
Forecasting Data Center Resource
Usage With Artificial Neural

Networks

Master’s thesis in data science
Miika Malin

Research Unit of Mathematical Sciences
University of Oulu

Spring 2021

Tiivistelmä

Tämä työ esittelee koneoppimismenetelmiä sekä tilastollisia menetelmiä aika-
sarjojen ennustamiseen palvelinkeskus kontekstissa. Työn teoriosuus lähtee
liikkelle aikasarjojen esikäsittelystä, jossa esitellään aikasarjojen differensointi
sekä minimi-maksimi menetelmä aikasarjojen skaalaukselle. Tällä skaalaus-
menetelmällä saadaan eri skaalalla olevat aikasarjat vertailukelpoisiksi syöt-
teiksi neuroverkolle.

Aikasarjojen esikäsittelyn jälkeen työ siirtyy aikasarjojen ennustamisen pariin.
Mallintamismenetelmänä esitellään perinteinen tilastotieteen ARIMA -malli
ja koneoppismenetelmänä kaksi erilaista takaisinkytkettyä neuroverkkoark-
kitehtuuria, LSTM ja GRU. Ennen takaisinkytkettyjen neuroverkkojen esit-
telyä työ kertoo neuroverkkojen perusidean, ja millä tavalla neuroverkot op-
pivat. Lisäksi koneoppimispuolelta esitellään kuvantunnistuksesta tuttu kon-
voluutiokerrosta hyödyntävä neuroverkkoarkkitehtuuri muokattuna aikasar-
joille sopivaksi.

Neuroverkkojen esittelyn jälkeen syvennetään neuroverkkojen ominaisuuksiin
ja opetukseen liittyviä yksityiskohtia: Työssä esitellään kolme usein neu-
roverkoissa käytettyä epälineaarista aktivaatiofunktiota neuroverkon opetus-
vaiheessa tarvittavineen derivaattoineen. Tämän jälkeen työ esittelee kaksi
optimointialgoritmia neuroverkon parametrien päivittämistä varten, ja yh-
den optimointialgoritmin jota käytetään ARIMA -mallin parametrien opti-
moimiseen. Lopuksi teoriaosuudessa esitellään erilaisia aikasarjoihin ja en-
nustevirheen suuruuteen liittyviä tunnuslukuja.

Teoriaosuuden jälkeen seuraa työn käytännön osuus. Tässä osuudessa käyte-
tään ensin perättäishakua löytämään parhaat mahdolliset hyperparametrien
arvot eri neuroverkkoarkkitehtuureille. Perättäishaulla saatuja tuloksia käy-
tetään hyödyksi ennustaessa tulevaa oikean palvelinkeskuksen resurssin käyt-
töastetta kaikilla teoriaosuudessa esiteltyjen menetelmien avulla. Tämän
jälkeen käytännön osuudessa vertaillaan eri mallien ennustetarkuutta, sekä
mallien opetukseen kuluvaa aikaa.

Tärkeimpänä tuloksena työssä saatiin esille, että takaisinkytketty neuroverk-
koarkkitehtuuri GRU konvoluutiokerroksella antoi tarkimmat ennusteet tule-
valle palvelinkeskuksen resurssien tarpeelle, lyhentäen samalla mallin opet-
tamiseen tarvittavaa aikaa.

1

Abstract

This thesis theoretical part presents some traditional time series forecasting
methods (ARIMA) and recurrent neural network methods (LSTM and GRU)
combined with convolution layer. The training process (backpropagation) of
neural network is also explained in this thesis, and different algorithms to
optimize the learning. Multiple metrics for evaluating forecast accuracy, and
data preprocessing techniques are also introduced in theory section.

The practical side of this thesis focuses on predicting real-world resource
usage data of data center. In the analysis section grid search for optimal
hyperparameters of the models is performed. Based on the results found in
hyperparameter optimization multiple different neural network architectures
are compared with each other taking into account forecasting accuracy and
the computational complexity of training the model.

The main result is that the recurrent neural network architecture GRU with
convolution layer outperforms other models in forecast accuracy and in the
time required to train the model. Proposed model can be effectively applied
to load prediction as a part of data center computing cluster.

2

Contents

1 Introduction 5

2 Methods 7
2.1 Data Preprocessing . 7

2.1.1 Differencing . 7
2.1.2 Min-Max Normalization 8

2.2 Resource Usage Forecasting 9
2.2.1 Autoregressive Model 9
2.2.2 Moving Average Model 9
2.2.3 Autoregressive Moving Average Model 9
2.2.4 AR Integrated Moving Average Model 10
2.2.5 Neural Network . 10
2.2.6 Convolutional Neural Network 13
2.2.7 Recurrent Neural Network 15
2.2.8 Long Short-Term Memory 17
2.2.9 Gated Recurrent Unit 19

2.3 Activation Functions . 21
2.3.1 Logistic Sigmoid Function 22
2.3.2 Hyperbolic Tangent Function 22
2.3.3 Rectified Linear Unit 23

2.4 Optimizers . 24
2.4.1 ARIMA Optimization Algorithm 24
2.4.2 RMSprop Neural Network Optimizer 25
2.4.3 Adam Neural Network Optimizer 26

2.5 Metrics . 27
2.5.1 Akaike Information Criterion 27
2.5.2 Kwiatkowski–Phillips–Schmidt–Shin Test 27
2.5.3 Mean Squared Error 28
2.5.4 Root Mean Square Error 28
2.5.5 Interquartile range . 28
2.5.6 Autocorrelation . 29

3 Data And Experiments 30
3.1 Dataset Summary . 30
3.2 Neural Network Architecture 32
3.3 Grid Search for Tuning Hyperparameter Selection 33

3

3.4 Forecasting Accuracy Results 39
3.5 Time Complexity of Model Training 46

4 Discussion 46

References 48

4

1 Introduction

In the field of data center studies common subject is data center energy
consumption. This is an important subject since data center computing is
growing and therefore generating more emissions (Andrae and Edler, 2015).
In addition, more energy-efficient datacenters have lower operating costs since
less energy is consumed.

One way to lower energy consumption of data centers is using a dynamic
scalable clusters where the amount of powered on physical machines can
be altered (Horvath and Skadron, 2008). These physical machines are later
referred to as nodes. Reliable and accurate resource usage forecast would
help to make these scalable clusters have the same level of quality of service
which traditional datacenter has.

Methods introduced in this thesis methods section are used to forecast re-
source usage short-term utilizing neural networks and time-series modelling.
Real-world data from Bitbrains data center is used in the practical side of
this thesis.

Figure 1: Data center hierarchy. Example data center has n clusters and
each cluster has k nodes.

5

Reliable resource usage forecast has also many more applications in data
center context. As seen in figure 1 nodes are often somehow clustered, and
load balancing needs to be done in and between the clusters for data center
to work efficiently. Resource usage forecast helps in this and many other
controlling tasks inside data center.

Time series forecasting is also a interesting research subject since time series
is the only data type involving time and are in this way unique. Machine
learning advancement has bring many powerful tools to forecast these time
series with more accuracy and less computational work required, and two
state of the art recurrent neural networks are introduced in this thesis.

6

2 Methods

Time series are sequence of points (y1, y2, y3, ..., yn) which is ordered by time
(Sammut and Webb, 2011). This means that not only the observations
y1, ..., yn are important, but also the order in which these observations has
been made. This requires use of special methods in both of data preprocess-
ing and forecasting time series. The methods differ from traditional models
or neural network architectures in a way that takes order of the sequence in
account, and thus utilize the time aspect of data.

All the methods used in this thesis from data preprocessing to forecasting is
introduced in this section.

2.1 Data Preprocessing

2.1.1 Differencing

Many time series forecasting methods require the time series to be stationary.
Stationary time series looks the same on any time interval. This means that
stationary time series cannot have any trends or seasonal patterns. (Hynd-
man and Athanasopoulos, 2019)

If the time series has a seasonal patterns it is not stationary. One way to
make a seasonal time series stationary is to use seasonal differencing where
observations are defined as:

y′t = yt − yt−m, (1)

where m is length of the season. This is called a ”lag-m difference”. Dif-
ferenced time series will have m observations less than the original time
series, because lag-m difference cannot be calculated for the first m observa-
tions.(Hyndman and Athanasopoulos, 2019)

A model, which uses only lag-m difference and error, is defined as:

yt = yt−m + εt. (2)

This is called the seasonal random walk model. The seasonal random walk
model can be used to give näıve forecasts. (Hyndman and Athanasopoulos,
2019)

7

Sometimes second order differencing is needed for the time series to make it
stationary. Second order differencing is defined as:

y′′(t) = y′t − y′t−m
= yt − yt−m − (yt−m − yt−2m)

= yt − yt−m − yt−m + yt−2m

= yt − 2yt−m + yt−2m,

(3)

where y′t is first order differenced time series defined in Equation 1. (Hynd-
man and Athanasopoulos, 2019)

2.1.2 Min-Max Normalization

Resource usage forecasting is performed on multivariate time series on the
analysis section. This means that multiple features are used to predict a
single resource usage. Because the features are recorded on different units,
(e.g. network usage is recorded by kilobits per second (Kbps) and Central
Processing Unit (cpu) usage is recorded by percentage), the scales of the
features will also be different.

Different units will be weighted differently by the neural network, thus data
needs to be transformed to eliminate the effect of different scales of features.
The Min-Max normalization for the time series Y = (y1, y2, ..., yn) to range
[a, b] is defined as:

y∗i =
(yi −min(Y))(b− a)

max(Y)−min(Y)
+ a, (4)

where y∗i is the i-th normalized observation in the normalized timeseries
Y ∗ = (y∗1, y

∗
2, ..., y

∗
n). (Han et al., 2012)

If forecast is performed on the normalized time series, the Min-Max normal-
ization process needs to be inversed to get the forecast back to the origi-
nal scale. The back transformation formula can be derived from Equation
4:

(y∗i − a)(max(Y)−min(Y)) = (yi −min(Y))(b− a)

⇐⇒ yi =
(y∗i − a)(max(Y)−min(Y))

b− a
+ min(Y).

(5)

8

2.2 Resource Usage Forecasting

2.2.1 Autoregressive Model

Autoregressive (AR) model uses old observations of the time series to model
the current timestep. Autoregressive model of order p is defined as:

yt = α + φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt, (6)

where yt is the time series value at time t, α is the intercept, φ1, ..., φp are the
coefficients and εt is the error at timestep t. (Hyndman and Athanasopoulos,
2019)

2.2.2 Moving Average Model

Moving average (MA) model uses past errors to model the current timestep.
Moving average model of order q is defined as:

yt = α + θ1εt−1 + θ2εt−2 + ...+ θqεt−q + εt, (7)

where yt is the time series value at time t, α is the intercept, θ1, ..., θk are the
coefficients and εt is the error at timestep t. (Hyndman and Athanasopoulos,
2019)

2.2.3 Autoregressive Moving Average Model

When AR and MA models are combined, the result is Autoregressive Moving
Average (ARMA) model, which uses both old observations of the time series
and past forecasting errors. ARMA model of order (p, q) is defined as:

yt = α + φ1yt−1 + φ2yt−2 + ...+ φpyt−p + θ1εt−1 + θ2εt−2 + ...+ θqεt−q + εt

= α +

p∑
i=1

φiyt−i +

q∑
j=1

θjεt−j + εt,

(8)
where yt is the time series value at time t, α is the intercept, θ1, ..., θq are
the MA coefficients, φ1, ..., φp are the AR coefficients, and εt is the error at
timestep t. (Adhikari and Agrawal, 2013)

9

2.2.4 AR Integrated Moving Average Model

Autoregressive Integrated Moving Average (ARIMA) model ARIMA model
has parameters of (p, d, q), where p refers to the amount of used past values
and q to the amount of used past errors as in ARMA model. The parameter
d is the order of differencing performed.

Earlier models can be derived by using ARIMA and set some of the param-
eters to 0:

� ARIMA(p, 0, 0) = AR(p)

� ARIMA(0, 0, q) = MA(q)

� ARIMA(p, 0, q) = ARMA(p, q)

Random walk model can also be defined as ARIMA(0, 1, 0):

yt = yt−1 + εt. (9)

(Adhikari and Agrawal, 2013)

2.2.5 Neural Network

Neural network has its origins based on neurobiology result that the human
brain computes in a different way than a computer does. The brain consists
of a large amount of neurons, which allows it to make complex nonlinear
computations. (Haykin, 2009)

An artificial neuron has been derived from these results to simulate a neuron
of the brain. Neuron output is defined as:

yk = ϕ(uk + bk) = ϕ(bk +
m∑
i=1

wkixi), (10)

where yk is the output of neuron k, ϕ is called an activation function and
xi is the ith input signal for the neuron and wki is its weight. Every neuron
also has its own bias bk. The job of an activation function is to regulate the
output of the neuron to some limits. (Haykin, 2009)

Different activation functions (and corresponding derivates) used on this the-
sis are covered in Section 2.3.

10

Figure 2: Neuron nk with m inputs. Based on the figure in (Haykin, 2009)
p. 41.

When using multiple of these neurons together the result is a neural network.
The architecture of a neural network used in this section is a fully connected
single-layer feedforward network, which is described in Figure 3.

As seen in Equation 10 and Figure 2 that the only way to change the output
of neuron (when input stays the same) is to adjust weights wki and biases bk.
This process is called training the network.

To get the right direction and magnitude on how to change weights and
biases, gradients of error function w.r.t. weights and biases need to be cal-
culated. Let the error function for neuron k be defined as a half square
error:

Ek =
1

2
(yk − ŷk)2, (11)

where yk is the output of neuron k and ŷk is the observed value. Let ak be
the linear combination of weights and inputs of neuron k such that:

ak =
∑
i

wkixi. (12)

By using the chain rule from Calculus the result is:

∇Ekw =
∂Ek
∂ wki

=
∂Ek
∂yk

∂yk
∂ak

∂ak
∂wki

. (13)

11

Figure 3: Fully connected single-layer feedforward neural network with m
inputs, k neurons and outputs. Based on the figure in (Haykin, 2009) p. 51.

By adding Equation 10 to Equation 13 the result is:

∇Ekw =
∂Ek
∂yk

∂ϕ(ak)

∂ak

∂ak
∂wki

= (yk − ŷk)xi
∂ϕ(ak)

∂ak
, (14)

where ∂ϕ(ak)
∂ak

is the derivate of the activation function used.

Since bias is actually just a weight with input of constant 1, the bias bk can
be updated with Equation 14 by having xi = 1:

∇Ekb = (yk − ŷk)
∂ϕ(ak)

∂ak
. (15)

(Bishop, 2006)

The process of calculating gradients of error function w.r.t. weights and
biases is called backpropagation.

12

Different kind of optimization algorithms are used to update weights and
biases based on the gradient, and they are covered in Section 2.4.

2.2.6 Convolutional Neural Network

Convolutional neural networks (CNN) are often used in neural networks deal-
ing with image data. A convolutional layer in a neural network can be used
to detect subsections of the image. (Bishop, 2006)

Convolution can be seen as sliding a window over the data. Because good
results have been achieved with CNNs on image and natural language pro-
cessing, CNNs have been recently applied with time series analysis as well.
(Fawaz et al., 2019)

In CNNs processing image data convolution is two dimensional filter sliding
over width and height of the image. In time series the only dimension that
can be slided over is time, so one dimensional convolution is used (Fawaz
et al., 2019). Example of 2D convolution can be seen in Figure 4.

Two dimensional convolution starting from point (i, j) (with indexing start-
ing from (1,1)) can be defined as:

C(i, j) =
h∑

m=0

w∑
n=0

Ii+m,j+nK1+m,1+n, (16)

where I is the input data, K is the kernel of the convolution with dimensions
h×w. Kernel contains weights w for the convolution. Here, h is the height,
and w is the width of the convolution window. (Goodfellow et al., 2016)

Since the 1D convolution can only slide through one dimension, w is always
same as number of features in input. Definition for 1D convolution can be
derived from Equation 16:

C(i) =
h∑

m=0

w∑
n=1

Ii+m,nK1+m,n, (17)

where i is the row of input where the convolution starts and w is the number
of features in dataset. In time series context w can be seen as a number of
features recorded in each time point. Again, in time series context this means

13

Figure 4: 2D convolution illustrated. Here Input data has dimensions of 3×3
and the kernel of convolution has 2× 2.

that kernel is slided over the time dimension. This has been illustrated in
Figure 5.

Easier way to implement convolution in code is to define it with element-wise
Hadamard product �: Let wi be the current convolution window, then:

C(i) =
∑

wi �K, (18)

where K is the convolution kernel. Often bias is added to convolution result,
and the result is sent through some activation function (Fawaz et al., 2019).
In this case, Equation 18 becomes:

C(i) = f(b+
∑

wi �K), (19)

where f is the activation function used, and b is the bias. This has been
illustrated (without activation function) in Figure 5.

14

Figure 5: 1D convolution where convolution slides through time illustrated.
Here the time series input has three features and five time points. The
kernel of the convolution has been defined with length of two. This means
that kernel has dimensions of 2× 3.

2.2.7 Recurrent Neural Network

Recurrent neural network (RNN) is a combination of units with feedback
connection (Hewamalage, 2020) and are designed specially for sequential data
such as time series (Aggarwal, 2018).

15

Recurrent units in recurrent neural network pass data from previous timesteps
to proceeding units in its hidden state h as illustrated in Figure 6.

Consecutive values in time series are often correlated. If these values were
fed as unattached into regular neural network, information would be lost
about the sequence. Recurrent neural networks can utilize the sequence
information. (Aggarwal, 2018)

Figure 6: Unfolded recurrent neural network: x stands for input vectors, h
is hidden state and y is output vector of RNN. Based on the figure in (Olah,
2015).

Inputs for the recurrent neural network are vectors with d -dimensions (Ag-
garwal, 2018). The example RNN in Figure 6 has t d-dimensional vec-
tors.

The backpropagation of RNN is called backpropagation through time since
it is performed for the unfolded RNN. This process takes into account all the
hidden states of network.

Downside of long chains in gradient calculations is that the gradient for
weights far away from the final output closes to zero. Because the gradient
is near zero, the far away weights will only be updated by a small value and
the learning becomes slow. This is called the vanishing gradient problem
and is the reason why traditional RNN cannot learn long term depencies.
(Aggarwal, 2018; Haykin, 2009)

One of the most basic RNN architecture uses Elman recurrent units, where
every unit passes its hidden state ht at timestep t to next unit handling

16

timestep t+ 1. The hidden state of unit at timestep t is defined as:

ht(xt, ht−1,Wh,Wx, bh) = S(Whht−1 +Wxxt + bh), (20)

and the output of Elman recurrent unit at timestep t is then defined as:

yt(xt, ht−1,Wh,Wx, bh,Wy, by) = T (Wyht(xt, ht−1,Wh,Wx, bh) + by), (21)

(Hewamalage, 2020). In Equations 20 and 21 Wh are weights for hidden state
with dimension of d× d, Wx are weights for input vector with dimension of
d × f . Hidden state ht and biases b are vectors with dimension of d. Here
d is the length of the hidden state, f f is the number of features in time
series.

2.2.8 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a recurrent neural network, which uses
LSTM units and tries to solve vanishing gradient problem of RNNs (Hochre-
iter and Schmidhuber, 1997). This means that the arthitecture can find more
efficiently long term depencies from time series.

LSTM network with forget gate and biases consists of LSTM cells, where
each cell has three gates:

� Forget gate

f(h, x, whf , wxf , bf) = S((whfh+ wxfx) + bf). (22)

� Input Gate

i(h, x, whis, wxis, whit, wxit, bis, bit) =

S(h, x, whis, wxis + bis)� T (h, x, whit, wxit, bit) =

S((whish+ wxisx) + bis)� T ((whith+ wxitx) + bit).

(23)

� Output gate

o(h, x, c, who, wxo, bo) = S((whoh+ wxox) + bo)� T (c)), (24)

17

where S and T are activation functions. Forward pass of the cell can then
be defined by the following functions:

ct =

(ct−1 � f(ht−1, xt, whf , wxf , bf))+

i(ht−1, xt, whis, wxis, whit, wxit, bis, bit).

(25)

ot/ht = o(ht−1, xt, ct, who, wxo, bo). (26)

Again in Equations 22 - 26 wh are weights for hidden state with dimension
of d × d, wx are weights for input vector with dimension of d × f . Hidden
state ht and biases b are vectors with dimension of d. Here d is the length
of the hidden state, f f is the number of features in time series and � is an
element-wise Hadamard product.

(Gers et al., 2000; Hewamalage, 2020)

Figure 7: LSTM cell with forward pass of data at timestep t. Based on the
figure in (Condit, 2019).

As seen in Figure 7 each LSTM cell indeed has three gates where the data
passes, and two different activation functions. These activation functions are
defined in this work as S=sigmoid() and T=tanh() functions.

18

2.2.9 Gated Recurrent Unit

Gated recurrent unit (GRU) has been motivated by LSTM unit, but it has
a simpler design. GRU unit does not have an output gate what LSTM has,
so it is faster to implement and train. Since it has less gates, it also has less
weights to optimize and the backpropagation through time is faster.

GRU network consists of multiple GRU cells, where each cell has two gates:

� Reset gate

r(h, x, wxr, whr, br) = S((wxrx+ whrh) + br). (27)

� Update gate

u(h, x, wxu, whu, bu) = S((wxux+ whuh) + bu). (28)

By using these two gates in the forward pass a new candidate hidden state
is defined as h̃:

h̃(ht−1, x, wxh, whh, bh) =

T (wxhx+ whh(r(ht−1, x, wxr, whr, br)� ht−1) + bh).
(29)

and finally the new cell hidden state / output ht:

ht(ht−1, x, wxr, whr, wxu, whu, br, bu) =

(1− u(ht−1, x, wxu, whu, bu))� ht−1+
u(ht−1, x, wxu, whu, bu)� h̃(ht−1, x, wxh, whh, bh),

(30)

where T=tanh and S=sigmoid.

All wxx are weights, and all bx are biases, which are the learnable parameters.
Here � is element-wise Hadamard product. GRU has the same dimension on
weights, biases and hidden state as LSTM does. (Hewamalage, 2020)

19

20

Figure 8: GRU cell with forward pass of data at timestep t.

2.3 Activation Functions

Activation functions are a important part of neural network since those allow
nonlinearity to output of a neuron. Without activation functions the output
of neurons would only be linear combination of its inputs. Other important
reason to use activation functions is that activation function can regulate the
scale of output. (Feng and Lu, 2019)

Regulated outputs is an important feature to have, since it also regulates
the derivates on backpropagation. Three different activation functions are
used in this thesis and those are defined in this section and a graph of those
functions (with respecting derivates) is show in Figure 9.

Figure 9: Curves of Logistic Sigmoid Function, Hyperbolic Tangent Function
and Rectified Linear Unit. In the first row of plots Y-axis has the output of
the function when input is x. In the second row of plots Y-axis has the value
of the derivate function at point x.

21

2.3.1 Logistic Sigmoid Function

Logistic sigmoid function is presented as:

S = S(x) =
1

1 + e−x
, (31)

which codomain is [0, 1]. (Feng and Lu, 2019)

Derivate of sigmoid function is needed in backpropagation step, and it can
be deduced from Equation 31 as follows:

dS(x)

dx
=

d

dx

1

1 + e−x
=

d

dx
(1 + e−x)−1. (32)

Now let g = 1 + e−x so S(x) = g−1. The chain rule can now be applied to
Equation 32 so it becomes:

dS(x)

dx
=
dS(x)

dg

dg

dx
= (−g−2)(−e−x) =

−e−x

−g2
=

e−x

(1 + e−x)2

= (
1

1 + e−x
)(

e−x

1 + e−x
) = S(x)(

e−x + 1− 1

1 + e−x
)

= S(x)(
1 + e−x

1 + e−x
− 1

1 + e−x
) = S(x)(1− S(x)).

(33)

2.3.2 Hyperbolic Tangent Function

Hyperbolic tangent function (tanh) is presented as:

T = tanh(x) =
ex − e−x

ex + e−x
, (34)

which codomain is [-1, 1]. (Feng and Lu, 2019)

Tanh is often defined by its simpler form by modifiying Equation 34:

ex − e−x

ex + e−x
=

e2x

ex
− 1

ex

e2x

ex
+ 1

ex

=
e2x−1
ex

e2x+1
ex

=
ex(e2x − 1)

ex(e2x + 1)
=
e2x − 1

e2x + 1
, (35)

22

which is also faster to compute, since it contains only two exponential func-
tions versus four exponential functions in Equation 34.

Derivate of tanh function is needed in backpropagation step and it can be
deduced from Equation 34 by using the quotient rule:

Let g(x) = ex − e−x and h(x) = ex + e−x. Now tanh(x) = g(x)
h(x)

and the
quotient rule can be applied to Equation 34 to get

d

dx
tanh(x) =

g′(x)h(x)− g(x)h′(x)

h(x)2

=
(ex + e−x)(ex + e−x)− (ex − e−x)(ex − e−x)

(ex + e−x)2

=
(ex + e−x)2 − (ex − e−x)2

(ex + e−x)2

=
(ex + e−x)2

(ex + e−x)2
− (ex − e−x)2

(ex + e−x)2
= 1− tanh(x)2.

(36)

2.3.3 Rectified Linear Unit

Rectified linear unit (ReLU) is presented as:

R = R(x) = max(x, 0), (37)

which codomain is [0, ∞[.

Derivate of ReLU is simply:

R′(x) =

{
0, ifx < 0

1, ifx > 0
(38)

(Feng and Lu, 2019)

It can be seen from Equation 38 that the derivate is not defined at x=0,
because the right and the left derivatives differs. However this is not a
problem at the backpropagation step since we can apply convention eg. that
the derivate is 0 at x=0.

23

2.4 Optimizers

This section introduces an algorithm to optimize ARIMA model parameters
p, d, q, and two optimizers for updating neural network weights with precal-
culated gradients.

There are many ways to update the weights of a neural network, and each
of them affects the speed of convergence in learning or ability to get over
from global minimum (Nawi et al., 2015). Because of this multiple different
algorithms has been proposed to optimize the neural network weights, and
two of them (Adam and RMSprop) is introduced in this section.

2.4.1 ARIMA Optimization Algorithm

The following step-wise Algorithm 1 was proposed by Hyndman and Khan-
dakar (2008) is used to find optimal parameters p, d, q for ARIMA model
given the time series to forecast.

Algorithm 1: Hyndman and Khandakar step-wise algorithm

Input: maxd, timeseries
Output: Optimized paramaters p, d, q for fitting ARIMA model to

data
1 Find the optimal number of differences (d) in between [0,maxd] by

using repeated KPSS tests on timeseries and select d which yielded
the highest p-value.

2 Difference the timeseries d-times.
3 Try first 4 possible models for the time series:

- ARIMA(0, d, 0)
- ARIMA(0, d, 1)
- ARIMA(1, d, 0)
- ARIMA(2, d, 2)
the model which gives lowest AIC is selected as modelc

4 Test models with ± 1 for p and q of parameters modelc.
Test models with and without the constant
Update model with lowest AIC to be modelc

5 Go back to Step 4, if the new modelc was found
6 Return modelc parameters

(Hyndman and Khandakar, 2008; Hyndman and Athanasopoulos, 2019)

24

Value for the parameter maxd suggested is 2. (Hyndman and Athanasopou-
los, 2019)

The main idea of Algorithm 1 is to first find the optimal number of differences
for given timeseries, by checking the differenced time series with KPSS test.
After this the algorithm repeatedly try values for parameters p and q, until
the AIC does not get lower. AIC is defined in section 2.5.1 and KPSS in
section 2.5.2.

2.4.2 RMSprop Neural Network Optimizer

RMSprop is a commonly used, but unpublished, optimization algorithm for
optimizing weights and biases of a neural network. It was introduced by
Hinton in Coursera online course ”Neural Networks for Machine Learning”
(2012).

Algorithm 2: RMSprop optimization algorithm

Input: Gradient for the optimizable parameter: ∇Ekp, Moving average
parameter: β, Learning rate: lr, Mean square from last time:
MSt−1, The parameter to optimize pt−1

Output: New parameter where gradient has been applied with
RMSprop: pt, new mean square: MSt

1 Calculate moving average for squared gradient:
MSt = β ∗MSt−1 + (1− β) ∗ ∇E2

kp

2 Update parameter:

pt = pt−1 − lr ∗ ∇Ekp√
MSt

3 return pt, MSt

Value for the parameter β suggested in the original presentation of RMSprop
is 0.9. (Tieleman and Hinton, 2012)

The main idea of Algorithm 2 is to calculate moving average for squared
gradient, and normalize the original gradient with that. This helps with
exploding and vanishing gradients, since MSt becomes greater when the
original original gradient ∇Ekp is big, and smaller when the ∇Ekp is small.
The magnitude of parameter update is divided with MSt, so it makes updates
for big gradients smaller and for small gradients greater.

25

2.4.3 Adam Neural Network Optimizer

Adam is a neural network optimizer based on RMSprop and AdaGrad opti-
mizers.

Algorithm 3: Adam optimization algorithm

Input: Gradient for the optimizable parameter: ∇Ekp, Moving average
parameters: (β1, β2), Learning rate: lr, Moving averages from
last time: (MA1t−1, MA2t−1), The parameter to optimize pt−1,
Number of parameter updates so far: i, Epsilon: ε

Output: New parameter where gradient has been applied with Adam:
pt, new Moving Averages: (MA1t, MA2t), Number of
parameter updates done: i

1 Increment i by one
2 Calculate moving averages for gradient:

MA1t = β1 ∗MA1t−1 + (1− β1) ∗ ∇Ekp
MA2t = β2 ∗MA2t−1 + (1− β2) ∗ ∇E2

kp

3 Calculate bias correction for moving averages:

M̂A1t = MA1t
1−βi

1

M̂A2t = MA2t
1−βi

2

4 Update parameter:

pt = pt−1 − lr ∗ M̂A1t√
M̂A2t+ε

5 return pt, (MA1t, MA2t), i

In Algorithm 3 i is initialized as zero. The original paper introducing Adam
suggests to use lr = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8. (Kingma and
Ba, 2015)

The main idea in Algorithm 3 is to calculate moving averages for gradient
and squared gradient. However these moving averages are biased towards
0, since MA10 and MA20 are initialized as 0. To get rid of this bias, bias
correction is applied and bias corrected moving averages are used to update
the optimizable parameter.

26

2.5 Metrics

This section introduces different metrics used in the thesis. These include
metrics used in model comparison to metrics evuluating time series station-
arity.

2.5.1 Akaike Information Criterion

Akaike Information Criterion (AIC) is used on Algorithm 1 to compare dif-
ferent candidate models.

AIC is defined as:

−2 log(L̂) + 2p, (39)

where L̂ is maximum likelihood of the model, and p is number of parameters
in model (Akaike, 1974).

Equation 39 shows that AIC does not take into account sample size therefore
models with different sample size can not be compared using AIC. Lower AIC
values can be considered as a better model.

2.5.2 Kwiatkowski–Phillips–Schmidt–Shin Test

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test performs a null hypothesis
test where H0 = ”time series is stationary”. This is done by decomposing
a time series at timestep t to the deterministic trend, random walk and the
stationary error:

yt = δ + rt + εt, (40)

where rt is random walk:

rt = rt−1 + ut, (41)

where u is independent and idetically distributed (i.i.d) N(0, σ2
u). The null

hypothesis which is equivalent for ”time series is stationary” is now σ2
u = 0.

If δ = 0 in equation 40 the null hypothesis is for level stationarity and if δ 6= 0
null hypothesis is for trend stationarity. (Kwiatkowski et al., 1992)

27

2.5.3 Mean Squared Error

Different hyperparameters are compared to each other by calculating Mean
Squared Error (MSE) for the models forecasts for a given hyperparameter.
MSE is defined as:

1

T

T∑
i=1

(ŷi − yi)2, (42)

where T is the number of forecasted points (time points), ŷt is forecast at
time point t and yt is real value of time series at time t. (Sammut and Webb,
2011)

2.5.4 Root Mean Square Error

Forecasts of different models (ARIMA and RNNs) are evaluated with Root
Mean Square Error (RMSE), which is defined as:

√√√√ 1

T

T∑
i=1

(ŷi − yi)2, (43)

where T is the number of forecasted points (time points), ŷt is forecast at
time point t and yt is real value of time series at time t. (Hyndman and
Athanasopoulos, 2019)

2.5.5 Interquartile range

Interquartile range (IQR) is a statistic for deviance. It is defined as

Q3 −Q1, (44)

where Q3 and Q1 are the upper and lower quartiles of data. This statistic
tells on how wide range 50 % of the observations are distributed.

Boxplot is closely related to IQR since its left wall is drawn on lower quartile
and right wall to upper quartile. After this, the median is drawn as a line
inside the box. Whiskers are drawn from left and right walls, and the whisker

28

length is 1.5 times the IQR. Observations past this line are considered as
outliers and marked with x.

(Upton and Cook, 1996)

2.5.6 Autocorrelation

Autocorrelation is the correlation between a time series and its lagged ver-
sion. Because of this, it can be used to find repeating patterns in a time
series. Autocorrelation metric rk has its values in within range [-1, 1] where
negative values imply negative correlation and positive values imply positive
correlation. The higher the value that |rk| has, the stronger the correlation
is. Autocorrelation can be used as a tool to choose which features to train a
neural network on. (Xue et al., 2015)

Because autocorrelation tells the correlation with time series itself in different
lags, it can also be used to find an optimal lag value for differencing the time
series to remove the seasonal term.

Let Y be a time series with values Y = (y1, y2, ..., yn). Then autocorrelation
coefficients rk are defined as:

rk =

n∑
t=k+1

(yt − y)(yt−k − y)

n∑
t=1

(yt − y)2
, (45)

where n is the number of observations in time series. (Hyndman and Athana-
sopoulos, 2019)

29

3 Data And Experiments

This section consists of the practical side of thesis. The objective of the
analysis is to forecast Central Processing Unit (CPU) resource usage from
real world dataset called GWA-T-12 Bitbrains. (Bitbrains, 2013)

3.1 Dataset Summary

The dataset contains resource usage traces of 1750 Virtual Machines (VM)
from Bitbrains distributed datacenter. The usage trace length is 1 month:
from August 12, 2013 to September 11, 2013. The dataset has samples in 5
minute intervals. Bitbrains has customers from many industries so the use
cases and usage traces are very different from VM to VM.

Dataset consists of two different sets. The first set contains data for 1250 VMs
in fast Storage Area Network (SAN) and second set contains data for 500
VMs from faster and slower Network Attached Storage (NAS) devices. Only
the traces for VMs in fast storage area network are used in this thesis.

Figure 10 has all the used variables plotted for machine with id 21 as an
example. All the features (with descriptions) used in analysis are defined in
Table 1.

Name Description Unit
Timestamp Number of milliseconds since 1970-01-01 ms
cpu usage Cpu usage %
memory usage Memory usage %
disk read Disk read throughput KB/s
disk write Disk write throughput KB/s
net receive Network received throughput KB/s
net transmit Network transmitted throughput KB/s

Table 1: Dataset variables

30

F
ig

u
re

10
:

D
at

a
fo

r
m

ac
h
in

e
id

21
.

31

3.2 Neural Network Architecture

Two different recurrent neural network architectures were used on the dataset:
GRU and LSTM. Both architectures were also used with and without pre-
ceeding convolutional layer. Neural network architecture is shown in Figure
11.

Figure 11: Model architecture with convolution layer. This architecture has
t timesteps as input and k timesteps as output.

The input for a neural network had all the 6 features of the dataset (cpu -
usage, memory usage, disk read, disk write, net receive and net transmit).
Different length of input sequences were tried on the Section 3.3. The length
of the input layer affects its dimensions: if input sequence with t timesteps
is used, the input layer has dimension of (t, 6) where the latter is number of
features in the dataset.

Output dimension of convolution layer depends on the dimension of input
layer and two hyperparameters of convolution layer: Number of filters (cf)
used in the convolution and size of the kernel (ck). Number of filters are just
number of kernels sliding through the dataset (on time axis). Size of the
kernel is number of timesteps taken into account on one sliding kernel when
convolution is calculated. Output dimension of convolution layer is then (cl,

32

cf), where cl = t− ck − 1.

Every kernel on convolution layer is initialized by drawing random numbers

from U(−
√

6
t+ch

,
√

6
t+ch

) distribution, which means that every kernel has a

different starting weights. This initialization allows each kernel to find differ-
ent patterns from data and is called Xavier (or Glorot) uniform initialization
(Glorot and Bengio, 2010).

Recurrent layer dimension depends on the convolution layer output dimen-
sions, if convolution layer is used on the architecture. If architecture has
no convolutional layer, dimension of recurrent layer depends from shape of
the dataset (input layer). Length of the hidden state (lh) affects the out-
put dimension of recurrent layer, and is a tunable hyperparameter. Hidden
state (with legnth lh) of last RNN cell is sent to next layer on the architec-
ture which is dense layer. Weights on the recurrent layer are initialized with
Xavier uniform initialization as in the convolution layer. If convolution layer

is used this means that the weights are drawn from U(−
√

6
ch+lh

,
√

6
ch+lh

) dis-

tribution. If the input layer is directly feeded into recurrent layer the weights

are drawn from U(−
√

6
t+lh

,
√

6
t+lh

) distribution.

Dimension of the dense layer needs to be same as the output layer, which
is 6 on this application. Weights of the dense layer are initialized with
Xavier uniform initialization, which mean that all the weights are drawn

from U(−
√

6
lh+6

,
√

6
lh+6

) distribution.

Dimension of the output layer was 6, which equals forecast for next 30 min-
utes of CPU usage.

All biases on all layers are initialized as 0.

3.3 Grid Search for Tuning Hyperparameter Selection

The model architecture shown in Figure 11 contains multiple tunable hyper-
parameters. These hyperparameters are listed in Table 2. Performing grid
search on these hyperparameters means, that some finite set of hyperparam-
eter values were manually chosen (based on prior trial and error on the archi-
tecture), and performance for each set of hyperparameters was evaluated on
the validation set. The search was done with brute-force (exhaustive) search
so that every possible combination of hyperparameters was evaluated.

33

Grid search for models hyperparameters was done by training different mod-
els on data from same machine (machine id 21) which can be seen in Figure
10. This machine was selected for hyperparameter training data because it
had high autocorrelation values with long lag. Network transmit, CPU and
memory usage had its highest autocorrelation (when lag was higher than
400) with lag of 2845 which is equivavalent with 9.88 days. Also the network
receive had its highest autocorrelation with lag 2847 which is very close to
2845. All the autocorrelation results for machine id 21 can be seen in Table
3 and autocorrelation plot can be seen in Figure 12.

Figure 12: Autocorrelation plot for all the features of machine id 21.

As said in the Section 3.2 both RNN architecures (LSTM and GRU) were
used, with and without 1D convolution layer. On top of that architectures
containing 1D convolution layer were tried with and without activation func-
tion in output layer. This makes 6 different architectures in total.

Models were trained on first 70% of the data for 50 epochs for each set
of hyperparameters. One epoch means, that the whole training dataset is
iterated through the neural network training process. Remaining 30% of
machine id 21 data was used as a validation set. After each epoch loss was
calculated on both training and validation data sets with MSE. After 50

34

epochs of training minimum of losses in both datasets were recorded.

Models including 1D convolution layer had 4 tunable hyperparameters:

1. Number of filters in 1D convolution layer

2. Kernel size

3. Length of the hidden state in recurrent layer

4. Length of history data inputted to model

and models without 1D convolution layer had learning rate and optimizer as
tunable hyperparameters instead of hyperparameters relating to convolution
(1 and 2). On convolutional models optimizer was fixed to Adam with learn-
ing rate of 0.00012. Models including activation function in output layer had
it fixed as ReLU.

Total of 985 different hyperparameter combination for 6 models were tried.
When ordering results from loss in validation set all first 13 models were
with GRU architecture without convolution layer. First architecture with
convolution used was on place 105 , it had GRU used as recurrent layer and
had activation function used in output layer. Best model with LSTM and
1D convolution was on place 311 and it had also activation function used in
output layer.

Best 20 models sorted by loss (MSE) on validation set are shown in Table 4.
Boxplot for loss in both datasets for every hyperparameter tuned is shown in
Figure 13 as example. When fitting models to larger dataset in Section 3.4
the parameters were chosen based on the grid search results of each model.
This means that both boxplot of hyperparameters and the best combina-
tions of hyperparameters were taken into acccount when training with larger
data.

35

36

Layer Hyperparameters
Input Number of input time points
Convolution Kernel size, number of filters
Recurrent Hidden state length
Other Optimizer, learning rate

Table 2: Tunable hyperparameters in grid search.

Feature Autocorrelation Lag
CPU usage 0.275 2845
Memory usage 0.202 2845
Disk read 0.077 703
Disk write 0.106 2102
Net receive 0.105 2845
Net transmit 0.195 2847

Table 3: Machine id 21 maximum autocorrelations for all fetures with lag
greater than 400.

37

Optimizer
Learning
rate

Hidden state
length

Input
length

Minimum loss
(training set)

Minimum loss
(validation set)

RNN
architecture

RMSProp 0.00012 1024 360 0.182 0.773 GRU
Adam 0.00024 2224 360 0.174 0.779 GRU
Adam 0.00024 1024 360 0.185 0.781 GRU
RMSProp 0.00024 512 360 0.186 0.789 GRU
Adam 0.00024 1824 360 0.164 0.792 GRU
Adam 0.00012 2224 360 0.189 0.794 GRU
Adam 0.00012 1824 360 0.193 0.796 GRU
Adam 0.00024 1424 360 0.180 0.801 GRU
RMSProp 0.00024 1024 360 0.189 0.802 GRU
Adam 0.00024 1024 360 0.188 0.803 GRU
RMSProp 0.00012 512 360 0.188 0.806 GRU
RMSProp 0.00006 1024 360 0.193 0.807 GRU
RMSProp 0.00024 1424 360 0.189 0.810 GRU
Adam 0.00054 1824 360 0.196 0.811 LSTM
RMSProp 0.00024 1024 360 0.185 0.811 GRU
RMSProp 0.00012 1424 360 0.195 0.816 GRU
RMSProp 0.00024 128 360 0.193 0.816 GRU
RMSProp 0.00012 1024 360 0.184 0.816 GRU
RMSProp 0.00024 1024 360 0.175 0.818 LSTM
RMSProp 0.00012 1824 360 0.187 0.823 GRU

Table 4: Best 20 models in hyperparameter grid search. Results are sorted
ascending by MSE in validation set. Values for all hyperparamaters which
grid search was done is shown.

Figure 13: Grid search results for GRU model without 1D convolution layer.
Boxplots of MSE grouped by different hyperparameter values.

3.4 Forecasting Accuracy Results

Forecasting was done to 18 machines. These 18 machines were randomly
selected from dataset and 3 random clusters were generated from these ma-
chines. This means that each cluster has 6 machines. Clusters formed this
way are described in Table 5.

Cluster Machine IDs in cluster
1 357, 832, 358, 764, 362, 609
2 500, 570, 504, 430, 531, 791
3 513, 417, 554, 1164, 261, 796

Table 5: All 3 randomly generated clusters and corresponding machine IDs
in cluster.

After the clusters were formed, data was preprocessed with Min-Max nor-
malization and multiple models were trained on each machine. Model hy-
perparameters were chosen on results got in Section 3.3. Each model was
trained with two different hyperparameters: Best marginal hyperparameters
and best combination of hyperparameters.

Best marginal hyperparameters means that the value for every hyperparam-
eter was chosen by selecting the hyperparameter value which provided best
performance in the validation set. Each boxplot seen in Figure 13 shows
MSE of all models where the hyperparameter has been fixed to some value,
and other hyperparameters can vary. For example hyperparameters for GRU
model with best marginal hyperparameter, each parameter value was chosen
based on results seen in Figure 13. Best combination of hyperparameters
means that the combination of hyperparameters which yilded the smallest
loss (MSE) on validation set when doing grid search. The fundamental differ-
ence here is that the best marginal hyperparameter only takes into account
one hyperparameter at a time, and the best combination of hyperparameters
tries to find best value for all hyperparameters.

80% of each machines data was used on training, and 20% of the data was
used to calculate validation metrics (MSE). Model performances were com-
pared by comparing model forecast accuracy in clusters validation set.

ARIMA(p, d, q) was used as a baseline model, parameters were chosen for
each machine automatically with Hyndman and Khandakar ARIMA opti-
mization algorithm introduced in Section 2.4.1.

39

Figures 14, 15 shows boxplot of all the RMSEs for each model trained. Quar-
tiles for RMSEs can also be seen in Table 6. Example forecast over the
clusters can be seen in Figures 16, 17 which shows the forecast of Model 9
vs the baseline ARIMA model. Model 9 was model with convolution layer
and LSTM recurrent layer, no activation used in output layer. The RMSE
was calculated for each machine from whole validation set forecast. All the
models are described in Table 7.

Model First quartile Median Third quartile
arima 0.168 0.238 1.090
model1 0.161 0.255 1.052
model2 0.158 0.249 1.037
model3 0.189 0.294 1.156
model4 0.183 0.281 0.997
model5 0.185 0.250 1.062
model6 0.160 0.235 1.003
model7 0.180 0.304 1.104
model8 0.166 0.248 1.054
model9 0.157 0.228 0.914
model10 0.161 0.228 0.988
model11 0.157 0.227 0.972
model12 0.162 0.228 0.909

Table 6: RMSE quartiles for all models.

40

M
o
d

e
l

n
a
m

e
M

o
d

e
l

e
x
p

la
n

a
ti

o
n

R
N

N
a
rc

h
it

e
ct

u
re

In
p

u
t

le
n

g
th

H
id

d
e
n

st
a
te

le
n

g
th

C
o
n
v
o
lu

ti
o
n

la
y
e
r

(k
e
rn

e
l

si
ze

,
n
u

m
b

e
r

o
f

fi
lt

e
rs

)

L
e
a
rn

in
g

ra
te

A
R

IM
A

B
as

el
in

e
A

R
IM

A
m

o
d
el

-
-

-
-

-

M
o
d
el

1
L

S
T

M
m

o
d
el

w
it

h
b

es
t

m
ar

gi
n
al

h
y
p

er
p
ar

am
et

er
s

L
S
T

M
36

0
10

24
-

0.
00

02
4

M
o
d
el

2
L

S
T

M
m

o
d
el

w
it

h
b

es
t

co
m

b
in

at
io

n
of

h
y
p

er
p
ar

am
et

er
s

L
S
T

M
36

0
18

24
-

0.
00

02
4

M
o
d
el

3
G

R
U

m
o
d
el

w
it

h
b

es
t

m
ar

gi
n
al

h
y
p

er
p
ar

am
et

er
s

G
R

U
36

0
51

2
-

0.
00

00
6

M
o
d
el

4
G

R
U

m
o
d
el

w
it

h
b

es
t

co
m

b
in

at
io

n
of

h
y
p

er
p
ar

am
et

er
s

G
R

U
36

0
10

24
-

0.
00

00
6

M
o
d
el

5
C

on
vo

lu
ti

on
L

S
T

M
m

o
d
el

w
it

h
b

es
t

m
ar

gi
n
al

h
y
p

er
p
ar

am
et

er
s

L
S
T

M
27

0
12

8
(2

4,
5)

0.
00

01
2

M
o
d
el

6
C

on
vo

lu
ti

on
L

S
T

M
m

o
d
el

w
it

h
b

es
t

co
m

b
in

at
io

n
of

h
y
p

er
p
ar

am
et

er
s

L
S
T

M
90

10
24

(1
8,

15
)

0.
00

01
2

M
o
d
el

7
C

on
vo

lu
ti

on
G

R
U

m
o
d
el

w
it

h
b

es
t

m
ar

gi
n
al

h
y
p

er
p
ar

am
et

er
s

G
R

U
18

0
10

24
(2

4,
5)

0.
00

01
2

M
o
d
el

8
C

on
vo

lu
ti

on
G

R
U

m
o
d
el

w
it

h
b

es
t

co
m

b
in

at
io

n
of

h
y
p

er
p
ar

am
et

er
s

G
R

U
60

14
24

(2
4,

35
)

0.
00

01
2

M
o
d
el

9
C

on
vo

lu
ti

on
L

S
T

M
m

o
d
el

w
it

h
b

es
t

m
ar

gi
n
al

h
y
p

er
p
ar

am
et

er
s.

N
o

ac
ti

va
ti

on
on

ou
tp

u
t

la
ye

r
L

S
T

M
90

10
24

(1
2,

15
)

0.
00

01
2

M
o
d
el

10
C

on
vo

lu
ti

on
L

S
T

M
m

o
d
el

w
it

h
b

es
t

co
m

b
in

at
io

n
of

h
y
p

er
p
ar

am
et

er
s.

N
o

ac
ti

va
ti

on
on

ou
tp

u
t

la
ye

r
L

S
T

M
90

10
24

(6
,

15
)

0.
00

01
2

M
o
d
el

11
C

on
vo

lu
ti

on
G

R
U

m
o
d
el

w
it

h
b

es
t

m
ar

gi
n
al

h
y
p

er
p
ar

am
et

er
s.

N
o

ac
ti

va
ti

on
on

ou
tp

u
t

la
ye

r
G

R
U

90
10

24
(6

,
35

)
0.

00
01

2

M
o
d
el

12
C

on
vo

lu
ti

on
G

R
U

m
o
d
el

w
it

h
b

es
t

co
m

b
in

at
io

n
of

h
y
p

er
p
ar

am
et

er
s.

N
o

ac
ti

va
ti

on
on

ou
tp

u
t

la
ye

r
G

R
U

60
14

24
(2

4,
35

)
0.

00
01

2

T
ab

le
7:

D
es

cr
ip

ti
on

of
al

l
m

o
d
el

s
u
se

d
in

S
ec

ti
on

3.
4.

41

42

Figure 14: Boxplot of RMSEs for all 18 machines with every model.

43

Figure 15: Boxplot of RMSEs for all 18 machines. Y-axis has been cut from
5, so some of the outliers has been cut off.

44

Figure 16: Forecast with Model 9 in clusters 1 and 2 compared to baseline
ARIMA model.

45

Figure 17: Forecast with Model 9 in cluster 3 compared to baseline ARIMA
model.

3.5 Time Complexity of Model Training

Both RNN architectures (LSTM and GRU) was trained with machine ID 357
data for 100 epochs. 90 timesteps was used as a input layer for all models.
Both RNN architectures were trained with and without Convolution layer
which had 5 kernels and kernel size 24. This makes 4 different models in
total, and time taken to train each of them was recorded.

Models were trained on IT Center for Science Ltd. (CSC) supercomputer
Puhti using NVIDIA Tesla V100 SXM2 32GB GPU.

Results for time taken to train each model is shown on table 8

Model Training time (s)
GRU 302.78
LSTM 335.86
GRU with convolution 238.26
LSTM with convolution 263.90

Table 8: Time complexity of all model architectures. Each model was trained
for 100 epochs with GPU.

4 Discussion

When comparing models based on RMSEs on validation set by looking at
Figures 14, 15 and Table 6 it can be seen that Convolution models seems to
perform better when therere is no activation function used in output layer
(Models 5-8 vs Models 9-12). Average median RMSE for convolution mod-
els with activation function was 0.25917 and for models without activation
function in output layer the average median RMSE was 0.22762. Difference
in average median RMSE between the models was 0.03155, in favour of mod-
els without activation functions in output layer. Average interquartile range
(IQR) for RMSE in models with activation function was 0.88293 and for
models without activation function 0.78625.

Average median RMSE for LSTM model without convolution layer (Models
1 and 2) was 0.251949 and for GRU modesl without convolution layer (Mod-
els 3 and 4) the average median RMSE was 0.287678. LSTM arhitecture
outperformed GRU by 0.035729 when measured by average median RMSE

46

and models did not have convolution layer. Average IQR for RMSE with
LSTM models was 0.88504 and for GRU 0.88989.

When comparing the models with convolution layer but without activation
function in output layer it can be seen that GRU RNN architecture per-
forms better. LSTM had average median RMSE of 0.22788 with average
IQR of 0.79161, and GRU had average median RMSE 0.22735 with IQR of
0.78088.

When looking at Table 8 it can be seen that GRU RNN architecture seems to
be faster to train than LSTM. This happens in both cases, with and without
convolution. This seems logical since GRU contains less weights to optimize
than LSTM. GRU was 29.36 seconds faster than LSTM on average when
including models with and without convolution layer, and training for 100
epochs.

Interesting result was that adding convolutional layer also reduced the time
required to train the model: It was 68.24 seconds faster to train models with
convolutional layer than without it for 100 epochs. This happened because
the input dimensions for recurrent layer got smaller from (90, 6) to (67,
5).

Combining the fact that GRU model with convolution layer (without ac-
tivation function used in output layer) was fastest to train and had best
forecasting accuracy, it can be said that it is the best RNN architecture from
the ones introduced in this thesis to forecast resource usage in data center
context.

This result can be used in data centers on multiple problems, since reliable
forecast of future resource usage is valuable information. Load balancing
in and between the clusters would be easier if there was reliable forecast of
upcoming load. Energy efficient scalable dynamic clusters could be created,
where no excess amount of nodes is powered on at any time.

Future work in this subject continues and even more efficient and accurate
architectures are tried to find to forecast the data center resource usage.
Also research on reinforcement learning utilizing this forecast on data center
process control is being done.

47

References

Adhikari, R. and Agrawal, R. (2013), An Introductory Study on Time Series
Modeling and Forecasting, LAP Lambert Academic Publishing, Germany.

Aggarwal, C. C. (2018), Neural Networks and Deep Learning, Springer,
Cham, Switzerland.

Akaike, H. (1974), ‘A new look at the statistical model identification’, IEEE
Transactions on Automatic Control 19(6), 716–723.

Andrae, A. and Edler, T. (2015), ‘On global electricity usage of communica-
tion technology: Trends to 2030’, Challenges 6, 117–157.

Bishop, C. M. (2006), Pattern Recognition and Machine Learning, Springer,
New York, USA.

Bitbrains (2013), ‘Gwa-t-12 bitbrains dataset’.
http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains.

Condit, G. (2019), ‘The lstm reference card’.
https://www.gregcondit.com/articles/lstm-ref-card Accessed on
16.12.2020.

Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L. and Muller, P.-A.
(2019), ‘Deep learning for time series classification: a review’, Data Mining
and Knowledge Discovery 33, 917–913.

Feng, J. and Lu, S. (2019), ‘Performance analysis of various activation func-
tions in artificial neural networks’, Journal of Physics: Conference Series
1237, 022030.

Gers, F., Schmidhuber, J. and Cummins, F. (2000), ‘Learning to forget:
Continual prediction with lstm’, Neural Computation 12, 2451–2471.

Glorot, X. and Bengio, Y. (2010), ‘Understanding the difficulty of training
deep feedforward neural networks’, Journal of Machine Learning Research
- Proceedings Track 9, 249–256.

Goodfellow, I. J., Bengio, Y. and Courville, A. (2016), Deep Learning, MIT
Press, Cambridge, MA, USA. http://www.deeplearningbook.org.

48

Han, J., Kamber, M. and Pei, J. (2012), Data Mining: Concepts and Tech-
niques, Third Edition, Morgan Kaufmann Publishers, Waltham, USA.

Haykin, S. (2009), Neural Networks and Learning Machines, Third Edition,
Pearson, New Jersey, USA.

Hewamalage, H. (2020), ‘Recurrent neural networks for time series forecast-
ing: Current status and future directions’, International Journal of Fore-
casting 37, 388–427.

Hochreiter, S. and Schmidhuber, J. (1997), ‘Long short-term memory’, Neu-
ral Computation 9, 1735–1780.

Horvath, T. and Skadron, K. (2008), Multi-mode energy management for
multi-tier server clusters, In Proceedings of the 17th international confer-
ence on Parallel architectures and compilation techniques, pp. 270–279.

Hyndman, R. and Athanasopoulos, G. (2019), ‘Forecasting: principles and
practice, 3rd edition’. OTexts: Melbourne, Australia. OTexts.com/fpp3.
Accessed on 26.08.2020.

Hyndman, R. and Khandakar, Y. (2008), ‘Automatic time series forecasting:
The forecast package for r’, Journal of Statistical Software 26, 1–22.

Kingma, D. and Ba, J. (2015), Adam: A method for stochastic optimization,
Published as a conference paper at International Conference on Learning
Representations, San Diego, USA.

Kwiatkowski, D., Phillips, P. C., Schmidt, P. and Shin, Y. (1992), ‘Testing
the null hypothesis of stationarity against the alternative of a unit root:
How sure are we that economic time series have a unit root?’, Journal of
Econometrics 54(1), 159 – 178.

Nawi, N., Khan, A., Rehman, M., Chiroma, H. and Herawan, T. (2015),
‘Weight optimization in recurrent neural networks with hybrid metaheuris-
tic cuckoo search techniques for data classification’, Mathematical Problems
in Engineering, Article ID 868375 .

Olah, C. (2015), ‘Understanding lstm networks’.
https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Accessed
on 16.12.2020.

49

Sammut, C. and Webb, G. I. (2011), Encyclopedia of Machine Learning,
Springer US, Boston, MA.

Tieleman, T. and Hinton, G. (2012). Lecture 6e rmsprop: Divide the gra-
dient by a running average of its recent magnitude, lecture slides, Neural
Networks for Machine Learning, Coursera.

Upton, G. and Cook, I. (1996), Understanding Statistics, Oxford University
Press.

Xue, J., Yan, F., Birke, R., Chen, L., Scherer, T. and Smirni, E. (2015), Prac-
tise: Robust prediction of data center time series, in ‘11th International
Conference on Network and Service Management (CNSM)’, Barcelona,
Spain, pp. 126–134.

50

