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Abstract—In this paper, we describe an efficient iterative
algorithm for finding sparse solutions to a linear system. Apart
from the well-known L1 norm regularization, we introduce
an additional cost term promoting solutions without too-close
activations. This additional term, which is expressed as a sum
of cross-products of absolute values, makes the problem non-
convex and difficult to solve. However, the application of the
successive convex approximations approach allows us to obtain
an efficient algorithm consisting in the solution of a sequence of
iteratively reweighted LASSO problems. Numerical simulations
on randomly generated waveforms and ECG signals show the
good performance of the proposed method.

Index Terms—sparsity-aware learning, LASSO, sparse coding,
non-convex optimization

I. INTRODUCTION

The reconstruction of an unknown signal of interest from
noisy observations is a common problem in signal processing.
Often, this signal of interest corresponds to a sparse sequence
of events that can be modelled as the output of a linear system
whose input is a spike train. This happens, for instance, in
electrocardiography, where the observed ECG is composed of
a regular sequence of waveforms generated by the propagation
of electrical impulses inside the heart. In this case, the spike
train corresponds to the occurrence of the heartbeats and the
linear system models the path from the heart to the sensor
located on the body’s surface [1], [2]. As a second example,
we may consider the field of Gamma spectroscopy, whose
objective is to identify radioactive sources and their activity.
In this case, the spike train corresponds to the arrival times of
the detected particles and the linear system models the mea-
surement process [3], [4]. These two applications (as well as
many others) have another important common characteristic:
the negative co-occurrence of the events modelled by the spike
train. Indeed, in the case of electrocardiograms (ECGs), after a
cardiac cell activation there exists a so called refractory period
where the cell cannot be excited [5]. Similarly, in the analysis
of spectrometric data obtained through Type I counters, the
detector (e.g., a Geiger counter) has an associated dead time
during which it is unable to record another particle interaction
[6]. These physical constraints impose inactivity periods that
must be taken into account.

This work has been partly funded by the Spanish government through the
KERMES excellence network (ref. TEC2016-81900-REDT).

On the one hand, co-ocurrence has been extensively ex-
ploited in the field of computer vision [7], [8], but it has
received much less attention in other signal processing and
machine learning domains. On the other hand, many sparsity-
aware signal processing approaches have been proposed since
the introduction of the LASSO by Tibshirani in 1996 [9]: the
fused LASSO [10], which imposes both sparsity and flatness of
the obtained coefficients profile, the elastic net, which favors
sparsity obtained by correlated variables [11], model-based
compressive sensing [12], etc.

Unfortunately, very few approaches have been proposed so
far to simultaneously encourage both sparsity and negative co-
occurrence, i.e., a minimum distance among activations in the
latent spike train. In [1]–[4] an initial spike train was obtained
by means of the LASSO and a post-processing stage was then
applied to keep only the strongest activations and remove those
that did not respect the negative co-occurrence period. Then,
in [13] a novel penalty term, based on the cross-products
of the reconstruction coefficients, was added to the LASSO
cost function in order to enforce negative co-occurrence.
The resulting cross-products LASSO (CP-LASSO) approach
resulted in a non-convex optimization problem that was solved
using the successive convex approximations (SCA) technique.
However, although the proposed algorithm showed a good
performance, its computational cost prevented its application
to large datasets.

In this paper, we introduce an efficient iterative algorithm
to obtain an approximate solution of the CP-LASSO problem,
through a sequence of iteratively reweighted LASSO prob-
lems, that allows us to deal with thousands of samples. The
paper is organized as follows. Section II shows the problem
formulation. The CP-LASSO cost function and its efficient
minimization using the iteratively reweighted LASSO are
described in detail in Section III. Then, Section IV shows the
numerical results on randomly generated waveforms and ECG
signals. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION

Let us consider an observed discrete-time signal, y[n],
which corresponds to the output of an LTI system contam-
inated by noise, i.e.,

y[n] = s[n] ∗ h[n] + w[n], (1)
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where ∗ denotes the standard linear convolution, h[n] is the
length Lh impulse response of the LTI system, w[n] ∼
N (0, σ2

w) is additive white Gaussian noise (AWGN) with zero
mean and variance σ2

w, and s[n] is a sparse latent sequence:

s[n] =

K−1∑
k=0

Skδ[n−mk], (2)

with K indicating the total number of non-zero elements
(i.e., spikes, activations or events), Sk their amplitudes (which
are strictly positive in some applications), and δ[n] denoting
Kronecker’s delta. Substituting (2) into (1), we obtain

y[n] =

K−1∑
k=0

Skh[n−mk] + w[n]. (3)

Alternatively, (3) can be expressed more compactly as

y = Hs + w, (4)

where y = [y[0], . . . , y[N − 1]]> is the observation vector,
s = [s[0], . . . , s[N − 1]]> is the K-sparse latent activations
vector (K � N ) with

s[n] =

{
Sk, if n = mk;

0, otherwise,
(5)

H is the N ×N Toeplitz channel matrix,

H =



h[0] 0 · · · · · · 0

h[1] h[0]
. . . . . .

...
...

. . . . . . . . .
...

h[Lh − 1]
. . . . . . h[0]

...
...

. . . . . . . . .
...

0 · · · h[Lh − 1] · · · h[0]


, (6)

and w = [w[0], . . . , w[N − 1]]> is the noise vector.

III. PROBLEM SOLUTION

A. Minimization Problem: Cross-Products Penalized Cost
Function

Given the observation model in (4), our goal is finding a
latent vector ŝ that fulfills the following conditions:
• ŝ is P -sparse with P � N and P ≈ K (note that the

exact value of K is often unknown in practice) in order to
ensure a good localization ability of the latent activations.

• Hŝ is a good approximation of the unknown noiseless
signal x = Hs.

• Activations are not too close in order to respect the
restrictions imposed by the addressed physical problem .

Taking into account these constraints, we can express our
optimization problem as [13]

minimize
s

N−1∑
k=0

|s[k]|+ β

N−1∑
k=0

(
y[k]−

Lh−1∑
`=0

h[`]s[k − `]

)2

+

N−1∑
k=0

N−1∑
`=0

g[k − `] |s[k]s[`]| .

(7)

Here, with a slight abuse of notation, the first term represents
the conventional sparsity promoting L1-norm penalization
term. The second term measures the residual error, with the
parameter β allowing us to establish the desired tradeoff
between the residual error and the sparsity level of the recov-
ered activation signals. Finally, the last term aims to promote
solutions with not too close activations. Thus, the third term in
(7) penalizes the cross-products between samples, where g[k]
can be considered as a penalization window, which in practice
will be symmetric (g[k] = g[−k]) and of a rather small length
(g[k] = 0,∀|k| > Lg).

The reformulation of the optimization problem (7) in ma-
trix/vector form yields

minimize
s

‖s‖1 + β ‖y −Hs‖22 + |s|T G |s| , (8)

where H is given by (6), G is a symmetric Toeplitz matrix
with g[k] in its ±k-th diagonal, and |s| denotes the element-
wise absolute value of the vector s

B. Non-Convex Optimization Algorithm: Iteratively
Reweighted LASSO

Unfortunately, the optimization problem in (8) is not con-
vex, and we have to resort to some approximations in order
to find a local solution. However, the application of the
successive convex approximations (SCA) approach provides a
simple method which can be easily interpreted as an iteratively
reweighted LASSO algorithm. Thus, considering a candidate
solution ŝ, we can approximate the last term in (8) as

|s|T G |s| ' 2 |ŝ|T G |s| − |ŝ|T G |ŝ| , (9)

which allows us to rewrite the optimization problem in (8) as

minimize
s

γT |s|+ β ‖y + Hs‖22 , (10)

with γ = 1 + 2G |ŝ|.
Interestingly, the above problem reduces to a weighted

LASSO problem, where the weights in the vector γ summarize
the penalization factors due to the sparsity promoting L1 term,
and the cross-product penalizations based on the candidate
solution ŝ. With this in mind, and after the introduction of
an adaptive step-size α, the Iteratively Reweighted LASSO
algorithm is summarized in Algorithm 1.

From the description in Algorithm 1, it is easy to see that the
cost function is decreasing with the iterations, which suffices to
guarantee the convergence to a local minimum. Note also that
the staring point for our algorithm corresponds exactly to the
LASSO solution. Consequently, Algorithm 1 is always going
to attain a lower value of the cost function than the LASSO
algorithm and with the added benefit of enforcing a minimum
distance among the detected events. Finally, let us point out
that all the matrix-vector products in the weighted LASSO
for solving (10), as well as in Algorithm 1, involve Toeplitz
matrices, and therefore can be very efficiently implemented as
linear filterings.
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Algorithm 1 Iterative Reweighted LASSO Algorithm for
solving the Cross-Product Penalized Problem in (8).

Inputs: Observations y, channels H, and penalization pa-
rameters β and G.
Output: Estimated Activations s.
Initialize s = 0, γ = 1, α = 1, Cost = ∞.
repeat

Solve the problem in (10) with the LASSO algorithm.
Modify the solution s̃ of (10) as s̃← (1− α)s + αs̃.
Evaluate the cost function (8) in s̃.
if The cost function has decreased then

Update s = s̃, α← (1 + α)/2.
else

Update α← α/2
end if
Update the weights γ ← 1 + 2G |s|.

until Convergence

IV. NUMERICAL RESULTS

A. Case Study 1: Random Shapes

In this first case study we consider randomly generated
shapes, h[n] ∼ N (0, 1) for 0 ≤ n ≤ Lh−1 and Lh = 12. We
generate N = 104 observed samples, y[n] for 0 ≤ n ≤ N−1,
with regularly occurring activations every M = 100 samples
plus a random delay ∆Mk ∼ U({1, 2, . . . , 10}) for k =
0, 1, . . . ,K − 1 with K = N/M = 1000. Therefore, the acti-
vation times are mk ∼ U({100k+1, 100k+2, . . . , 100k+10})
for 0 ≤ k ≤ K − 1 and their amplitudes are also normally
distributed: Sk ∼ N (0, 1). For the restriction period, we set
Lg = 30, whereas the parameter β2 = C/σ2

w for several tested
values of C. As performance measures, we consider both the
reconstruction SNR,

ŜNR(dB) = 10 · log10

x>x

(x−Hŝ)>(x−Hŝ)
(11)

and the recovered sparsity, measured as the number of non-
zero values in ŝ. We test a range of SNR values from 0
to 50 dB, with the constant C ranging from 0.001 to 0.05,
performing 100 simulations for each case.

TABLE I
RECOVERED SPARSITY AND RECONSTRUCTION SNR FOR THE OPTIMUM

VALUE OF β THAT ATTAINS A SPARSITY SIMILAR TO THE TRUE ONE.

SNR(dB) 10 20 30 40 50
β2 0.1581 0.1000 0.1581 0.1000 0.1581
sparsity 0.0046 0.0062 0.0098 0.0096 0.0101
ŜNR(dB) 2.89 7.17 19.93 25.90 39.52

Figure 1 shows the ŜNR(dB) as a function of the input
SNR for different values of C, whereas Figure 2 shows the
sparsity of ŝ. From Fig. 1 we notice that the optimum value of
β depends on the SNR of the observations, with smaller values
of β providing better results as the SNR increases. However,
from Fig. 2 we can also see that the improved reconstruction
SNR may come at the cost of a lack of sparsity in the recovered

0 10 20 30 40 50
0

10

20

30

40

50
C=0.05
C=0.01
C=0.005
C=0.001

Fig. 1. Recovered SNR, ŜNR(dB) as defined in (11), for different SNR values
in the observed sequence (σ2

w = 10−SNR(dB)/10) and β2 = C/σ2
w .
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0
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C=0.05
C=0.01
C=0.005
C=0.001
Sparsity=0.01

Fig. 2. Sparsity of the recovered ŝ for different SNR values in the observed
sequence (σ2

w = 10−SNR(dB)/10) and β2 = C/σ2
w .

ŝ. Note that the largest the value of β the more emphasis we
place on a good reconstruction and the less importance we
give to the sparsity of ŝ. Therefore, if we do not want to lose
the spike localization ability provided by a sparse recovered
latent sequence ŝ, we need to select the proper value of β
that allows us to achieve the desired sparsity. For instance,
for an SNR = 10 dB in the observations the optimum choice
(out of the tested values) is β2 = 0.1581 (i.e., C = 0.05), as
this approach provides a 0.0046 average sparsity in ŝ and the
best reconstruction SNR, ŜNR(dB) = 2.89. Interestingly, the
optimum value of β2 = C/σ2

w in order to achieve a good
reconstruction with a sparse latent signal seems to remain
quite stable as the SNR in the observations increases. Table
I shows the reconstruction SNR for the optimum value of β
(out of the tested ones) that attains a sparsity level similar to
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Fig. 3. Example 1: Unobserved clean signal x[n] (left), observed noisy signal y[n] (middle), and recovered signal x̂[n] (right) for two noise levels: SNR =
20 dB (upper row) and SNR = 40 dB (lower row).

the sparsity level of the original signal (0.01). Note that, even
though the optimum value of C decreases as the observations
SNR increases, as we set β2 = C/σ2

w, the optimum value of
β is always either β2 = 0.1 or β2 = 0.1581. Finally, Figure
3 shows an example of the unobserved clean signal x[n], the
observed noisy signal y[n], and the recovered signal x̂[n] for
a low SNR situation (SNR = 20 dB) and a high SNR case
(SNR = 40 dB). Note that all the spikes are properly detected
in the high SNR case, whereas the small ones are masked by
the noise (and thus cannot be recovered) in the low SNR case.

B. Case Study 2: Electrocardiographic (ECG) Signals

As a second case study, we consider an electrocardiographic
(ECG) signal. ECG signals are composed of regularly oc-
curring waveforms (the P and T waveforms and the QRS
complex) and no activity intervals (isoelectric periods), con-
taminated by noise and interference. Therefore, they are in-
trinsecally sparse signals with a latent sequence of activations
corresponding to the appearance of the different waveforms.
Furthermore, due to physiological resctrictions a refractory
period of 200–300 ms, during which no activations can occur,
exists after each activation. Consequently, ECG signals fit
perfectly within our model.

In this example, we focus on the detection of the R peak in
the QRS complex, since this is the largest peak in the ECG
and its detection is commonly the first stage in any ECG signal
processing algorithm [14], [15]. Hence, for the dictionary we
consider the typical shape of a QRS complex as extracted
from the first heartbeat generated by the ECGSYN synthetic
ECG generator [16]. Figure 4 shows this QRS complex: the
Lh = 70 samples from the QRS onset to QRS offset are

t (s)
0 0.2 0.4 0.6 0.8

A
 (

m
V

)

-0.5

0

0.5

1

1.5

P

Q

R

S

T

QRS
onset

QRS
offset

Fig. 4. Extracted P-QRS-T waveforms. The normalized QRS complex (from
QRS onset to QRS offset) is used as h[n] to build matrix H.

used (after normalization) as h[n] to build matrix H. Then,
Figure 5 shows an example of the unobserved clean signal
x[n], generated from another run of ECGSYN with fs = 360
Hz and average heart rate (HR) of 60 bpm (with 6 bpm of
standard HR deviation), the observed noisy signal y[n], for an
SNR = 20 dB, and the recovered signal x̂[n]. Note that all
the QRS complexes seem to have been properly detected. In
order to verify this, we apply the well-known Pan-Tompkins
algorithm [17] to the recovered signal x̂[n], and compare the
result of the R peak detection w.r.t. the clean signal x[n].
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Fig. 5. Example 2: Unobserved clean signal x[n] (left), observed noisy signal y[n] (middle), and recovered signal x̂[n] (right) for an SNR = 20 dB.
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Fig. 6. Output of the Pan-Tompkins algorithm using the recovered signal
x̂[n] as the input.

Figure 6 shows the output of the Pan-Tompkins algorithm
when applied to the recovered signal x̂[n]: all the 64 R peaks in
the signal are properly detected. Indeed, this peaks are always
within 1 sample (i.e., 2.8 ms) of the true location and their
average distance is 0.3281 samples (i.e., 0.9 ms). Therefore,
we conclude that the proposed approach is doing a good job
in extracting the relevant information (i.e., locating all the R
peaks) from the noisy signal.

V. CONCLUSIONS

In this paper, we have described an efficient algorithm to
recover a sparse latent signal that requires the enforcement of
a minimum distance among the activations. A cost function
that includes both the sparsity and the minimum distance
restrictions has been introduced and we have shown that this
function can be minimized through an iterative reweighted
LASSO approach. The proposed method has been tested on a
first example with randomly generated samples and a second
example with ECG signals with excellent results. Future lines
include developing a method to obtain the optimum value
of the sparsity parameter, performing extensive tests on real-

world signals (e.g., ECG and gamma spectrometry signals),
and developing a multi-channel extension.
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