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Abstract 

Thermal analysis techniques play a crucial role to characterize solid phase thermal decomposition, since it provides 

information about how mass is lost (Thermal Gravimetric Analysis) and energy released (Differential Scanning 

Calorimetry). However, most of the INPUT thermal parameters and kinetic properties to be used in fire computer modelling 

cannot be obtained directly from those tests. Early works looked forward achieving those parameters employing indirect 

fitting methods, which enable the user to obtain a set of parameters capable to simulate accurately the mass loss curve (TG) 

or its derivative (DTG).  

This work aims to study the possibility of adding the energy released as a new target in the process, applying the analysis to 

Linear Low-Density Polyethylene (LLDPE). Results obtained in the present work reveal the major challenge of getting a set 

of parameters that can also fit DSC curve. The level of accuracy of the fitting to TG curve is higher than to DSC curve. This 

fact increases the value of the errors when both curves are used as targets to approach. As a result, this paper includes an 

alternative to consider the effects of the DSC curve. 
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Nomenclature 

A Pre-exponential factor/s-1 STA Simultaneous thermal analysis 

Ea Activation energy/kJ·kmol-1 DTG Derivative thermogravimetric analysis 

n Reaction order/- MLR Mass loss rate 

Hr Heat of reaction/kJ·kg-1 DSC Differential Scanning Calorimetry 

r Reaction rate at temperature T FPA Fire Propagation Apparatus 

T Temperature/ºC M Reacting material 

ρ Density/kg·m-3  P Submaterial generated as product of the reaction 

Cp Specific heat/kJkg-1K-1 F Fuel gas released by the reaction 

k Conductivity/Wm-1K-1 G Non-burning gas released by the reaction 

ε Emissivity/- R Residue produced by the reaction 

η Absorption coefficient/m-1 νp Amount of submaterial produced  

𝑌𝑠,𝑖 
Quotient between density of the material at 

temperature T divided by the initial density 
νf, Amount of fuel gas released 

𝑟𝑖𝑗  Reaction rate/kg·s-1  νg Amount of non-burning gas released 

𝑣𝑠𝑖´𝑗  Yield produced by the reaction i νr Amount of residue produced 

𝑟𝑖´𝑗  Residue produced by the reaction i 𝑋𝑒𝑟𝑟𝑜𝑟
𝑐𝑢𝑟𝑣𝑒 

Error between experimental and simulated 

curves 

 
Coefficient the conversion factor of 

reactant/- 
 Influence of the TG curve over global error 

TG Thermogravimetric analysis β Influence of the DSC curve over global error 

Introduction 

Thermal decomposition processes are the key factor to understand the fire behaviour of materials and products. Thermal 

analysis techniques have been using widely for years [1] in order to obtain kinetic parameters and thermal properties that 

control thermal decomposition [2]. In addition, pyrolysis models combine mathematical equations that enables users to 

calculate the reactions of a thermal decomposition process. The Arrhenius equation is usually applied [3] in several 

simulation software packages, such as Gypro [4], ThermaKin [5], FireFOAM [6], Pyropolis [7], Fire Dynamics Simulator 

(FDS) [8] or TKS-SP software [9] [10], to calculate material mass loss in thermal decomposition process as a function of 
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the temperature. Some major parameters to simulate the process involve the pre-exponential factor (A), activation energy 

(Ea), reaction order (n), specific heat (Cp), conductivity (k), heat of reaction (Hr). 

Although thermal analysis techniques provides a useful framework to obtain the characterization of behaviour of materials 

in fire [11], most of the INPUT thermal parameters and kinetic properties for fire computer models cannot be obtained 

directly from those tests. To solve this gap, some authors have combined pyrolysis models and optimization methods, such 

as model-fitting [12-15], isoconversional methods [16-20] or genetic algorithms, etc. [21-23] to calculate these INPUT, 

which may be used in fire computer models. A detailed compilation of the employment of these techniques and methods can 

be found in [24]. 

Experimental results have to be used for this calibration process of fitting, as optimization targets, with the objective to find 

a set of parameters which succeed in simulating the experimental curves. While some studies selected the TG-

Thermogravimetric results [23, 25, 26], others reproduced bench-scale tests, such as Fire Propagation Apparatus (FPA) or 

Cone Calorimetric. However, all of them were focused in the behaviour of the mass during the test (MLR-Mass Loss Rate) 

as optimization target [6, 27, 28]. 

Since apart of the evolution of the mass as a function of the temperature, thermal analysis techniques can also quantify the 

energy released, hence, it seems logical that the next step should be to analyse extra features concerning the energy. 

In this way, some works addressed specific efforts to consider the energy. Among then, we highlight the following works: 

in [29] a methodology for setting just heat of gasification is presented. The heat of gasification is the energy required to 

gasify a material and it is assessed using the Differential Scanning Calorimetry curve (DSC). The methodology was applied 

to common polymers and plastics. In [30] two types of experiments are used to evaluate the effect of decomposition kinetics 

for Fire Retardant Polyester Composite. First, three different kinetic models were adjusted to TG experimental curve and 

then the kinetic models were employed to reproduce Fire Propagation Apparatus (FPA) test. To compare the FPA modelled 

curves with the experimental ones, not only the mass loss rates were taken into account, also the energy was assessed by 

measuring the surface temperature of the sample. In [4] the pyrolysis model Gpyro was employed to reproduce the curves 

obtained from Cone Calorimetric tests of non-charring polymers, charring solids or intumescent coatings. To validate the 

model, the MLR experimental curves were compared with the simulated ones estimated by the model. Besides, other aspect 

related with the energy is evaluated, the surface temperature of the sample. The good correlations obtained by the model 

proves its validity. In the works [31] and [32] charring and non-charring polymers were analysed using TG and DSC tests. 

Both works employed a similar methodology, based on the utilization of the TG data acquire the thermal degradation 

kinetics. The kinetics properties were achieved by fitting of the Arrhenius parameters using the software Thermakin [5]. In 

addition, the heat capacities and the heat of melting of the polymers was calculated by using the information of DSC curves, 

however the DSC curve is not modelled by numerical methods as TG is. The study [33] presented a global studio, including 

several experimental techniques such TG, DSC and Controlled Atmosphere Pyrolysis Apparatus. These experiments were 

used to calibrate a proposed pyrolysis model. Kinetic data were obtained from TG curves using numerical methods 

implemented in the software Thermakin. As in [31] and [32], the DSC was used only to obtain the heat capacities and the 

heat of melting. As a novelty, thermal conductivities of the condensed-phase material components were measured and set 

by the employment of Controlled Atmosphere Pyrolysis Apparatus (CAPA) [34]. In [35] was presented a pyrolysis model 

for corrugated cardboard. The model is calibrated using the information from experimental tests such as TG, DSC and cone 

calorimeter. Thermogravimetric data was used as in [31-33]. Data from DSC was utilized, without using any numerical 

approaching method, to acquire the enthalpy of decomposition reactions the heat capacities of apparent species and the heat 

of combustion to the volatiles evolved from each reaction. Finally, cone calorimeter tests were used to measure the thermal 

transport properties within the sample. The characterization was carried out through an iterative inverse analysis. The work 

presented in [36] employed data from TG and DSC tests. While, TG curves combined with genetic algorithm were employed 

exclusively to estimate the kinetic properties, the DSC curve was used to identify the heat of pyrolysis peaks and quantify 

them.  

To sum up, all these above-mentioned works [4, 29-33, 35, 36] utilize the information provided by DSC curves with the aim 

to achieve a more comprehensive and improved set of kinetic properties, even some of them e.g. [4] [33] [35], also employs 

bench-scale tests to analyse how the heat transfer is. Nevertheless, the data from DSC curves is not fully used as a target to 

approach the DSC simulated curve to the experimental one as the TG does. With this fact in mind, the present study aims to 

add the DSC curve as an additional target to approach by numerical methods. The use of numerical methods to fit TG and 

DSC curves simultaneously may well allow obtaining a more comprehensive set of properties since both mass and energy 
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released are taking into account. As a case of study, we selected Linear Low-Density Polyethylene (LLDPE) to carry put the 

analysis. 

The present paper is organized as follows: Experimental tests section presents the results from experimental STA tests;  

Simulation model section describes the simulation model elaborated; Optimization algorithm section give the details of the 

numerical approaching method employed; Results and discussion section exposes the results obtained; and finally the paper 

concludes with the Conclusion section with some indications for future work 

Experimental tests 

The Netzsch STA 449 F3 apparatus was used to perform the three experimental tests at three different heating rates (2, 5 

and 10 K·min-1) with identical atmospheric conditions (inert atmosphere) to obtain experimental data. Testing in an inert 

atmosphere allows avoiding oxidative reactions [37]. The samples of LLDPE, with a density of 948.50 kg m-3 and an initial 

mass of 8.666, 9.744 and 9.924 mg respectively, were prepared according to the ASTM-E1131-08 [38]. The samples were 

smashed to obtain small pieces, and after that, they were placed in a sample holder made of Al2O3. 

Next Figure 1 shows the curves obtained in STA tests. 

(a) (b) 

  

Fig. 1. Experimental curves: a TG and DTG, b DSC. 

It is apparent from this figure that the three TG curves have same shape, only the onset temperature changes. The higher 

heating rate is employed for testing, the higher value for the onset (422 ºC, 437 ºC and 447 ºC for 2, 5 and 10 K·min-1 

respectively). The peaks of the DSC curve occur at 455 ºC, 465 ºC and 486 ºC for 2, 5 and 10 K·min-1, respectively. Since 

TG values showed similar results than other works with LLDPE in similar conditions [39, 40] these results were considered 

suitable for simulation purposes. 

Simulation model 

As we want to model either TG or DSC curves, it is required the use of a pyrolysis model and the definition of a reaction 

scheme. The present work selected the pyrolysis model employed by the software FDS [8], with a pyrolysis model based on 

the Arrhenius equation, which defines the mass loss rate as a function of the temperature. Next Eq. 1 shows the general 

evolution equation for a material undergoing one or more reactions. 

𝑑𝑌𝑠,𝑖

𝑑𝑡
= ∑ 𝑟𝑖𝑗 + ∑ ∑ 𝑣𝑠𝑖´𝑗𝑟𝑖´𝑗

𝑁𝑟,𝑖´
𝑗=1

𝑁𝑚
𝑖=1

𝑁𝑟,𝑖
𝑗=1  (𝑖´ ≠ 𝑖); 𝑌𝑠,𝑖 = (

𝜌𝑠,𝑖

𝜌𝑠(0)
) (1) 

The term 𝑌𝑠,𝑖 represents the relationship between the density of the material i produced by the reaction j divided by the initial 

density of the material (prior to the reaction). The term 𝑟𝑖𝑗  is the reaction rate at temperature 𝑇𝑠. The terms 𝑣𝑠𝑖´𝑗𝑟𝑖´𝑗  express 

the residue produced by the reaction 𝑟𝑖´𝑗 with a yield of 𝑣𝑠𝑖´𝑗 . 

The value of 𝑟𝑖𝑗  is calculated by Eq. 2 (Arrhenius equation): 
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𝑟𝑖𝑗 = 𝐴𝑖𝑗𝑌𝑠,𝑖
𝑛𝑠,𝑖𝑗𝑒

(−
𝐸𝑎𝑖𝑗

𝑅𝑇𝑠
)
𝑋𝑂2
𝑛𝑂2𝑖𝑗     (2) 

Where 𝐴𝑖𝑗 is the pre-exponential factor; 𝐸𝑎𝑖𝑗  is the activation energy and the terms 𝑛𝑠,𝑖𝑗 and 𝑛𝑂2𝑖𝑗  are the reaction order. 

The term 𝑋𝑂2
𝑛𝑂2𝑖𝑗 has null value, since it represents the effect of oxidative reaction. 

𝑌𝑠,𝑖 can be also written as a function of , the conversion factor of reactant, as in Eq. 3 is shown: 

𝛼 =
(𝑚0−𝑚)

𝑚0−𝑚𝑓
      (3) 

Where 𝑚0 is the initial mass prior the reaction begins, m is the mass at temperature T, and 𝑚𝑓 is the mass when the reaction 

is over. 

The Eq. 2 represented as a function of  is shown in Eq. 4: 

𝑟𝑖𝑗 =
𝑑𝛼

𝑑𝑡
= 𝐴𝑖𝑗𝑓(𝛼)𝑒

(−
𝐸𝑎𝑖𝑗

𝑅𝑇𝑠
)
    (4) 

The term 𝑓(α) is the reaction mechanism [41]. FDS employs a reaction mechanism based on the reaction order, as Eq. 5 

shows: 

𝑓(𝛼) = (1 − 𝛼)𝑁𝑗      (5) 

Once the mass loss of the sample is modelled, it is necessary to represent the energy released by the tested sample. It can be 

assess using Eq. 6: 

𝑞̇𝑠,𝑐
′′′ (𝑥) = −𝜌0∑ ∑ 𝑟𝑖,𝑗

𝑁𝑟,𝑖
𝑗=1

𝑁𝑚
𝑖=1 (𝑥) · 𝐻𝑟,𝑖𝑗   (6) 

Where 𝑞̇𝑠,𝑐
′′′(𝑥) is the energy released or absorbed by the reaction and it represents the heat of reaction (𝐻𝑟) from reaction j 

and material i. Further details about pyrolysis model in FDS are given in [8]. 

Pyrolysis and thermal decomposition of LLDPE take place through multiple series of reactions [42-44]. In this work, the 

proposed reaction scheme is based on the hypothesis that supposes that there is a series of reactions, which governs the 

decomposition process. Among them, some have an enormous influence over the process. We consider these main reactions 

as the only ones that take place during the process, and the rest of reactions could be discarded due to their minimal influence. 

Following the idea of [45, 46], a methodology based on the employment of the second derivative of TG curve, i.e., the D2TG 

curve is used to determine the decomposition reactions. The local maxima/minima of D2TG curve correspond to the points 

where the mass loss rate curve changes its curvature drastically, hence, the points where exist a considerable variation in the 

reaction rate. These variations identify the moment when the decomposition process changes from one reaction to another. 

Consequently, the number of main reactions can be determined. It seems to be important to select a suitable level of 

complexity in the reaction scheme, i.e. the number of reactions. The higher number of reactions to describe the reaction, the 

higher number of the variables to be managed by the numerical approaching method. Therefore, on the one hand, a large 

amount of variables could slow down the approaching process without achieve a high accuracy level, and on the other hand, 

a few number of reactions could omit significant information. 

Next Figure 2 represents the number of reactions proposed by this methodology. 
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Fig. 2. Reaction scheme proposed by D2TG method applied to TG experimental curve obtained at 10 K·min-1. 

The thermal decomposition model for the solid phase proposed in this work is the decomposition of the LLDPE that 

undergoes a decomposition process in two steps or two reactions, creating one intermediate fictitious material and a final 

residue. Each reaction produces a residue and releases gases, following the same idea proposed in [23, 32, 47]. The reaction 

scheme defined is a two-consecutive reaction scheme that FDS determines following the generic Eq. 7: 

𝑀𝑖 + 𝑂2
𝑖 + 𝑄𝑖  

𝑅𝑒𝑎𝑐 𝑗
→     𝜈𝑝

𝑖 · 𝑃 + 𝜈𝑓
𝑖 · 𝐹 + 𝜈𝑔

𝑖 · 𝐺 + 𝜈𝑟
𝑖 · 𝑅   (7) 

Where the terms are: M the reacting material; Q the heat necessary to trigger the reaction; O2 the oxygen consumed by 

reaction (0 value in this case due to the lack of oxygen in the test). The products produced are: P the amount of submaterial 

created as product of the reaction; F the fuel gas released, G the non-burning gas released (e.g. water vapour), and finally, R 

is the residue. The coefficients 𝜈𝑝
𝑗
, 𝜈𝑓

𝑗
, 𝜈𝑔

𝑗
 and 𝜈𝑟

𝑗
, indicate the amount of each product created in reaction j. It is considered 

that there is non-burning gas released, i.e. 𝜈𝑔
𝑖  is zero. Next Eq. 10 and Eq. 11 gathers the reaction scheme employed: 

𝐴 + 𝑄1
𝑅𝑒𝑎𝑐 1
→    𝑣𝑝

1 · 𝐵 + 𝑣𝑓
1 · 𝐹𝑢𝑒𝑙 𝑔𝑎𝑠      (10) 

𝐵 +𝑄2
𝑅𝑒𝑎𝑐 2
→    𝑣𝑟

2 · 𝑅𝑒𝑠𝑖𝑑𝑢𝑒 + 𝑣𝑓
2 · 𝐹𝑢𝑒𝑙 𝑔𝑎𝑠     (11) 

Once the reaction scheme is established, next step is to define which variables are involved in the process. The values of 

these variables will be determine by the numerical approaching method. These variables are: pre-exponential factor (A), 

activation energy (Ea), reaction order (n) i.e. the triplet kinetic that appears in Eq. 4 and Eq. 6. In Eq. 6 appears the heat of 

reaction (Hr). As well as these properties, the model configured includes the next thermal parameters: density (ρ), specific 

heat (Cp), conductivity (k), emissivity (ε). The density of each material and submaterial (ρ) are related with the coefficients 

of Eq. 10 and Eq. 11. The relationship between them are: 𝜈𝑝
1+ 𝜈𝑓

1 = 1 for Eq. 10, and 𝜈𝑟
1+𝜈𝑓

1=1 for Eq. 11. In total, there are 

18 values of its corresponding variables to achieve by the numerical method.  

As result of the small size of the samples employed, both reactions are considered to take part in the surface of the sample, 

i.e. absorption coefficient (η) is constant and with a high value (9e+8).  

Optimization algorithm 

We selected the Shuffled Complex Evolution- University of Arizona (SCE-UA, from now on SCE) numerical approaching 

method to achieve the values of the input variables that are able to fit the target experimental curve. The SCE method was 

developed and applied successfully for the first time to find a global optimum of a conceptual rainfall–runoff model [48]. 

Nevertheless, in recent years this method have been using to elaborate and optimize models in several areas of engineering 

e.g. in transportation [49, 50], in geology [51, 52] or in fire safety engineering [23, 53]. 

SCE numerical method is based on a synthesis of four concepts that have been proved successful for global optimization: 

combination of probabilistic and deterministic approaches; clustering; systematic evolution of a complex of points spanning 
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the space in the direction of global improvement; and competitive evolution [54]. SCE-UA is based on the optimization 

method [55]. 

The main aim of SCE is to converge the value of a function defined by the user towards a global minimum. The function to 

minimize in this work is the evaluation error function represented in Eq. 12, which assess the error produced in the approach 

of TG and DSC signals, from the initial to the final temperature of the simulation. 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = √(𝛾 · 𝑋̂𝑒𝑟𝑟𝑜𝑟
𝑇𝐺 )

2
+  (𝛽 · 𝑋̂𝑒𝑟𝑟𝑜𝑟

𝐷𝑆𝐶 )
2

  (12) 

The coefficients 𝛾 and β are utilised to give a relative importance either curves, TG or DSC, from Eq. 12, i.e. to assume 

more relevance or not to the DSC curve, and figure out its influence on the analysis. Whereas the 𝑋𝑒𝑟𝑟𝑜𝑟
𝑐𝑢𝑟𝑣𝑒 (described in Eq. 

13) is the mathematical operator used to evaluate the difference between experimental curves (𝑥𝑖,𝑒𝑥𝑝) and simulated curves 

(𝑥𝑖,𝑠𝑖𝑚). Due to the scale of the magnitudes measured, to establish a suitable comparison between both signals, the values 

from Eq. 13 are normalized (𝑋̂𝑒𝑟𝑟𝑜𝑟
𝑐𝑢𝑟𝑣𝑒). To normalize them, a value of 1 is given to the highest error of each signal obtained 

(𝑋𝑒𝑟𝑟𝑜𝑟
𝑐𝑢𝑟𝑣𝑒) As Figures 1b and Figure 4a, highest errors are produced in case 1 and case 2 for DSC and TG signal respectively. 

𝑋𝑒𝑟𝑟𝑜𝑟
𝑐𝑢𝑟𝑣𝑒 = 

√∑ (𝑥 𝑖 ,𝑒𝑥𝑝 − 𝑥𝑖 ,𝑠𝑖𝑚)
2

𝑖

𝑛
      (13) 

The term n is the number of points measured 

SCE requires an initial range of values for each parameter to initiate the approaching process. Despite of the algorithm will 

finish finding the values that minimizes the error function within that range of values, the wider is initial range, the more 

time will take it. Next Table 1 summarizes the initial values employed by the SCE. Some values come from experimental 

tests and other values are obtained from literature. Those values taken as reference were increased and decreased properly 

to establish a reasonable wide range of values. 

Table 1. Initial range of values to start the numerical approaching process 

Variable Lower Value Upper Value Source 

Pre exponential factor (Log 10 A)/s-1 7.00 17 [40] 

Activation energy (Ea)/kJ·kmol-1 1.4e+5 2.8e+5 [42] 

Reaction order (n)/- 0.10 4.00  

Heat of reaction (𝐻𝑟)/kJ·kg-1 -1000 200 a 

Mass 𝑣𝑖/kg 0.01 0.99  

Specific heat (𝐶𝑝)/kJkg-1K-1 1.50 3.50 [56] 

Conductivity (k)/Wm-1K-1 0.18 0.40 [57] 

Emissivity (ε)/- 0.80 1.00 a 

a Values measured in laboratory tests. The value of the heat of reaction was -792/kJ·kg-1 and 0.998 was the value of the 

emissivity at 45 ºC. 

The employment of programming code that synchronizes FDS and SCE allows finding the values of the variables that 

minimizes the error function. In essence, the process could be described as: 1) SCE selects the values for the different input 

variables of FDS; 2) the programing code employs these values to write an FDS input file following the reaction scheme 

proposed and execute it; 3) the results of the simulated case are evaluated according to evaluation error function (Eq. 12); 

and 4) in case of the error does not achieve the criteria to stop the iterative process, SCE changes the values according to its 

mode of operation and the process restart again. Two criterions were selected to stop the repetitive process considering that 

the SCE has found the minimal error: the number of iterations could not be more than 30000, or in case of after five 

consecutive loops, the value Eq. 12 changes less than 5 %. 

Results and discussion 

In order to assess the influence of the TG and DSC curves as approaching target, we defined distinct importance relatives 

for both curves through a combination of the coefficients  and β. Firstly, the fitting target was the TG curve exclusively, 
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and then, the DSC is included with a progressive influence over the error in Eq. 12. Next Table 2 shows the values of the 

coefficients used. 

Table 2. Cases and values of the different coefficients of  and β 

Case Influence of TG,  Influence of DSC, β 

1 1.0 0.0 (only TG curve is assessed) 

2 0.5 0.5 

3 0.7 0.3 

4 0.9 0.1 

All these cases are compared exclusively with the experimental curves obtained under an external heating rate of 10 K·min-

1. Once the influence of DSC curve is known, the study is extended to the three heating rate tested (2, 5 and 10 K·min-1). 

Case 1, which models only the TG curve with the purpose to assess the reaction scheme proposed is helpful evaluate how 

the impact of DSC fitting is. Figure 3 shows the results of case 1. 

 (a) (b) 

  

Fig. 3. Results of case 1: a TG, b DSC. 

The simulated TG curve was obviously bound to reproduce with a reasonably level of accuracy the experimental curve. On 

the other hand, the fact of exclude the DSC curve from Eq. 12 leads to unfit DSC curve (Figure 3b) and the highest value is 

produced. The values of the normalized errors evaluated with Eq. 13 are 𝑋̂𝑇𝐺𝐴 𝑒𝑟𝑟𝑜𝑟
𝑐𝑎𝑠𝑒 1  = 0.035 and 𝑋̂𝐷𝑆𝐶 𝑒𝑟𝑟𝑜𝑟

𝑐𝑎𝑠𝑒 1  = 1.00. 

Cases 2 to 4 insert in different degrees the error from DSC the mathematical operator of Eq. 13, to the global error function 

Eq. 12. Hence, the improvement of the error can be observed gradually. Next Figure 4 shows the results of these cases. Next 

Table 3 collets the errors produced. 

(a) (b) 

  

Fig. 4. Results of cases 2 to 4: a TG, b DSC. 
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Table 3. Error in cases 2 to 4. 

Case Influence of TG,  Influence of DSC, β 𝑋̂𝑒𝑟𝑟𝑜𝑟 𝑇𝐺 𝑋̂𝑒𝑟𝑟𝑜𝑟 𝐷𝑆𝐶 Evaluation error function 

2 0.5 0.5 1.000 0.635 0.592 

3 0.7 0.3 0.217 0.637 0.244 

4 0.9 0.1 0.191 0.651 0.184 

The fact of considering the DSC error in the analysis reduces the error in DSC curve, since it was required an approaching 

degree of the simulated DSC curve to the experimental one. On the other hand, TG simulated curve unfits the experimental 

TG curve with a clear trend, the more influence of DSC, more error of TG. 

As seem above, the reaction rate 𝑟𝑖𝑗  relates the mass loss in Eq. 4 and the energy released in Eq. 6. The values of the triplet 

kinetic modify both curves, however, the results reveals the inability to converge both curves simultaneously.  

Since we look for fitting DSC curve without affecting TG results, only the heat of reaction could modify the DSC curve 

without mismatch the TG curve. Therefore, a new case was studied, case 5. In case 5 the values of the variables from case 1 

remains unmodified, so the error in the approaching to TG is minimum and we used the heat of reaction is used as the only 

variable for the DSC fitting. The results are displayed in Figure 5. 

(a) (b) 

  

Fig. 5. Results of case 5: a TG, b DSC. 

The both simulated curves in Figure 4 are more accurate than any other cases. It must be highlighted that since the curves 

are estimated separately, the Eq. 12 is not required. Therefore, what is important to assess is the value of the normalized 

errors for each curve. These values are 𝑋̂𝑇𝐺𝐴 𝑒𝑟𝑟𝑜𝑟
𝑐𝑎𝑠𝑒 5 = 0.032 and 𝑋̂𝐷𝑆𝐶 𝑒𝑟𝑟𝑜𝑟

𝑐𝑎𝑠𝑒 5 = 0.581. Both values represent the lowest errors for 

all cases.  

In other to establish a comparison between all cases, since the evaluation error function and the coefficients  and β are 

discarded in case 5, a global error is calculated using the normalized errors from Eq. 13, i.e. 𝑋̂𝑇𝐺 𝑒𝑟𝑟𝑜𝑟
𝑐𝑎𝑠𝑒 𝑛  and 𝑋̂𝐷𝑆𝐶 𝑒𝑟𝑟𝑜𝑟

𝑐𝑎𝑠𝑒 𝑛 , and 

obtaining the average error. Table 4 gathers the errors for all cases analyzed. 

Table 4. Normalized errors for cases 1 to 5 and average errors. 

Case Normalized TG error Normalized DSC error Average error 

1 0.032 1.000 0.516 

2 1.000 0.635 0.817 

3 0.217 0.637 0.426 

4 0.191 0.651 0.421 

5 0.032 0.581 0.306 

The method employed in case 5 to approach TG and DSC curves is the most accurate. 

Therefore, the best procedure has two steps: firstly, approach the TG curve to obtain the values of triplet kinetic and the 

thermal properties; and second, estimate the DSC curve setting-up exclusively the heat of reaction of the different reactions. 
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This is consistent with the results reported by Table 3, where a clear tendency of the global error is observed. The more 

influence of the DSC error (case 2) the more error is produced. Hence, in case 4, where the influence of the DSC error is the 

lowest, the error is 3.2 times smaller than in case 2.  

Table 4 shows a global view of the effect of the inclusion of the DSC curve in the approaching process. In case 1, only TG 

is taken into account in the approaching process, therefore, a lower error for the TG curve is obtained, but on the contrary, a 

bad approach to DSC curve. As result, the average error has a high value. In case 2, where both curves have same influence, 

the error in DSC curve decrease its value. By the contrast, the TG curve is less accurate than in case 1. As Table 3 shows, 

the less influence in the approaching process of the DSC error, the less average error. Finally, the errors in case 5, are the 

smallest obtained. 

To confirm and validate the methodology of case 5, a new approach (case 6) was done with three heating rates simultaneously 

(2, 5 and 10 K·min-1) following the workflow of case 5. First step, the approaching to TG curves lead us to obtain the kinetic 

parameters and thermal properties except the heat of reaction. The error function Eq. 14 is similar to Eq. 12 but slightly 

modified to assess the three TG curves from their heating rates simultaneously: 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑇𝐺
 3 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑟𝑎𝑡𝑒𝑠

= √(𝑋𝑒𝑟𝑟𝑜𝑟 𝑇𝐺
𝐻𝑅1 )2 + (𝑋𝑒𝑟𝑟𝑜𝑟 𝑇𝐺

𝐻𝑅2 )2 + (𝑋𝑒𝑟𝑟𝑜𝑟 𝑇𝐺
𝐻𝑅3 )2 (14) 

Second step, employing the values obtained in previous step, an approach to the three DSC curves all at once in order to 

achieve every values of the heat of reaction. The error function is expressed in Eq. 15: 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐷𝑆𝐶
 3 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑟𝑎𝑡𝑒𝑠

= √(𝑋𝑒𝑟𝑟𝑜𝑟 𝐷𝑆𝐶
𝐻𝑅1 )2 + (𝑋𝑒𝑟𝑟𝑜𝑟 𝐷𝑆𝐶

𝐻𝑅2 )2 + (𝑋𝑒𝑟𝑟𝑜𝑟 𝐷𝑆𝐶
𝐻𝑅3 )2 (15) 

The following Figure 6 and Tables 5 show the results and the value of the variables obtained. 

(a) (b) 

  

Fig. 6. Results of the simultaneous approach to three heating rates (case 6): a TG, b DSC. 

Table 5. Values of the variables obtained from the approach of case 6. 

Variable Material A Material B Residue 

Pre exponential factor (Log 10 A)/s-1 12.268 15.036 - 

Activation energy (Ea)/kJ·kmol-1 2.131e+5 1.561e+5 - 

Reaction order (n)/- 0.605 0.587 - 

Heat of reaction (𝐻𝑟)/kJ·kg-1 -400 -300 - 

𝜈𝑝
1/- 0.742 - - 

𝜈𝑟
2/- - 0.016 - 

Specific heat (𝐶𝑝)/kJkg-1K-1 2.550 2.550 1.500 

Conductivity (k)/Wm-1K-1 0.300 0.300 0.200 

Emissivity (ε)/- 0.850 0.850 0.850 



10 
 

The method employed in case 6 allowed to obtain a unique set of variables to characterize the thermal decomposition of the 

LLDPE. All simulated TG curves describes with a suitable degree of accuracy the experimental ones. The reaction scheme 

proposed is appropriate to describe the process and any variation of the mass can be represented. 

However, the results reveal the influence of the DSC curve and the fact that the approaching of the DSC curve is significantly 

more complex than the TG ones. As previous cases showed, the simulated DSC curves cannot reproduce the experimental 

curves with the same level precision. Although the thermal decomposition model is able to simulate TG curves; it did not 

manage to handle at all the energy released 

Conclusions 

The present paper aims to study the possibility of adding the DSC energy released as a new target in the process of 

determining the kinetic parameters and thermal properties for fire simulation of the LLDPE. 

To establish the reaction scheme of the decomposition process, the D2TG method is utilized. This method identifies the 

number of reactions, the temperatures at which they occur, and consequently, their sequence. It is based on the variations of 

the rhythms of mass loss with the temperature. Those variations can be observed in the second derivative of the mass curve. 

A variation of the mass loss rate identifies the debut of a new reaction. The D2TG method establishes a two-consecutive 

reaction scheme for the LLDPE decomposition. To assess how accurate the proposed reaction scheme is, a first 

approximation (case 1), using the TG curve as unique target is carried out. The results prove that the reaction scheme are 

useful to simulate the TG experimental curve. 

The DSC curve is then included as target to optimize, in combination with the TG curve, analyzing three cases (cases 2 to 

4). Each case has different level of influence over the analysis i.e. the evaluation error function (Eq. 12). Two conclusions 

can be made. Applying this method, the DSC curve cannot be modelled with the same level of accuracy as TG curve does. 

The DSC approximation process unfits the TG approaching, in fact, the more influence of DSC over Eq. 12, the less precision 

of the TG as Table 3 gathers. 

The case 5 employs a different strategy in the approximation process. A first approach to TG curve, as in case 1, is carried 

out. Afterwards, and maintaining all the values of the variables obtained in the first approach except the heat of reaction, the 

heat of reaction is modified to achieve the DSC curve. This case makes the lowest error in both curves, and overall, the lower 

average error (Table 4). The simultaneous analysis of three heating rates from case 6 verifies the methodology used in case 

5. 

The method to obtain experimental values of both the DSC and TG implies a more complex process to assess only the TG. 

This process is highly influenced by boundary conditions or the material itself [58, 59], hence, the DSC curve should be 

taking into account more as qualitative mode, than quantitative. In [60] is recommended to employ the information from 

DSC as the same mode. To sum up, the values obtained from the TG curve approach have more relevance than the obtained 

from DSC curve. Uniquely the heat of reaction obtained from DSC should be taken into account. 

The DSC curve gathers more complex information than the variation of the mass, such as glass transitions, heat of fusion, 

heat of reaction, melting temperature, phase changes, etc. If two or more reactions are overlapped, e.g. if one reaction is not 

finished completely and next reaction has already started, the energy released will not be modelled properly as a simple sum 

of energies, as TG does with the mass.  

The alterations in energy measured by the DSC signal have different sources, some of them comes from process that not 

implies variation of the mass e.g. glass transitions, heat of fusion etc. The Eq. 6 assesses the energy, which has a straight 

relation to the mass variation (𝑟𝑖𝑗). Therefore, those thermal processes, which are not related with variation of the mass, 

cannot be reproduced accurately. Figure 6 b shows that energy absorbed due the melting process (approx. at 105 ºC [61]) is 

not represented. Same issue is repeated from the beginning of the tests up to 350 ºC, where the masses of three curves remain 

constant (Figure 1 a) but the DSC values not. 
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