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Abstract

A local dual of a Banach space X is a subspace of the dual X∗ which can
replace the whole dual space when dealing with finite dimensional subspaces.
This notion arose as a development of the principle of local reflexivity, and it is
very useful when a description of X∗ is not available.

We give an exposition of the theory of local duality for Banach spaces, includ-
ing the main properties, examples and applications, and comparing the notion
of local dual with some other weaker properties of the subspaces of the dual of
a Banach space.
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1. Introduction

In Banach space theory, it is usual to describe the properties of a given
Banach space X in terms of its dual space X∗, but many times a representation
of the dual space is not available. This is the case for the space L∞(µ,X) of
the essentially bounded, measurable, X-valued functions. However, L∞(µ,X)∗5

contains a natural copy of L1(µ,X
∗) which can replace the whole dual space

for many purposes, like norming the elements of L∞(µ,X), or representing the
duality on finite dimensional subspaces of L∞(µ,X). Finding those concrete
subspaces of the dual space and describing their properties is the aim of the
theory of local duality for Banach spaces.10

As far as we know, the investigation in local duality began with the princi-
ple of local reflexivity (P.L.R. for short) which establishes that, when working
with finite dimensional subspaces, it is possible to replace the bidual X∗∗ by
the original space X. The first version of that principle was obtained by John-
son, Rosenthal and Zippin [43], and the current form is due to Lindenstrauss15

and Rosenthal [51]. The P.L.R. has found many applications in Banach space
theory. For example, it implies the existence of a basis for all separable Lp-
spaces [51] and for spaces whose dual has a basis [43]. It has also been applied
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in approximation theory [58], in the study of local complementation of tensor
products [10] and in the study of the L-structure of L1(µ) [38, A.6]. For an20

illuminating account of applications of the P.L.R., we suggest [18, Chapter 8],
especially its final comments.

Proofs of this principle are given in [4], [15], [54] and [68]. Further operator
versions can be found in [7] (see also [6]), [8], [55], and [61]. Moreover, the P.L.R.
has been also translated to different contexts like that of Banach lattices [9],25

modules [14], duality of cones [24], operator ideals [60], spaces of compact op-
erators [49] and other non-commutative settings ([22], [42], [62] and [66]).

A closed subspace Z of X∗ is a local dual of a Banach space X if for every
ε > 0 and every pair of finite dimensional subspaces E of X∗ and F of X, there
exists an operator L : E −→ Z satisfying the following conditions:30

(A)
∣∣∥L(x∗)∥ − ∥x∗∥

∣∣ ≤ ε∥x∗∥ for all x∗ ∈ E,

(B) L(x∗) |F = x∗ |F for all x∗ ∈ E,

(C) L(x∗) = x∗ for all x ∈ E ∩ Z.

The principle of local reflexivity exactly says that X, as a subspace of X∗∗,
is a local dual of X∗. A similar result, independently obtained in [46] and [70],35

is the principle of local reflexivity for ultrapowers which says that for every
ultrafilter U, the ultrapower (X∗)U is a local dual of the ultrapower XU. Note
that X = X∗∗ if and only if X is reflexive, and (X∗)U = (XU)

∗ for all U if
and only if X is superreflexive. Further proofs and variations on the P.L.R.
for ultrapowers can be found in [5], [40] and [47]; certain ultrapower operator40

versions can be found in [56] and [20].
The notion of local duality was inspired by both principles of local reflexivity,

and has been developed in several papers like [16], [26], [32], [34], [35], [36], [37]
and [67]. For a brief account of these developments we refer to [29].

The purpose of this paper is to present a detailed exposition of the theory45

of local dual spaces, including many examples and some applications, and em-
phasizing the relation between the three conditions (A), (B) and (C) that define
the concept. In order to do that, we will make a parallel study of several weaker
properties that a subspace Z of X∗ may have: Z norming for X, Z locally
1-complemented (or ideal) in X∗, and X∗ finite dual representable in Z. For50

most of the results, we include proofs that are simpler and more natural than
those given in the original papers.

The paper is organized as follows. Section 2 includes some technical results
that are useful to work with ε-isometries, a characterization of the norming
subspaces of the dual of a Banach space, and some consequences of the Hahn-55

Banach separation theorem that will be applied in the proof of the principles
of local reflexivity. In Section 3, we introduce the concept of local duality and
the other auxiliary concepts in terms of exact conditions, and give characteri-
zations in terms of approximate conditions. Since the P.L.R. and the P.L.R. for
ultrapowers provide important examples of local dual spaces, we give a proof60

of both results. We also present here several concrete examples of local dual
spaces, and give other examples that allow us to distinguish local duality from
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the weaker properties. In particular, we show that X∗ finite dual representable
in an ideal Z does not imply that Z is a local dual of X.

The local characterizations of Section 3 are applied in Section 4 to obtain65

characterizations in terms of ultrapowers, and in turn these ultrapower charac-
terizations are applied in Section 5 to obtain characterizations of global charac-
ter of the properties of subspaces of a dual space that we consider.

In general, the local characterizations are more effective than the global ones
in the task of identifying examples, while the global characterizations are more70

efficient in finding counterexamples and in understanding the general properties
of the concepts.

One important consequence of the global characterizations (Theorem 5.8)
reveals a hidden symmetry in the concept of local duality: Z is a local dual
of X if and only if Z∗ contains a copy of X which is a local dual of Z. This75

result is a source of examples of local dual spaces and puts in context some
natural dualities, like that between C[0, 1] and L1[0, 1]. Another consequence
is the existence of the smallest local dual space for any space that does not
contain copies of ℓ1. Moreover, it is proved that a dual space X∗ has a smallest
local dual if it has a smallest norming subspace, in which case both smallest80

subspaces coincide with the only predual space of X∗. Besides, it is shown that
every subspace Y of X∗ is contained in a local dual ZY of X whose density
character equals the maximum of those of Y and X.

Section 6 includes technical characterizations for finite dual representability
and local duality, respectively called polar property and strict polar property.85

Both characterizations are of local character, and are useful in situations (like
in the study of the principles of local reflexivity) where the ε-isometries satisfying
(A), (B) and (C) cannot be constructed, but only shown to exist. Moreover,
it is proved that if Z is a local dual of X∗ then the conditions (A), (B) and
(C) hold for every ε > 0, every finite dimensional subspace E of X∗ and every90

reflexive subspace F of X.
A consequence of the strict polar property is that given an ultrafilter U and

an operator T : X −→ Y , the kernel of (T ∗)U is a local dual of the cokernel of
YU/R(TU). This result generalizes the principle of local reflexivity for ultrapow-
ers. Besides, it entails that the kernel of (TU)

∗ is finite dual representable in95

that of (T ∗)U, allowing to derive some duality results for operator semigroups
associated to certain operator ideals. Of course, the strict polar property also
produces a proof of the principle of local reflexivity.

Let X and Z be a pair of Banach spaces. Recall that if the dual of X
contains an isometric copy of Z which is a local dual of X, then the dual of Z100

contains an isometric copy of X which is a local dual of Z (Theorem 5.8); i.e.,
the relation being a local dual is symmetric.

The following table contains the main examples of pairs of Banach spaces in
local duality that appear in the paper.
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(X∗)U XU Thm. 3.8

ℓ1 C[0, 1] Ex. 3.11

C(T) L1(T) Prop. 3.15

L1[0, 1] C[0, 1] Prop. 3.15

L1(µ,X
∗) L∞(µ,X) Thm. 3.17

L∞(µ,X∗) L1(µ,X) Thm. 3.17

Bα[0, 1] with 1 ≤ α ≤ ω1 M[0, 1] Thm. 3.18

ℓ1(X
∗) ℓ∞(X) Prop. 5.9

C(∆) L1[0, 1] Ex. 5.12

X∗ ⊗ε Y
∗ (X∗ with M.A.P.) X ⊗π Y Prop. 5.13

X∗ ⊗π Y
∗ (X∗ with M.A.P.) X ⊗ε Y Prop. 5.13

X∗ ⊗ε L∞(µ) (µ finite) L1(µ,X) Remark 5.14

X∗ ⊗π M(K) (K compact) C(K,X) Remark 5.14

105

We will use standard notation like in [2] and [52]. An operator will be a
continuous linear map between Banach spaces, and BX and SX will be the
unit ball and the unit sphere of the Banach space X. The class of all bounded
operators acting between X and Y is denoted B(X,Y ). We will introduce
additional notation along the paper.110

Since ultraproduct techniques play an important role in this paper, we recall
some notions about ultrapowers of Banach spaces and introduce some notations
(see [40] for additional details). Let I be an infinite set and let U be a collection
of subsets of I satisfying the following properties:

(i) ∅ /∈ U,115

(ii) if A ∈ U and B ∈ U then A ∩B ∈ U,

(iii) if A ∈ U and A ⊂ B ⊂ I then B ∈ U,

(iv) for every A ⊂ I either A ∈ U or I \A ∈ U;

If the properties (i), (ii) and (iii) are satisfied, U is said to be a filter, and if
moreover (iv) holds, U is said to be an ultrafilter. The Axiom of Choice implies120

that every filter is contained by an ultrafilter.
The collection F of all co-finite subsets of I is called the Fréchet filter. Any

ultrafilter extending F is called a non-trivial ultrafilter on I. An ultrafilter
U is said to be principal or trivial if there exists i ∈ I such that i ∈ A for
all A ∈ U. Obviously, every ultrafilter on I is either principal or non-trivial.125
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The ultrafilter U is said to be countably incomplete if there exists a countable
partition {In}∞n=1 of I disjoint with U. Henceforth, all ultrafilters in this paper
are countably incomplete. If I is endowed with a partial order ≼, the order filter
on I is the family of all subsets {i ∈ I : j ≼ i}.

Given a topological space S, a family (xi)i∈I of elements of S converges to130

x0 ∈ X following U if for every neighborhood V of x, the set {i ∈ I : xi ∈ V}
belongs to U; it is denoted limU xi = x0 or xi −→

U
x0. A subsetK of S is relatively

compact only if each family (xi)i∈I contained in K is convergent following U.
The ultrapower of a Banach space X following an ultrafilter U on I is the

quotient space XU := ℓ∞(I,X)/NU(X) where ℓ∞(I,X) is the set of bounded135

families (xi)i∈I ⊂ X and NU(X) is the subspace of families that converge to zero
following U. The element of XU with representative (xi)i∈I is usually denoted
[xi]i or [xi] for short; its norm is ∥[xi]∥ = limU ∥xi∥. The spaceX is isometrically
contained in XU by means of the canonical embedding JX,XU

that maps each
x to the constant class [x]. Note that if X is finite dimensional then JX,XU

140

identifies X with XU isometrically. The ultraproduct following U of a family
{Ci}i∈I of subsets of a Banach space X is the subset (Ci)U of XU formed by all
elements x for which there exists Jx ∈ U and a representative (xi)i∈I such that
xi ∈ Ci for all i ∈ Jx; if there is J ∈ U such that Ci = ∅ then (Ci)U = ∅. For
instance, for every Banach space X, BXU

= (BX)U.145

The ultrapower (X∗)U is isometrically contained in the dual space (XU)
∗ by

means of the embedding JX∗
U,XU

∗ that maps each [x∗i ] to x∗ ∈ (XU)
∗ defined by

⟨x∗, [xi]⟩ = limU⟨x∗i , xi⟩. Usually we will omit the canonical operators JX,XU
and

JX∗
U,XU

∗ ; so we will write x = [x], and we will understand that [x∗i ] ∈ (XU)
∗.

The ultraproduct following U of a uniformly bounded collection of operators150

(Ti)i∈I acting between X and Y is the operator (Ti)U : XU −→ YU that maps
each [xi] to [Ti(xi)]. An operator T : X −→ Y is extended by its ultrapower
TU : XU −→ YU following U, which is defined as TU = (T )U and its norm equals
∥T∥.

2. Preliminaries155

Given a real number ε > 0, an operator T : X −→ Y is said to be an ε-
isometry if 1− ε ≤ ∥T (x)∥ ≤ 1 + ε for all x ∈ SX . Let us recall that a space X
is said to be finitely representable in Y if for every finite dimensional subspace
E of X and every ε > 0 there exists an ε-isometry L : E −→ Y .

The following results are useful to work with ε-isometries. The first two of160

them show that in order to estimate the norm of an operator L : E −→ X, it
is enough to know the value of the norms of L(xi) for a suitable net {xi}i∈I in
SE .

Lemma 2.1. Let X be a Banach space and take any α-net {xi}i∈I in BX with
0 < α < 1. Thus for every x ∈ SX , there is a sequence (xin)

∞
n=1 in the net and165

a scalar sequence (λn)
∞
n=1 such that, for every positive integer n,

(i) 0 ≤ λn ≤ αn−1, and
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(ii) ∥x−
∑n

m=1 λmxim∥ < αn.

Its proof can be found in [38, Lemma A.4.8].

Lemma 2.2. Let L : E −→ X be an operator, let {xi}i∈I be an α-net in SE170

with 0 < α < 1 and consider a real number δ > 0:

(i) if ∥L(xi)∥ ≤ 1 + δ for all i ∈ I then ∥L∥ ≤ 1 +
α+ δ

1− α
.

(ii) if 1−δ ≤ ∥L(xi)∥ ≤ 1+δ for all i ∈ I then L is a (α+δ)(1−α)−1-isometry.

Proof. (i) Let x ∈ SE . By Lemma 2.1, there are a scalar sequence (λn)
∞
n=1

and a sequence (xin)
∞
n=1 in the net {xi}i∈I such that x =

∑∞
n=1 λnxin and

0 ≤ λn ≤ αn−1. Thus, as L is bounded,

∥L(x)∥ ≤
∞∑

n=1

λn∥L(xin)∥ ≤ 1 + δ

1− α
= 1 +

α+ δ

1− α
. (1)

(ii) By (i), we only need to prove ∥L(x)∥ ≥ 1 − (α + δ)(1− α)−1 for any
x ∈ SE . To do so, given x ∈ SE , we choose xj in the net so that ∥x− xj∥ < α.
Thus, by (1),

∥L(x)∥ ≥ ∥L(xj)∥ − ∥L∥·∥x− xj∥ ≥ 1− δ − 1 + δ

1− α
α = 1− α+ δ

1− α

and the proof is done. �

Lemma 2.3. Let E be a finite dimensional subspace of X∗ and let ε > 0.175

Then there exists a finite dimensional subspace F of X such that (1− ε)∥x∗∥ ≤
supx∈SF

⟨x∗, x⟩ for all x∗ ∈ E.

Proof. Since E is finite dimensional, given 0 < δ := ε/3, SE contains a finite
δ-net {x∗i }ni=1. For every x∗i , let xi ∈ SX so that 1 − δ ≤ ⟨x∗i , xi⟩. Consider
any norm one element x∗ ∈ E. Selecting an element x∗i of the net so that180

∥x∗ − x∗i ∥ ≤ δ, we get

1 = ∥x∗∥ ≤ ∥x∗i ∥+ ∥x∗ − x∗i ∥ ≤ 2δ + ⟨x∗i , xi⟩
≤ 2δ + ⟨x∗, xi⟩+ ⟨x∗i − x∗, xi⟩ ≤ 3δ + ⟨x∗, xi⟩

Thus 1 − ε ≤ ⟨x∗, xi⟩, and for F := span{xi}ni=1 ⊂ X, we have 1 − ε ≤
supx∈SF

⟨x∗, x⟩, which proves the lemma. �

Lemma 2.4. Let E be a n-dimensional Banach space and let E0 be a subspace
of E with dimE0 = m. Then there exists a biorthogonal system (xi, fi)

n
i=1 of185

E × E∗ with E0 = span{xi}mi=1, ∥xi∥ = 1 for all 1 ≤ i ≤ n, ∥fi∥ ≤ 1 for all
1 ≤ i ≤ m and ∥fi∥ ≤ 1 +m for all m+ 1 ≤ i ≤ n.
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Proof. By Auerbach’s lemma [52, 1.c.3], there exists a biorthogonal system
(xi, gi)

m
i=1 in E0 with ∥xi∥ = ∥gi∥ = 1 for all 1 ≤ i ≤ m. For every gi, consider

a Hahn-Banach extension fi ∈ E∗. Let P : E −→ E be the projection that190

maps each x to
∑m

i=1⟨fi, x⟩xi. Note that ∥P∥ ≤ m, E0 = R(P ) and E1 :=
N(P ) = ∩m

i=1N(fi). Thus E = E0 ⊕ E1. Again by Auerbach’s lemma, there
is a biorthonormal system (xi, gi)

n
i=m+1 in E1 × E∗

1 . Consider the functionals
fi := gi ◦ (IE − P ) for i = m+ 1, . . . , n. It follows immediately that (xi, fi)

n
i=1

is a biorthogonal system of E × E∗ satisfying the required conditions. �195

Given a Banach space X, a subspace Z of X∗ is said to be norming if for
every x ∈ X, ∥x∥ = supx∗∈BZ

⟨x∗, x⟩. Two important examples of norming
subspaces concerning local duality are the following ones:

Lemma 2.5. Given a Banach space X and an ultrafilter U on I, the following
statements hold:200

(i) the natural copy of X in X∗∗ is a norming subspace;

(ii) the natural copy of (X∗)U in (XU)
∗ is a norming subspace.

Proof. Part (i) is straightforward. For part (ii), given a norm one element
x ∈ XU, choose a family (xi)i∈I ⊂ SX such that [xi] = x, and for every xi, take a
norm one functional x∗i ∈ X∗ such that ⟨x∗i , xi⟩ = 1. Clearly, z∗ := [x∗i ] ∈ S(X∗)U205

and ⟨z∗,x⟩ = limU⟨x∗i , xi⟩ = 1. �

Lemma 2.6. [36] A closed subspace Z of X∗ is norming if and only if for every
finite dimensional subspace F of X and every ε > 0 there exists a normalized
basis {xi}ni=1 of F and a set {x∗i }ni=1 in (1 + ε)BZ such that ⟨x∗i , xj⟩ = δij for
all i and j.210

Proof. The ‘if’ part is trivial. For the ‘only if’ part, assume Z is a norming
subspace of X∗. By Auerbach’s lemma [52, 1.c.3], there exists a pair of subsets
{xi}ni=1 ⊂ SF and {fi}ni=1 ⊂ SF∗ such that ⟨fi, xj⟩ = δij for all i and j. Let
J : F −→ X be the embedding of F into X. Note that J∗(BX∗) = BF∗ . Thus,

since Z is a norming subspace of X∗, BZ is w∗-dense in BX∗ , so J∗(BZ)
w∗

=215

BF∗ , and as F ∗ ≡ X∗/F⊥ is finite dimensional, it follows that J∗(BZ) is norm-
dense in BF∗ . Thus, Lemma 2.1 let us take a family {x∗i }ni=1 in (1 + ε)BZ such
that J∗x∗i = fi.

Since it is clear that ⟨x∗i , xj⟩ = ⟨x∗i , Jxj⟩ = ⟨fi, xj⟩ = δij , the proof is
complete. �220

An application of Lemma 2.5 yields the two following separation lemmas.

Lemma 2.7. Given an operator T : X −→ Y , a vector y ∈ Y and a real number
η > 1, the set T−1(ηBY + y) is σ(X∗, X)-dense in T ∗∗−1(BY ∗∗ + y).

Proof. Assume there exists x∗∗ ∈ T ∗∗−1(BY ∗∗ + y). Then L := T−1(ηBY + y)
is not empty. Otherwise, we would have η < ∥T (x) − y∥ for all x ∈ X and, by
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the Hahn-Banach theorem, there would be a norm one functional y∗ ∈ Y ∗ such
that

η ≤ ⟨y∗, T (x)− y⟩ for all x ∈ X,

and as T ∗∗(x∗∗) ∈R(T )
w∗

,

η ≤ ⟨T ∗∗(x∗∗)− y, y∗⟩ ≤ ∥T ∗∗(x∗∗)− y∥,

a contradiction.
Once it has been proved that L ̸= ∅, assume x∗∗ /∈Lw∗

. The Hahn-Banach
theorem gives a norm one functional x∗ ∈ X∗ and real numbers a and b such
that

⟨x∗∗, x∗⟩ < a < b < inf ⟨x∗, Lw∗

⟩.

Let W := {x ∈ X : ⟨x∗, x⟩ < a}. Obviously, W ∩ L = ∅, so ∥T (w)− y∥ > η for
all w ∈W . Therefore, there exists a norm one functional y∗ ∈ Y ∗ such that

η ≤ ⟨y∗, T (w)− y⟩ for all w ∈W. (2)

But x∗∗ ∈Ww∗

, so formula (2) leads to

η ≤ ⟨T ∗∗(x∗∗)− y, y∗⟩ ≤ ∥T ∗∗(x∗∗)− y∥

in contradiction with x∗∗ ∈ T ∗∗−1(BX∗∗ + y). �225

Note that Lemma 2.7 may fail if the value η > 1 is replaced for η = 1.
Indeed, given the operator T : c0 −→ ℓ∞ that maps each x ∈ c0 to itself, and
given y := (2 − 1/n) ∈ ℓ∞, we have that T−1(Bℓ∞ − y) = ∅ but (1, 1, 1, . . .) ∈
T ∗∗−1(Bℓ∗∗∞

− y). This observation points out a technical difference between
Lemma 2.7 and its following ultrapower analogue:230

Lemma 2.8. Let T : Y −→ X be an operator, let U be an ultrafilter on I, and
let w∗ denote the σ

(
(XU)

∗, XU

)
topology. Then for each y∗ ∈ (Y ∗)U, the set

L := B(X∗)U ∩ (T ∗)−1
U (B(Y ∗)U + y∗)

is w∗-dense in Λ := B(XU)∗ ∩ (TU)
∗−1

(B(YU)∗ + y∗).

Proof. Let (y∗i )i∈I be a representative for y∗. If Λ = ∅, there is nothing to be
proved. Assume there exists v∗ ∈ Λ. Then we claim that L ̸= ∅:

indeed, if we assume for a while that L = ∅, we would get that, for all
x∗ ∈ B(X∗)U ,

1 < ∥(T ∗)U(x
∗)− y∗∥; (3)

let (Kn)
∞
n=1 be a decreasing sequence of elements of U such that ∩∞

n=1Kn = ∅,
and for every n ∈ N, consider the subset

Jn := Kn ∩ {i ∈ I : ∃ x∗i ∈ BX∗ such that 1 + 1/n > ∥T ∗(x∗i )− y∗i ∥}.
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If Jn ∈ U for all n then (Jn)
∞
n=1 would be a decreasing sequence of elements of U

such that ∩∞
n=1Jn = ∅ and therefore, for every m ∈ N and every i ∈ Jm \ Jm+1,

picking z∗i ∈ BX∗ so that 1 + 1/m > ∥T ∗(z∗i )− y∗i ∥, we would have{
i ∈ I : 1 +

1

m
≥ ∥T ∗(z∗i )− y∗i ∥

}
⊃

∞∪
k=m

Jk \ Jk+1 = Jn ∈ U

which means that 1 ≥ limU ∥T ∗(z∗i ) − y∗i ∥ = ∥(T ∗)U([z
∗
i ]) − y∗∥, but [z∗i ] ∈

B(X∗)U , a contradiction with (3). Therefore there exists m ∈ N such that
Jm /∈ U. Thus, for every i ∈ I \ Jm,

1 +
1

m
≤ ∥T ∗(x∗)− y∗i ∥ for all x∗ ∈ BX∗

and by the Hahn-Banach theorem, for every i ∈ I\Jm there would exist xi ∈ SX

such that

1 +
1

m
≤ ⟨T ∗(x∗)− y∗i , xi⟩ for all x∗ ∈ BX∗

and in turn, as I \ Jm ∈ U,

1 +
1

m
≤ ⟨(T ∗)U(x

∗)− y∗, [xi]⟩ for all x∗ ∈ B(X∗)U .

But by part (ii) in Lemma 2.5, (TU)
∗(v∗) ∈R

(
(T ∗)U

)w∗

, so

1 ≤ ⟨(TU)∗(v∗)− y∗, [xi]⟩,

hence v∗ /∈ Λ, a contradiction which proves that L ̸= ∅.

Once we know that L ̸= ∅, assume x∗ /∈ L
w∗

. Then the Hahn-Banach
theorem provides u = [ui] ∈ SXU

and real numbers a and b such that

⟨x∗,u⟩ ≤ a < b < inf⟨Lw∗

,u⟩.

Thus, defining Wi := {z∗ ∈ X∗ : ⟨z∗, ui⟩ ≤ a} for every i ∈ I, we have that

W := (Wi)U = {z∗ ∈ (X∗)U : ⟨z∗,u⟩ ≤ a}

hence W ∩ L = ∅, which leads to

1 < ∥(T ∗)U(z
∗)− y∗∥ for all z∗ ∈W ∩B(X∗)U . (4)

For every n ∈ N, consider the subset

J ′
n := Kn ∩ {i ∈ I : ∃ x∗i ∈Wi ∩BX∗ such that 1 + 1/n > ∥T ∗(x∗i )− y∗i ∥}.

If every J ′
n belongs to U, then using the same argument that proves L ̸= ∅, we

would obtain an element [x∗i ] ∈ (Wi)U∩B(X∗)U such that 1 ≥ ∥(T ∗)U([x
∗
i ])−y∗∥,
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in contradiction with (4). Therefore, we conclude that J ′
m /∈ U for some m. Let

J := I \ J ′
m ∈ U and η := 1 + 1/m. Thus, for every i ∈ J ,

η < ∥T ∗(z∗)− y∗i ∥ for all z∗ ∈Wi ∩BX∗ ,

hence, using again the Hahn-Banach theorem, for every i ∈ J there exists
gi ∈ SY such that

η ≤ ⟨T ∗(w∗)− y∗i , gi⟩ for all w∗ ∈Wi ∩BX∗ .

and as x∗ ∈Ww∗

, then

1 < η ≤ ⟨(TU)∗(x∗)− y∗, [gi]⟩ ≤ ∥(TU)∗(x∗)− y∗∥

which implies that x∗ /∈ Λ, finishing the proof. �235

3. Local dual spaces and related concepts

Let Z be a closed subspace of the dual X∗ of a Banach space X. Given finite
dimensional subspaces E of X∗ and F of X, a number ε > 0, and an operator
L : E −→ Z, we consider the following conditions:

(A) 1− ε ≤ ∥L(x∗)∥ ≤ 1 + ε for all x∗ ∈ SE ,240

(B) ⟨L(x∗)− x∗, x⟩ = 0 for all x∗ ∈ E and all x ∈ F ,

(C) L(x∗) = x∗ for all x∗ ∈ E ∩ Z.

Definition 3.1. Let Z be a closed subspace of X∗. We say that X∗ is finite
dual representable (f.d.r. in short) in Z if for every pair of finite dimensional
subspaces E of X∗ and F of X, and every ε > 0 there exists an operator245

L : E −→ Z satisfying conditions (A) and (B) with respect to F and ε.

The notion of local complementation was introduced in [44] as follows:

Definition 3.2. Given α ≥ 1, a closed subspace Z of Y is said to be locally
α-complemented in Y if for every finite dimensional subspace E of Y and every
ε > 0 there exists an operator L : E −→ Z such that ∥L∥ ≤ α+ ε and L(y) = y250

for all y ∈ Z ∩ E.
The subspace Z is said to be locally complemented in Y if it is locally α-

complemented in Y for some α ≥ 1.
The subspace Z is said to be an ideal in Y if it is locally 1-complemented in

Y (see [28] and [64]).255

Remark 3.3. A subspace Z of X∗ is an ideal in X∗ if and only if for every
finite dimensional subspace E of X∗ and every ε > 0 there exists an operator
L : E −→ Z satisfying ∥L∥ ≤ 1 + ε and (C).
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Remark 3.4. The construction of an operator L : E −→ Z fixing E∩Z entails
to extend the identity operator on E ∩ Z to an operator E → Z. In fact, if260

P is a projection on E onto E ∩ Z with kernel G, then L = P + L(IE − P ).
Obviously, the norm of L is at least one, but its exact value depends very much
on the constant of complementation of E ∩ Z in E. Therefore, the choice of
α = 1 in Definition 3.2 is certainly special.

Remark 3.5.265

(i) if X1 is locally α-complemented in X2 and X2 is locally β-complemented
in X3 then X1 is locally αβ-complemented in X3;

(ii) if X1 is α-complemented in X2 then X1 is locally α-complemented in X2;

(iii) if X∗ is f.d.r. in Z then X∗ is also f.d.r. in any subspace of X∗ containing
Z.270

The notion of local duality arises merging the notions of finite dual repre-
sentability and local complementation.

Definition 3.6. A closed subspace Z of X∗ is said to be a local dual of X if
for every pair of finite dimensional subspaces E of X∗ and F of X, and every
ε > 0 there exists an operator L : E −→ Z satisfying conditions (A), (B) and275

(C) with respect to F and ε.

Local duality of Z with respect to X implies both finite dual representability
of X∗ in Z and local 1-complementation of Z in X∗. Nevertheless, as we shall
see in Example 3.13, the converse of that implication fails.

As we mentioned in the Introduction, there are two examples of local duality280

which are fundamental in local theory of Banach spaces: the P.L.R. and the
P.L.R. for ultrapowers. The most popular proof of the P.L.R. is the one given
by Dean in [15], based on the properties of tensor products (see a detailed
version in [18, Chapter 8]). Moreover, Heinrich gave a proof of the P.L.R. for
ultrapowers in [40, Theorem 7.3] based on the ideas of [15]. Next we give a285

proof of both principles based on the ideas of [54].

Theorem 3.7 (Principle of local reflexivity). Given a Banach space X, its
natural copy in X∗∗ is a local dual of X∗.

Proof. Let E and F be a pair of finite dimensional subspaces of X∗∗ and X∗

respectively, and fix any real number ε > 0. Let dimE = n, dimE ∩X = n− k
and take a biorthogonal system (y∗∗j , hj)

n
j=1 in E ×E∗ such that ∥y∗∗j ∥ = 1 and

span{y∗∗j }nj=k+1 = E ∩X. Let us denote yj := y∗∗j for k + 1 ≤ j ≤ n. Thus the
inclusion operator JE : E −→ X∗∗ satisfies

JE(x
∗∗) =

k∑
j=1

⟨hj , x∗∗⟩y∗∗j +
n∑

j=k+1

⟨hj , x∗∗⟩yj .

11



Note that any operator of the form

L(x∗∗) =

k∑
j=1

⟨hj , x∗∗⟩vj +
n∑

j=k+1

⟨hj , x∗∗⟩yj (5)

satisfies (C) automatically. Thus the proof will be done as soon as we find
vectors v1, . . . vk in X so that the operator L in (5) also satisfies (A) and (B)290

with respect to F and ε. To do so, fix α > 0 and δ > 0 small enough so that
0 < (α+ δ)/(1− α) < ε, and pick

{e∗∗j }Ni=1, an α-net in SE , and

{u∗j}Nj=1 in BX∗

such that ∥e∗∗∥ ≤ (1 − α)−1 sup1≤j≤N |⟨e∗∗, u∗j ⟩| for all e∗∗ ∈ E, and {u∗j}Nj=1

contains a basis of F . Let λjr be scalars such that

e∗∗j =

k∑
r=1

λjry
∗∗
r +

n∑
r=k+1

λjryr, 1 ≤ j ≤ N,

let K := max1≤j≤N

∑n
r=1 |λjr|, let W := ℓk∞(X), and consider the subset

C :=

{
(xs)

k
s=1 ∈ (1 + α/2)BW :

∥∥∥ k∑
s=1

λjsxs +

n∑
s=k+1

λjsys

∥∥∥ ≤ 1, 1 ≤ j ≤ N

}
.

Identifying W ∗∗ with ℓk∞(X∗∗), Lemma 2.7 yields that (y∗∗j )kj=1 ∈Cσ(W∗∗,W∗)
.

Consider the operator S : W −→ RkN that maps each (xs)
k
s=1 to (⟨u∗j , xs⟩)ks=1

N
j=1.

Thus, as R(S) is finite dimensional, it follows that S∗∗((y∗∗j )kj=1

)
∈ S(C) and

R(S) = R(S) = R(S∗∗). Hence, given 0 < β < α/(2K), there exist (cj)
k
j=1 ∈ C

and (bj)
k
j=1 ∈ βBW such that

S∗∗((y∗∗j )kj=1

)
= S

(
(cj)

k
j=1

)
+ S

(
(bj)

k
j=1

)
.

Clearly, since the set {u∗j}Nj=1 contains a basis of F , the choice vj := cj + bj for
1 ≤ j ≤ k makes the operator L in (5) to satisfy (B) with respect to F . Hence,
for every 1 ≤ j ≤ N ,

∥L(e∗∗j )∥ ≥ sup
1≤i≤N

⟨L(e∗∗j ), u∗i ⟩ = sup
1≤i≤N

⟨e∗∗j , u∗i ⟩ ≥ 1− α. (6)

and as L(y∗∗l ) = cl + bl for 1 ≤ l ≤ k, it follows for all 1 ≤ j ≤ N ,

∥L(e∗∗j )∥ ≤
∥∥∥ k∑
r=1

λjrcj +
n∑

r=k+1

λjryj

∥∥∥+
∥∥∥ k∑
r=1

λjrbj

∥∥∥ ≤ 1 +
α

2
+ βK ≤ 1 + α. (7)

Therefore, (6), (7), Lemma 2.2 and the choice of α and δ show that L satisfies
(A) with respect to ε. �
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Theorem 3.8 (Principle of local reflexivity for ultrapowers). Given a295

Banach space X and an ultrafilter U on I, the natural copy of (X∗)U in (XU)
∗

is a dual local of XU.

Proof. It is similar to that of Theorem 3.7. Fix a real number ε > 0 and a
pair of finite dimensional subspaces E and F of (XU)

∗ and XU respectively. Let
dimE = n, dimE ∩ (X∗)U = n−k and (x∗

j , hj)
n
j=1 ⊂ E×E∗ be a biorthogonal

system such that ∥x∗
j∥ = 1 for all 1 ≤ j ≤ n and E ∩ (X∗)U = span{x∗

j}nj=k+1.
For k+1 ≤ j ≤ n, we will denote y∗

j := x∗
j . Thus, any operator T : E −→ (X∗)U

of the form

T (x∗) =

k∑
j=1

⟨hj ,x∗⟩v∗
j +

n∑
j=k+1

⟨hj ,x∗⟩x∗
j . (8)

satisfies (C). A sensible choice of vectors v∗
1, . . . ,v

∗
k in (8) will make the operator

T to satisfy (A) and (B) with respect to F and ε.

Fix real numbers α > 0 and δ > 0 such that 0 < (α + δ)/(1 − α) < ε and300

choose

{e∗j}Nj=1 an α-net in SE , and

{uj}Nj=1 in BXU

such that {uj}Nj=1 contains a basis of F and ∥e∗∥ ≤ (1−α)−1 sup1≤j≤N |⟨e∗,uj⟩|
for all e∗ ∈ E. For every uj , fix a representative (uji )i∈I so that uj = [uji ]. Let
λjr be real numbers so that

e∗j =
k∑

r=1

λjrx
∗
j +

n∑
r=k+1

λjry
∗
j , 1 ≤ j ≤ N

and let K := max1≤j≤N

∑n
r=1 |λjr|. Note that given W := ℓk1(X), (W ∗)U is

isometrically identified with ℓk∞
(
(X∗)U

)
and (WU)

∗ with ℓk∞
(
(XU)

∗). Bearing
in mind both identifications, consider the subset

C :=

{
(z∗s)

k
s=1 ∈

(
1 +

α

2

)
B(W∗)U:

∥∥∥ k∑
s=1

λjsz
∗
s +

n∑
s=k+1

λjsy
∗
j

∥∥∥ ≤ 1, 1 ≤ j ≤ N

}
.

For every i ∈ I, consider also the operator Si : RkN −→ ℓk1(X) given by

Si

(
(alj)

N
l=1

k
j=1)

)
:=

( N∑
j=1

alju
j
i

)k

l=1

.

Thus its conjugate can be identified with the operator S∗
i : ℓ

k
∞(X∗) −→ RkN

that maps each (x∗j )
k
j=1 to

(
(⟨x∗j , uli⟩)kj=1

N
l=1

)
and

(
(Si)U

)∗
: (WU)

∗ −→ RkN

maps each (x∗
j )

k
j=1 to (⟨x∗

j ,ul⟩)kj=1
N
l=1. Let us denote S :=

(
Si)U. Obviously,

(S∗
i )U = S∗ | (W∗)U .305
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Lemma 2.8 yields that (x∗
j )

k
j=1 belongs to the σ

(
(WU)

∗,WU

)
-closure of C.

Thus, since S∗ has finite dimensional range, it follows that S∗((x∗
j )

k
j=1

)
∈

(S∗
i )U(C), and R(S

∗) = R(S∗) = R
(
(S∗

i )U
)
. Hence, given 0 < β < α/(2K),

there exist (c∗j )
k
j=1 ∈ C and (b∗

j )
k
j=1 ∈ βBW such that

S∗((x∗
j )

k
j=1

)
= (S∗

i )U
(
(c∗j )

k
j=1

)
+ (S∗

i )U
(
(b∗

j )
k
j=1

)
.

For every 1 ≤ j ≤ k, define v∗
j = c∗j + b∗

j : thus the operator T of (8) satisfies
(B) with respect to F for the vectors vj . The proof that T also satisfies (A)
with respect to ε is formally identical to the argument given in Theorem 3.7 for
the operator L. �

Let us state the following weak versions of conditions (A), (B) and (C):310

(A’) ∥L(x∗)∥ ≤ 1 + ε for all x∗ ∈ SE

(B’)
∣∣⟨L(x∗)− x∗, x⟩

∣∣ ≤ ε for all x∗ ∈ SE and all x ∈ SF ,

(C’) ∥L(x∗)− x∗∥ ≤ ε for all norm one elements x∗ ∈ E ∩ Z.

We will show that Definitions 3.1, 3.2 and 3.6 can be equivalently rewritten
replacing (A), (B) and (C) by (A’), (B’) and (C’) respectively.315

Proposition 3.9. Let Z be a subspace of a dual space X∗. Then we have:

(a) X∗ is f.d.r. in Z if and only if for every pair of finite dimensional sub-
spaces E of X∗ and F of X, and every ε > 0, there exists an operator
L : E −→ Z satisfying conditions (A’) and (B’) with respect to F and ε;

(b) Z is locally 1-complemented in X∗ if and only if for every pair of finite320

dimensional subspaces E of X∗ and F of X, and every ε > 0, there exists
an operator L : E −→ Z for which conditions (A’) and (C’) hold with
respect to F and ε;

(c) Z is a local dual of X if and only if for every pair of finite dimensional
subspaces E of X∗ and F of X, and every ε > 0, there exists an operator325

L : E −→ Z satisfying conditions (A’), (B’) and (C’) with respect to F
and ε.

Proof. We need to prove only the ‘if’ directions of the three statements for a
pair of finite dimensional subspaces E of X∗ and F of X, and ε > 0. We denote
E0 := E ∩ Z. By Lemma 2.3, there is no loss of generality in assuming that F
is large enough so that

(1− ε)∥x∗∥ ≤ sup
x∈SF

⟨x∗, x⟩ for all x∗ ∈ E. (9)

Lemma 2.4 gives a biorthogonal system (x∗i , fi)
n
i=1 in E × E∗ such that E0 =

span{x∗i }mi=1, ∥x∗i ∥ = 1 and ∥fi∥ ≤ n+ 1 for all 1 ≤ i ≤ n.
Let E1 := span{x∗i }ni=m+1, and let P : E −→ E be the projection with330

R(P ) = E0 and N(P ) = E1. Denote M := max{
∑m

i=1 |λi| : ∥
∑n

i=1 λix
∗
i ∥ = 1}.

14



(a) Let p := dimF and choose 0 < ε1 < ε(1 + 2p)−1. By hypothesis, there
exists an operator Lε1 : E −→ Z with ∥Lε1∥ ≤ 1 + ε1 such that

|⟨Lε1(x
∗)− x∗, x⟩| ≤ ε1∥x∗∥∥x∥ for all x∗ ∈ E and all x ∈ F.

By Lemma 2.6, there exists a normalized basis {xi}pi=1 of F and a system
{zi}pi=1 in (1 + ε1)BZ such that ⟨zi, xj⟩ = δij for all i and j. Consider the
operator K1 : E −→ Z given by K1(x

∗) :=
∑p

i=1⟨x∗ − Lε1(x
∗), xi⟩zi. Note

that ∥K1∥ ≤ pε1(1 + ε1) ≤ 2pε1. Thus the operator L := Lε1 + K1 satisfies
automatically condition (B) with respect to F . Therefore, for every x∗ ∈ E,

∥L(x∗)∥ ≥ sup
x∈SF

⟨L(x∗), x⟩ = sup
x∈SF

⟨x∗, x⟩ ≥ (1− ε1)∥x∗∥,

and as ∥L∥ ≤ ∥Lε1∥ + ∥K1∥ ≤ 1 + (1 + 2p)ε1 < 1 + ε, it follows that L is an
ε-isometry. Thus condition (A) is also fulfilled by L.

(b) Take 0 < ε2 < ε/2M . By hypothesis, there is an operator L2 : E −→ Z335

satisfying (A’) and (C’) with respect to ε2, that is, ∥L2(x
∗)− x∗∥ ≤ ε2∥x∗∥ for

all x∗ ∈ E0.
Define an operator K2 : E −→ Z by K2(x

∗
i ) = x∗i − L

2
(x∗i ) for 1 ≤ i ≤ m

and K2(x
∗
i ) = 0 for m + 1 ≤ i ≤ n. Clearly, L := L2 +K2 maps each x∗ ∈ E0

to itself, and ∥K2∥ ≤ ε2M , so ∥L∥ ≤ 1 + ε, and part (b) is done.340

(c) Consider the decomposition E = E0⊕E1 and take 0 < ε3 < ε/2(1+M).
By hypothesis, there exists an operator L3 : E −→ Z satisfying (A’), (B’) and
(C’) with respect to F and ε3. By part (a), we get an operator K3 : E1 −→ Z
such that ∥K3∥ ≤ ε3 and L3 |E1 +K3 satisfies (A) and (B) with respect to F
and ε3.345

By part (b), there exists K4 : E0 −→ Z such that ∥K4∥ ≤ ε3M and IE0 =
L3 | E0

+ K4. Let L : E −→ Z be given by L = (L3 + K3) ◦ (IE1
− P ) + P.

Clearly, L satisfies (B) and (C) with respect to F . Moreover, as

L = (L3 +K3) ◦ (IE1 − P ) + (L3 +K4) ◦ P = L3 + K3 ◦ (IE1 − P ) + K4 ◦ P,

it follows that ∥L∥ ≤ 1+ε3+ε3(1+M)+ε3M = 1+2ε3(1+M) < 1+ε. Besides,
since L satisfies (B) with respect to F , formula (9) yields that ∥L(x∗)∥ ≥ 1− ε
for all norm one element x∗ in E. Therefore, L also satisfies (A) with respect
to E and ε. �

Remark 3.10. The weaker conditions (A’), (B’) and (C’) may help to under-350

stand the way that local duality works in some situations. For instance, consider
a pair of finite dimensional subspaces E of ℓ∞ and F of ℓ1 and ε > 0, with F
large enough so that it norms E up to ε, and for each n let Ln : ℓ∞ −→ c0 be
the operator that maps (xn)

∞
n=1 ∈ E to (x1, x2, . . . , xn, 0, 0, ∞. . . . . .). Essentially,

the ε-isometry whose existence is claimed by the principle of local reflexivity is355

Ln | E for some n. Indeed, if n is large enough, then Ln | E satisfies (A), (B’)
and (C’). In order to obtain (B) and (C), it is sufficient to perturb Ln |E adding
an operator of small norm as in the proof of Proposition 3.9. This procedure
will be used in Example 3.11.
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Clearly no Banach space X contains a proper subspace Z such that X∗∗ is360

f.d.r. in Z. It is also immediate that if X ⊂ Z ⊂ X∗∗ then X∗∗ is f.d.r. in Z.
However, Example 3.11 shows that it may exist a subspace Z of X∗∗ such that
X∗∗ is f.d.r. in Z and Z ∩X = {0}.

Example 3.11. There exists a local dual Z of ℓ1 such that c0 ∩ Z = {0}.

Proof. Let (tn) be a dense sequence in [0, 1] with t1 = 0, t2 = 1, and ti ̸= tj for365

i ̸= j. Let U : C[0, 1] −→ ℓ∞ be the operator defined by U(f) :=
(
f(tk)

)∞
k=1

.
Clearly U is a linear isometry and Z := U(C[0, 1]) is a closed subspace of ℓ∞
such that Z ∩ c0 = {0}. It only remains to show that Z is a local dual of ℓ1. To
do so, fix ε > 0 and a pair of finite dimensional subspaces E of ℓ∞ and F of ℓ1.

Since F is finite dimensional, an application of Lemma 2.2 provides n1 ∈ N
such that

∞∑
k=n1

|γk| < ε/2 for all (γk) ∈ SF .

For every integer n ≥ 2 we consider the operator Pn : ℓ∞ −→ C[0, 1] that
maps β = (βk) to the polygonal function interpolating the nodes

{(tk, βk) : k = 1, . . . , n}.

Note that ∥Pn∥ = 1 and ∥Pn(β)∥∞ → ∥β∥∞ as n → ∞. Since E is finite370

dimensional, Lemma 2.2 provides n2 ≥ n1 such that Pn|E is a ε-isometry for
n ≥ n2. Moreover, it is not difficult to see that ∥PnU(f)− f∥∞ → 0 as n→ ∞.
Thus, arguing as before, we can find n3 ≥ n2 such that ∥UPn(β)−β∥∞ ≤ ε∥β∥∞
for each β ∈ E ∩ Z.

Let Ln : E −→ Z be the operator defined by Ln := UPn|E . By the previous375

considerations, for each n ≥ n3, Ln is a ε-isometry that satisfies (B’) and (C’),
and the proof is done. �

The following result shows that if c0 ⊂ Z ⊂ ℓ∞, then local complementation
implies local duality for Z.

Proposition 3.12. Each ideal Z in ℓ∞ containing c0 is a local dual of ℓ1.380

Proof. Let {ei}∞i=1 be the unit vector basis of ℓ1, and let Fn be the subspace
of ℓ1 spanned by the first n elements of this basis. Note that in order to prove
that Z is a local dual of ℓ1 it is enough to prove that given a finite dimensional
subspace E of ℓ∞ and a positive number n, there exists an operator L : E −→ Z
satisfying (A’), (B) and (C’) with respect to Fn and 1/n. Thus, once E and n
have been fixed, as Z is an ideal in ℓ∞, there exists an operator K : E −→ Z
satisfying (A’) and (C) with respect to Fn and 1/n, that is, ∥K∥ ≤ 1 + 1/n and
K(u) = u for all u ∈ E ∩ Z. Let P : ℓ∞ −→ ℓ∞ be the projection that sends
each (xi)

∞
i=1 to (yi)

∞
i=1 where yi := xi for 1 ≤ i ≤ n and yi := 0 for i > n, and

let I be the identity operator on ℓ∞. Thus L := P + (I − P )K satisfies

∥L∥ = max{∥P∥, ∥K∥} ≤ 1 + 1/n
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and L(u) = u for all u ∈ E ∩Z, so L satisfies (A’) and (C) with respect to 1/n.
Moreover, for every 1 ≤ m ≤ n and every u ∈ E,

⟨L(u), em⟩ = ⟨P (u), em⟩ = ⟨u, em⟩

hence L also satisfies (B) with respect to Fn. The proof is done. �

Given a subspace Z of X∗, it is straightforward that

Z local dual of X =⇒ X∗ f.d.r. in Z =⇒ Z norming subspace of X∗.

However, Examples 3.13 and 3.14 show that the reverse implications fail. Even
more, in spite of Proposition 3.12, Example 3.13 shows that finite dual repre-
sentability plus local complementation does not imply local duality.

Example 3.13. The space ℓ∗∞ contains a subspace Z satisfying the following385

properties:

(i) ℓ∗∞ is f.d.r. in Z;

(ii) Z is an ideal in ℓ∗∞;

(iii) Z is not a local dual of ℓ∞.

Proof. Recall that ℓ∗∞ can be decomposed as

ℓ∗∞ = ℓ1 ⊕1 c
⊥
0 . (10)

By Dvoretzky’s theorem, ℓ2 is finitely representable in c⊥0 . So we can choose a390

finite dimensional subspace V of c⊥0 ε-isometric to ℓn2 with n > 1 and 0 < ε < 1
as small as we please (to be fixed later). Take a norm one element v ∈ V and
let us prove that Z := span ℓ1 ∪ {v} ⊂ ℓ∗∞ satisfies properties (i), (ii) and (iii).

(i) Note that ℓ1 is a local dual of ℓ∞ and ℓ1 ⊂ Z, hence ℓ∗∞ is f.d.r. in Z.

(ii) Let f ∈ ℓ∗∗∞ be a norm one functional such that ⟨f ,v⟩ = 1. Let E be395

any finite dimensional subspace of ℓ∗∞. Choose a finite dimensional subspace
E0 of ℓ∗∞ such that E ⊂ E0 and admits a decomposition E0 = E1 ⊕ E2 with
E1 ⊂ ℓ1, E2 ⊂ c⊥0 and v ∈ E2. Next, define T : E0 −→ ℓ1 as follows: if u ∈ E1

then T (u) := u and if u ∈ E2 then T (u) := ⟨f ,u⟩v. Since the decomposition
(10) yields E0 = E1 ⊕1 E2, it is straightforward that T fixes E1 and ∥T∥ = 1.400

Therefore, T |E satisfies conditions (A) and (C) which proves that Z is an ideal
in ℓ∗∞.

(iii) Assume Z is a local dual of ℓ∗∞. Then there exists an ε-isometry
L : V −→ Z such that L(w) = w for all w ∈ V ∩ Z. In particular, L(v) = v.

Since ℓn2 is ε-isometric to V , L(V ) must be 3ε-isometric to ℓn2 . Moreover,405

Formula (10) gives L(V ) = span {v}⊕1W for some (n−1)-dimensional subspace
W of ℓ1. But if ε is small enough then span {v} ⊕1 W cannot be 3ε-isometric
to ℓn2 , a contradiction. �

Example 3.14. [32] The space ℓ∗1 contains a norming subspace Z such that ℓ∗1
is not finitely representable in Z, hence is not f.d.r. in Z.410
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Proof. Consider the Rademacher-like sequence (xn) in ℓ∞ where

x1 = (1,−1, 1,−1, 1,−1, . . .)

and for n ∈ N the sequence xn+1 consists of successive repetitions of the block

1, (2
n). . . , 1,−1, (2

n). . . ,−1.

Then (xn) is 1-equivalent to the unit vector basis of ℓ1. Let {An : n ∈ N} be an
enumeration of all the finite sequences of numbers in {1,−1} with card(Am) ≤
card(An) if m < n, and modify each xn in a finite number of coordinates so
that the initial segment of xn coincides with An. Thus (xn) is still equivalent
to the unit vector basis of ℓ1, and its closed span is a norming subspace Z of415

ℓ∗1 = ℓ∞. However, since ℓ∞ is not finitely representable in ℓ1, it is not finitely
representable in Z either. �

Next we give some examples of local dual spaces which are essentially dif-
ferent from those provided by the principles of local reflexivity. In fact, the
ε-isometries fulfilling conditions (A’), (B’) and (C’) required by these examples420

are found explicitly, while in the known proofs of the mentioned principles the
required ε-isometries are only shown to exist by means of Goldstine’s theorem
or other related results.

Here T := {z ∈ C : |z| = 1} is the torus of the complex plane, M[0, 1] denotes

the space of Radon measures on [0, 1] and {Iki }∞k=0
2k

i=1 denotes the collection of
dyadic subintervals of [0, 1], where I01 := [0, 1] and for k ≥ 1,

Iki :=



[
i− 1

2k
,
i

2k

)
if 1 ≤ i < 2k − 1

[
2k − 1

2k
, 1

]
if i = 2k

so for each k, the collection {Iki }2
k

i=1 is a partition of [0, 1].

Proposition 3.15.425

(a) C(T) is a local dual of L1(T).
(b) L1(T) is a local dual of C(T).
(c) Let {νki }2

k

i=1
∞
k=0 ⊂ M[0, 1] be positive, norm one measures with each νki

concentrated on the dyadic interval Iki . Then the closed span Z of {νki } is
a local dual of C[0, 1].430

(d) C[0, 1] is a local dual of L1[0, 1].

Proof. The proofs of (b) and (d) are respectively similar to those of (c) and (a).

(a) Let {ψn}∞n=1 be a positive summability kernel on T [45, Definition 2.2]
such that ψn(e

it) = ψn(e
−it) for all t ∈ [0, 2π] and all n ∈ N. The following435

facts are well known:
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(i) ∥ψn ∗ f − f∥1
n−→ 0 for all f ∈ L1(T),

(ii) ∥ψn ∗ g∥∞ ≤ ∥g∥∞ for all g ∈ L∞(T),
(iii) ∥ψn ∗ g − g∥∞

n−→ 0 for all g ∈ C(T),
(iv) ψn ∗ g ∈ C(T) for all g ∈ L∞(T).440

Moreover statement (i), the symmetry of each ψn and Fubini’s theorem yield:

(v) ⟨ψn ∗ g, f⟩ = ⟨g, ψn ∗ f⟩ n−→ ⟨g, f⟩ for all g ∈ L∞(T) and all f ∈ L1(T).

Thus, for every n ∈ N, statements (ii) and (iv) allows us to define the norm
one operator Tn : L∞(T) −→ C(T) as Tn(g) := ψn ∗ g. Fix finite dimensional
subspaces E and F of L∞(T) and L1(T) respectively, and fix ε > 0. Now, if445

we take real numbers α > 0 and δ > 0 small enough, and if we choose finite
α-nets {ei}Ni=1 and {fi}Ni=1 in SE and SF , Lemma 2.3 and statements (v) and
(iii) allows us to find a positive integer n large enough so that L := Tn | E

satisfies conditions (B’) and (C’) with respect to F and ε. Obviously, ∥L∥ ≤ 1
so (A’) also holds. We have just proved that C(T) is a local dual of L1(T).450

(c) For every k ∈ N, define the norm one projection Gk : M[0, 1] −→ Z by

Gk(λ) =
2k∑
i=1

λ(Iki )ν
k
i . (11)

Let χk
i denote the indicator function of the dyadic interval Iki . Given k ∈ N,

f ∈ C[0, 1] and λ ∈ M[0, 1], define Mk
i := sup f(Iki ), m

k
i := inf f(Iki ) and

ρk(f) := max
1≤i≤2k

Mk
i −mk

i (f).

Let us prove that |⟨λ, f⟩−⟨Gk(λ), f⟩| ≤ ∥λ∥ρk(f). Note that we can assume
that λ is a positive measure.

Define the functions

mf (x) :=
2k∑
i=1

mk
i (f)χ

k
i (x)

and

Mf (x) :=
2k∑
i=1

Mk
i (f)χ

k
i (x).

Note that
∫ 1

0
mf dλ =

∫ 1

0
mf dGk(λ) and

∫ 1

0
Mf dλ =

∫ 1

0
Mf dGk(λ). Moreover,∫ 1

0

mf dλ ≤
∫ 1

0

f dλ ≤
∫ 1

0

Mf dλ, and∫ 1

0

mf dGk(λ) ≤
∫ 1

0

f dGk(λ) ≤
∫ 1

0

Mf dGk(λ).
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Therefore, we get∣∣∣∣∫ 1

0

f dλ−
∫ 1

0

f dGk(λ)

∣∣∣∣ ≤ ∫ 1

0

(Mf −mf ) dλ ≤
2k∑
i=1

ρk(f)λ(I
k
i ) = ∥λ∥ρk(f),

as we wanted to prove. Now, let us show that the following statements hold:455

(i) limn⟨Gn(λ), f⟩ = ⟨λ, f⟩ for all λ ∈ M[0, 1] and all f ∈ C[0, 1];

(ii) limn ∥Gn(λ)∥ = ∥λ∥ for all λ ∈ M[0, 1].

To prove (i), choose λ ∈ SM[0,1] and f ∈ C[0, 1]. By uniform continuity of f ,
there is a positive integer n0 such that ρn0(f) < ε. So, |⟨λ−Gn(λ), f⟩| < ε for
all n ≥ n0.460

For (ii), let λ ∈ M[0, 1] and ε > 0. Choose f ∈ BC[0,1] so that ⟨λ, f⟩ >
∥λ∥ − 2−1ε. By statement (i), there is n0 such that |⟨Gnλ, f⟩| > |⟨λ, f⟩| − 2−1ε
for all n ≥ n0, so

∥λ∥ − ε < |⟨Gnλ, f⟩| ≤ ∥Gn(λ)∥ ≤ ∥λ∥.

Now, fix finite dimensional subspaces E and F of M[0, 1] and C[0, 1] and fix
ε > 0. A similar argument of compactness as that applied in example (a)
combined with (i) and (ii) yields k ∈ N large enough so that Gk | E satisfies
(A’), (B’) and (C’) with respect to F and ε, which proves that Z is a local dual
of C[0, 1]. �465

Remark 3.16. By Proposition 3.15, both the natural copy of L1[0, 1] inM[0, 1]

and the closed subspace Y generated by {δki }2
k

i=1
∞
k=0, where δ

k
i is the Dirac delta

associated with the middle point of Iki , are local duals of C[0, 1]. Therefore
C[0, 1] does not admit a smallest local dual. Besides, Y and L1[0, 1] are not
isomorphic because Y ≡ ℓ1.470

Example 3.11 also gives two local duals of ℓ1 with intersection {0}, but
Proposition 5.18 will give a sufficient condition for the existence of a smallest
local dual of a given space.

Given any Banach space X and any probability measure µ, the identity
L1(µ,X)∗ = L∞(µ,X∗) holds only when X∗ has the Radon-Nikodym property475

with respect to µ [19, Thm. 1 in page 98]. However, the following result shows
that L∞(µ,X∗) is always a local dual of L1(µ,X).

Theorem 3.17. [35] Given a Banach space X and a probability measure µ, we
have:

(a) The canonical copy of L1(µ,X
∗) in L∞(µ,X)∗ is a local dual of L∞(µ,X).480

(b) The canonical copy of L∞(µ,X∗) in L1(µ,X)∗ is a local dual of L1(µ,X).

Sketch of the proof: Part (b) admits a similar proof to that of (a), so only (a)
is sketched.
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(a) Take a pair of finite dimensional subspaces E of L∞(µ,X)∗ and F of
L∞(µ,X), and let ε > 0. Let {ϕi}li=1 be a basis of E0 := E ∩ L1(µ,X

∗) and485

{hi}ki=1 a basis of F . By Proposition 3.9, it is enough to find an operator
L : E −→ L1(µ,X

∗) satisfying conditions (A’), (B’) and (C’) with respect to
F and ε. In order to obtain (C’), we approximate each ϕi by a function fi =∑∞

n=1 χCn ⊗ x∗in ∈ L1(µ,X
∗) (with x∗in ∈ X∗). Thus, if ∥ϕi − fi∥ is small

enough and L maps ϕi to fi, then (C’) will be satisfied with respect to ε. In490

turn, the measurable sets Cn must be taken small enough so that the functions
gi =

∑∞
n=1 χCn ⊗ xin ∈ L∞(µ,X) (for a suitable choice of elements xin ∈ X)

approximate the functions hi in norm. Note that if the operator L satisfies (B)
with respect to span{gi}ki=1, and if ∥hi − gi∥ is small enough for each i, then L
will satisfy condition (B’) with respect to F and ε.495

Next, we consider the norm one projection P on L∞(µ,X) given by

P (f) :=
∞∑

n=1

µ(Cn)
−1χCn ⊗

∫
Cn

f dµ.

Given n ∈ N and ϕ ∈ L∞(µ,X)∗, we define (P ∗ϕ)n ∈ X∗ by

⟨(P ∗ϕ)n, x⟩ := ⟨ϕ, µ(Cn)
−1χCn ⊗ x⟩, x ∈ X.

The action of duality of P ∗(ϕ) on every h ∈ L∞(µ,X) is

⟨P ∗(ϕ), h⟩ =
⟨ ∞∑
n=1

χCn ⊗ (P ∗ϕ)n, h
⟩
. (12)

Formula (12) implies R(P ∗) ⊂ L1(µ,X
∗). Moreover, P ∗ maps each fi to itself,

so the restriction P ∗ | E satisfies conditions (A’) and (C’) with respect to ε.
Besides, for every ϕ ∈ E and each gi, formula (12) also yields ⟨L(ϕ), gi⟩ = ⟨ϕ, gi⟩
which means, that if the values ∥hi− gi∥ are small enough, then L satisfies (B’)
with respect to F and ε. �500

Recall that C[0, 1]∗ can be identified with the space M[0, 1] of all Borel
measures on [0, 1]. Let ω1 be the first uncountable ordinal. The Baire classes
Bα[0, 1], 0 ≤ α ≤ ω1, are defined by transfinite induction as follows. The
class B0[0, 1] is C[0, 1], and for each ordinal 1 ≤ α ≤ ω1, Bα[0, 1] is the set of
all the bounded functions on [0, 1] which are pointwise limits of sequences in505

∪β<αBβ [0, 1]. The class Bω1 [0, 1] coincides with the space of all bounded Borel
measurable functions on the unit interval [3].

Each Bα[0, 1], endowed with the supremum norm, is a Banach space that
can be identified with a subspace of M[0, 1]∗ ≡ C[0, 1]∗∗, where the duality is
given by

⟨f, µ⟩ =
∫ 1

0

f dµ for f ∈ Bω1 [0, 1] and µ ∈M [0, 1].

These spaces were studied in [3, 12, 13].

Theorem 3.18. [38] For every ordinal 1 ≤ α ≤ ω1, the Baire class Bα[0, 1] is
a local dual of M[0, 1].510
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The proof is rather technical, and consists of two steps. The first one is a finite
dimensional version of a representation of M [0, 1]∗ given by Mauldin [57]. This
version does not use the Continuum Hypothesis, unlike Mauldin’s representa-
tion. The second step is based upon the fact that the class Bα[0, 1] with α ≥ 1
admits a dense (non-closed) subspace spanned by characteristic functions.515

4. Ultrapower characterizations

A typical use of ultrapowers is the translation of local notions into global
ones. For instance, the fact that a space X is finitely representable in another
space Y is translated to the language of ultraproducts as follows: X is isomet-
rically contained in some ultrapower of Y . In a similar way, in this section we520

will translate the local notions of finite dual representability, local duality and
local complementation to the ultraproduct language.

Given a subspace Z of a dual space X∗ and an ultrafilter U on I, we denote
by

QZU
: ZU −→ X∗

the norm one operator that maps each [zi] to σ(X
∗, X)-limU zi.

Theorem 4.1. A subspace Z of Y is locally α-complemented in Y if and only
if there exists an ultrafilter V and an operator L : Y −→ ZV such that ∥L∥ ≤ α525

and L |Z = JZ,ZV
.

Proof. Assume Z is locally α-complemented in Y . Let V be an ultrafilter
refining the order filter on the set of all pairs i ≡ (Ei, εi) with Ei a finite
dimensional subspace of Y and εi > 0, where j ≼ i if Ej ⊂ Ei and εj ≥ εi.
By hypothesis, for every pair i = (Ei, εi) there exist an operator Li : Ei −→ Z
such that ∥Li∥ ≤ α + εi and Li(z) = z for all z ∈ Ei ∩ Z. Thus we define
J : Y −→ ZV by Jy = [zi], where

zi =

{
Liy, if y ∈ Ei;
0, otherwise.

Thus, if ∥y∥ ≤ 1, then ∥Ly∥ = limV ∥zi∥ ≤ limV α+εi = α and for every z ∈ Z,
Lz = [z], concluding the proof of the direct implication.

For the reverse, assume there is an ultrafilter U and an operator L : Y −→ ZU

with ∥L∥ ≤ α and L | Z = JZ,ZU
. Let E be a finite dimensional subspace of530

Y , let {yk}nk=1 be a basis of E with span{yk}nk=m+1 = E ∩ Z and fix ε > 0.

For every yk, let (zki ) be a representative of L(yk); in the case when m + 1 ≤
k ≤ n, the corresponding representative is chosen to be zki = yk for all i. Let
Li : L(E) −→ Z be defined by Li([z

k
i ]) := zki and take ε1 > 0 small enough so

that αε1 < ε. By [40, Lemma 7.3] or [38, Lemma A.4.12], there exists Λ ∈ U535

such that for every i ∈ Λ, Li is an ε1-isometry. Thus, if i ∈ Λ, the operator
T := LiL satisfies ∥T∥ ≤ (1 + ε1)α ≤ α+ ε and T (z) = z for all z ∈ E ∩Z. We
have just proved that Z is locally α-complemented in X∗. �

The following theorem is partially proved in [36]. Part (d) for the particular
case of the P.L.R. was proved in [69, Theorem 6.14].540
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Theorem 4.2. Given a subspace Z of X∗, the following statements hold:

(a) Z is a norming subspace if and only if there exists an ultrafilter U such
that QZU

(BZU
) = BX∗ .

(b) X∗ is finite dual representable in Z if and only if there is an ultrafilter
U and an isometry J ∈ B(X∗, ZU) such that QZU

J = IX∗ .545

(c) Z is an ideal in X∗ if and only if there exists an ultrafilter V and an
operator L : X∗ −→ ZV with ∥L∥ = 1 and L |Z = JZ,ZV

.

(d) Z is a local dual of X if and only if there is an ultrafilter U and an
isometry J ∈ B(X∗, ZU) such that QZU

J = IX∗ and J |Z = JZ,ZU
.

Proof. (a) Assume Z is norming, that is, BZ is w∗-dense in BX∗ . We consider550

the set I of triples α ≡ (Eα, Fα, εα) where Eα runs over all finite dimensional
subspaces of X∗, Fα runs over all finite dimensional subspaces of X and εα runs
over all real numbers 0 < εα < 1; I is endowed with the order α ≼ β defined
by Eα ⊂ Eβ , Fα ⊂ Fβ and εα ≥ eβ , and U is any ultrafilter refining the order
filter on I. Let x∗ ∈ BX∗ . For every index α we take a w∗-neighborhood Vα555

of x∗ such that F⊥
α + εαBX∗ ⊂ Vα. Pick x∗α ∈ Vα ∩ BZ . Since for all w∗-

neighborhood V of x∗ there exists an index α such that Vα ⊂ V, it is immediate
that QZU

([x∗α]) = x∗.
For the converse, take a norm one element x ∈ X and choose a norm one

functional x∗ ∈ X∗ such that 1 = ⟨x∗, x⟩. Following the hypothesis, there is a560

family (xα)α∈I ⊂ BZ such that QZU
([x∗α]) = x∗. Hence 1 = limα→U⟨x∗α, x⟩, so

Z is norming.

Note that, by (a), in the proof of direct implications of (b) and (d) we can
assume QZU

(BZU
) = BX∗ .

(b) Suppose that X∗ is finite dual representable in Z and consider the same565

ultrafilter U of the ‘if’ implication in the proof of (a). Then for every index α
there exists a εα-isometry Jα : Eα −→ Z that satisfies (B) with respect to Fα.

We define J ∈ B(X∗, ZU) by Jx
∗ := [(Jx∗)α], where

(Jx∗)α =

{
Jαx

∗, if x∗ ∈ Eα;
0, otherwise.

Clearly J is an isometry. Moreover, for every x ∈ X and x∗ ∈ X∗, we have

⟨QZU
Jx∗, x⟩ = lim

α→U
⟨(Jx∗)α, x⟩ = ⟨x∗, x⟩.

Hence QZU
J = IX∗ .

Conversely, assume that there is an ultrafilter U on a set Λ and an isometry
J : X∗ → ZU satisfying QZU

J = IX∗ . Consider a pair of finite dimensional570

subspaces E of X∗ and F of X, and 0 < ε < 1. Since J | E has finite rank,
by [40, Lemma 7.3] or [38, Lemma A.4.12] there is a bounded family of operators
(Lα)α∈Λ from J(E) into Z such that J = [LαJ ], and moreover, there exists
Λ1 ∈ U so that Jα := LαJ is an ε-isometry for all α ∈ Λ1.
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By Lemma 2.4, there exist a normalized basis {x1, . . . , xm} of F and a575

subset {x∗1, . . . , x∗m} in X∗ such that ∥x∗i ∥ ≤ 1 and ⟨x∗i , xj⟩ = δij for all i and
j in {1, . . . ,m}, and besides, there exist a normalized basis {y∗1 , . . . , y∗n} of E
and elements {y∗∗1 , . . . , y∗∗n } in X∗∗ such that E0 := E ∩ Z = span{y∗i }ki=1,
∥y∗∗i ∥ ≤ 1 + n and ⟨y∗i , y∗∗j ⟩ = δij for all i and j in {1, . . . , n} (eventually, E0

only plays a role in the proof of (d) as we will see). By the principle of local580

reflexivity, we obtain {y1, . . . , yn} in (3/2)BX such that ⟨y∗i , yj⟩ = δij for all i
and j.

Since QZU
J = IX∗ , we can select α ∈ Λ1 so that

|⟨Jαy∗i − y∗i , xj⟩| <
ε

2mn(1 + n)
for all i and j.

Thus, for every y∗ ∈ E and every x ∈ F , as y∗ =
∑n

i=1⟨y∗, yi⟩y∗i and x =∑m
j=1⟨x∗j , x⟩xj , we obtain |⟨Jαy∗ − y∗, x⟩| ≤ ε∥y∗∥∥x∥, and applying Proposi-

tion 3.9, the proof is done.585

(c) Take Y = X∗ and α = 1 in Theorem 4.1.

(d) For the direct implication, for every index α we choose a εα-isometry
Jα : Eα −→ Z satisfying conditions (A), (B) and (C) with respect to Fα and εα.
Proceeding as in the ‘if’ part of (b), we get an isometry J : X∗ −→ ZU such that
QZU

J = IX∗ . Moreover, since Jαg = g for all g ∈ Z ∩Eα, we get Jx
∗ = [x∗] for590

every x∗ ∈ Z.
For the converse implication, we consider the same ultrafilter U of the ‘if’

implication in the proof of (a) and proceed as in the converse of (b), but instead
of choosing α ∈ Λ1, we choose α ∈ Λ1 ∩ Λ2, where

Λ2 :=

{
α ∈ Λ : ∥Jαy∗i − y∗i ∥ <

2ε

3n(n+ 1)
, 1 ≤ i ≤ k

}
.

Notice that since J | Z is the natural embedding of Z into ZU, then Λ2 ∈
U. Moreover, for every norm one element y∗ =

∑k
i=1 λiy

∗
i ∈ E0, as |λi| =

|⟨y∗, yi⟩| ≤ 3(1 + n)/2 for all 1 ≤ i ≤ k, it follows that ∥Jα(y∗) − y∗∥ ≤ ε.
Therefore, the ε-isometry Jα on E satisfies (B’) and (C’) with respect to F and595

ε. Thus Proposition 3.9 shows that Z is a local dual of X. �

Remark 4.3. Ultrapowers allow us to avoid tedious ε-δ computations. For
instance, Theorem 4.2 can be applied in order to ease some steps in Proposi-
tion 3.15 as follows:

Let U be an ultrafilter on N and consider the operator J : L∞(T) −→ C(T)U600

defined by J(g) := [Tn(g)]. Statement (ii) gives ∥J∥ ≤ limU ∥Tn∥ = 1, and
statement (v) yields QC(T)UJ(g) = w∗- limU Tn(g) = g, so QC(T)UJ = IL∞(T).
Therefore J is an isometry. Finally, for every g ∈ C(T), statement (iii) shows
∥J(g) − [g]∥ = limU ∥Tn(g) − g∥ = 0. Thus Theorem 4.2 proves that C(T) is a
local dual of L1(T).605

The ‘only if’ implication of the following theorem was proved in [44, Theorem
4.1].
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Theorem 4.4. Let Y be a Banach space and U an ultrafilter on I. Given a
subspace Z of Y , Z is locally α-complemented in Y if and only if ZU is locally
α-complemented in YU.610

Proof. Assume ZU is locally α-complemented in YU. Thus, proceeding as in
Theorem 4.2, we obtain an ultrafilter V and an operator L : YU −→ (ZU)V such
that ∥L∥ ≤ α and L(z) = JZU,(ZU)V(z) for all z ∈ ZU. In particular, as (ZU)V
is isometrically identified with ZU×V, we can regard the restriction T := L | Y
as an operator from Y into ZU×V satisfying ∥T∥ ≤ α and T (z) = JZ,ZU×V

(z)615

for all z ∈ Z. Thus, acting again as in Theorem 4.2, we prove that Z is locally
α-complemented in Y .

Assume now that Z is locally α-complemented in Y , let E be a finite di-
mensional subspace of YU and let ε > 0. Let {ei}ni=1 be a basis of E such

that {ei}mi=1 spans E ∩ ZU. Choose a representative (eji )j∈I ⊂ E of every ei620

such that eji ∈ E ∩ Z for all j ∈ I and all 1 ≤ i ≤ m. For every j ∈ I, let

Ej := span {eji}ni=1; by hypothesis, there exists an operator Lj : Ej −→ Z such
that ∥Lj∥ ≤ α + ε and Lj(z) = z for all z ∈ Ej ∩ Z. Typical ultraproduct
arguments yield that the ultraproduct operator L : E −→ ZU that sends each
[eji ] to [Lj(e

j
i )] satisfies ∥L∥ ≤ α+ ε and L(z) = z for all z ∈ E ∩ ZU. �625

A consequence of Theorem 4.4 is that Z is an ideal in Y if and only if so is
ZU in YU. Compare this assertion with part (b) in the following theorem.

Theorem 4.5. Given a subspace Z of X∗ and an ultrafilter U on I, the follow-
ing statements hold:

(a) X∗ is finite dual representable in Z if and only if (XU)
∗ is finite dual630

representable in ZU.

(b) Z is an ideal in X∗ if and only if ZU is an ideal in (XU)
∗.

(c) Z is a local dual of X if and only if ZU is a local dual of XU.

(d) Z is norming if and only if ZU is norming.

Proof. (a) The proof is essentially contained in that of (c).635

(b) It follows directly from Theorem 4.4, the principle of local reflexivity for
ultrapowers and statement (i) in Remark 3.5.

(c) Assume that Z is a local dual of X and fix a couple of finite dimensional
subspaces F of (XU)

∗ and G of XU, and 0 < ε < 1. Since (X∗)U is a local dual
of XU, there is an ε/4-isometry L1 : F −→ (X∗)U satisfying (B) and (C) with640

respect to G.
Fix a basis {[f1i ], . . . , [fmi ]} of L1(F ) and a basis {[x1i ], . . . , [xni ]} of G. For

every i ∈ I, let F i := span{f1i . . . fni } ⊂ X∗ and Gi := span{x1i . . . xni } ⊂ X.
Now, for every i ∈ I we select an ε/4-isometry Li : F i −→ Z satisfying (B)

and (C) with respect to Gi, and define an ε/4-isometry L2 : L1(F ) −→ ZU by645

L2[fi] := [Lifi].
Clearly L := L2L1 : F −→ ZU is an ε-isometry satisfying (B) and (C) with

respect to G. Thus ZU is a local dual of XU.
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Conversely, assume that ZU is a local dual of XU. Let F ⊂ X∗ and G ⊂ X
be finite dimensional subspaces and fix 0 < ε < 1/2. Take 0 < ε′ < 2−3ε and650

choose an ε′-net {x∗j}nj=1 in BF and an ε′-net {xj}nj=1 in BG. Note that {x∗j}nj=1

includes a basis of F . Since we can consider F and G as subspaces of (X∗)U and
XU, there is an ε′-isometry L : F −→ ZU satisfying (B) and (C) with respect to
G.

Since L has finite rank, by [40, Lemma 7.3] there exist a set Λ1 ∈ U and a655

bounded family of operators (Li)i∈I from F into Z such that L = [Li] and, for
each i ∈ Λ1, Li is an ε-isometry. Moreover, there exists Λ2 ∈ U such that, for
every i ∈ Λ2,

|⟨Lix
∗
j , xk⟩ − ⟨x∗j , xk⟩| ≤ ε′∥x∗j∥ ∥xk∥ for all j, k = 1, . . . , n, and

∥Li(x
∗
j )− x∗j∥ ≤ ε′∥x∗j∥ for all j = 1, . . . , n.

We fix i ∈ Λ1 ∩ Λ2 and denote T = Li. Thus T is a ε-isometry. Let us show
that T satisfies (B’) and (C’) with respect to G and ε.660

First, we take x∗ ∈ SF and x ∈ SG. We pick x∗k and xl so that ∥x∗−x∗k∥ < ε′

and ∥x− xl∥ < ε′. Thus, as

⟨(I − T )x∗ , x⟩ = ⟨(I − T )x∗ , x− xl⟩+ ⟨(I − T )(x∗ − x∗k) , xl⟩+ ⟨(I − T )x∗k , xl⟩

we obtain |⟨(I − T )x∗ , x⟩| ≤ 2(2 + ε′)ε′ + ε′ < ε. Second, we take x∗ ∈ SF ∩Z,
and pick x∗k so that ∥x∗ − x∗k∥ < ε′. Therefore

∥T (x∗)−x∗∥ ≤ ∥T (x∗)−T (x∗k)∥+ ∥T (x∗k)−x∗k∥+∥x∗k −x∗∥ < 2ε′+ ε′+ ε′ < ε.

Hence T satisfies (A), (B’) and (C’) with respect to G and ε, and the proof is
done.

(d) Assume Z is a norming subspace of X∗. Let [xi] ∈ XU and ε > 0. For
each i ∈ I there is a norm one element x∗i ∈ Z such that ⟨x∗i , xi⟩ ≥ ∥xi∥ − ε,
so ⟨[x∗i ], [xi]⟩ ≥ ∥[xi]∥ − ε, which proves that ZU is norming. For the converse,665

assume that ZU is a norming subspace of (XU)
∗. Given x ∈ X, there is [x∗i ] ∈ ZU

such that ∥x∗i ∥ = 1 for all i and ∥x∥ = ⟨[x∗i ], [x]⟩. Thus ∥x∥ = limi→U⟨x∗i , x⟩,
hence Z is a norming subspace of X∗. �

Open problem 4.6. Let U be an ultrafilter and let X be a subspace of Y . If
XU is complemented in YU, is X complemented in Y ?670

Local complementability is useful in finding complemented subspaces.

Proposition 4.7. If Z is a locally complemented subspace of Y and Z is com-
plemented in Z∗∗ then Z is complemented in Y .

Proof. Let I be the set of all pairs i ≡ (Ei, εi) where Ei is a finite dimensional
subspace of Y and ε is a positive real number. Let us endow I with the order675
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i ≼ j defined by Ei ⊂ Ej and εi ≥ εj . Let U be an ultrafilter on I refining the
order filter on I induced by ≼.

For every i ∈ I, assume Z is locally α-complemented in Y . Then there
exists an operator Ti : Ei −→ Z such that ∥Ti∥ ≤ (1 + εi)α and Ti(z) = z
for all z ∈ Ei ∩ Z. Let T : Y −→ Z∗∗ be the operator defined by T (y) :=680

σ(Z∗∗, Z∗)- limi→U yi where yi := Ti(y) if y ∈ Ei and yi := 0 otherwise.
Let P : Z∗∗ −→ Z∗∗ be a projection onto Z and let J : Z −→ Y be the

natural inclusion of Z into Y . Then, as PTJ is the identity operator on Z, it
follows that JPT is a projection on Y whose range is Z, and the proof is done.

�685

A Banach space X is called ultrasummand [44] if for every ultrafilter U, the
canonical copy of X contained in the ultrapower XU is complemented in XU.

Proposition 4.8. A Banach space X is complemented in X∗∗ if and only if X
is an ultrasummand.

Proof. Assume X is complemented in X∗∗. Since X is an ideal in every ultra-690

power XU, Proposition 4.7 proves that X is complemented in all ultrapowers of
X.

For the converse, assume X is an ultrasummand. As X is a local dual of
X∗, Theorem 4.2 provides an ultrafilter U and an isometry J : X∗∗ −→ XU that
maps each x ∈ X to the constant class [x]. But X is an ultrasummand, so there695

exists a surjection Q : XU −→ X that maps each constant class [x] to x. Thus
Q ◦ J ◦ JX is the identity operator on X, hence JX ◦Q ◦ J is a projection that
maps X∗∗ on the canonical copy of X in X∗∗. �

5. Global characterizations

The main results of this section are the global characterizations of the notions700

of finite dual representability, local complementation and local duality given in
subsection 5.1. These characterizations play a preeminent role in understanding
the three mentioned local notions and their properties. Some of their applica-
tions is the discovery of a sort of local symmetry between Z and X when Z
is a local dual of X (Theorem 5.8). They are also useful in finding examples705

of local duality (Subsection 5.2) and in certain results about the existence of
special local duals (Subsection 5.3).

Notations: Since biduals, third and fourth duals will occur very often in this
section, and as the notions of finite dual representability, local complementation
and local duality depend upon the intrinsic position of the subspaces inside X∗,710

it is necessary to introduce precise notations and conventions in order to avoid
misunderstandings.

The canonical embedding of X in X∗∗ is denoted by JX : X −→ X∗∗. Some-
times, we may write X instead of JX(X) to denote the canonical copy of X into
its bidual; given x ∈ X, we also may write x or x |X∗ rather than JX(x).715
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The n-th dual of X for n ≥ 3 will be denoted X(n) and its elements by x(n),
y(n)... etc.

Given a subspace E of X, E⊥ denotes the annihilator of E in X∗, and E⊥⊥

denotes the annihilator of E⊥ in X∗∗. Given a subspace F of X∗, F⊥ denotes
the annihilator of F in X.720

Subspaces and their inclusion operators. Given a closed subspace E of
a Banach space F , let JE : E −→ F and QE : F −→ F/E denote the corre-
sponding inclusion and quotient operators respectively. The conjugate J ∗

E is
the restriction operator given by J ∗

E(x
∗) = x∗ ◦ JE = x∗ | E for all x∗ ∈ F ∗.

Moreover

J ∗
E(BF∗) = BE∗ , E⊥ = N(J ∗

E) = R(Q∗
E), E

⊥⊥ = N(Q∗∗
E ) = R(J ∗∗

E ) and

JF (E) = E⊥⊥ ∩ JF (F ). (13)

Subspaces of dual spaces. The elements of a given subspace Z of X∗ will
be denoted by z (as element of Z) or by x∗ (as element of X∗). Let Z be a
subspace of X∗. Every z∗ ∈ Z∗ can be written as J ∗

Z(x
∗∗) = x∗∗ |Z , for some

x∗∗ ∈ X∗∗.
Note that J ∗∗

Z is an isometry with range Z⊥⊥ ⊂ X(3). The bijective isometry
from Z∗∗ onto Z⊥⊥ induced by J ∗∗

Z will be denoted IZ∗∗,Z⊥⊥ and its inverse

will be denoted IZ⊥⊥,Z∗∗ := I−1
Z∗∗,Z⊥⊥ . Thus

J ∗∗
Z = JZ⊥⊥ ◦ IZ∗∗,Z⊥⊥ (14)

where JZ⊥⊥ is the inclusion operator of Z⊥⊥ in X(3). As it will be explained725

in below, the context of local duality does not admit the identification of Z∗∗

with Z⊥⊥.

Biduals as subspaces of fourth duals. As it has been already noticed, the
bidual of a space X is isometrically embedded in X(4) in two natural ways:
via JX∗∗ , which maps X∗∗ onto its canonical copy in X(4), and via J∗∗

X , which730

maps X∗∗ onto JX(X)⊥⊥. It is remarkable that both JX∗∗(X∗∗) and JX(X)⊥⊥

lay in different positions as subspaces of X(4). Indeed, formula (13) yields
JX∗∗(X∗∗) ∩ JX(X)⊥⊥ = JX∗∗

(
JX(X)

)
, the canonical copy of X contained in

the canonical copy of X∗∗ in X(4).

The third dual of X is decomposed by the norm one projection JX∗ ◦ J∗
X as

X(3) = JX∗(X∗)⊕ JX(X)⊥. (15)

This decomposition applied to (X∗)(3) yields

X(4) = JX∗∗(X∗∗)⊕ JX∗(X∗)⊥. (16)

Besides, as J∗
X ◦ JX∗ = IX∗ , then J∗

X∗ ◦ J∗∗
X = IX∗∗ , hence J∗∗

X ◦ J∗
X∗ is

a projection on X(4) whose range is R
(
J∗∗
X

)
= JX(X)⊥⊥ and its kernel is

N
(
J∗
X∗

)
= JX∗(X∗)⊥, giving a second decomposition of X(4) as

X(4) = JX(X)⊥⊥ ⊕ JX∗(X∗)⊥. (17)
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It follows from (16) and (17) that both subspaces JX∗∗(X∗∗) and JX(X)⊥⊥ are735

complemented in X(4) sharing a same complement in spite of the fact that they
lay in different positions inside X(4). However, X∗∗ is a local dual of X(3) while
formulas (15) and (17) show that X(4) is not even f.d.r. in JX(X)⊥⊥. Those
considerations should prevent the reader from identifying X∗∗ with JX(X)⊥⊥.

Extension operators. Given a subspace Z of Y , an operator T : Z∗ −→ Y ∗
740

is said to be an extension operator if T (z∗) |Z = z∗ for all z∗ ∈ Z∗. In technical
words, if JZ is the embedding of Z into Y , T is an extension operator when
J ∗
Z ◦T = IZ∗ . Since this paper is mainly devoted to local duality, we will restrict

ourselves to the case Y = X∗ although most of the results in this subsection
can be easily adapted to the general case.745

Proposition 5.1. Given a subspace Z of X∗, an operator T : Z∗ −→ X∗∗ is
an extension operator if and only if T ∗ ◦ JX∗ ◦ JZ = JZ .

Proof. For the direct implication, let x∗ ∈ Z and x∗∗ ∈ X∗∗. Then

⟨x∗∗ |Z , T ∗(x∗)⟩ = ⟨T (x∗∗ |Z ), x∗⟩

but as x∗ ∈ Z, then ⟨T (x∗∗ |Z ), x∗⟩ = ⟨x∗∗ |Z , x∗⟩ and therefore,

⟨x∗∗ |Z , T ∗(x∗)⟩ = ⟨x∗∗ |Z , x∗⟩

which proves that T ∗(x∗) = x∗.
Conversely, if x∗∗ ∈ X∗∗ and x∗ ∈ Z then ⟨T (x∗∗ |Z ), x∗⟩ = ⟨x∗∗, T ∗(x∗)⟩ =

⟨x∗∗, x∗⟩ which shows that T (x∗∗ | Z ) | Z = x∗∗ | Z . In other words, T is an750

extension operator. �

Lemma 5.2. For every extension operator T : Z∗ −→ X∗∗, the following prop-
erties hold:

(i) ∥T (z∗)∥ ≥ ∥z∗∥ for all z∗ ∈ Z∗; in particular, T is injective;

(ii) if x∗∗ ∈ R(T ) then x∗∗ = T (x∗∗ |Z );755

(iii) T ∗ |Z⊥⊥ = IZ⊥⊥,Z∗∗ .

Proof. (i) Trivial.
(ii) Let x∗∗ ∈ R(T ) and take y∗∗ ∈ X∗∗ such that x∗∗ = T (y∗∗ |Z ). Since T

is an extension operator, x∗∗ |Z = y∗∗ |Z . Thus T (x∗∗ |Z ) = T (y∗∗ |Z ) = x∗∗.
(iii) Since J ∗

Z ◦ T = IZ∗ , it follows T ∗ ◦ J ∗∗
Z = IZ∗∗ , and applying (14), we

obtain
T ∗ ◦ JZ⊥⊥ ◦ IZ∗∗,Z⊥⊥ = IZ∗∗

which proves that T ∗ |Z⊥⊥ = IZ⊥⊥,Z∗∗ and the proof is done. �760

Extension operators are associated with a particular type of projections.

Lemma 5.3. Given a subspace Z of a dual space X∗, every extension operator
T : Z∗ −→ X∗∗ induces a projection P : X∗∗ −→ X∗∗ with kernel Z⊥ satisfying
T ◦ J ∗

Z = P and vice versa.
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Proof. Let T : Z∗ −→ X∗∗ be an extension operator. Then J ∗
Z ◦ T = IZ∗ ; thus765

it is clear that P := T ◦ J ∗
Z is a projection. Moreover, since T is injective, it

follows that N(P ) = N(J ∗
Z) = Z⊥.

Let P : X∗∗ −→ X∗∗ be a projection withN(P ) = Z⊥ and define an operator
T : Z∗ −→ X∗∗ as follows: given z∗ ∈ Z∗, choose an element x∗∗ ∈ X∗∗ such
that x∗∗ | Z = z∗ and let T (z∗) := P (x∗∗). Note that the identity N(P ) =770

Z⊥ makes the operator T well defined and injective. Obviously, the identity
T ◦ J ∗

Z = P holds by definition.
In order to see that T is an extension operator, we only need to see that

J ∗
Z ◦ T = IZ∗ . Indeed, since P is a projection, we have

T ◦ (J ∗
Z ◦ T ) ◦ J ∗

Z = T ◦ J ∗
Z ,

but T is injective and J ∗
Z is surjective, so J ∗

Z ◦ T = IZ∗ , as we wanted to prove.
�

5.1. Global theorems.775

In this subsection, Theorems 5.4, 5.6 and 5.7 describes the local notions of
finite dual representability, ideal and local duality in global terms, that is to
say, involving operators defined on the whole spaces Z∗, X∗∗, X(3), or X(4)

instead of using operators whose domains are finite dimensional subspaces. The
proofs of the aforementioned theorems offered in this article differ to a great780

extent from their original sources ([44], [48], [23] and [34]). The main difference
between both approaches is that here, the translation from the local notions into
their global counterparts is made throughout the ultrapower characterizations
of Section 4. The aim of doing so is to separately trace the role played by the
different hypotheses that define the local notions.785

Theorem 5.4. Given a subspace Z of X∗, the following statements are equiv-
alent.

(1) X∗ is f.d.r. in Z,
(2) there exists a norm one operator T : Z∗ −→ X∗∗ such that T (x | Z ) = x

for all x ∈ X. In particular, JX(X) ⊂ R(T ),790

(3) there exists a norm one operator V : X(3) −→ X(3) such that R(V ) ⊂ Z⊥⊥

and R(V − IX(3)) ⊂ JX(X)⊥.

Proof. (1)⇒(2) By Theorem 4.2, there is an ultrafilter U and an isometry
J : X∗ −→ ZU such that QZU

J = IX∗ . Thus the required operator is T :=
J∗ ◦ JZ∗,ZU

∗ , such as we will show now. First, note that for every x∗∗ |Z ∈ Z∗,
the duality action of T (x∗∗ |Z ) on x∗ ∈ X∗ is

⟨T (x∗∗ |Z ), x∗⟩ = ⟨[x∗∗ |Z ], J(x∗)⟩ = lim
U
⟨x∗∗, zi⟩ (18)

where J(x∗) = [zi]. Thus, given x ∈ X and x∗ ∈ X∗ (with J(x∗) = [zi]), we
have

⟨T (x |Z ), x∗⟩ = lim
U
⟨x, zi⟩ = (19)

= ⟨x,QZU
([zi])⟩ = ⟨x,QZU

J(x∗)⟩ = ⟨x, x∗⟩,
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hence, T (x |Z ) = x, so 1 ≤ ∥T∥ ≤ ∥J∗∥ · ∥JZ,ZU
∗∥ = 1.795

(2)⇒(1). Let us assume there exists a norm one operator T : Z∗ −→ X∗∗ with
T (x |Z ) = x for all x ∈ X. Let E and F be finite dimensional subspaces of X∗

andX respectively, let ε > 0, and let us find an ε-isometry L : E −→ Z satisfying
conditions (A’) and (B’) with respect to F and ε so that Proposition 3.9 yields
X∗ is f.d.r. in Z.800

Let E1 := T ∗(E) ⊂ Z∗∗. By the principle of local reflexivity, there exists an
ε-isometry J : E1 −→ Z such that

⟨J(z∗∗)− z∗∗, x |Z ⟩ = 0 for all z∗∗ ∈ E1 and all x ∈ F .

Thus, the desired operator is L := J ◦ T ∗ |E . Indeed, on the one hand we have

∥L∥ ≤ ∥J∥∥T ∗∥ ≤ 1 + ε. (20)

which fulfills condition (A’) with respect to ε.
On the other hand, for every x∗ ∈ E and every x ∈ F , we have

⟨x∗, x⟩ = ⟨x∗, T (x |Z )⟩ = ⟨T ∗(x∗), x |Z ⟩ = ⟨JT ∗(x∗), x |Z ⟩ = ⟨L(x∗), x⟩ (21)

which proves that (B) holds with respect to F . Thus X∗ is f.d.r. in Z.

(2)⇒(3) Let us assume that (2) holds and prove that V := J ∗∗
Z ◦T ∗ satisfies (3).

Indeed, it is immediate that ∥V ∥ = 1 and R(V ) ⊂ R(J ∗∗
Z ) = Z⊥⊥. Moreover,

given x(3) ∈ X(3) and x ∈ X,

⟨J ∗∗
Z T ∗(x(3)), x⟩ = ⟨T ∗(x(3)), x |Z ⟩ = ⟨x(3), T (x |Z )⟩ = ⟨x(3), x⟩

which means that V (x(3))− x(3) ∈ JX(X)⊥ for all x(3) ∈ X(3).

(3)⇒(2) Assume there exists an operator V : X(3) −→ X(3) satisfying (3). As
R(V ) ⊂ Z⊥⊥, the composition W := IZ⊥⊥,Z∗∗ ◦ V makes sense. We will prove
that statement (2) holds for T := J∗

X∗ ◦W ∗ ◦ JZ∗ . Indeed, fix x ∈ X. For every
x∗ ∈ X∗,

⟨T (x |Z ), x∗⟩ = ⟨W ∗JZ∗(x |Z ), JX∗(x∗)⟩
= ⟨JZ∗(x |Z ),WJX∗(x∗)⟩ = ⟨x, V

(
JX∗(x∗)

)
⟩,

but by hypothesis, V
(
JX∗(x∗)

)
−JX∗(x∗) ∈ JX(X)⊥, so ⟨T (x |Z ), x∗⟩ = ⟨x∗, x⟩

for all x∗ ∈ X∗, hence T (x |Z ) = x. Now it is clear that ∥T∥ = 1, so the proof805

is finished. �
According to Proposition 5.1, if the conjugate operator of T in Theorem 5.4

fixes Z then T is an extension operator.

The following result is given in [44, Theorem 3.5], [48] and [23].

Theorem 5.5. Given a subspace Z of a Banach space Y and a real number810

α ≥ 1, the following statements are equivalent:

(1) Z is locally α-complemented in Y ,

31



(2) there exists an extension operator T : Z∗ −→ Y ∗ such that ∥T∥ ≤ α,

(3) there is a projection P : Y ∗ −→ Y ∗ with N(P ) = Z⊥ and ∥P∥ ≤ α,

(4) there exists a projection Q : Y ∗∗ −→ Y ∗∗ such that R(Q) = Z⊥⊥ and815

∥Q∥ ≤ α.

Since we are particularly interested in the case when the hypotheses of The-
orem 5.5 fit into the context of local duality, we will prove it only in the case
when Y is a dual space. The attentive reader will realize that the proof given
in the following theorem also works for the general case.820

Theorem 5.6. Given a subspace Z of X∗, the following statements are equiv-
alent:

(1) Z is an ideal in X∗,

(2) there is an isometric extension operator T : Z∗ −→ X∗∗,

(3) there exists a norm one projection P : X∗∗ −→ X∗∗ with N(P ) = Z⊥,825

(4) there iss a norm one projection Q : X(3) −→ X(3) such that R(Q) = Z⊥⊥.

Proof. (1)⇒(2) By Theorem 4.2, there exists an ultrafilter U and an operator
J : X∗ −→ ZU with ∥J∥ = 1 and J | Z = JZ,ZU

. Given the natural inclusion
JZ∗,ZU

∗ : Z∗ −→ ZU
∗, we will prove that the required extension operator is

T := J∗ ◦ JZ∗,ZU
∗ . Indeed, for every x∗∗ ∈ X∗∗, the duality action of T (x∗∗ |Z )

on x∗ ∈ X∗ is given by

⟨T (x∗∗ |Z ), x∗⟩ = lim
U
⟨x∗∗, zi⟩,

where J(x∗) = [zi]. Thus, given vectors x∗∗ ∈ X∗∗ and z ∈ Z, since J(z) = z
it follows that ⟨T (x∗∗ | Z ), z⟩ = ⟨x∗∗, z⟩, hence T (x∗∗ | Z ) | Z = x∗∗ | Z , so T is
an extension operator. Moreover, as ∥T∥ ≤ ∥T ∗∥ · ∥JZ∗,ZU

∗∥ ≤ 1, Lemma 5.2
shows that T is an isometric extension operator.830

(2)⇒(1) Assume that T : Z∗ −→ X∗∗ is an isometric extension operator,
and take a finite dimensional subspace E of X∗ and ε > 0. We need to find
an operator L : E −→ Z satisfying conditions (A’) and (C) with respect to ε.
To do that, let E1 := T ∗(E) ⊂ Z∗∗. By the principle of local reflexivity, there
exists an ε-isometry J : E1 −→ Z such that

J(z) = z for all z ∈ E1 ∩ Z. (22)

Let L := J ◦ T ∗ | E . Clearly ∥L∥ ≤ ∥J∥∥T∥ ≤ 1 + ε, so L satisfies (A’) with
respect to ε.

In order to check (C), take z ∈ E ∩Z. Note that (13) yields Z = Z⊥⊥ ∩X∗,
and Lemma 5.2 gives T ∗(z) = z ∈ E1; thus, by (22), L(z) = JT ∗(z) = z. The
proof is done.835

(2)⇔(3) It is a consequence of Lemma 5.3.

(3)⇒(4) Just take Q := P ∗.

(4)⇒(3) Let Q : X(3) −→ X(3) be a norm one projection such that R(Q) =
Z⊥⊥. Denote J := JX∗∗ , J := JX∗ and R := J ∗ (so R(x(4)) = x(4) | J (X∗) ),
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and consider the quotient operator U : X∗∗ −→ X∗∗/Z⊥ and the operator840

V : X∗∗/Z⊥ −→ X(4)/Z⊥⊥⊥ that sends each x∗∗ + Z⊥ to J(x∗∗) + Z⊥⊥⊥.
As N(Q∗) = Z⊥⊥⊥, the operator S : X(4)/Z⊥⊥⊥ −→ X(4) that sends each
x(4) + Z⊥⊥⊥ to Q∗(x(4)) is well defined.

We need to prove that P := RSV U is a norm one projection with N(P ) =
Z⊥. To do so, note that for each x∗∗ ∈ X∗∗,

P (x∗∗) = Q∗(Jx∗∗) |J (X∗) . (23)

Obviously, formulas (16) and (23) show N(P ) = Z⊥⊥⊥ ∩ J(X∗∗) = J(Z⊥).
In order to see that P is a projection, note that given any x(4) ∈ X(4), if
x(4) |J (X∗) = 0 then x(4) ∈ J (Z)⊥; with the help of (16), that means

U
(
Q∗(x∗∗) |J (X∗)

)
= Q∗(x∗∗) + J (Z)⊥.

Therefore

P 2(x∗∗) = P
(
Q∗(x∗∗) |J (X∗)

)
= RSV

(
Q∗(x∗∗) + J (Z)⊥

)
= RS

(
Q∗(x∗∗) + Z⊥⊥⊥)

= RQ∗2(x∗∗) = RQ∗(x∗∗) = Q∗(Jx∗∗) |J (X∗) ,

which shows that P 2 = P in virtue of (23). We conclude that P is a projection845

such that 1 ≤ ∥P∥ ≤ ∥R∥∥S∥∥V ∥∥U∥ ≤ 1, and the proof is done. �
It follows from [40, Lemma 7.3] that a Banach space X is an ideal in each

ultrapower XU. This fact can be derived from Theorem 5.6. Indeed, it is enough
to realize that the operator T : X∗ −→ (XU)

∗ that maps x∗ to [x∗] is a norm
one extension operator.850

The proof of the following characterization of local duality follows the pattern
of the proofs of Theorems 5.4 and 5.6. Before giving it, some words of caution are
necessary. Theorem 5.7 may leave the false impression that the decomposition
(15) of X(3) for a Banach space X produces a new proof of the principle of local
reflexivity. This is not correct because this principle is applied in the proof of855

Theorem 5.7.

Theorem 5.7. Given a subspace Z of X∗, the following statements are equiv-
alent:

(1) Z is a local dual of X,

(2) there exists an isometric extension operator T : Z∗ −→ X∗∗ such that860

JX(X) ⊂ R(T ),

(3) there is a norm one projection P : X∗∗ −→ X∗∗ such that JX(X) ⊂ R(P )
and N(P ) = Z⊥.

(4) there exists a norm one projection Q : X(3) −→ X(3) such that N(Q) ⊂
JX(X)⊥ and R(Q) = Z⊥⊥.865
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Proof. (1)⇒(2) Since Z is a local dual of X, Theorem 4.2 provides an ultrafilter
U and an isometry J ∈ B(X∗, ZU) such that QZU

J = IX∗ and J | Z = JZ,ZU
.

Since J gathers all hypotheses of the respective implications (1) ⇒ (2) of The-
orems 5.4 and 5.6, the operator T := J∗ ◦ JZ∗,ZU

∗ satisfies the theses of both
implications, which means that T is an isometric extension operator from Z∗

870

into X∗∗ such that X ⊂ R(T ).

(2)⇒(1). Assume there exists an isometric extension operator T : Z∗ −→ X∗∗

with X ⊂ R(T ). Lemma 5.2 yields x = T (x | Z ) for all x ∈ X, hence all
hypotheses of the respective implications (2)⇒(1) in Theorems 5.4 and 5.6 hold
here. Thus, given a pair of finite dimensional subspaces E of X∗ and and F875

of X and ε > 0, in order to find an operator L : E −→ Z satisfying conditions
(A’), (B’) and (C’) with respect to F and ε, we can proceed as in the mentioned
implications. We consider the subspace E1 := T ∗(E) ⊂ Z∗∗. Since Z is a local
dual of Z∗, we take an ε-isometry J : E1 −→ Z such that

⟨J(z∗∗)− z∗∗, x |Z ⟩ = 0 for all z∗∗ ∈ E1 and all x ∈ F

J(z) = z for all z ∈ E1 ∩ Z.

Thus, taking L := J ◦ T ∗ | E , the arguments of both mentioned implications880

(1) ⇒ (2) prove that L satisfies conditions (A’), (B’) and (C’) with respect to
F an ε. We have just proved that Z is a local dual of X.

(2)⇔(3) It follows from Lemma 5.3.

(3)⇒(4) It is enough to observe that Q := P ∗ is a norm one projection with
kernel N(Q) = R(P )⊥ ⊂ JX(X)⊥ and range R(Q) = N(P )⊥ = Z⊥⊥.885

(4)⇒(3) The projection Q satisfies all the hypotheses of statement (4) in
Theorem 5.6 plus the additional hypothesis N(Q) ⊂ J(X)⊥. The proof of
(4)⇒(3) in Theorem 5.6 gives a norm one projection P : X∗∗ −→ X∗∗ with
N(P ) = Z⊥. Since JX(X)⊥⊥ ⊂ R(Q∗) by (16) and (23), we obtain JX(X) ⊂
R(P ), as we wanted to prove. �890

There is a particular step in the implication (1)⇒(2) of the above theorem
that deserves some comments: the extension operator T satisfies that T (x |Z ) =

x for all x ∈ X. This implies thatT (BZ∗)
w∗

= BX∗∗ , hence T (Z∗) is a norming
subspace of X∗∗. When Z is a subspace of Y and there exists an isometric
extension operator T : Z∗ −→ Y ∗ such that T (Z∗) is norming, Z is said to be a895

strict ideal in Y (see [50] and [64]). Therefore, each local dual of X is a strict
ideal in X∗.

While local complementation is transitive, local duality enjoys a sort of sym-
metry.

Theorem 5.8. Let Z be a local dual of X and let Υ := J ∗
Z ◦ JX : X −→ Z∗.900

Then Υ(X) is a local dual of Z isometric to X.

Since Υ(x) = x | Z for every x ∈ X and Z is norming, Υ: X −→ Z∗ is an
isometry. Moreover, by Theorem 5.7, there exists a norm one extension operator
T : Z∗ −→ X∗∗ such that X ⊂ R(T ).
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Note that J ∗
Z is surjective and J ∗

Z ◦ T is the identity on Z∗. Hence T ◦ J ∗
Z905

is a projection on X∗∗ with R(T ◦ J ∗
Z) = R(T ). In particular T ◦Υ = JX .

Let us define Ψ: Υ(X)∗ −→ Z∗∗ by

⟨Ψf, z∗⟩ := ⟨T (z∗), f ◦Υ⟩ for all f ∈ Υ(X)∗ and z∗ ∈ Z∗.

Obviously, ∥Ψ∥ ≤ 1. Moreover, given f ∈ Υ(X)∗ and x ∈ X,

⟨Ψf,Υ(x)⟩ = ⟨T ◦Υ(x), f ◦Υ⟩ = ⟨JX(x), f ◦Υ⟩ = ⟨f,Υ(x)⟩.

Hence Ψ(f) |Υ(X) = f , and Ψ is a norm one extension operator. Also Z ⊂ R(Ψ),
because Ψ(x∗ |Υ(X) ) = JZ(x

∗) for each x∗ ∈ Z ⊂ X∗. Indeed, given z∗ ∈ Z∗

we have

⟨Ψ(x∗ |Υ(X) ), z
∗⟩ = ⟨T (z∗), x∗ |Υ(X) ◦Υ⟩ = ⟨T (z∗), x∗⟩ = ⟨z∗, x∗⟩.

Thus Υ(X) is a local dual of Z by Theorem 5.7. �
The spaces C(T) and L1(T) are an example of symmetric pair in the sense

of Theorem 5.8. Indeed, let J be the natural embedding of L1(T) into M(T) =
C(T)∗. As L1(T)∗ = L∞(T), the operator Υ = J ∗JC(T) : C(T) −→ L∞(T) maps910

C(T) into its natural copy in L∞(T). Thus, as C(T) is a local dual of L1(T)
(Proposition 3.15 (a)), Theorem 5.8 immediately yields that L1(T) is a local dual
of C(T), which provides an alternative proof of part (b) in Proposition 3.15.

The Radon-Nikodym decomposition C(T)∗ = L1(T) ⊕1 Msing(T) induces
a norm-one projection Q : C(T)∗∗ → C(T)∗∗ with N(Q) = L1(T)⊥. This915

projection is useless to show that L1(T) is a local dual of C(T) because R(Q) =
Msing(T)⊥ does not contain C(T) (see Theorem 5.7).

5.2. Identification of local dual subspaces.

Although the local techniques have proved to be very powerful in finding local
duals for Banach spaces (for instance, Propositions 3.15, 3.12, Example 3.11,920

and in particular, Theorems 3.17, 3.18, the principles of local reflexivity and
the forthcoming Corollary 6.13), the global theorems of this section can be also
used in the same task. In particular, Theorem 5.8 and Proposition 5.13 provide
many examples (see Proposition 5.9 and the comments after Theorem 5.8).

Proposition 5.9. Given a Banach space X, the following statements hold:925

(a) ℓ1(X
∗) is a local dual of ℓ∞(X),

(b) ℓ∞(X) is a local dual of ℓ1(X
∗).

Proof. (a) For every couple α = (E,F ) of finite dimensional subspaces of
ℓ1(X

∗), ℓ∞(X∗∗), we select finite dimensional subspaces En of X∗ and Fn of
X∗∗, so that E ⊂ ℓ1(En) and F ⊂ ℓ∞(Fn). We denote |α| := dim(E)+dim(F ).930

For every n, the principle of local reflexivity gives an |α|−1-isometry Sα
n :

Fn −→ X so that ⟨Sα
nf, e⟩ = ⟨e, f⟩ for every e ∈ En and f ∈ Fn, and S

α
n (f) = f

for every f ∈ Fn ∩X.
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Consider the non-linear map Sα : ℓ∞(X∗∗) −→ ℓ∞(X) given by Sα(zn) :=
(Sα

n (zn)), if (zn) ∈ F , and Sα(zn) := 0, otherwise. Let U be an ultrafilter in the935

set of all couples α = (E,F ) of finite dimensional subspaces of ℓ1(X
∗), ℓ∞(X∗∗)

refining the order filter.
We consider the operator Λ : ℓ1(X

∗)∗ = ℓ∞(X∗∗) −→ ℓ∞(X)∗∗ defined by

Λ(zn) := w∗- lim
α→U

Sα(zn), (zn) ∈ ℓ∞(X∗∗).

Note that Λ is an isometry and Λ(yn) = (yn) for every (yn) ∈ ℓ∞(X∗∗).
Therefore, Λ is an isometric extension operator. Moreover, Λ((xn)) = (xn),
if (xn) ∈ ℓ∞(X). In particular Λ(ℓ∞(X∗∗)) ⊃ ℓ∞(X), and an application of940

Theorem 5.7 proves (a).

(b) It follows from part (a) and the symmetry of local duality of Theorem 5.8.
�

Recall that a Banach spaceX has themetric approximation property (M.A.P,
for short) if for every ε > 0 and every compact subset K of X, there is a finite945

rank operator T onX such that ∥T∥ ≤ 1 and ∥Tx−x∥ ≤ ε for every x ∈ K. Note
that if X∗ has the M.A.P., then so does X [19, Corollary VIII.3.9]. However,
the converse implication is not valid [52, Theorem 1.e.7].

Casazza and Kalton [11] proved that for every separable Banach space X
with the M.A.P., there is a sequence (Tn) of finite rank operators on X such950

that

(a) lim
n→∞

∥Tnx− x∥ = 0 for all x ∈ X,

(b) lim
n→∞

∥Tn∥ = 1 and

(c) TnTk = TkTn = Tmin{k,n};

i.e., X admits a commuting 1-approximating sequence (Tn) of finite rank oper-
ators. Using this fact, and applying an argument similar to that of Lemma II.2
in [27], we can obtain a local dual of X.

Theorem 5.10. Let X be a separable Banach space with the M.A.P., and let955

(Tn)
∞
n=1 be a commuting 1-approximating sequence of X. Then

∪∞
n=1R(T

∗
n) is

a local dual of X with the M.A.P.

Proof. Let U be an ultrafilter on N. We define a map P on X∗∗ by

Pz := w∗-limk→UT
∗∗
k z, z ∈ X∗∗.

From T ∗∗
n T ∗∗

k = T ∗∗
k T ∗∗

n = T ∗∗
min{k,n} and the w∗-continuity of the operators

T ∗∗
n , it follows that for every n ∈ N, we have

T ∗∗
n P = PT ∗∗

n = T ∗∗
n . (24)

Hence P 2z = w∗-limn→UT
∗∗
n Pz = Pz. This fact and limn→∞ ∥Tn∥ = 1 im-

ply that P is a norm one projection. Also, it follows from formula (24) that
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N(T ∗∗
n ) ⊃ N(P ), for every n ∈ N. Since the intersection of the kernels N(T ∗∗

n )
is contained in N(P ), we obtain

N(P ) =
∞∩

n=1

N(T ∗∗
n ).

In particular, N(P ) is w∗-closed. And clearly P (X∗∗) ⊃ X.960

The condition TnTk = TkTn = Tmin{k,n} implies that the ranges R(T ∗
n) =

N(T ∗∗
n )⊥ form an increasing sequence. Therefore N(P )⊥ =

∪∞
n=1R(T

∗
n), and it

follows from Theorem 5.7 that
∪∞

n=1R(T
∗
n) is a local dual of X.

Since T ∗
nf is weak∗-convergent for every f ∈ X∗, and a compact operator

takes weak∗-convergent sequences to norm-convergent sequences, formula (24)
implies

lim
k→∞

∥T ∗
k f − f∥ = lim

n→∞
∥T ∗

n(T
∗
k g − g)∥ = 0,

for each f = T ∗
ng ∈ R(T ∗

n). Since (T ∗
k ) is bounded, limk→∞ ∥Tkf − f∥ = 0 for

every
∪∞

n=1R(T
∗
n); hence

∪∞
n=1R(T

∗
n) has the M.A.P. �965

Remark 5.11. When X has a monotone Schauder basis, the local dual of X
provided by Theorem 5.10 is the subspace generated in X∗ by the coefficient
functionals of the basis.

The following example concerning the space of continuous functions on the
Cantor set is obtained from Theorem 5.10. The Cantor set, usually denoted by970

∆, can be described as ∆ := {0, 1}N endowed with the product topology. For a
succinct description of ∆ and its topology, see Remark 1.4.2 in [2].

Example 5.12. The closed span Z of {χni}∞n=0
2n

i=1 in L∞[0, 1], with χni the
characteristic function of the dyadic interval Ini , is a local dual of L1[0, 1] iso-
metric to C(∆).975

Proof. Consider the projections Pn on L1[0, 1] defined by

Pnf :=
2n∑
i=1

⟨2nχni, f⟩χni.

It is not difficult to check that (Pn) is a commuting 1-approximating sequence
in L1[0, 1] and ∪nR(P

∗
n) is the subspace generated by the functions χni.

Let us prove that Z is isometric to C(∆). For each dyadic interval Ink with
n ≥ 1 we consider the clopen Jnk := {a1} × · · · × {an} × {0, 1}N of ∆, where
k = a12

n−1 + a22
n−2 + · · · + an2

0 + 1. The map that assigns χ01 to χ∆, and980

each χnk (with n ≥ 1) to χJnk
∈ C(∆) induces a linear isometry between Z and

C(∆). �
Observe that C(∆) is isomorphic but not isometric to C[0, 1].
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Next result applies the global techniques of Theorem 5.7 to find subspaces
of operators that are local dual spaces.985

We denote X ⊗ϵ Y and X ⊗π Y the injective and the projective tensor
product of X and Y , K(X,Y ) the compact operators, and I(X,Y ) the integral
operators.

Proposition 5.13. Let X and Y be Banach spaces. Assume that X∗ or Y ∗

has the M.A.P. Then990

(a) X∗ ⊗ϵ Y
∗ is a local dual of X ⊗π Y ,

(b) X∗ ⊗π Y
∗ is a local dual of X ⊗ϵ Y .

Proof. We assume that Y ∗ has the M.A.P.
(a) The dual space (X ⊗π Y )∗ can be identified with B(X,Y ∗). More-

over, since Y ∗ has the M.A.P., X∗ ⊗ϵ Y
∗ can be identified with K(X,Y ∗),995

and there exists a net (Aα) of finite rank operators on Y ∗ with ∥Aα∥ ≤ 1
such that limα ∥Aαg − g∥ = 0 for every g ∈ Y ∗. We can assume that (Aα) is
σ(K(Y ∗)∗∗,K(Y ∗)∗)-convergent.

Now, given T ∈ B(X,Y ∗) and Φ ∈ K(X,Y ∗)∗, the expression ΦT (A) :=
Φ(AT ) defines ΦT ∈ K(Y ∗)∗. Thus, defining Λ : K(X,Y ∗)∗ −→ B(X,Y ∗)∗ by

⟨ΛΦ, T ⟩ := lim
α
⟨Φ, AαT ⟩ = lim

α
⟨Aα,ΦT ⟩.

Note that for every f ⊗ g ∈ X∗ ⊗ϵ Y
∗ we have

⟨ΛΦ, f ⊗ g⟩ = lim
α
⟨Φ, (Aαg)f⟩ = ⟨Φ, f ⊗ g⟩.

So Λ is an isometric extension operator. In an analogous way we can check that
for every x ⊗ y ∈ X ⊗π Y ⊂ B(X,Y ∗)∗, we have Λ(x ⊗ y | K(X,Y ∗) ) = x ⊗ y.1000

Thus X ⊗π Y ⊂ Λ(K(X,Y ∗)∗), and it is enough to apply Theorem 5.7.
(b) The proof is analogous, identifying the dual space (X ⊗ϵ Y )∗ with the

space I(X,Y ∗) of all integral operators from X into Y ∗. �
Proposition 5.13 improves a result of Lima [48] which, using an argument

of Johnson in [41], shows that the space K(X,Y ∗) of compact operators is an1005

ideal in B(X,Y ∗).

Remark 5.14. (a) If we assume in Proposition 5.13 that Y ∗ has the metric
compact approximation property (defined as the M.A.P., using compact oper-
ators instead of finite rank operators), then we obtain that K(X,Y ∗) is a local
dual of X ⊗π Y .1010

(b) It follows from the results of Lima [48, Theorem 13] that if Y ∗ has the
Radon-Nikodym property and Y ∗∗ ⊗ϵ Y

∗ is a local dual of Y ∗ ⊗π Y , then Y ∗

has the M.A.P. So it is not enough to assume in Proposition 5.13 that X or Y
has the M.A.P.

(c) Let µ be a finite measure and letK be a compact space. Since L1(µ)
∗ and1015

C(K)∗ have the M.A.P., we can apply Proposition 5.13 to the spaces L1(µ,X) =
X ⊗π L1(µ) and C(K,X) = X ⊗ϵ C(K).
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Note that X∗ ⊗ϵ L∞(µ) is identified with a (proper, in general) subspace of
L∞(µ,X∗).

Given a Banach space X, let B1(X) denote the space of the first Baire class1020

elements in X∗∗, that is, the weak∗ limits in X∗∗ of sequences in X. Godefroy,
Kalton and Saphar asked in [27, Question 10] the following question:

Open problem 5.15. Let X be a separable Banach space. Is B1(X) an ideal
in X∗∗?

The answer is known to be positive in the following cases:1025

(i) X is weakly sequentially complete, because B1(X) = X,

(ii) X contains no copies of ℓ1, because B1(X) = X∗∗ [59],

(iii) X = C[0, 1] (Theorem 3.18).

Observe that every separable space is a subspace of C[0, 1] and, for each subspace
M of X, B1(M) can be identified with B1(X) ∩M⊥⊥ [17, Lemma XIII.7]. So1030

case (iii) suggests that a general answer to Problem 5.15 could be positive.

5.3. Existence of special local dual spaces.

In this part we collect some results concerning the existence of local duals
satisfying certain additional properties.

Proposition 5.16. If X is a M-ideal in X∗∗ then X∗ is the only local dual of1035

X.

Proof. If X is a M-ideal in X∗∗ then X∗ is the smallest norming subspace of
X∗ (Corollary III.2.16 in [39]), hence X∗ is the only local dual of X. �

In general, a Banach space does not have a smallest local dual (see Re-
mark 3.16). However there are some conditions that implies its existence.1040

Proposition 5.17. Assume X is isometric to a dual space and admits a small-
est norming subspace Zn. Then Zn is the smallest local dual of X, and moreover
it is the only isometric predual of X.

Proof. By Lemma I.2 in [25], the smallest norming subspace Zn does exist if and
only if Z⊥

n equals the set {x∗∗ ∈ X∗∗ : ∥x∗∗ − x∥ ≥ ∥x∥ for all x ∈ X}. In that1045

case, X∗∗ = X ⊕ Z⊥
n and Zn is the only predual of X (Theorem II.1 in [25]).

Clearly, there is a projection P on X∗∗ with kernel Z⊥
n and range X satisfying

all the conditions of Theorem 5.7. Hence Zn is a local dual of X, and it is the
smallest one because every local dual is norming. �

A second example was studied by Godefroy and Kalton [26].1050

Proposition 5.18. Let X be a Banach space containing no copies of ℓ1. Then
there is a smallest local dual Zd of X.
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Proof. Assume that X does not contain any copy of ℓ1. Let PX denote the
family of all the subspaces Y of X∗∗ for which there is a norm one projection
on X∗∗ such that Y = N(P ) and R(P ) ⊃ X. It was proved in [27, Proposition1055

V.1] that PX consists of w∗-closed subspaces of X∗∗, and that PX has a largest
element L. Since, by Theorem 5.7, the local dual spaces of X are precisely
the subspaces Z of X∗ such that Z⊥ ∈ PX , we conclude that Zd := L⊥ is the
smallest local dual of X. �

Let X be a separable Banach space containing no copies of ℓ1 such that X∗
1060

is not separable. It follows from Proposition 5.21 that the smallest local dual
space Zd provided by Proposition 5.18 is separable. Moreover, there is a smallest
norming subspace Zn in X∗ [25, Lemma I.2 and Theorem II.3], and clearly Zn

is contained in the smallest local dual Zd. Thus, the following question arises.

Open problem 5.19. [27, Remarks V.3] Let X be a Banach space for which1065

Zn and Zd exist. Does Zn equal Zd?

The following result was obtained by Sims and Yost [67] (see [39, Lemmas
III.4.3 and III.4.4]). Here, densX stands for the density character of the Banach
space X, defined as the smallest cardinal κ for which X has a dense subset of
cardinality κ.1070

Proposition 5.20. Let L be a subspace of Y and F a subspace of Y ∗ with
densF ≤ densL. Then there is a subspace M of Y such that densM = densL
and M ⊃ L for which there is an isometric extension operator T : M∗ −→ Y ∗

such that T (M∗) ⊃ F .

We are ready to establish our next result on the existence of particular local1075

dual spaces.

Proposition 5.21. Every subspace L of X∗ is contained in a local dual ZL of
X with densZL = max{densL,densX}.

Proof. Given a subspace L of X∗, it is easy to find a subspace L0 of X∗ so
that L ⊂ L0 and densX ≤ densL0. If we apply Proposition 5.20 to L0 as1080

a subspace of X∗ and X as a subspace of X∗∗ we get a subspace ZL of X∗

such that ZL ⊃ L and densZL = max{densL,densX}, for which there exists
an isometric extension operator T : Z∗

L −→ X∗∗ such that T (Z∗
L) ⊃ X. By

Theorem 5.7, this is the desired local dual of X. �

6. Polar properties.1085

The local techniques have proved to be more powerful in finding examples
of local dual spaces because they consider a single pair of finite dimensional
subspaces E of X∗ and and F of X, while the global techniques derived from
Theorem 5.7 involve implicitly the consideration of all those pairs at once. In this
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sense, the local duality between L1(µ,X
∗) and L∞(µ,X) is a remarkable exam-1090

ple: in fact, it was obtained in [34] using global techniques and the Continuum
Hypothesis CH, while the proof in [35] based on local techniques (Theorem 3.17)
does not need CH.

The local procedure can be roughly described as follows: in order to prove
that X∗ is f.d.r. in a subspace Z, we fix a finite dimensional subspace E of1095

X∗ and a real number ε ∈ (0, 1), take an ε′-net {x∗i }ni=1 in SE , and look for

a family {zαi }α∈A so that zαi
w∗

−→
α

x∗i and ∥zαi ∥ ≤ 1 + ε′ for all α ∈ A and all

1 ≤ i ≤ n. Thus, if ε′ has been chosen sufficiently small, and if for every α
the map x∗i 7→ zαi agrees with a linear operator Lα : E −→ Z, given any finite
dimensional subspace F of X, we may select an index β ∈ A so that Lβ satisfies1100

conditions (A’) and (B’) with respect to F and ε. If moreover we want to get
condition (C’), then the ε′-net {x∗i }ni=1 must contain a subset {x∗i }mi=1 such that
span{x∗i }mi=1 = E ∩ Z and Lα(x

∗
i ) −→α x∗i for all 1 ≤ i ≤ m.

In all the examples of local duality offered until now, the ε-isometry Lβ is
explicitly found. However there are situations, like the proof of the principle of1105

local reflexivity, where Lβ cannot be constructed but only proved to exist by
means of Goldstine’s theorem or a related result (see the proofs in [51], [15], [54]
or [68]). For those particular situations, the polar properties are powerful tools.

Let us begin with some technical definitions. Given an operator L ∈ B(X,Y ),1110

we denote by Ln the operator in B(Xn, Y n) that maps (xi)
n
i=1 to (Lxi)

n
i=1. Also,

every k × l scalar matrix A = (aij)
k
i=1

l
j=1 induces an operator AX ∈ B(X l, Xk)

defined by AX

(
(xj)

l
j=1

)
= (

∑l
j=1 aijxj)

k
i=1. Such operators are calledmatricial.

Proposition 6.1. Given a k × l scalar matrix A and a Banach space X, the
following properties hold:1115

(a) The matricial operator AX∗ is the conjugate of the matricial operator
(A∗)X , where A∗ denotes the transposed matrix of A.

(b) Given a subspace Z of X, AX maps Zl into Zk.

(c) For every operator L ∈ B(X,Y ), we have Lk ◦AX = AY ◦ Ll.

(d) Given an ultrafilter U, we have (AX)U = A(XU).1120

(e) The range of AX is closed and complemented.

The proofs of properties (a), (b) and (c) are straightforward. For the proof of
(d), note that (X× n. . . ×X)U is isometrically identified with XU× n. . . ×XU. For
(e), it is sufficient to take into account that for any matrix A of dimension k× l
there exists a matrix B of dimension l × k such that BAB = B.1125

Given a subset A of a Banach space X,
◦
A denotes the norm interior of A.

Definition 6.2. We say that a subspace Z of X∗ has the strict polar property
if for every k, l ∈ N, every matricial operator T : ℓl∞(X∗) −→ ℓk∞(X∗) and every
z ∈ ℓk∞(Z), the set

ℓl∞(Z) ∩ T−1
(
z +

◦
Bℓk∞(X∗)

)
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is σ
(
ℓl∞(X∗), ℓl1(X)

)
-dense in T−1

(
z +

◦
Bℓk∞(X∗)

)
.

Remark 6.3. A version of the strict polar property was introduced in [37]
to characterize local duality, but the proof of the equivalence was not correct.
Fortunately, this mistake was not relevant for the other results contained in that1130

paper. Definition 6.2 is weaker than the one given in [37] and, as we will show
later, characterizes local duality.

Note that for any matricial operator T : ℓl∞(X∗) −→ ℓk∞(X∗) and any sub-
space Z of X∗, the identity

ℓl∞(Z) ∩ T−1
(
z +

◦
Bℓk∞(Z)

)
= ℓl∞(Z) ∩ T−1

(
z +

◦
Bℓk∞(X∗)

)
holds, but it may fail if the operator T is not matricial.

The following result offers a convenient characterization of the strict polar
property in terms of closed balls and bounded sets.1135

Proposition 6.4. Let Z be a subspace of a dual space X∗. Let k and l be a
pair of positive integers, z ∈ ℓk∞(Z) and T : ℓl∞(X∗) −→ ℓk∞(X∗) be a matricial
operator. Consider the following four statements:

(1) ℓl∞(Z) ∩ T−1
(
z +

◦
Bℓk∞(X∗)

)
is w∗-dense in T−1

(
z +

◦
Bℓk∞(X∗)

)
;

(2)
◦
Bℓl∞(Z)∩T−1

(
z+

◦
Bℓk∞(X∗)

)
is w∗-dense in

◦
Bℓl∞(X∗)∩T−1

(
z+

◦
Bℓk∞(X∗)

)
;1140

(3) for every η > 1, the set ℓl∞(Z) ∩ T−1
(
z + ηBℓk∞(X∗)

)
is w∗-dense in

T−1
(
z +Bℓk∞(X∗)

)
;

(4) for every η > 1, the set Bℓl∞(Z) ∩ T−1
(
z + ηBℓk∞(X∗)

)
is w∗-dense in

Bℓl∞(X∗) ∩ T−1
(
z +Bℓk∞(X∗)

)
.

Thus, Z has the strict polar property as a subspace of X∗ if and only if any of
the above four statements holds for all T and all z.

Proof. Note that the validity of (1) for all T and all z is exactly the definition
of the strict polar property. To prove the remaining equivalences, we adopt
the following notations: given a matricial operator T : ℓl∞(X∗) −→ ℓk∞(X∗) and
z ∈ ℓk∞(Z), we denote

O(z, T ) := T−1
(
z +

◦
Bℓk∞(X∗)

)
and P (z, T ) := T−1

(
z +Bℓk∞(X∗)

)
.

Therefore, P (z, T ) =
∩

η>1O(η−1z, η−1T ), and when λ ̸= 0,

λ−1O(z, T ) = O(z, λT ) and λ−1P (z, T ) = P (z, λT ).

Moreover, denoting z̃ := (0, z) ∈ ℓl∞(X∗)⊕∞ ℓk∞(X∗) and considering the matri-

cial operator T̃ : ℓl∞(X∗) −→ ℓl∞(X∗)⊕∞ℓk∞(X∗) defined as T̃ (x∗) := (x∗, Tx∗),
the statements (1) to (4) are respectively translated into the new notation as:1145
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(1’) the set ℓl∞(Z) ∩O(z, T ) is w∗-dense in O(z, T );

(2’) the set ℓl∞(Z) ∩O(z̃, T̃ ) is w∗-dense in O(z̃, T̃ );

(3’) for every η > 1, the set ℓl∞(Z) ∩ P (η−1z, η−1T ) is w∗-dense in P (z, T );

(4’) for every η > 1, the set ℓl∞(Z) ∩ P (η−1z̃, η−1T̃ ) is w∗-dense in P (z̃, T̃ ).

We will prove the equivalences (1’)⇔(2’), (3’)⇔(4’) and (1’)⇔(3’). First,1150

note that

O(z, T ) =
∞∪

n=1

n
◦
Bℓl∞(X∗) ∩ O(z, T )

=
∞∪

n=1

n
( ◦
Bℓl∞(X∗) ∩O

(
z, nT

))
=

∞∪
n=1

nO
(
z̃, nT̃

)
, (25)

and with a similar argument,

P (z, T ) =
∞∪

n=1

nP
(
z̃, nT̃

)
. (26)

If (1’) holds for all T and z, then (2’) can be regarded as a particular case of
(1’), so (2’) also holds for all T an all z. For the reverse, assume (2’) is satisfied
for all T and all z. Thus, formula (25) and hypothesis (2’) lead to

O(z, T ) =

∞∪
n=1

nO
(
z̃, nT̃

)
⊂ ℓl∞(Z) ∩

∞∪
n=1

nO
(
z̃, nT̃

)w∗

= ℓl∞(Z) ∩ O(z, T )
w∗

,

and (1’) is proved.
Given η > 1, the implication (3’)⇒(4’) is straightforward. Assume (4’) holds

for all matricial operator T and all z. Then formula (26) yields

P (z, T ) =
∞∪

n=1

nP
(
z̃, nT̃

)
⊂

∞∪
n=1

ℓl∞(Z) ∩ nP (η−1z̃, η−1nT̃ )
w∗

⊂ ℓl∞(Z) ∩
∞∪

n=1

nP
(
η−1z̃, η−1nT̃

)w∗

= ℓl∞(Z) ∩ P (η−1z, η−1T )
w∗

,

obtaining (3’).
For the equivalence (1’)⇔(3’), fix η > 1 and assume (1’) holds for all T and

all z. Since
P (z, T ) ⊂ O(η−1z, η−1T ) ⊂ P (η−1z, η−1T ),

hypothesis (1’) yields (3’) trivially.
Assume now (3’) holds for all T , z and η > 1. Fix T and z, and for x∗ ∈1155

O(z, T ), denote θ := ∥T (x∗) − z∥ < 1. If θ = 0 then the proof is trivial. If
θ > 0, then x∗ ∈ P (θ−1z, θ−1T ). Thus, by hypothesis (3’), x∗ belongs to the
w∗-closure of ℓl∞(Z) ∩O(θθ−1z, θθ−1T ), and the proof is done. �
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Proposition 6.5. Given a reflexive subspace R of a dual space X∗, the operator
T : X −→ ℓ∞(BR) that maps x ∈ X to (⟨f, x⟩)f∈BR

is weakly compact and has1160

closed range. Moreover, if X is the dual of a Banach space Y , R is a reflexive
subspace of Y and Z is a norming subspace of Y ∗ then T is a conjugate operator
and T (Z) is closed.

Proof. Consider the factorization T = T̃ ◦ Q where Q : X −→ X/N(T ) is the
quotient map. Since N(T ) = R⊥, given x+R⊥, we have

∥T̃ (x+R⊥)∥ = sup
f∈BR

⟨f, x⟩, (27)

and ∥x + R⊥∥ = supg∈B(X/R⊥)∗
⟨g, x⟩. As R is reflexive, (X/R⊥)

∗ = (R⊥)
⊥ =

R, hence ∥x + R⊥∥ = supf∈BR
⟨f, x⟩, which shows, in view of (27), that T̃ is1165

isometric. Thus T̃ has closed range, and so has T . In order to prove that T
is weakly compact, observe that T factorizes through X/R⊥, which is reflexive
because its dual is isometric to R.

Let us assume now that X = Y ∗ and R ⊂ Y . Then it is easy to check that
T = S∗, where S : ℓ1(BR) −→ Y maps every (αf )f∈R to

∑
f∈BR

αff .1170

In order to see that T (Z) is closed, a similar argument to that proving T has

closed range works: let T1 := T | Z and consider the factorization T1 = T̃1Q1

where Q1 : Z −→ Z/N(T1) is the quotient map. If we prove that T̃1 is an
isomorphism then the fact that Q1 is surjective will trivially yield that T1 has
closed range, and in turn, T (Z) is closed. In order to do so, first note that1175

N(T1) = R⊥ ∩ Z. Thus, given x∗ ∈ Z such that ∥x∗ + N(T1)∥ = 1, the
hypothesis that R is reflexive yields

1 = ∥x∗ +N(T1)∥ = sup
{
⟨x∗, g⟩ : g ∈ (Z/R⊥ ∩ Z)∗, ∥g∥ ≤ 1

}
(28)

= sup
{
⟨x∗∗, x∗⟩ : x∗∗ ∈ (R⊥ ∩ Z)⊥, ∥x∗∗∥ ≤ 1

}
= sup

{
⟨x∗∗, x∗⟩ : x∗∗ ∈R⊥⊥ + Z⊥ σ(Y ∗∗,Y ∗)

, ∥x∗∗∥ ≤ 1
}

= sup
{
⟨x∗∗, x∗⟩ : x∗∗ ∈R+ Z⊥ σ(Y ∗∗,Y ∗)

, ∥x∗∗∥ ≤ 1
}
;

moreover, R ⊂ Y and Z is a norming subspace of Y ∗, hence Z⊥ = {0} and
subsequently R ∩ Z⊥ = R ∩ Z⊥ = {0}. Therefore, there exists a projection P
on R + Z⊥ whose range is R and its kernel is Z⊥. Let K := ∥P∥. Given any
ε > 0, the identity (28) gives a norm one element x∗∗ in the σ(Y ∗∗, Y ∗)-closure
of R + Z⊥ such that 1 − ε < ⟨x∗∗, x∗⟩. Choose a pair of elements rε ∈ R and
x∗∗ε ∈ Z⊥ such that ∥rε + x∗∗ε ∥ ≤ 1 and

1− 2ε < ⟨rε + x∗∗ε , x
∗⟩ = ⟨rε, x∗⟩.

Thus, as ∥rε∥ ≤ K, denoting v := rε/∥rε∥, we get

1− 2ε

K
< ⟨v, x∗⟩ ≤ ∥T1(x∗)∥
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hence 1/K ≤ ∥T1(x∗)∥, which proves that T̃1 is an isomorphism and the proof
is done. �

Observe that if R is not reflexive in Proposition 6.5, then T is not weakly1180

compact because the conjugate operator T ∗ is an isomorphism on R.

The following theorem has two goals. First and most important, it shows
that the strict polar property and local duality are equivalent. Second, it proves
that in order to define local duality, it does not matter if we consider reflexive
subspaces instead of finite dimensional subspaces F in condition (B). This fact1185

generalizes a result of Barton and Yu [4].

Theorem 6.6. For a closed subspace Z of X∗, the following statements are
equivalent:

(1) Z is a local dual of X,

(2) Z has the strict polar property as a subspace of X∗,1190

(3) for every finite dimensional subspace E of X∗, every reflexive subspace F
of X and every ε > 0, there exists an operator L : E −→ Z such that

(3a) L is an ε-isometry,
(3b) ⟨Lx∗, x⟩ = ⟨x∗, x⟩ for all x∗ ∈ E and all x ∈ F ,
(3c) L(z) = z for all z ∈ E ∩ Z.1195

Proof. (1)⇒(2) Assume Z is a local dual of X. Let z = (zi)
k
i=1 ∈ ℓk∞(Z), and

T : ℓl∞(X∗) −→ ℓk∞(X∗) be a matricial operator. Given an element (fi)
l
i=1 ∈

T−1(z+
◦
Bℓk∞(X∗)), we must show that every w∗-neighborhood V of (fi)

l
i=1 meets

ℓl∞(Z)∩ T−1(z +
◦
Bℓk∞(Z)). In order to do that, let θ :=

∥∥T ((fi)li=1

)
− z

∥∥. Take
a finite subset {xij}li=1

m
j=1 in X so that

V ⊃ {(hi)li=1 : |⟨fi − hi , xij⟩| < 1, 1 ≤ i ≤ l, 1 ≤ j ≤ m}.

Consider the subspaces F := span{xij : 1 ≤ i ≤ l, 1 ≤ j ≤ m} and E :=
span{fi, zj : 1 ≤ i ≤ l, 1 ≤ j ≤ k}.

Take ε > 0 so that θ(1+ε) < 1. Thus, by the hypothesis of local duality, there
exists an ε-isometry L : E −→ Z satisfying properties (B) and (C) with respect
to F . Hence (Lfi)

l
i=1 ∈ V ∩ ℓl∞(Z). Moreover, since Lk((zi)

k
i=1) = (zi)

k
i=1,

Proposition 6.1 yields

T ◦ Ll((fi)
l
i=1)− (zi)

k
i=1 = Lk

(
T ((fi)

l
i=1)− (zi)

k
i=1

)
,

so
∥T ◦ Ll((fi)

l
i=1)− (zi)

k
i=1∥ ≤ ∥L∥∥T ((fi)li=1)− z∥ < (1 + ε)θ < 1.

Hence (Lfi)
l
i=1 ∈ V ∩ T−1(z +

◦
Bℓk∞(Z)) ̸= ∅, and the proof of (1)⇒(2) is done.

(2)⇒(3) Assume that Z has the strict polar property. In particular, Z is a
norming subspace of X∗. Let E be a finite dimensional subspace of X∗, F a1200

reflexive subspace of X and ε > 0. After Proposition 3.9, it will be enough to
construct an operator L : E −→ Z satisfying ∥L∥ ≤ 1 + ε, (3b) and (3c).
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Let n = dimE and n−k = dimE ∩ Z. By Lemma 2.4, E has a biorthogonal
system (yr, hr)

n
r=1 such that ∥yr∥ = 1 and ∥hr∥ ≤ n + 1 for all 1 ≤ r ≤ n and

E ∩ Z = span {yr}nr=k+1. Clearly, an operator L : E −→ Z satisfying (3c) can
be written as

Le :=
k∑

r=1

⟨hr, e⟩vr +
n∑

r=k+1

⟨hr, e⟩yr. (29)

Let us find vectors v1, . . . , vk in Z so that L also satisfies (3b) and ∥L∥ ≤ 1+ ε.
To do that, we take a real number 0 < α < 1 (to be fixed later) and a finite α-net
{ei}Mi=1 in SE . Let λir := ⟨hr, ei⟩ for all i ∈ {1, . . . ,M} and all r ∈ {1, . . . , n},
so |λir| ≤ n+ 1 and

ei =
n∑

r=1

λiryr for each i ∈ {1, . . . ,M} .

Let us consider the vector

y := −
(∑n

r=k+1 λiryr
)M
i=1

∈ ℓM∞(Z)

and the operators U : ℓk∞(X∗) −→ ℓM∞(X∗) and S : ℓk∞(X∗) −→ ℓk∞
(
ℓ∞(BF )

)
defined by

U
(
(fs)

k
s=1

)
:=

( k∑
s=1

λisfs
)M
i=1

and S
(
(fs)

k
s=1

)
:=

(
⟨fs, x⟩

)k
s=1, x∈BF

.

Notice that U is a conjugate operator because it is matricial (see Proposi-

tion 6.1) and as k ≤ n, its norm is ∥U∥ ≤ max1≤i≤M

∑k
s=1 |λis| ≤ n(n+ 1).

Let β > 1 be a real number (to be fixed later) and consider the sets

D = Bℓk∞(X∗) ∩ U−1(y +BℓM∞(X∗)) and C = Bℓk∞(Z) ∩ U−1(y + βBℓM∞(X∗))

As Z has the strict polar property, and as a consequence of Proposition 6.4, C
is w∗-dense in D. Therefore, since∥∥U(

(ys)
k
s=1

)
− y

∥∥ =
∥∥(ei)Mi=1

∥∥ = 1,

it follows that (ys)
k
s=1 ∈ D ⊂ C

w∗

. But by Proposition 6.5, S is a weakly1205

compact, conjugate operator with closed range because F is reflexive. Hence,

S(C
w∗

) ⊂ S(C)
w∗

=S(C) (30)

and

S(Bℓk∞(X∗)) ⊂S(Bℓk∞(Z))
w∗

=S(Bℓk∞(Z)); (31)

moreover, since Z is a norming subspace of X∗, Proposition 6.5 also yields that

S
(
ℓk∞(Z)

)
is closed, soS(Bℓk∞(Z)) ⊂S

(
ℓk∞(Z)

)
= S

(
ℓk∞(Z)

)
and in combination

with (31), we obtain
S
(
ℓk∞(X∗)

)
= S

(
ℓk∞(Z)

)
. (32)
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Therefore, since S | ℓk∞(Z) has closed range, formulas (30) and (32) show that

given any γ > 0, there exist (cs)
k
s=1 ∈ C and (bs)

k
s=1 ∈ γBℓk∞(Z) such that

S
(
(ys)

k
s=1

)
= S

(
(bs)

k
s=1

)
+ S

(
(cs)

k
s=1

)
.

Let us take vs := bs + cs for all s ∈ {1, . . . , k} in the definition of L given in
(29). First, note that the identity S

(
(ys)

k
s=1

)
= S

(
(vs)

k
s=1

)
yields

⟨ys, x⟩ = ⟨vs, x⟩ for all s ∈ {1, . . . , n} and all x ∈ F,

so ⟨L(e), x⟩ = ⟨e, x⟩ for all e ∈ E and all x ∈ F , fulfilling condition (3b).
Moreover, for every ei ∈ {ei}Mi=1, we have

∥L(ei)∥ =
∥∥∥∑k

s=1 λis(bs + cs) +
∑n

s=k+1 λisys

∥∥∥
≤

∥∥∥∥(∑k
s=1 λiscs +

∑n
s=k+1 λisys

)M

i=1
+

(∑k
s=1 λisbs

)M

i=1

∥∥∥∥
≤

∥∥U(
(cs)

k
s=1

)
− y

∥∥+
∥∥U(

(bs)
k
s=1

)∥∥
≤ 1 + β + n(n+ 1)γ =: δ(n, β, γ).

Thus, by Lemma 2.2,

∥L∥ ≤ 1 +
α+ β + n(n+ 1)γ

1− α
,

Therefore, as n and ε are fixed parameters, the values of α, β and γ can be
chosen as small as we please in order to ensure that ∥L∥ ≤ 1 + ε and the proof
(2)⇒(3) is completed.1210

The implication (3)⇒(1) is trivial. �

Taking z = 0 in the definition of the strict polar property, we obtain the
polar property.

Definition 6.7. We say that a subspace Z of X∗ has the polar property if for
every k, l ∈ N and every matricial operator T : ℓl∞(X∗) −→ ℓk∞(X∗), the set

ℓl∞(Z) ∩ T−1(
◦
Bℓk∞(X∗))

is σ
(
ℓl∞(X∗), ℓl1(X)

)
-dense in T−1(

◦
Bℓk∞(X∗)).

Recall that given a subset A of X∗, the polar set of A in X is defined as1215

A◦ := {x ∈ X : |⟨x∗, x⟩| ≤ 1 for all x∗ ∈ A}. The polar property admits
several equivalent forms.

Proposition 6.8. For a closed subspace Z of X∗, the following statements are
equivalent:
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(1) Z has the polar property as a subspace of X∗;1220

(2) for every matricial operator T : ℓl∞(X∗) −→ ℓk∞(X∗), the set

ℓl∞(Z) ∩ T−1(Bℓk∞(X∗))

is σ
(
ℓl∞(X∗), ℓl1(X)

)
-dense in T−1(Bℓk∞(X∗)).

(3) for every matricial operator T : ℓk∞(X) −→ ℓl∞(X),

T (Bℓk1 (X)) =
(
ℓl∞(Z) ∩ T ∗−1(Bℓk∞(Z))

)
◦
.

The proof follows closely that of Proposition 6.4, taking into account that for
every convex symmetric subset A of X∗, its σ(X∗, X)-closure equals (A◦)

◦,
where given a subset B of X, B◦ := {x∗ ∈ X∗ : |⟨x∗, x⟩| ≤ 1 for all x ∈ B},
the polar set of B in X∗.1225

As it can be observed from the proof of Theorem 6.6, the role of the element
z occurring at the definition of the strict polar property is to get condition (C).
Thus, letting z = 0 in Theorem 6.6, we obtain the following characterization of
finite dual representability.

Theorem 6.9. For a closed subspace Z of X∗, the following statements are1230

equivalent:

(1) X∗ is f.d.r. in Z,

(2) Z has the polar property as a subspace of X∗,

(3) for every finite dimensional subspace E of X∗, every reflexive subspace F
of X and every ε > 0, there exists an operator L : E −→ Z such that1235

(3a) L is an ε-isometry,
(3b) ⟨Lx∗, x⟩ = ⟨x∗, x⟩ for all x∗ ∈ E and all x ∈ F .

Theorems 6.6 and 6.9 must be understood in certain categorical sense: rough-
ly speaking, they are telling us that if every finite cartesian product ℓn∞(Z) is,
with respect to ℓn∞(X∗), a sort of object of the same kind as Z is with respect to1240

X∗, then Z is a local dual of X. This description is rather vague, but it becomes
precise in the proofs of the principles of local reflexivity given in the following
corollary. For example, the principle of local reflexivity is derived from the fact
that ℓk∞(X∗∗) is the bidual of ℓk∞(X).

Corollary 6.10 (Principles of Local Reflexivity). Given a Banach space1245

X and an ultrafilter U, the two following statements hold:

(i) The canonical copy of X in X∗∗ is a local dual of X∗.

(ii) The canonical copy of (X∗)U in (XU)
∗ is a local dual of XU.

Proof. Let Z := ℓk∞(X), Y := ℓl∞(X) and let T : Z −→ Y be any matricial
operator.1250

(i) Since ℓk∞(X∗∗) and ℓl∞(X∗∗) are respectively identifiable with the biduals
Z∗∗ and Y ∗∗, an application of Lemma 2.7 to T shows that X has the strict
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polar property as a subspace of X∗∗, and by Theorem 6.6, X is a local dual of
X∗.

(ii) Analogously, note that ℓk∞ ((XU)
∗) and ℓk∞ ((X∗)U) are respectively iden-1255

tified with (ZU)
∗ and (Z∗)U, and the pair of spaces ℓl∞ ((XU)

∗), ℓl∞ ((X∗)U) are
respectively identified with (YU)

∗ and (Y ∗)U. Thus, as any matricial operator
from Y ∗ into Z∗ is the conjugate of a a matricial operator T : Z −→ Y , an
application of Lemma 2.8 proves that (X∗)U has the strict polar property as a
subspace of (XU)

∗ and therefore, Theorem 6.6 shows that (X∗)U is a local dual1260

of XU. �
Note that the proof of Corollary 6.10 only needs to apply Lemma 2.7 to

matricial operators. The full extent of Lemma 2.7 has been applied to the
investigation of duality properties of operator semigroups [65], [55], [56] and [38].

1265

Theorem 6.12 below is an extension of the P.L.R. for ultrapowers, which can
be recovered by taking X = Y and T = 0. As in the proof of the P.R.L. (for
ultrapowers), a separation lemma is needed.

Lemma 6.11. Let U be an ultrafilter on a set I and let U : X −→ Y and
L : Y −→ Y be operators. Suppose that LU mapsR(UU) intoR(UU), and consider
the operator

Λ : x+R(UU) ∈ YU/R(UU) −→ LU(x) +R(UU) ∈ YU/R(UU)

induced by LU. Then, for every g ∈ N(U∗
U),

BN(U∗
U) ∩ Λ∗−1(g +BN(U∗

U))
w∗

= BN(UU
∗) ∩ Λ∗−1(g +BN(UU

∗)),

where w∗ represents the σ
(
N(UU

∗) , YU/R(UU)
)
topology.

The proof is rather involved, so we refer the reader to [37].1270

Theorem 6.12. [37] Let T : X −→ Y be any operator and let U be an ultrafilter.
Then the kernel N(T ∗

U) is a local dual of YU/R(TU).

Proof. By Theorem 6.6, we just need to show that N(T ∗
U) has the strict polar

property as a subspace of N(TU
∗) = (YU/R(TU))

∗. Let M be a matrix of order
k × l and consider the induced matricial operator

∆ :=MN(TU
∗) : ℓ

k
∞
(
N(TU

∗)
)
−→ ℓl∞

(
N(TU

∗)
)
.

By Proposition 6.4, we only need to show the next identity holds for every
g ∈ N(T ∗

U):

Bℓk∞(N(TU
∗)) ∩∆−1(g +Bℓl∞(N(TU

∗))) =

=Bℓk∞(N(T∗
U)) ∩∆−1(g +Bℓl∞(N(T∗

U)))
w∗ (33)
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where w∗ denotes the σ
(
ℓk∞

(
N(TU

∗)
)
, ℓk1

(
YU/R(TU)

))
topology.

The proof is divided into three cases: k = l, k < l and k > l.
Case k = l. Let us denote U := T k ∈ B

(
ℓk1(X), ℓk1(Y )

)
. Since the operator

ϕ : ℓk1(YU) −→ ℓk1(Y )U that sends ([yji ]i)
k
j=1 to [(yji )

k
j=1]i is a bijective isometry

that maps R(UU) onto R(TU)
k, the induced operator

Φ:
ℓk1(Y )U

R(UU)
−→ ℓk1(YU)

R(TU)
k

is also a bijective isometry, and so is Φ∗ : ℓk∞
(
N(TU

∗)
)
−→ N(UU

∗). Therefore1275

we can identify N(UU
∗) with ℓk∞

(
N(TU

∗)
)
, and N(U∗

U) with ℓ
k
∞
(
N(T ∗

U)
)
.

Consider now the matricial operator L : ℓk1(Y ) −→ ℓk1(Y ) associated to the
matrix M∗, and the operator

Λ:
ℓk1(Y )U

R(UU)
−→ ℓk1(Y )U

R(UU)

defined by Λ(x+R(UU)) := LU(x)+R(UU). Thus Λ
∗ : N(UU

∗) −→ N(UU
∗), can

be identified with ∆ (in fact, Λ∗ = Φ∗−1 ◦∆ ◦ Φ∗), showing that formula (33)
is equivalent to

BN(U∗
U) ∩ Λ∗−1(g +BN(U∗

U))
w∗

= BN(UU
∗) ∩ Λ∗−1(g +BN(UU

∗)), (34)

where w∗ denotes the σ
(
N(UU

∗) , ℓk1(Y )U/R(UU)
)
topology. But the operator

U satisfies all the conditions of Lemma 6.11, so formula (34) holds, which proves
the case k = l. The cases k < l and k > l are easily derived from the case k = l.

�1280

Given a local dual space Z of X and a separable, infinite dimensional sub-
space E of X∗, in general there is not an ε-isometry L : E −→ Z (0 < ε < 1),
but there is an exception:

Corollary 6.13. Let T : X −→ Y be an operator and let U be an ultrafilter.
Then for every separable subspace E of N(TU

∗) and every separable subspace F1285

of YU/R(TU), there exists an isometry L : E −→ N(T ∗
U) such that ⟨L(f)−f ,x⟩ =

0 for all f ∈ E and all x ∈ F , and L(f) = f for all f ∈ E ∩N(T ∗
U).

Sketch of the proof. It is a direct consequence of the local duality between
N(T ∗

U) and YU/R(TU) shown in Theorem 6.12, combined with standard ul-
traproduct techniques: as E and F are separable, there are two increasing se-1290

quences (En)
∞
n=1 and (Fn)

∞
n=1 of subspaces such that ∪∞

n=1En = E, ∪∞
n=1Fn = F

and dimEn = dimFn = n. Since N(T ∗
U) is a local dual of YU/R(TU), for every

n there exists a 1/n-isometry Ln : En −→ N(T ∗
U) satisfying

⟨Ln(f)− f ,x⟩ = 0 for all f ∈ En and all x ∈ Fn

Ln(f) = f for all f ∈ En ∩N(T ∗
U).
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We choose {[yni ]i}∞n=1 in YU so that {[yki ]i +R(TU)}nk=1 is a normalized basis
of Fn for every n. In a similar manner, we choose a system {ek}∞k=1 in E such1295

that for every n, {ek}∞k=1 is a normalized basis of En. For every 1 ≤ k ≤ n, we
fix a representative {eki }i∈I of Ln(ek). Let L

n
i : En −→ Y ∗ be the operator that

maps each ek to eki .

Notice that [fi] belongs to N(T ∗
U) if and only if ∥T ∗(fi)∥

U−→ 0, that is, if

and only if
sup ⟨fi, T (BX)⟩ −−−−−→

i→U
0;

thus, for every n, typical ultraproduct arguments prove the existence of Hn ∈ U
such that for every i ∈ Hn,1300

(i) Ln
i is a 1/n-isometry,

(ii) sup⟨e, T (BX)⟩ < 1/n, for all e in the unit sphere of Ln
i (En),

(iii) |⟨Ln
i (fk), y

l
i⟩ − ⟨Ln(fk), [y

l
i]⟩| < 1/n, for all 1 ≤ k ≤ n, all 1 ≤ l ≤ n,

(iv) ∥Ln
i (f)− fi∥ ≤ 1/n, for all f = [fi] in the unit sphere of En ∩ (Y ∗)U.

Since U is ℵ0-incomplete, we may take a decreasing sequence (Kn)
∞
n=1 of ele-1305

ments of U with Jn ⊂ Hn and ∩∞
n=1Jn = ∅, which yields a countable partition

{In}∞n=0 of I disjoint with U given by I0 := I \J1 and In := Jn \Jn+1 for n ≥ 1.
Then we define the desired operator L on each f ∈ ∪∞

n=1En as follows: if m is
the smallest integer for which x ∈ Em, then L(f) = [fi] with fi := Ln

i (f) for
every n ≥ m and every i ∈ In, and fi := 0 for the remaining indices. Next,1310

L is extended to the whole subspace E by continuity. Standard computations
show that condition (i) yields that L is an isometry, condition (ii) shows that
the range of L is contained in N((T ∗)U), and conditions (iii) and (iv) show
respectively that conditions (B) and (C) hold with respect to F . �

Corollary 6.13 was proved in [5] for the case when T is null on X.1315

Applications of the polar properties.

As it may be expected from Theorem 6.12, the scope of the strict polar
property goes beyond the mere unification of both principles of local reflexivity
given in Corollary 6.10. Given an operator T : X −→ Y and an ultrafilter U, the
fact that N

(
(T ∗)U

)
is a norming subspace of N

(
(TU)

∗) solved some questions1320

on the duality between the semigroups of supertauberian and co-supertauberian
operators ([30] and [53]). In order to extend these results to other ultrapower-
stable semigroups, it was necessary to show that the kernel N

(
(T ∗)U

)
is finitely

representable inN
(
(TU)

∗). Recall that a class S of operators is ultrapower-stable
if TU ∈ S for all T ∈ S and all ultrafilters U.1325

Since N
(
(TU)

∗) is not a bidual, and since N
(
(T ∗)U

)
coincides with the ul-

trapower N
(
(T ∗)

)
U
if and only if T has closed range (Proposition 15 in [31]),

neither the P.L.R. nor the P.L.R. for ultrapowers seem applicable on the ques-
tion of the finite representability of the kernels of (TU)

∗ and (T ∗)U. Finally, that
question was positively solved in [32] by means of the polar property, which was1330

introduced as a way of identifying when a subspace Z of a dual space X∗ is
norming and, at the same time, X∗ is finitely representable in Z. Later, it was
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proved that N
(
(T ∗)U

)
has also the strict polar property [37], that is, N

(
(T ∗)U

)
is a local dual of YU/R(TU).

The ultrapower-stable semigroups we are talking about are Wup
+, Uup

+,1335

Rup
+, Wup

−, Uup
− and Rup

−, which admit the following working definitions
(see [30], [32] and [33]):

(1) T ∈ Wup
+ if and only if N(TU) is superreflexive,

(2) T ∈ Uup
+ if and only if c0 is not finitely representable in N(TU),

(3) T ∈ Rup
+ if and only if ℓ1 is not finitely representable in N(TU),1340

(4) T ∈ Wup
− if and only if T ∗ ∈ Wup

+,

(5) T ∈ Uup
− if and only if T ∗ ∈ Uup

+,

(6) T ∈ Rup
− if and only if T ∗ ∈ Rup

+.

The most remarkable result about the duality of the above mentioned semi-
groups are the following: T ∈ Wup

+ (resp. Uup
+, Rup

+) if and only if1345

T ∗∗ ∈ Wup
+ (resp. Uup

+, Rup
+). Moreover, the ultrapower-stability of the

semigroupsWup
−, Uup

− andRup
− is easily obtained via the finite representabil-

ity of N
(
(TU)

∗) in N
(
(T ∗)U

)
.

Further investigation on the problem of the duality of semigroups was carried
out by means of operator finite representability (see [55] and [56]). In connec-1350

tion with finite representability of operators, see also [8] and [21]. For more
information about semigroups of operators and their relation to operator ideals,
see [1] and [38].
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