


Abstract

Niemelä Raimo (2021), Data-efficient Knee Anatomical Landmark Localiza-
tion using Deep Learning. Faculty of Medicine, University of Oulu, Master’s Thesis,
49 pages.

Knee osteoarthritis (OA) is the most common musculoskeletal degenerative disease
affecting the joints. OA is examined at a doctor’s visit and an X-ray image is often
used to confirm the diagnosis. There is no treatment available for OA, therefore it
is important to diagnose knee osteoarthritis at the earliest possible stage to prevent
possible complications.

Traditional methods used by a practitioners do not detect osteoarthritis as early as
possible, therefore other methods are needed for early diagnosis. One possibility is to
use novel quantitative imaging biomarkers, computation of which often requires precise
understanding of the knee anatomy by a computer. More specifically, it is important
to locate different areas of the knee according to anatomical atlases and place relevant
regions of interest to compute the imaging biomarkers. A state-of-the-art approach for
this problem is based on anatomical landmark localization.

In this work, the localization of anatomical landmarks from knee X-rays using deep
learning is investigated. To date, statistical methods have been used to localize land-
marks, but this work focuses on identification based on deep learning and investigates
how the amount of available training data affects performance. The method investi-
gated in the present thesis is based on the KNEEL method developed earlier at the
University of Oulu. The aim of this work was to improve this method by adjusting
the training parameters and leveraging equivalent regularization for semi-supervised
learning. Images from the Osteoarthritis Initiative database were used as material for
training and validation.

During the work, it was found that by adjusting the parameters used for training,
anatomical landmarks can be localized more accurately than in the original KNEEL
method. By adding the equivalent regularization, the accuracy of the localization was
increased substantially, and a further enhancement in performance can be observed by
utilizing unlabeled data in a semi-supervised learning manner.

The results, developed in this thesis can layer be leveraged in OA research or even clin-
ical practice, where the computation of quantitative imaging biomarkers is important.
To our knowledge, this is the first work in OA where SSL and equivariant regularization
were used.

Keywords: osteoarthritis, deep learning, knee, supervised learning, semi-supervised
learning



Tiivistelmä

Niemelä Raimo (2021), Datatehokas polven anatomisten maamerkkien pai-
kantaminen käyttäen syväoppimista, Lääketieteellinen tiedekunta, Oulun yliopis-
to, Pro gradu -tutkielma, 49 sivua.

Polven nivelrikko on yleisin niveliin vaikuttava tuki- ja liikuntaelimistöä rappeuttava
sairaus. Nivelrikko tutkitaan lääkärikäynnin yhteydessä ja diagnoosi vahvistetaan usein
röntgenkuvantamisen avulla. Nivelrikkoon ei ole saatavilla hoitoa, joten on tärkeää diag-
nosoida polven nivelrikko mahdollisimman varhaisessa vaiheessa mahdollisten kompli-
kaatioiden välttämiseksi.

Perinteiset lääkäreiden käyttämät menetelmät eivät tunnista nivelrikkoa riittävän ai-
kaisin, siksi tarvitaan muita menetelmiä varhaisempaan diagnostiikkaan. Yksi mahdol-
lisuus on käyttää kvantitatiivisia kuvantamisbiomarkkereita, mutta näiden laskemisek-
si tietokoneen täytyy ymmärtää anatomisia rakenteita tarkasti. Tarkemmin sanottuna
on tärkeää paikantaa polven eri rakenteet ihmisen anatomiasta ja merkitä kiinnosta-
vat rakenteet, jotta kuvantamisbiomarkkerit voidaan laskea. Nykyisin tätä ongelmaa
lähestytään anatomisten maamerkkien paikantamisen avulla.

Tässä työssä tutkittiin anatomisten maamerkkien paikantamista polven röntgenkuvista
syväoppimisen avulla. Perinteisesti tähän on käytetty staattisia menetelmiä, mutta
tässä työssä keskityttiin paikantamiseen käyttäen syväoppimista ja tutkittiin kuinka
käytettävissä oleva opetusdatan määrä vaikuttaa suorituskykyyn. Työssä käytetty me-
todi perustuu aikaisemmin Oulun yliopistossa kehitettyyn KNEEL metodiin. Tämän
työn tarkoituksena oli parantaa tätä metodia säätämällä opetusparametreja sekä hyö-
dyntää ekvivalenttia regularisaatiota syväoppimisen yhteydessa. Kuvia The Osteoarth-
ritis Initiative -tietokannasta käytettiin opetukseen ja validointiin.

Työn aikana havaittiin, että säätämällä opetukseen käytettäviä parametrejä, voidaan
anatomiset maamerkit paikantaa tarkemmin kuin alkuperäisellä KNEEL metodilla.
Ekvivalentin regularisaation lisäämisellä paikantamisen tarkkuus lisääntyi huomatta-
vasti. Suorituskyky parani entisestään käyttämällä annotoimatonta dataa puoli-ohjatun
oppimisen yhteydessä.

Tämän opinnäytetyön yhteydessä kehitettyä metodia voidaan käyttää nivelrikon tut-
kimuksen yhteydessä tai kliinisessä käytössä, missä kvantitatiivisten kuvantamisbio-
markkereiden käyttö on tärkeää. Tietojemme mukaan tämä työ on ensimmäinen, jossa
käytetään puoliohjattua oppimista sekä ekvivalenttia regularisaatiota nivelrikon yhtey-
dessä.

Avainsanat: nivelrikko, syväoppiminen, polvi, ohjattu oppiminen, puoliohjattu oppi-
minen
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Abbreviations and Symbols used

AAM Active Appearance Models

AI Artificial Intelligence

ANN Artificial Neural Network

ASM Active Shape Model

CLM Constrained Local Model

CT computed tomography

CNN Convolutional Neural Network

DL Deep Learning

DNN Deep Neural Network

FP False Positive

GT Ground truth

KL Kellgren-Lawrence

ML Machine learning

MRI magnetic resonance image

OA Osteoarthritis

OAI Osteoarthritis Initiative

PCA Principal component analysis

PS Pictorial Structures

ROI Region of Interest

RFRV Random Forest Regression Voting

SIFT Scale-Invariant Feature Transform

SVM Support Vector Machine

TP True Positive
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1 Introduction

Osteoarthritis (OA) is a common musculoskeletal disorder that affects millions of people
regardless of race, sex, and gender around the world [24]. Of all the joints in the body,
the knee is the heaviest weight-bearing joint and a highly prevalent location for the
disease [29]. It is characterized by the breakdown of knee joint cartilage, the appearance
of osteophytes, and the narrowing of joint space [29]. The disease causes knee stiffness
and swelling, as well as aching after prolonged sitting or resting, gradually progressing
to the point when patients have to undergo total knee replacement (TKR) surgeries
to avoid full-fledged physical disability [37]. Unfortunately, effective cures for knee OA
are not available yet. As the treatment for knee OA and TKR surgeries bring massive
burdens in personal and societal levels, detecting knee OA at early stages to slow its
progression is needed. In the diagnostic process for knee OA, radiography is the first
imaging-based diagnostic tool [6, 19]. Radiography, known for its affordability and
convenience, can capture dense tissues such as bones, which are informative enough
for assessing the knee OA severity. One of the most important features that one can
extract from radiographs is key points around the tibia and femur with respect to
the perspective in the radiograph, from which joint space width could be derived [33].
However, annotating knee landmarks is costly in terms of time and budget. Therefore,
computer aided programs have been developed to automate the task [62, 40, 41].

Anatomical landmark localization is challenging because structures are often simi-
lar [52]. Traditionally, the task was based on statistical methods, but recently more
deep learning (DL)-based approaches have been proposed to improve its performance
considerably [39, 69]. In particular, the convolutional neural networks (CNN) are suit-
able for landmark localization. Recently hourglass CNN has been successfully used
for landmark detection [62], cell instance tracking and segmentation [53], segmentation
of brain tumor [4] and human pose estimation [47]. They allow to capture informa-
tion across all scales and are therefore good option for landmark localization. Original
hourglass CNN predicts heatmaps and is memory demanding [61]. In the knee OA
domain, the KNEEL method [62] is the one, which uses hourglass CNN and predicts
directly landmarks points. The method utilizes pre-training and is accurate also on
unseen data. Compared to the current state-of-the-art, KNEEL method has better
generalization performance [62].

Although KNEEL achieved remarkable performance in knee OA, it lacked thorough
investigation of hyperparameters, and did not explore the data requirements. In this
work, the author first improved the baseline performance by conducting more sophis-
ticated fine-tuning strategies that enable training with a much more efficient amount
of annotated samples. Additionally, I propose to incorporate equivariant regulariza-
tion [31] into the KNEEL approach in such a way that we can leverage unlabeled data
and enable training KNEEL in a semi-supervised learning (SSL) setting.
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Data used in the preparation of this thesis were obtained and analyzed from the con-
trolled access datasets distributed from the Osteoarthritis Initiative (OAI)1, a data
repository housed within the NIMH Data Archive (NDA). OAI is a collaborative in-
formatics system created by the National Institute of Mental Health and the National
Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS) to provide a world-
wide resource to quicken the pace of biomarker identification, scientific investigation
and OA drug development.

1https://nda.nih.gov/oai/
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2 Background

2.1 Radiographic Image

In the field of medical imaging, a radiographic image (plain radiograph) is a 2-D image
derived by sending X-rays through a certain human body part. As human organs
and body parts are made of tissues with a diversity of densities that absorb radiation
differently, the radiograph can reveal the underlying structure of the imaged body part,
which is helpful for doctors to diagnose various diseases without performing surgery.

X-rays were discovered by Wilhelm Röntgen in 1895, and are electromagnetic radiation
waves with a wavelength of 6.0 · 10−12 − 1.5 · 10−8 meters [45]. Figure 1.a depicts the
structure of an X-ray tube. To generate X-rays, one passes electrons through a vacuum
from the cathode to the anode. Moving electrons collide with other electrons in the
anode, generating a large amount of energy from the interaction. Most of this energy
is heat and must be removed. Only 1 % of this energy is X-radiation [45].

Anode

Cathode Electron

X-rays

(a) Structure of X-ray tube

I0 I

Sample
Detector

(b) X-ray principle

Figure 1: X-ray tube and principle description

The X-rays are released from an X-ray tube with intensity I0. An object absorbs
electromagnetic radiation and intensity I is passed through the object (tissue) to the
detector (see Figure 1.b). The X-ray image is a reflection of the intensities that passed
through the object [1].

2.2 Knee Radiograph

The knee joint, the largest joint in the human body, articulates the femur, tibia and
patella [5] (illustrated in Figure 2.a). In addition to the bones, there are soft tissues
in the knee that are essential to the joint function: muscles, ligaments, and tendons.
The muscles allow movement and keep the knee stable. The ligaments connect bones
to each other, while the tendons connect muscles to the bones. The articular cartilage
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provides a low-friction sliding surface between the bones. Both the femur and tibia can
have rolling and gliding motions, allowing flexion and extension of the leg [5].

A knee X-ray image (Figure 2.b) is captured in the standing position with fixed flex-
ion [61], merely revealing hard tissues. The quality of a knee radiograph depends on
the pose position of the patient, and an adequate level of exposure and the X-ray beam
angle [9, 62]. With the potential for low quality imagery and the lack of soft tissue in
the image, diagnosing diseases based on knee radiographs is challenging and requires
practitioners and radiologists to have intensive training courses to master the skill [62].

(a) Structure of the knee joint. 2.

Intercondylar
eminence

Fibula Tibia

Patella

Head of
Fibula

Femur

(b) X-ray taken from knee 3.

Figure 2: Illustrated structure of the knee joint and X-ray of knee joint

2.3 Knee Landmark Localization

Anatomical landmark is a specific point in an image, which corresponds to an actual
location in the body. Landmark localization aims to find these points with some au-
tomated method. It is an important part in many computer vision applications, such
as expression understanding, face recognition [42] and eye tracking [51]. It can also
be used with medical applications such as body composition [32], back pain problem
analyses [16] and osteoarthritis analyses [63, 48].

Under a certain beam angle, knee joint space (KJS) appears as a gap between the tibia
and femur in a knee radiograph [9]. KJS is one of the most important characteristics
used to assess the loss of cartilage in knee OA diagnosis [9]. Fortunately, we can extract
it from knee landmarks that are pre-defined key points around projected tibia and femur
regions in the image. In total, there are 16 landmarks in a knee radiograph that are

2”Anterior view of right knee” by OpenStax is used under a CC BY 4.0 Licence.

https://openstax.org/details/books/anatomy-and-physiology
3Data used in the preparation of this thesis were obtained and analyzed from the controlled access

datasets distributed from the Osteoarthritis Initiative (OAI),https://nda.nih.gov/oai/
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task based on given data. The objective is to have a learned machine that can generalize
the task on unseen inputs instead of purely remembering the given data.

ML can be divided into three main categories: supervised learning (SL), semi-supervised
learning (SSL) and unsupervised learning (UL) [59]. The primary difference among
them is the involvement of ground truth data. Typically, there are two types of data
such as annotated data (input samples xi with corresponding targets yi) and unan-
notated data (only input samples xi) [2]. In supervised learning, all data must be
annotated before it can be used; therefore, the input data are a set L of input-output
pairs. Different from SL, SSL- and UL-based methods involve another set U of unan-
notated samples. While SSL has both L and U , UL only has U .

In the next subsections, we present in detail SL, SSL and the artificial neural network
(ANN), one of the most well-known techniques in ML.

2.4.1 Supervised Learning

Given a set of annotated samples D = {(xi, yi)}i=1..N , let fθ be an arbitrary parametric
differentiable function with parameter vector θ. The objective of SL is to find θ such
that the empirical loss Ll(fθ, L) is minimized. Formally, we define θ such that

argmin
θ

1

N

N
∑

i=1

L(fθ(xi), yi)), (1)

where L is a loss function.

2.4.2 Semi-Supervised Learning

Let D = {(xi, yi)}i=1..N and U = {uj}j=1..M be annotated and unannotated sets, re-
spectively. Let fθ denote an arbitrary function with parameters θ. SSL aims to utilize
both annotated and unannotated samples to gain better generalization. The objective
is to minimize a linear combination of empirical supervised and unsupervised losses, Ll

and Lu respectively, with respect to fθ. Formally, we find θ such that

argmin
θ

[

wl

N

N
∑

i=1

Ll(fθ(xi), yi) +
wu

M

M
∑

j=1

Lu(fθ(uj))

]

, (2)

where wl and wu are the coefficients of the supervised and unsupervised terms, respec-
tively.
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2.4.3 Artificial Neural Network

An artificial neural network, or simply neural network (NN) is a common architecture
with simulated neurons, originally designed to mimic behaviors of the human brain [34].
The simplest form of an NN is a perceptron representing a linear binary classifier f that
allows mapping input vector x = (1, x1, ..., xd)

T to y ∈ {0, 1}. Let θ = (θ0, θ1, ..., θd)
T

denote parameters of f , and we have:

fθ(x) =

{

1 if θTx > 0
0 otherwise.

(3)

We can generalize equation (3) as

fθ(x) = ϕ(θTx), (4)

where ϕ(·) is an activation (e.g. sigmoid of tanh) function (discussed in Section 2.5.4).
While a sigmoid function transforms the prediction into [0, 1], a tanh function maps it
to [−1, 1]. Figure 5a illustrates a perceptron with an input layer x connected to output
layer y by weights θ and a nonlinear function ϕ.

The complexity of an NN can be increased by adding hidden layers between the input
and output layers. Figure 5b presents a neural network with two hidden layers in which
all neurons are connected to neurons in the next level. Here, the architecture has 1
node in the output layer, and the circles can be any linear or nonlinear function (e.g.
identity, sigmoid, tanh, etc.).

At the start of the training, the weights are initialized randomly [23, 27]. During
the training, weights are optimized so that differences between the ground truth and
predicted results are minimized. Training is carried out in phases: first inputs are
converted to outputs by forwarding the inputs through the neural network, and the
output is calculated. Then, the loss function is used to evaluate the error between
actual output and the predicted output. Finally, a gradient of the loss is computed,
and later used to optimize the network’s parameters.

2.5 Deep Learning

2.5.1 Convolutional Neural Network

Convolution operator and convolutional kernel6 are the fundamental elements in convo-
lutional neural networks (CNN) [35]. Convolution slides a convolutional kernel, learn-

6Strictly speaking, convolutional networks perform cross-correlation.
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2.5.2 Pooling Layer

The pooling layer is a very common operator in DL used to downsample feature maps by
a certain factor. Figure 8 presents two widely used pooling layers: average pooling and
max pooling [35]. Similar to convolutional layers, the pooling layer scans a window with
a certain size through input feature maps to aggregate its values (e.g., by averaging or
getting maximums). In the literature, while max pooling is often used between middle
layers to downscale the size of feature maps, average pooling is applied to the feature
map of the last convolutional layer to “flatten” it.

32 11 0 58

8 97 3 35

34 1 55 3

112 57 56 14

Average
pooling

37 24

51 32

Max
pooling

97 58

112 56

Figure 8: Differences between average and max pooling

2.5.3 Fully-Connected Layer

In this layer, each input is connected to all neurons. This is a standard structure in
all kinds of neural networks. Computationally, this can become expensive when the
numbers of inputs grow large. Therefore this layer is used for specific purposes such as
classification. In CNNs, this layer is usually located after the convolutional and pooling
layers as presented in Figure 7.

2.5.4 Activation Functions

An activation function is either a linear or nonlinear function that is applied to a
certain node of a neural network. In practice, most of the activation functions are
non-linear [50]. Some of the widely used activation functions are Sigmoid, Tanh, and
rectified linear unit (ReLU) functions [50] (illustrated in Figure 9). Sigmoid is defined
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as:

y =
1

1 + e−x
. (5)

While the output values of Sigmoid are in the range [0, 1], the Tanh function yields
values in [−1, 1] as its definition is

y =
ex − e−x

ex + e−x
. (6)

(a) Sigmoid function (b) Tanh function (c) ReLU function

Figure 9: Activation functions

The ReLU function, the most heavily used activation nowadays in convolutional neural
networks, is mathematically represented as follows [60]:

ReLU(x) = max(0, x). (7)

Softmax is another important activation function, specialized for use in multi-class
classification or attention-based neural networks. Given x = [x1, . . . , xn]

t, the Softmax
function, denoted by σ, such that

σ(xi) =
exi

∑n

j=1
exj

, (8)

outputs an n-element vector equal to 1 such that
∑n

i=1
σ(xi) = 1.

2.5.5 Loss Function

In ML, we aim to minimize or maximize certain objective function. When an objective
is minimized, it is called a loss function, and describes the difference between the
prediction and ground truth targets. Formally, given an input data D = {(xi, yi})

n
i=1

, a
loss function is a map L : R

n → R, and the objective is to find parameters θ of function
f such that:

min
θ

L(fθ, D), (9)
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Here we present some common and relevant loss functions in the landmark localization
domain, such as L1, L2, and Lwing losses defined as follows,

L1 =
1

N

n
∑

i=1

|fθ(xi)− yi|, (10)

L2 =
1

N

n
∑

i=1

(fθ(xi)− yi)
2, (11)

Lwing(yi, fθ(xi)) =

{

w log (1 + 1

∈
|yi − fθ(xi)|) |yi − fθ(xi)| < w

|yi − fθ(xi)| − C otherwise.
(12)

While L1 measures mean absolute error (MAE), L2 measures the mean squared er-
ror (MSE). Wing loss is closely related to L1 with constant C and nonlinear part
(−w,w) [62, 21].

2.6 Data Augmentation

Data augmentation is a popular technique that helps to enrich understanding of the
data manifold and improve generalization of the model [30, 56]. In the scope of this
thesis, we are interested in 2D point and image augmentations. A transformation T is
a function that maps a point x = [x1, x2]

⊺ or an image I to another point x′ = T (x) or
image I ′ = T (I). As the transformation can be represented by matrices, we alternatively
write x′ = Tx or I ′ = TI.

[

x′

1

x′

2

]

= T

[

x1

x2

]

. (13)

As transformations are matrices, multiple transformations can be applied in the form
of transformation composition.

[

x′

1

x′

2

]

= T1T2T3x = T1T2T3

[

x1

x2

]

. (14)
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2.6.1 Rotation

Rotation is the movement of a shape around a specific point. Figure 10a presents the
principle of rotation transformation. Rotation is done through the fixed point with a
fixed angle. Mathematically rotation can be defined as follows [46]:

[

x′

1

x′

2

]

=

[

cosα −sinα
sinα cosα

] [

x1

x2

]

, (15)

where x1 and x2 are original coordinates, α rotation angle and x′

1
and x′

2
coordinates

after rotation transform.

(a) rotation (b) scaling (c) shear

Figure 10: Rotation, scaling and shear transformations

2.6.2 Scaling

Scaling is a linear transformation that makes the size of the object smaller or bigger.
Figure 10b presents the principle of scaling transformation. The size of the object
increases or decreases by a scale factor s. The shape will remain the same but the size
will be different after transformation. Mathematically, the scaling can be represented
as follows [22]:

[

x′

1

x′

2

]

=

[

s 0
0 s

] [

x1

x2

]

, (16)

where x1 and x2 are original coordinates, and x′

1
and x′

2
coordinates after transformation

and s scaling factor.
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3 Related Work

3.1 Shape-based Models

To localize vertebrae landmarks, Lecron et al. [38] proposed to extract Scale-Invariant
Feature Transform descriptors (SIFT) [44] of points of interest in an X-ray image.
Then, they utilized multi-class Support Vector Machine (SVM) to classify whether
SIFT descriptors are associated with a vertebra or not. Potesil et al. [20] utilized.
Tim Cootes applied Active Shape Model (ASM) [11] to localize the boundary of knee
cartilage of each MR imaging slice. Then, Cootes improved the performance of the
knee cartilage localization by replacing ASM by Active Appearance Model (AAM) [12].
In that study, a shape model of knee cartilage was created using labeled landmarks.
Then, a grey-level texture model was added to the shape model, which collaborated
more information available than in [11].

Cootes et al. [15] improved AAM method by adding local feature templates and pre-
sented the idea of Constrained Local Models (CLM). In the study, facial landmarks
were localized. The model shape and texture models are built in the same way as in
AAM [15, 14]. In AAM the whole object is modelled, but in [15] the model has a set
of local feature templates [15].

Criminisi et al. [13] used multi-class random regression forests to localize anatomical
structures. They used this method for locating the bounding box within computer
tomography (CT) scans, but not for individual landmarks. In a random forest, the
decision is made using tree predictors [7]. Each tree makes individual decisions and the
final decision is made by voting. The class which has the most votes wins. Random
forests can be used also with regression.

Lindner et al. [41] combined RFRV and CLM fitting. The best position was voted
for every feature point by an CLM and RFRV combination. They tested the method
with facial images and hand radiographs (37 landmark points). They showed that the
combination is fast and accurate for point detection. Later Lindner et al. [40] used
this combination to localize landmark points in knee radiograpsh and this is generally
considered as state-of-the-art [62].

3.2 Machine Learning for Landmark Localization

In recent years, a few trials have been done with deep neural networks and medical
data. Zhang et al. [69] localized landmarks from brain T1 weighted magnetic resonance
(MR) images and prostate CT images. They combined the random forest technique
with CNN to localize anatomical landmarks. Emad et al. [18] used CNN with seven
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layers to detect the left ventricle from an MRI. They did not try to find actual landmark
points, but a bounding box enclosing the left ventricle. Auber et al. [3] combined a
deep neural network (DNN) with a statistical shape model (SSM) to detect the spine
and the pelvis from plain X-ray images.

In general, anatomical landmark localization using CNN is based on heatmaps. Song et al. [58]
predicted landmarks from orthodontic X-rays. First they extracted ROIs from X-ray
and detected the landmarks from ROI patches. They trained CNN for every single
landmark and predicted totally the location of 19 landmarks.

Nibali et al. [49] added Diferentiable Spatial to Numerical Transform (DSNT) layer to
the CNN and predicted coordinates directly. Later, Yeh et al. [66] predicted 45 land-
marks directly from a whole-spine lateral radiograph with modified Cascaded pyramid
Network(CPN). They used heatmaps to predict the probable locations of landmarks,
but used DSNT to calculate landmark predictions.

Softa et al. [57] used Fully Convolutional Neural Network (FCN) [43] to predict keypoint
locations from ultrasound images. They used regression maps and used the center
of mass of the regression maps as the location estimate. Davison et al. [17] located
landmarks using U-Net [55]. First they located reference points from pelvic radiogpraph
and then predicted the offset to the reference point. Finally target point was voted using
the predicted target points.

Trigeorgis et al. [64] combined a Convolutional Neural Network (CNN) and a Recurrent
Neural Network (RNN) to predict face alignment. Feng et al. [21] presented a new
loss function, Wing loss and combined it with CNN for facial landmark localization.
Zhang et al. [68] presented accurate face alignment method using Coarse-to-Fine Auto-
Encoder Networks (CFAN).

Payer et al. [52] used regression based CNN with heatmap for landmark localization
from hand, skull and spine. Full-resolution heatmaps are problematic with medical
data, because the size of the medical image is typically large [62]. But decreasing the
resolution may may affect the accuracy of landmark localization [62]. Tiulpin et al. [62]
used hourglass CNNs to find an intermediate solution between the landmarks and the
direct predictions. Earlier hourglass CNNs have been used to estimate human pose,
because hourglass CNN works well on low resolution images [47].
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4 Methods and Materials

4.1 Hourglass Network

Hourglass network is an encoder-decoder network, in which feature maps of its input
image are spatially shrunk through its encoder, and expanded back to its original spatial
shape through its decoder, which forms a hourglass-like shape. Although originally
proposed to estimate human poses appearing at different scales in generic images [47,
25], the architecture later showed its strength in the medical imaging domain [62].
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Figure 12: Description of the hourglass network use in this study. The depth of the hourglass
block is 4, N is the number of initial feature maps, andM is the number of output heatmaps.

In this study, we design a hourglass network to learn to predict knee joint landmarks
in an end-to-end manner. Our hourglass network has three types of blocks: entry,
hourglass, and output as shown in 12. First, the entry block located at the beginning
is a shallow sub-network consisting of a convolutional block (in green) and residual
modules (in blue) separated by a max-pooling layer (in red). Second, the hourglass
block, the main component, comprises an encoder and an decoder sub-networks. While
we use max-pooling layers to perform sub-samplings in the encoder, we interpolate to
up-sampling feature maps in the decoder. At each step in the encoder, we make a
summation between feature maps up-sampled from the previous step and projections
of the corresponding step in the decoder via residual blocks. Finally, feature maps
derived from the hourglass block are passed through the output block, which includes
dropout layers (in gray), 1 × 1 convolutional blocks (in yellow), and, especially, a 2D
SoftArgMax layer.
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5 Experiments

5.1 Experimental Details

5.1.1 Implementation

We implemented our method based on the KNEEL [62]9, deep-pipeline10 and SOLT11

repositories. Following the KNEEL code, we used the Python programming language
and Pytorch 1.1.0 in our implementation. Thanks to the supercomputer cluster Puhti
with a total of 682 central processing unit (CPU) and 80 graphical processing unit
(GPU) nodes (4 NVidia Volta V100 processors GPUs each), we could run our experi-
ments in parallel. Each training setting was sent to the cluster’s job list and waited for
its turn to run automatically. We trained all models with a batch size of 16. We utilized
the Adam optimizer [36] to train all settings with a fixed batch size of 16 and a learning
rate of 1e − 3. Following [62], we used the wing loss [21]. Usually the learning rate
is reduced during training using adaptive learning rate methods or predefined learning
rate schedules. In this experiment, predefined learning rate schedules were used. Dif-
ferent from [62], which used predefined learning rate (1e− 3), our implementation uses
scheduler that drops the learning rate at 50 and 150 epochs. Besides, we trained all
the settings in 300 epochs, instead of 100 as in [62]. All other experiments were done
with learning rate drop at 50 and 150 epochs. Also, several training times were tried.
The values we used can be found from Table 1. The transformations with equivariant
regularization are presented in Table 3.

Table 1: Training parameters

Parameter Value

Initial learning rate 1e− 3
Learning drop schedule [50, 150]

Learning rate after drop 1e− 4 , 1e− 5
Epochs 100, 150, 200, 250, 300

5.1.2 Data Preparation

Our experiments were conducted on the dataset extracted from the Osteoarthritis Ini-
tiative (OAI) 12 cohort. OAI is a public dataset and contains clinical and imaging data

9https://github.com/MIPT-Oulu/KNEEL
10https://github.com/lext/deep-pipeline
11https://github.com/MIPT-Oulu/solt.git
12https://nda.nih.gov/oai/
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from an eleven-year cohort study with 4, 796 patients [28]. All the patients at the mo-
ment of the recruitment were 45-79 years old and had risk developing or have developed
knee OA. In addition to the baseline examination, there are 13 follow-up visits from
12 to 132 months and knee radiographs imaged at 18, 30, 48, 60, 84, 108, 120, and
132-month follow-ups. The dataset for training and model selection was the same as in
the original KNEEL (totally 748 knee joints, approximately 150 per KL grade).

The annotations for our dataset are from [62]. To investigate the effect of annotation
quantity on the performance of our method, we prepared 7 annotated data settings in
which we randomly selected N/k annotated samples, where N is the number of all OAI
data and k = 1..7 (see Table 2). Both low-cost and high-cost models were trained with
the same data settings. To make the results of those settings compatible, we kept the
validation set of each setting the same ( 149 samples).

Table 2: Amount of labeled data used with training

Labeled data N
1

2
N

1

3
N

1

4
N

1

5
N

1

6
N

1

7
N

#Training 599 299 200 150 120 100 86

#Validation 149 149 149 149 149 149 149

In addition, we had a data setting for our SSL approach. We used 750 knee radiographs
from the 12-month follow-up as unannotated samples. All unlabeled training data
for high-cost training were created automatically using a script. First, the ROI was
predicted using a low-cost model, and high-cost training data was extracted using the
predicted ROI coordinates.

Table 3: Transformations used in the experiments

Transformation
Configuration

1 2 3 4 5 6

Rotation -5◦- 5◦ -10◦- 10◦ -20◦- 20◦ -40◦- 40◦ - -

Scale 0.8 - 1 0.9 -1 0.95 -1 1-1.05 1 - 1.1 1 - 1.2

Shear vertical 0 - 0.05 0 - 0.1 - - - -

Shear horizontal 0 - 0.05 0 - 0.1 - - - -

5.1.3 Experimental Protocol

Labeled data were split into 5 folds using K-fold cross-validation. The principle of K-
fold cross validation is presented in Figure 16. In K-fold cross-validation, data are first
split into k folds, and training is done with k− 1 folds. In the first split, folds 0− 3 are
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used for training, while fold 4 is used for validation. This is repeated until all folds are
used for validation. This helps to use the data more efficiently.

validation

training

0

1

2

3

4

0 1 2 3 4

Split

Fold

Figure 16: K-fold cross validation with k-value 5

In the first step, the training parameters were analyzed with different data amounts.
The learning rate drop schedule and epoch count effect were analyzed. We had two
approaches to initialize our model’s weights. We either utilized the weights of a model
that had been pre-trained with low-cost labels, or initialized them randomly. Low-cost
models were trained to localize ROIs from the bilateral radiograph, while high-cost
models used 16 femur and tibia anatomical landmark points. Both low-cost and high-
cost training were performed with the same split.

Subsequently, we conducted an ablation study on image transformations for equivariant
regularization. Firstly, we performed experiments with different rotations and amounts
of labeled samples. Specifically, we rotated images with a range of degrees: [−5, 5],
[−10, 10], [−20, 20] or [−40, 40]. Because training takes a lot of time and computing
resources were limited, the amount of labeled data used with equivariant regularization
was selected after the first trials with rotation transformation were done. Rotation, scal-
ing and shear-transformations were analyzed independently with labeled data amount
N/3. The best transformations were selected (rotation angle in [−5, 5] degrees, scale in
[1, 1.05], shear horizontal in [0.0, 0.1]) and combined into one.

Thirdly, it was investigated whether model could be further improved using unlabeled
data. We kept the unlabeled a data amount the same (i.e., 748 samples) for all the
experiments. We used previously selected transformations with equivariant requlariza-
tion (rotation [−5, 5], scale [1, 1.05] and shear [0.0, 0.1]). All experiments were done
with data amount mentioned in Table 2.

Finally, we compared the performances of KNEEL [62], the optimized KNEEL, KNEEL+,
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and KNEEL+ with unlabeled data with different amounts of samples. Original KNEEL
and optimized KNEEL were trained with and without pre-training (w/o low cost).

5.1.4 Metrics

Percentage of Correct Keypoints (PCK) [65] were calculated for all experiments. PCK
is widely used with computer vision applications [70], [62], [8]. The distance between
the predicted landmark and the ground truth was calculated. The percentage of pre-
dicted landmarks inside radius r is then presented (recall). Radius 1.0 mm, 1.5 mm,
2.0 mm and 2.5 mm were used with the experiments. The recall represents the pro-
portion of landmarks correctly detected out of all landmarks within the current radius.
Mathematically it can be defined as:

Recall =
TP

TP + FN
. (21)

5.2 Results

5.2.1 Pre-training and Fine Tuning Training Parameters

Recall percentages for KNEEL and optimized KNEEL with different labeled data
amounts and with different precision thresholds [1.0, 1.5, 2.0, 2.5] mm can be found
from Figure 17. It can be seen, that pre-training can be skipped only if full amount
of the labeled data in use and threshold 2.5 mm can be accepted. Optimized KNEEL
gives better results than original KNEEL. The results is better, even pre-training is
not used with optimized KNEEL. The less labeled data in use, the bigger difference
between the methods.
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Table 6: Combined transform gives better results.

Transform # Labeled in train set 1 mm 1.5 mm 2 mm 2.5 mm % out

angle -5 - 5

1

3
N

50.94± 9.08 76.54± 5.77 88.84± 3.88 93.58± 3.03 0.53
scale 1.0 - 1.05 53.48± 11.34 78.41± 4.44 89.51± 4.06 93.98± 2.84 0.80
shear x: 0.0 - 0.1 53.81± 7.09 79.48± 4.82 88.97± 2.93 94.12± 1.89 0.67
all combined 53.88 ± 12.48 80.61 ± 7.75 89.91 ± 4.06 94.92 ± 1.89 0.53

5.3 Label Efficiency

Figure 19 presents, how the amount of labeled data affects to the performance. Com-
parison is done for KNEEL, optimized KNEEL and KNEEL+. The more labeled data
used for training, the better the algorithm performs. KNEEL+ performs well even
with the small amount of labeled data, if precision threshold 2.0 mm is accepted. This
can also be seen with the optimized KNEEL. With the original KNEEL, performance
decreases rapidly as the amount of labeled data decreases.

5.4 Unlabeled Data Utilization

A comparison between labeled and unlabeled data is presented in Table 7. The com-
parison also includes the original KNEEL and the optimized KNEEL. It can be seen
from Table 7, that KNEEL+ trained with the unlabeled data gives best results. This
can be seen with all amounts of labeled data. Performance increases by several per-
centage points especially when a small difference between GT and predicted landmark
is required. By combining KNEEL+ with unlabeled data, less labeled data is needed
as can be seen from Figure 22. Training the network with one-fifth of the labeled data
gives results as good as original implementation with the full data amount. Figure 20
presents difference between KNEEL and KNEEL+ with same amount of the labeled
data, KNEEL+ performs much better. This can also be seen with the labeled data
amount 1/7N as presented in 21.
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Table 7: A comparison between labeled and unlabeled data

Method # Labeled in train set 1 mm 1.5 mm 2 mm 2.5 mm % out

KNEEL

N

45.25± 8.79 72.59± 6.24 85.76± 3.88 90.64± 1.89 0.80
KNEEL optimized 61.50± 10.21 84.96± 4.06 92.51± 1.70 95.32± 0.57 0.13

KNEEL+ 65.37± 7.37 86.70± 5.20 93.45± 2.84 96.66± 0.76 0.40
KNEEL+ unlabeled 750 68.89 ± 8.80 88.44 ± 2.83 93.56 ± 1.89 97.33 ± 0.94 0.00

KNEEL

1

2
N

33.42± 5.10 61.76± 4.35 78.41± 2.93 86.16± 1.42 2.27
KNEEL optimized 53.07± 7.94 80.61± 5.86 90.04± 2.93 94.12± 2.08 1.07

KNEEL+ 59.36± 10.78 83.09± 5.20 91.11± 2.17 94.79± 1.89 0.27
KNEEL+ unlabeled 750 60.76 ± 11.06 86.43 ± 5.39 92.91 ± 3.40 95.72 ± 1.70 0.27

KNEEL

1

3
N

24.47± 3.03 51.47± 4.73 69.85± 2.55 80.88± 2.08 3.74
KNEEL optimized 42.38± 6.81 72.86± 6.43 85.29± 4.35 91.18± 2.65 0.80

KNEEL+ 53.07± 9.83 78.81± 7.28 90.44± 4.06 93.65± 3.12 0.53
KNEEL+ unlabeled 750 55.35 ± 12.10 80.88 ± 6.62 90.64 ± 2.84 94.52 ± 2.46 0.13

KNEEL

1

4
N

19.79± 1.13 43.72± 0.95 63.37± 1.13 75.67± 0.38 5.48
KNEEL optimized 41.11± 8.04 68.65± 5.39 83.36± 4.63 89.57± 2.65 1.74

KNEEL+ 46.79± 9.08 73.53± 9.26 86.70± 4.06 92.25± 2.08 1.34
KNEEL+ unlabeled 750 50.60 ± 8.98 76.67 ± 6.14 88.70 ± 3.12 93.38 ± 2.17 0.94

KNEEL

1

5
N

11.50± 0.76 31.95± 1.13 52.01± 2.65 67.45± 1.99 7.35
KNEEL optimized 33.22± 6.71 62.30± 7.18 78.88± 6.81 86.90± 3.78 3.21

KNEEL+ 43.58± 8.89 71.66± 8.70 85.49± 5.77 91.44± 1.89 1.07
KNEEL+ unlabeled 750 46.66 ± 9.08 74.40 ± 8.04 86.23 ± 5.10 92.45 ± 3.12 1.07

KNEEL

1

6
N

8.82± 0.57 26.40± 0.28 43.32± 0.38 58.62± 0.47 9.09
KNEEL optimized 31.15± 2.84 60.63± 1.61 77.94± 2.08 85.83± 1.70 2.81

KNEEL+ 40.64± 5.10 69.25± 6.62 84.22± 4.73 90.91± 1.70 2.41
KNEEL+ unlabeled 750 43.72 ± 6.43 72.53 ± 6.14 85.56 ± 4.16 91.84 ± 1.32 0.94

KNEEL

1

7
N

5.28± 2.36 16.58± 5.48 31.62± 8.22 46.19± 7.85 11.50
KNEEL optimized 24.33± 1.32 49.80± 1.42 68.45± 0.95 80.55± 1.99 5.21

KNEEL+ 32.22± 8.32 62.30± 8.70 79.61± 7.66 88.44± 5.39 1.74
KNEEL+ unlabeled 750 35.83 ± 7.00 67.05 ± 6.14 81.42 ± 4.73 88.77 ± 2.84 2.14

KNEEL+ 1N

(a) Recall with femur landmarks

KNEEL+ 1N

(b) Recall with tibia landmarks

Figure 20: KNEEL+ performs better with same amount of labeled data (+ Unlabeled data
748 pcs)
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KNEEL+ 1/7N

(a) Recall with femur landmarks

KNEEL+ 1/7N

(b) Recall with tibia landmarks

Figure 21: Comparison between KNEEL and KNEEL+ with data amount 1/7N (+ unlabeled
data 748 pcs)

KNEEL+ 1/5N

(a) Recall with femur landmarks

KNEEL+ 1/5N

(b) Recall with tibia landmarks

Figure 22: Less data is needed with KNEEL+. Training the network with one-fifth of the
data gives results as good as original implementation with the full data amount (N)
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6 Discussion

The aim of this work was to investigate whether the previously developed KNEEL
method can be improved. In addition, the effect of the training data amount on the
performance had to be analyzed, as well as the effect of the unlabeled data.

Longer training with a modified learning rate drop schedule (optimized KNEEL) gives
better results than the original KNEEL. It gives better results without a low-cost model
than the original KNEEL, but training with a low-training model will further improve
results. Therefore, pre-training is needed for landmark localization. It can be skipped
only if an error greater than 2.5 mm between the ground truth and the predicted
landmark is accepted and the labeled data amount is bigger than 1/3N .

With the labeled data amount N and optimized KNEEL, 61.50% of the predicted
landmarks were inside 1 mm radius, while without modifications only 45.25% (KNEEL
paper) were inside the same radius. Pre-training is needed for all amounts of labeled
data if a small error between the GT landmark and predicted landmark is requested.
Only if the full amount of labeled data are available and 2.5 mm error is accepted,
the pre-training can be skipped. The difference is significant between the original
and improved KNEEL: within 1.0 mm radius, the difference between recall is 15 - 20
percentage points in all data amounts. Within the larger radius, the difference is bigger
when the labeled data amount is smaller. The conclusion is that learning rate drop
schedule and longer training time significantly increase performance.

Secondly, it was investigated whether the method could be improved using equivariant
regularization. In the study, several transformations were tried. The end result is that
combining transformations gives better results than individual transformations. Using
scale, rotation and shear transformation together, 65.37% of the predicted landmarks
were inside 1 mm radius (vs. KNEEL 45.24%). Equivariant regularization has an
advantage, because it can be used with unlabeled data. In the previous steps, trained
networks were utilized with unlabeled data. The end result is that the network can
learn more from unlabeled data. The difference is noticeable with the full amount of
training data (KNEEL+ with unlabeled data 68.89% vs. KNEEL+ 65.37%). Using a
smaller amount of the training data, the difference is still significant. Using 20% of the
original training data, the improved method predicts 46.66% landmarks inside 1 mm
radius, while the original KNEEL method predicts only 11.50%.

Figure 20 presents that with the same amount of labeled data (1N) KNEEL+ performs
better. While KNEEL predicts about 40% of the femur landmarks inside 1.0 mm
radius, KNEEL+ can predict about 60% of the landmarks correctly. The results for
tibia landmarks are 50% and 70% respectively.

Using a smaller amount of data, the difference is even more significant. This can be
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seen in Figure 21, where the labeled data amount for training is 1/7N . With KNEEL+
80% of the predicted tibia landmarks are closer than 2 mm from GT, while under 30%
of the predicted landmarks are closer than 2.0 mm for GT with the original KNEEL.
With femur landmarks, the difference is smaller, but still significant. Under 5% of
predicted tibia landmarks are inside 1 mm radius with the original implementation,
while KNEEL+ predicts about 40% landmarks inside the same radius. The difference
between KNEEL and KNEEL+ is noticeable with all amounts of labeled data. Using
unlabeled data with labeled data, the performance increases a few percentages with a
small radius. When the radius between GT and the predicted landmark increases, the
unlabeled data does not bring much benefit.

Figure 22 presents the recall curves for the original KNEEL and the improved KNEEL+.
The amount of labeled data for KNEEL+ is 1/5N while KNEEL has the full amount of
labeled data(1N). Both methods predict 40% of femur landmarks inside 1.0 mm radius
and 50% of tibia marks inside 1.0 mm radius. The results are similar, but KNEEL+
needs only 20% of the labeled data compared to KNEEL. More detailed results can
be found in Appendix 3. Without unlabeled data, KNEEL+ needs about 25% of the
labeled data, while KNEEL+ with the unlabeled data needs 20% of the labeled data
to achieve the same results as the original KNEEL.

This work has multiple limitations. Firstly, our method has been used only for the
knee joints. In the future, more research should be done with other types of X-rays as
well. The training parameters should be redefined for new types of X-rays. Secondly, A
static validation data amount was used in all experiments (149 pcs), but it would have
been better to use a certain percentage share. The experiments were executed with
new validation data amounts (20%), and the results can be found from Appendix 3 and
Appendix 4. It seems that even better results can be achieved with small amounts of
training data.
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7 Conclusions

This thesis focused on landmark localization using deep learning. In practice, different
training parameters were tested and the effect on prediction accuracy studied. At the
same time, the effect of training data amount were investigated. Finally, we looked at
whether equivariant regularization can give better results with unlabeled data.

From the results it can be seen that longer training leads to better results. Using
equivariant regularization, the results are significantly better than with the original
implementation. It was seen that when three transforms were combined, better results
were achieved with equivariant regularization. In addition, performance can be im-
proved by training the network using unlabeled data. However, the author notes that
the major benefit from unlabeled data comes only when the number of training samples
is very limited. When the amount of training samples is large, it is sufficient to use
only the equivariant regularizartion.

Finally, the improved method KNEEL+ gives significantly better results than the orig-
inal KNEEL. With KNEEL+ the same results can be achieved using only 20% of the
labeled data compared to the original implementation. This matters, because anno-
tation of the medical images is expensive and time consuming. The downside is that
training takes more time than it does with the original KNEEL.

To conclude this work, the presented results demonstrate how one can improve upon the
state-of-the-art in knee anatomical landmark localization. The main application of the
developed methodology is in the knee OA research, where it is essential to analyze large
patient cohorts, such as OAI13. The author believes that the developed methodology is
general can easily be adapted in the fields outside osteoarthritis.
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8 Appendices

Appendix 1. Full comparison between KNEEL, optimized KNEEL, KNEEL+

Appendix 2. Comparison between different rotation angles KNEEL+

Appendix 3. Results with modified validation data amount

Appendix 4.
Full comparison between KNEEL, optimized KNEEL, KNEEL+ with new

validation data amount
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Appendix 1. Full comparison with / without pretraining on low-cost model

Method # Labeled in train set 1 mm 1.5 mm 2 mm 2.5 mm % out

KNEEL+

N

65.37± 7.37 86.70± 5.20 93.45± 2.84 96.66± 0.76 0.40
KNEEL+ unlab. 68.89 ± 8.80 88.44 ± 2.83 93.56 ± 1.89 97.33 ± 0.94 0.00
KNEEL optim. 61.50± 10.21 84.96± 4.06 92.51± 1.70 95.32± 0.57 0.13
KNEEL optim. w/o lc 55.35± 13.48 82.36± 6.74 91.39± 3.19 95.32± 1.66 0.84
KNEEL 45.25± 8.79 72.59± 6.24 85.76± 3.88 90.64± 1.89 0.80
KNEEL w/o lc 34.56± 2.74 63.84± 2.93 81.55± 1.51 89.10± 0.47 1.20
KNEEL+

1

2
N

59.36± 10.78 83.09± 5.20 91.11± 2.17 94.79± 1.89 0.27
KNEEL+ unlab. 60.76 ± 11.06 86.43 ± 5.39 92.91 ± 3.40 95.72 ± 1.70 0.27
KNEEL optim. 53.07± 7.94 80.61± 5.86 90.04± 2.93 94.12± 2.08 1.07
KNEEL optim. w/o lc 43.65± 12.76 74.60± 11.72 86.90± 7.00 93.05± 3.40 0.80
KNEEL 33.42± 5.10 61.76± 4.35 78.41± 2.93 86.16± 1.42 2.27
KNEEL w/o lc 19.72± 3.50 46.66± 3.59 65.78± 2.65 79.14± 1.51 3.07
KNEEL+

1

3
N

53.07± 9.83 78.81± 7.28 90.44± 4.06 93.65± 3.12 0.53
KNEEL+ unlab. 55.35 ± 12.10 80.88 ± 6.62 90.64 ± 2.84 94.52 ± 2.46 0.13
KNEEL optim. 42.38± 6.81 72.86± 6.43 85.29± 4.35 91.18± 2.65 0.80
KNEEL optim. w/o lc 35.96± 5.10 63.44± 7.66 82.15± 6.14 90.31± 3.69 1.47
KNEEL 24.47± 3.03 51.47± 4.73 69.85± 2.55 80.88± 2.08 3.74
KNEEL w/o lc 10.29± 1.51 29.08± 0.66 49.73± 0.95 64.84± 1.13 4.41
KNEEL+

1

4
N

46.79± 9.08 73.53± 9.26 86.70± 4.06 92.25± 2.08 1.34
KNEEL+ unlab. 50.60 ± 8.98 76.67 ± 6.14 88.70 ± 3.12 93.38 ± 2.17 0.94
KNEEL optim. 41.11± 8.04 68.65± 5.39 83.36± 4.63 89.57± 2.65 1.74
KNEEL optim. w/o lc 28.81± 2.93 58.42± 4.16 74.33± 3.59 84.02± 2.17 2.94
KNEEL 19.79± 1.13 43.72± 0.95 63.37± 1.13 75.67± 0.38 5.48
KNEEL w/o lc 8.69± 2.46 25.33± 1.80 44.92± 3.03 59.29± 1.42 7.89
KNEEL+

1

5
N

43.58± 8.89 71.66± 8.70 85.49± 5.77 91.44± 1.89 1.07
KNEEL+ unlab. 46.66 ± 9.08 74.40 ± 8.04 86.23 ± 5.10 92.45 ± 3.12 1.07
KNEEL optim. 33.22± 6.71 62.30± 7.18 78.88± 6.81 86.90± 3.78 3.21
KNEEL optim. w/o lc 25.74± 4.06 51.40± 5.20 72.99± 4.54 83.22± 4.06 3.21
KNEEL 11.50± 0.76 31.95± 1.13 52.01± 2.65 67.45± 1.99 7.35
KNEEL w/o lc 5.28± 1.04 17.11± 1.13 34.29± 1.04 51.00± 2.93 7.89
KNEEL+

1

6
N

40.64± 5.10 69.25± 6.62 84.22± 4.73 90.91± 1.70 2.41
KNEEL+ unlab. 43.72 ± 6.43 72.53 ± 6.14 85.56 ± 4.16 91.84 ± 1.32 0.94
KNEEL optim. 31.15± 2.84 60.63± 1.61 77.94± 2.08 85.83± 1.70 2.81
KNEEL optim. w/o lc 19.12± 0.38 45.79± 1.04 67.38± 3.59 80.01± 3.31 3.21
KNEEL 8.82± 0.57 26.40± 0.28 43.32± 0.38 58.62± 0.47 9.09
KNEEL w/o lc 3.34± 1.51 10.76± 2.93 25.07± 2.74 40.64± 3.21 9.63
KNEEL+

1

7
N

32.22± 8.32 62.30± 8.70 79.61± 7.66 88.44± 5.39 1.74
KNEEL+ unlab. 35.83 ± 7.00 67.05 ± 6.14 81.42 ± 4.73 88.77 ± 2.84 2.14
KNEEL optim. 24.33± 1.32 49.80± 1.42 68.45± 0.95 80.55± 1.99 5.21
KNEEL optim. w/o lc 14.10± 0.47 35.29± 0.57 54.95± 1.89 69.92± 3.78 4.28
KNEEL 5.28± 2.36 16.58± 5.48 31.62± 8.22 46.19± 7.85 11.50
KNEEL w/o lc 1.40± 0.66 4.81± 2.65 11.36± 4.73 20.86± 5.29 22.33
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Appendix 2. Comparison between different rotation angles KNEEL+

Max rotation # Labeled in train set 1 mm 1.5 mm 2 mm 2.5 mm % out

angle 0

N

66.58± 6.24 87.63 ± 4.06 93.52± 2.17 96.66± 0.19 0.27
angle 5 67.18 ± 7.85 86.97± 5.39 93.45± 2.65 96.52± 1.13 0.13
angle 10 65.91± 8.70 87.10± 5.39 93.85± 2.27 97.06± 1.51 0.00
angle 20 64.97± 8.13 86.23± 4.35 94.05 ± 1.61 97.13 ± 0.66 0.00
angle 40 64.44± 8.51 86.23± 5.86 93.52± 1.23 96.59± 1.04 0.00
angle 0

1

2
N

57.75± 8.13 83.36 ± 5.01 91.78± 2.93 95.19± 2.08 0.80
angle 5 58.29 ± 10.59 82.49± 5.86 91.24± 3.69 94.52± 2.46 0.40
angle 10 57.02± 10.49 81.62± 5.39 91.84 ± 4.35 95.59 ± 2.65 0.00
angle 20 55.68± 10.68 81.89± 5.77 91.11± 3.12 94.72± 2.36 0.40
angle 40 56.95± 11.34 83.22± 6.14 91.18± 3.21 94.59± 1.99 0.13
angle 0

1

3
N

53.61± 9.26 80.01 ± 5.58 90.44 ± 2.36 94.52 ± 2.08 0.53
angle 5 50.94± 9.08 76.54± 5.77 88.84± 3.88 93.58± 3.03 0.53
angle 10 53.74 ± 4.92 78.48± 5.29 88.97± 2.36 93.65± 2.36 0.94
angle 20 53.07± 9.26 78.14± 6.33 88.90± 4.54 93.72± 3.21 0.27
angle 40 50.40± 7.37 78.34± 5.67 89.51± 4.25 94.18± 2.93 0.40
angle 0

1

4
N

48.86 ± 8.60 75.07± 6.90 87.63± 3.69 92.51± 1.70 1.20
angle 5 48.46± 7.09 73.66± 5.86 87.50± 3.50 92.25± 2.84 1.34
angle 10 45.99± 6.62 75.20 ± 6.71 88.37 ± 3.59 92.91 ± 1.89 1.74
angle 20 45.79± 6.33 74.06± 8.51 86.50± 5.29 91.91± 2.74 0.80
angle 40 47.86± 10.40 75.20 ± 7.85 87.50± 3.88 92.65± 2.65 0.53
angle 0

1

5
N

46.66 ± 7.56 74.20 ± 7.37 86.76 ± 5.29 92.31 ± 3.31 0.80
angle 5 45.19± 7.18 73.86± 7.47 86.10± 5.10 91.64± 2.93 0.67
angle 10 41.11± 9.93 70.25± 8.79 83.96± 6.43 90.71± 3.31 0.40
angle 20 41.51± 10.68 71.66± 10.78 84.49± 6.05 90.44± 4.25 0.80
angle 40 43.85± 11.91 72.13± 12.38 84.56± 7.85 91.64± 4.25 1.20
angle 0

1

6
N

41.24± 6.71 69.85± 5.58 84.56 ± 4.82 90.24± 3.40 1.60
angle 5 43.98 ± 5.67 70.66 ± 7.28 83.29± 7.00 90.57± 2.55 0.94
angle 10 39.30± 7.37 69.39± 6.81 83.89± 5.96 90.91 ± 3.59 1.07
angle 20 40.51± 6.43 70.45± 7.56 84.02± 5.01 90.57± 2.74 1.34
angle 40 41.04± 9.83 67.78± 9.26 83.36± 7.09 90.57± 3.88 2.14
angle 0

1

7
N

34.36± 9.45 64.17± 10.02 80.01± 6.90 88.17± 4.63 2.54
angle 5 35.76 ± 7.66 65.31 ± 6.90 80.68 ± 3.88 88.44 ± 2.93 1.60
angle 10 35.29± 9.26 63.10± 7.00 79.88± 6.52 88.24± 4.54 2.14
angle 20 33.29± 6.81 62.03± 9.08 79.01± 5.48 88.44 ± 4.25 1.74
angle 40 35.16± 8.32 62.50± 8.41 80.41± 4.25 87.57± 4.54 2.67
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Appendix 4. Full comparison between KNEEL, optimized KNEEL, KNEEL+ with new
validation data amount

method # labeled in train set 1 mm 1.5 mm 2 mm 2.5 mm % out

KNEEL optimized

N

58.16± 8.51 82.49± 4.92 92.25± 2.84 96.52± 1.32 0.13
KNEEL optimized w/o lc 55.61± 10.78 81.48± 7.47 91.44± 2.65 95.32± 1.70 0.13

KNEEL+ (val fixed) 66.64 ± 10.30 87.83± 5.10 93.85± 1.89 96.66± 1.13 0.00
KNEEL+ 750 unlabeled 66.11± 7.66 88.37 ± 3.03 94.32 ± 1.80 97.06 ± 1.51 0.27

KNEE lc 45.25± 8.79 72.59± 6.24 85.76± 3.88 90.64± 1.89 0.80
KNEE w/o lc 34.56± 2.74 63.84± 2.93 81.55± 1.51 89.10± 0.47 1.20

KNEEL optimized

1

2
N

50.67± 12.07 77.60± 7.92 87.87± 4.71 92.67± 1.70 0.53
KNEEL optimized w/o lc 45.07± 12.82 72.27± 10.56 86.93± 4.90 92.27± 1.89 0.53

KNEEL+ (val fixed) 59.87± 16.78 84.00± 5.66 93.47 ± 3.58 96.93 ± 1.70 0.53
KNEEL+ 750 unlabeled 62.40 ± 15.46 84.80 ± 6.03 92.67± 2.07 96.13± 1.32 0.27

KNEE lc 33.42± 5.10 61.76± 4.35 78.41± 2.93 86.16± 1.42 2.27
KNEE w/o lc 19.72± 3.50 46.66± 3.59 65.78± 2.65 79.14± 1.51 3.07

KNEEL optimized

1

3
N

50.00± 7.35 76.20± 4.24 86.20± 1.98 92.00± 2.26 0.80
KNEEL optimized w/o lc 40.60± 8.77 68.40± 9.05 84.20± 6.51 90.60± 3.68 0.40

KNEEL+ (val fixed) 59.80 ± 11.03 82.60± 5.94 93.00 ± 3.11 94.80± 2.26 0.40
KNEEL+ 750 unlabeled 59.00± 15.56 84.80 ± 5.66 92.40± 3.96 95.20 ± 2.26 0.40

KNEE lc 24.47± 3.03 51.47± 4.73 69.85± 2.55 80.88± 2.08 3.74
KNEE w/o lc 10.29± 1.51 29.08± 0.66 49.73± 0.95 64.84± 1.13 4.41

KNEEL optimized

1

4
N

42.89± 7.82 71.32± 8.56 86.84± 5.95 92.63± 2.98 2.11
KNEEL optimized w/o lc 36.84± 5.21 64.21± 3.72 82.89± 2.61 88.95± 1.49 1.58

KNEEL+ (val fixed) 55.00± 9.30 81.32± 8.56 92.11± 2.98 94.47± 1.12 1.05
KNEEL+ 750 unlabeled 55.79 ± 8.93 85.26 ± 8.19 92.89 ± 5.58 95.79 ± 2.23 0.53

KNEE lc 19.79± 1.13 43.72± 0.95 63.37± 1.13 75.67± 0.38 5.48
KNEE w/o lc 8.69± 2.46 25.33± 1.80 44.92± 3.03 59.29± 1.42 7.89

KNEEL optimized

1

5
N

33.33± 4.71 64.00± 11.31 81.67± 8.01 89.67± 3.30 1.33
KNEEL optimized w/o lc 28.33± 10.84 58.67± 5.66 77.33± 0.94 88.33± 3.30 2.67

KNEEL+ (val fixed) 46.00± 10.37 78.67 ± 5.66 90.00 ± 2.83 94.00 ± 1.89 1.33
KNEEL+ 750 unlabeled 47.33 ± 14.14 75.67± 9.90 87.67± 6.13 93.00± 2.36 1.33

KNEE lc 11.50± 0.76 31.95± 1.13 52.01± 2.65 67.45± 1.99 7.35
KNEE w/o lc 5.28± 1.04 17.11± 1.13 34.29± 1.04 51.00± 2.93 7.89

KNEEL optimized

1

6
N

32.80± 3.39 63.20± 0.00 82.00± 5.09 87.20± 1.13 3.20
KNEEL optimized w/o lc 24.80± 4.53 51.60± 3.96 70.80± 1.70 82.80± 1.70 3.20

KNEEL+ (val fixed) 49.20 ± 13.01 77.60 ± 6.79 88.00 ± 4.53 91.20± 2.26 0.80
KNEEL+ 750 unlabeled 47.60± 10.75 76.80± 9.05 88.00 ± 4.53 91.60 ± 1.70 0.80

KNEE lc 8.82± 0.57 26.40± 0.28 43.32± 0.38 58.62± 0.47 9.09
KNEE w/o lc 3.34± 1.51 10.76± 2.93 25.07± 2.74 40.64± 3.21 9.63

KNEEL optimized

1

7
N

26.36± 7.71 57.73± 9.64 78.64± 1.93 86.82± 0.64 5.45
KNEEL optimized w/o lc 21.36± 0.64 44.55± 5.14 62.27± 3.21 75.45± 1.29 3.64

KNEEL+ (val fixed) 45.45 ± 12.86 76.36 ± 3.86 89.09 ± 2.57 93.18 ± 0.64 0.91
KNEEL+ 750 unlabeled 42.73± 12.86 75.91± 9.64 87.73± 1.93 91.36± 0.64 2.73

KNEE lc 5.28± 2.36 16.58± 5.48 31.62± 8.22 46.19± 7.85 11.50
KNEE w/o lc 1.40± 0.66 4.81± 2.65 11.36± 4.73 20.86± 5.29 22.33
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