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ABSTRACT

Low-dose computed tomography (CT) is an imaging technique used in imaging
cross-sectional images of the body that minimizes the radiation dose of the patient.
Low-dose CT results in larger amounts of noise in the image and therefore in loss
of information. Different denoising methods are used to try to reduce the noise
corrupting the images.

The aim of this thesis is to research if the temporal correlation of noise
between the slices of the computed tomography volumes could be utilized in the
denoising of the scans. A convolutional neural network with three-dimensional
convolutional layers is trained using publicly available CT images. The images
were injected with artificial noise simulating low-dose CT scans. Another network
using two-dimensional convolutional layers was also trained for comparison.
Different metrics were measured from results of a test dataset to determine the
effect of denoising.

The results indicate that utilizing the temporal information of the slices
by three-dimensional convolutional layers is especially good in denoising of
extremely low-dose CT scans. The denoising results between the different
methods were closer to each other when the noise level was lower.
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TIIVISTELMÄ

Matalan säteilyannoksen tietokonetomografia on kuvantamismenetelmä,
jolla saadaan kuvattua läpileikkauskuvia kehosta samalla minimoiden
potilaan säteilyannosta. Matalan annoksen tietokonetomografia johtaa
suurempaan kohinaan kuvassa ja täten informaation katoamiseen. Erilaisia
kohinanpoistometodeja käytetään pyrkiessä pienentämään kuvien kohinaa.

Tämän työn tarkoituksena oli tutkia, voitaisiinko tietokonetomografiakuvien
viipaleiden kohinan välistä temporaalista informaatiota käyttää
skannauksien kohinanpoistossa. Kolmiulotteisia konvoluutiotasoja
käyttävä konvoluutioneuroverkko koulutettiin julkisesti saatavilla olevilla
tietokonetomografiakuvilla. Kuviin oli asetettu keinotekoista kohinaa,
simuloidakseen matalan annoksen tietokonetomografiakuvia. Toinen
neuroverkko, jossa oli kaksiulotteisia konvoluutiotasoja, koulutettiin
vertailua varten. Kohinanpoiston arvioimiseen mitattiin erilaisia metriikoita
testidatasetistä saaduista tuloksista.

Tulokset osoittavat, että viipaleiden välisen temporaalisen informaation
käyttäminen kolmiulotteisten konvoluutiotasojen avulla on erityisen hyvä todella
matalan annoksen tietokonetomografiakuvien kohinanpoistossa. Eri metodeilla
saatujen kohinanpoiston tulosten väliset erot olivat pienempiä, kun kohinan taso
oli matalampi.

Avainsanat: matalan annoksen tietokonetomografia, sinogrammi,
syväoppiminen, U-Net
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LIST OF ABBREVIATIONS AND SYMBOLS

CT computed tomography
3D three-dimensional
2D two-dimensional
HU Hounsfield unit
FBP filtered back-projection
mAs X-ray tube time-current product
kVp peak kilo voltage
Sv sievert
Gy gray
NLM non-local means
BM3D block-matching and 3D filtering
CNN convolutional neural network
ANN artifical neural network
GPU graphical processing unit
CPU ventral processing unit
FC fully connected
ReLU rectified linear unit
ResNet residual network
SGD stochastic gradient descent
API application programming interface
DnCNN denoising convolutional neural network
CNN DAE convolutional denoising autoencoder
DICOM Digital Imaging and Communications in Medicine
MSE mean squared error
PSNR peak signal-to-noise ratio
SSIM structural similarity index

µ linear attenuation coefficient
L1 mean absolute error, L1-loss
L2 mean squared error, L2-loss
LP perceptual loss
φ loss network
σ standard deviation
∪ union
∩ intersection
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1. INTRODUCTION

Computed tomography (CT) is a medical imaging modality widely used for diagnostic
purposes. Like traditional radiography, CT is also based on X-rays and their
attenuation on different tissues. Traditional X-ray radiography provides only planar
information of the subject’s anatomy while CT provides also sectional information.
This is achieved by rotating the X-ray tube and the detector around the subject and
taking subsequent scans. The scans are computationally reconstructed into planar
slices of the subject. The sectional information of the CT can be used in diagnosing and
monitoring tumors in the body. Along with diagnosing and monitoring cancer, CT is
also essential in planning of radiotherapy and its dose management. CT scan can also
be used in diagnosing pneumonia from lung scans. Figure 1 visualizes a simplified CT
image acquisition pipeline from scanning the patient with the X-ray tube and detector,
to acquiring the grayscale CT image.

X-rays are a form of ionizing radiation. Ionizing radiation is capable of ionizing
atoms or molecules of tissues, causing negative effects and hence the exposure of the
radiation for the patient needs to be kept as low as possible. The energy of the X-rays
dictates the effects of the radiation on the body. A higher energy results in higher
radiation dose. The energy of the X-rays is dependant on the voltage and current of the
X-ray tube used in creation of the X-rays. In the worst case scenario, the damage to
DNA caused by ionizing radiation may lead to the induction of cancer.

Figure 1. A simplified CT image acquisition pipeline.

To reduce the radiation dose of the patient, low-dose CT scans, where the X-ray
tube current and voltage are set to lower values, are used. Using low-dose CT scans
is especially critical for patients at higher risk of developing cancer. Low-dose CT
scans suffer from increased noise. Image noise is unwanted random variation of pixel
values in the image. The noise in CT scans has two sources. Electronic noise is caused
by the electronic circuits of the machine itself. The variation of photons radiated also
causes noise as the image quality is dependant on the number of photons arriving at
the detector. Low-dose CT scans radiate lower number of photons than normal-dose
CT and hence low-dose CT scan contains a larger amount of noise. Increased noise
can make it more difficult for the physician to read the image and use it for diagnosis
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as some of the information is lost. Denoising can be done on CT scans to reduce the
noise and improve the image quality.

Several denoising algorithms exist, ranging from using smoothing filters to
computing non-local averages of similar pixels in the image. The algorithm used
depends on the acceptable trade-off between image detail and noise level. The
details are important in medical imaging as they may contain information critical for
diagnostic purposes. CT scan denoising can be done in three different phases: before,
during, or after the reconstruction of the image.

Artificial intelligence has been a popular topic of research for decades now, while the
increasing amount of computational power has made different applications possible.
When the computer learns patterns from data, it is called machine learning. Machine
learning applications can range from email spam filters to predictions of real estate
values. Deep learning is a part of machine learning, where the deeper depth of the
model allows for learning of more complex features. Deep learning can be used in the
denoising of images, including CT scans.

This thesis is structured in the following way: chapter 2 shortly describes the use
of deep learning in CT denoising and the motivation to this thesis. In chapter 3 we
take a closer look into CT image acquisition, the noise in them, and the methods used
to try and remove the noise. Chapter 4 describes the mechanisms and the structure
of convolutional neural networks and the training process. In chapter 5 the denoising
network of this thesis is introduced, along with the data used and the training process.
In chapter 6 the results are presented and further discussed in chapter 7.
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2. MOTIVATION

Deep learning is used in numerous different image processing tasks ranging from
object detection to medical image segmentation. Deep neural networks are designed to
follow a similar structure as natural neural connections in the human brain. The units
of neural networks are artificial neurons. The neurons are connected to each other
and transmit information between them. Each neuron computes their activation value
which is the output of the neuron. The activations are calculated with an activation
function.

Neurons are usually in a layered structure. The outputs of one layer are the inputs
of the second layer. The neurons have varying states and weights which are adjusted
during the training process of the network.

Neural networks can be used in the denoising of CT images. When image processing
tasks are done, the neural networks utilize a mathematical operation called convolution.
The non-linearity of the networks allows for learning complex noise models and
producing noise-free estimates of noisy input images. The traditional denoising
methods are not as capable of denoising CT scans, where the noise distribution is not
uniform. Highly optimized neural networks should be capable of producing reduced
noise estimates of CT scans faster than traditional denoising methods.

The temporal information of three-dimensional (3D) CT scans can be utilized with
the use of 3D layers in the network. The theory is that the consecutive slices of the
volume contain similar kind of noise information and utilizing this information could
lead to a better denoising result. The tissues in CT scans are usually several slices thick,
meaning there are structural similarities in neighbouring slices. It can be assumed that
the characteristics of noise in tissue are similar in all slices containing the tissue. This
information is not utilized at all when just the individual slices are denoised with 2D
denoising methods. Training of denoising neural networks are done on noisy input-
and noise-free output image pairs.

The denoising of CT images by deep learning has already received attention in
the research field. Chen et al. [1] was one of the first researches using deep
convolutional networks to denoise reconstructed CT images. Yi et al. [2] used a
generative adversarial network, originally introduced by Goodfellow et al. in [3],
where two networks compete. A generator network generates samples and tries
to fool the discriminator network. Yang et al. [4] and You et al. [5] also used
generative adversarial networks with a combination of per-pixel loss and perceptual
loss. Perceptual loss is used to compute the difference of images using a separate
pretrained feed-forward network. The latter research utilized the 3D volumetric
information. Ghani et al. [6] researched if CT scan could be denoised in the sinogram
domain before the reconstruction of the scan.

In this thesis, I introduce a 3D convolutional neural network capable of producing
noise reduced estimates from volumes of low-dose CT images. The introduced
network has several dense connections between the layers. The output of the network
combines feature maps from several different stages of the network by averaging them.
The goal is to have a neural network model capable of producing noise-free estimates
of low-dose CT volumes with complex noise distribution while preserving the details
of the image.
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3. NOISE AND DENOISING

3.1. Computed Tomography

CT was first used in clinical use in the early 1970s. Nowadays it is widely used in
radiology [7]. CT image is done by rotating X-ray tube and detector. The combination
of the X-ray tube and the detector is called a gantry. The X-ray beams are narrow and
the measurements are done in several different directions by rotating the gantry within
a desired image plane around the patient. In some of the newer CT systems, only the
source rotates around the subject, but this technique is not often used because of the
higher system costs.

The principle of CT is based on the attenuation of X-rays in the object. The intensity
of the X-rays is reduced as photons traverse the object. The photons can be either
absorbed into the matter or be deflected by scattering. A quantitative measurement of
the beams interaction with the subject can be acquired by measuring the X-ray beam
intensity after it has passed through the object. The detector records the attenuated X-
ray beams. The amount of attenuation is dependant on the attenuating material and its
thickness. Each material has its own linear attenuation coefficient µ which describes
the fraction of the beam that is absorbed or scattered per unit thickness of the subject.

Intensity Ix of the X-ray beam at depth x after interacting with the subject follows
exponential decay and is related to the material according to Beer-Lambert’s law. Ix
can be calculated with

Ix = I0e
−µx (1)

where I0 is the original intensity of the X-ray beam. From Equation (1) we get the
equation for calculating µ:

µ =
− ln Ix

I0

x
(2)

Usually the thickness is measured in cm so the unit of µ is cm-1.
The acquired attenuation signal S is the sum of µ of different tissues. Summing of

different attenuation coefficients is visualized in Figure 2. Attenuation coefficients µ
are acquired by mathematical reconstruction.

Figure 2. The attenuation signals Si,j acquired by the detector are the sum of
attenuation coefficients µi,j of different tissues.
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The logarithm of the attenuated intensity along a beam path is called the line-integral
of the patient’s attenuation coefficients. Multiple line integrals are acquired by rotating
the gantry around the patient. Combination of line integrals fully around the object
within a single angular position is a single projection. The combination is also referred
to as the sinogram. The sinogram is also the result of the Radon transform of the of
the object. Figure 3 visualizes a simple image and the sinogram acquired from it with
the Radon transform. The transform is named after Johann Radon who introduced the
transform in 1917 [8]. The sinogram can be transformed back into image space with
the inverse Radon transform [9]. Modern CT scanners are able to take about 1000
projections in a full 360° rotation around the patient. Each projection comprises of up
to 900 individual line integrals. [7]

(a) (b)

Figure 3. A simple box shape (a) and the sinogram acquired by Radon transform (b).

The CT images are usually viewed on the Hounsfield scale. On the Hounsfield scale,
water has a value of 0 Hounsfield units (HU). Tissues denser than water have positive
values and tissues less dense than water have negative values. The HU values for
tissues are calculated with

HU = 1000× (µtissue − µH2O)

µH2O

(3)

where µ is the linear attenuation coefficient of the tissue. The HUs for different
tissues are listed in Table 1.

When CT image is shown on a computer monitor, the HUs correspond to the
grayscale values of individual pixels. The HUs may be converted to 10-bit or 8-bit
grayscale values, depending on the software and hardware used to visualize the images.
The greyscale components of the CT image can be modified by using windowing.
Window width dictates what range of values are visible in the image. If an examination
with many different tissues of interest is done, a wider window is used. A narrower
window width is utilized when the examination area consists of tissues with similar
attenuation.
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Table 1. Hounsfield units (HU) for different tissues.
Tissue HU
Air -1000
Lung -500
Fat -100 to -50
Water 0
Kidney 30
Muscle 10 to 40
Grey matter 37 to 45
White matter 20 to 30
Liver 40 to 60
Soft tissue 100 to 300
Cancellous bone 1000
Dense bone 3000

3.2. CT Reconstruction

The established analytical CT image reconstruction algorithm is the filtered back-
projection (FBP) [10]. FBP is a robust and fast algorithm that is capable of generating
CT studies of adequate image quality. The principle of reconstruction with FBP is
the inversion of the line-integrals. The intensity profiles acquired by the detector are
preprocessed into projection data. Projection data is low-pass filtered to compensate
for the blur resulting from the different number of projections that pass the center
and the edges of the subject. The filtering kernel can be chosen to modify the image
properties. The choice of the filtering kernel depends on the region of interest. Apart
from low-pass filtering, edge enhancing and smoothing filtering is done. The resulting
image noise is dependant on the image sharpness: The sharper the image, the noisier
the result. A sinogram and its reconstruction is visualized in Figure 4.

(a) (b)

Figure 4. Sinogram (a) and the CT reconstructed (b) by using back propagation.
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FBP is unable to account for the noise that results from variations of photon numbers
across the image plane. Using smoothing filtering results in lower noise but also tends
to blurs the edges and details, which are important in CT imaging and need to be
preserved. Figure 5 illustrates the result of using a smoothing filter on sinogram.

Iterative image reconstruction algorithms are a more sophisticated CT image
reconstruction method. An image example is generated from the measured projections.
The first example is compared with an image generated by simulated projection data.
The image estimate and the projection data are updated if the results are different. The
process is repeated until a predefined condition is satisfied. Iterative image algorithms
are computationally demanding and are reported to not have sufficient results for
diagnostic purposes [11, 12]. The images acquired with iterative reconstruction tend
to be blurry and too smooth. Older generations of iterative reconstruction methods
are also shown to result in reduced spatial resolution when compared to FBP methods
[13], but newer more sophisticated methods show better results [14].

Deep learning based reconstruction methods are also used in CT image
reconstruction. The deep learning based methods use convolutional neural networks
and can achieve better diagnostic image quality than iterative reconstruction methods
[15, 16, 17]. The problem with deep learning based methods is the amount of data
available to train the models. [18]

(a) (b)

Figure 5. The result of processing the sinogram with a normalized box filter. The
resulting image (b) has less noise but also a poorer spatial resolution than unprocessed
image (a).

3.3. Low-Dose CT

Low-dose CT scan is especially crucial for patients at higher risk of developing cancer.
National Lung Screening Trial Research team demonstrate in their work [19], that
using low-dose CT scans on high-risk patients lowers lung cancer mortality. Normal
dose CT scan tube parameters depend on the body part of interest and the size of the
patient. The patient dosage is proportional on tube current-time product (mAs), tube
peak kilo voltage (kVp), and patient centering. Usual full dose chest scan parameters
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are around 100 to 120 kVp and 300 to 330 mAs, but can vary. It is stated in [20] that
the radiation dose changes with the square of kVp. For example, a reduction of kVp
from 120 to 100 lowers the patient dose by 33 %. Low-dose CT scans can have the
tube current set at as low as 20 mAs. There is no clear consensus on which dose level
is considered as low-dose [21].

The radiation dose is calculated in sieverts (Sv). Tissues are considered to have
different tissue weighting factors wT as some tissues are more sensitive to radiation
than others. Weighting factors are used when calculating the effective doseE in tissues
T by radiation R by using the equation

E =
∑
T

wT
∑
R

wRDT,R (4)

where wR is the radiation weighting factor of R and DT,R is the absorbed dose in
grays (Gy) in T by R. The International Commission on Radiological Protection [22]
sets the tissue weighting factors as listed in Table 2. The approximate effective dose of
a normal chest CT scan is 8 mSv. Low-dose chest CT scan effective dose ranges from
0.2 to 3.5 mSv [19, 23, 24, 25, 26].

Table 2. Tissue weighting factors wT according to [22 p. 65].
Tissue wT
Stomach, breast, lung,
colon, red bone-marrow,
remainder tissues1

0.12

Gonads 0.08
Bladder, liver, thyroid, oesophagus 0.04
Bone surface, skin, brain, salivary glands 0.01

The major downside of low-dose CT scans is the introduced noise in the images.
The number of photons vary across the image plane. This variation is Poisson statistical
variation. The variation of photon emission from the X-ray source is a Poisson process.
The probability Pk of emitting photons k in an time interval of the process in an time
interval can be calculated by

Pk(N0) =
(Nk

0 e
−N0)

k!
(5)

where N0 is the average number of photons emitted during the said interval [27
p.21]. Reduction in the radiation dose leads to a lower number of photons being
radiated. This leads to Poisson noise. CT images also contain electronic noise
originating from the analogical circuits of the system itself. Electronic noise is
independent of the number of photons radiated or detected. Electronic noise can be
neglected in full-dose CT scans, as its effect is only minor. However, on low-dose CT
scans the impact of electronic noise becomes larger and cannot be neglected anymore.

1Remainder tissues consists of: Adrenals, gall bladder, heart, kidneys, muscle, lymphatic nodes,
prostate, uterus, spleen, small intestine, thymus, extrathoracic region, oral mucosa
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3.4. Denoising

The denoising of CT can be classified into three categories based on which part of
the process and how the denoising is achieved [28]: sinogram pre-processing, post-
processing of reconstructed images, and iterative reconstruction methods.

Sinogram pre-processing methods perform the denoising on the sinograms before
the image reconstruction process. Some common methods are sinogram smoothing,
penalized weighted least-squares, local average filtering and convolutional masks. In
sinogram smoothing, a likelihood method is derived to smoothen the sinogram [29].
The smoothened sinogram contains less noise. Penalized weighted least-squares is a
cost function used in modeling the noise properties in either the sinogram space or
image domain [30]. Minimizing this cost function while doing image reconstruction
can lead to reduced noise in the final CT. Local average filtering is replacing a pixel
value with the average value of the neighbour pixels. Denoising with convolutional
masks is a similar technique, but uses different kinds of convolutional kernels. These
methods blur the image details and edges.

Iterative reconstruction techniques use prior information on the noisy images to
achieve the denoising task. Non-local means (NLM) [31] is one method requiring
prior information of the noise standard deviation before it can be applied. NLM
differs from local averaging by calculating the mean of similar pixels in the image.
The newer generations of iterative image reconstruction algorithms are capable of
denoising, reducing artifacts, and improving spatial resolution [14].

Post-processing techniques apply straight to the reconstructed CT images. The
advantage of working on the image domain is the availability of images. Sinogram
data is not as widely available as the reconstructed CT data. Iterative reconstruction
methods’ requirement of prior information can also be challenging to have access to.
Neural network -based methods are popular and require large amounts of data. Sagheer
and George state in their work [28] that different slices of CT image have correlations
and that the frames’ intensities are almost similar to the neighbouring frames. Adjacent
slices contain structural information and are not independent from each other. The 3D
information is also crucial for the radiologist to utilize when examining CT images.

NLM, block-matching and 3D filtering (BM3D) [32], and median filtering are some
of the most popular denoising methods with BM3D and NLM considered to be state-
of-the-art in image denoising. NLM measures the similarity of pixels in the image
and computes the mean of the similar pixels to achieve denoising. NLM results in
lesser loss of image detail than local mean filtering. BM3D groups similar 2D blocks
of the image into clusters in 3D data arrays by block-matching. Collaborative filtering
is done on fragment groups. Collaborative filtering reveals fine details that are shared
by the grouped blocks. Transform-domain shrinkage is followed by a linear transform
to reproduce all fragments which are returned to their original positions to achieve the
denoised image. Median filtering computes the median of the neighbouring pixels to
calculate a new value for the for the pixel.

Convolutional neural networks (CNN) are used in image denoising problems in both
sinogram space and image domain. [33]
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4. CONVOLUTIONAL NEURAL NETWORKS

CNNs are a type of artificial neural networks (ANN). ANNs are a part of deep
learning. Deep learning is a subclass of machine learning which in turn is a part of
artificial intelligence. Any technique that is designed to mimic human behaviour can
be considered artificial intelligence. Machine learning is defined by Mitchell in his
work Machine Learning (1997) as following: “A computer program is said to learn
from experience E with respect to some class of tasks T and performance measure P ,
if its performance at tasks in T , as measured by P , improves with experience E” [34
p.2].

CNNs are commonly used in many tasks ranging from image recognition to
video super-resolution. In healthcare, CNNs can be used for example in automatic
osteoarthritis evaluation [35], gray matter age prediction [36], or bone age prediction
[37]. This chapter takes a closer look into the different building blocks of CNNs, the
training of a CNN model, and the data needed for it.

Neural networks

ANNs are inspired by biological neurons and their vast networks present in a human
brain. The output of artificial neurons is based on the input of the neuron. Biological
neurons have the same kind of behaviour. Neural network learns the features of the
input and returns an output based on these features. The neurons are in a layered
structure, where the neurons between different layers are connected to each other. Each
layer has hundreds to millions of learnable parameters. In a layered CNN format, the
outputs of the previous layer are fed as the input to the next layer. The connections
can also skip between layers and be fed into layers further in the network. The layers
between the input and output layers are called hidden layers. Mathematically, the
principle of neural networks can be defined as the learning of the function f when the
input x and output y are known:

f(x) = y (6)

CNNs utilize convolutions in the network architecture. Convolution is a
mathematical operation in which each element of the image is added to its local
neighbors. The values are weighted by the kernel. The convolutional kernel’s
parameters are learnable. By using convolutions, the CNNs are capable of processing
data that is array-like. The breakthrough for CNNs came in 2004 when graphical
processing units (GPU) were utilized in the computation of CNNs [38]. GPUs are able
to process multiple computations simultaneously as they have a large number of cores.
GPUs have a larger memory bandwidth than central processing units (CPU) meaning
that huge amounts of data are processed more efficiently. GPUs are optimized for
training deep learning models.

The training procedure is done with known input-output pairs. The inputs can be
images, word vectors, or numerical vectors. The output of the network can be a label
in a classifying task or a predicted value in a regression task. During the training of
the network, the parameters of the network are trained according to the input fed to
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the network and the output of that. With help of an objective function, the output is
evaluated and the parameters of network’s layers are adjusted accordingly.

4.1. Structure

Basic building blocks of CNNs are the convolutional layers, activation units, and
pooling layers. Figure 6 illustrates the usual use of these layers. The first layers of the
CNN see the higher level features of the input. They are larger shapes such as the head
or torso when anatomical images are considered. More abstract features are obtained
when the input propagates towards the deeper layers of the CNN. Activation units are
used to scale the linear activations of convolutional layers into nonlinear activation
maps. Pooling layers are used to downsample the input of the layer by usually taking
the maximum or average value of a certain window and setting it as the new value for
the patch. CNNs are often used in image recognition tasks where the input is classified
into some predefined class.

Figure 6. The basic building block for convolutional neural network. Linear feature
maps of input are calculated with convolutional layers and scaled into nonlinear
activation maps with activation layer. Pooling operation is used to downsample the
activation maps.

A transposed convolution layer can be used to perform upsampling. Upsampling
could also be achieved by performing interpolation, where the upsampling method is
predefined. By using transposed convolution layers, the neural network is allowed to
learn the upsampling transformation by itself.

Other popular CNN layers are the fully connected (FC) layer and the softmax layer.
In classifying networks, a FC layer followed by softmax activation layer is used to
return the decimal probabilities of the input belonging to predefined classes. FC or
softmax layers are not used in the networks used in this thesis so they will not be
presented closer here.

Before a closer look into different layers, let us define some terminology. Kernel
is a single matrix with learnable weights that is used in the convolution operation. The
dimensions of the kernel define the name for the convolution. If a 2D kernel is used in
the convolution operation, the operation is referred to as 2D−convolution. Filter is a
concatenation of multiple kernels. Stride defines how a convolution or pooling moves
around the input. The value of stride defines how many units the window shifts at a
time. Encoder is the analysis part while decoder is the synthesis part of an encoder-
decoder network [39]. The gradient is a measure of how much the output of the
network would change for an update of the parameter in question.
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4.1.1. Convolutional Layer

Convolution is the result of sliding a kernel across the input signal and computing the
dot product between the kernel and the signal. In 2D-CNNs, the input is an image.
The input is a 3D-volume in this thesis’ work. The convolutional layers in CNNs have
several kernels that extend the full depth of the input. The kernels all have learnable
parameters (or weights and biases).

The usual neural network implementation of a convolutional layer is actually cross-
correlation [40 p.329]. In convolution operation, the kernel is flipped relative to the
input. This flip is done to achieve commutative property in the operation. The kernel
is not flipped in neural network implementations as is usually done in convolution.
The flipping is not needed as the kernel weights are learned during the training phase
of the network. From now on, the term convolution refers to the neural network
implementation of the convolutional layer. The equation for the convolution S between
2D-image I and kernel K is presented in Equation (7) [40 p.329] and visualized in
Figure 7. In Equation (7), i and j correspond to rows and columns of the image I .
Convolutional layers can be set to use different strides for the convolution. The size of
the output feature maps can be made smaller by making the convolutional kernel shift
more.

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (7)

The convolution operation can also be visualized in a matrix multiplication form,
where the convolution kernel is represented as a Toeplitz matrix. A Toeplitz matrix has
diagonal elements as constants. Let us define an example. A regular 3×3 convolutional
kernel w is presented as a Toeplitz matrix C. The nonzero elements are the wi,j of the
kernel with i and j being the row and column of the kernel, respectively:

C =
( w0,1 w0,2 w0,3 0 w1,1 w1,2 w1,3 0 w2,1 w2,2 w2,3 0 0 0 0 0

0 w0,1 w0,2 w0,3 0 w1,1 w1,2 w1,3 0 w2,1 w2,2 w2,3 0 0 0 0
0 0 w0,1 w0,2 w0,3 0 w1,1 w1,2 w1,3 0 w2,1 w2,2 w2,3 0 0 0
0 0 0 w0,1 w0,2 w0,3 0 w1,1 w1,2 w1,3 0 w2,1 w2,2 w2,3 0 0

)
Define the input image I to be of shape 4 × 4 and flattened into a vector X with a

shape of 16× 1:
X =

(
x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16

)T
When doing the matrix multiplication of the kernel C and image X we get

CX = Y (8)

where Y is the output vector with a shape of 4× 1: Y =
(
y0, y1, y2, y3,

)T which can
be resized into an image with the shape of 2× 2.

The kernel sizes are relatively small. The sizes are usually 3 × 3 or 5 × 5 pixels.
Having smaller kernels than the input leads to the networks having sparse interactions
(sparse weights). This is opposed to traditional ANNs where FC layers are used. FC
layers’ every output unit is connected to every input unit of the next layer. Sparse
weights allow for the model to need fewer parameters, leading to reduced memory
requirements. Statistical efficiency is also increased. The input images could have
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millions of pixels. Smaller features can be detected with kernels occupying just tens
or hundreds of pixels. [40 p.330]

The output of the convolution operation is smaller than the input array, as visualized
in Figure 7. This is because the operation is done only on valid pixels. If padding
is introduced to the input array, the output of the convolution would have the same
dimensions as the input. With zero padding the image is extended by a layer of zeros.

Figure 7. The convolution operation in 2D array. The array has dimensions of 6 × 6
while the kernel has 3 × 3. The convolution kernel is set to have a stride of 1. The
output feature map has dimensions of 4× 4.

3D-convolution layers utilize 3D-kernels. The kernel is able to move in height,
width, and depth. The depth dimension contains the slices of the CT scan. The 3D
convolution is visualized in Figure 8.

Figure 8. The convolution operation in 3D array.

4.1.2. Transposed Convolutional Layer

The transposed convolutional layer is often used when a transformation in the opposite
direction of the normal convolution is needed. Transposed convolutional layer is often
referred to as deconvolution. Transposed convolutional layer enables decoders for
recovering the input images from feature maps. [41, 42]

Let us define the transposed convolutional kernel as the transpose of C used in
the example in 4.1.1. Output Y of the said example is the input for the transposed
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convolution. CT has a shape of 16 × 4 and the Y a shape of 4 × 1. Now Equation (8)
takes the form of

CT · Y = X2 (9)

where the result is X2 which is a vector with a shape of 16 × 1. X2 can be then
transformed into an image I2 with the shape of 4× 4. Figure 9 visualizes the operation
on an zero padded input.

Figure 9. Transposed convolution of 2D image. The 2×2 image is zero-padded to size
of 6 × 6 with a stride of 2. The padding is asymmetrical. A transposed convolution
kernel of size 3× 3 is used. The output feature maps of the transposed convolution has
a size of 4 × 4. Notice that the first pixel of the output feature map has already been
calculated to have a value of 1.

4.1.3. Activation Layer

Activation layers in CNNs are used to scale the linear feature maps of the convolutional
layers into nonlinear activation maps. Without activation layers, the linear neural
network would not be able to perform on more complex cases. Some of the most
common activation functions are sigmoid, tanh, and Rectified Linear Unit (ReLU).
The graphs of sigmoid, tanh, and ReLU are visualized in Figure 10. ReLU maps the
feature maps of the convolution following Equation (10) :

f(x) = max(0, x) (10)

ReLU has taken its place as the most popular activation unit. The function of ReLU
(Equation (10)) has a simple definition where the negative values of feature maps are
set to zero. The positive values have constant gradient. sigmoid and tanh suffer from
a vanishing gradient problem. This happens as the networks get deeper and gradients
get extremely small. ReLU does not suffer from this because of the constant positive
gradient. [43]
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Figure 10. Different activation functions and their graphs. Figure modified from [43].

4.1.4. Pooling Layer

Pooling layers are usually implemented after activation layers. Pooling layers compute
a single value from a specific window from the neighboring pixels of the layer input.
This acts as a summary statistic of the nearby values. This operation allows the network
to be more robust to small translations of the input. The values of the pooled outputs
do not change even if the input of the network is slightly translated. Pooling layers also
downscale the activation maps. This makes the following computations of the network
less computationally demanding.

Max-pooling layer [44] selects the maximum value of the pooling area and passes
this value forward. Figure 11 visualizes using max-pooling to pool an activation map
of size 4× 4 with an pooling window of 2× 2 and stride of 2. The pooled output is of
size 2 × 2. Average pooling is also a common pooling layer. In average pooling, the
average of the pooling window is passed forward.

4.1.5. Skip Connections

Skip connections are sometimes utilized in deeper network architectures. Skip
connections are used to feed the gradients to the deeper layers of the network. The
gradients are also feeded as an input to the next layer. Skip connections tackle the
problem of vanishing gradient. The skip connections also allow for layers deeper in
the network to learn the simpler features learned in the earlier layers. The gradients
are either added or concatenated together before fed into the next layer of the network.
Skip connections are most notably used in Residual Networks (ResNet) [45] and in
U-Nets [46].
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Figure 11. Max-pooling of activation map with a pooling window of size 2 × 2 and
stride 2.

Utilizing skip connections helps the network converge faster when training [47].
Faster converge allows for the use of deeper networks.

The network architecture introduced in this thesis utilizes the skip connections the
same way as in [46]. The U-Net architecture is visualized2 in Figure 12. The U-Net
is a variation of an encoder-decoder network, with added skip connections [49]. In an
U-Net -based architecture, the gradients are concatenated.

4.2. Training

Process of training CNNs is based on the feedforward and back propagation phases.
In the feedforward phase the input of the network is fed through every layer of the
network and an output is received. An objective function is used to determine how
well the network has approximated the function f as according to Equation (6). The
parameters of the network model are then updated to minimize the result of the
objective function. Updating parameters are done via back propagation [50]. The
back propagation algorithm computes an error gradient for each of the parameters
and updates them accordingly. Parameters are updated on the direction of negative
gradient. The gradients are calculated from the output of the network all way to the
input. The back propagation is done using the chain rule. The gradients of the later
layers are used to calculate the gradients in earlier layers. The goal is to find the
parameters where the error is at the global minimum.

CNNs utilize different optimization algorithms for gradient descent. Stochastic
gradient descent (SGD) has been the core optimization function for neural networks.
SGD updates the weights based on a set learning rate, which dictates on how much
the parameters can be changed during a single back propagation. Having too small of
a learning rate leads to the network converging a lot slower. Too high of a learning
rate allows the parameter updates to overshoot the minimum. Adam [51] has become a
popular option for optimization and is shown to outperform several other optimization
algorithms [52]. Adam utilizes individual adaptive learning rates for each of the
network parameters.

2The graph visualization is done with PlotNeuralNet [48]
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Figure 12. The architecture of the U-Net [46]. The skip connections are depicted as
dark blue lines between the layers in the encoder (left) and decoder phases (right).
This architecture has convolutional layers (light yellow) using ReLU activations (dark
yellow), max-pooling layers (orange), and transposed convolution layers (light blue).
The last layer of the network is a softmax layer (violet). I denotes the input and output
image shape.

Usually the inputs of the network are normalized before fed to the network. The
normalization is done to ensure that all inputs are in the same range and have a similar
distribution. Normalization allows for the network to converge faster during training.
Typical normalizations are ranges from 0 to 1 or −1 to 1.

Objective function is a function the optimization algorithm is trying to either
minimize or maximize. The optimizer is searching for network parameters which have
either the lower or highest score of the objective function. In CNNs, the objective
function is typically an error function and usually referred to as a loss function. The
optimizer is trying to minimize the loss function. The type of object function used
in the training depends on the problem type. In classifying problems, cross-entropy
object function is a popular choice. Mean absolute error (L1) and mean squared error
(L2) are the usual choices in regression problems. L1 loss is the average of the sum of
absolute differences between the prediction y and the ground truth ŷ:

L1 =

∑n
i=1 |yi − ŷi|

n
(11)

where n is the number of pixels when images or voxels when volumes are used. L1

is more robust to outliers than L2 loss. L2 loss is the average of squared difference
between y and ŷ and calculated with

L2 =

∑n
i=1(yi − ŷi)2

n
(12)

Both L1 and L2 losses are per-pixel-losses. They only compare each pixel of the
output with the corresponding pixel of the ground truth. They are not able to capture
any perceptual differences between the images. Using only a per-pixel loss can lead
to blurred outputs when doing a denoising task with the network model.

Perceptual loss was originally used in a style transfer network by Johnson, Alahi
and Fei-Fei [53]. The aim of the perceptual loss function is to different high-level
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features between the images. The features are extracted using a pretrained CNN. The
loss network φ is a pretrained classification network trained to encode semantic and
perceptual information. This information can be used in the perceptual loss function.
In [53] the loss network was a pretrained VGG-16 network [54] which was pretrained
on the ImageNet dataset [55]. Two perceptual loss functions were introduced: the
feature reconstruction loss and the style transfer loss. The activations φj(x) of the
jth layer of φ are used in the calculation of the loss rather than the output of the loss
network to calculate the feature reconstruction loss. Let y be the target image and ŷ
be the output image. The convolutional layer φj(x) having a feature map of shape
Cj ×Hj ×Wj . The feature reconstruction loss lφ,jfeat is calculated with

lφ,jfeat(ŷ, y) =
1

CjHjWj

‖φj(ŷ)− φj(y)‖22 (13)

When compared with Equation (12) it can be seen that L2 loss is calculated from the
extracted features.

Using perceptual loss leads to increased computational need in the training phase of
the model but the run-time is real-time.

4.3. Data

Training a CNN requires a vast amount of data for the network to be generalizing.
The model should be able to do the task with data the model has not seen earlier. The
network model is overfitting if the model achieves near perfect results on the training
data but poor results on some test data. The available data should be divided into three
subsets: training, validation, and test data. An example ratio for the subsets could be
70 %, 20 %, and 10 %, respectively. The model is trained with the training data. The
performance of the model is evaluated by using the evaluation data after each iteration
(epoch) of the training data. The models final performance is tested on the test data
only after training the model.

4.4. Denoising with Convolutional Neural Networks

CNNs can be used in image denoising problems. Zhang et al. [56] first introduced the
denoising convolutional neural network (DnCNN). DnCNN has a deep architecture
consisting of convolutional layers, ReLU -layers, and batch normalization [57] layers.
Batch normalization layers normalize the input by re-centering and re-scaling it. Batch
normalization allows for the faster training of the network. DnCNN predicts the
difference of the noisy and ground truth image. This is different than the model
proposed in this thesis which outputs the denoised image. The first convolutional layer
followed by ReLU maps the input to 64 feature maps. After the initial layers, 18
blocks of convolutional layer followed by batch normalization layer and ReLU layer
are used. A convolutional layer with a single filter is used to reconstruct the output.
All convolutional layers in this network have 3× 3 kernel size.
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Gondara [58] introduced a rather simple convolutional denoising autoencoder
(CNN DAE) for denoising of medical images. The architecture consisted of five
convolutional layers. Max-pooling followed the first two convolutional layers,
downscaling the feature maps. The feature maps of the following two convolutional
layers were upsampled. The output of the network was the output of the last
convolutional layer with a single filter. The original network was trained on dental
X-rays and mammograms.

The work of this thesis aims to use the temporal information of CT images in the
denoising task by using a 3D convolutional neural network.
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5. METHODOLOGY

5.1. Denoising Network

The CNN model proposed in this thesis is based on the image segmentation network
proposed on [49]. The architecture is visualized in Figure 13. The network architecture
is more advanced version of [46], but with dense skip pathways. The use of dense
connections allows for the latter layers in the network to utilize the feature maps
acquired from earlier layers. The idea is that the network’s optimizer would have an
easier task of learning when the feature maps of the encoder and decoder are similar.
The finer details of the CT scans that are essential for diagnostic purposes should also
be preserved better. Apart from the skip connections, also the average of the layers
in the first level of the network is computed and fed as the input to the output layer.
All feature maps in the first level of the network are full resolution, so averaging the
feature maps even further utilizes the dense connections. By using batch normalization
layers in the blocks, the training of the network should be faster and more stable.
The denoising network could be seen as a combination of four U-Net networks with
different depths. The denoising model had a total of 7.7 million trainable parameters.

Figure 13. The architecture for the denoising convolutional neural network. The
input is a volume of gray-scale CT scans with dimensions of 512 × 512 × 16. The
circles depict two blocks of 3D convolutional-, batch normalization-, and ReLU -
layers. The model has a depth of 5. The convolutional layers in depth 1 have 16
filters. Layers on subsequent depths have double the filters as compared to layers
on previous depth. Convolutional layers in block X1,1 and X5,1 have 16 and 128
filters, respectively. Orange arrows depict 3D max-pooling layers, while light blue
arrows depict 3D transposed convolutional layers. Dotted dark blue lines depict skip
connections between different blocks of layers. All the incoming arrows to blocks
of layers are concatenated. The average of layers X1,i, where i = {2, 3, 4, 5}, is
computed. The average is fed to the output convolutional layer with 1 filter and kernel
size of 1× 1. The output is of the same shape as the input of the model.

The denoising network uses 3D layers instead of 2D layers. The use of 3D layers
makes it possible to use volumes of CT scans as the input for the denoising network
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instead of just individual 2D slices. By using 3D volumes as the input, the network can
use the structular information and the connection between neighbouring slices in the
denoising process. The temporal information should remove the complex distribution
noise better and retain the fine details of the inputs.

Secondary model with similar architecture as in Figure 13 was also trained. This
model has 2D-convolutional and pooling layers instead of 3D versions of those and
takes a single CT slice as an input. This model was used to compare if a similar
denoising result is achievable without the temporal information.

5.2. Training the Model

T TensorFlow framework was chosen [59] for the development of the CNN.
TensorFlow is an open source end-to-end framework for development of machine
learning models. It provides high-level application programming interfaces (API) such
as the neural network library Keras [60]. TensorFlow was developed by Google and
has been available since 2015. TensorFlow version 2.3.0 was used.

Training of the model was done on the dataset provided by [61]. The dataset provides
both image-domain and projection-domain (sinograms) CT examinations acquired
from 299 CT exams. The dataset includes head scans, chest scans, and abdomen scans.
All of the scans were performed at routine levels for the anatomical region of interest.
The dataset provides both full-dose scans but also simulated low-dose scans where
Poisson noise was inserted to the sinograms right before the reconstruction of the
images. The head and abdomen scans are simulated to 25 % of the routine dose while
the chest scans are simulated to 10 % of the routine dose. Only the examinations in the
image domain were used in this thesis. The reconstructed images were in the Digital
Imaging and Communications in Medicine (DICOM) standard medical imaging format
[62].

The scans were converted from DICOM -format into 16-bit images. Each pixel
corresponds to Hounsfield units. The images with HU values IHU were acquired with

IHU =
SV

m
+ b (14)

where SV are the stored pixel values of the image acquired from the DICOM -file.
Rescale slope m and rescale intercept b are also provided in the metadata of the said
DICOM -file.

The volumes were created from individual slices. Each volume consisted of 16
slices. The dimensions of the volumes were 512× 512× 16. The dataset was split into
training, validation, and test data. The training data contained a total of 760 volumes.
The validation and test data had 157 and 35 volumes, respectively. Random crops of
size 128 × 128 were taken from the volumes during training. Cropping of the images
results in lower memory consumption. The images were randomly flipped vertically
with a probability of 50 %. Both random crop and random flip are forms of data
augmentation to reduce overfitting of the model. The images were normalized into
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the range of −1 to 1 prior to feeding them to the model. Normalized images IN were
acquired from IHU using the equation

IN = 2× IHU −HUmin

HUmax −HUmin

− 1 (15)

whereHUmin = −1024 andHUmax = 3071. These are the minimum and maximum
possible values on the Hounsfield scale. The outputs of the model are denormalized
back to HUs with the inverse of Equation (15).

TensorFlow is able to utilize datasets in a TFRecord format. In TFRecord format
the data is serialized in a binary format. TFRecord is especially useful for datasets that
are too large to be stored fully in memory, as only the data that is required at a time
is loaded from disk. The dataset can easily be sharded into multiple files. Sharding
enables for parallelizing of the data reading.

The loss function used in the training was a combination of L1 and the perceptual
loss (LP ). LP utilized a VGG-19 classification network [54] pretrained on ImageNet
dataset. ImageNet is an image dataset of more than 14 million images and the
pretrained VGG-19 is trained using about 1.2 million images. Keras library has an
implementation of the VGG-19 network along with the pretrained weights. The 14th
convolutional layer of VGG-19 with 512 filters was chosen as the layer to be used
in the loss network φ. φ has a total of 15.3 million parameters. The loss network is
visualized in Figure 14. The total loss Ltotal was the sum of L1 and LP :

Ltotal = L1 + LP (16)

Figure 14. The loss network used in the perceptual loss.

The training of the model was done on two GeForce RTX 2080 Ti GPUs. Adam
optimizer was chosen as the optimizer algorithm with a learning rate of 0.0001.
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6. EVALUATION

The evaluation of the denoising model was done by comparing its results with the
results of traditional denoising methods mentioned in 3.4. 3D and 2D in Tables 4 and
5 correspond to the methods introduced in this thesis. Two denoising networks with
DnCNN [56] and CNN DAE [58] architectures were also trained from scratch on the
same data mentioned in 5.2.

NLM denoising was done by the implementation provided by Scikit-image Python
library [63]. First, the noise standard deviation, σ, was estimated by a function
provided in the library. A patch size of 5 × 5 was used along with the search area
of 13 × 13. The function receives the parameter h = 0,8 × σ as an argument which
controls the decay in patch weights as a function of the distance between patches. The
slow NLM algorithm was chosen for the best possible denoising result.

The authors of [32] provide a BM3D Python package. The same estimated σ as
above was used in the BM3D algorithm. The full BM3D algorithm was used for the
best denoising result.

Median filtering was implemented by OpenCV Python library [64]. The median
filter size of 5× 5 was selected for the computation.

6.1. Testing

A piglet CT dataset by Yi and Babyn [65] was used for testing. The dataset consisted
of real CT scans of a deceased piglet. Scans were taken with 100 kVp X-ray tube
voltage and with varying tube currents. 300 mAs scan was the conventional full dose
scan. Scans with 50 %, 25 %, 10%, and 5 % dose of full dose were taken. The 5 %
scans had a tube current of 15 mAs. The scans were of a size 512× 512. 850 slices of
each dose were provided. Figure 15 visualizes full-dose and 5 % dose scans. The 5 %
scans were used in the testing of the denoising methods.

(a) (b)

Figure 15. Full-dose (a) and 5 % dose (b) CT scans from the piglet CT dataset.
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6.1.1. Noise Injection

For testing of the proposed denoising network, simulated very low-dose CT images
were needed. The injection of noise to simulate low-dose CT from full-dose CT was
implemented based on the following procedure [66, 67]:

1. Compute the Hounsfield unit numbers for the full-dose CT with Equation (14)
and acquire HUfulldose.

2. Transform the pixel values into linear attenuation coefficients µfulldose with
Equation (2). Substitute µtissue in the equation with µfulldose:

µfulldose =
µwater
1000

HUfulldose + µwater

The value for µwater depends on the voltage of the X-ray tube used when
acquiring the images and is usually also available in the DICOM -file. Some
values for the µwater are listed in Table 3.

3. Obtain the projection data pfulldose for the full-dose image by applying a Radon
transform on µfulldose. Multiply the result with voxel size s to eliminate the size
factor:

pfulldose = radon(µfulldose)× s

4. The full-dose transmission data Tfulldose is acquired with

Tfulldose = exp(pfulldose)

5. The low-dose transmission is generated by injecting Tfulldose with Poisson noise:

Tlowdose = Poisson(I0lowdoseTfulldose)

where I0lowdose is the simulated low-dose scan incident flux.
6. Calculate low-dose projection data plowdose:

plowdose = ln (
I0lowdose
Tlowdose

)

7. The projection data of the added noise is

pnoise = pfulldose − plowdose

8. Now, compute the linear attenuation coefficients for the low-dose CT µlowdose by
utilizing the inverse Radon transform iradon. Divide the result of the inverse
transform with the voxel size s and add the noise to µfulldose:

µlowdose = µfulldose +
iradon(pnoise)

s

9. Now the inverse of Equation (2) can be used to transform µlowdose into low-dose
CT with HU values HUlowdose.
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I0lowdose was chosen to have values between 5× 105 to 1× 107. Figure 16 visualizes
the difference between different I0lowdose values. A higher I0lowdose value results in less
noise.

Table 3. Water attenuation coefficients µ of water on different X-ray tube kVp.
kVp [keV] µ[cm-1]

80 0.431
90 0.341
100 0.276
110 0.228
120 0.192

6.1.2. Lung Segmentation

A secondary test for the denoising network introduced in this thesis is done with a lung
segmentation tool. Medical image segmentation is a process of finding the boundaries
of a region of interest in the image. The segmentation can be done semi-automatically
or fully automatically. Image segmentation can be also done with CNNs. The most
famous medical image segmentation CNN is the U-Net [46]. Segmentation can be used
for diagnosis purposes and in treatment of diseases. Lung segmentation helps detecting
lesions which can be a result of some disease or trauma, or even cancer. The idea is to
test if the denoising of low-dose chest CT scans could improve the segmentation result.

The lung segmentation tool used in the testing of the denoising network was
introduced by Hofmanninger et al. [68]. The authors provide a Python tool capable
of automated lung segmentation from chest CT-scans. The tool uses a standard U-Net
CNN trained on a large and diverse dataset. The tool is capable of extracting right and
left lungs separately, including tumors, effusions, and airpockets. The segmentation
result will be evaluated with Jaccard index -metric.

For testing the lung segmentation, the dataset introduced in [69, 70] was used.
The dataset consisted of 120 CT series. The dataset also provided ground truth lung
segmentation masks created manually by experts. Noise was injected into the images
as mentioned in 6.1.1 and the segmentation result was compared with the ground truth
segmentations.

6.1.3. Metrics

Mean squared error (MSE) is a cumulative error. MSE is the squared error between
the ground truth I1 and the noisy image I2.

The MSE is calculated using the equation

MSE(I1, I2) =

∑
M,N,K [I1(m,n, k)− I2(m,n, k)]2

M ×N ×K
(17)

where M,N, and K denotes rows, columns, and depth, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 16. Manual noise injection following procedure explained in 6.1.1. Full-dose
scan (a) and noise injected (b-f) with various I0lowdose values ranging from 6 × 106 to
2× 107.

The peak signal-to-noise ratio (PSNR) expresses the ratio between the maximum
possible value of an image and the power of the noise that affects the said image. The
PSNR is expressed in an logarithmic scale.

The equation for PSNR is

PSNR = 10 log10(
R2

MSE
) (18)

where R is the maximum value possible in the image. R = 3071, as the CT images
are represented in the Hounsfield scale.

Structural-similarity index (SSIM) [71] is used in comparing the quality of digital
images or videos. The equation for SSIM between two images is

SSIM(I1, I2) =
(2µI1µI2 + c1)(2σI1I2 + c2)

(µ2
I1
+ µ2

I2
) + c1)(σ2

I1
+ σ2

I2
+ c2)

(19)

where µI1 and µI2 are the averages of images I1 and I2, respectively. σ2
I1

and σ2
I2

are
variances for both images. σI1I2 is the covariance of I1 and I2. c1 and c2 are variables
used in stabilizing the division. More specifically, c1 = (k1L)

2 and c2 = (k2L)
2. L is

the bit depth of the image pixels. The default values for k1 and k2 are 0.01 and 0.03,
respectively.
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The Jaccard index is a statistical method used in calculating the accuracy of a
segmentation. It is also known as the intersection-over-union between the ground truth
segmentation y and predicted segmentation y′ and is defined with

J(y, y′) =
|y′ ∩ y|

|y′|+ |y|+ |y′ ∪ y|
(20)

where ∪ denotes union and ∩ denotes intersection.

6.2. Results

The denoising results for 35 volumes of simulated low-dose test data are listed in Table
4. Equation (17), Equation (18) and Equation (19) were used to compute metrics
for each denoising method. The test data contained CT scans of the chest, head,
and abdomen. The chest scans contained more noise than head and abdomen scans,
respectively. Figure 17 visualizes example slices of all three anatomical locations,
along with the denoised slice acquired by using the 3D network introduced in this
thesis. Figure 19 illustrates how the CNN based networks work much better than
traditional methods in removing streak artefacts from extremely low-dose CT scans.

Table 5 lists the metrics computed from denoising CT images from the real low-
dose dataset [65]. The 2D method outperforms the other methods on real low-dose CT
scans. MSE is the lowest of the methods, while PSNR is the highest. 2D network and
median filtering have identical SSIM values. The 3D network has the second highest
PSNR and the third lowest MSE, after median filtering. SSIM of the 3D network
is the third lowest, with only non-local means and BM3D resulting in lower values.
Interestingly, CNN DAE outperforms DnCNN on both MSE and PSNR while DnCNN
was better on the artificial low-dose dataset.

Lung segmentation

Lung segmentation of CT scans denoised with different methods were the secondary
test for the denoising results. The results were evaluated using the Jaccard index
between the ground truth and segmentation. Example segmentation result is visualized
in Figure 18. Result metrics are listed in Table 6. The denoising results do not differ
from each other that much, with similar kinds of Jaccard indices achieved with each
of the methods. Neural network-based denoising methods were all within 0.0036 of
each other, with also the standard deviation being very close to each other. The mean
of median filtering, being the best of the traditional denoising methods, also differed
just 0.0047 units from the 3D denoising network. The Jaccard indices of all denoising
methods were also close to that of the low-dose scan. No significant enhancement to
the segmentation was achieved by denoising of the noisy CT scan.
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(a) (b) (c)

Figure 17. Full-dose CT (a), simulated low-dose CT (b) and denoised CT (c) for scans
from [61]. From top to bottom: chest, head and abdomen.

(a) (b) (c)

Figure 18. The result of low-dose (a) and denoised (b) lung segmentation with ground
truth (c).
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Table 4. Mean metrics for different methods on test dataset from [61]. The first row
contains the metrics for the simulated low-dose CT images before denoising. Example
slices visualized in Figure 17. 3D and 2D denote the 3D and 2D networks introduced
in this thesis.

MSE PSNR SSIM
Chest Low-dose 1.24×105 ± 5.13×104 19.19 ± 1.89 0.23 ± 0.07

3D 1.11×104 ± 2.88×103 29.48 ± 1.35 0.64 ± 0.09
2D 1.15×104 ± 3.05×103 29.33 ± 1.40 0.63 ± 0.09
DnCNN 1.10×104 ± 2.86×103 29.50 ± 1.34 0.64 ± 0.09
CNN DAE 1.32×104 ± 3.30×103 28.69 ± 1.25 0.58 ± 0.09
Median filtering 1.69×104 ± 4.07×103 27.62 ± 1.13 0.53 ± 0.10
Non-local means 6.08×104 ± 1.62×104 22.09 ± 1.28 0.44 ± 0.08
BM3D 5.45×104 ± 1.43×104 22.54 ± 1.23 0.45 ± 0.07

Head Low-dose 6.87×10 ± 4.74×10 55.13 ± 12.05 0.99 ± 0.00
3D 5.33×10 ± 3.49×10 54.04 ± 5.04 1.00 ± 0.00
2D 3.74×10 ± 2.77×10 55.32 ± 3.61 1.00 ± 0.00
DnCNN 4.55×10 ± 3.21×10 55.77 ± 8.34 1.00 ± 0.00
CNN DAE 1.32×102 ± 1.05×102 50.62 ± 5.10 0.99 ± 0.00
Median filtering 2.82×102 ± 2.28×102 50.15 ± 13.66 0.99 ± 0.01
Non-local means 2.00×102 ± 8.86×102 54.60 ± 12.42 0.99 ± 0.00
BM3D 6.71×10 ± 4.62×10 53.43 ± 5.66 0.99 ± 0.00

Abdomen Low-dose 3.40×102 ± 1.01×102 44.65 ± 1.42 0.97 ± 0.01
3D 1.18×102 ± 1.54×10 49.08 ± 0.57 0.99 ± 0.00
2D 1.27×102 ± 2.89×10 48.84 ± 1.03 0.99 ± 0.00
DnCNN 1.79×102 ± 5.75×10 47.46 ± 1.48 0.99 ± 0.00
CNN DAE 3.65×102 ± 4.61×10 44.15 ± 0.55 0.98 ± 0.00
Median filtering 9.08×102 ± 9.32×10 40.19 ± 0.44 0.98 ± 0.00
Non-local means 3.30×102 ± 1.00×102 44.79 ± 1.45 0.97 ± 0.00
BM3D 3.25×102 ± 9.89×10 44.86 ± 1.46 0.97 ± 0.01

Table 5. Mean metrics for different methods on real low-dose test dataset from [65].
Example slices visualized in Figure 15. 3D and 2D corresponds to the 3D and 2D
networks introduced in this thesis.

MSE PSNR SSIM
Low-dose 1805.55 ± 889.00 37.99 ± 3.06 0.93 ± 0.04
3D 1631.76 ± 824.68 38.45 ±3.10 0.94 ± 0.03
2D 1493.1 ± 745.05 38.84 ± 3.11 0.96 ± 0.02
DnCNN 1725.57 ± 814.21 38.03 ± 2.61 0.95 ± 0.03
CNN DAE 1626.95 ± 791.18 38.38 ± 2.90 0.95 ± 0.03
Median filtering 1634.68 ± 696.68 38.18 ± 2.49 0.96 ± 0.02
Non-local means 2000.41 ± 1145.98 37.71 ± 3.30 0.93 ± 0.04
BM3D 1801.09 ± 886.19 38.00 ± 3.06 0.93 ± 0.03



36

(a) Input (b) 3D (c) 2D (d) DnCNN

(e) CNN DAE (f) BM3D (g) NLM (h) Median filtering

Figure 19. Denoising results of a chest CT scan with different methods.

Table 6. Mean Jaccard indices of lung segmentation from dataset mentioned in 6.1.2.
Example segmentation results visualized in Figure 18.

Jaccard index
Full-dose 0.8475 ± 0.1697
Low-dose 0.7968 ± 0.2575
3D 0.8013 ± 0.2492
2D 0.8007 ± 0.2497
DnCNN 0.8043 ± 0.2466
CNN DAE 0.8010 ± 0.2488
Median filtering 0.7966 ± 0.2627
Non-local means 0.7963 ± 0.2584
BM3D 0.7963 ± 0.2585
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7. DISCUSSION

A denoising neural network utilizing 3D convolutional layers was created and trained
in this thesis. The network was trained on CT scans corrupted with simulated noise.
The CT volumes consisted of 16 slices. A network with 2D convolutional layers with
otherwise similar architecture was also trained for comparison. The denoising of the
3D network was also compared with two established denoising neural networks, along
with three traditional denoising methods. A secondary test, the effect of denoising on
lung segmentation results, was also conducted.

The 3D network outperforms the traditional denoising methods with all different
noise levels. Mean MSE values were lower while PSNR and SSIM were higher than
any of the traditional methods. The most significant difference was with abdomen CT
scans, where the mean PSNR of the 3D network was 49.08 ± 0.57 compared to 40.19
± 0.44 of median filtering. The difference is significant, as PSNR is in the logarithmic
scale. Interestingly, NLM denoising produces better PSNR values on head scans than
the 3D network.

The differences between different neural-network -based denoising methods are not
as large. Both 3D and 2D networks perform quite equally on the chest scans which are
the noisiest of the test dataset. MSE, PSNR, and SSIM values are very close to each
other. 3D network achieves smaller MSE and higher PSNR on abdomen scans. 2D
network has lower MSE and higher PSNR on head scans. SSIM values are equal
on head and abdomen scans. The 3D network and DnCNN have almost identical
performance on chest scans, with the mean PSNR and standard deviation of those
differing only by 0.02 and 0.01, respectively. MSE values are only slightly lower with
DnCNN, and SSIM values are identical. With head scans, DnCNN outperforms 3D
network the same way the 2D network also did. With slightly noisier abdomen scans
the 3D network achieves better metrics than the DnCNN. The CNN DAE performs
most poorly out of all neural-network -based denoising methods, with especially the
head scans having much lower PSNR than non-local means or BM3D denoising.

The 3D network provided good results on the noisiest of the CT scans. The results
indicate that the structural information between slices could help on the denoising of
the scans. The information on tissues spanning several slices perhaps allows for the
denoising network to better retain the details of the image. When scans containing
lower amounts of noise were denoised, simpler networks and methods could achieve
a similar or better result with lower computational costs. The results suggest that 3D
convolutional neural networks could be utilized in denoising when ultra-low-dose CT
examinations are conducted. That being said, the metrics between DnCNN and the 3D
and 2D networks implemented in this thesis are quite close to each other. DnCNN
achieved the highest mean PSNR on the head CT scans, but both the 3D and 2D
networks had significantly lower standard deviations. This suggests that 3D and 2D
networks have less variation even though the mean PSNR was lower.

Traditional denoising methods work well with noise having Gaussian distribution,
but the complexity of Poisson distribution combined with the fact that the additional
reconstruction of the CT image further modifies the noise model does not allow for
efficient denoising using any of the traditional methods, especially for ultra-low-dose
CT scans. The nonlinearity of the convolutional neural networks allows the denoising
of more complex noise.
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To further examine the results, inspection conducted by an expert radiologist is
needed. High metrics can be calculated from the noise-free estimates of CT scans even
though some crucial details could be missing from the images. The question is if the
radiologist would rather use a noisy image containing all the information or artificially
denoised image where some information could be missing. A human is capable of
interpreting some details even from the noisy images that a computer can not.

A continuing problem in training medical image networks is the availability of the
data. The collection of datasets containing medical images is difficult as the labeling
of the images must be done by a professional. Also the prevalence of some diseases
can be extremely low, resulting in unbalanced datasets, especially in classification
problems. Gathering ultra-low-dose CT scans from patients for dataset purposes only
is problematic because of the ionizing nature of the X-ray radiation. As the noise
model of the CT scans is quite complex, the noise simulation is also very difficult. Self-
supervised learning could be used in low-dose CT denoising. This method requires,
however, more data.

The results of the segmentation tests were rather surprising. It was safe to assume
that denoising lung CT scans could also result in better segmentation of the said
scan. The segmentation method used could already be rather robust to noise in the
scans. It is possible that preprocessing the scans eliminates information crucial for
the segmentation from the images. The effect of denoising on segmentation results
requires further research.

In this thesis, denoising CT images in sinogram space was not experimented.
Sinogram-domain denoising with 3D CNNs would be an interesting research topic.
The noise model in sinograms should be less complex, with no information loss caused
by the image reconstruction. The data availability for sinogram domain data is not so
good as for reconstructed images. However, the same dataset that was used in this
thesis also provided simulated low-dose CT scans in the sinogram space. Perhaps 3D
CNN based denoising could be combined with iterative image reconstruction methods,
to further improve the image quality and minimize the detail loss.

Another potential research topic would be to expand the network introduced also
to other medical imaging modalities. Magnetic resonance imaging also produces 3D
images, like CT. I believe that a similar kind of network could provide useful also in
denoising magnetic resonance images, as they also suffer from image noise.
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