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ABSTRACT 

We evaluate the detection and discriminative strength of three different satellite spectral settings, namely, HyspIRI, the forthcoming 
Landsat 9 and Sentinel 2-MSI, in mapping tomato (Solanum lycopersicum) plants grown under hydroponic system using human-
excreta derived materials (HEDM), namely, anaerobic baffled reactor (ABR) effluent and nitrified urine concentrate (NUC) and 
commercial hydroponic fertilizer mix (CHFM) as nutrient sources. Partial least squares – discriminant analysis (PLS-DA) and 
discriminant analysis (DA) were applied to discriminate tomatoes grown under these different nutrient sources. Results of this 
study showed that spectral settings of HyspIRI sensor can better discriminate tomatoes grown under different fertilizer regimes 
when compared to Landsat 9 OLI and Sentinel-2 MSI spectral configurations. For instance, based on DA algorithm, HyspIRI 
exhibited high overall accuracy of 0.99 and a kappa statistic of 0.99 whereas Landsat OLI and Sentinel-2 MSI exhibited over 
accuracies of 0.94 and 0.95 as well as kappa statistics of 0.79 and 0.85, respectively. Further, the performance of DA was 
significantly different (α = 0.05) from that of PLS-DA based on the MaNemar tests. Overall, the performance of HyspIRI, Landsat 
9 OLI-2 and Sentinel-2 MSI data seem to bring new opportunities for crop monitoring at farm scale. 

1. INTRODUCTION

Food shortage is a large and growing challenge in sub-
Saharan Africa (Mabhaudhi et al. 2016, Van Ittersum et al. 
2016). It is estimated that at least one out of four people are 
hungry and undernourished in Sub-Saharan Africa. The 
world Bank estimates that in the 2030, nearly 9 in 10 
extremely poor people will be living in Sub-Saharan Africa 
(The-World-Bank 2019). This is exacerbated droughts and 
soil nutrients deficiencies resulting from limited fertilizer 
applications  (Mabhaudhi et al. 2016, Van Ittersum et al. 
2016). This is in turn associated with high fertilizer and food 
prices, amongst other factors. According to FAO (2019) the 
Annual food inflation in increased from 5% in 2014 to 6% 
in 2018 whereas in Europe it remained stable and declined 
in Latin America, Asia, and Oceania. Subsequently, the 
improvement of crop production which leads to food 
security has been amongst the principal priorities required to 
fulfill the goals of sustainable human development as well 
as the African Union’s Agenda 2063 (Conceição et al. 2016). 
Furthermore, food demand is anticipated to triple in sub-

Saharan Africa after the projected 2.5-fold increase in 
population increase (Van Ittersum et al. 2016). Specifically, 
a 60% increase in agricultural and horticultural production 
will be required by the increasing population in the light of 
diminishing water and soil nutrient resources (Nordey et al. 
2017). The major concern is that current dietary transition, 
which is in favour of vegetables such as tomatoes amongst 
other crops, is projected to increase, especially in urban 
areas, while water and soil nutrients are on a decline. 

Vegetables such as tomatoes play a critical dietary role of 
providing fotale, vitamin A, C and E as well as antioxidants 
(lycopene, beta-carotene, gamma-carotene), trace elements 
of flavonoids, phytosterols and water-soluble vitamins 
important for human health (Beecher 1998). To circumvent 
the challenge of decreasing soil nutrients and increase the 
production of vegetables (tomatoes), within a small land 
area, efforts have been exerted towards improving soil 
fertility and reducing expenses associated with commercial 
hydroponic fertilizer mix (CHFM) through the use of 
anaerobic Buffled Reactor (ABR) effluents and Nitrified 
Urine Concentrate (NUC) both as a source of soil nutrients 
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and water (Smith and Smith 2017, Busari et al. 2019). Smith 
and Smith (2017), for instance, noted that nitrogen recovered 
from wastewater supported a high increase in tomato 
(Solanum lycopersicum) plant canopy volume, flower and 
fruit production when compared to plants treated with 
commercial hydroponic fertilizer mix (CHFM) which 
contained N, P, K, Ca, Mg, and Si. Al-Hamdan, Cruise et al. 
(2014) in Jordan noted that treatment of tomato crop using 
waste water facilitated an increased their fruit size by up to 
2 cm in diameter, and weight up to 78.7 g in relation to those 
administered with potable water in their field experiment. 
However, the challenge that has been lurking in the 
agricultural sector is the lack of comprehensive spatial 
explicit frameworks as well as objective criterion for crop 
growth and productivity monitoring. Currently, Spatially 
explicit information on vegetable crop growth, productivity 
or health status was previously measured in-situ or done 
through routine field surveys (Al-Lahham et al. 2003, 
Petropoulos et al. 2018). Despite the fact that these in-situ 
methods obtained plausible levels of accuracy in 
characterizing crops, they lacked spatial representativeness. 
Subsequently, there is need for spatial explicit techniques 
that can be operational used not only to characterize the crop 
areal extent, but also their physiognomies. This information 
can help deduce and understand crop growth and 
productivity patterns, which are critical in ensuring food 
security and coming up with well-informed intervention 
mechanisms, or management strategies were necessary. 

Meanwhile, earth observation technologies offer spatially 
explicit non-destructive synoptic views, innovative and 
economically feasible timely spatial scale means of 
generating farm scale crop monitoring. For example, 
literature shows that remotely sensed data is robust and very 
sensitive to subtle vegetation traits such as those induced by 
different water and nutrient regimes Rajah et al. (2015) 
showed that hyperspectral remotely sensed data could 
discriminate common dry beans that were rain-fed from 
those that were irrigated.   Lu et al. (2018) discriminated 
tomato crops that were infected with multi-diseases at 
different phonological stages using hyperspectral data. Their 
exhibited results a high overall classification accuracy of 
100% in discriminating multi-diseases healthy, 
asymptomatic and late stage leaves. Above all, the advent 
and advancement of earth observation facilities has unveiled 
opportunities for assessing previously unresolved crop 
growth and productivity related questions linked to plant 
physiognomies (Petropoulos et al. 2018). Despite 
Hyperspectral data trade-off between cost and accuracy, it 
remains the most accurate spatial data for monitoring crop 
growth and productivity. The sensor has numerous 
contiguous spectral channels that with the ability to detect 
and characterize subtle differences in plant traits when 
compared to other satellite data types. For example, 
multispectral sensors like Landsat, Satellite Pour 
l’Observation de la Terre (SPOT), MODerate Resolution 
Imaging Spectroradiometer (MODIS) are characterized with 
broad bands making it difficult to discern subtle plant traits 
as they tend to mask out critical plant information. 

Despite the fact that narrow band spectral data offer optimal 
datasets due to the previously highlighted limitations, a 

number of sensors have been or are being developed with 
improved sensing capabilities (Transon et al. 2018). For 
example, the earth observation community recently 
witnessed the launching of Sentinel 2 multispectral imager 
(MSI) and Landsat 8 OLI etc.  Sentinel 2 has been the first 
freely available sensor a set of spectral wavebands covering 
the red edge section of the electromagnetic spectrum (B5 
(705 nm), 6 (740 nm), and 7 (783 nm)) at a relatively fine 
spatial resolution of 20m. The sensor has a wide swath-width 
of 290km, coupled with a high spatial resolution 10 m as 
well as a five-day temporal resolution making it a better 
facility crop mapping and monitoring. Both sensors (i.e. 
Sentinel 2 MSI and Landsat 8 OLI) have been tested in 
various environmental application areas with plausible 
findings and conclusions (Dube and Mutanga 2015, 
Ahmadian et al. 2016, Korhonen et al. 2017, Shoko and 
Mutanga 2017). However, in some instances they have been 
reported to experience challenges, especially when applied 
at farm level monitoring. This has been attributed to the 
presence of broad wavebands which wavebands, which are 
perceived to be concealing most important information. As 
a result, now new sensors such as the proposed Landsat 9 
OLI-2 (with improved noise-to-signal ratio), EnMAP and 
HysPIRI are being developed. The National Aeronautics and 
Space Administration agency (NASA) is looking forward to 
launching the state-of-the art Hyperspectral Infrared Imager 
(HyspIRI) instruments covering the visible and near-infrared 
section (Vis/NIR) as well as the thermal infrared (TIR). 
Although these sensors are earmarked for improving on the 
limitations of the some of the aforementioned sensors, 
Landsat 8 OLI will not cover some useful portions of the 
electromagnetic spectrum (red edge) which is instrumental 
in crop mapping and monitoring. There is a need to evaluate 
their performance in discriminating subtle vegetation 
properties in relation to the available broad-band 
multispectral sensors. 

Forthcoming hyperspectral instruments have a potential to 
supply the much-needed spatially explicit accurate, 
consistent, information on vegetable crops.   Both of these 
instruments will be spectrometric, covering the spectral 
ranges of 420-2450 nm and 380-2510 nm at different 
sampling distances of 6.5 nm for EnMAP’s VNIR and 10nm 
for EnMAP’s SWIR section as well as HyspIRI’s VSWIR 
(Guanter et al. 2015, Lee et al. 2015). The swath width of 
HyspIRI will be 185 km at 30 and 60 m spatial resolutions 
whereas EnMAP have 30 km-wide coverage across-track at 
a ground-sampling unit of 30m. The temporal resolution of 
EnMAP will be 4 days at the equator whereas that of 
HyspIRI will be 5 days. The fine spectral, spatial and 
temporal resolutions of these sensors make them relatively 
more suitable for agricultural applications. The major 
advantage with such instruments is that they will avail 
quality data at relatively low costs for data scarce regions 
such as the sub-Saharan Africa where resources are limited. 
This study therefore, sought to compare the strength of 
HyspIRI’s spectral configuration in relation to Landsat 9 
OLI-2 and Sentinel 2 MSI spectral settings in characterizing 
tomato (Solanum lycopersicum) crops grown under 
commercial hydroponic fertilizer mix, anaerobic buffled 
reactor effluent and nitrified urine concentrate as nutrient 
sources.  
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2. METHODS AND MATERIALS

2.1. Experimental setup 

A pot experiment was conducted in a hydroponic system that 
was set up in a polyethylene tunnel located at Newlands-
Mashu Research Station under eThekwini Municipality, 
Durban, South Africa (29° 46' 25.648''E 30° 58' 28.329'' S). 
The hydroponic system was designed to run three nutrients 
streams namely, anaerobic baffle reactor (ABR) effluents, 
nitrified urine concentrate (NUC) and commercial 
hydroponic fertilizer mix (CHFM) as a control. Each 
hydroponic system consisted of 150 L tank and the nutrient 
solution for each system was enclosed in a 100 L container 
stacked on the ground at the foot of each system.  

Six weeks old, seedlings of ‘Monica’, a determinate tomato 
cultivar purchased from a local nursery (Sunshine seedlings, 
Pietermaritzburg, South Africa) were transplanted to 30 cm 
polyethylene pots filled with pine sawdust as a growing 
medium. The nutrient solution for each nutrient source was 
supplied to the plants using a pressure pump (DAB Model 
K30/70M, DAB Pumps, MarcoPolo, Mestrino, Italy) via a 
20 m irrigation line. A 20 cm drip irrigation emitters (2 L) 
were placed and irrigation was performed at six intervals of 
5 min/duration daily using a timer. The study was arranged 
using a complete randomised design with three replications 
of five plants each, giving fifteen experimental units per 
nutrient source.  

Tomato plants of the control treatment were irrigated with a 
commercial hydroponic fertilizer mix (Hygroponic® and 
Solu-cal®) at the rate of 800 g + 620 g/ 1000 L of water as 
recommended for hydroponic tomato production; NUC, 
commercial fertilizer application rate was used as a standard 
as recommended by Jonsson et al (2004), and ABR effluents 
with no specified application rate. For the CHFM and NUC 
treatment, the fertilizer was mixed using municipal tap water 
whereas for the ABR treatment, only effluent from the 
anaerobic baffle reactor component was used as nutrient and 
irrigation source. The experiment was allowed to run for 12 
weeks before the crop was harvested. Remote sensing 
spectral data was collected at vegetative stage (i.e. four 
weeks after transplanting) and two weeks after flowering. 

2.2. Remotely sensed data 

The Analytic Spectral Device (ASD) FieldSpec instrument 
was used to acquire the spectral reflectance of tomatoes 
plants receiving ABR effluents, NUC and CHFM. The 
spectral data was collected on The ASD measured the 
radiation at 1.4 intervals for the 350-1000 nm and 2 nm 
intervals for the 1000-2500 nm spectral regions. The 
reflectance measurements were conducted using bare fibre-
optic held at nadir position ~0.5m above the tomato canopies 
resulting in a field of view with a diameter of ~0.225m. This 
diameter was found to be adequate to capture the reflectance 
of the tomato canopies. The normalization of spectral 
measurements was conducted after every 5 to 10 spectral 
measurements, using a standard spectralon. This was done 

to circumvent the possible changes in weather conditions as 
well as irradiance from the sun (Abdel-Rahman et al. 2014). 
The spectral measurements were conducted under clear skies 
during the day between 10h00 and 14h00 since this is the 
time with maximum net radiation. A total of 90 spectral 
samples were measured on canopies of tomatoes treated with 
CHFM (n = 30), ABR (n = 30) and NUC (n = 30). In 
capturing each spectral sample, the instrument recorded 
radiance of tomato crops 10 times and then provided an 
average.  

2.3. Discriminating tomato plants grown under different 
fertilizer regimes 

Exploratory data analysis was conducted to determine if the 
data followed a normal distribution curve. Normality test 
was performed using the Kolmogorov Smirnov test. Further, 
we assessed spectral separability as well as administered a 
pre-filter (Adelabu et al. 2014) after hyperspectral data 
resampling it to HyspIRI, Sentinel-2 MSI and Landsat 8/9 
OLI spectral configurations. Resampling was based on the 
Analysis of Variance test (ANOVA). We then conducted 
post-hoc test to establish the channels that exhibited 
significant differences between the spectral data of the 
tomatoes crops receiving nutrients from ABR effluent, NUC 
and CHFM. 

The other objective of this study was to assess the accuracies 
of partial least squares discriminant analysis and 
Discriminant Analysis algorithms in characterizing tomato 
crops grown under the three fertilizer regimes. In that regard, 
we used the PLSDA and the DA to classify the spectral 
reflectance of tomato crops growing under UNC, UNF and 
ABR fertilizer treatments. Details about DA and PLS DA are 
provided in Zhang et al. (2012) and Boulesteix (2004). Prior 
to conducting PLS-DA and DA, the spectral samples were 
partitioned into training (70%) and testing (30 %) data. The 
30 percent of the samples were used in model accuracy 
assessment. Specifically, we further computed the overall, 
producer and user accuracies, as well as the kappa statistics 
for each set of spectral settings as classified by the two 
algorithms. To compare the performance of the two 
algorithms, a McNemar’s test was conducted as detailed by 
Manandhar et al. (2009) and de Leeuw et al. (2006).  

3. RESULTS

Normality test resulted showed significant differences 
between tomato plants treated with different fertilizer 
combinations based on the spectral settings of HyspIRI, 
Sentinel-2MSI and Landsat 8/9 OLI (Figure 2). For HyspIRI 
resampled data, significant differences were observed in the 
visible, NIR as well as the SWIR portions of the 
electromagnetic spectrum. Most glaring differences were 
observed in the NIR portion of the electromagnetic spectrum 
as illustrated on Figure 2 (a).  
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Figure 2: Mean spectral variability of tomatoes under ABR 
effluent, NUC and CHFM treatments. 

2.4. Discriminating Tomatoes under ABR effluent, NUC 
and CHFM 

All sensors better characterized tomato crops administered 
with ABR when compared to those administered with 
CHFM and NUC. Specifically, high producer and user 
accuracies ranging between 91 to 100 % were observed in 
characterizing tomatoes treated with ABR (Table 2). 
Meanwhile tomatoes administered with ABR and CHFM 
were characterized with slightly lower accuracies (Table 2). 
Moreover, HyspIRI, produced high accuracies characterized 
by kappa statistics of 0.99, whereas the spectral settings of 
Sentinel-2 MSI and Landsat 9 OLI-2’s spectral settings 
exhibited kappa statistics of 0.85 and 0.79, respectively. 
HyspIRI spectral settings exhibited high producer accuracies 
of 100, 92 and 100% for ABR, CHFM and NUC 
respectively. Meanwhile resulted in Sentinel-2 MSI 
exhibited slightly lower producer accuracies (ABR = 91 %, 
CHFM = 86 and NUC = 100%). Landsat OLI-2 exhibited 
producer that were comparable to those of Sentinel 2 MSI 
which were 91 for ABR, 83 for CHFM and 100 for NUC. 
The same trend could be observed on the user accuracies 
(Table 2) 

2.5. Performance of DA and PLS-DA algorithms in 
discriminating Tomatoes under ABR effluent, NUC and 
CHFM 

When comparing the performance of algorithms, DA 
exhibited very high accuracies. For instance, DA’s the 
producer accuracies derived using DA across all fertilizer 
treatments and sensor simulations ranged from a minimum 
of 89% whereas PLS-DA had slightly lower minimum of 
83% (Table 2). The user accuracies derived using DA ranged 
from a minimum of 76% whereas those derived using PLS-
DA ranged from 65% to 100.  The overall accuracies derived 
using DA were higher (i.e. 0.94-0.99) when compared to 
those derived using PLS-DA (i.e. 0.3-0.97). Uniformly, the 
kappa statistics derived using DA were higher ranging 
between 0.79 and 0.99 whereas those derived using PLS-DA 
were lower ranging between 0.63 to 0.90 (Table 2). 

Table 2: Classification accuracies derived using HyspIRI, Sentinel 2 MSI and Lands 9 OLI-2 spectral settings 
Sensor PLS-DA DA PLS-DA DA 

PA UA PA UA OA Kappa OA Kappa 
ABR 100 95 100 100 0.97 0.90 0.99 0.99 

HyspIRI CHFM 92 100 100 100 
NUC 100 94 100 100 

Sentinel 2 MSI ABR 91 100 100 100 0.90 0.69 0.95 0.85 
CHFM 86 100 89 100 
NUC 100 65 100 82 

Landsat 9 OLI-2 ABR 91 95 95 100 0.89 0.63 0.94 0.79 
CHFM 83 100 89 100 
NUC 100 65 100 76 
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4. DISCUSSION

We sought to compare the strength of HyspIRI’s spectral 
configuration in relation to Landsat 9 OLI-2 and Sentinel 2 
MSI spectral settings in characterizing tomato (Solanum 
lycopersicum) crops grown under CHFM, ABR and NUC 
treatment regimes. Results of this study showed that 
tomatoes that were fertilized using ABR could be optimally 
discriminated (i.e. Kappa statics ranging 0.79 to 0.99) from 
those that were administered with CHFM and NUC. This 
could be attributed to the fact that ABR effluents have 
nutrient properties favorable for tomato plants, which 
facilitate excessive vegetative growth, high biomass 
accumulation, delayed or uneven maturity (Maurer et al. 
1995, Zavadil 2009, Pedrero et al. 2010). Tomato crops with 
excessive vegetative growth, high biomass accumulation, 
delayed or uneven maturity tend to be easily detected and 
discriminated by satellite sensors compared to those which 
are not. These tend to make tomatoes growing under the 
ABR treatments to have a different spectral signature from 
those that are fertilized using CHFM and NUC. Literature 
illustrates that ABR tends to facilitate high biomass 
accumulation (i.e. increased leaf area index) hence the high 
classification accuracies exhibited by all remotely sensed 
data in this study (Maurer et al. 1995, Al-Lahham et al. 2003, 
Zavadil 2009). For example, Al-Lahham et al. (2003) 
illustrated that tomato crops that were administered with 
high quantities of waste water had big fruit sizes hence high 
biomass accumulation in relation to those that were 
administered with portable water. In a related study, Zavadil 
(2009) noted that primary treated waste water contained an 
average of 14-fold nitrogen amounts (70.6 mg/l, which was 
89% ammonia form), which also was 3-fold of the total 
phosphorus which resulted in high yields and therefore 
biomass accumulation of lettuce salad, radishes, and carrots 
vegetables in their study of assessing the influence of sewage 
water on vegetables. Subsequently, the increases in biomass 
accumulation associated with wastewater treated vegetables 
could explain the discrimination of ABR treated tomato 
crops from those administered with CHFM and NUC. 

When assessing the performance of sensors, HyspIRI 
outperformed the two multispectral sensors namely, 
Sentinel-2 MSI and Landsat OLI spectral settings in 
discriminating tomato crops grown under different fertilizer 
regimes. This could be explained that HyspIRI is a 
hyperspectral sensor characterized by narrow spectral 
wavebands that are more sensitive to the spectral reflectance 
of tomato crops grown under different fertilizer regimes than 
broad band sensor settings such as those of Landsat which 
could be masking out those minute tomato crops spectral 
variations. There is consistently growing body of literature 
that supports the claim that hyperspectral sensors are more 
sensitive to minute vegetation spectral variabilities 
compared to broad band sensors due to the narrowed 
bandwidths confugeration (Thenkabail et al. 2002, 
Thenkabail et al. 2004, Adam et al. 2010, Mansour et al. 
2012, Thenkabail and Lyon 2016, Thenkabail 2017). 
Specifically, Thenkabail et al. (2002) illustrated that narrow 
bands characterized different crop traits such as yield as well 
as spectral variations when compared to broadband spectral 

data. For example, Thenkabail et al. (2002) were able to 
better characterize wheat from barley using hyperspectral. 
They attributed this to the variation in spectral settings 
(bandwidths) of the sensors they used. These spectral 
variations affected the detail that will determines the 
accuracy of the models for plant trait characterization. 
Meanwhile, Clark (2017) noted that there was no significant 
variation in the performance of HyspIRI and Sentinel-2 MSI 
as well as Landsat OLI in landcover classification of the San 
Francisco Bay Area in northern California, USA. However, 
their results confirmed that HyspIRI exhibited higher 
classification accuracies in their study. 

Results of this study illustrated that Sentinel 2 MSI and 
Landsat 9 performed satisfactorily in discriminating 
tomatoes grown under different fertilizer regimes, although 
Sentinel 2 MSI outperformed Landsat OLI. This could be 
explained by the fact that Sentinel-2 MSI spectral settings 
cover the red edge portion of the electromagnetic spectrum 
which is critical in mapping and detecting various vegetation 
traits. Also there is a large and on-growing body of literature 
that has illustrated that Sentinel-2 MSI performs better than 
Landsat OLI in vegetation mapping (Clark 2017, Colkesen 
and Kavzoglu 2017, Shoko and Mutanga 2017). The study 
by Colkesen and Kavzoglu (2017) illustrated that Sentinel-2 
MSI outperformed Landsat OLI in discriminating alfalfa, 
sugar beet and bean in the agricultural lands of the Ferizli 
district, Turkey. Shoko and Mutanga (2017) also illustrated 
the robustness of Sentinel-2 MSI remotely sensed data in 
better discriminating C3 Festuca costata from the C4 
Themeda triandra grasses in a mountainous area in South 
Africa. They also attributed the optimal performance of 
Sentinel-2 MSI to the presence of red edge bands in 
discriminating Festuca from Themeda grasses. 

Although this was not the major objective of the study, DA 
outperformed PLS-DA in discriminating tomato crops 
grown under different fertilizer regimes. In this study PLS-
DA failed to derive unnecessary variables for characterizing 
tomato crops grown under different fertilizer regimes. On 
the other hand, there are numerous studies that have 
illustrated the optimal performance of DA in dimension 
reduction as well as feature extraction (Filella et al. 1995, 
Karimi et al. 2005, Pu and Liu 2011). 

5. CONCLUSION

The prime objective of this study was to compare the 
strength of the forthcoming hyperspectral sensor HyspIRI’s 
spectral settings in the context of characterizing the effects 
of different fertilizer treatment regimes on tomatoes crops. 
Furthermore, the study assessed the performance of PLS-DA 
in relation to DA in discriminating tomatoes treated with 
ABR, NUC and CHFM. Grounded on the results exhibited 
by this study we conclude that: 

 The forthcoming HyspIRI, sensor has the potential 
to accurately map tomato crops under various 
fertilizer regimes.  
Landsat and Sentinel comparable performed to 
HyspIRI spectral settings. 
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 DA offers optimal accuracies in characterizing 
tomatoes grown under different fertilizer regimes 
when compared to PLS-DA. 

These findings are a substantial foundation upon which 
comprehensive precision agricultural assessments initiatives 
could be formed. These initiatives are required in order to 
attain sustainable agriculture as well as food security in 
regions such as sub Saharan Africa where agricultural crop 
monitoring is currently hindered by the limited access to 
robust spatial data sets.  
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