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Spatial Statistical Modeling of Rockfall Hazard in a
Mountainous Road in Cantabria (Spain)

Daniel Jato-Espino, Alejandro Roldan-Valcarce , Felipe Collazos-Arias, and Jorge Rodriguez-Hernandez

Abstract—Rockfall events are one of the most frequent types
of mass wasting in mountainous areas, causing service and traffic
disruption, as well as infrastructure and human damage. Hence,
having accurate tools to model these hazards becomes crucial to
prevent fatalities, especially in a context of climate change whereby
the effects of these phenomena might be exacerbated. Under this
premise, this article concerned the development of a framework
for assessing rockfall hazard in mountainous areas. First, a set of
factors expected to favor rockfalls were processed and aggregated
using spatial analysis tools, yielding a series of hazard maps with
which to fit observed data through statistical modeling. The val-
idation process was undertaken with the support of a database
containing the number of rocks removed from a mountainous road
section located in Cantabria, northern Spain. The results achieved,
which demonstrated the accuracy of the proposed approach to
reproduce rockfall hazard using frequency data, highlighted the
primary role played by factors such as slope, runoff threshold,
and precipitation to explain the occurrence of these events. The
effects of climate change were considerably influenced by the
fluctuations in the projections of precipitation, which limited the
variations in the spatial distribution and magnitude of rockfall
hazard.

Index Terms—Climate change, hazard mapping, rockfall, spatial
analysis, statistical modeling.

I. INTRODUCTION

TOGETHER with flooding, mass wasting is the most fre-
quent and fatal natural disaster, causing major economic

and human losses worldwide [1], [2]. Haque et al. [3] undertook
a comprehensive review of the 476 fatal mass movements occur-
ring in Europe during the last 20 years (1995–2014), revealing
a total of 1370 deaths and 784 injuries, with an annual average
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economic loss of 4–7 B€. Mountainous zones are particularly
prone to these phenomena, especially in the form of rock slides
or rockfalls, due to the sensitive morphologic characteristics of
these areas [4], [5].

An increasing trend in the number of fatalities derived from
these processes was identified from 2008 to 2014, which might
be also related to the effects of climate change, since heavy
rainfall was identified as the main factor triggering the occur-
rence of mass movements [3]. However, there is a variety of
other topographic, geologic, and hydrologic factors contributing
to generating slope instabilities [6]. In consequence, the man-
agement and processing of data to characterize these factors is
crucial to properly evaluate and model the hazards represented
by these phenomena [7].

As a result of the previous considerations, the assessment of
mass wasting is an increasingly widely addressed topic in the
literature [8]–[10]. Since their spatial distribution is argued to
be crucial in prioritizing areas showing greater susceptibility
to experience these phenomena [11], Geographic Information
Systems (GIS) has been widely used to map these phenomena
throughout the years.

Creating hazard maps is especially interesting for preventing
rockfalls, which are particularly sudden mass movements [12]
that require ex-ante prediction models. This circumstance has
motivated the development of a number of studies devoted to
the spatial modeling of rockfall hazards throughout the last years
[13].

The most recent trends in this area focus on addressing
rockfall geohazard through artificial intelligence. This includes
artificial neural networks [14], ensemble models [15], learn-
ing classifiers [16], Gaussian mixture models [17], which
are applied to determine rockfall probability based on a se-
ries of conditioning factors. Although these techniques are
very powerful in computational terms, they are often used
as black boxes and calibrated indiscriminately to fit observed
data [18].

This lack of understanding of what happens “inside” the
models notably hinders rationalizing the relationships between
contributing factors and rockfall hazard. This situation is es-
pecially undesirable if it applies to high-stakes decisions as
those concerning fatal hazards such as rockfalls. In line with
recent discussions in the field of machine intelligence [19],
future efforts to model rockfall should be oriented to developing
interpretable models.

Still, intelligibility may not be enough to produce useful
models. To this end, it must be coupled with simplicity. In
this sense, another important common characteristic found in
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Fig. 1. Scheme of the approach taken for the spatial statistical modeling of
rockfall hazard.

recent related literature is the use of 3-D numerical models
and simulations to account for the kinematics and trajectories
of rocks [20]–[23]. However, these models are often complex,
demanding in computational terms and difficult to reconcile with
spatial tools such as GIS.

Therefore, these approaches might be against the traditional
promotion of simple and parsimonious predictive models with
the potential to be generalized over time and space [24]. This
aspect is also related to data needs, whereby some methods
require rather specific geomorphological information to enable
their application. In the end, both situations hinder the replica-
bility of the models in other areas, thereby endangering their
ultimate purpose as support tools for better preventing rockfall
events.

As a result of the considerations extracted from the review
of recent related literature, a research gap was identified in the
development of simple, accessible, and interpretable methods to
model rockfall hazards in mountainous roads. Hence, the aim of
this research was to develop a spatial methodology combining
all these characteristics to model rockfall frequency based on
its relationship to a series of contributing factors. To this end,
the proposed approach relied on easy-to-understand statistical
techniques and globally available data, in order to facilitate its
implementation in GIS and, therefore, its adoption by public
entities used to handle spatial information for better planning
rockfall hazard. The application of the methodology, which was
tested in a mountainous road in Cantabria (Spain), also included
the simulation of the impacts of climate change on rockfall
hazard.

II. METHODOLOGY

The approach taken for modeling rockfall susceptibility is
summarized in Fig. 1, which illustrates its four main steps. First

Fig. 2. Location of the study area and buffer distances considered to model
the number of rockfall events reported along the monitored road section.

was the spatial analysis of the data required to characterize a
series of factors expected to contribute to rockfall via geopro-
cessing tools, in order to produce a series of hazard maps using
weighted sum techniques. Then, the relationship between the
values included in these hazard maps and the number of rocks
removed from the road section monitored was determined using
the Spearman’s correlation coefficient. The statistical modeling
step ended by building a multiple regression analysis (MRA) to
determine the combination of weighted factors that maximized
the fit to the observed rockfall data. This included the recalcula-
tions required to project the results when considering the impact
of climate change. More details about the proposed methods
are given below, once an overview of the characteristics of the
study area and the list of proposed factors contributing to rockfall
hazard has been provided.

A. Study Area

The study site was located along a section of the N-621
road, in the surroundings of The Hermida Gorge, which is
situated in the frontier between the provinces of Cantabria and
Asturias, in the north of Spain (see Fig. 2). This is the longest
gorge in Spain, with a length of 20 km, and belongs to the
European Natura 2000 network as a Zone of Special Protection
for Birds [25]. It is crossed by the Deva River and belongs to the
Massif of Ándara, in the limits of the Picos de Europa National
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Fig. 3. Geological map and stratigraphic column of The Hermida Gorge.
Adapted from [30].

Park, the oldest (1918) and the third most visited National Park
in Spain [26].

About 2500 vehicles per day circulate along the road section in
The Hermida Gorge, a value that increases to 7500 in the summer
season [27]. In contrast with the rest of Cantabria, which is
subject to an Oceanic weather, the abrupt orography of this area
favors a microclimate combining the Mediterranean, Oceanic
and Alpine conditions. This results in values of annual mean
precipitation of 1200 mm, with minimum and maximum mean
temperatures of 8 and 28 °C, respectively [28].

The gorge is a combination of Variscan and Alpine thrusts that
converge on a basal thrust in its southern edge. Its geological
evolution took place under diagenetic conditions, with only a
few zones experiencing a low degree of metamorphism [29].
The study area encompasses a series of stratigraphic levels as
illustrated in Fig. 3. There is a succession of Palaeozoic rocks
with ages ranging from the Lower Cambrian (550 myr) to the
Permian-Triassic (250 myr), with an important stratigraphic
lagoon that extends from the Lower Ordovician to the Upper
Devonian [29].

On the top of these formations are Quaternary deposits gen-
erated by geomorphological agents on the substrate, on the top
of which they are located discordantly [29]. Also, the mechan-
ical weathering of steep slopes results in scree formed by the
accumulation of free-falling blocks. When rockfall decreases,
these deposits become inactive and are occupied by vegetation
and soils. In addition to these units, the surface also includes
anthropic deposits caused by backfilling tasks for construction
purposes [29].

The study area is a fluvio-karstic gorge whose landform is the
result of the combination of fluvial and fluvial-torrential incision
processes, as well as of karstification and gravitational processes
related to steep slopes. Its 20 km in length includes points of the
unevenness of up to 1000 m, which favors the existence of a wide
range of processes, some inherited from the past and some others
still active. Thus, the geomorphological interest of The Hermida

Gorge is outstanding, including elements such as karst cavities,
arches, and other landforms associated with slope debris, tuff
formations, and ancient fluvio-torrential deposits [29].

Because of these particularities, numerous mass movements
have been reported across the study area for more than a century,
especially in the form of rockfall events [31]. Although the pas-
sage of time and the technological developments associated with
it have helped improve both the preventive and reactive control
over these instabilities, rockfall incidents are still recurrent in
The Hermida Gorge [32]. Not in vain, the Spanish Ministry of
Public Works has recently approved an 85 M€ project to improve
the layout of the N-621 road [33].

As a precedent to this project, the State Road Demarcation
in Cantabria has been monitoring the number of rocks removed
from the road in The Hermida Gorge over the last years. This
inventory collects data every 50 m from the N-621 road section
between the kilometer points (KP) 154 and 174. In particular, the
reports are structured as tables formed of the following fields:
“KP,” “Date,” “Description,” “Action,” and “Number of rocks.”

“Description” was a combination of the two last fields, since
it indicates the action taken (remove or sweep) to deal with
the falling rocks. In some cases, it also specified the size or
weight of the rocks reported (e.g., “Remove 5 rocks of 20
cm” or “Remove 2 rocks of 2 kg”). However, this informa-
tion was uneven throughout the inventory, which hinders its
utilization for modeling purposes. In consequence, rockfall
hazard was approached using frequency (number of rocks)
as an indicator to represent whether this condition existed
or not.

The data extracted from this inventory corresponded to 2007.
This period was selected because it represented the least altered
scenario by external mitigation measures installed afterward
such as protection barriers, whose presence at specific sites
might affect the reliability of the results to be achieved.

Overall, the number of rocks retired from the road during
2007 amounted to 14 717. This figure was unevenly distributed
in temporal terms, yielding monthly average and standard devi-
ation (STD) values of 1226.42 and 360.36 rocks, respectively.
Almost 40% of these phenomena occurred between February
and May, coinciding with the melting season in the study area.
Regarding the location of the events reported, the data collected
proved that almost 50% of them took place within the last
5 km of the section monitored, where the difference of altitude
between the road and the surrounding mountains is particularly
remarkable.

Instead of using complex numerical models to represent rock
kinematics and trajectories, buffer areas were established at
200 m on each side of the monitored road section (see Fig. 2)
to account for the source of the instabilities that caused the fall
of rocks at every KP monitored [34]. Furthermore, to better
represent the progressive influence of the slopes on the num-
ber of rocks removed from the road, these buffer areas were
divided into four portions at 50, 100, 150, and 200 m from
the road [35], as represented in Fig. 2. Hence, rock detach-
ments from closer areas were more likely to end falling to
the road, whereas the trajectory of further instabilities may be
interrupted by the shape and relief of slopes before reaching the
surface.



6732 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE I
DESCRIPTION OF THE DATASETS COLLECTED AND FACTORS TO PRODUCE

THROUGH THEIR GEOPROCESSING

B. Description of the Factors Contributing to Rockfall Hazard

To boost the replicability of the proposed approach, the
data required to model rockfall hazards in the monitored road
section were selected to result in a collection of information
widely available worldwide. Although elevation, lithological,
and land cover data were collected from regional and national
sources for the sake of precision, they can also be acquired
using global repositories [36]–[38]. Table I provides a descrip-
tion of these data, their format, and resolution, as well as the
rockfall-related factors to which they led and their corresponding
units.

Apart from their potential to be replicated elsewhere, this set
of factors was also selected for their suitability to capture both
intrinsic (topography, geology, and hydrology) and extrinsic (cli-
mate and land cover changes) [39], [40] aspects, being similar to
those used in previous related studies [41]–[43]. Other variables
such as slope aspect and wind speed were not considered for this
case study. The former is difficult to normalize and aggregate
with other factors, whilst the values associated with the latter
are low in the study area, ranging from 20 to 28 km/h during the
period under analysis.

The first input was the digital elevation model (DEM), which
was acquired from the Spanish Geographic Institute [44]. This
variable might be used straightforward as a potential contribut-
ing factor to rockfall; however, the relationship between eleva-
tion and landslide hazard is not clear [45]. On the contrary, slope
(f1) has been found to be one of the most relevant factors for es-
timating these phenomena [46], since steeper slopes commonly
result in higher stresses in the terrain [6]. Other DEM-derived
variables, such as slope aspect or curvature, have been reported
to provide a weak predictive ability [47] and were therefore
discarded henceforth.

Lithology (f2) stemmed from the lithostratigraphic map avail-
able at the spatial data infrastructure of the University of Ex-
tremadura [48]. The lithology and degree of alteration of the
terrain influence its physical and mechanical properties, which
eventually affect its potential stability [49]. Consequently, this

factor was scored according to the mineralogical composition,
texture, compaction, size, shape, and cementation of the particles
forming the rocks or sediments [50]. Hence, materials with a low
degree of cementation, fine grain size (silty clay or silty clayey
sand), or wide gradation range are more likely to be instable.
Moreover, lithological units with high contents of clay, espe-
cially in the form of montmorillonite, are very sensitive to water
absorption, favoring the expansion of the terrain. The washing of
salts contained in certain clay types produces a particle structure
rearrangement that reduces their shear strength. In addition, the
alternation of materials with different resistance, compaction,
and permeability causes heterogeneities in the global behavior
of the resulting mass, which also facilitates the existence of
instabilities. Under these considerations, the scoring framework
defined ranged from 0.1 (conglomerate) to 0.9 (clay), including
intermediate values such as 0.2 (limestone), 0.4 (gravel), or 0.7
(blocks and boulders).

The map produced by the CORINE land cover project [51]
was used to represent the runoff threshold of the terrain surface
in the study area (f3) according to the values approved by the
Spanish Official State Gazette [52]. This factor was proportional
to rockfall hazard, since high permeability facilitates rainfall
infiltration, which endangers intergranular friction and cohesion
and alters the suction and shear strength of the soil [53].

The normalized difference vegetation index (NDVI) (f4) was
used to represent the amount, quality, and development of veg-
etation in the study area [54]. The higher the value of NDVI,
the greater both the protection of the terrain against erosion [55]
and the growth of roots increasing the cohesion of the terrain
[56]. This factor was determined as the quotient between the
difference and the sum of the fourth (visible red) and fifth (near
infrared) bands of the Landsat 8 satellite [57].

The last two variables were trigger factors symbolizing the
meteorological conditions of the study area: precipitation (f5)
and thermal amplitude (f6). On the one hand, precipitation can
provoke water infiltration processes in the soil and modify the
morphology of the terrain due to its erosive potential [58]. On
the other hand, extreme maximum and minimum temperatures
contribute to exacerbating freeze-thaw cycles, which in turn
favors saturation and swelling processes [59] and increase the
frequency of mass movements [3]. Both factors were determined
from February to May, which represented the period with the
most unfavorable conditions in these terms. The data required
to compute these factors stemmed from the stationary climate
maps of version 1.4 of WorldClim [60], which contain long-term
average monthly precipitation and temperature data.

To further characterize the interaction between these me-
teorological factors and rockfall hazard, future variations in
precipitation and temperature were explored by considering the
effect of climate change through the projections made by the
Intergovernmental Panel on Climate Change (IPCC) [61]. In
particular, the downscaling and calibration of the outputs corre-
sponding to three General Circulation Models (GCM) derived
from this report, namely CNRM-CM5, HadGEM2-CC, and
MIROC5, were considered for comparative purposes using the
WorldClim 1.4 data for the years 2050 (average for 2041–2060)
and 2070 (average for 2061–2080) [60]. Furthermore, variations
in precipitation and maximum and minimum temperature were
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TABLE II
GEOPROCESSING TOOLS USED TO GENERATE ROCKFALL HAZARD MAPS FROM

A SERIES OF CONTRIBUTING FACTORS

modeled according to representative concentration pathways
(RCPs) with radiating forcing levels of 4.5 (RCP4.5) and 8.5
(RCP8.5) W/m2 [62].

C. Spatial Analysis

The first part of the methodology was devoted to the spatial
processing and management of the data listed in Table I. Table II
compiles the set of ArcGIS 10.1 [63] geoprocessing tools used
to generate the maps associated with these factors, as well as
that of rockfall hazard stemming from their aggregation and
the summary statistics obtained across the four buffer distances
considered.

The slope output determined the gradient of the terrain from
the DEM. The characterization of the lithologic factor involved
the scoring of the lithostratigraphic units according to the ma-
terials present in the zone, such that different soil groups were
created and rated based on their characteristics. The determina-
tion of the runoff threshold required the previous two factors,
since the calculation of this variable depends on the values of
slope and soil permeability of the underlying soil associated with
each land cover type in the study area [52].

With slight variations, the processing of the last three factors
was the same. Unlike previous variables, all the data related to
the NDVI and climate variables were produced on a worldwide
scale, such that their reference system was WGS84. Conse-
quently, these source data were transformed to ETRS89, which
is the official reference system in Spain. Since these factors were
provided in coarser resolutions than the DEM (see Table I), this
projection step was also used to resample these data to a cell
size of 5 m.

Then, these three factors were calculated in the study area.
In the case of the NDVI, this task involved the visible red
and near infrared bands, whilst precipitation was determined
as the average of the values in the study area from February
to May 2007. Thermal amplitude was obtained analogously but
including an extra step to compute the difference between the
maximum and minimum temperature.

Once all the factors fj were delineated, their values vj were
normalized (nj) by applying (1) using the “Raster Calculator”

TABLE III
WEIGHTING SCENARIOS PROPOSED TO FIT THE NUMBER OF ROCKFALL

EVENTS REPORTED ALONG THE MONITORED ROAD SECTION

tool. In addition, (2) was employed as a previous step in the
case of the NDVI, since this parameter can be negative [64] (see
Table I)

nj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vj

max
j

vj
,

if f j is directly proportional to rockfall hazard
min
j

vj

vj
,

if f j is inversely proportional to rockfall hazard
(1)

v̄j = vj +

∣∣∣∣min
j

vj

∣∣∣∣+ 1. (2)

The normalized factors were then aggregated, enabling their
weighted combination to obtain a global score indicating rock-
fall hazard [65]. Consistent with the second part of the method-
ology, a series of weighting scenarios as shown in Table III was
proposed to facilitate the statistical fitting of the rockfall events
observed in the road section monitored. These combinations
were designed to result in 1 balanced scenario, 14 scenarios
oriented to prioritize one of the variables to different extents,
and 3 scenarios in which two factors predominated over the
others. The latter were conducted to highlight the importance of
inherent (S14), sensitive to anthropogenic changes (S15), and
trigger (S16) factors, respectively.

The maps generated according to these combinations of
weights were used to extract the values of rockfall hazard in
the buffer areas as indicated in Table II. The summary statis-
tics computed in these sites included the minimum, maximum,
range, mean, STD, and sum of the pixels enclosed by the buffer
areas at distances of 50, 100, 150, and 200 m (see Fig. 2).



6734 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

D. Statistical Modeling

The second part of the methodology focused on the statistical
modeling of the rockfall events reported and the hazard maps
produced through geoprocessing. Unlike most previous related
studies, which applied binary logistic regression analysis to
model rockfall hazard due to the nature of the datasets available
for validation (existence or absence of events), the inventory
available in this investigation was in ordinal format (number
of rocks removed from the road). Hence, the Spearman’s rho
(ρ) was used as expressed in (3) to measure the strength of the
correlation between the number of falling rocks and hazard maps

ρ = 1− 6
∑

D2

N (N2 − 1)
(3)

where D is the difference between the ranks of the variables
and N is the number of observations. To transition to a more
realistic spatial scale, the data corresponding to the segments into
which the road section was divided in the monitoring campaign
(50 m) were aggregated per KP, resulting in a value of N = 20
(from KP 154 to KP 174). Consequently, the scores obtained
across the buffer areas considered were combined per KP too,
weighting them according to their proximity to the road. Hence,
the buffer zones of 50, 100, 150, and 200 m were multiplied by
0.4, 0.3, 0.2, and 0.1, respectively, in order to represent how the
influence of the surrounding areas on rockfall hazard decreased
proportionally with the distance from the road [35].

Since both the values of Spearman’s rho and the combinations
of weights proposed in Table III consisted of continuous data,
the strength of their relationships was measured through MRA
according to a significance level of 0.05 [66]. Thus, the Spear-
man’s rho performed as the response (r) and the weights as the
predictors (pi) in the MRA model, which aimed at estimating the
relationships between all the t predictors involved. In addition
to linear terms, first-order interactions were also included in
the model as formulated in (4), since some of the variables
considered in Table I were expected to produce combined effects

r = C0 +

t∑
i = 1

Cipi +

t∑
i = 1

t∑
k = 1

Cikpipk + e (4)

such that C0 is the constant, Ci are the coefficients by which
the predictors pi are multiplied and e is the error of the model.
The reliability of MRA was validated through a residual anal-
ysis, whereby the assumptions of normality, homoscedasticity,
multicollinearity, and independence were verified as described
in Table IV. Normality and homoscedasticity were evaluated
through the p-values of the Ryan-Joiner [67] and Levene’s
tests [68], respectively. Multicollinearity was detected based
on the value inflation factor (VIF) reached by the predictors
according to a threshold of VIF < 10 [69]. Finally, the inde-
pendence of residuals was corroborated using the significance
tables presented in Savin and White [70], which required that the
Durbin-Watson statistic was between the lower (dL) and upper
bounds (dU) corresponding to the number of observations (N )
and predictors (t) in the MRA model.

Moreover, the accuracy of MRA was measured through the
joint consideration of the standard error of the regression (S)
and different forms of the coefficient of determination: standard

TABLE IV
REQUIREMENTS AND VERIFICATION PROCEDURES USED TO CHECK THE

ASSUMPTIONS OF MRA

(R2), adjusted (R2
adj.), and predicted (R2

pr.). The R2
adj. coeffi-

cient adjusts the power of MRA to the number of predictors
used, whilst R2

pr. consists of calculating the regression equation
as each observation is removed from the dataset systematically,
in order to validate the capacity of the model for making new
predictions.

Since the eventual goal sought was the identification of the
combination of weights that maximized the values of the Spear-
man’s rho, the R2

pr. coefficient was given preference over the
other goodness-of-fit measures due to its extrapolation potential.
The weights were determined according to the contributions
of the terms to the MLR model resulting in the highest R2

pr.
Hence, the optimal weight w̄fj of a factor fj was computed as
its contribution as a linear term (clin) and the sum of half of its
contributions in the q interaction terms (cintm ), as described in
the following equation:

w̄fj
=

clin + 1
2

∑q
m=1 cintm∑t

i=1

(
clin + 1

2

∑q
m=1 cintm

) . (5)

Furthermore, the geoprocessing tasks summarized in Table II
were replicated using these optimal weights and the values of
precipitation and thermal amplitude under nonstationary condi-
tions, in order to produce hazard maps indicating the impact of
Climate Change on rockfall for the years 2050 and 2070 under
the RCP4.5 and RCP8.5 trajectories.

III. RESULTS AND DISCUSSION

This section presents and analyses the results produced
through the spatial statistical modeling of rockfall hazards in
The Hermida Gorge. The outputs derived from this case study
are structured according to the two methodological steps into
which the proposed approach was divided: spatial analysis and
statistical modeling.

A. Spatial Analysis

The geoprocessing of the contributing factors included in
Table I yielded the maps represented in Fig. 4. Fig. 4(a) illustrates
the slope conditions of the study area, which ranged from 0°
to 86.98°, with an average value of 27.89°. This is equivalent
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Fig. 4. Rockfall hazard-related factors in the study area. (a) Slope (°). (b)
Lithology (Score). (c) Runoff threshold (mm). (d) NDVI (Score). (e) Precipita-
tion (mm). (f) Thermal amplitude (°C∗10).

to approximately 53%, which highlights the abruptness of this
mountainous area, characterized by having very steep slopes and
even vertical walls in some localized spots.

The lithological map depicted in Fig. 4(b) revealed a predom-
inance of limestone in the surroundings of The Hermida Gorge,
with a notable presence of sandstone and combinations of gravel,
sand, and silt too. The lithological units in the map were rated
from 0.1 to 0.9 according to their contribution to producing
instabilities based on their composition, texture, compaction,
shape, and cementation and the classifications suggested in
previous studies in some municipalities close to the study area
[71], [72].

Lithology was also considered for the determination of the
runoff threshold of the study area [see Fig. 4(c)], since this
variable depended on both the permeability of the underlying
soil and the slope of the terrain. As a result, the combination
of materials such as clays or slates with steep slopes and sur-
faces with low percolation potential led to low values of runoff
threshold and, consequently, low infiltration to the ground. The
NDVI map shown in Fig. 4(d) was also related to the surface
of the study area, such that those zones presenting the highest
values of NDVI provided the greatest protection against erosion
phenomena.

Finally, the maps corresponding to the two meteorological
variables, represented in Fig. 4(e) and (f), exhibited a very
similar pattern. The largest values of precipitation and ther-
mal amplitude were located in the most elevated areas, where
precipitation can reach up to 2000 mm and average minimum
temperatures decrease to 4 °C approximately. On the contrary,
the lowest values for both variables corresponded to valleys,
including the vicinity of the road section monitored, in which
weather extremes were smoother.

To address the evolution of rockfall hazard in the future due
to climate change, precipitation and thermal amplitude maps
were also prepared under nonstationary conditions, leading to
the results represented in Figs. 5 and 6. These climate change
projections corresponded to a series of combinations of RCP4.5

and RCP8.5, year (2050 and 2070), and GCM (CNRM-CM5,
HadGEM2-CC, and MIROC5). The spatial patterns of the maps
remained constant for both factors, such that the highest el-
evation areas kept being associated with the worst values of
precipitation and thermal amplitude.

The slight differences between the stationary maps in Fig. 4
and those included in Figs. 5 and 6 laid on the ranges of values
achieved for each scenario. In the case of precipitation, the
scenarios involving an increase in rainfall concerned the CNRM-
CM5 models, regardless of the year and RCP considered. The
greatest increase in precipitation corresponded to the year 2070
and the RCP4.5 scenario, which represents medium-low green-
house gases concentration. This is compatible with the Fifth
Assessment Report (AR5) of the IPCC, whereby variations in
cumulative precipitation are space-dependent and not necessar-
ily proportional to GHC concentration levels, unlike extreme
rainfall events [73].

As for thermal amplitude, the maps in Fig. 6 coincided with
projecting an increase in the values taken by this variable under
all scenarios, as a result of an intensification of maximum
temperature due to climate change. These variations are in line
with the AR5 of the IPCC, according to which more frequent
and longer hot temperature extremes are expected in the future,
particularly in the RCP8.5 scenario due to a projected rise in
mean temperature from 2.6 to 4.8 °C [73]. This is consistent
with the results in Fig. 6, since the greatest variations in thermal
amplitude were associated with the year 2070 and the RCP8.5
scenario, especially for the MIROC5 model.

The maps produced to represent the factors contributing to
rockfall hazard (see Fig. 4) were normalized using (1). In the case
of NDVI, (2) was previously applied to deal with its negative
values. In addition, precipitation and thermal amplitude were
normalized according to both the stationary and climate change
conditions, such that the values of max

i
vj in (1) corresponded

to the maps depicted in Fig. 5(d) (114.75 mm) and Fig. 6(l)
(95.25 °C∗10). This course of action enabled accounting for the
impact of the variations between both situations (stationarity and
climate change) on rockfall hazard.

Hence, the normalized versions of the maps shown in Fig. 4
were aggregated according to the weighting combinations pro-
posed (see Table III), yielding the results depicted in Fig. 7. The
predominance of some factors resulted in heterogeneous maps
in which the values ranged from low to high hazard, especially
those related to f3 [see Fig. 7(d) and (j)] because of the variations
in the filtration capacity of different land cover types. Instead,
other maps such as Fig. 7(i) and (m) were rather homogeneous,
either by including mainly low or high values, due to the distribu-
tion of f2 and f6 in relation to the remaining factors. Overall, the
maps in Fig. 7 represented extreme hazard situations. Therefore,
their subsequent interpolation through statistical modeling was
aimed at maximizing the fit to the rockfall data reported in the
study area.

B. Statistical Modeling

The application of (3) yielded the results illustrated in Fig. 8,
which represents the Spearman’s correlation between the sum-
mary statistics of the hazard maps obtained from the weighting
scenarios in Table III and the number of rocks removed from the
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Fig. 5. Projections of precipitation (mm) obtained for different RCP, years and models. (a) RCP4.5; 2050; CNRM-CM5. (b) RCP4.5; 2050; HadGEM2-CC. (c)
RCP4.5; 2050; MIROC5. (d) RCP4.5; 2070; CNRM-CM5. (e) RCP4.5; 2070; HadGEM2-CC. (f) RCP4.5; 2070; MIROC5. (g) RCP8.5; 2050; CNRM-CM5. (h)
RCP8.5; 2050; HadGEM2-CC. (i) RCP8.5; 2050; MIROC5. (j) RCP8.5; 2070; CNRM-CM5. (k) RCP8.5; 2070; HadGEM2-CC. (l) RCP8.5; 2070; MIROC5.

monitored road section per KP. The values of range and STD
per KP provided the worst fit to the observed data, with none of
the correlation coefficients obtained proving to be statistically
significant (p-values < 0.05). In contrast, the minimum (MIN),
maximum (MAX), and mean yielded significant correlation
coefficients under all weighting combinations, except for those
scenarios in which lithology (f2), NDVI (f4), and thermal
amplitude (f6) were the predominant factors (S9, S11, and S13).

In consequence, the values of Spearman’s rho suggested that
f2, f4, and f6 were the variables with less influence on rockfall
hazard. On the contrary, in light of the results corresponding
to S8, S10, and S12, slope (f1), runoff threshold (f3), and
precipitation (f5) were the most relevant factors to explain the
number of rocks reported. In fact, the correlation coefficient
reached in S8, which corresponded to the scenario where the
slope predominated, was about 0.8 when using MIN (see Fig. 8).
The strength of the relationship concerning this statistic was
logical, since high minimum hazard values across a KP indicated
a majority of areas contributing to rockfall events.

Based on these considerations, MRA was carried out using the
statistically significant values of Spearman’s rho as a response
(r) and their corresponding MIN-based scenarios as predictors
(pi), in order to determine the combination of weights that best-
fitted rockfall frequency. According to Fig. 8, the number of
valid observations was 13, since the scenarios with a p-value <
0.05 were excluded. Table V summarizes the main features of the
MRA built, which involved 3 linear terms and 5 interactions. The
performance of the model was evaluated through the standard
error of the Regression (S) and the R2 coefficient, whose values
highlighted the accuracy of the results, such that 99.7% of the
variations in the Spearman’s rho were explained by the weights
of the factors. Furthermore, the value of R2

adj. corroborated the
adequacy of the number of predictors included in the model,
whilst R2

pr. guaranteed its predictive capability.
The validity of the MRA model was ensured by the outputs

derived from the residual analysis. The results of the Ryan-Joiner
test certified the normality of the residuals, since its p-value
was above the significance level (0.05). The application of the
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Fig. 6. Projections of thermal amplitude (°C∗10) obtained for different RCP, years and models. (a) RCP4.5; 2050; CNRM-CM5. (b) RCP4.5; 2050; HadGEM2-CC.
(c) RCP4.5; 2050; MIROC5. (d) RCP4.5; 2070; CNRM-CM5. (e) RCP4.5; 2070; HadGEM2-CC. (f) RCP4.5; 2070; MIROC5. (g) RCP8.5; 2050; CNRM-CM5.
(h) RCP8.5; 2050; HadGEM2-CC. (i) RCP8.5; 2050; MIROC5. (j) RCP8.5; 2070; CNRM-CM5. (k) RCP8.5; 2070; HadGEM2-CC. (l) RCP8.5; 2070; MIROC5.

Levene’s test enabled verifying the assumption of homoscedas-
ticity (p-value > 0.05), once the residuals were divided into
three groups to compare their respective variances. The VIF was
below 10 for all terms, which guaranteed that the predictors used
were not significantly correlated to each other and, consequently,
multicollinearity was not an issue. Finally, the value obtained for
the Durbin–Watson statistic was between the lower (dL= 0.090)
and upper bounds (dU = 3.182) associated with the number of
observations (13) and predictors (8) used, which verified the
independence of residuals.

The decimal representation of the contributions included in
Table V was used to determine the set of optimal weights that
best fitted the number of rocks removed from the study area. The
application of (5) yielded the following weights for the factors
involved in the MRA model: 0.668 (f1), 0.112 (f3), 0.055 (f4),
0.142 (f5), and 0.023 (f6). Consistent with the trend observed
in Figs. 7 and 8, these weights highlighted the predominant role
played by the action of gravity to favor rockfall because of the
existence of steep slopes (f1), which are vertical in several KPs
in the study area. This is in line with several previous studies

pointing out slope gradient as the main contributing factor to
rockfall hazard in mountainous areas [74], especially if elevation
exceeds 500 m above the sea level as in this case [75].

The next most important factors were rainwater percolation
in terms of mechanical degradation (f3) and weathering (f5).
As pointed out by Maleki [76], the presence of voids favors the
seepage of water, which results in forces acting on the slopes that
can eventually lead to rockfalls. The role of precipitation as a
triggering factor is exacerbated when coupled with temperature
fluctuations (f6) [77], which was in the next degree of relevance
as indicated in Table V, due to the addition of water from thawing
that seeps into the soil [78].

Although to a lesser extent, the role played by vegetation
(f4) in terms of protection of the terrain was also found to
be statistically significant for rockfall stability. This outcome
coincides with the findings of Wang et al. [79], who emphasized
the negative correlation between vegetation depth and rockfall
frequency. Other authors have also put a focus on the reforesta-
tion of hillslopes via native vegetation as a solution to reduce
future rockfalls [80].



6738 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 7. Rockfall hazard maps obtained through the aggregation of the factors according to the list of weighting scenarios proposed. (a) S1. (b) S2. (c) S3. (d) S4.
(e) S5. (f) S6. (g) S7. (h) S8. (i) S9. (j) S10. (k) S11. (l) S12. (m) S13. (n) S14. (o) S15. (p) S16.

Lithology (f2) was the only factor excluded from the model,
probably due to the difficulties associated with the quantification
of the physical properties of the rock units. This minor role
played by lithology coincided with some models also built for
Northern Spain, which highlighted that reasonably satisfactory
susceptibility models might be achieved only from a good DEM
and inventory data [81]. Still, this circumstance did not neces-
sarily indicate that the lithological characteristics of the terrain
were irrelevant for rockfall hazard. In fact, this variable was an

underlying factor in the calculation of the runoff threshold (f3),
as proven by the similarities between Fig. 4(b) and (c). Taking
this into account, all factors can be concluded to contribute to
rockfall hazard to a greater or lesser extent.

The reapplication of (3) using the optimal weights listed above
yielded a Spearman’s rho of 0.82 (p-value < 0.05), which im-
proved the highest values achieved through the consideration of
the initial combinations of weights (see Fig. 8). The aggregation
of the significant factors according to these weights resulted in
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Fig. 8. Spearman’s correlation coefficients reached between the hazard maps
yielded by the weighting scenarios and the number of rocks reported along the
monitored road section.

TABLE V
SUMMARY OF THE MULTIPLE REGRESSION MODEL BUILT FOR FITTING THE

SPEARMAN’S CORRELATION COEFFICIENTS CALCULATED FROM THE NUMBER

OF ROCKS REPORTED ALONG THE MONITORED ROAD SECTION

∗Values used to verify the four assumptions about the residuals of the model.

the rockfall hazard map shown in Fig. 9, in which the number of
rocks removed from each KP is shown for comparative purposes.

Overall, the map depicted in Fig. 9 was consistent with the
need for monitoring this particular road section, since its previ-
ous and subsequent areas corresponded to values of rockfall haz-
ard between very low and low. Instead, the road section selected
for the monitoring campaign was subject to high values of hazard
along most of its length. Furthermore, as highlighted in Fig. 9,
the locations with the highest and lowest rockfall frequency
coincided with the areas where the maximum and minimum
values of rockfall hazard in the vicinity of the road section were

Fig. 9. Overlap between the hazard map produced using the weights deter-
mined through statistical modeling and the density of rockfall events reported
along the monitored road section.

reached. This visual agreement further demonstrated that the
proposed approach provided a reliable and accurate means to
predict rockfall frequency.

Once the rockfall hazard map in Fig. 9 was validated both
in statistical and visual terms, the results were computed again
to consider the values of precipitation and thermal amplitude
corresponding to the 12 climate change scenarios represented in
Figs. 5 and 6. The percentage increases or decreases derived from
these maps in relation to the stationary situation are provided in
Table VI for comparative purposes.

The differences between the climate change and stationary
scenarios were strongly affected by the variability observed
in the projections of precipitation (see Fig. 5), which was the
second most important variable for determining rockfall hazard
( wf5 = 0.142). Instead, the low weight of thermal amplitude
( wf6 = 0.023) prevented this factor from producing greater
alterations in the results compiled in Table VI. Still, the worst
scenario for the CNRM-CM5 model in terms of precipitation
(RCP4.5 and 2070) resulted in an increment of 3.60% in the
statistic used to build the MRA (MIN). Therefore, the impact
of climate change was concluded to have a greater influence
on time-series analyses involving severe storms and heat waves
more explicitly. Instead, their inclusion in spatial assessments is
limited by the use of average or accumulated precipitation and
temperature data, which hinders the existence of large variations
in the distribution and magnitude of susceptibility to experience
natural disasters, such as rockfall events.
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TABLE VI
SUMMARY STATISTICS OF THE ROCKFALL HAZARD MAPS CORRESPONDING TO THE STATIONARY AND CLIMATE CHANGE SCENARIOS

IV. CONCLUSION

This investigation demonstrated the suitability of combining
spatial analysis and statistical modeling techniques to estimate
rockfall hazard hotspots in mountainous areas. To this end, onsite
reports accounting for the number of rocks removed from a
road section in The Hermida Gorge (Cantabria, northern Spain)
were used for validation. This approach, which also considered
the effects of climate change, filled a knowledge gap in what
concerns the development of interpretable and simple method-
ologies to prioritize rockfall hazard using globally available data.
This contrasts with most previous related studies, which focused
on modeling rockfall hazard under stationary conditions using
complex and opaque numerical models.

The results achieved are highlighted by their accuracy, result-
ing in high correlation coefficients between the hazard maps pro-
duced through spatial statistical modeling and observed rockfall
data. The most influential factors on this strong monotonic rela-
tionship included morphologic (slope), hydrogeological (runoff
threshold), and meteorological (precipitation) variables, repre-
senting the three main aspects involved in the occurrence of
natural disasters. Despite the notable importance achieved by
the weather factors in the statistical model built, the effects
of climate change on the spatial distribution and magnitude of
rockfall hazard were not conclusive for this study area and only
resulted in slight variations in its susceptibility to experience
these events.

The findings of this research shed light on the relationships
between the number of rockfalls reported in the road section
under analysis and the factors contributing to their frequency,
such that road managers can focus on the adoption of specific
actions and measures at critical sites to mitigate these phenom-
ena. In addition, either the methodology as a whole or some of
its components can be used to map mass wasting risk at other
mountainous locations around the globe, helping in the design of
adaptation strategies to deal with natural disasters. This course
of action might be undertaken in parallel with the examination
of future lines of research derived from this study, such as
the computerization of the methodology through an interface
to facilitate its potential implementation or the testing of the
proposed approach at other sites where spatial and monitoring
data are available at different resolutions.
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