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carbon synthesized by in-situ hy-
drothermal method.

e Naturally occurring Spirulina pla-
tensis microalgae used as the car-
bon source.

e N, P - doped carbon and O-vacancy
of Ce3* in Ce0,/BC700 promote the
ORR kinetics.

e Ce0,/BC700 has good ORR activity
and remarkable stability after 5000
cycles.
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ABSTRACT

Highly durable and active CeO, on biochar carbon (CeO,/BC) derived from Spirulina platensis
microalgae and synthesized by simple one-pot hydrothermal treatment and further acti-
vated through pyrolysis approach. A spindle-shaped morphology of CeO, with predomi-
nant (111) facet was evidently observed from X-ray diffraction patterns and electron
microscopy images. The structural features such as high specific surface area, defect-rich
carbon with N & P atoms, increased oxygen vacancy and w-electron transfer play an
important role for the improved oxygen reduction reaction (ORR). The considerable
amount of Ce*" and higher proportion of pyridinic N and graphitic N species are sub-
stantially contributed to the superior ORR performance of CeO,/BC700, which surpasses
other similar catalysts and competing with Pt/C. Hence, the significant kinetic ORR pa-
rameters and extended stability (no loss after 5000 potential cycles) of the CeO,/BC700
catalysts provides the promising insight to develop the rare-earth metal oxide nano-
structures as a possible candidate for ORR in alkaline medium.

© 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

A rational design and development of electrocatalysts to-
wards oxygen reduction reaction (ORR) could be a vital elec-
trode process of sustainable energy conversion and storage
technologies [1-3]. Although, the low temperature fuel cells
(LTFCs) turned as an emerging clean energy conversion de-
vice, the slow kinetics and complex reaction mechanism of
ORR restricting the overall performance [4—6]. The Pt and Pt-
based catalysts are widely recognized and employed as the
prime choice of electrocatalyst for ORR [7,8]. The high cost,
less abundance and poor stability of Pt based electrocatalysts
are critically impacting the commercial viability. Hence, sig-
nificant attentions were paid to find the suitable electro-
catalysts with improved ORR activity and stability for LTFCs
[9—11]. However, it remains a critical task for researchers to
explore the active catalysts with cost-effective measures for
large-scale applications.

Moreover, the non-noble metal catalysts such as metal
oxides, perovskites, spinel oxides, metal oxy-hydroxides and
metal organic frameworks with various carbon supports have
been extensively studied for ORR in alkaline medium
[10,12,13]. Notably, the rare-earth metal oxide of ceria (cerium
oxide, CeO,) was found as a potential choice of electrocatalyst
featuring excellent chemical stability, oxygen storage ability,
facile electron transfer (Ce*/Ce®" redox couple) and relatively
low-cost [14,15]. It has been widely employed as the effective
catalyst and co-catalyst/promoter with another noble and
non-noble metals in electrocatalysis for various energy con-
version and storage applications [16—18]. Interestingly, the
Ce*"/Ce®*" redox couple feature as an efficient oxygen buffer
during the electrochemical oxidation/reduction reactions,
where it can able to release and adsorb/store the oxygen
depending on the nature of the reaction. This classical prop-
erty of ceria could be a crucial part of the enriched oxygen
vacancy which induces the improved mechanical and elec-
trochemical stability [19,20].

Recent literatures demonstrate that, the unique redox
property of ceria makes it an active co-catalyst with Pt, such as
Pt—Ce0,@CN [21], Pt—Ce0,@C [22], Pt-CeO,/C [23], Pt—CeO,/
rGO [21] and unsupported Pt—CeO, [24] for ORR in both acid
and alkaline electrolytes. Some of the literatures have re-
ported the non-platinum catalysts with CeO,, such as Ag
decorated CeO, [25], PdCo-Ceria [26], Ceria@Co—N—PCN [27],
Ce0,/Co304,@NC [28], Co—Ce0,—N—C [29], C030,—CeO,/KB
[30], CeO,/CePO4@N, P co-doped carbon [31], CeO,/Co@N-
doped carbon [32], Ce/Fe—NCNW ([33] and Mn—CeO,/rGO [34]
showing decent ORR activity owing to the synergistic effect
between CeO, and other metal catalysts. However, few in-
vestigations were reported on the CeO, as single active cata-
lyst for ORR in alkaline medium. Sun et al. studied the
electrocatalytic performance of CeO,/rGO nanocomposite
prepared through mild ultrasonic-reflux method for oxygen
reduction and oxygen evolution reactions. They conclude
that, the strong coupling effect between rGO and CeO,
contributed the improved oxygen bifunctional performance in
KOH medium [35]. The effect of synthesis approach and the
composition of CeO, with carbon have been investigated for
electrogeneration of hydrogen peroxide (H,0,), reported by
Assumpcao et al. They found that the 4% CeO, as the optimal
loading on a carbon with 88% of H,0, production and follows
nearly 2-electron reduction pathway [36].

Soren et al. [15] prepared the nano ceria supported NrGO
catalyst by a single step solvothermal method. They found the
kinetic current density (j) of 9.5 mA/cm? for CeO,/NrGO,
which implies the improved methanol tolerance and ORR
activity owing to the effective interaction of catalytic mate-
rials. In another work, they reported CeO, embedded on
graphitized-Carbon nitride (g-C3N,) prepared by microwave-
assisted solvothermal approach. The resulted CeO,/g-C3Ny
showed considerable ORR activity with the average number of
electrons transferred as 3.2, due to the key role of pyridinic
nitrogen from g-C3N, acting as a promoter of ORR [37]. Peng
et al. [38] reported the in-situ growth of CeO, on rGO through
the controlled heat treatment under inert atmosphere. The
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intrinsic ORR activity of CeO,-rGO750 was found to be superior
to standard Pt/C catalysts with a higher j, wvalue
(20.31 mA cm ). It is well known that the existence of het-
eroatoms (N, P, S and B) in carbon materials have a modified
electronic and chemical properties than pure carbon mate-
rials [14,39]. Hence, the heteroatoms can alter the electronic
distribution of the carbon frameworks which effectively
increasing the m-electron transfer to balance the electro-
neutrality of carbon atoms. In addition, the synergistic effect
between the carbon and heteroatoms can be more favorable
for oxygen adsorption and reduction (oxygen bond breaking),
which concurrently promote the electrocatalytic performance
of the materials for improved ORR [14,40].

These literatures clearly demonstrated that, the carbon
supported CeO, (CeO,/C) nanostructures could be employed
as an efficient ORR catalyst with induced interaction (strong
coupling) and synergistic effect between the catalyst compo-
nents. But, the stability factor of the catalysts has not been
well-studied and that should be addressed without compro-
mising the ORR catalytic activity. Based on the above litera-
tures, we are inspired to prepare the CeO,/C catalyst with
strong coupling effect, synergistic effect and extend durability
through specific choice of carbon source and a simple syn-
thesis method.

Herein, we report the in-situ preparation method for the
spindle-shaped CeO, nanostructures supported on biochar
derived carbon (BC). A ‘Spirulina platensis’ microalgae (SPM),
which can be found in both fresh water and marine [41], was
used as the carbon source. It is a potential bio-energy material
readily available as a natural source, which contains self-
doped N and P elements. The CeO,/BC was further activated
by pyrolysis treatment under N, atmosphere and used as the
electrocatalyst for ORR in KOH medium. The morphological
features and elemental composition of CeO,/BC were studied
thoroughly by the essential surface characterization tech-
niques. The defect-rich mesoporous structure of BC with a
higher proportion of graphitic N and pyridinic N were pro-
posed to be one of the favorable ORR active sites. The bio-
inspired carbon source (SPM) with oxygen defect-rich CeO,
nanostructure, which can provide more active key compo-
nents to promote the kinetics of ORR, could be the interesting
aspect of this present study. Hence, the electrocatalytic ac-
tivity and stability of CeO,/BC were comparatively superior to
other reported CeO,-based catalysts and competing with
standard 20% Pt/C.

Experimental methods
Preparation of biochar derived carbon (BC)

The carbon source of SPM was purchased from Guangxi
Nongken Green Fairy Health Food Co. Ltd., China. 5 g of pre-
heated SPM was dispersed in 100 mL ultrapure (UP) water
under ultra-sonication for 30 min to obtain homogenous dis-
tribution. The solution was poured into the Teflon-lined
stainless-steel autoclave reactor, at 160 °C heating for 12 h.
Then, the hydrothermal biochar (BC) treated by mixing of
0.1 M HCI solution under vigorous stirring for 3 h. The final
product was washed with copious amount of Millipore water

(18 MQ cm) by centrifugation (8000 rpm) until the pH of the
supernatant solution reaches the neutral. Finally, the brown-
black colored BC powder was obtained by drying at 90 °C in air-
oven for 6 h. This BC was further activated through pyrolysis
at 700 °C at the rate of 5 °C min~* for 2 h under N, atmosphere.

Preparation of BC supported spindle shaped cerium oxide
(CeO,/BC) nanostructures

The CeO,/BC catalyst was prepared by one-pot hydrothermal
method as follows (Fig. 1). Nine grams of cerium (III) nitrate
hexahydrate (Ce(NO3)3.6H,0, Sigma Aldrich), 7.2 g of urea
(CO(NHy,),, Sigma Aldrich) and 1.2 g of polyvinylpyrrolidone-
40000 (PVP40, Sigma Aldrich) mixed together in 150 mL of
Millipore water through ultra-sonication. In this transparent
mixture, 8 g of pre-heated SPM was dispersed and stirred for
1 h for homogeneous condition. Then, the above mixture was
carefully transferred into the hydrothermal reactor (250 mL,
autoclave reactor) and heated at 160 °C for 12 h in hot air-oven.
The gray-black slurry was obtained through high-speed
centrifugation (10,000 rpm) and washed thoroughly with
water/ethanol mixture to eliminate the impurities. The
moisture content of CeO,/BC was removed by heating at 90 °C
for 6 h and used for pyrolysis treatment. The CeO,/BC catalyst
was further activated by pyrolysis approach at different
temperatures (700, 800 and 900 °C) using tubular furnace for
2h atthe rate of 5°C min~* under N, gas flow and the catalysts
are named after the respective pyrolysis temperature. For
comparison, the standard carbon supported platinum nano-
particles (20% Pt/C) was prepared thru a simple chemical
reduction approach with formaldehyde at elevated tempera-
ture (120 °C for 6 h). The average Pt nanoparticle size was
found between 2 and 3 nm, reported in our previous article
[42].

Characterization techniques

The structural features of the catalytic materials were studied
using field-emission scanning electron microscopy (FESEM,
JSM-7800F) and high-resolution transmission electron micro-
scopy (TEM, JEM-2100, JEOL) techniques. The porosity and
specific surface area were found by Brunauer-Emmett-teller
(BET, Tristar II 3020) analysis. The nature of carbon and its
surface defects were analyzed by using Raman spectra (DXR,
ThermoFisher). The elemental oxidation state and composi-
tion were estimated by X-ray photoelectron spectroscopy
(XPS, ESCA LAB 250Xi) and the bulk composition was obtained
from the energy dispersive X-ray spectroscopy (EDX-mapping)
technique. The crystallographic properties were examined by
using powder X-ray diffractometer (XRD-6100) with the
A =154 Aat30kV.

The cyclic voltammetry (CV) and polarization (linear sweep
voltammetry, LSV) curves were recorded using the electro-
chemical workstation (CHI 760E) coupled three-electrode
system equipped with a working electrode of rotating ring-
disc electrode (RRDE, Pt (0.1866 cm?)-GC (0.2475 cm?). The
Ag/AgCl and a thin Pt wire or a graphite rod were employed as
the reference and counter electrode respectively. For the
preparation of catalyst ink, 5 mg of catalyst in 1 mL of Ethanol
and 20 pL Nafion (5 wt % alcohol solution) were mixed under
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Fig. 1 — Graphical representation for the synthesis of Ce0,/BC700 catalyst.

ultra-sonication for 10 min. Exactly, 10 pL of fresh catalyst ink
was drop-casted over the working electrode (GC surface) and
dried under ambient conditions. The final catalystloading was
about 80 ug cm 2 over the electrode.

To probe the ORR electrocatalytic activity of the cata-
lysts, the CV and LSV profiles were obtained in 0.1 M KOH
under high pure N, and O, atmosphere. The hydrodynamic
LSV executed between 400 and 2400 rpm at 0.01 V s~
Here, the potential was reported against
hydrogen electrode (RHE) and all the electrochemical
studies carried out at 25 °C. During RRDE-LSV studies, the
ring potential was fixed at 1.2 V vs. RHE. The stability test
was performed through the potential cycling (PC) between
0.6 and 1.1 V vs. RHE at 0.1 V s~* under static condition. At
regular intervals, LSV curve was recorded at 1600 rpm up to
a maximum of 5000 PCs.

reversible

Results and discussion

The crystalline phases of CeO,/BC catalysts were examined by
XRD patterns, as presented in Fig. 2a. All the three CeO,/BC
(700, 800 and 900) catalysts show distinct diffraction peaks
located at nearly 28.4°, 32.9°, 47.4°, 56.2°, 59.0°, 69.3°, 76.6°,
78.9° and 88.3° corresponds to (111), (200), (220), (311), (222),
(400), (331), (420) and (422) facets respectively [43]. These cubic
crystalline phases are clearly indicating the fluorite lattice
structure of CeO,, which is a good match with the reported
literatures and JCPDS data file no. 43—1002 [43—45]. The sharp
and well intense diffraction peaks with no other phases sug-
gest a good crystalline behavior and high purity of the CeO,
nanostructures.

The predominant (111) diffraction peak is considered as the
most stable crystalline facet of CeO, [46]. The d-spacing values
were calculated using Eq. (1), about to be 0.3138 nm, 0.3133 nm
and 0.3128 nm for CeO,/BC700, CeO,/BC800 and CeO,/BC900
respectively. Moreover, the surface defects and oxygen va-
cancies are highly relevant to the crystalline phase and
dominating the catalytic behavior. The lattice parameters (a)

determined by Eq. (2), could be a significant measure to probe
the oxygen vacancy [47,48].

ni
" 2sing ()

a= dhk1<m+k2+l2> (2)

Here, nis an integer (n = 1), Ais the wavelength (1.53 A), ©is
the diffraction angle, hkl are the miller indices. The order of ‘a
found as 5.4351 A (CeO,/BC700)> 5.4265 A (GeO,/BC800)>
5.4178 A (Ce0,/BC700). Thus, the higher lattice parameter
value for CeO,/BC700 indicates the lattice expansion due to
high concentration of Ce" surface defects [49]. Whereas, the
XRD pattern for BC was observed with the broad peak around
23-26° and 43.1° that assigned to (002) and (100) facets, indi-
cating the graphite structure of carbon support [50,51]. These
peaks were not noticeable in all the three CeO,/BC catalysts
due to the high intensity CeO, diffraction planes.

Fig. 2b shows the N,-adsorption/desorption isotherms for
BC and all other three CeO,/BC (700, 800 and 900) catalysts.
These profiles are observed as a typical type-IV characteristic
isotherms elucidating the mesoporous structure of the ma-
terials. The higher specific surface area obtained from BET
was about 135.88 m? g~ for Ce0,/BC700 compared to CeO,/
BC800 (115.44 m? g '), Ce0,/BCI00 (74.13 m? g ') and BC
(98.14 m? g !). The higher specific surface area and meso-
porous structure of CeO,/BC700 could contribute to the
improved ORR performance by having more active sites with
efficient mass transport of oxygen species [14]. The pore size
distribution was determined from the respective desorption
isotherms by BJH and given in Fig. S1. This size range clearly
indicates that the mesoporosity of the BC supported CeO,
catalysts, which has minimal impact over the pore size dis-
tribution. The mean pore diameter of BC was about 3.1 nm and
for CeO,/BC700, 800 and 900 catalysts were between 3.7 and
3.8 nm. Raman spectra was performed to determine the
graphitic (G) and defective (D) characteristics of carbon sup-
port as shown in Fig. 2c. In addition to that, the concentration
of oxygen vacancies in CeO,/BC was calculated and
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Ce0,/BC800 and Ce0,/BCI00 catalysts.
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(a) Powder XRD patterns, (b) Nitrogen adsorption/desorption isotherms and (c) Raman spectra for BG, GeO,/BC700,

considered as the catalytic activity descriptor as mentioned in
the previously reported literatures [52—54].

Both BC and CeO,/BC (700, 800 and 900) catalysts show
distinct peaks at ~1340 and 1582 cm ! assigned to ‘D’ and ‘G’
carbon bands. Whereas, the ratio of peak intensity (Ip/Ig) was
found as 0.84, 1.1, 1.0 and 0.84 for BC, CeO,/BC700, CeO,/BC800
and CeO,/BC900 respectively. The amount of defective sites
found higher for CeO,/BC700 clearly indicates that the carbon
support has disordered graphite structure [55]. This phe-
nomenon was well in agreement with the XRD results. A sharp
and intense peak was observed at around 455 cm ™! repre-
senting to the F,g level of CeO, fluorite phase in all the three
CeO,/BC catalysts. Whereas, the less intense peak observed at
~596 cm ™! for Ce0,/BC700 (highlighted with a green box in
Fig. 2c) is associated with vacant oxygen sites, which was well
correlated with XPS results for the higher surface oxygen va-
cancies [49] compared to other catalysts as the latter showed
no similar peaks.

The surface chemical state and elemental composition was
studied using XPS analysis and the survey spectra (Fig. S2a) of

Ce0,/BC700 catalyst depicts the series of peaks corresponding
to Ce 3d, N 1s, C 1s, P 2p and O 1s elements. The elemental
composition of CeO,/BC700 catalyst was about (atomic weight
%) 14.42% Ce, 2.04% N, 17.8% O, 0.23% P and 65.51% C. The
deconvoluted Ce 3d spectra was presented in Fig. 3a with two
peak series of 3ds/, and 3ds/, representing both Ge** and Ce®*
oxidation states. The spin-orbit splitting peaks were located at
the binding energies of 898.3 eV, 900.9 eV, 907.4 eV and
916.8 eV belongs to 3ds,, and the peaks at 882.4 eV and
888.7 eV for 3ds/, attributes to Ce*" oxidation state [35].
Whereas, the weak satellite peaks were observed at 885.2 eV
and 903.7 eV corresponding to Ce** oxidation state confirming
the redox behavior of CeO, that could facilitate the increase of
oxygen concentration on the catalyst surface [14,54]. Hence,
the Ce®*" content in CeO,/BC700 catalyst may contribute to
generate the oxygen vacancy and increase the adsorption/
storage capability on the catalyst surface. The intrinsic oxygen
vacancy is more favorable for improved oxygen mass trans-
port and determine the enhanced electrocatalytic perfor-
mance towards ORR [14,19,56].
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Fig. 3 — Deconvoluted XPS peaks of (a) Ce 3d, (b) N 1s, (c) C 1s and (d) O 1s for CeO,/BC700 catalyst.

The XPS spectra of N 1s (Fig. 3b) were deconvoluted into
four characteristic peaks of nitrogen assigned to pyridinic N
(398.1 eV), pyrrolic N (399.1 V), graphitic N (399.9 eV) and
oxidized N (400.9 eV), which are believed to play significant
roles on ORR activity [3,57]. Hence, the graphitic N (39%) and
pyridinic N (22.7%) has the major proportion than pyrrolic N
(16.7%) and oxidized N (21.6%) species, which may contribute
to the good ORR catalytic performance of CeO,/BC700 [14,58].
Fig. 3c shows the C 1s spectra fitted into two distinct peaks at
283.9 eV and 284.5 eV associated with the sp® and sp® hy-
bridized carbon (C—C) and (C=C) respectively. An un-
deconvoluted satellite peak (denoted by *) appeared at
~285.9 eV could be attributed to the C—N, implying the
possible delocalization of m-electrons between nitrogen and
carbon atoms [14,59]. The peak fittings for O 1s spectra (Fig. 3d)
show two distinct forms of oxygen species designated as the
doublet of lattice oxygen (Oy) at 529.2 eV for Ce*" and 529.6 eV
for Ce*" with the vacant oxygen (Oy) at 531.8 eV. This phe-
nomenon was in well agreement with Ce*"content in CeO,/
BC700, implying the increased oxygen vacancy at the catalyst
surface may account for the enhancement of ORR perfor-
mance [60,61]. Whereas, the P 2p spectra (Fig. S2b) shows an

undistinguished but a considerable peak observed at around
132.9 eV corresponding to P—C bonding [62], which could be
the substantial evidence of phosphorous interaction at the
carbon skeleton.

The spindle-like morphology of CeO, was clearly observed
from the FESEM images provided in Fig. S3 for all the three
CeO,/BC (700, 800 and 900 °C) catalysts. The length of the CeO,
spindle was about ~7—9 um and the diameter found between
700 nm and 1 pum. Moreover, the spindle shape of CeO,
changed into irregular morphology for the catalysts at higher
pyrolysis temperatures of 800 and 900 °C (Figs. S3a—c).
Fig. 4a—f shows the FESEM elemental mapping for each
element (inset of table in Fig. 4g) present in the catalytic ma-
terial and confirm the existence of self-doped N, P elements
with uniform distribution throughout the sample. Whereas,
the elemental composition of CeO,/BC700 catalyst was eval-
uated by using EDX analysis and it showed similar values for
all elements in atomic weight % as obtained from the XPS
analysis.

Fig. 5a and b shows the TEM images of BC with porous
morphology and no evidence for the crystalline nature of the
carbon was observed from selected-area electron diffraction


https://doi.org/10.1016/j.ijhydene.2020.10.115
https://doi.org/10.1016/j.ijhydene.2020.10.115

2134

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 46 (2021) 2128—2142

0.81K|

Lt .00 1.00 2.00 3.00 4.00

(b)

Fig. 4 — (a—f) FESEM elemental mapping and (g) EDX analysis of CeO,/BC700 catalyst.

(SAED) pattern (inset of Fig. 5b). This phenomenon was well
consistent with the Raman results of BC. For CeO,/BC700, the
TEM image represents the well-defined structure of spindle-
shaped CeO, with sharp edges and distinct boundaries with
carbon layers for as given in Fig. 5c. However, the shape of
CeO, was found deformed at the edges for CeO,/BC800 (Fig. 5e)
and CeO,/BC900 (Fig. 5g), which might be resulted from the
higher pyrolysis temperature. From the HRTEM images
(Fig. 5d, f and 5h), the interplanar distance (d-spacing) of
crystalline fringes about 0.313 nm corresponding to fluorite
structure of CeO, with the growth of (111) crystalline

orientation. The SAED pattern for CeO,/BC700 (inset of Fig. 5d)
presents ordered orientation with (111) facet as the predomi-
nant crystalline plane. The high temperature pyrolysis cata-
lysts (CeO,/BC800, inset of Fig. 5f and CeO,/BC900, inset of
Fig. 5h) show the disordered arrangement of crystalline
orientation, which further confirms the effect of pyrolysis
temperatures.

The ORR electrocatalytic performance of BC and CeO,/BC
(700, 800 and 900 °C) catalysts was studied in KOH medium at
25 °C. Fig. 6a depicts the CV profiles recorded in both N, and O,
purged at 0.1 V s~ for all the catalytic materials. Among the
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Fig. 5 — TEM & HRTEM images of (a & b) BC, (c & d) CeO,/BC700, (e & f) CeO,/BC800 and (g & h) CeO,/BC900 catalysts (Inset:

SAED patterns of the respective catalysts).

catalytic materials, CeO,/BC700 showed prominent redox
peaks between 0.0 and 0.5 V vs. RHE under N, atmosphere,
which might be due to the formation of surface oxygen
functionalities and no such distinct behavior was observed for
other catalysts, including BC. This could be due to the surface
functional defects may induce the surface oxygen defects

(vacancy) on the electrode materials, which is more favorable
for the improved ORR kinetics as reported in many literatures
[63]. At the O, saturated conditions, a well pronounced oxide
reduction peak was observed and that could be the sign of
catalytic ability of all the catalysts for ORR [47]. The onset
potential (E.n) from the respective CV showed an order of BC
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(0.71 V) < Ce0,/BCI00 (0.76 V) < Ce0,/BC800 (0.77 V) < CeO,/
BC700 (0.79 V), this could be the significant indication for the
improved ORR performance on CeO,/BC700 catalyst. In order
to calculate the electrochemical active surface area (ECSA) of
the catalysts, the specific capacitance was determined from
the respective CV profiles by adapting the following Eq. (3) [64].

specific capacitance
40 pF /cm? per cmics,

Agcsa = 3)
where, the specific capacitance for a flat surface of the elec-
trode found between 20 and 60 uF cm ™2, we have taken a
moderate value of 40 uF cm~2 for the ECSA calculation. Hence,
the ECSA values are found as 0.0274, 0.0210, 0.0089 and
0.0053 cm? for Ce0,/BC700, CeO,/BC800, CeO,/BC900 and BC
catalysts. This clearly indicates that the CeO,/BC700 possess
better active surface compared to other catalysts.

Fig. 6b compares, the ORR polarization curves (RRDE-LSV)
of BC, CeO,/BC (700, 800 and 900 °C) with Pt/C as reference
catalyst at O, saturated 0.1 M KOH at 0.01 V s~ under hy-
drodynamic conditions. The earlier onset potential (E.n,
0.79 V), half-wave potential (E;/,, 0.60 V) and higher disc cur-
rent density (j, 4.4 mA cm~2 at 0.1 V) of Ce0O,/BC700 catalyst
indicates greater ORR activity than other catalysts. Moreover,
the Pt/C shows ~160 mV more positive E,, value than that of
Ce0,/BC700, but their ORR limiting current densities were
similar (4.8 vs. 44 mA cm ?) with each other. Amongst, the
CeO,/BC700 showed lowest ring current density and the

number of electrons transferred (n) during ORR was about
3.1-3.7 at the potential range 0.1-0.6 V.

For BC, CeO,/BC800 and CeO,/BCI900 catalysts, the ‘n’
values were found between 1.5 and 3.0, which was expected to
follow 2-electron transfer pathway for ORR. This result clearly
suggests (inset of Fig. 6b) that the ORR on CeO,/BC700 follows
nearly the 4-electron transfer pathway as processed on Pt/C
(n = 3.9-4.0). In addition to this, the percentage of HO, was
evaluated based on the ring (I) and disc (Ip) current values at
0.1-0.6 V (Fig. S4) using the following Eq. (4) [37],

200 <Iﬁ)
%HO, =——~-
=0

where, N is the collection efficiency of the RRDE (N = 38%, as
mentioned by the manufacturer). The %HO, increases in the
order of CeO,/BC700 (11.7%) < CeO,/BC800 (43.1%) < CeOy/
BC900 (48.6%) < BC (70.8%) at 0.6 V, which has a good agree-
ment with the n values and compared to other carbon sup-
ported CeO, based catalysts from literature reports [34,37].
Furthermore, the kinetics of ORR were determined by using

(4)

the Koutecky-Levich (K-L) plot (} USs. ﬁ) for the respective

catalysts and presented in Fig. 7a—e. From the K-L slope, the
‘n’ values are estimated using the K-L Egs (5), (6) & (7) as
rearranged below [3,65,66].
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11 1
B=0.2nF(Do,)**» 1/5C,, (6)

B
n=
0.2F (Do, )**v-1/5Co,

)

Here, ‘j is the disc current density (mA cm?) at 0.1V, ji is
the kinetic current density (mA cm™?), B is the K-L slope value,
w is the electrode rotation rate (rpm), F is Faraday’s constant

(96,500C mol™Y), Co, is the concentration of oxygen
(1.2 x 1072 mol/L), Do, is the oxygen diffusion coefficient
(19 x 10° cm? s7% and » is the kinematic viscosity
(1 x102m?s™ 1) [37].

The K-L plots are found nearly parallel and linear at
0.1-0.6 V for both BC and CeO,/BC (700, 800 and 900 °C). The
calculated ‘n’ values are of ~3.3—3.7 for CeO,/BC700, compa-
rable to Pt/C (3.9—4.0) and better than CeO,/BC800 (2.0—3.1),
Ce0,/BC900 (2.0-3.0) and BC (1.5—2.1). This phenomenon
clearly suggests that the ORR on CeO,/BC700 follows near 4-
electron reduction pathway with first-order reaction kinetics
and the first electron transfer step considered as the rate
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determining step. This was well consistent with the n values
obtained from RRDE results. This could be due to the changes
in surface adsorption phenomenon over the slight structural
differences at higher pyrolysis temperature of the catalysts.
Particularly, the prime key indicators of E,p, E1/2, and j (at 0.4 V)
values of CeO,/BC700, 800 and 900 catalysts were compared
with the reported CeO, based catalysts from recent literatures
and summarized in Table S1. Additionally, the j, values are
calculated to assess the electrocatalytic activity for ORR by the
following Eq. (8) [67],

Jr j—jp

(®)

where, j, is the current density at 0.7 V vs. RHE and j is the disc
current density. The CeO,/BC700 exhibits superior perfor-
mance with the highest j, (at 0.7 V) value of 3.4 mA cm™2
compared to CeO,/BC800 (2.5 mA cm™?), CeO,/BC900
(1.3 mA cm™2) and BC (1.03 mA cm™?) and better than the re-
ported catalysts such as CeO,/NrGO (7.2 mA cm?) and CeO,/
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rGO (3.2 mA cm™?) at —0.7 V vs. Ag/AgCl [15], BC-Ce-2
(0.92 mA cm™?) and Pt/C (1.1 mA cm™?) at E;/, value [47],
from recent literatures. The Tafel plots given in Fig. 7f shows
that the CeO,/BC700 holds the Tafel slope value of 96 mV dec™*
found comparatively lower than Pt/C (120 mV dec ™ *) and equal
or slightly higher than CeO,/BC800 (96 mV/dec), CeO,/BC900
(76 mV/dec) and BC (71 mV dec™?) catalysts. According to the
Langmuir adsorption isotherm, the low coverage of active
catalyst sites at higher overpotential region indicates that the
ORR follows first electron transfer as the rate determining step
[25]. Based on the ORR kinetic parameters, the CeO,/BC700
exhibiting improved activity, over other catalysts might be
due to the substantial features on its structural morphology
and the optimal pyrolysis temperature.

The long-term stability of the catalysts was assessed
through potential cycling between 0.6 and 1.1 V vs. RHE at a
scan rate of 0.1 V s~* under O, atmosphere. Fig. 8a—d shows
the LSV curves recorded for CeO,/BC (700, 800 and 900 °C) and
Pt/C catalysts before and after 5000 potential cycles (PCs).
After 5000 PCs, there was no significant change in ORR po-
larization curves for CeO,/BC700, which resulted no change in
key indicators of E,p, E1/» and j, values. Whereas, the order of
stability was determined as a function of negative shift of E;/,
and the percentage of j, loss was found as Pt/C (40 mV vs. 11%)
> Ce0,/BC800 (50 mV vs. 15%)> CeO,/BC900 (60 mV vs. 18%). In
addition to this, the morphological change of CeO,/BC700
catalyst over the potential cycling (after 5000 cycles) was
studied by TEM images and presented in Fig. S5. From the
respective TEM images, the spindle-shaped morphology of
CeO, was retained with slightly wrinkled surface probably due
to the continuous potential cycling, which resulted a negli-
gible difference in ORR performance.

The bar chart of Fig. 8e and f shown the negative shift of E;,
2 and percentage of ORR kinetic current density (j, at 0.7 V vs.
RHE) loss for all the catalysts after ADT test. This result reveals
that the CeO,/BC700 (ji: no loss & E;/,: no shift) has extended
stability over 5000 PCs compared to CeO,/BC800 (ji: 40% loss &
E1/2: -60 mV shift) and CeO,/BC800 (ji: 23% loss & E1/,: -80 mV
shift) catalysts, including standard Pt/C (ji: 28% loss & E;/,: -40
mV shift). Moreover, the stability of CeO,/BC700 much better
than the reported CeO, based ORR catalysts such as Co—Ce02/
N-CNR (—28 mV E;, shift and ~5% loss of j after 5000 PCs) [19],
Ce—HPCN (-3 mV E;, shift and no loss of j after 1000 PCs) [27],
20 wt % GDC-PBC (-5 mV E;/, shift and ~4% loss of j after
200 PCs) [68], Ce0,@MnO, (—29 mV E;/, shift and ~6% loss of j
after 5000 PCs) [20], Co30,—CeO,/KB (—16 mV E; » shift and 10%
loss of j after 2000 PCs) [30] in KOH medium.

From the physicochemical characterization results and the
calculated ORR kinetic parameters, the CeO,/BC700 catalyst
showed a superior ORR activity and stability compared to all
other catalysts. This improved electrocatalytic performance
might be due to the following factors, (i) the high crystallinity
and stability of (111) facet and the apparent percentage of Ce*"
can acquire more oxygen vacancy for increased oxygen mass
transport [14,50,61,69], which were clearly demonstrated from
XRD, XPS and Raman spectra; (ii) the coupling effect [15] be-
tween CeO, and carbon support might be induced through the
in-situ synthesis approach, evidenced by XPS results; (iii) the
nature of defect-rich carbon with a high specific surface area
can afford more active sites as confirmed by Raman spectra

and BET results [14,70]; (iv) the higher proportion of graphitic
N and pyridinic N are the crucial factors for the improved
conductivity [14,66]; (v) the facile electron transfer through
delocalized m-electrons between N and carbon skeleton was
observed from XPS studies [69]; (vi) the spindle-shape of CeO,
with sharp edges and (111) orientation as predominant plane
was noticed from SEM and TEM images; and (vii) the ECSA
value clearly depicts the accessibility of more active sites
among the other catalysts, which are considered as the key
features for improved ORR activity and stability of CeO,/
BC700. In a nutshell, the structural morphology, crystalline
features, surface composition with enriched oxygen vacancy,
self-doped N & P and the electrochemical kinetic parameters
such as onset potential, half-wave potential, kinetic current
density, n value, HO; % with no loss after 5000 PCs are strongly
proposed that the CeO,/BC700 possesses an excellent capa-
bility and could be a possible candidate for ORR in KOH
medium.

Conclusions

A typical choice of carbon support, Spirulina platensis micro-
algae from natural sources and simplified synthesis procedure
through hydrothermal treatment was adopted to obtain
spindle-shaped CeO, on carbon as ORR catalyst. CeO,/BC700
exhibited improved activity with earlier E,, (0.79 V), Ei
(0.60 V) and j;, (15.08 mA cm™2 at 0.4 V) compared to other
CeO,/BC catalysts and competing with standard Pt/C. In
addition, the n values are near 4-electron transfer from K-L
plots and RRDE with the lowest % of HO;, confirming the
viable electrocatalytic activity of CeO,/BC700 catalyst. The
high specific surface area (135.88 m? g%), the defective
structure of mesoporous carbon (Ip/Ig: 1.1), N—C boding with
delocalized m-electrons and higher proportion of graphitic N
(39%) and pyridinic N (22.7%), with considerable Ce* content
are key factors for the improved ORR activity of CeO,/BC700
catalyst. The stability result was similar to the ORR activity
with the order of CeO,/BC700> CeO,/BC800> CeO,/BC900 and
surprisingly much better than standard Pt/C catalyst. In
conclusion, the improved activity and stability of spindle-
shaped CeO, on biochar derived carbon (700) could be
employed as a promising contender for an alternate to noble
metal catalyst towards ORR in alkaline fuel cells.
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