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Abstract

We study superprojective Banach spaces. We show that they cannot contain
copies of ℓ1, which restricts the search for non-reflexive examples of these
spaces. We also show that the class of superprojective spaces is stable under
finite products, certain unconditional sums, certain tensor products, and
other operations, providing new examples.
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1. Introduction

A Banach space X is called subprojective if every (closed) infinite-dimen-
sional subspace of X contains an infinite-dimensional subspace complemented
in X, and X is called superprojective if every infinite-codimensional subspace
of X is contained in an infinite-codimensional subspace complemented in X.
These two classes of Banach spaces were introduced by Whitley [19] in order
to find conditions for the conjugate of an operator to be strictly singular
or strictly cosingular. More recently, they have been used to obtain some
positive solutions to the perturbation classes problem for semi-Fredholm op-
erators. This problem has a negative solution in general [9], but there are
some positive answers when one of the spaces is subprojective or superpro-
jective [10].
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There are many examples of subprojective spaces, like ℓp for 1 ≤ p < ∞,
Lp(0, 1) for 2 ≤ p < ∞, C(K) with K a scattered compact and some Lorentz
and Orlicz spaces. We refer to [10, Proposition 2.4] for references and further
examples. It is not difficult to show that subspaces of subprojective spaces
are subprojective [19, Lemma 3.1], and quotients of superprojective spaces
are superprojective (Proposition 2.3) and, as a consequence of the duality
relations between subspaces and quotients, a reflexive space is subprojective
(superprojective) if and only if its dual space is superprojective (subprojec-
tive), which provides many examples of reflexive superprojective spaces [10,
Proposition 3.4]. However, the only examples of non-reflexive superprojective
spaces previously known are the C(K) spaces with K a scattered compact
and their infinite-dimensional quotients [10, Proposition 3.4].

Some of the duality relations between subprojective and superprojective
spaces are known to fail in general:

(a) X being subprojective does not imply that X∗ is superprojective, for
instance for X = c0 and X∗ = ℓ1.

(b) X∗ being subprojective does not imply that X is superprojective, for
instance for the hereditarily indecomposable space obtained in [2] whose
dual is isomorphic to ℓ1.

However we do not know if the remaining relations are valid:

(a’) Does X being superprojective imply that X∗ is subprojective?

(b’) Does X∗ being superprojective imply that X is subprojective?

The answer to these two questions is likely negative, but we know of few
examples of non-reflexive superprojective spaces to check, and none of them
is a dual space.

Recently Oikhberg and Spinu [14] have studied the stability properties
of subprojective spaces under vector sums, tensor products and other oper-
ations, obtaining plenty of new examples of subprojective spaces.

We will begin with some auxiliary results in Section 2. Section 3 shows
some properties of subprojective and superprojective spaces, such as the fact
that superprojective spaces cannot contain copies of ℓ1, which restricts the
search for non-reflexive examples of these spaces, and we also characterise the
superprojectivity of some projective tensor products. In Section 4, following
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the scheme of [14], we prove several stability results for the class of superpro-
jective spaces under finite products, certain unconditional sums and certain
tensor products, and we provide new examples of superprojective spaces. We
finish with a collection of open problems in the last section.

We will use standard notation. The dual space of a Banach space X
is X∗, and the action of x∗ ∈ X∗ on x ∈ X is written as ⟨x∗, x⟩. Given a
subset M of a Banach space X, its annihilator in X∗ will be denoted by M⊥;
if M is a subset of X∗, its annihilator in X will be denoted by M⊥. If (xn)n∈N
is a sequence in X, then [xn : n ∈ N] will denote the closed linear span of
(xn)n∈N in X. The injective and projective tensor products of X and Y are
respectively denoted by X ⊗̂ε Y and X ⊗̂π Y .

Operators will always be bounded. The identity operator on X is de-
noted by IX . Given an operator T :X −→Y , N(T ) and R(T ) denote the
kernel and the range of T , and T ∗:Y ∗ −→X∗ denotes its conjugate operator.
An operator T :X −→Y is strictly singular if T |M is an isomorphism only if
M is finite-dimensional; and T is strictly cosingular if there is no operator
Q:Y −→Z with Z infinite-dimensional such that QT is surjective or, equiv-
alently, if there is no infinite-codimensional (closed) subspace N of Y such
that R(T ) + N = Y .

2. Preliminaries

The way that superprojective Banach spaces are defined means that we
will be dealing with infinite-codimensional subspaces and their induced quo-
tients often, so we will adopt the following definition.

Definition. We will say that an operator T :X −→Y is a surjection if T is
surjective and Y is infinite-dimensional.

The following results will be useful when dealing with complemented sub-
spaces, surjections and superprojective spaces. Similar results were given in
[1, Section 2] to study improjective operators.

Proposition 2.1. For a Banach space X, the following are equivalent:

(i) X is superprojective;

(ii) for any surjection T :X −→Y , there exists another surjection S:Y −→Z
such that N(ST ) is complemented in X.
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Proof. For the direct implication, let T :X −→Y be a surjection, so that
N(T ) is infinite-codimensional in X. By the superprojectivity of X, N(T ) is
contained in a complemented, infinite-codimensional subspace M of X, and
clearly T (M) is closed in Y . Thus the quotient map Q from Y onto Y/T (M)
is a surjection such that N(QT ) = M is complemented in X.

For the converse implication, let M be an infinite-codimensional subspace
of X, so that QM :X −→X/M is a surjection. Then there exists another
surjection S:X/M −→Z such that N(SQM) is infinite-codimensional and
complemented in X, and contains M .

The next result allows to push the complementation of a subspace through
an operator under certain conditions.

Proposition 2.2. Let X, Y and Z be Banach spaces and let T :X −→Y
and S:Y −→Z be operators such that ST is a surjection and N(ST ) is com-
plemented in X. Then N(S) is complemented in Y .

Proof. Let H be a subspace of X such that X = N(ST ) ⊕ H. Since
ST :X −→Z is a surjection, ST |H must be an isomorphism onto Z; in par-
ticular, T |H is an isomorphism and Y = N(S) ⊕ T (H), as proved by the
projection T (ST |H)−1S:Y −→Y .

A simple consequence of Propositions 2.1 and 2.2 is the fact that the class
of superprojective spaces is stable under quotients.

Proposition 2.3. Let X be a superprojective Banach space and let T :X −→Y
be a surjection. Then Y is superprojective.

Proof. Let S:Y −→Z be a surjection; then ST is a surjection and, by
Proposition 2.1, there exists another surjection R:Z −→W such that N(RST )
is complemented in X. By Proposition 2.2, N(RS) is complemented in Y ,
which means, again by Proposition 2.1, that Y is superprojective.

Finally, we will state a technical observation on the behaviour of surjec-
tions on spaces that have a complemented superprojective subspace.

Proposition 2.4. Let X be a Banach space, let P :X −→X be a projection
with P (X) superprojective and let S:X −→Y be a surjection such that SP is
not strictly cosingular. Then there exists another surjection R:Y −→Z such
that N(RS) is complemented in X.
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Proof. Let J :P (X)−→X be the natural inclusion; then SP = SJP is
not strictly cosingular, so neither is SJ :P (X)−→Y . Therefore, there ex-
ists a quotient map Q:Y −→W such that QSJ is a surjection, and Propo-
sition 2.1 provides another surjection R:W −→Z such that N(RQSJ) is
complemented in P (X); by Proposition 2.2, N(RQS) is complemented in X,
where RQ:Y −→Z is a surjection.

3. Some properties of superprojective spaces

The following result gives some simple but useful necessary conditions for
a Banach space X to be subprojective or superprojective.

Proposition 3.1. Let X and Z be infinite-dimensional Banach spaces.

(1) If J :Z −→X is a strictly cosingular embedding, then X is not subpro-
jective.

(2) If Q:X −→Z is a strictly singular surjection, then X is not superpro-
jective.

Proof. (1) If X = M⊕H with M ⊆ J(Z), then QHJ is surjective. Since J
is strictly cosingular, H is finite-codimensional and M is finite-dimensional.

(2) If X = M ⊕H with N(Q) ⊆ M , then Q|H is an embedding. Since Q
is strictly singular, H is finite-dimensional.

In spite of its simplicity, Proposition 3.1 has several straightforward con-
sequences. Proposition 3.2 was proved in [14] for subprojective spaces with
the same example but a different argument. Here we extend it to superpro-
jective spaces. Recall that a class C of Banach spaces satisfies the three-space
property if a Banach space X belongs to C whenever M and X/M belong to C
for some subspace M of X. We refer to [5] for other equivalent formulations
and additional information.

Proposition 3.2. The classes of subprojective and superprojective spaces do
not satisfy the three-space property.

Proof. Let 1 < p < ∞ and recall that ℓp is both subprojective and super-
projective. Let Zp be the Kalton-Peck space introduced in [12]. Then there
exists an exact sequence

0 → ℓp
i−→ Zp

q−→ ℓp → 0
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in which i is strictly cosingular and q is strictly singular [12, Theorem 6.4].
By Proposition 3.1, Zp is neither subprojective nor superprojective.

Remark. As for subprojective spaces [14], Proposition 3.2 implies that being
superprojective is not open with respect to ΘX(·, ·), the gap metric between
subspaces of a Banach space X. In other words, there exists a Banach
space X with a superprojective subspace Y so that for every ε > 0 we can
find a non-superprojective subspace Yε of X such that ΘX(Y, Yε) < ε.

Since ℓ1 is subprojective, the following result suggests that the class of
non-reflexive superprojective spaces is smaller than that of non-reflexive sub-
projective spaces.

Proposition 3.3. Let X be a Banach space containing a subspace isomor-
phic to ℓ1. Then X is not superprojective and X∗ is not subprojective.

Proof. If X contains a subspace isomorphic to ℓ1, then there exists a sur-
jective operator Q:X −→ ℓ2 which is 2-summing [6, Corollary 4.16], there-
fore weakly compact and completely continuous [6, Theorem 2.17], therefore
strictly singular: Indeed, if Q|M is an isomorphism, then M is reflexive and
weakly convergent sequences in M are convergent, so M is finite-dimensional.
By Proposition 3.1, X is not superprojective.

For the second part, observe that Q∗∗:X∗∗ −→ ℓ2 is also 2-summing [6,
Proposition 2.19]. Then Q∗∗ is strictly singular, hence Q∗: ℓ2−→X∗ is a
strictly cosingular embedding.

Proposition 3.3 allows to fully characterise the superprojectivity of C(K)
spaces. Recall that a compact space is called scattered if each of its non-
empty subsets has an isolated point.

Corollary 3.4. Let K be a compact set. Then C(K) is superprojective if
and only if K is scattered.

Proof. If K is scattered, then C(K) is superprojective [10, Proposition 3.4].
On the other hand, if K is not scattered, then C(K) contains a copy of ℓ1
[15] and cannot be superprojective by Proposition 3.3.

It also follows immediately that certain tensor products cannot be super-
projective.
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Corollary 3.5. Let X and Y be Banach spaces and suppose that X admits
an unconditional finite-dimensional decomposition and L(X, Y ∗) ̸= K(X,Y ∗).
Then X ⊗̂π Y is not superprojective.

Proof. Note that (X ⊗̂π Y )∗ ≡ L(X, Y ∗). Since L(X, Y ∗) ̸= K(X,Y ∗), we
have that L(X, Y ∗) contains ℓ∞ [11, Theorem 6], hence X ⊗̂π Y contains a
(complemented) copy of ℓ1.

Since the spaces ℓp have an unconditional basis and are subprojective and
superprojective for 1 < p < ∞, we can now characterise the superprojectivity
of the tensor products ℓp ⊗̂π ℓq.

Corollary 3.6. Let 1 < p, q < ∞. Then the following are equivalent:

(i) ℓp ⊗̂π ℓq is superprojective;

(ii) ℓp ⊗̂π ℓq is reflexive;

(iii) L(ℓp, ℓ
∗
q) = K(ℓp, ℓ

∗
q);

(iv) p > q/(q − 1).

Proof. We have that ℓp ⊗̂π ℓq is reflexive if and only if L(ℓp, ℓ
∗
q) = K(ℓp, ℓ

∗
q)

[16, Theorem 4.21] if and only if p > q/(q − 1) [13, Proposition 2.c.3]. If
L(ℓp, ℓ

∗
q) ̸= K(ℓp, ℓ

∗
q), then ℓp ⊗̂π ℓq is not superprojective by Corollary 3.5;

otherwise, ℓp ⊗̂π ℓq is reflexive and ℓp ⊗̂π ℓq = (ℓ∗p ⊗̂ε ℓ
∗
q)

∗ [16, Theorem 5.33],

so ℓ∗p ⊗̂ε ℓ
∗
q is reflexive and subprojective [14, Corollary 3.3] and ℓp ⊗̂π ℓq is

superprojective.

Corollary 3.7. Lp ⊗̂π Lq is not superprojective for any 1 ≤ p, q ≤ ∞.

Proof. If p is either 1 or strictly greater than 2, then Lp itself is not su-
perprojective, so neither is Lp ⊗̂π Lq, and similarly for q. Thus, we are only
concerned with the case 1 < p, q ≤ 2, but then both Lp and L∗

q contain

complemented copies of ℓ2, so L(Lp, L
∗
q) ̸= K(Lp, L

∗
q) and Lp ⊗̂π Lq is not

superprojective by Corollary 3.5.

Remark. Observe that ℓp ⊗̂π ℓq and ℓp ⊗̂ε ℓq are subprojective for all 1 ≤
p, q < ∞ [14, Corollary 3.3] and Lp ⊗̂ε Lq is subprojective for all 2 ≤ p, q < ∞
[14, Corollary 3.5]. This strengthens the idea that the class of non-reflexive
superprojective spaces seems to be smaller than that of non-reflexive subpro-
jective spaces.
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4. Stability results for superprojective spaces

We will now turn our attention to some stability results for the class of
superprojective spaces. Our first result here, and key to subsequent ones,
proves that the direct sum of two superprojective Banach spaces is again
superprojective.

Proposition 4.1. Let X and Y be Banach spaces. Then X ⊕ Y is super-
projective if and only if both X and Y are superprojective.

Proof. X and Y are quotients of X ⊕ Y ; if X ⊕ Y is superprojective, then
so are X and Y by Proposition 2.3.

Conversely, assume that X are Y are both superprojective, and define
the projections PX :X ⊕ Y −→X ⊕ Y , with range X and kernel Y , and
PY :X ⊕ Y −→X ⊕ Y , with range Y and kernel X. Take any surjection
S:X ⊕ Y −→Z. Then S = SPX + SPY is not strictly cosingular, so either
SPX or SPY is not strictly cosingular; without loss of generality, we will
assume that it is SPX . By Proposition 2.4, there exists another surjection
R:Z −→W such that N(RS) is complemented in X ⊕ Y , which finishes the
proof by Proposition 2.1.

We will now state the main result in this section, which proves that a space
is superprojective if it admits a suitable decomposition into superprojective
parts. Recall that an operator T :X −→Y is upper semi-Fredholm if N(T ) is
finite-dimensional and R(T ) is closed, and T is lower semi-Fredholm if R(T )
is finite-codimensional (hence closed). Note that T is lower semi-Fredholm if
and only if T ∗ is upper semi-Fredholm.

Theorem 4.2. Let X be a Banach space, let Λ be a well-ordered set and let
(Pλ)λ∈Λ and (Qλ)λ∈Λ be bounded families of projections on X such that:

(i) P ∗
λx

∗ −→
λ

x∗ for every x∗ ∈ X∗;

(ii) PµPν = Pmin{µ,ν} and QµQν = Qmin{µ,ν} for every µ, ν ∈ Λ;

(iii) QµPν = PνQµ for every µ, ν ∈ Λ, and QµPν = Pν if µ ≥ ν;

(iv) Qλ(X) is superprojective for every λ ∈ Λ;

(v) for every unbounded strictly increasing sequence (λk)k∈N of elements
in Λ and every sequence (x∗

k)k∈N of non-null elements in X∗ such that
x∗
1 ∈ R(P ∗

λ1
) and x∗

k ∈ R(P ∗
λk

(I − Q∗
λk−1

)) for k > 1, the subspace
[x∗

k : k ∈ N]⊥ is contained in a complemented infinite-codimensional
subspace of X.
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Then X is superprojective.

Here, an unbounded sequence in Λ is one that does not have an upper
bound within Λ. Also, this result is only really interesting if Λ does not have
a maximum element; otherwise, if λ is the maximum of Λ, then Pλ = IX by
condition (i) and Qλ = QλPλ = Pλ = IX by condition (iii), so X = Qλ(X) is
already superprojective by condition (iv).

Proof. Let M be an infinite-codimensional subspace of X and let us denote
its natural quotient map by S:X −→X/M . If there exists λ ∈ Λ such
that SQλ is not strictly cosingular, then Proposition 2.4 provides another
surjection R:X/M −→Z such that N(RS) is complemented in X. Since
N(RS) is infinite-codimensional and contains M we are done.

Otherwise, assume that SQλ is strictly cosingular for every λ ∈ Λ. Let
C ≥ 1 be such that ∥Pλ∥ ≤ C and ∥Qλ∥ ≤ C for every λ ∈ Λ, and let
ε = 1/8C3 > 0. We will construct a strictly increasing sequence λ1 < λ2 < . . .
of elements in Λ and a sequence (x∗

n)n∈N of norm-one elements in M⊥ ⊆ X∗

such that ∥Q∗
λk−1

x∗
k∥ < 2−kε and ∥P ∗

λk
x∗
k − x∗

k∥ < 2−kε for every k ∈ N,
where we write Qλ0 = 0 for convenience. To this end, let k ∈ N, and
assume that λk−1 has already been obtained. By hypothesis, Q∗

λk−1
S∗ =

(SQλk−1
)∗ is not an isomorphism, where S∗: (X/M)∗−→X∗ is an isometric

embedding with range M⊥, so there exists x∗
k ∈ M⊥ such that ∥x∗

k∥ = 1 and
∥Q∗

λk−1
x∗
k∥ < 2−kε, and then there is λk > λk−1 such that ∥P ∗

λk
x∗
k − x∗

k∥ <

2−kε by condition (i), which finishes the inductive construction process. Let
H = [x∗

k : k ∈ N] ⊆ X∗; then H⊥ is infinite-codimensional and contains M .
It is easy to check that the operators Tk := (I−Qλk−1

)Pλk
are projections

with norm ∥Tk∥ ≤ (1 + C)C ≤ 2C2, and that TiTj = 0 if i ̸= j.
Let now z∗k = T ∗

k (x∗
k) = P ∗

λk
(I −Q∗

λk−1
)x∗

k for each k ∈ N; then

∥z∗k − x∗
k∥ ≤ ∥P ∗

λk
x∗
k − x∗

k∥+ ∥P ∗
λk
Q∗

λk−1
x∗
k∥ < 2−kε+ 2−kεC ≤ 21−kεC < 1/2,

so 1/2 < ∥z∗k∥ < 3/2 for every k ∈ N. If we take xk ∈ X such that ∥xk∥ < 2
and ⟨z∗k, xk⟩ = 1 for each k ∈ N, and define zk = Tkxk, it follows that

⟨z∗k, zk⟩ = ⟨z∗k, Tkxk⟩ = ⟨T ∗
k z

∗
k, xk⟩ = ⟨z∗k, xk⟩ = 1,

for every k ∈ N and

⟨z∗i , zj⟩ = ⟨T ∗
i z

∗
i , Tjzj⟩ = ⟨z∗i , TiTjzj⟩ = 0
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if i ̸= j, which makes (z∗k, zk)n∈N a biorthogonal sequence in (X∗, X). In
the spirit of the principle of small perturbations [4], let K:X −→X be the
operator defined as K(x) =

∑∞
n=1⟨x∗

n − z∗n, x⟩zn; then

∞∑
n=1

∥x∗
n − z∗n∥ ∥zn∥ <

∞∑
n=1

(21−nεC)(4C2) =
∞∑
n=1

2−n = 1,

so K is well defined and U = I + K is an isomorphism on X. Moreover,
K∗:X∗ −→X∗ is defined as K∗(x∗) =

∑∞
n=1⟨x∗, zn⟩(x∗

n − z∗n), so K∗(z∗k) =
x∗
k − z∗k and U∗(z∗k) = x∗

k for every k ∈ N. Let Z = [z∗k : k ∈ N]; then
U∗(Z) = H and U(H⊥) = Z⊥.

Next we will show that Z is weak∗ closed in X∗. Note first that TjPλi
=

(I − Qλj−1
)Pλj

Pλi
= (I − Qλj−1

)Pλj
= Tj if i ≥ j, and TjPλi

= (I −
Qλj−1

)Pλj
Pλi

= (I − Qλj−1
)Pλi

= 0 otherwise. Given that z∗k ∈ R(T ∗
k ) for

every k ∈ N, this means that P ∗
λi
z∗j = z∗j if i ≥ j and P ∗

λi
z∗j = 0 otherwise,

so P ∗
λk

(Z) = [z∗1 , . . . , z
∗
k], which is finite-dimensional, for every k ∈ N. Let x∗

be a weak∗ cluster point of Z; then P ∗
λk
x∗ ∈ P ∗

λk
(Z) ⊆ Z and P ∗

λk
x∗ −→

k
x∗

by condition (i), so x∗ ∈ Z and Z is indeed weak∗ closed. The fact that
H = U∗(Z) implies that H is weak∗ closed, as well.

This means, in turn, that no Q∗
λ can be an isomorphism on H for any

λ ∈ Λ. To see this, consider the natural quotient QH⊥ :X −→X/H⊥, where
X/H⊥ is infinite-dimensional. Since M ⊆ H⊥, the operator QH⊥ factors
through S = QM :X −→X/M and, since SQλ is strictly cosingular for every
λ ∈ Λ by our initial hypothesis, it follows that QH⊥Qλ cannot be surjective
for any λ ∈ Λ, or even lower semi-Fredholm; equivalently, Q∗

λ cannot be
upper semi-Fredholm on H⊥

⊥ for any λ ∈ Λ, where H⊥
⊥ = H because H is

weak∗ closed.
Finally, we will check that the sequence (λk)k∈N is unbounded. Assume,

to the contrary, that there existed some λ ∈ Λ such that λk ≤ λ for every
k ∈ N. Then, for every k ∈ N, we would have TkQλ = (I − Qλk−1

)Pλk
Qλ =

(I −Qλk−1
)Pλk

= Tk, so Q∗
λz

∗
k = z∗k and Q∗

λ would be an isomorphism on Z.
But then Q∗

λU
−1∗ would be an isomorphism on H, where U−1 = I−U−1K is

a compact perturbation of the identity, so Q∗
λ would be upper semi-Fredholm

on H, a contradiction.
Now that the sequence (λk)k∈N is known to be unbounded, condition (v)

states that Z⊥ is contained in a complemented infinite-codimensional sub-
space of X, and then so is H⊥ = U−1(Z⊥).
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Note that any sequence (Pn)n∈N of projections in X satisfying the condi-
tions of Theorem 4.2 effectively defines a Schauder decomposition for X,
where the components are the ranges of each operator Pn(I − Pn−1) =
Pn −Pn−1; equivalently, each Pn is the projection onto the sum of the first n
components. For the purposes of Theorem 4.2, these components need not
be finite-dimensional.

Regarding condition (v), a further remark is in order. It may very well
be the case that there are no unbounded strictly increasing sequences in Λ,
for instance if Λ = [0, ω1), where ω1 is the first uncountable ordinal, in which
case condition (v) is trivially satisfied and does not impose any additional
restriction on X or the projections. In terms of the proof of Theorem 4.2, this
means that SQλ must be eventually not strictly cosingular for some λ ∈ Λ,
and this is so because Q∗

λ is an isomorphism on Z for any λ greater than the
supremum of (λk)k∈N, so Q∗

λ is upper semi-Fredholm on H and SQλ is not
strictly cosingular, as per the last paragraphs of the proof of Theorem 4.2.

Most of the time, we will not need the full strength of Theorem 4.2,
and the following, simpler version will suffice, where only a single family of
projections (Pλ)λ∈Λ = (Qλ)λ∈Λ is involved.

Theorem 4.3. Let X be a Banach space, let Λ be a well-ordered set and let
(Pλ)λ∈Λ be a bounded family of projections on X such that:

(i) P ∗
λx

∗ −→
λ

x∗ for every x∗ ∈ X∗;

(ii) PµPν = Pmin{µ,ν} for every µ, ν ∈ Λ;

(iii) Pλ(X) is superprojective for every λ ∈ Λ;

(iv) for every unbounded strictly increasing sequence (λk)k∈N of elements
in Λ and every sequence (x∗

k)k∈N of non-null elements in X∗ such that
x∗
1 ∈ R(P ∗

λ1
) and x∗

k ∈ R(P ∗
λk

− P ∗
λk−1

) for k > 1, the subspace [x∗
k :

k ∈ N]⊥ is contained in a complemented infinite-codimensional subspace
of X.

Then X is superprojective.

Our first use of Theorems 4.2 and 4.3 will be to prove that the (infinite)
sum of superprojective spaces, such as ℓp(Xn) or c0(Xn), is also superprojec-
tive, if the sum is done in a “superprojective” way.

Definition. We will say that a Banach space E ⊆ RN is a solid sequence
space if, for every (αn)n∈N ∈ E and (βn)n∈N ∈ RN with |βn| ≤ |αn| for every
n ∈ N, it holds that (βn)n∈N ∈ E and ∥(βn)n∈N∥ ≤ ∥(αn)n∈N∥.
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We will say that E is an unconditional sequence space if it is a solid
sequence space and the sequence of canonical vectors (ei)i∈N is a normalised
basis for E, where ei = (δij)j∈N.

If E is an unconditional sequence space, then its canonical basis (en)n∈N is
actually 1-unconditional, and its conjugate E∗ can be identified with a solid
sequence space itself in the usual way, where the action of β = (βn)n∈N ∈ E∗

on α = (αn)n∈N ∈ E is ⟨β, α⟩ =
∑∞

n=1 βnαn. If the canonical basis (en)n∈N is
shrinking in E, then E∗ is additionally unconditional (the coordinate func-
tionals are a basis for E∗).

Solid sequence spaces will play a central role in some of our results because
of the following construction.

Definition. Let E be a solid sequence space and let (Xn)n∈N be a sequence
of Banach spaces. We will write E(Xn) for the Banach space of all sequences
(xn)n∈N ∈

∏
n∈N Xn for which (∥xn∥)n∈N ∈ E, with the norm ∥(xn)n∈N∥ =

∥(∥xn∥)n∈N∥E.

The identification of the dual of an unconditional sequence space with
another solid sequence space can be carried up to the sum of spaces.

Proposition 4.4. Let E be an unconditional sequence space and let (Xn)n∈N
be a sequence of Banach spaces. Then E(Xn)∗ ≡ E∗(X∗

n).

Proof. Each (x∗
n)n∈N ∈ E∗(X∗

n) clearly defines an element of E(Xn)∗, so we
only have to show the converse identification.

Let z∗ ∈ E(Xn)∗, let Jn:Xn−→E(Xn) be the canonical inclusion of Xn

into E(Xn) for each n ∈ N and let x∗
n = J∗

n(z∗) ∈ X∗
n for each n ∈ N; we will

prove that z∗ = (x∗
n)n∈N ∈ E∗(X∗

n).
To prove that (x∗

n)n∈N ∈ E∗(X∗
n), choose xn ∈ Xn such that ∥xn∥ = 1 and

⟨x∗
n, xn⟩ ≥ 1

2
∥x∗

n∥ for each n ∈ N, and take any non-negative α = (αn)n∈N ∈
E. By the definition of E(Xn), we have that (αnxn)n∈N ∈ E(Xn), so

∞∑
n=1

∥x∗
n∥αn ≤

∞∑
n=1

2⟨x∗
n, xn⟩αn = 2

∞∑
n=1

⟨x∗
n, αnxn⟩

= 2
∞∑
n=1

⟨J∗
n(z∗), αnxn⟩ = 2

∞∑
n=1

⟨z∗, Jn(αnxn)⟩

= 2⟨z∗, (αnxn)n∈N⟩ ≤ 2∥z∗∥∥(αnxn)n∈N∥ = 2∥z∗∥ ∥α∥.
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This proves that (∥x∗
n∥) ∈ E∗ and, as a consequence, (x∗

n)n∈N ∈ E∗(X∗
n).

Now, given i ∈ N and xi ∈ Xi, we have ⟨(x∗
n)n∈N, Ji(xi)⟩ = ⟨x∗

i , xi⟩ =
⟨z∗, Ji(xi)⟩, so (x∗

n)n∈N and z∗ coincide over the finitely non-null sequences of
E(Xn) and therefore z∗ = (x∗

n)n∈N.

As we said, we will prove that the sum of superprojective spaces is also su-
perprojective, if the sum is done in a superprojective way, which translates to
the requirement that the space E governing the sum must be superprojective
itself. This excludes ℓ1 and, more generally, imposes that any unconditional
basis in E be shrinking, for the same reasons that ℓ1 is not superprojective,
or precisely because of this.

Proposition 4.5. Let X be a superprojective Banach space and let (xn)n∈N
be an unconditional basis of X. Then (xn)n∈N is shrinking.

Proof. If (xn)n∈N is unconditional but not shrinking, then X contains a
(complemented) copy of ℓ1 [3, Theorem 3.3.1] and cannot be superprojective
by Proposition 3.3.

Theorem 4.6. Let E be an unconditional sequence space and let (Xn)n∈N be
a sequence of Banach spaces. Then E(Xn) is superprojective if and only if
all of E and Xn are superprojective.

Proof. Let X = E(Xn). All of E and Xn are quotients of X; if X is
superprojective, then so are E and each Xn.

Assume now that E and each Xn are superprojective, and define the pro-
jections Pn:X −→X as Pn((xn)n∈N) = (x1, . . . , xn, 0, . . .) for each n ∈ N. We
will prove that the sequence (Pn)n∈N meets the criteria of Theorem 4.3. The
fact that (Pn)n∈N is associated with the natural Schauder decomposition of
X = E(Xn) is enough for condition (ii) to hold. For condition (iii), note
that Pn(X) is isometric to

⊕n
i=1 Xi, which is superprojective by Proposi-

tion 4.1. As for condition (i), E is superprojective and its canonical basis
(en)n∈N is unconditional, therefore shrinking by Proposition 4.5, so E∗ is un-
conditional and (P ∗

n)n∈N is the sequence of projections associated with the
natural Schauder decomposition of E(Xn)∗ ≡ E∗(X∗

n).
To prove condition (iv), let (nk)k∈N be a strictly increasing sequence of

integers, let T1 = Pn1 and Tk = Pnk
− Pnk−1

for k > 1, and let x∗
k ∈ R(T ∗

k )
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be non-null for each k ∈ N, as in Theorem 4.3. Define M = [x∗
k : k ∈ N]⊥,

which is infinite-codimensional. Then x∗
k ∈ X∗ ≡ E∗(X∗

n), so

x∗
k = (0, . . . , 0, z∗nk−1+1, . . . , z

∗
nk
, 0, . . .),

where z∗i ∈ X∗
i . Pick a normalised zi ∈ Xi such that ⟨z∗i , zi⟩ ≥ ∥z∗i ∥/2 for

each i ∈ N, and consider the operator J :E−→X defined as J((αn)n∈N) =
(αnzn)n∈N, which is an isometric embedding by the definition of X = E(Xn).

We claim that QMJ :E−→X/M is a surjection. Indeed, given x =
(xn)n∈N ∈ X, with each xn ∈ Xn, let αn = ⟨z∗n, xn⟩/⟨z∗n, zn⟩ if z∗n ̸= 0,
else αn = 0, for each n ∈ N, and define α = (αn)n∈N. Then |αn| ≤ 2∥xn∥ for
every n ∈ N, so α ∈ E, and ⟨x∗

k, x− J(α)⟩ =
∑nk

i=nk−1−1⟨z∗i , xi−αizi⟩ = 0 for

every k ∈ N, so x− J(α) ∈ M and QM(x) = QMJ(α) ∈ R(QMJ).
Now, by the superprojectivity of E and Proposition 2.1, there exists an-

other surjection S:X/M −→Z such that N(SQMJ) is complemented in E;
by Proposition 2.2, N(SQM) is complemented in X, where M ⊆ N(SQM)
and R(SQM) = Z, which is infinite-dimensional.

The following result will help us check for the last condition in Theorems
4.2 and 4.3.

Lemma 4.7. Let X be a Banach space, let E be an unconditional sequence
space and let T , (Tk)k∈N be projections in X such that

(i) TiTj = 0 if i ̸= j;

(ii) TkT = TTk = Tk for every k ∈ N;
(iii) R(T ) embeds into E(R(Tk)) via the mapping that takes x ∈ R(T ) to

(Tk(x))k∈N.

Let x∗
k ∈ R(T ∗

k ) be non-null for each k ∈ N. Then [x∗
k : k ∈ N]⊥ is comple-

mented in X.

Proof. We will assume without loss of generality that ∥x∗
k∥ = 1 for every

k ∈ N. Let Z = E(R(Tk)) and let U :R(T )−→Z be the isomorphism into Z
defined as U(x) = (Tk(x))k∈N.

Note that, in fact, (Tk(x))k∈N = (Tk(T (x)))k∈N = U(T (x)) ∈ Z for every
x ∈ X, so (∥Tk(x)∥)k∈N ∈ E and ∥(∥Tk(x)∥)k∈N∥E = ∥U(T (x))∥Z for every
x ∈ X. Define Q:X −→E as Q(x) = (⟨x∗

k, x⟩)k∈N; then

|⟨x∗
k, x⟩| = |⟨T ∗

k (x∗
k), x⟩| = |⟨x∗

k, Tk(x)⟩| ≤ ∥Tk(x)∥
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for every x ∈ X, so Q is well defined and ∥Q∥ ≤ ∥UT∥. Also, (∥Tk(x)∥)k∈N ∈
E implies that Tkx −→

k
0 for every x ∈ X, so there exists a constant C such

that ∥Tk∥ ≤ C for every k ∈ N.
Take now xk ∈ X such that ⟨x∗

k, xk⟩ = 1 and ∥xk∥ ≤ 2 for each k ∈ N, so
that ⟨x∗

i , Tjxj⟩ = ⟨T ∗
j x

∗
i , xj⟩ = δij for every i, j ∈ N, and define J :E−→X

as J((αn)n∈N) =
∑∞

n=1 αnTn(xn). Then U(J((αn)n∈N)) = (αkTk(xk))k∈N, as
seen by considering the action of UJ over the finitely non-null sequences of E,
where 1 ≤ ∥Tk(xk)∥ ≤ C for every k ∈ N, so UJ :E−→Z is an isomorphism,
and so must be J . Finally,

QJ((αn)n∈N) =
(⟨

x∗
k,

∞∑
n=1

αnTn(xn)
⟩)

k∈N
= (αk)k∈N,

so QJ = IE and JQ is a projection in X with kernel [x∗
k : k ∈ N]⊥.

Theorem 4.8. Let X and Y be c0 or ℓp for 1 < p < ∞. Then X ⊗̂ε Y is
superprojective.

Proof. Let Rn:X −→X be the projection given by Rn((αk)k∈N) = (α1, . . . , αn, 0, . . .)
for each n ∈ N, and similarly for Y . (We are abusing the notation here for
the sake of simplicity in that Rn is really a different operator on each of X
and Y unless they are the same space.) Define the projections

Pn = Rn ⊗Rn

Qn = IX ⊗̂ε Y − (IX −Rn) ⊗ (IY −Rn)

= Rn ⊗Rn + (IX −Rn) ⊗Rn + Rn ⊗ (IY −Rn)

We will prove that the sequences (Pn)n∈N and (Qn)n∈N meet the criteria of
Theorem 4.2.

Conditions (ii) and (iii) are readily satisfied, because they clearly hold
for the elementary tensors ei ⊗ ej. For condition (i), both X∗ and Y ∗ are ℓq
spaces for some 1 ≤ q < ∞, so R∗

n(x∗) −→
n

x∗ for every x∗ ∈ X∗, and simi-

larly for Y ∗, so P ∗
n(z∗) = (R∗

n ⊗ R∗
n)(z∗) −→

n
z∗ for every z∗ ∈ (X ⊗̂ε Y )∗ =

X∗ ⊗̂π Y
∗ [16, Theorem 5.33], again because it holds for the elementary ten-

sors. For condition (iv), note that the range of Qn is the direct sum of the
ranges of Rn ⊗Rn, (IX −Rn) ⊗Rn and Rn ⊗ (IY −Rn), where the first one
is finite-dimensional and the other two are the sum of finitely many copies
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of N(Rn) in X and Y , respectively, which are finite-codimensional subspaces
of X and Y , respectively, hence superprojective.

To prove condition (v), let (nk)k∈N be a strictly increasing sequence of in-
tegers and let T1 = Pn1 and Tk = (I−Qnk−1

)Pnk
for k > 1, as in Theorem 4.2.

Note that, for k > 1, Tk is the projection Tk = (Rnk
−Rnk−1

)⊗(Rnk
−Rnk−1

),
so TiTj = 0 if i ̸= j. Using Tong’s result on diagonal submatrices [18]
[13, Proposition 1.c.8], the operator T =

∑∞
k=1 Tk is a norm-one projec-

tion in X ⊗̂ε Y , with TkT = TTk = Tk for every k ∈ N, and R(T ) embeds
into c0(R(Tk)) or ℓs(R(Tk)) for suitable 1 < s < ∞ in the natural way [14,
Lemma 3.6], so Lemma 4.7 ensures that [x∗

k : k ∈ N]⊥ is complemented
in X ⊗̂ε Y for any choice of non-null elements x∗

k ∈ R(T ∗
k ).

Theorem 4.8 can actually be extended to injective tensor products of
finitely many copies of c0 and ℓp (1 < p < ∞) inductively in the obvious way
with only minor modifications.

Lastly, we will show that C(K,X) is superprojective whenever so is X
at least if K is an interval of ordinals, which includes the case where K is
scattered and metrisable [17, Section 8].

Theorem 4.9. Let X be a superprojective Banach space and let λ be an
ordinal. Then C0([0, λ], X) and C([0, λ], X) are superprojective.

Proof. The proof will proceed by induction in λ. Assume that C0([0, µ], X)
and C([0, µ], X) are indeed superprojective for all µ < λ; we will first prove
that C0([0, λ], X) is superprojective too. If λ is not a limit ordinal, then
λ = µ+1 for some µ and C0([0, λ], X) ≡ C([0, µ], X), which is superprojective
by the induction hypothesis.

Otherwise, if λ is a limit ordinal, define the projections

Pµ:C0([0, λ], X)−→C0([0, λ], X)

as Pµ(f) = fχ[0,µ] for each µ < λ. We will prove that the family (Pµ)µ<λ

meets the criteria of Theorem 4.3. Condition (ii) is immediate to check.
For condition (iii), Pµ(C0([0, λ], X)) is isometric to C([0, µ], X), which is
superprojective by the induction hypothesis.

For condition (i), we have C0([0, λ])∗ = ℓ1([0, λ)) [7, Theorem 14.24] and
C0([0, λ], X)∗ = (C0([0, λ]) ⊗̂εX)∗ = C0([0, λ])∗ ⊗̂π X

∗ [16, Theorem 5.33], so
C0([0, λ], X)∗ = ℓ1([0, λ)) ⊗̂π X

∗ = ℓ1([0, λ), X∗) and P ∗
µ(z) = zχ[0,µ] −→µ z

for every z ∈ ℓ1([0, λ), X∗).
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As for condition (iv), let (λk)k∈N be an unbounded strictly increasing
sequence of elements in [0, λ), should it exist, and let T1 = Pλ1 and Tk =
Pλk

− Pλk−1
for k > 1, as in Theorem 4.3. Then Tk is the projection given

by Tk(f) = fχ[λk−1+1,λk] for k > 1, so TiTj = 0 if i ̸= j. Since (λk)k∈N
is unbounded in [0, λ), its supremum must be λ itself, so C0([0, λ], X) =
c0(R(Tk)) = c0(C([λk−1+1, λk], X)) and Lemma 4.7, with T = I, ensures
that [x∗

k : k ∈ N]⊥ is complemented in C0([0, λ], X) for any choice of non-null
elements x∗

k ∈ R(T ∗
k ).

Finally, C([0, λ], X) = C0([0, λ], X) ⊕ X, which is superprojective by
Proposition 4.1.

5. Some open problems

In order to better understand the duality relations between subprojective
and superprojective Banach spaces we need to answer the following questions:

(1) Does X being superprojective imply that X∗ is subprojective?

(2) Does X∗ being superprojective imply that X is subprojective?

The following two problems seem to be related:

(3) Is Lp ⊗̂π Lq subprojective for 2 ≤ p, q < ∞?

(4) Is Lp ⊗̂ε Lq superprojective for 1 < p, q ≤ 2?

We saw in Section 3 that Lp ⊗̂ε Lq is subprojective for 2 ≤ p, q < ∞, and
Lp ⊗̂π Lq is not superprojective for 1 < p, q ≤ 2.

Suppose that K is a scattered compact.

(5) Does X being subprojective imply that C(K,X) or C(K) ⊗̂π X is sub-
projective?

(6) Does X being superprojective imply that C(K,X) or C(K) ⊗̂π X is
superprojective?

Note that C(K,X) ≡ C(K) ⊗̂εX. There are some partial positive an-
swers when K is an interval of ordinals, namely [14, Section 4.1] and [8]
for (5) and Theorem 4.9 for (6).
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