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Abstract 

The pursuit of finding the most suitable testing software for each project is a difficult 

task as there are a lot of software effective finding certain kind of problems but 

completely missing others in the field of stress and load testing. A silver bullet solving 

all problems in a cost effective and reliable way has not yet been found. This project 

was done as a systematic literature review to find whether there are solutions 

documented capable of testing everything in a cost-effective way.  

The document starts with an introduction of the task, originating from a real software 

testing company’s suggestion of finding suitable test software that can, cost effectively 

and reliably, fulfil the needs of the company. A history section is describing the reason 

of testing importance, basics of testing and what others have found in their studies of the 

area. The research method is described in detail followed by results describing tools 

found during the research divided in sections by license type. The sectioning by license 

type was selected for the benefit of testing companies that are interested in further 

developing tools found to their own interest. Findings and answered research questions 

were presented and discussed followed by possible implications and further research 

suggestions to future scholars interested in the matter.  

The systematic literature review found a total of 40 different tools identified during the 

data extraction process. One complete software system was available commercially 

including heavy support and help functions for the customer. A different approach 

linking open source and relatively inexpensive pieces of software together to achieve a 

composite solution was also identified. The solution included the most common and 

most popular individual piece of software identified by the study. All found pieces of 

software were listed and commented briefly mainly with information originating from 

the authors’ home pages.  
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1. Introduction 

The purpose of this Master Thesis was to evaluate, whether a more suitable software 

stress load testing tool could be found among the most used free or commercial ones in 

the market, to replace the combination of BlazeMeter and JMeter software’s for testing 

customer websites. The main reason is the need of finding possible solutions for future 

use as the cost factor, when upscaling Testing as a Service (TaaS) business is heavy as 

the form of reimbursement for each business magnitude level is fixed and annually 

charged in advance in the BlazeMeter solution format (Yan, Sun, Wang & Liu, 2012, 

BlazeMeter.com, 2019). Alas, the growth of business cannot be predicted and may 

cause unforeseen consequences to the company in form of over- or underestimating the 

market, which both are equally bad as overestimating forces the company to pay high 

annual fees in vain, while underestimating the market results in a situation where the 

company is not able to provide potential customers services in time and might result in 

loosing potential business opportunities to competitors providing same type of expertise 

(Prove, 2019). Business problems and opportunities often relate to increasing revenue or 

decreasing cost through the design of effective business processes according to Hevner, 

March, Salvatore, Park & Ram (2004). 

The target of this thesis was to find out which is the most common Stress and Load 

testing software used according to literature findings and whether there is a tool or tool 

set suitable for complete website testing purposes. Prior research has been able to 

identify a lot of software capable of partially solving the complexity of testing as a 

whole and compared software against each other to justify the use of some software as a 

solution, alas, the solutions has not been complete or targeting a really marginal portion 

of the test area. The study was conducted as a systematic literature review and was able 

to identify some solutions capable of making testing more manageable, smoother and 

perhaps more productive linking different stages together with smart application 

programming interfaces (API). 

These following chapters will cast a light on what has been studied on the subject by 

other authors, the methodology used, the study itself and how it was conducted, 

findings, discussion and implications the study might have on business development. 

The study will shed a light on the necessity of software change due to technical issues 

using the original setup, but will not bury deep into the technicalities of the proposed 

substitutes, rather encourage the possibility to test the other software solutions to find 

the most suitable package for the business volume and prospect chosen by the company 

officials as the lead strategy of the future as most of the software in commercials use 

foster supported test sessions to see, whether their product fits the customer needs and 

what is the most beneficial setup of the business kit provided.  
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2. History 

The importance of internet as a medium between software providers providing web 

applications and users has grown a lot as web applications has become a very popular 

trend based on its flexibility and ease of access from everywhere. The nature of web 

software applications is versatile and can be used in various fields from education to 

entertainment, manufacturing to scientific simulation providing services directly from 

software companies to users according to Gan, Wei & Varadharajan (2005). According 

to Hossein (2013), “in the case of Web applications, performance of the system is a 

significant issue because Web users do not desire to stay too long for a reply to their 

requirements”. 

Hossain (2012) stated, that in cause of a website’s poor quality, consumers stopped 

using the website or even abandoned using product the website was promoting entirely. 

Quality of Service (QoS) was originally released in this context by Cardoso, Sheth, 

Miller & Kochnut (2004) when they studied quality of service of workflows and web 

service processes. QoS itself is the key accessing how well Web-based applications 

meet customer expectations on two primary measure scales, availability and response 

time (Menache, 2012). Dhiauddin, Suffiani & Fahrurazi (2012) argued, there is no ready 

testing tool to verify, whether user experience and result reported by any testing tool are 

comparable in application performance and user experience in terms of response time 

experience.  

According to Bezemer et al. (2016) performance evaluation activities require a 

considerable amount of time to ger statistically significant results in terms of common 

performance metrics such as response time, throughput, and resource utilization. Their 

study on how performance issues was addressed in DevOps, which is a modern software 

engineering paradigm that aims on high speed software change frequency and fast 

feedback cycles, found that 67% of the participants did not perform performance 

evaluation on regular basis, and those who did admitted, half of them used less than 5% 

of their time on them (Bezemer et al., 2019).     

2.1 Testing  

Testing in general can be divided into two categories, functional and non-functional 

requirement testing, according to Hossain (2013). 

 

Figure 1. Testing divided into two main branches, Hossain (2013). 
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These two categories of testing are visualized in figure 1. Functional testing mainly 

focuses on validating functions and interactions that has been defined in users’ 

requirements during software development stages according to the previously 

mentioned author (Hossain, 2013). Testing these functional requirements is not enough, 

even though the software seem to act according to specifications, the customer feeling 

might not be satisfying, as studies show almost 30% of users leaving the application, if 

the response time is more than eight seconds (Nguyen, 2012; Li, Shi & Li, 2013).  

Pradeep and Charma (2019), Khan and Amjad (2016) and Paz and Bernandino (2016) 

defined testing terms described in Table 1 in their studies all regarding different tools 

and tool sets used for testing software as units, functionalities and as a ready package to 

be accepted by the customer 

 

Table 1. Pradeep and Charma (2019), Khan and Amjad (2016) and Paz and 

Bernandino (2017) described different testing terms 

 

Term Purpose 

Smoke testing Smoke testing ensures the working of important key features 

and the stability of software 

Load testing / 

Volume testing 

Evaluation of the software with intended number of users 

Endurance 

Testing / Soak 

testing 

The system is stressed for a longer period to check the 

performance 

Scalability testing  The system is tested to be stable with the certified load, then 

users are subsequently increased to see the scalability 

performance 

Stress testing / 

spike testing 

The test analyses the robustness of the software. It identifies 

specific points where software modules get issues under 

extreme conditions of system failure 

Fail over test After relevant soak, load and stress tests are performed, fail 

over tests are performed to see, whether the software 

recovers from a critical situation or crashes completely 

Security testing Security testing is done to discover vulnerabilities and 

security loopholes in the software. It also includes 

penetration testing that tries to identify hacking or cracking 

probabilities of the software 

Unit testing Each level of software and module is tested to ensure correct 

behavior of the individual unit 

Gorilla testing The modules are tested repeatedly under assorted scenarios 

and inputs in order to verify the consistency of the software. 

The term also refers to frustrating testing that involves 

iterative testing of the same component and identification of 

bugs 

Graphical User 

Interface (GUI) 

Testing 

The proper functioning of the graphical interface of the 

software is tested to ensure functions work as required  

Performance 

testing 

The test set is a multidimensional evaluation of the software 

including speed, load, traffic, susceptibilities etc. 

Acceptance 

testing 

The evaluation of software based on the prescribed Software 

Requirements Specification (SRS) is done to make it 

deliverable. The levels and scores for acceptability of 

software product are investigated 
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Ahmad, Brereton and Andras (2017) made a systematic mapping study on Empirical 

studies on software cloud testing methods to see, what empirical studies were made in 

the area software cloud-based testing to find out testing methods, application of these 

methods and purpose of testing using these methods. Software categories studied are 

presented in Table 2 as numbers.  

  
Table 2. What category of software’s were tested in cloud based testing studies 
(Ahmad, Brereton and Andras, 2017)  

 
Category Studies (count) 

Web services / Application testing 10 

Mobile testing 7 

Vulnerability and security configuration testing 11 

Benchmarking 8 

Testing SaaS 10 

Testing cloud services 10 

Large-scale testing 7 

Other ways of testing 6 

 

Khan & Khan (2012) in their comparative study paper of different testing techniques 

describes and compares three main testing techniques: White box, Black box and Grey 

box testing. These testing techniques differ from each other mainly by tester’s level of 

knowledge of the software running inside the software under test. Black box testing can 

be used for both functional and non-functional testing and is mainly used when systems 

under test are big and complex and there is no or little knowledge of the internal 

relationships of different parts of the program and the test is interested in whether the 

software does what it is supposed to. In white box testing the internal structure of the 

software is known to the tester (Khan & Khan, 2012). Therefore, the test is mainly 

applied to unit testing. Grey box testing is a combination of these two which means the 

tester has some insight of the operating software and relationships between different 

processes (Khan & Khan, 2012; Software testing fundamentals, 2017). 

2.2 Software performance 

Connie Smith, who coined out the term Software Performance Engineering in 1981, 

brought to the attention the “fix-it-later” attitude when it came to performance in 

software engineering (Smith, 1981). Menasce (2002) points out, that this lack of 

performance evaluation from beginning of design stage, could never be allowed to any 

other form of engineering using a quite illuminating example of mechanical engineering 

with an engine that should reach 4000 RPM to find out it does not go over 1500 RMP 

when built and tested. Clearly this kind of mismatch between requirements and 

performance is not possible as, in normal engineering, performance is an integral part of 

design process according to the author (Menasce, 2002).  

Software performance is a pervasive quality aspect difficult to understand, because it is 

affected by every aspect of the design, code, and execution environment according to 

Woodside, Franks & Petriu ,2014. Same authors defined Software Performance 

Engineering in the study as follows: “Software Performance Engineering (SPE) 

represents the entire collection of software engineering activities and related analyses 

used throughout the software development cycle, which are directed to meeting 

performance requirements”. Originally in the 70’s, the need for efficient software was a 

necessity due to machine size, both in terms of memory and processor abilities (Smith, 

1990). Unfortunately, the growth of hardware did not fix this issue, rather giving way to 
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more complex software that became systems of programs. Only high-end software’s, 

such as flight control systems or other mission-critical embedded systems got the proper 

attention in performance perspective, as they had strict performance requirements in the 

specifications from beginning (Smith, 2015). As everything is related to cost 

effectiveness, “fix-it-later” is still a trend today. If the software performance 

engineering methods is not required by the contractor specifically, it is likely the 

performance issue is left out (Smith, 2015). 

In the past software performance issues were discovered very late in the development of 

a product as performance validation, if even made, was one of the latest activities done 

to the software before publication (Barber, 2006). According to the previous author, 

with agile processes, the problem is unchanged or even worse. The tendency of having 

testing, diagnosis and tuning activities quite late in a software development cycle is 

confirmed by several studies, as these phases needs the system under development to be 

ready to act and execute in an environment, where it can be run and measured as it 

would in the final environment (Arlitt M., Krishnamurthy D., Rolia J, 2001; Avritzer a., 

Kondek j., Liu d. & Weyuker E. J., 2002; Barber S., 2004a; Barber S., 2004b; Field, 

Chatley & Wei, 2018).   

In 2011 Vodde, one of the founders of LeSS framework (Large Scale Scrum), was 

interviewed by Kircher on an audio podcast regarding large Agile software 

development. He stated, that Continuous Integration (CI) is the most important practice 

in adopting agile at scale (Kircher & Vodde, 2011). Field et al. (2018) also adds, that 

performance testing is not only taking place late and is usually performed manually 

without any generic performance testing framework or tooling. According to Stefan, 

Horký, Bulej & Tuma (2017), only 0.4% of over 90000 open-source GitHub projects 

used any framework or was aligned with continuous delivery.   

As software development has moved from artistic phase based, highly skilled software 

craftsmen towards a real industry, where quality is controlled by introducing a 

structured workflow comparable with any other manufacturing process rather than by 

skills of a few individuals (Ricca & Tonella, 2001). A systematic mapping study of 

testability and software performance was made by Hassan et al. (2016) that implied 

most, if not all, the studies focused on functional correctness of the software and very 

little is known regarding what software testability issues impacts non-functional 

properties other than the ones dealing with the time-factor (timeliness and response 

time). One solution to solve this might, according to Field et al. (2018), is to use virtual 

software performance testing, which allows mockups to facilitate testing before all parts 

of the software is implemented.  

Ferme and Pautasso (2017) declared, that researchers and practitioners do identify the 

importance of performance testing in agile development processes, but states also, the 

existing techniques are fragmented, and the reaction speed is not synchronized to the 

intrinsic velocity of the software development. Their high-level solution is mentioned in 

the testing tools chapter that follows.   

 

2.3 Testing tools 

Ferme & Pautasso (2018) made a paper on performance test execution in continuous 

software development environments, where they noticed current performance testing 

approaches are mostly based on scripting languages and framework where users 

implement, in a procedural way, the performance tests issued to the system under test. 

This leave, still, the most important things undefined, the test goals and intents, 

according to the Ferme and Pautasso (2018). As a tool they suggest a declarative model-
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driven approach using a domain specific language (DSL) solution that build on existing 

tools like BlazeMeter and other tools, but as there is a plethora of tools, the solution is 

more discussed in a higher level allowing the user to specify the performance intent, 

solution and performance test execution. A follow up on this quite recent work will be 

provided after applied to real-world usage scenarios and feedback collected, according 

to Ferme & Pautasso (2018). Shariff et al. (2019) stated, that JMeter is the de facto 

standard for testing request-based frameworks. Selenium based testing is very suitable 

for browser load testing but is unfortunately extensively resource heavy as each test user 

starts a new browser. The result, however, gives a more realistic view on the end-to-end 

behavior of an application under load (Shariff et al., 2019). 

Cordell Vail (2005) made a large research on load, volume, performance, benchmark 

and base line testing tool evaluation, where he compared installation, usability, pricing 

of the usage and total benefit of the tools presented. Even though the paper went 

through an impressive number of tools, no recommendation could be given by the 

author of which tool set is best in terms of cost, usability or total revenue. Raj_esh_0201 

(2008) uploaded a performance test tools comparison describing basic functionalities of 

some of the, at that moment, state of the art testing tools including LoadRunner, Silk 

Performer, JMeter and some other software tool setups, but also indicated no tool was 

superior to others as they all are, as also concluded by Kaur & Gupta (2013) in their 

research, best chosen by the user based on budget and nature of the software that has to 

be tested. 

A study by Raulamo-Jurvanen, Mäntylä and Garousi (2017) addressed the problem of 

finding the right test automation tool in a large literature study, which addressed both 

formal studies and experience reports gathered from projects and contexts, shared online 

by practitioners. This, more informal data, is referred to as grey literature and is, 

according to the authors, an asset addressing the question of choosing right test tools 

most suitable for the system under test.  

Different load testing tools are compared by different web pages in example by G2.com 

(2020) and Softwaretestinghelp.com (2020). Open Source and licensed programs are 

rated in several using terms like “highest rated” and “easiest to use” (G2.com, 2020, 

Softwaretestinghelp.com,2020). 

  
Table 3. Features to the table were collected from homepages of HP LoadRunner, 
JMeter, Grinder, WebLOAD and Selenium. 

 
Feature HP 

LoadRunner 

JMeter Grinder WebLOAD Selenium 

Licensing Expensive, 

six figures 

(2016) 

Apache 

2.0 

BSD-

style 

open-

source 

Not 

available  

Apache 2.0 

Virtual 

users 

Restricted to 

license 

Restricted 

by 

hardware 

Yes 50 free, 

over 50 by 

license 

Yes 

Cross 

platform 

Windows 

and Linux 

Windows, 

Linux, 

unix, mac 

Windows, 

Mac, 

Linux 

Windows 

and Linux 

Windows, Mac, Unix, 

linux 

Scriptable C, VBA, 

VBScript, 

Jscript, VB, 

VB.NETC, 

C#, Java 

Limited 

(XML) 

Jython, 

Closure 

Javascript  C#, Groovy, Java,  
Perl, PHP, Python,  

Ruby and Scala 
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Table 3 includes some features obtained from the software authors’ homepages for 

comparison. The selected features are gathered from the internet as this is, according to 

Raulamo-Jurvanen, Mäntylä and Garousi (2017), the primary source of information, 

alas, test tools and automation related services are ranked among the most required 

services from external consultants, which is acknowledged by practitioners. Raulamo-

Jurvanen, Mäntylä and Garousi (2017) also claim, tool evaluation is only recommended 

if the people testing it can devote enough time and appropriate expertise to complete a 

thorough trial use as a study by Poston and Sexton (1992) already claims that trial use 

would often lead to wrong decisions, mainly due to lack of time for testing and 

evaluation of the tool and also indicates user expertise level issues to be an element 

causing result misinterpretation of the usability and functionality of the software. 
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3. Research method 

The research method was a systematic literature review of tools used in Stress and Load 

testing conducted following both the guidelines provided by Kitchenham and Charters 

(2007) and guidelines by Petersen, Feldt, Mujtaba and Mattsson (2008). 

 

 

Figure 2. Search progress 

 

Steps taken to achieve the literature review are presented in Figure 2 and are step by 

step explained in the following subchapters. 

3.1 Research questions 

To find out whether there is a superior tool on the market in aspect of usability and cost, 

following research questions were formulated. 

 

RQ1. What is the most common Stress and Load testing software tool used 

according to literature findings? 

 

RQ2. Is there a recommended tool or tool set for website testing purposes? 

 

 

To answer both RQ1 and RQ2, current research literature had to be explored in order to 

find evidence of existence of such findings.  
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3.2 Search strategy 
The scope of the study was defined to find suitable tools for stress and load testing in 

software development literature. The research questions were set and modified to their 

final form to fit the scope defined. Keywords for database searches were defined, 

searches made, words were redefined to final form to ensure enough relevant paper was 

included in search results. The study utilized references used by similar studies as these 

were similarly relevant for this paper.  

3.3 Sources of data 
Articles and journals were mostly accessible through Oulu University student login 

even though some sources required their own login-procedures according to their own 

security policies, especially when utilizing automated search engine and result 

modifying tools such as RStudio (https://rstudio.com/). Sources for data retrieved are 

listed below with a short summary of their key functions as described by Oulu 

university webpage “Communication and information engineering, electronics and 

information Processing Science subject guide: Articles and Databases” 

(http://libguides.oulu.fi). By accessing the page and logging in with university access 

codes, most of the material needed became available.  

 

Scopus (http://www.scopus.com) 

Scopus is a key reference database holding multidisciplinary abstract and 

citation database of journals, conference papers, trade publications, book 

series and patents 

 

ACM Digital Library (https://dl.acm.org/) 

ACM digital library is a full text database with articles and bibliographic 

citations mainly in computing sciences and a reference database 

 

EBSCO Databases (https://www.ebsco.com) 

EBSCO database library is a key reference database with many different 

subject areas with full text and reference databases 

 

Google scholar (https://scholar.google.com) 

Google scholar searches articles based on title using Google as information 

source. As Google scholar does not distinguish between academically 

approved and documents being in reviewing process, prudence is advised 

using documents not presented by other, academically stricter, sources. 

3.4 Data collection 
The search string used was of generic type: 

 

 (X1 OR X2 OR .. Xn) AND (Y1 OR Y2 OR .. Yn)  

 

Where X covered words used in Stress and Load testing and Y covered the area of 

software engineering. As there were a relatively small number of suitable documents 

available, the search string had to be simplified to generic level to ensure enough 

potential documents would be presented in the search. 

 

X: {Stress testing, Load testing, Tool} 

Y: {Comp, Engi} 
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The search string itself was several times reformulated and searches were re-conducted 

based on the results, reflected against the research questions and object of the study. The 

literature search, which produced basic reference lists, was done by searching Scopus by 

Elsevier. The Scopus search found also documents preselected from other sources, 

which gave confidence in presenting the research sources as many instead of just one. 

Documents found from Scopus resulted in 361 hits with Stress Testing as key indicator 

in the area of computer engineering (Appendix A). Common words were filtered out 

such as paper and software to better describe the important words in these papers. 

Scopus was chosen to demonstrate word cloud visualization due to best compliance of 

R-tool used for extracting information. The search scope limitation to less than 9 years 

of age dropped the document count to 112 documents. 

 

Figure 3. Word cloud with stress testing as key word. 

 

 

Stress testing as key indicator produced a word cloud shown in Figure 3. A similar 

search with the key indicator Load Testing resulted in 987 hits (Appendix B) and is 

visualised in Figure 4 below. The search scope limitation to less than 9 years of age 

dropped the document count to 36 documents.  

 

 

Figure 4. Word cloud with load testing as key word. 
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Both word clouds had testing as one of the key elements and indicates performance, 

analysis and model frequently appearing in the papers found by the search made from 

the Scopus library. Furthermore, the search made with the keyword “stress” shows 

“load” appearing in frequent words and vice versa, the search made with the keyword 

“load” indicates “stress” being one key word in these found documents. 

No limitations were set on publication year in order to get as much relevant papers 

included in the preliminary search. “Load Testing” brought 987 hits in the forts phase 

and the key word “Stress Testing” gave 361 hits. Different forms of spelling of the key 

words did not affect the outcome of the search results. Only peer-reviewed documents 

were taken into consideration. Gray literature was included as some sources had made 

their studies on that area, was accepted and notified by fellow scholars. The study 

discarded documents older than from 2011 based on lack of technical value to the 

research and the fact, there was not much to find of value. 

3.5 Inclusion process 

The inclusion/exclusion decision of the documents retrieved from Scopus searches was 

made on the base of reading the title and analyzing the abstract due to the fact that full-

text was not available through the sources used and paying for document possibly 

excluded later would be a too heavy load for a single person to handle. The 

classification of documents based on title, abstract or keywords was categorized as 

“irrelevant”, “maybe relevant” and “relevant”. The inclusion / exclusion process is 

described in Table 4   

  
Table 4. The amount of included and excluded documents. Duplicates, irrelevant and 
documents not answering to the research questions were discarded 

 
Search hits according to 

criteria 

Original 

count 

Accepted 

for 

evaluation  

Plausible Excluded Included 

Load testing 987 112 88 48 64 

Stress testing 361 36 25 28 8 

Total 1348 148 113 76 72 

 

Duplicates or papers with the same content as other studies were excluded at the 

analysis and synthesis step.  

3.6 Data extraction and synthesis 
According to guidelines by Petersen et al. (2008), the text was suggested to be studied 

adaptively in order to use time efficiently. Some texts valued more relevant to the study 

were read in full text as all necessary information, especially regarding numbers and 

statistics, were not fully covered neither in the abstracts nor summary contents. The 

results were extracted, decoded and stored in excel-sheets.   
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4. Results 

A total of 44 different tools were identified during the data extraction process. Both 

open source software with different licence types and commercial versions with scalable 

solution packets were recognized to the study. Model based and model-based machine 

learning solutions was also taken into consideration as the complexity of modern web 

software and the growing capability of Artificial Intelligence (AI) in model-based 

machine learning is probably going to play a role in future solutions and testing 

strategies. Table 5 displays, that the most common tool referred to or used as testing 

tool or evaluation tool for other solutions has by far been Apache JMeter with 33 hits 

during the study period. It has been referred to or used steadily throughout the research 

period as well as HP LoadRunner, which has been referred to or used in 10 different 

publications. Model-based testing solutions has been referred to or used 7 times and 

selenium 5 times as testing tool or evaluation method for other tools. Model-based 

machine learning as a performance testing solution has been presented 2019 for the first 

time in this documentation but is still worth mentioning as a future solution possibility. 

To better illustrate the growing interest in testing, tools table 5 shows the number of hits 

recorded between the years 2011 and 2016 is 15 as between the years 2017  and 2019 

the number of hits is 18, even though the time span is only half of the previous. 

 
Table 5. Hits recorded in documents reviewed 

 
Most hits / Year 

span 

Years JMeter HP 

LoadRunner 

Model 

based 

testing 

Selenium Model 

based 

Machine 

learning 

2011 – 2019 9 33 10 7 5 1 

Progress opened to illustrate growth of interest 

2017 – 2019 3 18 5 3 2 1 

2011 – 2016 6 15 5 4 3 0 

 

One of the main reasons why documents prior to 2011 were discarded was the lack of 

research of testing tools. As table 6 shows, since 2011 there has been a steadily 

increasing need for research in the matter, with 2016 as the year, when the research and 

comparison of performance testing tools became interesting and relevant for scholars.   

 
Table 6. Hits recorded in documents reviewed in annual level 2011 - 2019 

 
Year Hits 

2011 1 

2012 2 

2013 5 

2014 7 

2015 6 

2016 13 

2017 13 

2018 12 

2019 (until August 2019) 7 
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Web services and applications were mostly measured and tested during the research 

period. Table 7 presents what was tested in the documentation reviewed from 2011-

2019. Web services and applications were mostly tested during the period. Internet of 

Things (IoT) is a growing test area, that showed up in the documentation 2018. 

Business Process Execution Language (BPEL) and Web Services Business Process 

Execution Language (WS-BPEL) has been tested throughout the research span. 

The variety of tests has grown as the complexity of systems grow interconnecting with 

each other. Most documentation has by far been done regarding test tools of web 

services and applications. The tool that has throughout the years been the most popular 

for testing web software is Apache JMeter. BPEL and WS-BPEL documentation had 

not specified any specific testing tool used, merely new approaches and solved issues 

for the functionality of the BPEL and WS-BPEL software tool itself. IoT had used two 

different software very much based on the needs of the tested environment. The third 

document was a modelling of what should be measured in the future when testing IoT in 

general. In the developer tool segment, a combination of Wessbas, Apache JMeter and 

InspectIT was used for reducing the maintenance effort for parameterization of 

representative load tests using annotations improving throughput time by automating 

what should be tested. Table 7 has the chapter described as numbers. 

 
Table 7. Hits recorded in documents reviewed 

 
Most hits / Year span Web 

services / 

applications 

BPEL / 

WS-BPEL 

IoT Big Data Developer 

tools 

2011 – 2019 49 4 3 2 1 

Most popular  Apache 

JMeter 

(23) 

Tools not 

specified  

MQTT 

broker 

(1), Soap 

UI (1)  

Netdata 

(1), 

Modast 

(1) 

Wessbas, 

Apache 

JMeter 

and 

Inspect 

IT used 

together 

(1) 

2017 – 2019 22 2 3 1 1 

Most popular Apache 

JMeter (13) 

Tools not 

specified 

MQTT 

broker 

(1), Soap 

UI (1)  

Netdata 

(1) 

Wessbas, 

Apache 

JMeter 

and 

Inspect IT 

used 

together 

(1) 

2011 – 2016 27 2 0 1 0 

Most popular  Apache 

JMeter (10) 

Tools not 

specified 

NA Modast 

(1) 

NA 

 

4.1 Testing Software found in the literature review 

A large variety of software was mentioned and extracted in the literature review 

process. 40 different tools were documented to be used or evaluated by different 

authors. Even though JMeter and HP LoadRunner were the most referred ones, all the 

mentioned pieces of software was collected and provided with a short comment, mainly 

from the authors’ homepage, organised according to license. The license is briefly 

commented at the beginning of each section.  
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4.1.1 Apache License 2.0 

The Apache license 2.0 is a highly permissive open software license that allows the 

users to distribute, modify and use the software for any purpose, as long as the user 

complies with the license terms, that state existing copyright, patent, trademarks and 

attribution notices are not removed (apache.org, 2020) . As a limitation, you must add 

notifications of modifications made to the original software (apache.org, 2020). Table 8 

lists software mentioned, that uses Apache 2.0 license including name of the tool, key 

function or operation, the official URL if found and a short description, mainly from the 

software’s official loading URL.  
 
Table 8. Programs under Apache License 2.0 

 
 Tool Function or key operation Official URL 

1 Apache Bench Apache HTTP server 

benchmarking tool 

httpd.apache.org/docs/2.4/pro

grams/ab.html 

Apache Bench is a tool for benchmarking your Apache Hypertext Transfer 

Protocol (HTTP) server. 

2 Apache Flood Load Testing, Performance 

Testing 

httpd.apache.org/test/flood/ 

Flood is a profile-driven HTTP load tester. In layman's terms, it means that flood 

can generate large amounts of web traffic. Flood's flexibility and power arises in 

its configuration syntax. It can work well with dynamic content. 

3 Apache JMeter Load Testing, Performance 

Testing 

JMeter.apache.org/ 

Apache JMeter may be used to test performance both on static and dynamic 

resources, Web dynamic applications. It can be used to simulate a heavy load on a 

server, group of servers, network or object to test its strength or to analyze overall 

performance under different load types 

4  

Appium 

Testing of Hybrid, Native 

and Mobile Web Apps 

appium.io/ 

Appium is a mobile test automation framework (with a tool) that works for all: 

native, hybrid and mobile web apps for iOS and Android. Appium is a great 

choice for test automation framework as it can be used for all these different 

app/web types. 

5 Gatling Performance Testing, Load 

Testing 

gatling.io/ 

Gatling is a highly capable load testing tool. It is designed for ease of use, 

maintainability and high performance. 

6 Grinder Load Testing grinder.sourceforge.net/ 

The Grinder is a load testing framework that makes it easy to run a distributed test 

using many load injector machines. Test scripts are written in Jython, and can call 

out to arbitrary Java code, providing support for testing a large range of network 

protocols. The Grinder comes with a mature plug-in for testing HTTP services, 

HTTP scripts can be recorded easily from a browser session. 

7  

Selendroid 

Automation Testing for 

Mobile Apps 

selendroid.io/ 

Selendroid is a test automation framework which drives off the UI of Android 

native and hybrid applications (apps) and the mobile web. 

8 Selenium Automation of Web 

Browsers Regression 

Automation, Exploratory 

Testing 

seleniumhq.org/ 

Selenium is many things but at its core, it is a toolset for web browser automation 

that uses the best techniques available to remotely control browser instances and 

emulate a user’s interaction with the browser. Although used primarily for front-
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end testing of websites, Selenium is at its core a browser user agent library. The 

interfaces are ubiquitous to their application, which encourages composition with 

other libraries to suit your purpose. 

9  

TestNG 

Server Testing Performance 

Testing Data Driven Testing 

testng.org 

TestNG is a testing framework designed to simplify a broad range of testing 

needs, from unit testing (testing a class in isolation of the others) to integration 

testing (testing entire systems made of several classes, several packages and even 

several external frameworks, such as application servers). 

 

4.1.2 Commercial software 

According to Technopedia the definition of commercial software is that any software or 

program that is designed and developed for licensing or sale to end users or that serves a 

commercial purpose is commercial software (Technopedia, 2020). Both proprietary and 

open-source software can be classified as commercial depending on licensing as is or as 

a part of a service. Products are normally licensed, not sold, to the end user 

(Technopedia, 2020). Table 9 lists software mentioned, that uses commercial software 

licensing including name of the tool, key function or operation, the official URL if 

found and a short description, mainly from the software’s official loading URL.  

 
Table 9. Programs under commercial licenses 

 
 Tool Function or key operation Official URL 

10 Amazon kinesis Testing real time video and 

data stream applications 

aws.amazon.com/kinesis/ 

Amazon Kinesis is a managed, scalable, cloud-based service that allows real-time 

processing of streaming large amount of data per second. It is designed for real-

time applications and allows developers to take in any amount of data from 

several sources, scaling up and down that can be run on EC2 instances. 

11 HP ALM To schedule and run tests microfocus.com/en-

us/products/quality-center-

quality-

management/download 

HP ALM/Quality Center is an application lifecycle management tool for software 

quality assurance and test management to deliver apps quickly with confidence. 

12 HP 

LoadRunner 

Stress testing, Performance 

testing 

microfocus.com/en-

us/products/loadrunner-

professional/ 

LoadRunner is a software testing tool from Micro Focus. It is used to test 

applications, measuring system behavior and performance under load. 

LoadRunner can simulate thousands of users concurrently using application 

software, recording and later analyzing the performance of key components of the 

application. 

13 Silk test Functional testing, 

Regression testing 

microfocus.com/en-

us/products/silk-test/ 

Silk Test is a test automation solution for web, mobile & enterprise apps, enabling 

software testers & developers to conduct functional & regression tests. 

14 SoapUI SOAP Testing, REST 

Testing 

soapui.org/ 

SoapUI is the world's leading Functional Testing tool for SOAP and REST 

testing. With its easy-to-use graphical interface, and enterprise-class features, 

SoapUI allows you to easily and rapidly create and execute automated functional, 

regression, and load tests. 

15 WAPT Recorder and Load testing loadtestingtool.com 
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Record, use several systems for load generation, remotely control test execution, 

monitor server performance and handle complex parameterization. 

16 WebLoad Load Testing, Response 

Validation Testing 

radview.com/webload-

download/ 

WebLOAD is a load testing tool from Radview software that tests for 

performance and scalability but also for verifiability (validating the correctness of 

return results). ... This past April Radview released an open source community 

edition of WebLOAD under GPL, available at webload.org 

4.1.3 GPL licenses 

The GNU GPL (General Public License) or simply GPL is a permissive license that 

gives the end user the right to use, share and modify the software if the copyleft rule is 

respected and preserved under same equivalent license terms (GNU.org, 2020). GPL 

version 1 from 1989 made the distributors publish their code in human readable source 

code form and made sure the licensed software GPLv1 could be combined with 

software under more permissive codes preserving same terms (GNU.org, 2020). GPLv2 

in 1991 stated the GPL license may be distributed only if all license obligations can be 

fulfilled.  

The GNU Library General Public License version 2 was released to ensure C-libraries 

and other software libraries in the same year. GPLv3 increased compatibility with other 

software licenses such as Apache license 2.0 and GNU Affero General Public license, 

which should be used for software interacting over a network (GNU.org, 2020). Lesser 

General Public License (LGPL) allows the work to be linked with and used in a 

different form of software licensed program which does not apply (L)GPL licensing 

(GNU.org, 2020). Software applying GPL and derived licenses are listed in table 10. 

 
Table 10. Programs under GPL and derived licenses 

 
 Tool (license) Function or key operation Official URL 

17 Siege (GPL) Web server testing tool joedog.org/siege-home/ 

Siege is an open source regression test and benchmark utility. It can stress test a 

single URL with a user defined number of simulated users, or it can read many 

URLs into memory and stress them simultaneously. The program reports the total 

number of hits recorded, bytes transferred, response time, concurrency, and return 

status. Siege supports HTTP/1.0 and 1.1 protocols, the GET and POST directives, 

cookies, transaction logging, and basic authentication. Its features are 

configurable on a per user basis. 

18 OpenSTA (GPL) Stress Testing, Web Load 

Testing 

opensta.org/ 

The current toolset has the capability of performing scripted HTTP and HTTPS 

heavy load tests with performance measurements from Win32 platforms. 

19 Pylot (GPL) Load Testing, 

Benchmarking, Capacity 

Planning, System Tuning 

testmatick.com/testing-

tools/pylot/ 

Pylot is a tool for testing performance and scalability of web applications. It 

simulates HTTP requests and checks how the server responds. After the tests the 

instrument creates the test report that includes important metrics. 

20 Ansible (GPL) Distributed systems testing www.ansible.com/prod

ucts/ 

Under RedHat for testing Ansible contributions 

21 Httperf (GPLv2) Web server performance 

tool 

github.com/httperf/http

erf 



20 

httperf is a tool for measuring web server performance. It provides a flexible 

facility for generating various HTTP workloads and for measuring server 

performance. 

The focus of httperf is not on implementing one particular benchmark but on 

providing a robust, high-performance tool that facilitates the construction of both 

micro- and macro-level benchmarks. The three distinguishing characteristics of 

httperf are its robustness, which includes the ability to generate and sustain server 

overload, support for the HTTP/1.1 and SSL protocols, and its extensibility to 

new workload generators and performance measurements. 

22 Tsung (GPLv2) Stress Testing, Distributed 

Load Testing 

tsung.erlangprojects.or

g/ 

Tsung is an open-source multi-protocol distributed load testing tool. It can be 

used to stress HTTP, WebDAV, SOAP, PostgreSQL, MySQL, LDAP, MQTT 

and Jabber/XMPP servers. 

23 Flowping (GPLv3) Stress testing github.com/k13132/flo

wping 

The FlowPing is an application which allow user to perform variety of network 

throughput and stress tests. The application utilize UDP(User Datagram 

Protocol). 

24 Jattack (GPLv3) WebRTC stressing tool prezi.com/krg1esxoa6u

g/jattack/ 

Jattack is an automated stressing tool for the analysis of the performance of 

WebRTC-enabled server-side components 

25 TailBench (LGPL) Performance testing tool tailbench.csail.mit.edu/ 

A benchmark suite and evaluation method for testing Latency-critical applications 

26 Bench4Q (LGPLv2.1) Load simulation tool projects.ow2.org/view/

bench4q/ 

Bench4Q is a QoS oriented B2C benchmark for Internet Middleware. It makes 

many extensions of TPC-W, especially for load simulation and metrics analysis of 

a benchmark. 

27 CLIF (LGPLv3) Performance testing clif.ow2.io/ 

Automated performance testing, performance testing in continuous integration, 

providing a simple web user interface for CLIF, monitoring QoS or applications 

QoE and possibly send alerts in case of bad responsiveness. 

28 MultiMechanize 

(LGPLv3)  

Load Testing, Performance 

Testing, Scalability Testing 

multimechanize.readth

edocs.io/en/latest/ 

Multi-Mechanize is an open source framework for performance and load testing. 

It runs concurrent Python scripts to generate load (synthetic transactions) against 

a remote site or service. 

 

4.1.4 MIT licenses 

The MIT license is a highly permissive open software license that gives permission to 

reuse and modify code for any purpose if the original copy of the MIT license is 

included in their distribution (opensource.org/licenses/MIT, 2020). Table 11 presents a 

list of software using MIT licenses. 

 
Table 11. Programs under MIT License  

 
 Tool Function or key operation Official URL 

29 AutoPerf Testing tool for web 

applications 

github.com/mejbah/AutoPerf 
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Autoperf is a tool for automated diagnosis of performance anomalies in 

multithreaded programs. It operates in two phases: 

Profiling: Collects hardware performance counters from annotated sections of a 

program by running it with performance representative inputs. 

Anomaly Detection: Creates a model of application performance behavior by 

training an Autoencoder network. It finds out the best performing network by 

training for input dataset (collected in profiling phase). AutoPerf uses the trained 

model for anomaly detection in future executions of the program. 

30 Capybara Simulation of User Behavior github.com/teamcapybara/cap

ybara 

Capybara helps you test web applications by simulating how a real user would 

interact with your app. It is agnostic about the driver running your tests and 

comes with Rack::Test and Selenium support built in. WebKit is supported 

through an external gem 

31 Cucumber Acceptance Testing cucumber.io/z 

A cucumber is a tool based on Behavior Driven Development (BDD) framework 

which is used to write acceptance tests for the web application. It allows 

automation of functional validation in easily readable and understandable format 

(like plain English) to Business Analysts, Developers, Testers, etc 

32 Excactpro Trading system testing exactpro.com/ 

A tool for testing high load trading systems with the required performance 

characteristics 

33 HULK - HTTP 

Unbearable 

Load King 

Ddos attack tester github.com/siarheidudko/hulk 

This tool is a dos tool that is meant to put heavy load on HTTP servers in order to 

bring them to their knees by exhausting the resource pool, its is meant for 

research purposes only and any malicious usage of this tool is prohibited. 

34 Locust Performance Testing, Load 

Testing, Benchmarking 

locust.io 

 

Locust is an easy to use, scriptable and scalable performance testing tool. You 

define the behavior of your users in regular Python code, instead of using a 

clunky UI or domain specific language. This makes Locust infinitely expandable 

and very developer friendly. 

35 Watir Automation Testing watir.com/ 

Watir stands for Web Application Testing In Ruby. It facilitates the writing of 

automated tests by mimicking the behavior of a user interacting with a website. 

36 Webrat Acceptance Testing, 

Browser Simulation 

github.com/brynary/webrat 

Webrat lets you quickly write expressive and robust acceptance tests for a Ruby 

web application. 

37 FltNesse (MIT, 

Common 

Public License 

1.0) 

Acceptance Testing fitnesse.org/ 

FitNesse automated acceptance tests are power tools for fixing a broken 

requirements process.  

 

 

4.1.5 Other or not specified 

Three software was referred to in findings of the literature study, but license type was 

not specified, or claimed license agreement being “other”. These are presented in table 

12. 
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Table 12. Programs, that has not specified license type 

 
 Tool (License) Function or key 

operation 

Official URL 

38 WebRTCBench 

(not specified 

license) 

WebRTC stressing tool github.com/ucisysarch/WebR

TCBench 

WebRTCBench, an open source tool for performance assessment of WebRTC 

implementations which allows testing applications making use of video and audio 

through WebRTC standards and collects performance indicators. 

39 Canoo Web Test 

(other) 

Automation Testing webtest.canoo.com/ 

CanooWebTest is an OpenSource tool that uses Ant and HttpUnit to implement 

functional testing of web applications. 

4.2 Recording software mentioned in the literature review 

Software used for recording and play back user actions on web browsers are listed in 

table 13. These tools are used to mimic user behaviour to be repeated in test sessions, 

often altered to suite the test scripts purposes, in example a multitude of user logins, 

purchases, downloads and so on to test a web service or application.   

 
Table 13. Tools for recording browser activity mentioned in the literature review  

 
 Tool License type Official URL 

40 BadBoy Commercial badboy1.software.informer.co

m/2.1/ 

Badboy embeds Internet Explorer and monitors and controls its actions. 

Badboy makes web testing and development easier with dozens of features 

including a simple yet comprehensive capture/replay interface, powerful 

load testing support, detailed reports, graphs 

41 Blazemeter Commercial (Platform as a 

Service) 

https://www.blazemeter.com/ 

A self-service load testing Platform as a Service (PaaS), which is compatible with 

open-source Apache JMeter 

42 Selenium IDE Apache 2.0 license selenium.dev/selenium-ide/ 

Selenium IDE is an easy-to-use and integrated development environment used by 

web app developers to record, edit, and debug tests. 

43 Wessbas Apache 2.0 license wessbas.github.io/ 

Wessbas is more than a recording tool. First, a system- and tool-agnostic domain-

specific language (DSL) allows the layered modeling of workload specifications 

of session-based systems. Second, instances of this DSL are automatically 

extracted from recorded session logs of production systems. Third, these instances 

are transformed into executable workload specifications of load generation tools 

and model-based performance evaluation tools (Vögele, Hoorn, Schulz, 

Hasselbring & Krcmar, 2016). 

 

The plethora of software used can be explained partially by the need for solutions better 

suiting the particular software tested as there is no silver bullet to be found as Kaur & 

Gupta (2013) argued the testing software was best chosen based on budget and nature of 

the software that has to be tested. This seem still to be the issue as the testing is 

becoming fragmented, and the reaction speed of testing is not synchronized to the great 

velocity of the software development (Ferme and Pautasso, 2017). 



23 

5. Findings 

The literature research found two strong and widely used software, JMeter and HP 

LoadRunner, which has both evolved to fulfil the needs of users throughout the span of 

the literature review. Evidence of this was presented in table 5, which presented hits of 

reference to the software from 2011 – 2019, and proved the hits had a relatively steady 

count throughout years 2011 – 2016 and 2017 – 2019 in relation to the whole count. A 

more detailed analysis of what tools actually were used for, shows an interest in testing 

the tool itself (table 14) for new approaches and solving new issues as API (Application 

Programming Interface) issues or optimizing the usage for better or completely new 

approaches for load and stress testing of software.  

The results file includes the whole collected data from which the findings and analysis 

is derived from. It can be found in Appendix A (Appendix A Results.pdf). The 

document numbers referred to in the results file are documented in appendixes B and C 

(Appendix B LoadTesting.pdf, Appendix C StressTesting.pdf). 

 
Table 14. Distribution of performance testing targeting the testing tool itself 

 
Performance testing of tool tested (total) 35 

Complete solution set presented 6 

Solving API / new issues 16 

Optimizing use / new approach of use 13 

 

A total of 6 complete solutions were presented as capable of fulfilling the whole test 

scenario, but only two of the presented solutions found by the study are potential 

contenders of doing so. These contenders are presented later in this chapter. 16 

instances had presented and tested new issues or solved API obstacles and 16 was 

focused on optimizing the tool usage or took a completely new approach to a problem 

found by scholars and practitioners earlier.  

Comparative studies of testing software were documented a total of 13 instances. 

JMeter and HP LoadRunner were mentioned in the same comparison or description 

document only two times in the same document. Software performance was tested in 24 

documents using a variety of tools. A table of these findings is presented as table 15.  
 
Table 15. Distribution of performance testing targeting the testing tool itself 

 
Usage Count 

Tool comparison and Software under test combined 37 

Comparison / description of tools (including new tools) 13 

Only tool descriptions and comparison, no usage of tool 5 

Used as performance evaluation tool for Software under test 24 

Tool used as a Verification tool (any tool) 16 

New approach of use 16 

 

As five of the documents were descriptive and only described the function of the test 

software, numbers in table 15 would not add up without taking them into account in the 

table. As evaluation tools for software change verification and performance change 
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evaluators, which was documented 24 times, of which JMeter was mentioned 13 times 

and HP LoadRunner three times.  

However, deciding whether the document was dedicated to solely test the performance 

of the software or evaluate the tested system performance capacity was not clear at all at 

some instances, as some tests required a totally new approach or solution of how to be  

able to measure software under test performance. To target this documenting related 

problem, table 16 illuminates to which extent the most mentioned software were 

represented, when systems under test and performance tools evaluation numbers were 

combined. 

 
Table 16. Systems under test and performance tools evaluation numbers combined 

 
Usage Count 

Total 67 

Software performance testing (testing tool used as a verification 

tool) 

16 

Software performance testing (new approach of use) 16 

Tool performance (complete solution set presented) 6 

Tool performance (solving API / new issues) 16 

Tool performance (optimizing use / new approach of use) 13 

  

      JMeter being a part of the test or solution 33 

      HP LoadRunner being a part of the test or solution 10 

 

Reason for the high count of hits is on the account of JMeter due to the Apache open 

source origin and licensing, which makes it feasible for cost effective and innovative 

development. HP LoadRunner persist, most likely due to effective response to market 

changes, a complete package portfolio including all necessary for customer needs and 

well-organized customer support which compensates the for the pricing.  

5.1 Research questions and answers 

To answer the research questions a total of 148 documents was reviewed and a total of 

72 documents matched the research criteria. RQ1 was easily answered by counting hits 

of usage, as the main tool or usage as comparison tool for other projects was Apache 

JMeter. 

5.1.1 RQ1. What is the most common Stress and Load testing 
software tool used according to literature findings? 

The most common tool used found by the literature research was Apache JMeter, which 

is an open source software under Apache 2.0 license. Key features of Apache JMeter 

are, according to Sharma, Shetty, Subramanian and Iyer (2016) and Abbas, Sultan, and 

Bhatti (2017) are that JMeter can run on any operating system as it is built on a Java 

platform. It can run in distributed mode thus making it scalable. Jmeter is ready to 

support a large number of different protocols making it nimble such as HTTP, SMTP, 

POP3, LDAP, JDBC, SOAP and TCP. It has also a lot of pre- and post-processors 

which are implemented around sampler providing advanced setup, teardown 

parametrization, and correlation capabilities. Multiple built-in and external listeners 

help to visualize and analyze performance test results and integration with major build 

and continuous integration systems are possible. And JMeter is free of cost, which is 

one of the major advantages. 
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Problems related to Apache JMeter according to Sharma, Shetty, Subramanian and Iyer, 

(2016) and Abbas, Sultan, and Bhatti (2017) are that JMeter takes more time on one-

time installation and has been recorded to be unstable under huge load. It has no built-in 

monitoring and script writing might be challenging and time consuming. The benefits of 

Apache JMeter exceed the problems related to the use as JMeter is widely used, well 

documented and being free of charge, keeps it attractive to end users and developers.  

5.1.2 RQ2. Is there a recommended tool or tool set for website 
testing purposes? 

The most used tool for testing websites that included all phases (Virtual User Generator, 

Controller, Load Generator and Analysis) was HP LoadRunner thus also being the most 

expensive. (Sharma, Shetty, Subramanian & Iyer, 2016, Abbas, Sultan & Bhatti, 2017.) 

There is at least one alternative solution, which combines several free and low-cost 

programs as a composite solution to accomplish web testing service as a whole (Lee, 

Lin, Lin & You, 2018). Both solutions are presented in the next subchapters as an 

answer to RQ2. 

HP LoadRunner 

Key features of HP LoadRunner are according to LoadRunner (2020) homepage that HP 

LoadRunner runs on Linux and Windows systems. It has a built in interactive recording 

and scripting system giving browser-based and native mobile applications the 

possibility of being tested using the most advanced network behavior and service 

virtualization in the industry. Simple, elastic, and realistic tests can be ran from multiple 

geographies and tests can be performed by scaling load testing in the cloud up and down 

to simulate the demands of business applications. Performance testing can be integrated 

into your development environment including IDE, continuous integration, and build 

systems. Application performance bottlenecks can be identified using non-intrusive, 

real-time performance monitors that leverage application-layer and code-level data for 

root cause and analytics.  

 

Problems related to HP LoadRunner were identified by Sharma, Shetty, Subramanian 

and Iyer (2016) and Abbas, Sultan, and Bhatti (2017) to be the price of the software. It 

has a tendency of occasionally crashing under heavy load and the installation takes a lot 

of time. As it is a complete system, the controller user interface is complex, and it has 

some configuration issues across firewalls. HP LoadRunner has rather poor measuring 

at non-Windows server statistics, which can be counted as a deficiency. Nevertheless, 

HP LoadRunner was the most referred testing platform, that included all phases of 

Testing as a Service required for a complete business scenario. 

Composite solution 

Lee, Lin, Lin and You (2018) documented the first phase of their composite solution in 

2016 and presented a second, more sophisticated, version of their solution in 2018 (Lee, 

Lin, Lin & You, 2016, Lee et al., 2018). The key features of the proposed composite 

solution (Lee et al., 2018) are that adapters have been devised to bridge the gap between 

the inputs and outputs of six web testing software selected for the solution which are 

Badboy, JMeter, Cacti, Xdebug, Selenium IDE, and Selenium WebDriver. The solution 

has been developed for the automated composition of the web testing software to work 

as a complete composite system based on a continuous integration framework presented 

by Jenkins using Hudson APIs, that can be globally shared among plugins (Jenkins, 
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2020). The composite web testing service can be delivered via email using two primary 

components for easy access. The composite test frame presented has promising 

prospects as most of the tools are free of cost as presented in chapter 4.1. 
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6. Discussion, limitations and implications 

The literature review reviled a multitude of tools used for web testing purposes, 

unfortunately leaving some promising candidates unmentioned due to missing notations 

in selected documents. The main commercial product presented in Chapter 5 has kept 

the same hit rate throughout the review session as a testing tool for websites and as 

comparison for other web testing tools. As a simple solution, the commercial market 

leader in complete solutions is always an option, if time is of essence and finance is not 

a problem. However, the need for cost effective web software testing tools for 

specialised web software testing companies and other software developing companies, 

is imminent. The composite solution presented in Chapter 5 could be a promising frame, 

as the main problem with isolated tools is how they communicate with each other when 

creating composite systems to speed up and make web testing services faster and more 

cost effective. 

As a limitation to this study, the exclusion of grey literature material should be 

mentioned as a restricting factor as well as the excluding documents based on paying for 

use. The grey literature material option usage option came in a late phase of the study 

and was not applied due to excessive workload as the whole inclusion / exclusion 

process as well as the downloading and review would have to be started from scratch. 

The study, however, recognises the value of such study and strongly recommends future 

studies to apply such an approach to ensure more and possibly different aspects of the 

testing tool environment. The exclusion of documents needing financial involvement is 

due to the nature of the work being done by single person and not someone contracted 

by a company to ensure access to all available material. 

As implication to future work, the presented Jenkins continuous integration framework 

with Hudson APIs (Application Programming Interface), is most certainly worth testing 

with other tools probably already used in companies doing testing services. Familiar 

tools make the use of improved test solutions less unattractive, saves time, effort and 

keeps the results comparable to previous test sessions making tool based and result 

interpretive bias smaller and overall effort more manageable. As there were a lot of 

software described for different test functions, bridging the gaps between different 

testing stages with application programming interfaces to avoid laborious manual 

handling and making the process faster and more efficient could be a way of making 

Software Testing as a Service a more gainful business giving the company an edge to 

even improve their productivity and enlarge test setup scope. 

As time is one of the most precious and costly valuable to companies making business, 

experimenting with new ideas is not always feasible, it opens an opportunity for future 

scholars to investigate new possibilities using API’s with close relationship to 

companies doing business in the software field of stress and load testing. The need for 

such skills will probably grow in the future as software to be tested is expanding in an 

explosive rate and speed is the key issue of modern software development, regardless of 

whether the professionals testing the software are inside the software company or doing 

the testing as a business.  
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