (Mumble) ... 39

5.1.2 Reactions to UKKOSS 15 (Task Coach).. 41
5.1.3 Reactions to UKKOSS 16 (HandBrake) .. 42

5.1.4 Reactions to UKKOSS 17 (Streama) ... 44
5.1.5 Summary ... 47

6. Discussion & implications .. 49
6.1 Critique of this research ... 52

7. Conclusions .. 53
7.1 Limitations of this study ... 53

7.2 Possible future research .. 54
References .. 55

5

1. Introduction

It has been argued that open source software often has usability issues (Andreasen et al.,

2006; Feller & Fitzgerald, 2000; Lisowska Masson et al., 2017; Nichols & Twidale,

2003). OSS projects are often started due to personal need of the developers (Moody,

2001, as cited in Crowston et al., 2004; Raymond, 1999; Vixie, 1999, as cited in Crowston

et al., 2004), and the developers of the software are often its users (Andreasen et al., 2006;

Crowston et al., 2004; Nichols & Twidale, 2003). The philosophy of user-centered design

emphasises that it is hard for software developers to design for non-technical users

(Nichols & Twidale, 2003). As the user base of OSS grows to include more and more

non-technical users, there is a need for usability considerations addressing non-technical

users’ perspective (Feller & Fitzgerald, 2000; Nichols & Twidale, 2003; Rajanen & Iivari,

2019). The lack of usability experts in OSS has been identified as a problem for the

usability of OSS, and it has been suggested that they could bridge the gap between the

developers and the average users (Nichols & Twidale, 2003). In commercial software

development, usability experts typically have the authority needed to represent average

users (Nichols & Twidale, 2003). In OSS development, they often face difficulties when

attempting to influence the design of the software (Andreasen et al. 2006; Çetin et al.,

2007; Nichols & Twidale, 2003; Rajanen & Iivari, 2015; Rajanen et al., 2011; Rajanen et

al., 2015). Various usability interventions by usability teams to OSS projects have been

studied in UKKOSS research programme, which aims to find and test effective ways of

introducing usability activities to OSS projects by utilising student usability teams guided

by researchers (Rajanen & Iivari, 2019). Further research on how usability practitioners

can effectively contribute to OSS has been proposed (Rajanen et al., 2012).

The main goal of this thesis is to investigate how usability practitioners can participate in

OSS development in a way that their work can have an impact on the software’s usability.

The research question of this study is: “How did the open source software communities

react to usability improvement activities conducted by external usability practitioners?”

The research method is multiple case study of four usability interventions to OSS projects

that were conducted from 2015 to 2016 as a part of UKKOSS research programme. The

author participated in one of the cases. The reactions of the OSS developers are described

though detailed case descriptions, the outcomes of the cases are reflected on prior

research, and cross-case analysis is conducted in order to identify possible factors that

may have had an effect on the outcomes of the cases. The main contributions of this

research are supporting empirically the prior research on the issues usability practitioners

encounter when contributing to OSS and proposing new areas of research based on the

results of this study for gaining further insights on impactful usability work.

This thesis is split into 7 chapters, Introduction, Prior research, Research methods,

UKKOSS usability intervention cases, Findings, Discussion & implications, and

Conclusions. Prior research discusses the existing literature on open source software,

usability, and usability of open source software. It covers themes like the common

definitions of OSS and usability, the history of OSS and usability research, the OSS

process, decision-making in OSS, user-centered design, usability engineering methods,

usability problems in OSS, the issues usability practitioners encounter when participating

in OSS development, and the UKKOSS research programme. Research methods covers

the used research method and data gathering. It describes the use of case study as the

research method, presents the research question, and explains the context of the analysed

cases as a part of a research programme. UKKOSS usability intervention cases chapter

describes the cases in detail, and in the Findings chapter, the research question is

6

answered by describing how the OSS communities reacted to the usability intervention.

The Discussion & implications chapter analyses outcomes of the case studies in the

context of prior research. In the final chapter Conclusions, the results of this study are

summed up, and the limitations of this study and possible future research suggestions are

discussed.

7

2. Prior research

This chapter discusses the prior research on open source software, usability, and usability

in open source software. The open source software subchapter discusses the definitions

of open source software, its history, OSS development process, motivations for

participating in OSS development, and decision-making in OSS projects. The usability

subchapter discusses the definitions of usability, the history of usability, user-centered

design, and usability engineering methods. The usability in OSS projects subchapter

discusses the state of usability in OSS projects, examines what kinds of problems usability

practitioners encounter when working on OSS projects, and describes the UKKOSS

usability intervention research programme.

2.1 Open source software

Open source software is software that is licenced in a way that allows the users to access

and modify the source code behind its pre-compiled binary (Bretthauer, 2002). There are

many kinds of open source licenses with different rights and restrictions. For example,

some of them require that derivative software has to use the same license, like the GNU

General Public License (GPL). (Gacek & Arief, 2004.) The GNU acronym stands for

Gnu’s Not Unix (GNU, 2015). OSS development projects are usually Internet-based

communities of software developers (von Krogh & von Hippel, 2003). The scale of OSS

projects can vary from one developer coding the software for personal use to huge

projects with hundreds of developers, such as Linux, Firefox, LibreOffice and Blender

(Rajanen & Iivari, 2019). The term OSS should not be mixed with shareware or public

domain software, which refer to software that is free to use but usually do not allow the

user to access the underlying source code. The concept of open source does not disallow

monetising the software or its related services. Open source software can be monetised

by for example charging for its packaging, support or distribution. (Bretthauer, 2002.)

While most of OSS is built purely voluntarily, some organisations also sponsor and pay

developers so they can focus on working on OSS full-time (Hertel et al., 2003).

Gacek and Arief (2004) argue that although open source projects’ characteristics can vary

greatly between projects, there are two constants that are common in all of them: they are

always developed by the users, and they follow the criteria of the Open Source Definition.

Open Source Definition is a set of criteria defined by Open Source Initiative (OSI), an

educational and advocacy organisation for the open source phenomenon (Open Source

Initiative, 2018), that define the distribution terms of open source software. They include

rules such as these:

 The license must allow free redistribution of the software as a part of a software

collection that contains software from multiple different sources

 The software has to include source code, and distribution must be allowed in both

source code and compiled form

 Derived versions of the software should be distributed using the same license as

the original software

 The distribution of modified versions of the software can be disallowed only if

distributing patch files for modifying the software is allowed

 The license cannot discriminate against persons or groups, or disallow using the

software for business purposes or in a specific domain

8

 The rights of the license must be automatically passed to everyone to whom the

software is redistributed

 The license cannot demand restrictions on other software, and the software cannot

be restricted to a specific technology

These terms were originally adapted from Debian Free Software Guidelines. (Open

Source Initiative, 2007.) Open source licenses are licenses that follow these rules. In order

to be approved by OSI, a license must pass their license review process. (Open Source

Initiative, n.d..)

2.1.1 The history of open source software

The roots of open source software can be traced back to the 1950’s and 1960’s, when

software was bundled with its hardware, and the users were free to exchange modified

source code among themselves (Hars & Ou, 2002). Most of the software in the early days

of programming was developed in academic and corporate laboratories by engineers and

scientists. Exchanging software freely to build upon each other’s software was considered

a normal work practice. (von Krogh & von Hippel, 2003.) Since then, software begun

moving towards commercialisation, resulting in software becoming increasingly

proprietary (Hars & Ou, 2002).

In the 1980’s, Massachusetts Institute of Technology (MIT) decided to license some of

the code created by the employees at the MIT’s Artificial Intelligence Laboratory to a

commercial company. The company restricted the access to the software’s source code to

only the employees, preventing non-involved people, such as people who had worked on

it and left MIT, using it. As a counterreaction to this and the general trend towards

proprietary software protected by copyright licenses, Richard Stallman, a researcher

working at the Artificial Intelligence Laboratory, founded Free Software Foundation

(FSF). (von Krogh & von Hippel, 2003.) FSF is an organisation raising funds for

promoting the freedom to modify and share software (Bretthauer, 2002). Its core ideas

can be credited for being the conceptual foundation of modern open source software, but

they have been often critiqued for being too ideological (Hars & Ou, 2002). In 1985,

Stallman wrote the GNU manifesto, a document where he described his ideological stance

on software freedom. He believed that programmers should share the source code of their

software to the users and considered it wrong to hoard information instead of sharing it.

He called for other developers to help him build an open source operating system, GNU.

(GNU, 2015.) The first open source license called GPL (GNU General Public License)

was created for this project. It ensures unrestricted access to the source code of the

software and its derivatives. Derivative software is also forced to have the same license

as the parent software. This licensing style is called copyleft. (Fitzgerald, 2006.) Stallman

and his new community of developers started working on GNU. GNU was based on

UNIX, an open source operating system developed by Ken Thompson, which first version

was released in the late 1960’s. During the GNU project, many kinds of tools and utilities

were produced that Linus Torvalds, the lead developer of the Linux operating system’s

kernel, used in the development of Linux in the early 1990’s. (Hars & Ou, 2002.) Linux

was distributed under the GPL license (Fitzgerald, 2006). Modern Linux can be described

as a combination of Linux kernel, GNU software, and other supplementary software parts

(Hars & Ou, 2002).

In the late 1990’s Eric Raymond, a programmer and at the time the co-founder of a small

free-access internet service provider called Chester County Interlink, was inspired by the

success of the Linux project and decided to figure out why the distributed open source

9

work process worked so well in the that project. He analysed the open source work

process used in Linux, and started working on his own project, Fetchmail, in a similar

manner to test it in practice. The project turned out to be a success. Raymond wrote an

essay called “The Cathedral and the Bazaar”, which described his work on Fetchmail and

the open source -based work process used in Linux. Seven months after the essay was

published, Netscape Communications, Inc., influenced by the essay, decided to open

source their Netscape Communicator (later known as Mozilla) internet browser.

(Raymond, 1999.) Netscape’s browser was losing their market-share to other browsers,

mostly to Microsoft’s Internet Explorer. The decision to open source the development of

their browser under a parallel open development plan was made to give them competitive

advantage. (Feller & Fitzgerald, 2000.) Eric Hahn, the Executive Vice President and the

CTO of Netscape, contacted Raymond, and asked him to help them design the open

source release strategy and licence for the browser. The open source strategy proved to

be successful, and Netscape achieved of their goal of preventing Microsoft getting a

monopoly status on the internet browser market. (Raymond, 1999.) Raymond co-founded

OSI with Bruce Perenis in 1998. OSI realised that all the attention around the decision to

open source the Netscape Communicator provided an opportunity to educate people about

open source based development process. They held a meeting, where the attendees agreed

that the practical and business-based approach Netscape used when deciding to open

source the development of Netscape Communicator demonstrated a good way to engage

with software developers and users, encouraging them to participate in improving the

software. (Open Source Initiative, 2018.) As the previous common term free software

from was often understood in a way that individuals or organisations could not gain

revenue with it (Fitzgerald, 2006), they wanted to separate this new approach from the

Free Software movement by giving it a new label called Open Source, coined by Christine

Peterson. The new term was supported and adopted quickly by prominent members of the

open source community, such as Linus Torvalds and the founders of Apache, Python and

Perl. (Open Source Initiative, 2018.)

The success of open source model has been attributed to the use of licensing. Several

different open source licenses have emerged in addition to the GPL, each providing

unique distribution terms. Some examples of these are the Lesser GPL, a lighter version

of the original GPL, intended for use in software libraries, and the Berkeley System

Distribution (BSD), a very lightly restricted license which main requirements are

acknowledging and keeping the previous contributors’ work. In some cases, the existing

licenses were not flexible enough for commercially-oriented OSS projects. Netscape

created Mozilla Public License (MPL), when they converted their commercial software

to open source in order to avoid existing licenses’ restrictions, like forcing each licensor

whose code was merged into the Netscape browser to have the same license in the case

of GPL. MLP has since been influential, and other corporate style licenses have been

created based on it. As OSS started gaining more popularity and corporate involvement

started getting more common, more licenses for different purposes have been created.

Since then, Free Software Foundation and Open Source Initiative have approved over a

hundred diverse licenses. Various non-approved licenses for corporate purposes have

been also created. (Fitzgerald, 2006.) According to Open Source Initiative (n.d.), the most

popular licenses approved by them are currently Apache License 2.0, 3 and 2-clause BSD

licenses, GPL, GNU Lesser General Public License (LGPL), MIT license (MIT), Mozilla

Public License 2.0 (MPL-2.0), Common Development and Distribution License 1.0

(CDDL-1.0), and Eclipse Public License (EPL-2.0).

Nowadays, there are over twenty source code repositories and other development and

distribution resources for developing OSS (Rajanen & Iivari, 2019). GitHub, one of the

major OSS repository platforms, produced a status report based on the data they collected

10

from October 2019 to September 2020. They reported having over 56 million developers,

over 60 million new code repositories, 1,9 billion added contributions, and 72% of the

Fortune 50 companies using the GitHub Enterprise service. (GitHub, 2020.) Another

popular platform, SourceForge, reported having over half a million OSS projects and over

2,1 million registered users, nearly 30 million visitors, and providing over 2,6 million

software downloads in a day (SourceForge, n.d.-d). It has been estimated that even by the

year 2008, the total value of the OSS products and services was about 6% of the total

value of all software and services, and the adoption of OSS by consumers had saved them

about 60 billion dollars in total (Standish Group, 2008, as cited in Rajanen & Iivari, 2019).

2.1.2 OSS development process

Eric Raymond’s metaphor of the bazaar is one of the most well-known descriptions of

OSS development process (Crowston et al., 2004). He describes two distinct approaches

to software development, calling them as the cathedral and the bazaar. By the cathedral,

he means a development model where the software is crafted methodically by a group of

developers, focusing on stable releases instead of frequent beta releases in order to

mitigate the risk of frustrating the users with a buggy experience. Much like how

commercial software is usually developed. In the bazaar model, software is developed by

a scattered group of developers with different agendas, much like merchants in a bazaar.

The bazaar model describes the way how OSS is usually built. Raymond uses the

distributed Internet-based development of Linux kernel as the basis for this kind of

development model and he credits Linus Torvalds, its lead developer, as the inventor of

the model. In this model, beta versions of the software are released very often to expose

possible underlying bugs and issues to the users to help with debugging by maximising

the person-hours put into it. They assume that if the tester and developer base is large

enough, all problems are found quickly and usually someone knows how to fix them, or

in other words, “Given enough eyeballs, all bugs are shallow”, as Raymond puts it in his

Linus’ Law. (Raymond, 1999.)

Raymond (1999) also argues that Brooks’ Law does not apply to distributed Internet-

based software development such as the bazaar model due to its more open community-

centric coding style and the access to world-class talent pool of developers. Brooks’ Law

means that adding more developers to a late software project only delays it further.

According to Brooks (1995, as cited in Raymond, 1999), the project’s complexity and

communication costs increase with the square of the number of developers while the

actual work that is done only increases linearly. Raymond (1999) argues that the success

of Linux proved that massive distributed software projects can work effectively.

Bezroukov (1999) criticises the bazaar model for making questionable claims about OSS

process which have become generally accepted. One example of such is the statement

that the Brooks’ Law does not apply to Internet-based distributed software development.

He argues that the non-applicability requires a fully functional prototype of the program

or that all the architectural issues of the software have been already solved. He also argues

that the claim that the bazaar model was something completely new was false. He sees it

as a logical evolution of its free software origins started by the Free Software

Foundation’s GNU project. He suggests that the OSS process can be explained better by

describing it as a form of academic community, where the participants seek for

recognition and status by contributing to the community. He argues that this could have

been due to both Free Software Foundation’s and Torvald’s strong connections to the

academia. He also critiques the bazaar for representing status competition as a solely

positive thing, and suggests it can lead to negative things, such as unfair hierarchies

11

caused by favouritism, increasing bias in code peer reviewing, and the dangers of burnout

especially when trying to compete with rival software.

Fitzgerald (2006) argues that even though the bazaar metaphor has been a common way

to describe the open source software process, OSS development has since transformed as

corporations have recognised its commercial potential. He describes this new process as

less like a bazaar and more organised, as the OSS spreads to vertical product domains

which require more strategic planning because the requirements of the software are not

understood universally by the developers. He argues that as the planning phase of OSS

was characterised as the developers “scratching one’s itch” in the bazaar metaphor,

organisations have since joined the game and started using strategies to gain competitive

advantage utilising open sourcing, by for example implementing software by using same

kind of fast beta release iterations and community support but with more organised project

management, or by paying developers to work on OSS.

2.1.3 Motivations for participation in OSS development

The joy of programming and personal skill development have emerged as important

motivations of OSS developers in some empirical studies (Andreasen et al., 2006; Hars

and Ou, 2002). Hars and Ou (2002) investigated the motivations of people who participate

in open source software development by conducting a survey with 79 respondents from

the open source community. The authors identified two types of participation

motivations; internal and external. Internal motivation was divided into self-

determination (the feelings of fulfilment and competence one gets from coding), altruism

and community identification. External motivation was divided into future rewards (such

as selling products, developing skills, self-marketing and peer recognition) and personal

need. According to the authors’ analysis of the survey data, different kinds of groups of

developers with different motivations participate in OSS development. Groups like

students and hobbyists were the most internally motivated groups, while contracted and

salaried programmers were the most externally motivated groups. In total, external

motivations were found to have a greater weight than internal motivations, even though

internal motivations had an impact too. Among all respondents, the most common

motivations were developing skills (88.3% of the respondents were motivated by it) and

self-determination (79.7%). (Hars & Ou, 2002.) Andreasen et al. (2006) achieved similar

results in their survey and interview-based study about OSS developers’ attitude towards

usability, where they also examined the motivations of the participants. In their study, 21

of the 24 respondents claimed contributing being intellectually stimulating and

strengthening free software as their motivations for participating. 18 of the participants

found improving skills as a motivational factor.

Hertel et al. (2003) examined the motivations of Linux kernel’s contributors through the

lens of social sciences by conducting a web-based survey with 141 respondents. The

authors used two motivational models from social science literature to investigate the

motivations of the developers in a systematic way. The used models were designed to

explore the incentives to participate in social movements and the motivational processes

of geographically distributed work groups. The survey’s questions were derived from the

used models and from discussions within the Linux community. Based on the survey’s

results, the authors argued that the motivational processes of developers of OSS projects

resemble the motivational processes of members of other social communities such as

social movements, and the motivations of OSS developers can be explained by using

existing psychological theories. The authors identified seven main motivational factors in

the Linux community and used them as a basis for the survey:

12

 General identification as a Linux user

 Specific identification as a Linux developer

 Pragmatic motives like improving used software and career advancement

 Motives related to reactions of people such as family members, colleagues, or

friends

 Social and political motives such as supporting free software and socialising

 Hedonism

 Motivational obstacles related to losing time to activities related to Linux

All of the factors were found to get high mean scores and they correlated positively with

the willingness to participate activities related to Linux, but some of them were found to

be more predictive of engagement than others. The engagement was found to be

especially determined by their identification as a developer of Linux, pragmatic motives,

and by their tolerance of investing time. The authors also examined motivational aspects

of distributed team work in the community. Some parts of the software development was

found out to have been performed by spontaneous teams. The most important distributed

team work -related motivational factors were the participants’ perceived indispensability

of their contributions to the project, a high feeling of self-efficacy, and a high evaluation

of the team’s goals. (Hertel et al., 2003.)

2.1.4 The hierarchical structure and decision-making in OSS projects

OSS projects are usually governed by one or a small group of active core developers.

Having a ‘benevolent dictator’ who has the final say in decisions, often supported by a

group of high ranking of co-developers with their own areas of responsibilities, (for

example subsystems assigned to them) is a common governance model in OSS. The

leader usually consults the co-developers when making decisions, especially if they

concern areas of code that are assigned to co-developers. Some projects favour a more

democratic governance model, where the project is governed by a core developer voting

committee. (Raymond, 1998.) In some projects, decision-making has been extended to

the whole community by consensus-based governance (Gacek & Arief, 2004). The so-

called ‘rotating dictatorship’ is another style of governance. In it, the leadership of the

project is passed occasionally from a core developer to another. (Raymond, 1998.)

Raymond (1998) describes ownership of an OSS project as having the right that is

acknowledged by its community to re-distribute the modified versions of the software.

He argues that there are three ways to acquire ownership of an OSS project: by founding

it, having the ownership gifted to you by the previous owner, or finding a project which

previous owner has abandoned and asking the permission to assume control of the project,

or if the previous owner is not found, announcing to the community that you are going to

take control of it for it if there are no objections.

Open source culture has been characterised as a gift culture, where the social status of

individuals is determined by the gifts they give away to the community. Members of an

OSS community can gain social capital and power by giving contributions to the project

that the community deems valuable. (Bergquist & Ljungberg, 2001; Raymond 1998.) The

gift economy interpretation of open source communities has been compared to the way

how academic community works, where one trades knowledge for reputation by

contributing to the existing research (Raymond 1998). Peer reviewing of code

contributions in OSS projects have been also compared to how peer reviewing is done in

the academic community (Raymond 1998), and how it can be understood as a way of

13

organising power relationships within the members of a community (Bergquist &

Ljungberg, 2001).

OSS projects have been described to typically have a meritocratic “onion-like”

hierarchical structure consisting of several layers which represent different types of

community members (Aberdour, 2007; Crowston et al., 2004; Gacek & Arief, 2004).

Figure 1. A representation of an onion-like power hierarchy of an OSS project. Adapted from
Crowston et al., 2004.

The onion model (Figure 1) consists of core developers, co-developers, active users and

passive users. The number of involved people increases the farther we go from the core.

The core developers are typically a small group that manages the project and contributes

most of the code. The core developer group usually stays small, because a high level of

communication is needed, which would be difficult if the group would be too big. Co-

developers are a bigger group of developers who casually contribute and review code

contributions, such as bug fixes. (Crowston et al., 2004.) They add features to the code

and maintain them, often picking features that are defined in the project’s road map or

they want to implement (Aberdour, 2007). The users are divided into two of the biggest

groups; active and passive users. Active users are a group of users who do not contribute

code, but they help by testing the newest releases and submitting bug reports and feature

requests. Passive users are a group of users who do not actually contribute to the project

in any other way than using the software. The roles of community members can change

from time to time. (Crowston et al., 2004.) Advancing towards the core developer group

from the outside usually happens in a meritocratic way. Developers can increase their

perceived merit by contributing to the project and gain decision-making power along the

way, though this transformational process varies from project to project depending on

timing, the project’s structure, and other possible obstacles to overcome. Participants’

14

roles can also change to the other way, like for example core developers can change their

role to co-developers. (Gacek & Arief, 2004.)

The process of newcomers gaining decision-making power by giving gifts has been

observed empirically (Ducheneaut, 2005; von Krogh et al., 2003). Von Krogh et al.

(2003) conducted a clinical study of an OSS peer-2-peer software project Freenet. The

authors described the community to be governed by core developers who have the commit

rights. They examined how can newcomers become a part of the community and

eventually gain power within the community. They suggested several actions that can

help in getting accepted by the community based on the actions made by the successful

joiners. Examples of such are observing the community discussions and learning about

the project before making the first contributions, starting out by participating in the

existing discussions instead of proposing own technical solutions, and presenting “feature

gifts”, often related to their own area of expertise. They suggested that specializing can

be beneficial to the developer, because it allows them to focus on their area of expertise,

making contributing easier. New feature gifts can also act as starting points for

contributions to other newcomers. (Von Krogh et al., 2003.) Excessive amounts of

features have been criticised for contributing to usability problems, though (Nichols &

Twidale, 2003).

Ducheneaut (2005) acquired similar results when he examined the socialisation process

of new developers in a case study of the open source programming language Python’s

community. He analysed the project’s code commit history and mailing list message data

in order to figure out how newcomers gained decision-making power in the community.

A total of 284 participants were examined, and 136 of them had only posted only one

message to the community and left. The participants who left were not included in the

analysis because they did not become a part of the community. He compared the influence

gaining trajectories of individual newcomer developers by examining their commit and

message histories, especially focusing on how the successful developers gained power in

the community. He explained that many of the newcomers who successfully advanced to

developers often took similar steps when they managed to gain power in the community:

1. Observing the development before contributing

2. Reporting bugs and suggesting new patches

3. Fixing bugs

4. Managing a module-sized part of the software

5. Developing the module and gaining support for it in the community

6. Getting the approval from the core developers to add the module into the software

Ducheneaut (2005) argued that newcomers can assimilate into the community’s culture

by “lurking” for a period of time before starting to contribute to the project, but eventually

they will have to start building an identity as a “software craftsman” for themselves in

order to be noticed by the core developers. He suggested that this can be achieved by

demonstrating one’s merit by participating in technical discussions and eventually

submitting bug reports and proposed fixes. Ducheneaut (2005) argued that gaining

influence in the community is as much of a political process as it is about technical

expertise: one must understand how the politics of the community work and gather allies

in order to succeed.

15

2.2 Usability

The International Organization for Standardization’s ISO/IEC 25010 and ISO 9241

standards define usability as the extent to which a system can be used by specific users to

achieve their specified goals with efficiency, effectiveness, and satisfaction in a defined

use context (International Organization for Standardization, 2011; International

Organization for Standardization, 2018). In the ISO/IEC 25010 standard, usability is one

of the eight quality characteristics of the product quality model, and it is divided into sub-

characteristics appropriateness recognisability, learnability, operability, user error

protection, user interface aesthetics and accessibility (International Organization for

Standardization, 2011). As an area of research, usability can be considered a part of

human-computer interaction (HCI) research (Väänen-Vainio-Mattila, 2011, p. 123).

Usability expert Jakob Nielsen defines usability by dividing it into five different sub-

attributes:

 Learnability

 Efficiency

 Memorability

 Errors

 Satisfaction

Learnability means how easy it is to learn to use the system. Efficiency refers to how

productively advanced users can operate the system. Memorability means how easy it is

to remember to use the system effectively after a pause if the user has already learned to

use it before. Errors refers to how often users make errors while using the system, how

critical they are, and is it possible to recover from them with minimum effort. Satisfaction

means how enjoyable it is for the users to use the system. (Nielsen, 1994a, pp. 26-33.)

Nielsen (1994a, pp. 24-25) argued that usability by itself is a part of a larger concern of

system acceptability, which represents the question if the computer system is good

enough to satisfy the needs of users and other stakeholders. The overall acceptability

consists of social and practical acceptability. Social acceptability determines do the users

find the way the system is works socially acceptable, for example ethics-wise. Practical

acceptability consists of sub-factors like cost, reliability, support, compatibility with other

systems, and usefulness. Usefulness refers to the question can the system achieve a

desired goal of the user, and it is divided into utility and usability. Utility determines if

the system can functionally perform the needed tasks to achieve the goal, and usability

refers to how well the users can use the system as measured by the attributes of

learnability, efficiency, memorability, the lack of errors, and satisfaction.

Modern usability design and research are based on the science of ergonomics.

Ergonomics advanced greatly during the World War II, when the warring nations needed

to develop their war machines competitively. In the 1980’s, a new branch of science,

called human-computer interaction, emerged, and usability has been acknowledged as a

significant component in development of products since then. The International

Organization for Standardization created the first international standards for usability

(ISO 9241 and ISO 13407) in the 1990’s. (Väänen-Vainio-Mattila, 2011, pp. 102-103.)

Also around that time, using usability inspection as a way of improving usability of

computer systems started getting more popular (Nielsen, 1994b). Modern usability

research can be described as an interdisciplinary science that combines elements from

information processing science and psychology. It also utilises methods from other

16

disciplines, such as marketing, linguistics, and sociology. (Väänen-Vainio-Mattila, 2011,

p. 103.)

Väänen-Vainio-Mattila (2011, p. 104) argues that usability of systems is important

because of humane and economic reasons, because used systems can improve the quality

of life of people and give them joy. Bad usability has been suggested to increase the costs

of product design and support as well as having a negative effect on the competitiveness

of the software (Bias & Mayhew, 2005, as cited in Väänen-Vainio-Mattila, 2011, p. 104).

Usability can be improved and designed by using user-centered design and usability

engineering methods (Rajanen et al., 2012).

2.2.1 User/human-centered design

HCI supports the philosophy of user-centered design (UCD) as a way of developing

software usability. It is a way of developing software by involving its end-users

throughout its life cycle in order to make software that will fulfil their requirements.

(Viorres et al., 2007.) The aim of UCD is to gather user knowledge that is more truthful

than just pure intuition of the designers to the design process. The analysis of use context,

eliciting the users’ requirements and needs, and iterative evaluation of produced design

concepts with the users are some of the core areas of work in UCD. (Väänen-Vainio-

Mattila, 2011, pp. 102-105.)

ISO 9241 defines human-centered design as an “approach to systems design and

development that aims to make interactive systems more usable by focusing on the use

of the system and applying human factors/ergonomics and usability knowledge and

techniques” (International Organization for Standardization, 2019). The standard

provides recommendations and requirements for implementing human-centered design

activities to interactive systems throughout their life cycle. The terms user-centered

design and human-centered design are often used interchangeably in practice. The term

human-centered design was preferred to UCD to in the standard to emphasise that the

standard addresses also concerns of stakeholders of the system that are not usually

considered as users. (International Organization for Standardization, 2019.) The ISO/TR

16982 standard has listed many kinds of UCD methods. Examples of these are watching

users in their work environment, user surveys, user interviews, thinking aloud user

testing, collaborative design and evaluation with users and developers, and expert

evaluations. (International Organization for Standardization, 2002, as cited in Väänen-

Vainio-Mattila, 2011, p. 111.)

It has been argued that UCD is a vague concept (Hedberg et al., 2007), and there is

confusion regarding its practices, principles and goals (Iivari & Iivari, 2006). Iivari and

Iivari (2006) examined user centeredness of UCD as a concept composed of four

dimensions: user focus, work-centeredness, user participation, and system

personalisation. User focus refers to focusing on typical or individual users of the system.

Work-centeredness means focusing on the work done by the users and examining the

users as workers instead of individuals. User participation refers to the extent the actual

users of the systems are involved in the design process. System personalisation refers to

the extent that system can be modified to accommodate individual users’ preferences.

(Iivari & Iivari, 2006.) According to Hedberg et al. (2007), UCD methodologies

emphasise different dimensions of user centeredness. They argue that although there are

many different kinds of UCD methodologies that focus on different areas, they all share

similar emphasis on the importance of understanding the users, their tasks, and the context

of use (Hedberg et al., 2007). Having users involved in the design process has been

17

criticised for being risky in a way that listening too much what they want may lead to

systems with many features but without proper support for the user tasks (Norman, 2005,

as cited in Väänen-Vainio-Mattila, 2011, p. 109).

2.2.2 Usability engineering methods

According to Nielsen (1994b), empirical usability engineering methods, such as user

testing, are usually the most common way of evaluating user interfaces, but their

disadvantage is that it can be expensive to hire the sufficient amount of testers for every

iteration of an evolving design of a system. He suggests usability inspection methods such

as heuristic evaluation and cognitive walkthrough as a cost-effective way to conduct

usability engineering. He also recommends combining user testing with different

usability inspection methods to complement each other, since all of the methods can

overlook different kinds of usability problems.

Cognitive walkthrough

Cognitive walkthrough is a usability inspection method, where usability evaluators go

through the user interface and try to simulate a user’s problem solving process at every

phase of the of the system’s dialogue, and assess if the user’s current objectives and

memory content lead towards the next defined correct action (Nielsen, 1994b). Cognitive

walkthrough is focused on the user’s cognitive issues like learnability (Holzinger, 2005).

Holzinger (2005) describes helping designers to understand the user’s perspective, the

effective detection of issues related to dialogue with the system, and not requiring a

functioning prototype of the system or test users, as its advantages. As its disadvantages,

he mentions emphasis on low-level details, not having the end users involved, and

possible dullness and inherent bias as a result of selecting the tasks improperly.

Heuristic evaluation

Heuristic evaluation is a usability evaluation method where inspectors look at the user

interface and assess what is good and bad in it, ideally by evaluating it against a certain

set of rules or guidelines. The inspectors go through the graphic user interface (GUI)

multiple times in a single session, evaluating the interactive elements against the selected

guidelines. In the end, the inspectors produce a list of usability problems linked to the

specific usability principles they violated. (Nielsen, 1994a, p. 155-159.) According to

Holzinger (2005), the used set of heuristics should be selected carefully to fit the specific

system that is being designed. He mentions the use of recognised and accepted principles,

having usability considerations early and throughout the development, being intuitive to

use, and effective detection of both minor and major issues, as the advantages of this

usability inspection method. He considers detachment from end users, unreliable

detection of issues that are specific to certain domains, inability to design for unknown

user groups, and possibly not evaluating the complete design of the system, as the

disadvantages of heuristic evaluation. (Holzinger, 2005.) Heuristic evaluation has also

been critiqued by questioning if focusing on minor usability problems reduces the

effectiveness of the technique (Sears, 1997).

Jakob Nielsen and Rolf Molich (Molich & Nielsen, 1990, as cited in Nielsen, 1994a, pp.

19-20) propose a set of ten general usability principles that can be used for systematic

usability assessment of a GUI design by using heuristic evaluation:

18

1. Simple and natural dialogue

2. Speaks the users’ language

3. Miminise the users’ memory load

4. Consistency

5. Feedback

6. Clearly marked exits

7. Shortcuts

8. Good error messages

9. Prevent errors

10. Help and documentation

Simple and natural dialogue means that irrelevant or rarely needed information should be

filtered out in order to highlight relevant information, and all the visual information

should be presented in a logical order. Speak the users’ language refers to using clear

language that is apt for the intended user group instead of computer jargon. Minimising

the users’ memory load means aiming to design the system in a way that the user should

not have to memorise information between different parts of dialogue, and allowing the

user to access the user manual whenever needed. Consistency refers to using consistent

terminology and eliminating possible guessing whether different words or actions mean

the same thing. Feedback means keeping the users constantly updated about what the

system is currently doing. Clearly marked exits refers to implementing clearly

understandable exit actions to allow leaving an unwanted state. Shortcuts refer to having

quick actions that can save time for expert users which do not distract new users. Good

error messages means having error messages that are written in a way that the users

understand them and suggest possible solutions for the problem. Preventing errors means

designing the system carefully and preventing errors from occurring. Help and

documentation refers to having a documentation that can be used for searching for help

for possible problems that the users can encounter. (Molich & Nielsen, 1990, as cited in

Nielsen, 1994a, pp. 19-20.)

According to Nielsen, the main objective of heuristic evaluation is to detect the usability

issues in a GUI design so they can be addressed as a part of iterative design process

(Nielsen, 1994a, p. 155). He explains that these heuristics can be used to detect a large

percentage of usability problems in user interfaces. Using them fully accurately requires

some expertise, but even novices can also find many problems by using heuristic

evaluation. Nielsen recommends especially novice evaluators to use other usability

inspection methods such as thinking aloud test to supplement the results of heuristic

evaluation. (Nielsen, 1994a, pp. 19-20.) It is also recommended to have multiple different

people to conduct heuristic evaluation alone to make it less likely to miss possible

usability problems (Nielsen, 1994a, pp. 19-20) and to ensure unbiased evaluations

(Holzinger, 2005).

User testing

Nielsen (1994a, pp. 165-200) considers testing with real users the most essential usability

method, perhaps even indispensable, because it allows to get direct feedback about how

people use the system and what kind of problems they encounter when using it. User tests

are often conducted in a special usability laboratory setting, but they can be also

conducted in normal office settings that are converted into temporary usability

laboratories. Special equipment is not mandatory, as user tests can be conducted even

only with a notepad. A typical user test consists of four phases: preparation, introduction,

the test, and debriefing. (Nielsen, 1994a, pp. 165-200.)

19

Nielsen (1994a, pp. 165-200) divides user testing into two categories: formative

evaluation and summative evaluation. Formative evaluation is used to improve the design

of a user interface in an iterative manner by evaluating what is good and bad in it.

Summative evaluation, on the other hand, is focused on evaluating the user interface’s

overall quality. It is used for example when trying to decide between alternative user

interfaces, or as a way of conducting competitive analysis by evaluating competitive user

interfaces. Thinking aloud testing is a typical formative evaluation method. In thinking

aloud testing, users use the system and verbalise their thought process, giving the

evaluators insights on possible usability issues. There are also similar other versions of

user testing, such as constructive interaction (two test users use the system together and

talk about it), retrospective testing (recording the test session and after it the test user

discusses the video), and the coaching method (a coach gives advice to the user during

testing). (Nielsen, 1994a, pp. 165-200.)

Although Nielsen (1994a, pp. 165-200) argues user testing to be very important, he warns

that special attention must be paid when testing to achieve replicable results and focus on

the right usability issues that are encountered in the real environment instead of only in a

testing laboratory. As the variance of individual test users’ results can be great, he

recommends getting a sufficient amount of testers and performing statistical analysis to

achieve more reliable results. He argues that also validity problems can occur when types

of test users or test tasks that are not representative of the actual users and tasks are

selected, or time constraints and social influences are excluded from testing.

2.3 Usability in OSS projects

Even though there is lots of open source software available and the use of OSS has been

growing, OSS tends to be used the most by technically advanced users, while average

users usually prefer proprietary software. One of the main reasons proposed for this is the

perception that OSS has weaker usability. (Nichols & Twidale, 2003.) It has been often

suggested that usability is a problem in open source software (Andreasen et al., 2006;

Feller & Fitzgerald, 2000; Lisowska Masson et al., 2017; Nichols & Twidale, 2003). OSS

projects often emerge from personal need of the developers (Moody, 2001, as cited in

Crowston et al., 2004; Raymond, 1999; Vixie, 1999, as cited in Crowston et al., 2004),

and the developers are also users of the software (Andreasen et al., 2006; Crowston et al.,

2004; Nichols & Twidale, 2003). As the user base of OSS grows and an increasing

amount of non-expert users start using it, there is a need for additional usability

considerations (Feller & Fitzgerald, 2000; Nichols & Twidale, 2003; Rajanen & Iivari,

2019).

2.3.1 Usability issues in OSS

Nichols and Twidale (2003) suggest several possible reasons why usability issues are

prominent in OSS:

 Developers do not represent typical users

 Usability experts do not involved in OSS projects often

 OSS projects do not have the resources for high quality usability work

 The working incentives in OSS are more suited for improving functionality rather

than usability

 OSS is more prone to feature bloat than commercial software

 OSS’s tendency to focus on power instead of simplicity

20

 Usability issues are more difficult to specify compared to problems related to

functionality

 It is more difficult to conduct usability design after the coding has already begun

 Commercial software determines what is cutting edge GUI design due to its

popularity and the OSS can only attempt to follow it

Software developers often fail to see what kind of usability problems other kinds of user

than themselves may encounter, and the developers of OSS are not always the typical

users. In commercial software development, usability experts are often hired to bridge the

gap between the developers and the users. In OSS development, the OSS communities

often lack the resources to hire usability experts to conduct high quality usability work,

and it is somewhat rare for usability experts to get involved in OSS projects. (Nichols &

Twidale, 2003.) While the usability experts usually have the authority to represent the

needs of users in commercial software projects (Nichols & Twidale, 2003), they are often

struggling to get their voice heard in OSS projects (Çetin et al., 2007). OSS developers

are often driven towards developing features and functionality instead of focusing on

usability and simplicity. This can be explained by the voluntary nature of OSS

development. As developers contribute to OSS projects by selecting the topics and parts

of software that interest them, many of them may not be interested developing

modifications related to usability. This and the fact that there is always an incentive to

add more code from other developers and never to delete parts of the it can lead to feature

bloat and increasing complexity of the software, which can be detrimental to usability,

especially for novice users. Usability issues can be difficult to specify and evaluate

compared to functional problems, and usability work can also be hard to divide to several

different developers. Usability design work tends to most effective when it’s implemented

as early as possible, but in OSS, the developers tend to rush straight to coding. Usability

innovations are usually made by commercial software, and the OSS has often focused on

following user interface design of brand leaders instead of developing them even further.

(Nichols & Twidale, 2003.)

Andreasen et al. (2006) examined OSS developers’ opinions about usability and how

usability work is performed in OSS projects by conducting a survey and interviews of

OSS developers and usability evaluators with 24 participants from OSS projects without

corporate involvement. The respondents generally considered usability as important, as

83% of them regarded the importance of usability high (from high to very high and

extremely high), and only 13% of them considered it moderate and 4% considered it to

have a slight importance. One of the interviewed developers who had ranked usability to

have extremely high importance argued that some of the OSS developers see usability

related work as boring tasks compared to coding features. The developers were also asked

about what they thought of usability experts contributing in OSS. The authors argued that

many of the developers were reluctant to involve usability experts in the development and

saw them as a threat to their perception of the democratic nature of OSS, if the usability

experts are the only ones with expertise about the subject matter. One interviewee

explained that usability experts telling the developers what to program would be another

issue, since they do not like to be told what to code. The interviewed developers were

more accepting towards having external usability experts conduct usability evaluations to

the software instead of participating actively in its design process. The authors also asked

the participants about what stage of the development process usability activities should

be performed and received mixed answers. Only 5 of the 23 respondents (one of the initial

24 of them was not sure about what to answer) saw usability as an iterative process

continuing throughout the project. Applying usability work in the beginning of the project

was the most common answer (12 answers), and during the testing phase was answered

21

5 times. Common sense was found to be the primary usability evaluation method among

the participants, as 19 of 24 them answered that they followed common usability

conventions and usability guidelines. The use of external professional usability work was

not as common (10 of 24 participants); some of the projects had used usability

inspections, but they were rarely conducted by professionals.

The tools used in OSS development have been also critiqued for being difficult to work

with when trying to improve usability (Çetin et al., 2007; Nichols & Twidale, 2006).

Nichols & Twidale (2006) examined the bug reporting tools of Mozilla and GNOME

projects and found problems related to reporting usability issues. For example, they

argued that it can be difficult or cumbersome to express encountered usability problems

or propose GUI solutions textually (instead of using discussing them face-to-face or using

GUI mock-ups), and some usability issues are related to a sequence of actions instead of

a single interactive element, making it difficult to describe it. They also argued that

discussing about usability issues can be complex and contentious due to the fact that

usability issues can be perceived as subjective. Another issue according to them is

managing the complexity of fixing usability bugs. For example, fixing a single usability

issue can have undesired effects on the overall interface design. Çetin et al. (2007) also

conducted empirical research on usability experts’ involvement in OSS and critiqued the

usability issue reporting tools for not supporting multimedia format usability reports.

Several ways to improve the usability of OSS have been suggested (Çetin et al., 2007;

Nichols & Twidale, 2003; Nichols & Twidale, 2006; Zhao & Deek, 2005). Nichols &

Twidale (2003) suggested that involving software companies or the academia could be

beneficial for usability. Software companies could be used for developing the GUI for an

OSS application with their usability resources. In academy involvement, HCI students

could participate in actual OSS projects, offering their expertise for example in the form

of prototypes. The authors argued that the students could get practical training this way,

and the OSS platforms might have to eventually evolve in a way that is more supportive

towards usability work. They also mentioned that usability education and evangelism may

be needed to convince typical OSS communities about its benefits in order to become

more accepting towards it. Çetin et al. (2007) suggested that making the developers more

aware about basic usability principles would be beneficial, because the developers could

then evaluate the usability of the software themselves, and this would also increase the

mutual understanding between the developers and the usability experts. Getting typical

users more involved in usability issue reporting has been suggested as a one way of

improving usability (Nichols & Twidale, 2006; Zhao & Deek, 2005). Nichols and

Twidale (2006) argued that creating an infrastructure that would support usability issue

discussion would potentially allow the developers to engage with a larger group of users,

including the passive users who do not normally report bugs. They also suggested that it

could be beneficial to have the developers apply condensed knowledge from HCI, such

as Human Interaction Guidelines and concepts like Fitt’s Law, but argued that a more

effective solution would be creating a community that would encourage HCI experts to

participate in development. According to Bach et al. (2009), there are three ways of how

usability experts get involved in OSS projects: they are either paid to work in them,

volunteers who find a suitable project, or they are paired with an OSS project by using a

usability work matchmaking service like OpenUsability.org.

2.3.2 Usability practitioners’ barriers to contributing in OSS projects

The core ideas of user-centered design emphasise that it is difficult for software

developers to design for typical users (Nichols & Twidale, 2003). Many kinds of user-

22

centered design methods exist in the HCI field, but they have not been used widely in

OSS development (Bødker et al., 2007). Nichols and Twidale (2003) propose involving

user-centered design practitioners to connect the developers to the average users by using

techniques like participatory design and usability engineering. It can be challenging,

though, because OSS has been described having characteristics that do not mix well with

HCI philosophy, such as geographical distribution, code-centricity, lack of usability

expertise and resources, and a culture that often feels unfamiliar to usability practitioners

(Nichols & Twidale, 2006). Muehling and Reitmayr (2006, as cited in Çetin et al., 2007)

identified some challenges related to shifting towards a more user-centered approach in

OSS development. They argue that in OSS, the intended target audiences and their

requirements and tasks are often not defined clearly. They also suggest that it may be

difficult for usability experts to get their voice heard, because they may need to convince

more people about the usability work than in traditional development. (Muehling &

Reitmayr, 2006, as cited in Çetin et al., 2007.) Çetin et al. (2007) argue that it can be

problematic that usability experts’ active participation in OSS projects slows down the

software’s time-to-market.

Rajanen and Iivari (2019) argue that there are OSS projects in need of usability work and

usability experts who are willing to contribute to them, but their effective collaboration

requires that the OSS projects in need of usability work decide to incorporate the usability

activities into their road map, and the usability experts need to be able to find those kinds

of projects and manage to convince the decision-makers of the importance of usability.

According to Nichols & Twidale (2003), usability practitioners often lack the technical

skills of traditional OSS developers, and it can lead to them not taken seriously by the

community. Andreasen et al. (2006) interviewed five usability professionals involved in

OSS development. The usability professionals argued that almost all issues they

encountered when working with OSS developers stemmed from lack of trust, which often

caused the developers to reject their suggestions. Andreasen et al. (2006) argued that the

distributed nature of OSS where the developers rarely meet in person makes people judge

each other based on their past merits. It can be difficult for usability practitioners to

demonstrate their value and build trust, because usability work is more difficult to

measure than functional contributions. Andreasen et al. (2006) and Trudelle (2002, as

cited in Andreasen et al., 2006) argued that usability practitioners must be willing to build

trust through merits to gain decision-making power in the meritocratic culture of OSS.

The interviewed usability professionals suggested that external usability experts could

also establish trust by meeting the developers face-to-face, for example in an OSS

conference. They stated that their work environment improved after trust was established.

(Andreasen et al., 2006.) It has been also suggested that usability improvement proposals

can be rejected for the reason that the project lacks resources to implement them, as Zhao

and Deek (2005) encountered this issue in a case study of a usability intervention on an

OSS project. Çetin et al. (2006, as cited in Çetin et al., 2007; Çetin et al., 2007) examined

the impact of usability activities done by usability experts in OSS projects, and argued

that the timing of the usability intervention affects their influence on the project.

According to them, the earlier the usability experts join the project, the higher their

chances of getting accepted in the community and having an influence on the user

interface are.

OSS environments that would be more suitable for usability work have been theorised on

a conceptual level (Bach et al., 2009). Bach et al. (2009) addressed issues of usability

experts gaining trust and merit and the OSS platforms’ inadequate support for usability

work in their study, where they produced GUI mock-ups for modifying CodePlex OSS

community platform to be more suitable for usability work. Their aim was to create

concepts of an OSS platform that would make usability experts feel welcome. They used

23

previous literature and interviews of usability practitioners as the basis for their proposed

changes. For promoting building trust and merit, they proposed giving different work

spaces to developers and usability practitioners to make it clear that usability work is

valued, and creating a space where the usability practitioners can share usability concepts

and discuss about them with others, and demonstrate their expertise by describing the

rationales that the designs were based on. They also proposed galleries that would display

the top GUI designs on the front page. In order to bring best usability practices to the

platform, they proposed adding direct support for usability tasks, such as persona

descriptions, scenarios, design iterations and user stories in the usability work space.

High quality OSS requires a sustainable community (Aberdour, 2007). Many volunteer-

based open source software projects are dependent on newcomers joining the project

continuously (Steinmacher et al., 2015). OSS communities need to engage, motivate, and

retain new developers in order to cultivate a sustainable community of software

developers (Qureshi & Fang, 2011, as cited in Steinmacher et al., 2015). It can be difficult

for newcomers to contribute to ongoing OSS projects because they often encounter

different kinds of obstacles when trying to join the community (Dagenais et al., 2010;

Steinmacher et al., 2015). Dagenais et al. (2010) identified different kinds of obstacles

newcomers of OSS projects can encounter by interviewing 18 newcomers of 18 different

projects. Obstacles, such as poor quality feedback (or the lack of feedback) from the

community or inadequate project documentation were found to make joining and

integrating into an OSS community difficult for newcomers. Steinmacher et al. (2015)

conducted a systematic literature review of obstacles newcomers encounter when entering

OSS projects. They found 20 empirical studies that provided evidence on different kinds

of obstacles, and classified the obstacles into five categories: social interactions, finding

a way to start, the newcomers’ knowledge, technical issues, and documentation.

Obstacles related to social interactions (such as not receiving answer from the developers

in time, receiving an improper answer, or the lack of interaction with the developers) were

the most common, as they were present in 75% of the studies. Newcomers’ previous

knowledge was the second most common obstacle category, and the lack of technical

expertise was the most common issue related to this obstacle. Steinmacher et al. (2015)

suggested that having domain knowledge combined with technical skills and social

interaction with the developers may help when joining a new OSS project. According to

them, discussions of OSS developers often revolve around artefacts that reflect domain

and technical knowledge, and through the outcomes of those discussions, the developers

and the newcomers can evaluate if the skill level required for contributing to the project

is apt. The authors also suggested that the OSS project communities themselves could

work on becoming more receptive towards newcomers and taking newcomers into

account by for example keeping the code easily readable and the documentation up-to-

date. Viorres et al. (2007) argued that also the open source software tools used for creating

OSS, such as compilers or file editors, can be difficult to work with even for developers.

They mentioned issues like a modular way of producing OSS can make it more difficult

to install, use and maintain the software, the limited or fragmented documentation, and

not taking backwards compatibility into account.

A typical distributed and technologically-driven OSS project culture is at odds with

corporate processes and usability engineering methods, making it difficult for

professional usability practitioners to work in OSS projects (Benson et al., 2004). Benson

et al. (2004) studied what kind of difficulties corporate usability experts faced when

working on OSS projects. They examined empirically NetBeans, GNOME and

OpenOffice projects, which had corporate usability involvement. They identified

challenges, such as communication problems between the developers and the usability

teams, confusion about the target user groups, and usability teams lacking in decision-

24

making power in GUI design issues. The communication tools usually supported usability

discussions poorly, as the discussions were fragmented to several places and complex bug

databases could be intimidating to non-technical contributors. In the case of GNOME, the

usability practitioners’ role was more like a usability bug reporter than actual designer

who would iteratively design user interfaces. User interface modifications were usually

already designed by the developers before they asked for assistance from the usability

team. Benson et al. (2004) argued that in order to conduct professional usability work in

OSS effectively, integrating a fitting usability methodology for OSS processes and

defining a centralised and decision-making process would be important.

Bødker et al. (2007) conducted a study, where they tried to bring user-centered design

processes to the OSS project community of TYPO3, an enterprise content management

system. The study was action research based, in which they aimed to change the

community towards becoming more accepting to usability considerations. They

performed two usability interventions. In the first one, they decided to gather user

knowledge, since they noticed that the developers had no clear idea of what are the typical

users of the software. They created a HCI discussion list where they discussed usability

issues and recruited usability “ambassadors”, members of the developer community who

were interested in usability. Although the ambassadors did good work in the discussion

list, their lack of knowledge of usability concepts became a problem as discussions often

shifted towards plain general observations of usability, so the authors decided to change

their approach by conducting another intervention. In the intervention, they shared a set

of usability heuristics to the community which were intended to provide a common

vocabulary of usability to all developers and to educate them. The authors described the

interventions as challenging, because they met resistance towards usability work from the

developers. A common counter-argument from the developers towards usability work

was that why should they take end-users into account, because they were working only

for fun without getting paid. The authors suggested that the original ideology of OSS may

be at odds with user-centered development due to its voluntary nature. As for the results

of the study, they concluded that they managed to change the community by introducing

and promoting usability discussion and work, and changing some of the developers’

attitudes towards the end-users to more positive.

Lisowska Masson et al. (2017) conducted a case study where they advocated for

consistent use of GUI design principles in a large-scale learning management OSS project

called ILIAS. The power structure of the OSS project in question followed the typical

onion model consisting of developers and users of different ranks. The core developers

and the project manager held bi-weekly meetings where they discussed new proposed

features. The authors created a toolset called Kitchen Sink which purpose was to address

usability issues by helping usability practitioners to integrate into the developer

community and reducing the effort of developers to implement usability improvements.

Its main goals were:

 Encouraging developers to value the work of usability practitioners

 Providing a taxonomy of the GUI components of the software and defining clear

and effective ways of using them

 Providing a way for usability practitioners to contribute to the project effectively

 Making it possible to conduct automated test for some of the guidelines

A prototype of Kitchen Sink was made and presented to the developers. It was met with

mixed reactions. There was interest in the project, but some raised concerns, such as

doubts about its funding, the slow pace of designing it, and resistance towards major

changes. A veteran developer of the software who had used the software for 15 years and

25

had done some usability work on it emerged as a supporter of the project on a condition

that some changes were made to the project according to her feedback. Her help proved

to be valuable, because she was able to determine what kind of changes would cause

harmful ripple effects to other parts of the software. Two major changes were made to the

initial plans. The initial plan was using a holistic top-down approach for implementing

GUI changes, but it was changed to bottom-up approach which consisted of implementing

small changes. This was decided because the authors wanted to demonstrate trust to the

community and to address the issues of limited resources of the developers and the large

userbase affected by changes. The authors created a taxonomy of the existing GUI

components of the software which were used for suggesting usability improvements and

a template for Kitchen sink entries which can be used when proposing new GUI elements

to be presented in the core developers’ meetings. The taxonomy consisted of 130 entries

and 361 guidelines on how the developers can improve them. Kitchen Sink was

eventually accepted by the core developers, and they reserved a time slot for presenting

its entries in the bi-weekly meetings. In two months after its acceptance, 11 Kitchen Sink

entries had been accepted for implementation and 2 were rejected. The authors suggested

that even though the pace of usability work was quite slow, it is acceptable because

discussion about one issue takes about 30 minutes and the discussions about such matters

sensitizes the developers to GUI design and usability principle issues. The developers

have since then expressed their desire for integrating Kitchen Sink closer to the code

which has resulted in two projects for such purposes.

2.3.3 UKKOSS research programme

Rajanen and Iivari (2019) have conducted a research programme called UKKOSS, which

main aim is to investigate and theorise ways how usability practitioners can participate in

OSS development. The research is based on analysis of cases, where student teams acting

as usability teams and guided by the researchers, perform usability interventions on

different kinds of OSS projects by using different strategies and methods.

Measuring the effectiveness of different approaches to introducing usability
activities to OSS

Rajanen et al. (2011; 2012) have experimented with different kind of ways of introducing

usability activities to OSS and measured their effectiveness by studying the results of

UKKOSS cases. Cases, where the usability team used a consultative approach where they

submitted their usability work in the same way as patches are usually submitted to OSS

and without prior interaction with the developers, did not end up with impactful changes

to the software’s usability (Rajanen et al., 2011). Cases that used a participative approach

generally yielded better results. In a participative approach, the usability teams aim to

become recognised members of the project’s community. (Rajanen et al., 2011; Rajanen

et al., 2012.) This can be achieved by adapting the usability work to the culture of the

specific project and submitting code patches (Rajanen et al., 2012). Rajanen et al. (2011)

also suggested several other core components for bringing usability work to OSS

successfully, such as understanding the characteristics of OSS development, aiming to

make the core developers allies by communicating with them, promoting the interests of

end-users, identifying the benefits of improved usability and advocating usability work

by referring to them, and adapting the usability work to the development while

maintaining an objective view.

26

Mixing HCI and OSS philosophies

Rajanen and Iivari (2013) examined if the core philosophies of OSS and HCI can co-exist

in OSS projects by analysing two UKKOSS cases. In both cases, the usability teams

managed to embrace both of the philosophies simultaneously by adjusting their work

based on the OSS philosophy (interacting with the community, gaining merit, reporting

and fixing bugs, etc.) while adhering to the HCI philosophy by representing the users and

influencing the design process of the software in both consultative and participative roles.

The authors identified a possible risk of too close involvement in the development

process, as according to HCI literature, too close involvement in development may hinder

the usability work, as it can be difficult to represent the needs of users if one is too

involved in the design process. In one of the cases involving an OSS game, a member of

the usability team got quite closely involved in the development as he managed to become

a developer due to his contributions to the project, community activities, and his skills as

a player of the game. He ended up spending more time on coding than on usability work,

but it did not end up becoming a problem, because the other usability team members were

able to focus on usability.

Enculturation & OSS project culture types

Iivari et al. (2014) examined UKKOSS cases and a few other usability interventions from

the perspective of enculturation. Some of the cases had corporate involvement. The

results of the cases indicated that enculturation efforts were beneficial to making an

impact with the usability activities. They defined enculturation in this context as the

usability teams gaining enough knowledge of the culture they have entered so they can

adjust their work accordingly. They argued that enculturation happens naturally when if

the usability practitioners are involved in the OSS project from its inception. In two of

the seven cases, usability practitioners were involved in defining the OSS project and

knew personally the developers. Both of those cases ended up with impactful usability

contributions. These kind of cases where usability practitioners are involved right from

the start are rare, though. In general, cases with enculturation efforts were more likely to

end up with impactful usability contributions. According to the authors, enculturation in

OSS consists of understanding the product, motivating usability, and targeting the

decision-makers. They recommend usability practitioners to examine the available online

material of the OSS project they aim to join and observe the communication channel for

a while in order to gain cultural knowledge on the context they are entering into.

Rajanen and Iivari (2015b) investigated the effect of the culture type of an OSS project

on the success of usability teams’ usability interventions. They derived 4 culture types

from the competing values model that is used to categorise cultures based on

organisations’ value orientations, developed by Denison and Spreitzer (1991, as cited in

Rajanen & Iivari, 2015b). The model consists of two axes based on value orientations,

diverging from change to stability, and from internal focus to external focus. Change

highlights flexibility and stability emphasises control and order. Internal focus

emphasises maintenance of the existing system, and external focus emphasises interaction

and competing with the organisational environment. (Denison & Spreitzer, 1991, as cited

in Rajanen & Iivari, 2015b.) The derived culture types based on the model were:

 Group culture type (change and internal focus)

 Adhocracy culture type (change and external focus)

 Hierarchical culture type (control and internal focus)

 Rational culture type (control and external orientation)

27

The authors examined four UKKOSS cases, in which two OSS projects had the

characteristics of adhocracy culture type, while the remaining ones resembled the group

type and the hierarchical type. The usability intervention succeeded only in cases where

the OSS project’s culture type was adhocracy. The authors suggested that this can be

interpreted in a way that adhocracy culture type is the most fitting culture type for

usability work, or that the planned usability work on an OSS project has to be modified

so it fits the specific culture type. (Rajanen & Iivari, 2015b.)

Power dynamics and gatekeeping tactics

Rajanen and Iivari (2015a) examined 5 UKKOSS cases through the lens of power

dynamics, focusing on how the OSS developers wielded power over the usability teams

and denied their empowerment. They used the model of power and empowerment

developed by Hardy and Leiba-O´Sullivan (1998, as cited in Rajanen & Iivari, 2015a) as

a base for their research. The model consists of four dimensions. In the first one, the

power is used by managing the dependencies of resources, in the second one by managing

decision making processes, in the third one by managing meaning, and in the fourth, the

power is embedded into the system itself. All the dimensions are divided into four parts

that describe the power dynamics between ones who have power (A) and the ones who

do not (B): the first one depicts how A exercises power over B, the second is about the

interaction between the groups, the third one describes the reasons why B fails to

influence the outcomes, and the last one explains the requirements for the empowerment

of B. (Hardy & Leiba-O´Sullivan, 1998, as cited in Rajanen & Iivari, 2015a.) The authors

examined how this model applied to the UKKOSS cases, mainly focusing on the second

degree of power and empowerment (managing the decision-making processes), though

other dimensions were also examined. They defined the OSS developers as the ones with

power and the usability teams as the ones without it. They argued that the OSS developers

managed the decision making processes by having the access to the decision-making

arena and having an influence there. The interaction between the developers and the

usability teams consisted of open or covert conflicts, such as developers rejecting the

usability teams’ contributions or accepting them and reverting them later, or not being

willing to communicate about usability issues. As for the reason why usability teams

failed to influence the outcomes, the authors argued that usability teams were aware of

their position and sometimes able to contact the developers with power, but unable to

have an impact on the outcomes. As for the requirements for empowerment, the authors

suggested that the usability teams must have influence and gain access to the decision-

making arena by either gaining commit rights to the project, or contacting the developers

with power and convincing them about the value of their work. (Rajanen & Iivari, 2015a.)

Rajanen et al. (2015) identified three gatekeeping tactics that were used to hinder the

usability teams’ work in various UKKOSS cases:

 Non-response

 Social exclusion

 False acceptance

Non-response refers to developers not responding to either the messages or contributions

of the usability practitioners. It was encountered in a form or another in three of the six

examined cases. In one case, the usability team submitted the results of their usability

work to the developers via e-mail and later by posting it on the discussion forum of the

project, because they did not get a reply to the e-mail. A developer finally commented on

the forum that they were discussing with the core developers about the results of the

28

usability work and that they would comment on it later, but no reply was received. Social

exclusion refers to excluding the usability practitioners from the decision-making process

of the project. It was encountered in three of the six cases. An example of such tactic

happened in one case, where the usability team’s work was welcomed by the developers,

but the developers considered only fixing the kinds of identified usability issues that they

saw as problems. The usability team was also treated like an external resource instead of

becoming a part of the project, as the developers did not try to integrate the usability work

in the development plan. False acceptance refers to situations where the developers

initially accept the usability work but revert the changes later. It was encountered in one

of the cases.

29

3. Research methods

This chapter discusses the context of the research, the research question, and the process

of case study research method and how it is applied in this research.

3.1 UKKOSS research programme as the basis of research

This research uses the documented cases of usability interventions conducted to OSS

projects as a part of UKKOSS research programme as its basis. Details about the existing

research on the UKKOSS cases can be found in the chapter 2.3.3.

UKKOSS research programme’s main objective is to find and try new ways how usability

experts can meaningfully contribute to OSS projects. It consists of experiments, where

student teams acting as usability practitioners enter an OSS project offering their expertise

for usability improvements while collecting empirical data for further research. The

student teams have been guided by researchers to try out different kinds of approaching

strategies to diverse OSS projects. The size of the student teams has varied from 3 to 5,

and all of them were required to work 200 to 300 hours on the project. Their tasks

consisted of designing and executing the usability improvement activities, measuring the

impacts of their usability work, collecting empirical research data about the cases, and

writing reports. The students participating in the usability teams have completed at least

two courses on usability focused on usability evaluation methods, user interface design

and user-centered design. The research programme has been active for over a decade.

(Rajanen & Iivari, 2019.)

3.2 Research question

This research is a multiple case study analysing four UKKOSS usability interventions.

The main research question is: “How did the open source software communities react to

usability improvement activities conducted by external usability practitioners?”. The aim

is to find out how did the OSS project communities accept the external usability teams’

usability activities, how the outcomes of these cases tie into previous research, and to

examine what kind of factors may have contributed to the outcomes of the cases through

cross-case analysis.

3.3 Case study process

Case study is used as the research method in this research. Runeson and Höst (2009)

describe case study research method as a process consisting of four phases: design and

planning, collecting data, analysis, and reporting. Case study as a research method allows

a researcher to investigate a real contemporary phenomenon by analysing a number of

events, conditions and their relationships (Zainal, 2007).

3.3.1 Design and planning

It has been suggested that a researcher planning to conduct a case study should define the

rationale for using it as a research method instead of other possible methods, and conduct

a comprehensive literature review on the subject (Yin, 2009, p. 2). Case study has been

30

argued to be a fitting research method when the research question is in the form of “how”

or “why” (Yin, 2009, pp. 2-62), when the analysis does not require the control of the

examined behavioural events (Benbasat et al., 1987, as cited in Gagnon, 2010, p.16; Yin,

2009, pp. 2-62), when the study is focused on contemporary events (Benbasat et al., 1987,

as cited in Gagnon, 2010, p.16; Runeson & Höst, 2009; Yin, 2009, pp. 2-62), and when

the examined phenomenon has an established theoretical base (Benbasat et al., 1987, as

cited in Gagnon, 2010, p.16). Runeson and Höst (2009) argued that case study as a

suitable research method for software engineering research.

Yin (2009, pp. 2-62) recommends using a multiple case design instead of a single case if

possible, because it is more likely to produce good results, and the analytic benefits of

having multiple cases can be major. Eisenhardt (1989, as cited in Gagnon, 2010, p. 77)

explains that cross-case analysis can be used for identifying emerging patterns from the

cases by focusing on the similarities and differences between the cases. Light (1979, as

cited in Gagnon, 2010, p. 41) argues that the main purposes of studying multiple cases

are to create an extensive description of the context of the observed events and to reveal

the underlying structure of social behaviour.

Yin (2009, p. 2) argues that a researcher attempting to conduct a case study should also

aim to understand the strengths and weaknesses of the research method. According to

Zainal (2007), the strengths of case study research method include aspects, such as the

great variance of approaches to case studies makes it possible to utilise both qualitative

and quantitative data, and the detailed qualitative data that is often gathered in case studies

can help to explain possible complexities of real-life settings that would have been

probably ignored in other type of research. Yin (2009, pp. 14-15) suggests a perceived

weakness of the case study method by arguing that the case study research method has

been criticised of lacking rigor, because case study researchers have often allowed things

like biased views or ambiguous evidence to have an effect on the conclusions of the study.

The generalizability of the case study method has been also questioned due to its

dependency on exploring single cases (Tellis, 1997, as cited in Zainal, 2007).

Specifying the cases and the units of analysis have been suggested as some of the main

tasks when designing a case study (Runeson & Höst, 2009; Yin, 2009, pp. 24-25). Other

suggested tasks include also defining the case study protocol, taking ethical

considerations regarding the subjects of the study into account (Runeson & Höst, 2009),

developing possible prepositions and theory for the study, and identifying possible issues

(Yin, 2009, pp. 24-25). Robson (2002, as cited in Runeson & Höst, 2009) suggests that a

case study plan should include the research objective, specifying the case, defining the

theory as a frame of reference, explaining the research questions, and defining the data

collection methods.

Based on the suggestions in the previous paragraphs of this chapter, a multiple case study

is a suitable research method for the selected research question, as it is a “how” type of

question, the investigated events are modern, and the research does not require the control

of the examined events. A literature review that is used as the frame of reference for the

analysis of the cases has been conducted. This research will analyse UKKOSS cases 14-

17, which were conducted from 2015 to 2016. The cases were suggested to be researched

in this paper and their material was sent to the author by the principal investigator of the

UKKOSS programme and the supervisor of this study, Mikko Rajanen. The cases of this

case study are the documented usability interventions, and the units of analysis are the

attitudes and actions of the OSS developers towards external usability practitioners and

their contributions during the usability interventions. Regarding the ethics of the study,

the identities of the participants of the usability teams and the OSS developers are not

31

disclosed. A possible issue in the study is that cases can end up ambiguously regarding

the impacts of the usability work due to time constraints of the student projects. This is

addressed by testing the latest versions of the selected OSS programs in order to reach

more conclusive results regarding the outcomes of the cases and to make cross-case

analysis easier.

3.3.2 Collecting data

Runeson and Höst (2009) emphasise that it is important to utilise several data sources in

the study to limit the impact of one interpretation of a single data source, as drawing the

same conclusion from multiple pieces of evidence strengthens its validity. They explain

that several different kinds of data sources, such as interviews, observations, archival

data, and metrics can be used in case studies.

The usability interventions studied in this paper had been already conducted before the

work on this thesis started. Various research material was gathered and archived during

them. The material includes documents, such as project plans, concluding summary

reports, the details of conducted usability activities, communication logs between the

usability team and the OSS developers, and reports of background information of the

involved OSS communities. The author participated in UKKOSS 17 in 2016. I was a part

of a team of 3 students and conducted usability work, gathered case data, and

implemented some of the GUI modifications we suggested to the software during the

project.

The UKKOSS projects that are examined in this thesis consisted of 10 main tasks:

1. Getting acquainted with previous UKKOSS projects

2. Selecting a fitting OSS project

3. Gathering information about the OSS project

4. Planning

5. Contributing to the OSS project

6. Conducting usability activities

7. Reporting the results of the usability work to the OSS project

8. Implementing at least a part of the proposed changes to the user interface

9. Gathering material related to the prior tasks and writing reflective reports

10. Communicating with the lead researcher of the project and the OSS project’s

community

First, the student teams read the prior research on the UKKOSS research programme to

understand the context of the project. After that, they select a suitable OSS project to enter

as an external usability team. Being suitable for this research included criteria such as the

software being intended for “normal” users, not too many or too few core developers, and

not having a planned release of the next version too soon so that there is enough time for

contributions and usability work. The gathered background information about the project

included aspects like finding out if prior usability activities have been conducted in the

project, prior discussion about usability or usability issues, the knowledge level of

usability in the community, finding the main communication channels, identifying

potential code contribution options, and investigating the hierarchical structure and the

culture type of the community. The planning task consists of writing a project plan that

determines what in particular is done (contributions, usability activities, communicating

with the community, determining how the data is collected and stored, etc.) and by whom,

what is the timeline of the project, and what are its possible risks. In the contributing to

32

the OSS project task, the students attempt to gain merit and recognition within the OSS

community by contributing to the project by for example doing tasks specified in the task

lists of the community. The conducting usability activities phase consists of performing

usability work like heuristic evaluations, cognitive walkthroughs and user testing

according to the project plan. After the usability work is done, its results are reported to

the OSS developers and at least some of the proposed changes are implemented by the

students. In the end, the team gathers data from the previous tasks and writes reports on

things like what was done specifically, the success of the usability activities, describing

if the usability activities caused changes to the attitude towards usability in the

community, and assessing if the activities and the user interface changes caused a lasting

effect. (UKKOSS 14 Assignment description, 2015; UKKOSS 15 Assignment

description, 2015; UKKOSS 16 Assignment description, 2015; UKKOSS 17 Assignment

description, 2016.) In practice, the usability teams of different projects used different

approaches. For example, some of them did not contribute code before reporting the

results of the usability work to the developers or implement some of the suggested

changes themselves. (UKKOSS 14 Final report, 2015; UKKOSS 15 Final report, 2015;

UKKOSS 16 Final report, 2015; UKKOSS 17 Summary report, 2016.)

3.3.3 Analysis

The main objective of data analysis is deriving conclusions from the used data while

keeping a chain of evidence that links the conclusions to the evidence. (Runeson & Höst,

2009.) Gagnon (2010, p. 72) recommends organising and classifying the gathered data so

that it will be easier to analyse. According to him, the data that is not related to the

objective of the study should be discarded at this point.

According to Yin (1981, as cited in Gagnon, 2010, p. 76), the researcher should attempt

to search for patterns emerging from the data, such as evidence from different sources

pointing towards similar conclusions. Gagnon (2010, p. 77) recommends that the

researcher gets immersed in the gathered data and examines it several times in order to

allow connections and the overall picture of the cases to emerge. Techniques like cross-

case analysis can be used for identifying patterns between the cases. (Eisenhardt, 1989,

as cited in Gagnon, 2010. p.77).

According to Gersick (1988, as cited in Gagnon, 2010, p. 77), creating a detailed

descriptions of all the cases is key to producing theoretical intuitions. Gagnon (2010, p.

80) explains that the purpose of case descriptions is organising the evidence into a

narrative that supports the emerging patterns from the cases and returning them into their

specific context. According to him, this helps in contextualising the results of the analysis

and it is useful for guiding the interpretations of the evidence. He emphasises the

importance of reporting also the contextual elements along with the events directly related

to the phenomenon that is being investigated, and recommends using quotes in order to

be faithful to the evidence.

The approach to data analysis in this research is not highly formal, because the research

question is descriptive and interpretive in nature rather than based on testing a pre-

determined theoretic proposition. The case descriptions are divided into two parts this

study. The context and the overview of the cases are first described in their own chapter,

and the research question regarding the reactions of the OSS developers to the usability

intervention is answered in the chapter after that. The outcomes of the cases are

interpreted in the Discussion and implications chapter through the lens of previous

research, and possible emerging patterns in the cases are also examined though cross-case

33

analysis. The larger goal of this study is to gather insights on what can usability

practitioners do in order to have their contributions valued by OSS communities by

examining the outcomes of these cases. In order to make the analysis process easier, I

filtered irrelevant information by creating two folders, one for material related to giving

an overview of the cases, and another for material that was related to the reactions of the

developers.

3.3.4 Reporting

When it is time to report the results of the study, the intended audience for the study

should be defined (Gagnon, 2010, p.97; Yin, 2009, p. 164), the structure of the report

should be designed, and its drafts reviewed by others (Yin, 2009, p. 164). Baxter and Jack

(2008) argue that it depends on the researcher to report the findings in a format that the

reader can understand. According to them, the main goal of the report should be

describing the results in a way that makes the reader feel as if they would have been an

active participant of the research. Robson (2002, as cited in Runeson & Höst, 2009)

argues that the report should communicate the audience what the study was about, present

the data in a form that the reader can understand so the derived conclusions are logical,

describe the studied case clearly, and explain the derived conclusions and their context.

The intended audience of this study are researchers interested in usability of OSS,

usability practitioners who want to get involved in OSS, and people who want to get an

overview of the subject of usability in OSS in general. Drafts of this thesis are peer-

reviewed by other students so it can be improved based on the feedback. All the case

descriptions are linked to the part of the archive data they are based on by referencing.

34

4. UKKOSS usability intervention cases

This chapter describes the usability intervention cases based on the data gathered during

UKKOSS projects 14-17. It gives an overview of each of the cases by explaining the

characteristics of the selected OSS project and describing what kind of work the usability

team did during the usability intervention. Some additional background information, such

as the licenses of the OSS projects and their download statistics was also gathered in order

to provide more detailed descriptions of the cases.

4.1 Case 1: UKKOSS 14 (Mumble)

UKKOSS 14 was conducted in the spring of 2015. The student usability team consisted

of four members. They chose Mumble, a voice chat application, as the OSS project

community where they entered as external usability practitioners. (UKKOSS 14 Final

report, 2015.) The latest version of the software had been downloaded 178195 times in a

month (UKKOSS 14 Mumble info report, 2015). The first version of the software was

released in 2005, and the project uses BSD license (SourceForge, n.d.-a). During the

usability intervention, the team investigated the characteristics of the community,

contributed to the Finnish translation of the software, conducted usability work on the

project, and gathered data about how the community accepted the usability work for

further analysis. (UKKOSS 14 Final report, 2015.)

The usability team investigated the discussion channels of the OSS project before

entering. The discussion forum of Mumble had at the time 2446 registered users, of which

eight were admins who were core developers of the software. (UKKOSS 14 Community

analysis report, 2015.) There were a total of 5208 posted messages and 1460 topics on

the forum (UKKOSS 14 Mumble info report, 2015). The admins were seen participating

in the discussions actively. The original lead developer who had contributed the most

lines of code in the community had left the project in 2012. The usability team described

the community as approachable and open based on their observations, and the discussion

on the forum as mainly focused on technical issues. Discussion revolved around things

like reporting technical issues, asking for help for using the software, and programming

new features. They did not find arguments between the members of the forum, and they

got an impression that new users were not judged harshly by the community, as

experienced users were seen helping new users at novice level issues. (UKKOSS 14

Community analysis report, 2015.)

The team conducted cognitive walkthrough, heuristic evaluation and user testing on the

software. The user testing was conducted in the usability laboratory of University of Oulu,

with the help of 11 testers whose testing sessions were recorded. The testers had no

previous experience with Mumble. A usability report which contained 26 different

usability problems was produced and sent to the developers. (UKKOSS 14 Final report,

2015.) The report included prototype pictures of the proposed solutions (UKKOSS 14

Usability report, 2015).

4.2 Case 2: UKKOSS 15 (Task Coach)

UKKOSS 15 was conducted in the spring of 2015 by a team of four students. They chose

a time management software called Task Coach as their OSS project. A new version of

the software had been recently released and the mailing list of the project was very active.

35

(UKKOSS 15 Project seminar report, 2015.) In the spring of 2015, the combined amount

of downloads of all the files of all releases of the software on SourceForge were over four

million (SourceForge, n.d.-c.). The project was started in 2005, and it uses GPL version

3.0 (SourceForge, n.d.-b). It is governed by a small group of core developers (Task Coach,

n.d.). During the intervention, the usability team carried out usability work, worked on

the Finnish translation of the software, and fixed some of the identified usability issues

(UKKOSS 15 Development report, 2015; UKKOSS 15 Project seminar report, 2015).

The usability team conducted heuristic evaluation to the software and used its findings in

determining the shortcomings of usability that could be the focus of user testing. The

members of the usability team conducted heuristic analysis separately and combined their

results in the end. (UKKOSS 15 Project seminar report, 2015.) They carried out usability

testing with 14 test users in the usability laboratory of University of Oulu (UKKOSS 15

Final report, 2015). The user tests were focused mostly on new users attempting to learn

how to use the software (UKKOSS 15 Project seminar report, 2015). A usability report

which included proposed solutions for the identified usability issues was produced and

sent to the developers (UKKOSS 15 Final report, 2015). It included also summaries of

testers’ backgrounds (UKKOSS 15 Usability report, 2015). Two prototype pictures for

proposed usability issue solutions were produced (UKKOSS 15 Prototypes, 2015), but

they were not included in the usability report (UKKOSS 15 Usability report, 2015). The

documents do not address if they were sent to the developers separately (UKKOSS 15

Final report, 2015; UKKOSS 15 Project plan, 2015; UKKOSS 15 Usability report, 2015).

The project plan mentions initial plans of using paper prototypes in user testing

(UKKOSS 15 Project plan, 2015).

The development of Task Coach started to slow down during the project due to the

developers going on hiatus (UKKOSS 15 Project seminar report, 2015). This caused

communication problems between developers and the usability team, as the developers

stopped replying to the messages the usability team sent (UKKOSS 15 Final report,

2015).

4.3 Case 3: UKKOSS 16 (HandBrake)

UKKOSS 16 was conducted in the spring of 2015. The usability team consisted of four

students. They selected HandBrake, a video encoding software for their OSS project.

(UKKOSS 16 Final report, 2015.) The combined amount of downloads of all files of all

release versions of the software in GitHub amount to nearly seven million as of May of

2021 (GitHub Release Viewer, n.d.-a). The project was started in 2003 (HandBrake

Documentation, n.d.), and most of its code is covered by GPL version 2, though some

parts of it use BSD 3-clause license (HandBrake, n.d.). During the project, the usability

team gathered data about the OSS community, carried out usability work, and sent a

usability report to the developers (UKKOSS 16 Final report, 2015).

The usability team examined the OSS project’s community. According to them, there

were not any usability experts involved in the project, and usability was not regarded as

a high priority in the community. The developers seemed to be more interested in adding

features to the program. The usability team perceived the project to be run by a small

group of hobbyists, and the core developers did not seem to be interested in growing the

software’s user base. They developers seemed to be focused on expert users instead of

tailoring the software for novice users. The usability team observed that although the

developers did not seem to be interested in expanding the user base, they rarely outright

slammed the ideas of users. The developers usually at least explained the rationale for

36

rejecting ideas. Some other users of the forum were seen rejecting suggestions rudely

without explaining their rationale, though. All in all, the usability team explained that the

community seemed to be a quite difficult one to get to accept usability improvement

suggestions. (UKKOSS 16 Data report, 2015.)

The usability team conducted cognitive walkthrough, heuristic evaluation and user testing

(UKKOSS 16 Data report, 2015), wrote a usability report which included some proposed

solutions to the found usability problems (UKKOSS 16 Usability test report, 2015), and

sent it to the developers (UKKOSS 16 Final report, 2015). The report included prototype

pictures for the proposed solutions and summaries of background information of the

testers. The testers were also interviewed. The rationale for evaluating the severity

usability issues was explained by using user testing metrics such as the recorded duration

of the tasks. (UKKOSS 16 Usability report, 2015.) After sending the usability report, they

asked a developer some questions about his opinion on the report and usability of

HandBrake in general. (UKKOSS 16 Data report, 2015).

4.4 Case 4: UKKOSS 17 (Streama)

UKKOSS 17 was conducted in the spring of 2016 by a group of three students. The

usability team selected Streama, a video streaming application for the user’s own videos,

for their usability intervention OSS project. The development of the software started in

2015. (UKKOSS 17 Summary report, 2016.) The combined download count of all the

files of all the releases of the software was around 66000 in May of 2021 (GitHub Release

Viewer, n.d.-b). It uses MIT license (GitHub, n.d.-a). During the intervention, the

usability team gathered data about the project, made small code contributions to the

software, carried out usability work, and implemented some of their suggested user

interface modifications (UKKOSS 17 Summary report, 2016).

The issues page of the project’s GitHub site was the only discussion forum of the project.

The usability team did not see a record of previous usability activities in this project, and

there was not much discussion about usability issues in general. (UKKOSS 17 Streama

report, 2016.) The project was governed by a lead developer who decides what changes

will be implemented to the software, but listens actively change suggestions of other users

(UKKOSS 17 Summary report, 2016).

The usability team conducted heuristic evaluation, cognitive walkthrough and user

testing, produced usability reports of each of the methods, and presented them to the lead

developer of the project. The reports included suggested solutions for the usability

problems, and the lead developer was asked to go through them all and either approve or

reject them. (UKKOSS 17 Summary report, 2016.) The proposed solutions did not

include prototypes or pictures, and the user testing report did not include specific metrics

such as recorded task durations (UKKOSS 17 Cognitive walkthrough report, 2016;

UKKOSS 17 Heuristic evaluation report, 2016; UKKOSS 17 User test report, 2016).

4.5 Summary

The characteristics of the OSS projects in these cases were quite similar. Table 1

describes the details of the OSS projects. Table 2 summarises the details of the student

teams and their work.

37

Table 1. Characteristics of the selected OSS projects.

 Mumble

(UKKOSS 14)

Task Coach

(UKKOSS 15)

HandBrake

(UKKOSS 16)

Streama

(UKKOSS 17)

Application type Voice chat Time management Video encoding Video streaming

Starting year 2005 2005 2003 2015

Governed by A small group of core

developers

A small group of core

developers

A small group of core

developers

A lead developer

Userbase Medium Small Medium Small

License BSD GPLv3 Most of the code uses
GPLv2, some parts

use BSD 3-clause

license

MIT license

As Table 1 shows, the application type of the software varied in the four cases. Most of

them were governed by a small group of core developers. The userbase of the projects

ranged from medium to small, though it can be difficult to estimate the real size of the

projects, because not all of them provide official download statistics and the downloads

can be distributed to multiple websites. Each of the OSS projects used a different license.

Table 2. A summary of the UKKOSS projects 14-17.

 UKKOSS 14

(Mumble)

UKKOSS 15

(Task Coach)

UKKOSS 16

(HandBrake)

UKKOSS 17

(Streama)

UKKOSS project year 2015 2015 2015 2016

Usability team

members

4 4 4 3

Usability activities Heuristic evaluation,
cognitive

walkthrough and user

testing

User testing and
heuristic evaluation

Heuristic evaluation,
cognitive

walkthrough and user

testing

Heuristic
evaluation,

cognitive

walkthrough and

user testing

Usability report’s

contents

Several usability
issues and their

proposed solutions

with prototype

pictures

Several usability
issues, their proposed

solutions and

summaries of testers’

backgrounds

Several usability
issues and their

proposed solutions

with prototype

pictures, summaries

of testers’

backgrounds,

interviews of test
users, and thorough

metrics of user

testing, such as

average duration of

tasks and their

success rates

Several usability
issues and their

proposed solutions

without prototype

pictures

Table 2 visualises how similar the student projects were in terms of what kind of usability

work they conducted and how many students were involved. All of the projects were

conducted in 2015 and 2016, and most of the student teams consisted of four members.

All the teams except UKKOSS 15 (Task Coach) conducted heuristic evaluation, cognitive

walkthrough and user testing. In UKKOSS 15, the team did not conduct cognitive

walkthrough. The contents of the usability reports of the cases varied. UKKOSS 16

38

(HandBrake) had the most comprehensive report compared to the others, because it

included details such as the recorded duration of the tasks in user testing and data-based

reasoning for the evaluation of the severity of the identified usability issues.

39

5. Findings

This chapter explains how the usability teams approached the OSS communities during

UKKOSS projects, describes the reactions of the OSS developers to the usability

interventions, and examines the impacts the interventions had on the software’s usability.

5.1 How did the open source software communities react to usability
improvement activities conducted by external usability
practitioners?

The following subchapters describe the reactions of the developers to the usability

interventions by going through all the cases individually. The approaches to the usability

interventions are also described in detail in order to explain the context of the developers’

reactions. In order to reduce the ambiguity of the impacts of the usability interventions, I

tested the latest stable versions of the selected OSS programs and evaluated if usability

improvements proposed by the usability teams had been implemented later by the

developers. The outcomes of all of the cases are summarised and visualised by a table in

the end.

5.1.1 Reactions to UKKOSS 14 (Mumble)

In order to get recognition in the community, the usability team of UKKOSS 14 decided

to enter the project by implementing Finnish translations for Mumble before moving to

usability work. They concluded that the lack of usability discussion on the forum of the

project indicated that it would not be a suitable place for contacting the developers. They

decided to use the Transifex translation tool which they used for making the Finnish

translation for communicating with the developers instead, because they noticed during

the translation process that core developers of the OSS project also used it. (UKKOSS 14

Final report, 2015.)

When the translation was nearly finished, the usability team contacted one of the

developers and asked him how to get it added to the software. They did not reveal the

context of this work as a part of usability research. The developer responded by thanking

them for the work: “Thank you for your efforts! We regularly update our development

snapshots with the updated translations, so you don’t have to do anything to get them

included.” (UKKOSS 14 Transifex messages, 2015.)

The usability team tried to provoke discussion about usability by mentioning that some

of their friends had started using Mumble but encountered usability problems when they

sent another message asking help for translation problems. The developer ignored the

usability part of the message. The usability team decided to change their approach to a

more direct one and they told the developers that they were students on a usability testing

course who wanted to conduct usability work on Mumble. (UKKOSS 14 Transifex

messages, 2015.) The developer welcomed usability work and was interested in making

the software more accessible:

Of course we would like Mumble to be accessible to everyone. (And of course,

because of time, we don’t really get to tackeling [sic] this and many other issues.)

Listing concrete issues, and providing suggestions for improvement would be

most likely to change anything. (UKKOSS 14 Transifex messages, 2015.)

40

The usability team sent a usability report based on the results of their heuristic evaluation,

cognitive walkthrough and user testing to the developer. The report included also

proposed solutions for the identified usability issues. (UKKOSS 14 Transifex messages,

2015.) The developer accepted the report very enthusiastically, but he was also curious

what the results were based on:

Hey, thank you very much. From the document, it is not clear to me what it is

based on / a result of. What kind of testing group was that? Was it supervised, or

did some people just list their issues? Did you discuss these in a group? We should

definitely put this somewhere. . . . I actually think I’m going to convert the

document to a wiki page, so each suggestion can be discussed there. I feel like

multiple forum topics would be too hard to follow, and issue tickets - mmmh.

Actually, the best would indeed be to open issue tickets for these. Reading through

the document, I already got some immediate comments. I also makes me

squirrelly, wanting to fix some stuff right away. . . . Again, thank you for your

effort! I can definitely agree with a lot of it. Time and motivation is often lacking,

so suggestions with clearly prepared solutions are definitely a good thing.

(UKKOSS 14 Transifex messages, 2015.)

The usability team asked the developer some questions regarding how he perceived their

work, such as what in particular made the usability report good in his opinion, and did the

translation work affect the acceptance of the usability report. He responded that he valued

identifying concrete issues and their improvement suggestions supplemented with

pictures and the fact that it was based on multiple people’s work gave it more weight. He

also explained that in his opinion, previous contributions to the project give a person more

credibility when proposing new ideas. He did not know initially how much translation

work the team actually did (which was around 80% of the whole translation), but

explained that it did not affect his positive reaction to the report. (UKKOSS 14 Mumble

log, 2015.)

The developer informed the usability team later that he had created a wiki page for the

new usability findings based on the report and he had commented on the suggested

usability issue solutions and asked for additional details about some of the solutions. The

usability team responded by explaining the missing details. (UKKOSS 14 Transifex

messages, 2015.) The usability team also spent some time chatting with the developer

casually (UKKOSS 14 Steam chat log, 2015).

The developer shared the usability report to other core developers. From the total of 26

proposed usability issue solutions, the developers agreed on 13 of them, disagreed with

five of them or the solutions were deemed problematic, and left eight of them

uncommented. The usability report was left to the developers. They thought of publishing

the usability findings to the community to gather comments, but it was unclear who would

do so. When the usability intervention ended, the usability team was hopeful that their

usability work would get implemented to the later versions of the software, because the

usability report was shared among the developers and they commented on the findings.

(UKKOSS 14 Final report, 2015.)

In this case, the contact developer reacted very enthusiastically to the usability issue

findings and welcomed the translation work. The usability team communicated actively

with him during the project, and the chat logs give an impression that the usability team

got along well with the developer. Although the initial reaction of the developer was very

positive, it seems like not many usability issues described in the report have been fixed.

Based on testing the latest stable version of Mumble (1.3.4) which was released in early

41

2021, Finnish translation has been implemented to the software, but most of the proposed

GUI changes have not. I found around ten cases where the developers had agreed with

the usability team about specific usability issues but they have not been fixed later. Some

changes, such as making the Back buttons more consistent, changing the icon of the

configuration menu to a simpler one, changing the icon for audio input testing to support

colour blind users, and adding Show command to the system tray menu were

implemented as suggested. I could not test if the issue related to Mac OS X was fixed

because I do not have access to that operating system and I could not get the error message

relevant to one of the issues to appear so I could not evaluate if it was fixed.

5.1.2 Reactions to UKKOSS 15 (Task Coach)

In UKKOSS 15, the usability team initially approached the OSS community by not

revealing their identities as usability practitioners, but acting as people who were just

interested in usability and the OSS project (UKKOSS 15 Final report, 2015). A usability

team member sent an e-mail asking one of the developers about how they felt if he worked

on Finnish translation of the software and made changes related to the usability of the

software. The developer responded by welcoming him to contribute to the software:

“Welcome [usability team member’s name], your help is certainly appreciated. I don't

think we'll have any particular thoughts until there are specific questions about details.”

(UKKOSS 15 Introductory e-mail, 2015.)

The team initially planned to integrate into the community by gifting small code patches

before starting working on usability (UKKOSS 15 Project seminar report, 2015). They

needed to change this approach because they encountered difficulties when setting up the

development environment, which made contributing code difficult. The software relied

on several third party libraries, which increased the complexity of setting up its

development environment. (UKKOSS 15 Final report, 2015.) The team member

responsible for implementing the translation and usability work to the software contacted

one of the developers about the technical difficulties, and revealed that his work on this

OSS project was based on a university course. (UKKOSS 15 Task Coach Setup report,

2015.) The team received help from them, but their assistance was not sufficient

according to the usability team, and the usability team’s programmer ended up having to

solve many of the encountered issues by himself. (UKKOSS 15 Final report, 2015.)

The usability team produced a usability report based on the data gathered during user

testing and heuristic evaluation. (UKKOSS 15 Final report, 2015.) The report included

24 proposed solutions for the identified usability issues (UKKOSS 15 Usability test

report, 2015). It was sent to the developers (UKKOSS 15 Final report, 2015). The

usability team described the reaction of the OSS community to the usability report as

welcoming and being impressed of the gathered data. The developers acknowledged some

of the found usability problems, and some of the found issues were completely new to

them. The usability team and the developers exchanged about six e-mails about the

findings. (UKKOSS 15 Project seminar report, 2015.) After that, the developers stopped

responding to the messages (UKKOSS 15 Development report, 2015). The usability team

sent the delayed Finnish translation patch to the developers at the end of the UKKOSS

project (UKKOSS 15 Final report, 2015). The developers did not respond to this

contribution (UKKOSS 15 Final report, 2015). The usability team found out that the

developers had gone on hiatus with only one of the developers left in the project

(UKKOSS 15 Project seminar report).

42

After the translation was finished, the programmer of the usability team experimented

with implementing some GUI changes proposed by the team members responsible for

usability work, recorded the changes on video for the other team members, and sent the

results to the OSS community (UKKOSS 15 Development report, 2015). The GUI

changes consisted of removing menu tabs of features that the usability team evaluated as

irrelevant or harmful to usability (UKKOSS 15 Development report, 2015; UKKOSS 15

Suggested UI changes report, 2015; UKKOSS 15 Videos of UI changes, 2015). The

usability report suggests removing the task prerequisites tab as a solution to a usability

problem (UKKOSS 15 Usability test report, 2015), but the implemented changes

removed also two other tabs based on another report which does not mention what

usability activities it was based on (UKKOSS 15 Development report, 2015; UKKOSS

15 Suggested UI changes report, 2015; UKKOSS 15 Videos of UI changes, 2015). The

developers did not respond to this contribution either (UKKOSS 15 Development report,

2015).

In this case, the developers welcomed the usability report and were impressed by it, but

the communication seized when the developers went on hiatus, and they did not respond

to the translation and GUI changes contributions. The development of Task Coach has

since resumed, and the Finnish translation was added to the software in the version 1.4.3

which was released in the spring of 2016 (Task Coach, 2019). Based on testing the latest

version of the software (1.4.6), the developers have not implemented any of the proposed

solutions for usability issues made by the usability team and the GUI changes

implemented by the usability team were ignored.

5.1.3 Reactions to UKKOSS 16 (HandBrake)

The supervisor of this UKKOSS project asked the usability team to use a stealthy

approach in this case, so the team acted as if they were a novice user and did not reveal

their background and intent. They started by trying to provoke a discussion about usability

by sending a usability issue related message on the forum. The message addressed

usability problems encountered by a novice user. (UKKOSS 16 Data report, 2015.) A

long time forum user replied defending the usability of the software by referring to its

learning curve:

There is a slight learning curve with any software that performs such complex

functions as Handbrake. The tooltips for every parameter are the most thorough

and comprehensive I've ever seen! Are your tooltips turned off by chance? That

said, code patches are always considered welcome. (UKKOSS 16 Data report,

2015.)

Another new user of the software agreed with the usability team that the program lacked

user guidance features, and claimed that old versions of the software had more guidance

text that was not hidden or collapsed. (UKKOSS 16 Data report, 2015.) A team member

of HandBrake responded to him by denying that the GUI was changed in new versions of

the software and defending its usability by stating it was intended for advanced users:

The GUI design hasn't changed too drastically in years. All the key features are

still exposed. Also, bare [sic] in mind the target audience for HandBrake is not

novice video encoders. . . . If you want an easier interface there are tools that do

a far better job than HandBrake but are less powerfully [sic] typically.

Alternatively if you want more power and want to learn fine details, there are

better tools than HandBrake. It's all about finding the tools that are right for you.

43

Unfortunately a lot of people want HandBrake to be everything for everyone and

that's not a feasible option. We don't want to dumb things down too much, or not

over complicate things. It's not an easy balance. That said, at least on the windows

side when the windows UI was re-written, not all tooltips came across. If

particularly controls are of interest to folk, they can be re-added. (UKKOSS 16

Data report, 2015.)

After that, they created a new account and posted a message which revealed the actual

context and the intent their work, but did not mention that the previous account was also

theirs. They also sent them a usability report based on the usability work they conducted.

This approach was chosen so that they could measure the difference of reactions of the

developers to the usability improvement suggestions regarding whether they were posted

by a novice or a usability practitioner. The usability suggestions from the both accounts

were based on the same data that was gathered during the usability work but presented to

the developers in a different way. Their usability work consisted of cognitive

walkthrough, heuristic evaluation and user testing. (UKKOSS 16 Data report, 2015.) The

usability report included various usability issues of which 14 were detected by heuristic

evaluation, 6 by cognitive walkthrough, and the most serious problems encountered

during user testing were summarised as seven issues. Twelve proposed solutions to the

usability problems were presented of which most were supported by prototype pictures.

(UKKOSS 16 Usability test report, 2015.)

A developer responded to the new message by asking if the usability team if they will

implement the GUI changes themselves: “Well, you are a dedicated and capable group.

In that same sense, is it reasonable to assume that at some point, your section 6 will be

reinforced with your own code submissions?” (UKKOSS 16 Data report, 2015.) It is

unclear if this forum user was directly involved in the development of HandBrake, but

his message count was high. The usability team interpreted this response in a way that the

user was hurt by the critique and asking if the usability team will do the suggested changes

was a passive aggressive way of implying “do it better yourself if you can”. The usability

team waited for four days for other replies, but as it seemed that they will not be more of

them, they replied themselves by stating that they do not have the resources to implement

the suggested code changes themselves. A moderator responded to that message by

explaining that the developers have already implemented some of the suggested changes:

“Some of the suggestions in your report have already been implemented. . . . Others are

in discussion. . . . Thank you.” (UKKOSS 16 Data report, 2015.)

The usability team confirmed that some GUI changes had been recently implemented to

the software that resembled their proposed usability improvements, but they could not

determine which ones of them were implemented based on the first message they posted

when playing a novice user or the second one where they explained their background. A

total of seven usability changes were implemented that seemed to be more or less

influenced by the suggestions of the usability team, though it is not clear if some of them

were directly influenced by them. (UKKOSS 16 Data report, 2015.) Most of the

implemented changes were related to the usability team’s two proposed usability issue

solutions about improving the video encoding queue and adding shortcut keys to the

software (UKKOSS 16 Data report, 2015; UKKOSS 16 Usability test report, 2015).

Lastly, the team sent a questionnaire to one of the core developers asking about things

like did they find the usability report helpful. The developer answered that they found the

usability report useful, but recommended that usability practitioners should talk with the

developers of the selected OSS project about the intended user base of the software before

conducting usability work. He argued that in this case, the usability work was focused on

44

new users, although in his opinion the main user group is intermediate users with video

encoding background. He also commented that normally it would be more appropriate to

post things like the usability report on the issue tracker, but since the project did not have

one, it was okay to post it on the forum. (UKKOSS 16 Data report, 2015.)

The community’s reactions to the usability discussions were mixed, but the developers

found the usability report useful and implemented several GUI changes to the software

quickly. Based on testing the latest stable version of the software (1.3.3), six GUI changes

that resemble the solutions proposed by the usability team have been implemented at

some point. The developers have changed the main menu’s “Start” button to “Start

Encode”, added a language option to the Preferences menu, changed the “Start” button of

the queue menu to “Start Queue”, made the button that returns a video file from the queue

more descriptive by supporting it with text, changed the “Source” button to “Open

Source”, and added a video import command to the File menu. Also several other issues

mentioned in the report without suggested solutions seem to have been addressed in one

way or another. For example, the developers have implemented a drag and drop function

to uploading videos, the users are restricted from adding a video to a queue before setting

its mandatory settings, more tooltips have been added, and the “Import SRT” button was

changed to more descriptive “Import Subtitle”.

In a summary, there were a total of twelve proposed solutions to usability issues of which

two influenced usability changes to the software during the intervention, six that have

been implemented roughly the same way as suggested at some point, and three that have

not been implemented in any form. Many of the identified usability issues without

proposed solutions have been addressed at some point, though it is difficult to estimate

how large part of the them have been directly influenced by the usability report.

5.1.4 Reactions to UKKOSS 17 (Streama)

The usability team approached the OSS project by contacting the lead developer via e-

mail and revealing their intentions and the context of the usability intervention as a part

of a university course. (UKKOSS 17 The first contact report, 2016). The lead developer

was a usability consultant (UKKOSS 17 Summary report, 2016). She accepted the

usability team’s help enthusiastically, and suggested a voice call with the project manager

of the usability team (UKKOSS 17 First contact report, 2016).

In the call, they discussed about issues, such as the details of the student course, the

intended user group of the software (which she defined as average users instead of

technical users), and the experience of the usability team. The lead developer suggested

some tasks the usability team could do before starting the usability work, such as code

refactoring and unit testing. She also offered help if the usability team encountered

problems during their work. She had a very positive attitude towards co-operation and

was excited about receiving usability reports even if the usability team would not be

able to implement all the proposed solutions to the found usability issues, and wanted

the team to post the usability findings on the issue tracker of the project after their work

is finished. They agreed that the usability team would send soon pull requests of some

miscellaneous work, such as unit tests and shortcut keys for the video player, before

sending the usability report. (UKKOSS 17 Call report, 2016.)

The usability team submitted the code patches for shortcut keys for the video player and

unit tests. Both of them were merged into the main branch of the software, but met with

a different level of approval. The format of the unit test patch was deemed good, but the

45

shortcut keys patch had some code that was implemented in way that was not based on

the used main front-end framework. (UKKOSS 17 Pull requests report, 2016.) The lead

developer commented the pull request in the following way:

Hi and thanks for the pull request! I like the changes you made very much, but

I'm worried that the code as getting a little bloated now. I would prefer if all the

mousetrap changes were extracted into an angular service instead. Also, code

like [code example] should not be used and instead a more 'angular-y' way

should be found. However, I'll accept the request and fix the above at a later

point, or if you fix it in another pull request. Doesn't matter. (UKKOSS 17 Pull

requests report, 2016.)

The usability team produced usability reports with proposed solutions for the found

usability issues based on the data gathered during the usability work, which consisted of

heuristic evaluation, cognitive walkthrough and user testing (UKKOSS 17 Summary

report, 2016). Separate reports were made for the results of each of the usability

engineering methods (UKKOSS 17 Cognitive walkthrough report, 2016; UKKOSS 17

Heuristic evaluation report, 2016; UKKOSS 17 User testing report, 2016). The usability

team sent the usability reports to the lead developer and asked for feedback (UKKOSS

17 Summary report, 2016).

The usability reports were structured in a way that allowed the developer to approve or

reject the suggested changes and to add comments if she had questions about the

solution or explain why it was rejected. The documents were well received. (UKKOSS

17 Usability activities report, 2016.) The developer replied:

Ok went through all of em [sic] now and commented and approved and stuff.

Except for the user tests one as I felt that there were too many duplicates of

previously mentioned tasks. If you find that there are several points in there that

I have not addressed please let me know and send me another list of just those

points. You guys were super thorough!! Thank you for contributing so much! I

hope you will be able to implement some of those suggestions! (UKKOSS 17

Usability activities report, 2016.)

A total of 96 usability issues were found of which 10 were considered serious, and the

lead developer accepted the proposed solutions for 58 of them. All of the 20 issues that

came up in user testing were ignored due to them being too similar to the issues

mentioned in heuristic evaluation and cognitive walkthrough reports. The most common

reason for rejecting a suggested change was that the suggested solution was not specific

enough. (UKKOSS 17 Summary report, 2016.) Other common reasons for rejection

included the suggestion being too difficult to implement technically, or the upcoming

new version was supposed to make the issue irrelevant. (UKKOSS 17 Cognitive

walkthrough report, 2016; UKKOSS 17 Heuristic evaluation report, 2016).

The usability team implemented the proposed solutions for 38 of the usability issues.

The implemented changes included new error and acceptance messages, unifying

contradictory texts, making the existing notifications and guide texts more specific,

modifying the menu structure, and adding a user guide page. The lead developer

thanked the usability team for their contributions and merged the changes to the

software. (UKKOSS 17 Summary report, 2016.) Some of the remaining unimplemented

accepted solutions to usability issues, miscellaneous usability improvement suggestions

and encountered bugs were posted on the issue tracker (GitHub, n.d.-b; UKKOSS 17

46

Cognitive walkthrough report, 2016; UKKOSS 17 Heuristic evaluation report, 2016;

UKKOSS 17 Improvements & bugs report, 2016).

The project manager contacted the lead developer for the last time after the code

submissions were accepted and clarified some of the ambiguous proposed usability

issue solutions. The lead developer seemed to be happy with the usability work. She

commented: “Thank you a bunch! It was fun working with you guys, and I am always

happy about useful PRs which yours most definitely were. Thank you again!”

(UKKOSS 17 Final comments report, 2016.)

The reactions to the code contributions and usability reports by the developer were

mostly very positive, but there were some issues, such as the incompatibility of some of

the code with the used front-end framework. Based on testing the latest version of the

software (1.10.3) which was released in early 2021, seven of the remaining proposed

usability issue solutions approved by the lead developer have been implemented at some

point, though it is not clear how many of them were directly influenced by the usability

report because some parts of the GUI of the software were being redesigned during the

usability intervention. The implemented GUI modifications consisted of removing the

side panel from the main page in order to unify the button placements, the invited user’s

role selection was changed to use checkboxes in the invitation menu, a feature was

added that allows the user to write notifications about a specific movie on the

notifications page, deleting multiple videos simultaneously was allowed, a completion

notification was added to uploading subtitles, the user’s role selection menu was

changed to use checkboxes, and a completion notification message was added to the

video uploading menu. 17 of the 27 issues that were posted on the issue tracker have

been fixed in a way or another and closed between 2016 and 2018 (GitHub, n.d.-b).

47

5.1.5 Summary

Table 3 summarises the outcomes of the four usability interventions and how the usability

teams approached their OSS projects.

Table 3. A summary of the outcomes of UKKOSS projects 14-17.

 UKKOSS 14

(Mumble)

UKKOSS 15

(Task Coach)

UKKOSS 16

(HandBrake)

UKKOSS 17

(Streama)

Usability team’s

approach to the

usability intervention

Worked on Finnish

translation and

discussed with a
developer before

moving to usability

work

Initially planned to

act as users who were

just interested in the
software, but revealed

their background later

Started conversation

about usability issues

without revealing
their intent and later

created a new account

that revealed their

intent and presented

their usability work

Contacted the lead

developer and

discussed with her
about which ones of

the suggested

usability issue

solutions were

acceptable

Contributions not

based on the usability

report

Finnish translation Finnish translation None Unit tests and
shortcut keys to the

video player

The usability team

fixed some of the

usability issues

No Yes No Yes

The reactions of the

OSS developers to the

usability intervention

The developers

welcomed translation

work and accepted
the usability report

very enthusiastically

The developers

welcomed usability

work and were
impressed by the

usability report, but

the communication

between the usability

team and the

developers eventually

stopped when the

developers went on

hiatus

Mixed reactions to

the initial usability

discussions, but the
developers found the

usability report

helpful and started on

working on some the

identified usability

issues without

notifying the usability

team

The lead developer

accepted the

usability work
enthusiastically

Proposed solutions for

identified usability

issues

26 issues of which

the developers agreed

on 13 of them,

disagreed on 5 of
them, and left 8 of

them uncommented

The developers

acknowledged some

of the 24 identified

issues and found
some of them

completely new

The developers made

several GUI changes

based on two of the

twelve proposed
solutions during the

intervention

96 issues of which

58 of them were

accepted by the lead

developer

Impacts of usability

intervention

The Finnish
translation was

implemented and four

of the identified

usability issues have

been fixed as

suggested by the

team after the

intervention

The Finnish
translation was

accepted to a

subsequent version of

the software but the

proposed solutions to

usability problems

have been ignored by

the developers

The developers
implemented quickly

GUI changes

influenced by the

usability team and

several of the

remaining usability

issues have been

addressed at some

point

The 38 GUI
changes

implemented by the

usability team were

accepted, and seven

of the remaining

approved usability

issue solutions have

been implemented

at some point

The contributions of the usability team to the OSS project and the approach to the

usability intervention varied between the cases. Although the developers accepted the

48

usability work generally gladly, the amount of the implemented usability improvements

ranged from none to many between the cases.

49

6. Discussion & implications

The developers reacted to the usability interventions generally in a positive way and

accepted the usability work enthusiastically in most of the cases, but the impacts of the

usability work varied greatly. UKKOSS 16 (HandBrake) was the only case where the

community had initially mixed reactions to the usability improvement discussions, but

the developers seemed to appreciate the produced usability report based on the interview

the usability team conducted. Three of the four cases ended up with at least some GUI

changes influenced by the usability reports to the software. In UKKOSS 14 (Mumble),

the developers have fixed some of the found usability problems after the intervention.

UKKOSS 15 (Task Coach) was the only case where the developers did not end up

implementing any of the solutions proposed by the usability team. In this case, the

communication between the usability team and the developers stopped abruptly when the

developers went on hiatus. In the case of UKKOSS 16 (HandBrake), the developers

started addressing usability issues immediately after they were notified of them, and they

have also implemented various changes to the software that address the issues mentioned

in the usability report. In UKKOSS 17 (Streama), the usability team implemented many

of their proposed solutions to the identified usability problems themselves, and the lead

developer accepted their code contributions. After the usability intervention ended, seven

of the remaining accepted proposed usability issue solutions have been implemented at

some point. The gift contributions unrelated to the identified usability issues, such as the

Finnish translations and unit tests were accepted by the developers in all of the three cases

where the usability team made them.

Prior research suggests that usability practitioners often have difficulties to get their voice

heard when attempting to contribute usability work in OSS projects (Çetin et al., 2007;

Rajanen et al., 2015; Rajanen & Iivari, 2015a). This can be seen also in most of the cases

analysed in this research. Cases, where the developers were initially very enthusiastic

towards the usability work but only a few or none proposed GUI changes ended up in the

software were common. This can be seen especially in UKKOSS 15 (Task Coach), where

the developers were impressed by the gathered usability data and acknowledged some of

the usability problems, but they did not implement any of the suggested solutions for the

usability problems. In UKKOSS 14 (Mumble), the contact developer was very excited

about the usability report and agreed on many of the found usability problems, but only

four of the suggested usability fixes ended up in the software. He suggested that the lack

of time and motivation affect the willingness to implement usability work. Motivation

issues of developers (Andreasen et al., 2006; Nichols & Twidale, 2003) and the lack of

resources to fix usability issues have been also acknowledged in prior research (Zhao &

Deek, 2005). In UKKOSS 17 (Streama), the usability team implemented many of the GUI

changes they suggested after discussing them with the lead developer, and they were

accepted to the software. Implementing the proposed changes bypasses the motivational

barrier of the developers. This approach should be examined further in future research,

though it would not probably be an ideal solution. It has been suggested that usability

practitioners often lack technical skills (Nichols & Twidale, 2003). Some GUI changes

were also implemented by the usability team of UKKOSS 15 (Task Coach). The

developers did not respond to the contribution, but the outcome of that case is difficult to

analyse due to the core developers going on hiatus during the project. Another thing to

note in that case is that the code contributions focused on removing features of the

program. It is understandable from the developers’ perspective to not be happy about a

contribution that removes parts of the software, even though it would make sense from

usability perspective. It is not also clear if the usability team discussed about their changes

50

with the developers beforehand, and what usability activities were most of the GUI

changes based on. The outcome of UKKOSS 17 (Streama) suggests that getting the

approval of the developers for implementing GUI changes before actually implementing

them could be important.

In UKKOSS 14 (Mumble), a developer commented that the developers of the project

often lack time and motivation to focus on usability issues of the software, and

recommended usability practitioners to present clear proposed solutions to concrete

usability problems in order to increase chance of changing the GUI of the software. The

developer was also interested in what data were the suggested changes were specifically

based on. Although not many proposed usability improvements ended up in the software

in this case, it sounds reasonable to write usability reports in a way that explains what to

do specifically and display the metrics that were used during usability engineering in

order to minimise the implementation effort of developers and to provide proof of the

relevance of the found usability issues thus making the report more persuasive. It has been

suggested that it can be problematic that usability issues can be perceived as subjective

(Nichols & Twidale, 2006). This problem could be mitigated by providing detailed user

testing data. Also if the usability practitioners leave from the project before their usability

improvement suggestions are implemented, it may be useful for the document to be as

explanatory and independent as possible. In UKKOSS 16 (HandBrake) the developers

ended up implementing several changes to the GUI even though the usability team chose

an approach where they did not try to gain merit in the community by contributing to the

project beforehand. They just submitted the usability report on the forum. A more

participative approach has been recommended by prior research on OSS usability

interventions (Rajanen et al., 2012). The usability report made by this team was very

detailed regarding the used metrics and methods and it included proposed solutions to

issues with prototype pictures. In the report, the severity of the usability issues was

evaluated by data such as task completion time and task success rate. The usability report

of the only case without any usability changes besides the Finnish translation, UKKOSS

15 (Task Coach), was quite plain. It did not include specific metrics of user testing, and

the proposed GUI changes were not supplemented with prototypes. Two prototype

pictures were produced, but it is not clear if they were sent to the developers or just used

in user testing. Some of the suggested solutions were also quite ambiguous. The usability

reports of UKKOSS 17 (Streama) also lacked metrics and prototypes, but the lead

developer accepted most of the suggested solutions to usability problems. The facts that

the lead developer of that case was interested in usability and the usability team members

implemented many of the suggested solutions themselves may have mitigated the issue

of a plain usability report.

Prior research suggests that convincing the decision-makers of an OSS project about the

importance of usability is and making them allies is important for increasing the influence

usability work has on the project (Rajanen et al., 2011; Rajanen & Iivari, 2015a; Rajanen

& Iivari, 2019). Çetin et al. (2007) suggested that teaching OSS developers basic usability

principles would increase the mutual understanding between the developers and the

usability experts. The positive outcome of the UKKOSS 17 (Streama) case, where the

most of the suggested usability changes ended up being implemented to the software can

be interpreted to be greatly influenced by the fact that the lead developer was interested

in usability, as she was a usability consultant. Communication about usability problems

was easy due to similar knowledge base, and there was no need to try to convince her

about the benefits of usability work. This case had also other characteristics that prior

research has found beneficial to making an impact on the usability of the software. It has

been suggested that earlier the usability practitioners enter the project, the better their

chances of having an influence on the usability of the software are (Çetin et al., 2006, as

51

cited in Çetin et al., 2007; Çetin et al., 2007), and the need to convince multiple people

about the benefits of usability can be problematic (Muehling & Reitmayr, 2006, as cited

in Çetin et al., 2007). The OSS project of this case was very new, as it was started in the

year before the usability intervention, and the lead developer was the only one whose

opinion on usability mattered.

The lack of trust between usability practitioners and OSS developers has been discussed

in prior research as one of the problems hindering the effective collaboration between

them. Face-to-face meetings have been suggested as a one way of establishing trust

between usability practitioners and OSS developers (Andreasen et al., 2006.) UKKOSS

17 (Streama) was the only case of the four where the usability team contacted the lead

developer via voice call. Even though calling may not be as effective form of

communication as meeting face-to-face, it could be a better way to establish trust than

asynchronous messaging. This approach could be examined further in future research.

Two of the three gatekeeping tactics identified by Rajanen et al. (2015) were encountered

during the usability interventions. It can be argued that social exclusion was used by the

core developers to a varying extent in most of the cases because in the end, they were the

ones responsible for deciding which identified usability issues they would fix and how,

often guided by the logic of what they considered as usability problems or good solutions

to them. In UKKOSS 16 (HandBrake), the developers were influenced by the usability

report, but they seemed to address the usability issues often on their own terms instead of

implementing the suggested solutions directly. It is debatable if the communication

problems in UKKOSS 15 (Task Coach) where the developers stopped responding to the

usability team’s messages can be considered as the non-response gatekeeping tactic,

because the developers went on hiatus during the usability intervention. It is unclear if

they paused the development because they wanted to reject the usability suggestions, or

if hiatus starting during the intervention was purely coincidental. As for the false

acceptance gatekeeping tactic, I did not find cases where already implemented GUI

changes based on the usability team’s work would have been reverted when testing the

latest versions of the software, though I was more focused on evaluating if the remaining

proposed usability issue solutions had been implemented.

Submitting code has been suggested as beneficial when attempting to become a

recognized member of an OSS community (Rajanen et al., 2012) and as a way to gain

perceived merit and influence in the community (Gacek & Arief, 2004). Two cases where

Finnish translations were given as gifts to the developers (UKKOSS 14 and UKKOSS

15) did not end with many impactful changes to the GUI, although the translation patches

were accepted to the software. The developer who was interviewed in UKKOSS 14

(Mumble) explained that the translation work did not affect his positive reaction to the

usability report, although he did not know how much work the usability team actually did

when translating the software. He said that in his opinion prior contributions give more

credibility to new users who are proposing new ideas, though. The impact of gifting the

translation patch is difficult to interpret in UKKOSS 15 (Task Coach), because the team

sent it at the end of the project due to technical difficulties instead of sending it before the

usability report, and the developers also went on hiatus during the intervention. In

UKKOSS 17 (Streama), the usability team contributed code gifts such as unit tests and

shortcut keys that were suggested by the lead developer, and they were accepted. The

impact of the gifts is difficult to measure also in this case, because the case had also other

characteristics that were recommended by prior research. Thus the results are

inconclusive and further research is recommended.

52

6.1 Critique of this research

There were many aspects of this research that can be criticised. For example, it was

difficult to evaluate if usability changes of the recent versions of the OSS programs were

directly influenced by usability reports. Some of the changes addressed issues mentioned

in the reports, but often in a different way than suggested by the report. In some cases,

general GUI changes may have also rendered the identified usability issues irrelevant,

and it is hard to tell if that was the intention or just a coincidence.

Some of the research data was lacking in details of the reactions of the developers, such

as direct quotes. This makes the descriptions of the developers’ reactions more biased.

Some of the reports were also slightly ambiguous regarding what specific documents or

contributions were sent to the developers. Ideally all the relevant background information

of the OSS projects would have been gathered during the usability interventions, but due

to some missing details additional data was gathered during this research, which is not

optimal.

The literature review used some sources which were not very scientific. For example, the

essays of Eric Raymond were used due to their influence to the OSS literature. The sample

sizes of some of the interview-based research papers were quite small, and some of the

used research papers were old. The evaluation of the size of the userbase of the OSS

projects was also based on questionable metrics. Since most of the analysed OSS projects

did not offer official download counts on their main websites, the download counts of

alternative download mirrors were used, and their download counts statistics were often

in a format that listed the total downloads of all the files of the releases which can be

misleading. GitHub did not offer download counts, so an alternative site which credibility

can be questioned was used for polling them via GitHub’s API.

The developers’ hiatus in UKKOSS 15 (Task Coach) makes it difficult to interpret the

outcome of the case, because it is not clear if the timing of the hiatus was coincidental or

did the developers purposefully avoid communicating with the usability team. It is also

possible that instead of rejecting the usability report’s suggestions the developers simply

forgot it after returning from the hiatus.

The fact that the usability teams consisted of students may have affected the reaction of

the OSS developers to the usability interventions, because the developers may have not

taken their expertise seriously. Also the student status may have caused the developers to

think that the usability team were joining the project only due to the school work instead

of being genuinely interested in the software. The short duration of the interventions may

have also affected the outcomes. It is not clear if the outcomes of the cases would have

been better if the teams would have stayed in contact with the developers for a longer

time and discussed more about the usability issues.

53

7. Conclusions

This research examined how OSS developers reacted to usability improvement activities

carried out by external usability practitioners in four usability intervention cases. The

developers welcomed usability work more or less enthusiastically in all of the cases, but

the impact the interventions had on the usability of the software varied. The outcomes of

the cases ranged from none of the suggested solutions ending up in the software to most

of them getting implemented. Three of the four cases ended up with at least some of the

proposed usability improvements being fixed.

The outcomes of the cases supported the previous research on the difficulty of usability

practitioners making impactful usability contributions to OSS, as half of the cases ended

up with zero to a few usability improvements being implemented. The other half ended

up with more GUI modifications to the software. In the case with the most usability

changes to the software, the usability team implemented many of their proposed GUI

changes themselves based on the discussions with the lead developer. This case was also

the only one where the usability team communicated with the developers via voice call

instead of communicating only via asynchronous messaging such as e-mail. The other

case with a quite strong influence on the usability of the software did not use a very

participative approach which is supported by prior research, but their usability work had

an impact anyway. That case had a particularly detailed and persuasive usability report,

which established the identified usability problems as concrete issues by displaying the

user testing metrics they were based on.

The main contributions of this research are that the results of this study supported the

prior research on the issues usability practitioners face when contributing to OSS and new

areas of research were proposed that can be explored in future research. Researchers

interested in usability of OSS benefit from the results of this study by receiving empirical

support for existing theory on the subject of usability practitioners contributing to OSS.

For example, the case with the most usability changes had lots of characteristics that were

suggested by prior research to be beneficial for impactful usability work. The hardships

of external usability practitioners joining OSS projects mentioned in prior research also

were encountered in many of these cases. Based on the outcomes of these cases, some

ideas were proposed on what kind of approaches to usability interventions could be tested

by researchers in future usability studies in order to measure if they would be beneficial

to making impactful usability contributions. The mixed results of some of the approaches

utilised in the usability interventions, such as usability practitioners implementing their

suggested GUI changes themselves, emphasise that there is a need for further research on

them. The results of this study can be also beneficial to usability practitioners who want

to contribute to OSS projects, because it gives an overview of what kind of obstacles they

can encounter so they can prepare to face them. They can also learn from the mistakes

and shortcomings of the discussed cases and try out the approaches that worked most

effectively.

7.1 Limitations of this study

This study analysed only four usability interventions, so the results are not highly

generalizable and the selected OSS projects represent only very small part of OSS.

Interpreting the outcomes of the cases and the research material is prone to errors. This

research examined only small to medium-sized OSS projects, and none of them had

corporations involved in the development.

54

7.2 Possible future research

More research on the effect of usability practitioners implementing their suggested

usability improvements to the impact of their usability work is needed. The case where

the usability team implemented many of the suggested GUI changes themselves had also

other significant characteristics that have been suggested to be beneficial for making

impactful contributions in prior research, so it is difficult to interpret how major role it

played in that case. Also the effectiveness of establishing trust between the OSS

developers and external usability experts by contacting the developers by calling them or

via video conferencing instead of using only asynchronous communication could be

examined further.

Future usability intervention studies could also examine how much the depth of the

usability report affects the impact the intervention has on the usability of the software by

attempting to make the report as persuasive as possible. This could be achieved by

including user testing metrics that would provide proof of concrete usability issues and

presenting clear solution suggestions with example prototypes in order to reduce the

implementation effort of the developers.

It would be also useful to examine the viewpoints of OSS developers themselves to

usability interventions in order to understand why usability contributions are often

rejected. This could be done for example by conducting follow-up studies on usability

interventions where the developers rejected the usability work of external usability

practitioners and interviewing the developers.

A developer of UKKOSS 14 (Mumble) mentioned that he would create issue tickets for

the identified usability problems, but it is not clear if he eventually did so. Also a

developer of UKKOSS 16 (HandBrake) mentioned that he considered the issue tracker to

be typically the most appropriate place for posting a usability report. In UKKOSS 17

(Streama), some of the usability issues that were fixed later were posted on the project’s

issue tracker as the lead developer requested. This approach, where usability issues are

handled the same way as functional issues could be examined further in future research.

It could be investigated if this would affect implementation rate of the suggested

solutions, as the whole community could discuss the issues in the same way that they

discuss the technical part of the software. This would also encourage other community

members to implement the solutions. This method could be also combined with the

previously mentioned emphasis on the persuasiveness of the usability report by including

user testing metrics that strengthen the validity of that specific usability issue that is

posted on the tracker.

55

References

Aberdour, M. (2007). Achieving quality in open-source software. IEEE software, 24(1),

58-64.

Andreasen, M. S., Nielsen, H. V., Schrøder, S. O., & Stage, J. (2006). Usability in open

source software development: opinions and practice. Information technology

and control, 35(3).

Bach, P. M., DeLine, R., & Carroll, J. M. (2009, April). Designers wanted: participation

and the user experience in open source software development. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems (pp. 985-

994).

Baxter, P., & Jack, S. (2008). Qualitative case study methodology: Study design and

implementation for novice researchers. The qualitative report, 13(4), 544-559.

Benson, C., Muller-Prove, M., & Mzourek, J. (2004, April). Professional usability in open

source projects: GNOME, OpenOffice.org, NetBeans. In CHI'04 extended

abstracts on Human factors in computing systems (pp. 1083-1084).

Bergquist, M., & Ljungberg, J. (2001). The power of gifts: organizing social relationships

in open source communities. Information Systems Journal, 11(4), 305-320.

Bezroukov, N. (1999). A second look at the Cathedral and the Bazaar. First Monday,

4(12). https://doi.org/10.5210/fm.v4i12.708

Bretthauer, D. (2002). Open source software: a history. Information Technology and

Libraries, 21(1), 3-11.

Bødker, M., Nielsen, L., & Orngreen, R. N. (2007, July). Enabling user centered design

processes in open source communities. In International Conference on

Usability and Internationalization (pp. 10-18). Springer, Berlin, Heidelberg.

Çetin, G., Verzulli, D., & Frings, S. (2007, July). An analysis of involvement of HCI

experts in distributed software development: practical issues. In International

Conference on Online Communities and Social Computing (pp. 32-40).

Springer, Berlin, Heidelberg.

Crowston, K., Annabi, H., Howison, J., & Masango, C. (2004, November). Effective

work practices for software engineering: free/libre open source software

development. In Proceedings of the 2004 ACM workshop on Interdisciplinary

software engineering research (pp. 18-26).

Dagenais, B., Ossher, H., Bellamy, R. K., Robillard, M. P., & De Vries, J. P. (2010, May).

Moving into a new software project landscape. In Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering-Volume 1 (pp.

275-284).

Ducheneaut, N. (2005). Socialization in an open source software community: A socio-

technical analysis. Computer Supported Cooperative Work (CSCW), 14(4),

323-368.

56

Feller, J. & Fitzgerald, B. (2000). A Framework Analysis of the Open Source

Development Paradigm. Proceedings of the twenty first international

conference on Information systems, ICIS 2000, Brisbane, Australia, December

10-13, 2000, (pp. 58-69).

Fitzgerald, B. (2006). The transformation of open source software. MIS quarterly, 587-

598.

Gacek, C., & Arief, B. (2004). The many meanings of open source. IEEE software, 21(1),

34-40.

Gagnon, Y.-C. (2010). The Case Study As Research Method : A Practical Handbook. Les

Presses de l’Université du Québec.

GitHub. (n.d.-a). Streama. Retrieved May 15, 2021, from

https://github.com/streamaserver/streama

GitHub. (n.d.-b). Streama Issues. Retrieved May 27, 2021, from

https://github.com/streamaserver/streama/issues?q=is%3Aissue+involves%3

AJanneNiemela+involves%3ALorenzoGarbanzo+involves%3Ajsniemela+cre

ated%3A2016

GitHub. (2020, December 2). The 2020 State of the Octo-Verse.

https://octoverse.github.com

GitHub Release Viewer. (n.d.-a). HandBrake. Retrieved May 12, 2021, from

https://hanadigital.github.io/grev/?user=HandBrake&repo=HandBrake

GitHub Release Viewer. (n.d.-b). Streama. Retrieved May 15, 2021, from

https://hanadigital.github.io/grev/?user=streamaserver&repo=streama

GNU. (2015, June 2). The GNU manifesto. https://www.gnu.org/gnu/manifesto.html

HandBrake. (n.d.). Features. Retrieved May 15, 2021, from

https://handbrake.fr/features.php

HandBrake Documentation. (n.d.). The History of HandBrake. Retrieved May 15, 2021,

from https://handbrake.fr/docs/en/1.3.0/about/history.html

Hars, A., & Ou, S. (2002). Working for free? Motivations for participating in open-source

projects. International journal of electronic commerce, 6(3), 25-39.

Hedberg, H., Iivari, N., Rajanen, M., & Harjumaa, L. (2007, May). Assuring quality and

usability in open source software development. In First International

Workshop on Emerging Trends in FLOSS Research and Development

(FLOSS'07: ICSE Workshops 2007) (pp. 2-2). IEEE.

Hertel, G., Niedner, S., & Herrmann, S. (2003). Motivation of software developers in

Open Source projects: an Internet-based survey of contributors to the Linux

kernel. Research policy, 32(7), 1159-1177.

Holzinger, A. (2005). Usability engineering methods for software developers.

Communications of the ACM, 48(1), 71-74.

57

Iivari, J., & Iivari, N. (2006, January). Varieties of user-centeredness. In Proceedings of

the 39th Annual Hawaii International Conference on System Sciences

(HICSS'06) (Vol. 8, pp. 176a-176a). IEEE.

Iivari, N., Rajanen, M., & Hedberg, H. (2014). Encouraging for Enculturation–An

Enquiry on the Effort of Usability Specialists Entering OSS Projects. ACIS.

International Organization for Standardization. (2011). Systems and software engineering

— Systems and software Quality Requirements and Evaluation (SQuaRE) —

System and software quality models (ISO/IEC Standard No. 25010:2011).

https://www.iso.org/standard/35733.html

International Organization for Standardization. (2018). Ergonomics of human-system

interaction — Part 11: Usability: Definitions and concepts (ISO Standard No.

9241-11:2018). https://www.iso.org/standard/63500.html

International Organization for Standardization. (2019). Ergonomics of human-system

interaction — Part 210: Human-centered design for interactive systems (ISO

Standard No. 9241-210:2019). https://www.iso.org/standard/77520.html

Lisowska Masson, A., Amstutz, T., & Lalanne, D. (2017, May). A usability refactoring

process for large-scale open source projects: The ILIAS case study. In

Proceedings of the 2017 CHI Conference Extended Abstracts on Human

Factors in Computing Systems (pp. 1135-1143).

Nichols, D., & Twidale, M. (2003). The Usability of Open Source Software. First

Monday, 8(1). https://doi.org/10.5210/fm.v8i1.1018

Nichols, D. M., & Twidale, M. B. (2006). Usability processes in open source projects.

Software Process: Improvement and Practice, 11(2), 149-162.

Nielsen, J. (1994a). Usability engineering. Morgan Kaufmann.

Nielsen, J. (1994b, April). Usability inspection methods. In Conference companion on

Human factors in computing systems (pp. 413-414).

Open Source Initiative. (n.d.). Licenses & Standards. Retrieved March 12, 2021, from

https://opensource.org/licenses

Open Source Initiative. (2007, March 22). The Open Source Definition.

https://opensource.org/osd

Open Source Initiative. (2018, October 18). History of the OSI.

https://opensource.org/history

Rajanen, M., & Iivari, N. (2013, October). Open source and human computer interaction

philosophies in open source projects: Incompatible or co-existent?. In

Proceedings of International Conference on Making Sense of Converging

Media (pp. 67-74).

Rajanen, M., & Iivari, N. (2015a, April). Power, empowerment and open source usability.

In Proceedings of the 33rd Annual ACM Conference on Human Factors in

Computing Systems (pp. 3413-3422).

58

Rajanen, M., & Iivari, N. (2015b, May). Examining usability work and culture in OSS.

In IFIP International Conference on Open Source Systems (pp. 58-67).

Springer, Cham.

Rajanen, M., & Iivari, N. (2019). Empowered or disempowered? An analysis of usability

practitioners’ interventions in open source projects. Psychological Perspectives

on Empowerment, Nova Science Publishers, Hauppauge, 1-45.

Rajanen, M., Iivari, N., & Anttila, K. (2011). Introducing usability activities into open

source software development projects–searching for a suitable approach.

Journal of Information Technology Theory and Application, 12(4), 5-26.

Rajanen, M., Iivari, N., & Keskitalo, E. (2012, October). Introducing usability activities

into open source software development projects: a participative approach. In

Proceedings of the 7th Nordic Conference on Human-Computer Interaction:

Making Sense Thorough Design (pp. 683-692).

Rajanen, M., Iivari, N., & Lanamäki, A. (2015, September). Non-response, social

exclusion, and false acceptance: Gatekeeping tactics and usability work in free-

libre open source software development. In IFIP Conference on Human-

Computer Interaction (pp. 9-26). Springer, Cham.

Raymond, E. S. (1998). Homesteading the Noosphere. First Monday, 3(10).

https://doi.org/10.5210/fm.v3i10.621

Raymond, E. (1999). The cathedral and the bazaar. Knowledge, Technology & Policy,

12(3), 23-49.

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study

research in software engineering. Empirical software engineering, 14(2), 131-

164.

Sears, A. (1997). Heuristic walkthroughs: Finding the problems without the noise.

International Journal of Human-Computer Interaction, 9(3), 213-234.

SourceForge. (n.d.-a). Mumble. Retrieved May 15, 2021, from

https://sourceforge.net/projects/mumble/

SourceForge. (n.d.-b). Task Coach. Retrieved May 15, 2021, from

https://sourceforge.net/projects/taskcoach/

SourceForge. (n.d.-c). Task Coach Download Statistics. Retrieved May 5, 2021, from

https://sourceforge.net/projects/taskcoach/files/stats/timeline?dates=2005-02-

01+to+2015-05-01

SourceForge. (n.d.-d). The Complete Open-Source and Business Software Platform.

Retrieved April 5, 2021, from https://sourceforge.net

Steinmacher, I., Silva, M. A. G., Gerosa, M. A., & Redmiles, D. F. (2015). A systematic

literature review on the barriers faced by newcomers to open source software

projects. Information and Software Technology, 59, 67-85.

Task Coach. (n.d.). Task Coach. Retrieved May 15, 2021, from

https://www.taskcoach.org/

59

Task Coach. (2019, April 27). Change history. https://www.taskcoach.org/changes.html

Viorres, N., Xenofon, P., Stavrakis, M., Vlachogiannis, E., Koutsabasis, P., & Darzentas,

J. (2007, July). Major HCI challenges for open source software adoption and

development. In International Conference on Online Communities and Social

Computing (pp. 455-464). Springer, Berlin, Heidelberg.

Von Krogh, G., Spaeth, S., & Lakhani, K. R. (2003). Community, joining, and

specialization in open source software innovation: a case study. Research

policy, 32(7), 1217-1241.

Von Krogh, G., & von Hippel, E. (2003). Special issue on open source software

development. Research Policy, 32(7), 1149-1157.

https://doi.org/10.1016/S0048-7333(03)00054-4

Väänen-Vainio-Mattila, K. (2011). Käytettävyys ja käyttäjäkeskeinen suunnittelu. In

Oulasvirta, A. (Ed.). Ihmisen ja tietokoneen vuorovaikutus pp. 102-126.

Gaudeamus, Helsinki University Press.

Yin, R. K. (2009). Case study research: Design and methods (4th ed.). Sage Publications.

Zainal, Z. (2007). Case study as a research method. Jurnal kemanusiaan, 5(1).

Zhao, L., & Deek, F. P. (2005). Improving open source software usability. AMCIS 2005

Proceedings, 430.

