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Abstract: Power electronic converters for power factor correction (PFC) play a key role in single-
phase electrical power systems, ensuring that the line current waveform complies with the applicable
standards and grid codes while regulating the DC voltage. Its verification implies significant
complexity and cost, since it requires long simulations to verify its behavior, for around hundreds
of milliseconds. The development and test of the controller include nominal, abnormal and fault
conditions in which the equipment could be damaged. Hardware-in-the-loop (HIL) is a cost-effective
technique that allows the power converter to be replaced by a real-time simulation model, avoiding
building prototypes in the early stages for the development and validation of the controller. However,
the performance-vs-cost trade-off associated with HIL techniques depends on the mathematical
models used for replicating the power converter, the load and the electrical grid, as well as the
hardware platform chosen to build it, e.g., microprocessor or FPGA, and the required number of
channels and I/O types to test the system. This work reviews state-of-the-art HIL techniques and
digital control techniques for single-phase PFC converters.

Keywords: power factor corrector; PFC; digital control; converter; Hardware-in-the-loop; HIL

1. Introduction

Active AC/DC converters ensure that the line current waveform complies with the ap-
plicable standards [1] and grid codes while regulating the DC voltage levels [2]. Searching
for improvements in efficiency [3], power density and costs results in higher complex-
ity control, involving multidisciplinary knowledge in design, development, testing and
manufacturing stages [4].

Diverse alternatives to early prototyping have been used, such as mixed signal simu-
lators [5], simulators with analog and mixed signal extensions [6], or using two simulators
at the same time. However, these techniques have long simulation times and their develop-
ment is complex [7]. Alternatively, Hardware-in-the-loop (HIL) is a technique for perform-
ing system-level testing of embedded systems in a comprehensive, cost-effective [8,9], and
repeatable manner [10].

The power converter is mathematically modeled and then, a discrete model is imple-
mented in a digital device, e.g., a microprocessor (µP), Field-Programmable Gate-Array
(FPGA) or Application Specific Integrated Circuits (ASIC), which performs a real-time
simulation of the power converter, the electrical grid and load. In these simulations, the
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digital controller is evaluated as the hardware under test [11] and all the I/O channels,
connecting the PFC model and the controller, are at low power levels.

This technique enables a real-time test of the actual controller to be carried out prior to
building the plant, so that the simulated parts can be replaced by those already physically
implemented as they become available; the test of the controller based on HIL avoids
damaging the real plant in extreme situations and the reduction of the development cost,
avoiding partial prototyping of the elements of the system and the cost of verification,
as well as breakdowns in a real system [12–15]. Beyond that, different electrical and
non-electrical systems are emulated on which a control action is validated through the
HIL concept [16]. So this can be configured to emulate plants of different applications
of electronic systems such as smart grids [17,18] and power converters [19–21], more
specifically in PFCs [22,23].

Currently, the HIL implementation is realized with different platforms (e.g., µP, FPGA,
ASIC) [24]. All these systems have common characteristics such as several processors
working in parallel; a computer in which the offline model is prepared; input and output
terminals interacting with external hardware; and a communication network that allows the
exchange of data [25]. The use of FPGAs is preferred because they facilitate the computing
parallelization; they allow smaller time-steps [26–28] and the possibility of optimizing
the processing speed and area [29,30]. When using fixed point in the models or in the
controllers, special attention must be paid to the resolution of the signals involved [7] to
avoid the effects of limit cycle, stability problems and a high error in steady state.

HIL has been widely used in electrical power systems with grid-connected power
converters [31,32], providing a reliable, economically effective and safe test-bench for
development of power converters and their digital controls, within a more decentralized
distribution power system scenario which imposes increasing efficiency and functionality
requirements. The advantage that HIL brings to PFC controllers is centered on the simula-
tion times that are handled in these systems. Since the PFCs work at the grid frequency,
they require quite long simulations, of hundreds of milliseconds, to check dynamics and
behaviors of the controller in the transients. PFCs and their controls play a key role in this
scenario and are selected as the target for this review. The paper is organized as follows.
Section 2 presents common technologies used in HIL. In Section 3, ways to model the
converter and how to configure its arithmetic are shown. Section 4 discusses the types of
digital control used in this type of application, while, in Section 5, the HIL testing strategies
that have been proposed in the literature are analyzed, finishing with conclusions.

2. HIL Technology

In a HIL simulation, the parts digitally simulated in real time totally replace the
actual physical components of the system. The Hardware-under-Test (HuT) is tested by
connecting it through input and output interfaces (e.g., filters or signal conditioners). It is
also possible to execute limited control actions in real time (e.g., opening and closing of
switches or disconnection of elements of the system). As is shown in Figure 1a, when the
hardware model includes the actual control, it is called a Controller hardware-in-the-loop
(CHIL). Since the energy system is virtually emulated, there is no real energy exchange
in these systems. This is the paradigm commonly used in the power electronics industry
to develop converter controllers that are tested using feedback signals from the controller
and generating their own signals that are subsequently sent to the HIL. In the case in
which the simulation involves energy transfer (Figure 1b), the system is called Power
hardware-in-the-loop (PHIL) [33]. Here, part of the power system is internally emulated
and the rest of the system is made up of a real hardware power device externally connected.
In this case an energy source (power supply) or sink is needed.

HIL systems have the following characteristics in common [25]:

i. several processors working in parallel that jointly execute the simulation in real-
time;
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ii. a computer in which the offline model is prepared in order to subsequently upload
it to the destination platform and monitor the simulation results in real-time;

iii. input and output terminals to interact with external hardware and
iv. a communication system that allows the exchange of data between the different

blocks that make up the system.

The choice of each element in a smart grid is evaluated in [33] relating them to
bandwidth, stability, model accuracy, limitations of smaller time steps, performance and
capability limits on actuators and sensors of the interfaces, nonavailability of assessment
methodologies, cost and optimization.
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The first HILs were based on the use of computers to carry out the simulations [34].
Its historical and technical evolution in the last 50 years is analyzed in depth in [35].

Despite the above, the use of FPGAs for modeling this type of system makes it
necessary to define the arithmetic type used. Determining factors of the system depend
on this decision, such as the simulation step, the hardware resources used in the FPGA
and the simplicity of design. To simplify this task, high-level tools are available, such
as MATLAB or PSIM models, which perform automatic translations into HDL code [34].
In [36], an in-depth analysis of the different software and tools which can be used for the
implementation of code in FPGAs in industrial applications, such as those discussed in
this work, is made. Another possibility is the use of commercial hardware tools, such as
spHIL [37], Typhoon HIL, dSPACE [38], Opal-RT or RTDS [39], which facilitate the design
of the models through graphical interfaces and preconfigured models. In [40], a comparison
of the different commercial simulators available is included. These FPGA-based systems
use complex models defined by the user without the need for optimization knowledge with
small integration steps (around 1 us) and PWM input reads of around 10–20 ns. However,
they are practically mandatory in complex systems such as [41], where the mitigation of
grid harmonics in photovoltaic inverters is studied, or [42], where a fast charger for electric
vehicles is tested. In these cases, although the commercial HIL facilitates the realization
of the model, the results obtained in terms of consumed resources or integration step are
not always optimized [34]. Some companies also offer customized HIL, like Power Smart
Control [43].

Commercial HIL

Recently commercial tools have emerged capable of carrying out HIL simulations.
HIL is described through schematics, such as electrical simulators. The tool can transform
the design of the user into an executable model on a hardware platform from the same
manufacturer. These platforms are based on microprocessors, FPGAs or a mixed architec-
ture. Although the equipment runs on an FPGA, it uses an embedded microprocessor to
implement the communications and SCADA-type functionalities. In this sense, Typhoon
offers its own integrated development environment (IDE) and schematic editor. Other
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manufacturers, such as SpeeGoat, Opal-RT [44] or dSPACE [45], use MATLAB/Simulink
as their editor. The user uses the Simulink libraries to design the model and, later, that tool
of the manufacturer compiles the model that will run in their software.

On the other hand, there are tools that, without being focused on performing HIL,
allow some models to be executed in various formats on FPGA-based hardware platforms.
NI LabVIEW is a tool based on the graphical programming paradigm called G used by all
kinds of instrumentation and control applications and includes SCADA functionality in the
tool. NI manufactures its own hardware platforms to augment the technical capabilities of
LabVIEW, from data acquisition cards to hardware acceleration platforms. The LabVIEW
FPGA functionality allows downloading models or part of them to FPGAs that can be used
to create HIL graphical models with the equations of the converter (in other words, it is
necessary to write the equations manually) [46]. However, in comparison with the VHDL
language, there are limitations, such as time resolution [47]. Another possibility is to use
the Real-Time toolbox of MATLAB/Simulink to download models on FPGAs. This option
is limited by the number of elements that the toolbox library has but, in return, it allows
designs through its schematics or the modeling of the equations in Simulink. In this sense,
the company SpeedGoat offers itself as an official partner for HIL from MATLAB/Simulink
for its schematics [48].

In [49], a review is made of the main commercial tools in HIL without acquiring a
high-cost HIL machine, mainly through evaluation tools. The study analyzes the theoretical
characteristics of the tools offered by Typhoon, LabVIEW (comparing “Control Design &
Simulation” and “LabVIEW FPGA” tools) and MATLAB/Simulink (comparing “Real Time
Desktop” and “Real Time” tools), by observing their specifications and limitations. In the
study, Typhoon is shown as the most powerful tool that includes more capabilities from
the hardware point of view and its modeling and simulation are more intuitive. LabVIEW
offers greater model customization capabilities. While MATLAB has the disadvantage that
its “Real Time Desktop” tool simulates inside the processor of the computer that runs it,
it does not show use/performance results in specific hardware and “Real Time” needs
a physical hardware device to be able to simulate. Table 1 gives a summary of the main
characteristics analyzed in [49].

Table 1. Comparative analysis of Typhoon, LabVIEW (“Control Design & Simulation” and “LabVIEW FPGA”) and
MATLAB/Simulink (“Real Time Desktop” and “Real Time”) tools, according to [49]. (Reprinted with permission from ref.
[49]).

Typhoon HIL
LabVIEW Simulink

Control Design &
Simulation LabVIEW FPGA Real Time

Desktop Real Time

Solvers
Exact

Trapezoidal
Euler

Runge-Kutta 1 (Euler), 2, 3, 4,
23 (variable), 45 (variable)

BDF (variable)
Adams-Moulton (variable)

Rosenbrock (variable)
Discrete States Only
SDIRK4 (variable)

Radau 5, 9, 13 (Variable Order)
(variable)

Gear’s Method (variable)

The solver used is
defined in the

logical and
mathematical
model chosen

during the
realization of each

design.

Discrete (no continuous states)
Ode8 (Dormand-Prince)
Ode5 (Dormand-Prince)

Ode4 (Runge-Kutta)
Ode3 (Bogacki-Shampirne)

Ode2 (Heun)
Ode1 (Euler)

Ode14x (extrapolation)

Data
acquisition

Allows data export
in various formats
during simulation

in HIL SCADA
(CSV, HDF5, HDF5,

MAT, TDMS)
HIL402 has built-in

oscilloscopes.

Allows to export results
directly in Excel or clipboard.

Need other
hardware to
display the

simulated signals.

The data of the different signals
can be saved and/or plotted.
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Table 1. Cont.

Typhoon HIL
LabVIEW Simulink

Control Design &
Simulation LabVIEW FPGA Real Time

Desktop Real Time

Clock
frequency

With the HIL402
hardware virtual
machine: 50 MHz

Simulating loops of “Control
Design & Simulation” at

different frequencies
(1 kHz, 1 MHz and in

between).
Maximum frequency in real

time (RT): 1 kHz

MyRIO-1900
Maximum Clock

Rate with
Zynq-7000 FPGA:

40 MHz

Maximum
possible

frequency in real
time (RT) in

normal mode:
1 kHz

In external mode:
20 kHz

Depends on
the hardware

to be used.

Switching
frequency

With the HIL402
hardware virtual
machine: 200 kHz

The switching frequency shall
not be higher than the clock: 1

kHz

Depends on the
hardware to be
used, but never
higher than the

clock frequency: 40
MHz

In normal mode:
1 kHz

In external mode
it is a function of

the selected
Duty:

fSW = fCLK ×
Duty

Depends on
the hardware

to be used.

Minimum
simulation

step

With HIL402
hardware: 500 ns 1 ms

Depends on the
model with a

theoretical
minimum of 25 ns

(40 MHz clock).

In normal mode:
1 ms

In external mode:
50 µs

Real Time
simulation

Works in Real Time
on the HIL402

virtual machine.

Simulation at various
frequencies (on a PC with 1

kHz clocks or derivatives and
with a 1 MHz NI HW or
similar), but to be a real

real-time simulation, only 1
kHz is allowed with steps or

steps of periods of 1 ms.

Realtime on
specified NI
hardware:

myRIO-1900.

In real time at the
specified

frequencies using
the computer’s
own processor.

In external mode
the circuit model
is converted to a
C/C ++ model
which implies a
higher frequency

to simulate.

In real time
on the

hardware
connected to

the
equipment

and linked to
the designed

model.

Resource
utiliza-

tion/occupied
area

Shows summary of
HW resources,

memory and SW
size. Use more

high-level built-in
resources.

Does not show details.

During the board
design, the report
shows low-level

components (slices,
LUTs, DSPs . . . ).

Allows analysis of the use of
resources.

Licensing

Free “Typhoon HIL
Control Center”

software
download and

registration.
Virtual machine

with a 1-year
license.

LabView 2019 and Multisim
14.2 require a license or the

45-day free trial.

Need the NI
myRIO module

included with the
hardware, and the
LabVIEW FPGA

payment module.

Simulink Real Time Desktop (not
Simulink Real Time) requires

license.
To make the circuit designs, you
need a paid “Simscape Electrical”

or a 1-month free trial version.

Type of
simulation On-line Off-line On-line Off-line On-line
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3. Converter Modeling

HIL implementations rely on precise mathematical models to replicate the power
converters, along with hardware platforms, in order to be efficient in real time applications.
In this section, proposed mathematical approaches and arithmetic used in the converter
operation as well as digital hardware implementations of the HIL are described.

3.1. Mathematical Model

Different mathematical models can be used to describe the behavior of an elec-
tronic converter. Although some HIL systems implements an average model of the
converter [50,51], the majority of HIL systems use switched models [52]. This is because
the switched models are more realistic, as they directly calculate the evolution of every
state variable in a small simulation step, being able to reproduce the high frequency events
such as the switching noise. Therefore, they are more useful for closed-loop debugging.

The average linearized small signal model [53] consists in linearizing of the system
around an operation point. The advantage of this approach is the easy understanding
of the system through circuit-based models. But the averaged linear time invariant (LTI)
approximation is not accurate enough for PFC applications [54]. As an example, in [22],
the converter is modeled via the averaged switch approach because the modeled equations
can be solved fast enough within the chosen small time step.

The whole power converter can be modeled with a set of differential equations that,
after discretization, result in a state space (SS) model which must be calculated using the
values of the state variables in every simulation step [34].

The average model Euler-Lagrange (EL) is used for obtaining the average model, and
its converters serve as a basis for obtaining the nonlinear models. In [55], a Lagrangian
approach is used to obtain the average model of a Boost converter and is proposed, which
recovers, under extreme duty ratio saturation conditions, the individual EL formulations
of the intervening topologies of the circuit. In [56], the average Boost converter circuit is
also written by EL equations.

The Hamiltonian modeling encompasses the Lagrangian and represents the systems
as interconnection ports, where the product of the port variables is the power, that is the
rate of change of energy [57]. The state variables are those related to energy store elements,
such as capacitors and inductors. Despite having specific mathematical and physical
interpretations, Port—Controlled Hamiltonian (PCH) model can be obtained by EL model
and both are mathematically similar to the models described in state space. An example of
application of the Euler-Lagrange, state space and PCH models is shown in [58].

In [23], the model of the PFC stage is reached by dividing the circuit into a linear part,
using a state space representation based on the Padé approximant and a nonlinear part,
given by a switch state dependent feedback.

Table 2 summarizes the main specifications of the proposed HILs which use different
mathematical approaches to comply with reliable models of converters. Moreover, contrast
experiments to validate the suitability of these models and their implementation in different
platforms are also highlighted.



Electronics 2021, 10, 1563 7 of 16

Table 2. Specifications of the proposed HILs.

Proposal Mathematical
Model Converter Experimental

Verification Platform

[47] LTI + State Space LLC resonant PSIM FPGA

[24] Average switch
approach AC-DC PFC MATLAB/Simulink

(CHIL simulation) PC

[34] State space/Euler
Lagrange Buck LT3430-1/LTC3892-

1/MAX1685 FPGA

[50] Euler-Lagrange Boost, Buck and
SEPIC

MATLAB/Simulink
(Real plant) DSP

[25] Padé approximation
with oversampling Rectifier PFC MATLAB/Simulation

(Real plant) FPGA

3.2. Arithmetical Possibilities

The election of the mathematical model must be associated with the choice of the
arithmetic to be used in the HIL model. The latter is responsible for defining key HIL
parameters, such as its size, e.g., memory or area requirements, or the minimum simulation
step, i.e., time resolution. The choice of the arithmetic depends on the target used for the
implementation (µP, FPGA, . . . ) but also the abstraction level and development tools due
to the language used must be considered (VHDL, C, Verilog, . . . ). For example, in [34], the
following VHDL classification is presented:

1. Real Arithmetic: this is the standard numeric type that uses double-precision floating-
point format. It cannot be synthesized, but it is useful to create a first approximation.

2. Float Arithmetic: this is a synthesizable floating-point arithmetic. It has the versatility
of floating point, but it needs many hardware resources.

3. Fixed Arithmetic: this is a fixed-point arithmetic. The designer must decide the
number of bits to the integer and the fractional parts of every variable, and it needs
much more design effort.

Floating point arithmetic is easier to use and translating equations from the mathe-
matical model to code is straightforward in most cases. An example of this application
is shown in [59] where the DCDC converter was described with single precision floating
point arithmetic with a state-space approach and two states. In cases where the simulation
step is critical, the fixed point is more interesting. In [7], a power converter is modeled
using different arithmetic and it is evidenced that the use of a fixed point increases the
processing speed and decreases the number of hardware resources used. This same result
is shown in Table 3, where an addition and subtraction operation are synthesized using
two numbers in fixed point and in floating point using xc7a100t-csg324-1 FPGA in Xilinx
Vivado, where the timing is nine times faster in the case of 32-bits integer than with 32-bit
floating point [60]. On the other hand, some platforms allow configuring the resources
consumed in an operation to adapt to the needs of the system. Table 4 shows an example of
how it is possible to define different resource settings and delay times in the same operation
using a multiplication of two floating point numbers employing xc7a100t-csg324-1 FPGA
in Xilinx Vivado.

Although synthesis tools have evolved enormously in recent years and these differ-
ences have been diminishing with new tools, these differences still exist. However, it
cannot be the only element to consider when choosing arithmetic since using fixed point in
complex converter models can involve a significant design effort that may not be attrac-
tive [34]. With the use of fixed point, it is necessary to define in each stage the location of
the point that will be fixed according to the range of values that the variable takes and it
will be necessary to modify it with each reconfiguration proposed.
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Table 3. Summary of the hardware resources and timing in an FPGA by performing addition and
multiplication operations with two 32-bit numbers using fixed point and floating point (int32 and
float32, respectively).

Operation DSP48E LUT Timing

float32 × float32 3 135 52.435 ns
float32 + float32 2 195 88.970 ns
int32 × int32 4 231 19.315 ns
int32 + int32 0 186 4.658 ns

DSP48E and LUT are digital signal processing logic and Look Up Table elements, respectively.

Table 4. Summary of the hardware resources and timing in an FPGA by performing multiplication
operations with two floating point numbers.

Operation DSP48E LUT Timing

float32 × float32 0 675 78.780 ns
float32 × float32 1 267 67.505 ns
float32 × float32 2 122 54.690 ns
float32 × float32 3 135 52.435 ns

4. Test

Testing controllers for power converters using HIL are gaining acceptance. Recent
proposals include the following representative examples:

- Statistical tests [61], such as the Monte Carlo method, that require multiple iterations
to simulate failure cases.

- Low-cost multi-solver real-time simulation environment [62], namely the real-time
extension of the virtual test bed (VTB-RT). In this proposal, for a given hardware
platform, the minimum time resolution is limited and only a limited bandwidth of the
system under test can be used. So it is necessary to pay attention to the compromise
between the VTB-RT platform cost and the bandwidth of the system under test.

- Reconfigurable HIL based on a top-down design flow [63] analyzed through a fault-
tolerant shunt active power filter application. In [64], it is also shown how HIL devices
are used to assist in the design, optimization and quality assurance of controllers from
the early design stage all the way to the type testing and release testing stage.

- HIL for the validation, in the time and frequency domains, of the input and output
impedances of converters achieving ultra-low latency in real time [65]. This work also
shows a comparison between real-time emulation and a reference hardware design
under steady-state and transient conditions.

5. Digital Control

The difference between the response obtained when the controller interacts with the
HIL and the actual converter is caused by the latency between the signals sent by the
con-troller and the output of the HIL. The total latency must be kept to a minimum by
using a very small-time interval during the simulation [66].

Generally, the control in PFC is done with two loops: an internal and fast current loop
to achieve near unity power factor, and an external and slow voltage loop to stabilize the
output voltage. In this case, usually three variables are necessary: input and output voltage
(vin and vout, respectively), and input current (iin), although there are other proposals in the
literature, as in [67–69], that eliminate the need to use the current sensor.

According to [70], current control techniques classify the digital control of the PFCs
into four groups (Figure 2):

1. Group I: Operation in discontinuous conduction mode (DCM) or the boundary condi-
tion between the continuous conduction mode (CCM) and DCM (Figure 2a).

2. Group II: Non-linear carrier (NLC) control of the line current, where the switching
instants are identified by the comparison of the current with a carrier signal, hysteresis
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band or a sliding surface that imposes the proportionality between the peak, valley,
or average current and the input voltage in each switching period (Figure 2b).

3. Group III: Linear control of the average current. Noise immunity improves compared
to the NLC technique at the expense of reducing the bandwidth of the current control
(Figure 2c).

4. Group IV: Phasor-based control. The input voltage is assumed to be sinusoidal, so the
modulation function that imposes the line current must be sinusoidal (Figure 2d).

As an example of Group I, in [71], the operation characteristics, the modeling and
the control system of the DC-DC SEPIC PFC converter in CCM and DCM are presented.
The authors compare two different controllers and finally, they suggest a new nonlinear
controller called Adaptive Passivity-Based Feedback Linearization Control.

The non-linear control, Group II, is the best adapted to the different operating points
of a non-linear and time-varying system such as the converter. In its original version it
is implemented with a simple comparator (in its average version, the complexity does
not increase substantially). These attributes make it a very interesting option to leverage
the digital circuit capabilities, improving the noise immunity and including predictive
algorithms. One example of this is [56], where the non-linear control of a boost converter
PFC and SEPIC converter is tested; while, in [72], nonlinear control techniques applied to
static power converters are implemented and compared in HIL: State Feedback Lineariza-
tion (SFL), passivity Based Control (PBC), and Interconnection and Damping Assignment
Passivity Based Control (IDA-PBC). Here, each model is associated with a control technique.
The EL model is the base model for the others. The Euler-Lagrange model is associated
with PBC control equations, SFL control uses the model description in state space (SS), and
the IDA-PBC control requires the PCH system.

Group III controls present the following advantages:

1. Its bandwidth of the current acquisition stage is smaller than in the non-linear version.
2. In bidirectional PFCs, the non-linear control may exhibit non-stable operating condi-

tions.

It has better immunity to high frequency noise due to its lower bandwidth (both sensor
and control loop), as well as acquisition techniques (synchronization between acquisition
and switching).

An example of the Group IV technique, based on the introduction of sinusoidal input
voltage, gaining immunity to grid disturbances, is shown in [73] where a traditional linear
control with two loops is proposed for a bridgeless SEPIC PFC converter. In [74], the
proposed control is based on a multi-thread software structure where time critical tasks
are performed in a fast interrupt service routine, repeated every switching cycle in a totem
pole PFC. Appropriate control measures are employed to address current spikes during
zero crossings and AC voltage drop handling issues.
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In [75], the contributions of FPGAs to the control of industrial systems, including
power electronic converters, are presented, establishing three main design rules that
focus on the algorithm refinement, the modularity, and the systematic search for the best
compromise between the control performance and the architectural constraints. Another
common option is to find the use of FPGAs together with processors [35] where the FPGA
carries out sampling and conditioning tasks of input and output signals in parallel to the
processor. Examples of this type of system are dSPACE and Opal-RT [35].

PWM

The pulse width modulator (PWM) is the block that samples the output signal of
the controller. In a first approximation to this block (Figure 3a), which corresponds to
natural sampling, the generation of PWM comes from the comparison of the modulating
signals, resulting from the control action, vc, and a linear function, the carrier, in the period
of switching. When a digital controller generates the control signal there is a double
digitization (Figure 3b) where the signal v*c is the output signal of the digital controller,
whose update period depends on the clock of the digital circuit, and v*cT, which is the
control signal sampled by the PWM block. If uniform sampling is adopted, the value of v*c
is taken at the beginning of each switching period to obtain the PWM signal (Figure 3c),
avoiding the occurrence of a vertical crossing [76].
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This comparison of the two signals generates a logic 0 and 1 output signal, indicating
the off and on state of the switch respectively. The resolution of the PWM depends on
the number of clock cycles in the switching period and the type of carrier. In [77], how to
increase the resolution of the PWM block is presented, oriented to prevent one of the limit
cycle conditions.

The literature shows examples of PWM that use from a minimum of 20 samples per
PWM period [59] to hundreds [64] or even thousands [78]. In addition, it is possible to
synthesize different types of digital pulse width modulators, depending on the relation-
ship between the sampling frequency and the switching frequency and different carrier
waveforms [79], and use numerically different PWM sampling and simulation steps (for
example, in the commercial tool Typhoon HIL602 the PWM sampling step is 20 ns, and the
simulation step is reduced to 500 ns [80]).

Control and carrier signals are both the elements under the test carried out by interact-
ing with the HIL and are finally implemented in the real system. Their implementation is
therefore not a model, but the actual design. It is common to adopt the switching period
as the sampling period for the controller, which introduces a known error and time delay
in comparison with the analog counterpart, so design constraints to limit those effects
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are introduced. However, the carrier signal of the PWM block or the NLC has the largest
resolution, allowed by the digital implementation of the controller in the actual converter,
because this resolution defines the achievable step change of the power variables, i.e.,
current and voltage. On the other hand, the higher the time resolution of the platform that
allocates the HIL, the closer are the results achieved to the actual converter response. FP-
GAs are preferred to develop HIL projects because of their capability of defining concurrent
digital blocks, and thus make the most of the clock time resolution.

6. Conclusions

This manuscript provides an overview of HIL and digital control techniques applicable
to single-phase PFCs. Initial verification stages in early PFC prototypes are avoided through
HIL, which reduces the product time to market and the development costs.

After introducing HIL and approaches used for PFC design and validation, an
overview of the available customized and more general tools is also given. From a user
perspective, the main differences rely on the maximum accuracy and resolution achieved in
each case and, generally speaking, customized tools result in better resolutions by selecting
the most suitable target, mathematical model and solver for each application. However,
more generalist tools provide a better integration with other tools required during the
design, or the final verification stages. The modelisation of the power converter is also a key
point to achieve the required accuracy and time resolution. State space, average and switch,
and Euler-Lagrange approaches are commonly used in HILs for PFCs. However, not only
is the mathematical model relevant, but also the selected target for the HIL. The most
commonly used target for HIL in PFCs is FPGAs, which allows the best time resolution
among the available targets.

The choice of technology and model to use for the development of a HIL depends
on the type of application and the available budget. To make a low-cost version, the
designer can use tools such as spHIL, which include a very intuitive graphical interface
to configure the pre-designed models and use an inexpensive FPGA (over 100 euros).
However, if it is necessary to design an ad-hoc model not included in a commercial product,
an economical solution is to design a custom model and implement it in an FPGA using
VHDL language, or use a NI myRIO device and design the HIL model using a graphical
language in LabView. Following Table 1, the latter limits the HIL capabilities but gains in
flexibility. When requiring higher performance, it is necessary to use a specific commercial
system for HIL, such as Typhoon HIL, dSpace or Opal-RT. These systems are scalable and
the design procedure of the HIL is carried out through the schematic of the power stage
in a very patterned way. However, the cost of this type of system is high (over several
thousand euros).

The digital controller receives inputs from the HIL and generates the switch-gate
signals. This implies that the HIL complexity, hardware resources in terms of both A/D
and D/A interfaces and processing capability should be adapted to the type of used
controller. Moreover, certain control techniques, such as current rebuilding, involve a high
time resolution, which also affects the decision about the mathematical model, solver and
selected target for HIL.

All in all, mathematical models, solvers, targets and digital controllers must be bal-
anced to speed up the verification stage of the power converter and its controller. These
proposals can be developed through more general high-level techniques, which are fast
and consume large hardware resources, or through ad hoc designs in which the designer
must specify the mathematical model, arithmetic and technology to be used based on their
needs.
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