How Do Agile Practitioners Interpret and Foster “Technical
Excellence™?

Adam Alami
IT University of Copenhagen
Denmark

ABSTRACT

“Technical excellence” is a nebulous term in agile software devel-
opment. This vagueness is risky, as it creates a gap in the under-
standing of agile that may have consequences on how software
development practitioners operate. Technical excellence is the only
reference to quality in the agile manifesto. Hence, it is fundamental
to understand how agile software development practitioners both
interpret and implement it. We conducted interviews with twenty
agile practitioners about their understanding of the term “technical
excellence” and how they approach the task of fostering it. To vali-
date the findings, two focus group meetings were conducted after
the interviews and the analysis of the data were completed. We
found that the configuration of technical excellence is made of four
traits: (1) software craftsmanship; (2) software quality (3) mindset
for excellence; and (4) consistency with good software engineering
practices. Fostering technical excellence is a continuous endeavor.
Further, we identified three key principles that were commonly
cited as essential to implementing technical excellence, namely: 1)
continuous learning; 2) continuous improvement; and 3) control of
excellence. Based on our findings, we present several recommenda-
tions for software development teams seeking to better realize the
goal of technical excellence in their agile implementation.

KEYWORDS

Agile, Software Development Methods, Technical Excellence, Agile
Principles

1 INTRODUCTION

Agile is a software development philosophy with implications for
effective and maneuverable software development. Boehm [7] de-
scribes agile methods as the result of rapid prototyping and devel-
opment, viewing software programming as a craft rather than an
industrial process. The agile methods include iterative, incremental,
self-organizing, and emergent concepts. In this report, we use the
term “agile” to refer to software development methodologies as
defined by Cockburn [11] being light, remaining maneuverable but
with sufficient rules of project behavior.

Agile was founded on twelve principles, outlined in the Agile
Manifesto [17]. Identifying the roots and the meanings of these
principles is important in understanding agile software develop-
ment. The highest priority is to satisfy the customer through early
and continuous delivery of valuable software, to welcome chang-
ing requirements, and to deliver working software frequently. For

Adam Alami and Maria Paasivaara. 2021. How Do Agile Practitioners Interpret and
Foster “Technical Excellence”?. In Evaluation and Assessment in Software Engineering
(EASE 2021), June 21-23, 2021, Trondheim, Norway. ACM, New York, NY, USA, 10
pages. https://doi.org/10.1145/3463274.3463322.

Maria Paasivaara
LUT University, IT University of Copenhagen & Aalto
University
Finland

example, Principle 1 is to deliver something to the end user, and
Principle 2 is to measure the added value to the user. Daily builds
are important, and simplicity and quality of design are critical.
One common criticism of the Agile Manifesto is that it is too
vague [23]. Since it is an abstract concept, different teams can mean
different things when they use the term “agile”; therefore, the best
option is for teams to affirm that they have a shared understanding
of the agile terms early in the development process [23]. This prac-
tice is particularly important with the ninth principle, stated below,
which emphasizes focus on technical excellence and good design.
This principle, the only reference to quality in the manifesto, is
a recognition that agile software development teams cannot rely
solely on abstract principles to achieve high-quality products.

Principle 9:
“Continuous attention to technical excellence and good design
enhances agility.” [17]

Hohl et al. [21] argue that the idea behind agile is still valid and
relevant. However, they point out that the misunderstanding of the
agile manifesto is a common occurrence. They explain that it leads
to “unpleasant effect” of agile being misinterpreted, which leads to
pressure on the developers instead of promoting a motivating and
productive work space. These misunderstandings of the concept
also lead to a poor implementation of agile [21].

Hohl et al. [21] also investigated the future directions of the
manifesto. They conducted several interviews and workshops with
the original founders of the manifesto and other practitioners. They
are concerned that the manifesto’s values and principles end up
being ignored. People use the principles without understanding
them [21].

Dingsayr et al. [14] examined agile software development litera-
ture to illustrate how the research on agile has progressed during
the 10 years following the articulation of the manifesto. They con-
cluded that more work has to be done to investigate the principles
of agile that are at once unequivocal and useful for practice [14].
They further advocate empirical studies on the “core” of agile values
and principles [14].

A principle is a statement of fundamental truths or general laws.
It is not directly associated with a technology, method, or tech-
nique [41]. As such, Principle 9 triggers more questions than it
provides answers. Do agile teams have a common understanding
of “technical excellence”? And, do they have common strategies for
implementing it? We propose the following research questions:

RQ1: How do agile practitioners interpret principle 9 of the agile
manifesto?

RQ2: How do agile practitioners foster “technical excellence”?

We sought to investigate how agile software development practi-
tioners understand and interpret Principle 9 of the agile manifesto.
We propose guidelines to operationalize the term “technical excel-
lence” based on the practices and values of people in the field. Agile
practitioners should make these implicit shared understandings
explicit in their development team to better realize the potential
of agile. Our work, to the best of our knowledge, is the first to
investigate “technical excellence” in agile empirically; while pre-
vious work is either practitioner literature (e.g., [27-29]) or not
empirically founded (e.g., [36]).

2 RELATED WORK

Our search of the agile software development literature shows
a mounting interest in various topics related to quality in agile.
However, the current work is not directly linked to Principle 9 of
the manifesto. It investigates various topics in isolation; like pair
programming (e.g., [10, 19, 22]), refactoring (e.g., [16, 30, 32]) and
test-driven development (e.g., [9, 26, 33]). Whether these practices
are influenced by Principle 9 is still not well understood.

Recent studies call for more empirical investigation of the topic
of technical excellence [4, 15, 37, 43]. This is partly because most
existing work is practitioner literature (e.g., [27, 28]) and there is
a need for further empirical support of the current work. “There
are no empirical studies concerning the lack of acceptance of clean
Code in practice” [37]. “There does not appear to be much research
exploring the techniques that software developers actually use in
their day-to-day practice and which of these techniques they find
most useful” [43].

There is no existing work on the interpretation of “technical
excellence” However, there is work on the following sub-topics:
(1) software craftsmanship, (2) quality in agile and (3) the need to
define “technical excellence” in agile. We present and discuss the
related work of these topics in this section.

2.1 Software Craftsmanship

An important fact is that people write software. As discussed by
Pyritz [36], an excellent architecture, model, or process cannot, in
itself, produce high-quality software — this work requires highly
skilled software craftsmen who create with skill and dexterity. The
craft of software transcends the technology curve; technologies
will come and go, but the essential skills and wisdom of craftsmen
maintain their value. Therefore, to sustain technical excellence,
older craftsmen must be enlisted as mentors to pass down their
wisdom, insight, and experience to younger talent [36].

2.2 Quality in Agile

Arcos-Medina and Mauricio conducted a systematic review of ag-
ile literature on quality. They identified a catalog of factors, agile
practices, and metrics that influence quality in agile methods [3].
Five critical success factors were proposed: teamwork practices,
engineering practices, management practices, documentation prac-
tices and testing practices. Teamwork practices represent 24% of
the available literature, while management practices account also
for 24%. However, in most studies identified in this review, quality
was not the primary topic of investigation. Topics such as “success
factors” and “process optimization” were examined. This literature

Alami and Paasivaara

study shows that we still need empirical work to investigate agile
traits and their correlation with achieving quality.

Timperi [45] discusses several engineering practices used by
agile team to assure quality, such as, inspections, pair program-
ming, test-driven development, coding standards, collective code
ownership, and refactoring [45].

Dingseyr et al. [14] investigated the guidelines, principles, con-
ventions, and other aspects concerning code quality that are known
by developers in agile software development. They found that code
comprehensibility and readability were often named first and most
often by developers. Structuring naming, and documentation were
mentioned often as well. Code comprehension was emphasized nu-
merous times, as well as debugging. Code smells were mentioned,
such as duplication, wrong abstraction, wrong naming, missing
tests, side effects, high number of parameters, noise, and cycles.
Documentation was mentioned, as was principles such as DRY
(don’t repeat yourself) and KISS (keep it simple stupid) [14].

Prechelt et al. propose “quality experience” [35], which is a qual-
ity assurance and deployment “mode” adopted by agile teams with-
out the need for dedicated testers. This practice is characterized
by three traits: (1) the team “feels fully responsible for the qual-
ity of their software”; (2) the team “receives feedback about this
quality, in particular the quality of their recent changes, that is fast
(available early), direct (not be intermediated), realistic (coming
from non-artificial settings); and rapidly repairs deficiencies when
they occur” [35]. This work shows that quality in agile teams is
assured by a combination of technical (e.g., modular architecture)
and non-technical (e.g., high motivation, held responsible and feel
responsible) factors [35].

2.3 The need to define “technical excellence” in
agile

Tripp and Armstrong [46] identified three factors of motivation
for adopting agile. These were the motivation to improve software
quality, the motivation to improve efficiency, and the motivation
to improve effectiveness. The quality factor included the motives
of enhancing quality, improving engineering disciplines, and en-
hancing maintainability. The efficiency factor included motives of
increasing productivity, accelerating time to market, and reducing
costs. The effectiveness factor included the motives of enhancing
the ability to manage changing priorities and improving alignment
between IT and business objectives [46]. If the growing interest
in agile is partly driven by achieving quality, then how does the
agile manifesto advocate for quality and excellence? Our study is
an empirical investigation on how agile practitioners interpret and
foster “technical excellence”

Recent reviews of the literature [15, 20] show limited interest
on the topic of quality in agile. Since agile influences the value
stream of software teams, there is a merit to evaluate how agile
teams achieve quality and technical excellence.

3 METHODS

We opted to answer our research questions using agile practitioners’
experiences. Hence, we chose a qualitative method, which allows us
to explore practitioners’ experience to gain a depth of understand-
ing about technical excellence (TE) in agile methods in order to

How Do Agile Practitioners Interpret and Foster “Technical Excellence™?

propose a set of recommendations for implementing and fostering
technical excellence. It is scientifically accepted and acknowledged
that experience is a necessary and sufficient piece of knowledge in
sciences [48]. Practitioners’ experience is relevant to investigate
our research questions. We explicitly looked for participants who
took actions to implement TE in their respective teams, i.e., to
understand the world as others experience it.

To permit a degree of flexibility in our conversations and ques-
tioning, we employed semi structured interviews. Our interview
questions (Table 1) can be sorted into three categories: introductory
questions, which eased interviewer and interviewee alike into the
discussion; core questions, which focused on the main topic; and
probing questions, which followed up on specific details.

Introductory Questions

Can you please introduce yourself and talk about your experience?
How do you define agile?
What do you think of agile?

Core Questions

What does this statement from the Manifesto mean to you “Continuous attention to
technical excellence and good design enhances agility”?

What is “continuous attention to technical excellence”?
How does “good design enhances agility”?

How do you foster “technical excellence” in an agile environment?

Probing Questions

Can you share with me examples of how technical excellence is implemented and
fostered from your experience?

Is there anything else you would like to add on the topic of “Technical Excellence”
in agile?

Table 1: Key parts of the interview questions

Subject Selection. We interviewed 20 agile practitioners who we
recruited from LinkedIn, and whose experience in software de-
velopment environment ranged from six to thirty-one years. To
construct our sample, we used the profile search feature using the
term “agile” that yielded over five million profiles. From this list we
randomly selected profiles without setting parameters, and then
we verified the person’s suitability to participate in the study using
the participant’s profile description, especially their job descrip-
tions and titles. We aimed for participants with long experience in
agile software development projects, with background in software
development and having interest and experience in implementing
technical excellence. As eligible participants were identified those
who had a minimum of five years of experience in agile software
development, and who had started their careers as software devel-
opers and actively participated in implementing and fostering TE
in their teams. We examined a large number of profiles. Ultimately,
fifty qualified individuals were invited to participate in the study,
twenty of whom accepted our invitation. Table 2 summarizes the
demographics of the participants, wherein “Exp. in Sw. Industry”
indicates the number of years the participant spent working in the
software development industry and “Dev. Exp.” shows the software
development experience of the participants.

Data Collection. As the interviewees were widely distributed geo-
graphically, all interviews were conducted using Zoom, an audio-
video conferencing tool. The interviews lasted 40—-60 minutes and

Role Agile Set- Exp. in Sw. Dew.
up Industry Exp.

P1 Sr. Agile Product Manager Scrum 20 12
P2 Agile Coach Scrum 20 14
P3 Agile Coach Scrum 20 12
P4 Agile Delivery Specialist Scrum 12 8
P5 Scrum Master Scrum 14 10
P6 Scrum Master / Team Agilist ~ Scrum 15 10
P7 Agile Coach Scrum 18 12
P8 Project Manager Scrum 6 4
P9 Project Manager Scrum 28 12
P10 Portfolio Manager Scrum 20 14
P11 Program Manager Scrum 21 13
P12 Scrum Master Scrum 31 16
P13 Senior Product Manager Scrum 18 14
P14 Project Manager Scrum 15 10
P15 Head Of Quality Assurance ~ Scrum 14 7
P16 Product Owner Scrum 11 7
P17 Lead QA Engineer Scrum 10 6
P18 Project Manager Scrum 8 5
P19 Agile Coach Scrum 7 5
P20 Scrum Master Scrum 7 5

Table 2: The Study Interviewees

generated an average of 11 pages of text each when transcribed
verbatim. The interviews were conducted by the first author in the
period between March and August 2020. We used “Temi”, an online
transcription tool to transcribe the interviews. The results of this
method are not always accurate. Hence, some manual corrections
were necessary. Once all interviews were transcribed, we sent the
transcripts to the participants for review (see section 5).

Data Analysis. We used thematic coding to analyze the data, fol-
lowing the guidelines by Cruzes and Dyba[13]. Our approach is
inductive, codes are derived from the data. The iterative analy-
sis began in the early stages of the data collection and continued
throughout the study. The interview transcripts were coded by
examining the data line-by-line through the lens of our research
questions. Once the responses were coded, patterns were identified,
suggesting a specific theme, a concept that organizes a group of
repeating ideas related to the research question. After identifying
and giving names to the basic meaning units, we grouped them
in categories by similarity. Table 3 shows examples of our codes
and their corresponding themes. We initiated the coding process
and analysis as soon as interview transcripts become available so
that we could monitor for saturation. We reached saturation [38]
after twelve interviews, as no new additional codes, themes, or
information emerged from the data after that. However, we opted
to interview the remaining eight participants. The coding was per-
formed by the first author. We used peer debriefing sessions to
critically review the codes and their categorization. During these
sessions, the second author provided feedback on the coding deci-
sions. This has been done iteratively until a consensus was reached
on a final list of codes and themes.

Member Validation. We opted to use focus groups for member
checking, a technique for the validation of the results. During these
focus groups, we presented our findings to the participants to check
for accuracy and resonance with their experiences. We invited all

Interpretation Fostering

Control of
Excellence

Mindset

9 Aftsmans™®

Figure 1: The Interpretation and Fostering of Technical Ex-
cellence

participants to this validation exercise, however, only six partici-
pants accepted. Due to their availability, we had to schedule two
separate focus group meeting instances (see section 5).

4 FINDINGS

Our data show that there is a strong awareness of technical ex-
cellence amongst our participants, as well as a moderate degree
of consensus in the definition of this term. Technical excellence is
cited by our participants as a core agile value, and some participants
further claimed that there is no agile without technical excellence.
Our participants describe technical excellence as consisting of both
engineering and non-engineering components. According to our
participants, agile is an empirical process wherein technical excel-
lence occurs through experimenting, learning, and improving.

Figure 1 illustrates our findings. The mindset for excellence is at
the centre of interpretation of technical excellence. Our participants
pointed out that technical excellence starts with the right mindset
and it is a continuous endeavor. It is the ongoing improvement of
practices and processes through learning, re-examining and the
incremental implementation of measures to get better at developing
software.

In response to RQ1, our participants interpret “technical excel-
lence” being the joining of four traits that are individually distinct:
(1) software craftsmanship, (2) software quality, (3) mindset and
(4) engineering practices. Table 3 shows the codes and their oc-
currences in data, the number of times the code was talked about
and discussed by a participant. In the upcoming subsections, we
emphasize the definitions using light gray for the text background
and boxes for recommendations.

4.1 Software Craftsmanship

Our participants define software craftsmanship as the ability to
create elegant and high-quality code that delivers significant value
and can be scaled up sustainably. P4 explains: “Technical excellence
is also achieved by craftsmanship and creativity.” P3 describes how
agile enables craftsmanship: ‘T have seen it [agile] fostering the
craftsmanship element in the team. [...] It takes away the process of
treating the development resources as, for example, factory workers in
the manufacturing sector have been evolving. [...] So that’s also one of
the craftsmanship element.” He further explains: What craftsmanship
is about is this feeling the pride of what you are doing, perceiving,

Alami and Paasivaara

and acknowledging that I am contributing something for some good
and my work is appreciated. My work is acknowledged, my work adds
value to the real world. I'm doing something for the betterment [...]
when you have that mindset in your developer, he’s going to take
care of quality himself as well ... So, it all comes under this umbrella
of continuous attention to detail. And how do you enable that is,
again, by the craftsmanship element when the developer is practicing
mastery be it a QA, be it a developer, be it an architect, is proud of
their work.”

Software Craftsmanship: Our participants perceive soft-
ware development to be like a craft and the process of devel-
oping software to be the product of a craftsman. This implies
that developers in agile have skills and perform their jobs with
precision. They are motivated by mastery rather than simply
writing code.

Then, what is the implication of this finding? Junior team members
should spend a significant time in an apprenticeship learning period
to acquire the craft and the mastery for writing high-quality code,
under the tutelage of a senior member who has shown great skill or
proficiency in writing code. P12 shared her company’s experience
with us:

“Another example, is when a new team member joins, we check
the quality of their code. If it is not within our expectations, then
he is assigned to a mentor for a period of time until he learns
the craft of writing good software code. I know, it is a loss of a
resource for some time but it is worth the investment and the long
term reward. Because, what is the point of having someone who
write a code below our standards! We mitigate the risk of having
under-performing members by investing in teaching them the
skills.”

Writing code has intangible qualities which should be passed on
from one generation to another to safeguard this heritage within
the organization.

Recommendation 1: Craftsmanship should be internalised
through apprenticeship. Organizations should offer appren-
ticeship aimed at facilitating internalization through the estab-
lishment of peer-to-peer learning.

Discussion of craftsmanship. Few authors have highlighted the
quality of craftsmanship in software development; those who have
[29, 36] explain this by pointing to the early influence of manufac-
turing procedures and techniques on the development of software
engineering. However, according to our participants, software de-
velopment is a creative task. This creativity should be nurtured and
passed on from one generation to another.

Pyritz [36] claims that the idea of just following the directions
in the assembly line fails with software. Software development
is a mental activity that requires creativity and problem-solving
skills. People are the most critical resource in the process, and
human beings can accomplish the same things in various ways
[36]. In a similar vein, McBreen [29] suggests that having good,
experienced developers is the key to creating quality software in a
short time. Good developers are those who continually learn and
get better at their craft. They have enthusiasm for the work, and
they pass this enthusiasm to other members of the team. Good
developers use many technologies and platforms, but they become

How Do Agile Practitioners Interpret and Foster “Technical Excellence™?

Theme Code N Example of verbatim

The configuration Software crafts- 5 “Creating clean code and sustainable design is a craft.” P4.

of TE manship
Quality 11 “Flexible, scalable, and open to change. This is technical excellence, delivering high-quality software by ensuring flexible,
scalable and open to change design, with clean code.” P20.
Mindset 5 “That’s the first thing you need to look for. A mindset attitude. It’s soft. So, they are personal traits, openness, flexibility.”

P10.

Engineering prac- 9 ‘Ttruly believe that this particular statement is the very foundation or a founding pillar of the whole idea of agility. And
tices this actually highlights the engineering aspect of agile.” P3.

The development Continuous learn- 12 “For me continuous attention to technical excellence is actually just an experiment and learn all the time. So, experiment,

of TE ing
the team.” P13.

make mistakes and learn from the process. This is continuous attention. And share your mistakes and frustration with

Continuous im- 15 “Agile is also about continuous learning and improvement. Each iteration is a learning opportunity. We learn and then we

provement

take actions to improve. I like to emphasize this. You need openness and empowering in your team in order to achieve this
continuous improvement.” P4.

Control of excel- 6 “We control technical excellence via the Definition of Done, but as I mentioned before, we need to invest on the people. We
lence need to coach them to be technically excellent.” P4.

Table 3: Example themes and codes (N shows the number of mentions in total in the data)

productive quickly. McBreen also indicates that talent should not be
confused with mastery; mastery is the ability to create and enhance
robust, high quality applications while nurturing other developers,
and may take 15 years to develop. To foster craftsmanship, master
developers should choose their own apprentices and journeymen,
as the cultivation of other developers is a long-term commitment
[29].

Software craftsmanship is an alternative craft model that places
people at the center of the process. The craftmanship model of
software development follows the phases of apprenticeship, jour-
neymanship, and practice until the individual becomes a master
craftsman. The training occurs over several years on the job, under
the tutelage of a master craftsman, wherein the apprentice is held
to the highest standards before moving to the next phase to be-
come a craftsman [36]. The software master craftsman should have
the following qualifications: 1) a proven track record of successful
applications; 2) sound work habits, such as accepting responsibil-
ity and completing tasks; and 3) detailed working knowledge of
the latest technologies, tools, processes, and practices (including
awareness of those that should be avoided). In addition, a master
craftsman should work well with other people, have expert domain
knowledge, take a personal approach to problem-solving, and love
writing software [29].

Apprentices should be chosen by the craftsman to join their team.
The apprentice will work with the journeyman and craftsman for
a period typically lasting five years. The apprentice can become a
journeyman upon consistent mastery of his or her assigned work.
The journeyman becomes responsible for more complex tasks and
part of the training of apprentices through a pair-programming ap-
proach. The journeyman may journey to work with other craftsman
for brief periods of time. The end of a phase should be celebrated
[29].

4.2 Software Quality

“Quality” was extensively referred to by our participants. No single
definition achieved saturation, but two attributes emerged from
interviews: (1) clean code, and (2) sustainable software design.

Clean code. The term “clean code” refers to code that can be easily
understood and easily changed. P9 explained that “the key to writing
good clean code is to know how to avoid complexity.” P19 asserts that
complexity of code hinders scalability. He stated: “Complexity is the
foe of scalable, robust and reliable software. Technical excellence also
means that developers need to ensure writing clean code and refrain
from writing complex code.”

Clean code can be understood whether the reader is the author
of the code or someone totally unfamiliar with the code. The code’s
meaning is so clear and concise that it does not require anything
new to clarify it, and it is difficult to misunderstand. Our participants
call for simplicity in writing software code, with remarks such as:
“A good design is usually a simple design” (P1); “Simple code allows
maintaining, debugging, refactoring, and adding features with limited
knowledge of how the entire system works” (P20).

Clean code can not only be easily understood, but it can be easily
changed as well. It can be extended and/or refactored, and it is easy
to fix bugs in the codebase. The code is so clear that the reader
can understand the code well enough to make changes without
fear of breaking any existing functionality. Those who read the
code feel confident enough to make necessary changes. “Agile is
about delivering efficient code, easy to change for future requirements.
This is agility” (P4). Even if developers write code for machines
to execute tasks, the code should be readable to humans first. P20
stated: “Clean code is about recognizing that your audience isn’t just
a computer, it’s real humans!”

Technical excellence advocates for clean code. Writing clean
code might cost time, but it is an investment in knowledge cre-
ation, agility and the evolution of the software. It creates easily
maintainable, extensible code, easy to debug and refactor.

Discussion of clean code. If code is hard to understand then a
bad fix is likely, resulting in increasing number of bugs. Cultural
moves in agile software toward DevOps and combining it with clean
code and enforcement of quality via build pipelines and review
processes will lead to better systems. Selecting or authoring code
style guides that are reviewed and agreed on by the core team
is helpful. These guides include code formatting, consistent use
of language features, naming conventions, and use of meaningful
names. Review by a second developer is also helpful. If problems
are identified, discussions between the two can resolve the problem.
This requires openness and trust between the parties, which can
be a long learning process [25].

Latte et al. [25] found measures to lower complexity in learning
and communication, and these require a culture of openness. The
choice of procedures and practices is more a cultural than a techni-
cal issue. LaToza and Venolia [24] explain that developers routinely
face problems with understanding code written by others, including
the rationale behind the coding, the history of a piece of code, and
any code not written recently. Developers go to great lengths to
create and maintain rich mental models of code, understand the
rationale behind the code, and determining tools and work prac-
tices. Understanding the rationale behind code is the most serious
problem developers face, but the code itself is — or should be - the
best source of information about the code. Using design documents
to understand code is not often practiced, both because locating
the design documents can be difficult and because the documents
are often not worth looking for. In addition, design documents are
not often updated. Therefore, asking a teammate is the next step
in understanding the rationale, but each unplanned meeting rep-
resents an interruption and recovering from interruptions can be

difficult [24].

Sustainable software design. P1 claims that agile way builds high-
quality software that has sustainable design. He states, “if you would
implement an agile working style, the goal would be to build software
that has high-quality, so it can be changed in the future in a sustain-
able way.” Software that has sustainable design allows developers to
deliver modifications to the customer quickly with fewer bugs and
at a lower cost of ownership. Increased business agility also results
from sustainable software development. P20 explains this concept:
“Technical excellence and good design is designing your product, in
a way that you do not commit to a single fact, you know, designing
adaptable products.” The quality of the software code must evolve
gracefully with every change. P3 explains: “The quality of the code
should not decline with every change.” Our participants consider
agile software development as a process which aims to create re-
liable, long lasting software that meets the needs of users while
maintaining quality. Sustainable software is delivering customer
value today and tomorrow.

Software Quality: Our participants equate software quality
with the software code being clean and the software design
being sustainable.

Alami and Paasivaara

Software quality is a complex concept to define in the context of
software development [2, 31]. Software developers aim to achieve
quality software, but the complexity of the effort makes it difficult
to determine when the software is, in fact, a quality product [34].
Our participants seem to have a rather narrow view of quality. They
equate the concept with clean code and sustainable software design.
This treatment of quality is not wholesome. This could be because
principle 9 has a clear scope, which is the software code and design.
It is clear that code quality influences product quality. Software
development teams should treat the code as an inseparable part of
the product.

Then, what is the implication of this finding? To enable business
agility, organizations should invest in achieving software quality.
Quality (clean code and sustainable software) makes agility possible
by producing a reusable code and a sustainable design. P6 explains:

“Quality is code and design. I'd like to illustrate that with the
Lego analogy. I'm thinking in Lego bricks, you can only add a
new Lego brick because in your system it will be set that I need
to be OK if you set a new brick. And nothing breaks ... That’s
the idea. Work like in the Lego brick model design or something
that works for you, for your organization future. That’s how you
enhance the agility of your customers’ business. You enable them
to continuously come up with changes and your Lego model can
handle it and doesn’t break.”

According to this testimony, software quality adds value to the
business.

Recommendation 2: Developers must learn how to write
clean code and design software that can support future changes.
These qualities could be promoted as values in the agile team,
which should influence team behavior.

Discussion of sustainable software design. Venters et al. [47] define
sustainability as the quality of being supported, capable of being en-
dured, or continuing to exist. The notion of being “supported” also
lends itself to the theory that sustainability includes the concepts
of longevity and maintenance. The most widely adopted definition,
proposed by the Brundtland commission, has defined sustainability
as meeting the needs of the present without compromising the
future generations’ ability to meet their needs [47].

Seacord et al. [40] define software sustainability as the ability
to modify a system based on customer needs. Although they use
sustainment and maintenance interchangeably, the IEEE definitions
differentiate between these two terms [12]. Maintenance refers to
the process of modifying a system after delivery, while sustainment
refers to meeting a range of stakeholders’ needs.

4.3 Mindset

Technical excellence is also a mindset, the way in which the mem-
bers of an agile team conduct themselves in accordance with agile
values. P3 explains: “Technical excellence has a behavioral aspect
to it. It needs the right mindset and culture.” This was echoed by
P13: “So technical excellence, it’s both hard skills, so developer skills,
but also, soft skills.” Behaving in accordance with agile values is
expected from an individual and from an organization.

The members of an agile team are meant to embrace and exer-
cise the agile and technical excellence mindset. P10 stated: “Being
the technical excellence is first, a mindset.” This mindset should be

How Do Agile Practitioners Interpret and Foster “Technical Excellence™?

exercised at every level. For example, P7 explained that it is a belief
to leave the code in a “better” state after a change. He explained:
“Tt should be a mindset thing just to leave code better than you find it.”
Our participants referred to this mindset as a collection of values
and beliefs promoted by agile. P10 stated: “That’s the first thing you
need to look for. A mindset attitude. It’s soft. So, they are personal
traits, openness, flexibility.” Having personal traits in line with agile
values is highly sought in agile teams, and it “also requires some
trust in yourself may be and in others, collaboration and somehow
a willingness to fail, because this approach is really trial and error,
in my opinion.” (P12). The organization should also facilitate an
environment where technical excellence can flourish. Sometimes it
requires a cultural shift. P17 stated: “Technical excellence is some-
thing much more than just writing good code ... [it] involves a cultural
shift at the organizational level.”

In short, the term “mindset” is used by our participants to in-
dicate a wide array of personality traits (e.g., willingness to fail),
orientations towards the product (e.g., leave code better than you
find it and sustainability of the design), and characteristics culti-
vated within teams (e.g., mutual trust, flexibility). As such, this term
identifies individual attributes that are conversant with, but analyt-
ically distinct from, group attributes such as workplace culture and
occupational norms.

Mindset: Technical excellence is a commitment to quality and
creating sustainable software design. This commitment should
emerge from the individual, as well as from the organization. It
is their mutual dedication to quality and sustainable software
that lead both the individual and the organization to excellence.
Therefore, organizations and individuals alike should embrace
excellence as a core value in their work.

Then, what is the implication of this finding? Maintaining the
proper mindset necessitates continuous change in behavior for
learning and growth. P5 provided an example to illustrate this
point:

“The mindset is at the core of everything we do and practices
impact belief and vice-versa. Agile advocates experimenting, ob-
serve the outcome and then we build a learning out of it, then
it becomes a belief. These beliefs and practices then become in-
grained in our habits. That’s how we develop a mindset. If you
don’t have the mindset, you would not fit and would eventually
leave. We had a team member who was so negative that he brought
a cloud into the room every time he showed up. He was inflexible,
close-minded and unwilling to learn. He didn’t last. Eventually,
he voluntarily left. As I said and this example shows that if you
can’t experiment, self-reflect as an individual and as a team, and
adapt, you do not have the required mindset.”

The importance of mindset is underscored in team settings — a
poor mindset not only disrupts the individual’s ability to function,
but also the team’s work as a whole. Thus, it is important for agile
teams to develop and improve their abilities through adopting a
growth mindset.

Recommendation 3: To develop a mindset for technical ex-
cellence, the organization should encourage agile teams to
experiment, learn and adapt.

Discussion of mindset. Change is the only constant of the uni-
verse, but to face the challenges of change a culture of excellence
must be established at all levels. New mentalities and attitudes are
as necessary as good practices. There must be a shift in focus, from
short-term objectives toward long-range vision. A culture of excel-
lence requires a vision of possibilities, a plan to set it in motion,
and the practices to create it. Excellence is a way of being, thinking,
and a commitment to activate and go beyond mediocrity. Business
champions promoting business excellence succeed when they go
far beyond traditional models [44].

Based in this finding, we suggest that excellence can be promoted
through a mindset. The culture of excellence is people oriented
and highlights the importance of empowering and actively engag-
ing everyone. The agile vision must be communicated clearly and
understood by all members of the organization. People must be
purpose-based and highly determined to work together. It is not
about mediocracy, but meritocracy and high performance.

Sustainable high-performing organizations create a mindset of
excellence, engaging every employee with the vision, mission, and
values of the organization. They also create and communicate strate-
gies of excellence. They sustain excellence by developing strong
leadership and performance skills [44]. Organizational excellence
provides a set of principles and practices that can cause continuous
improvement to occur; these principles and practices should be
fully integrated into the regular activity of the organization [8].

4.4 Engineering practices

Engineering skills and practices are universally recognized to be
key attributes of technical excellence in agile. Engineering practices
is both the fourth most commonly cited attribute of technical ex-
cellence within our sample and, given that half of our interviewees
did not refer to it, perhaps also the most taken-for-granted.

Engineering practices include programming language related
practices and modern software engineering practices (e.g. code re-
view and automated testing). ‘T would immediately relate technical
excellence in the ways you build up the software, the tools, and the
practices that are used to deliver the technical aspect of the product,
the actual software code and the design” (P3). P11 echoed this view:
“So, engineering excellence, whatever you do in terms of engineering
... So, for example, if I'm taking my shipment in a build, it’s going
to take three weeks, for example, and with X number of features,
try to optimize it, try to make it like automate things like imple-
mentation of the CI/CD, for instance. So, things that can automate
stuff rather than going manual ... Optimizing, automating, focus on
quality.” Our participants discussed various software engineering
practices including continuous integration, refactoring, test-driven
development, automated build system, unit test framework or a
practice of creating automated quality assurance tests. Engineering
practices are at the core of technical excellence. Agile engineering
practices are consistent with good software engineering design
practices.

Recommendation 4: Solid software engineering practices
are essential to technical excellence. Agile teams should adopt
and continuously improve software engineering practices.

4.5 Fostering Technical Excellence

Recall that, for RQ2, we asked how agile teams foster “technical
excellence” In response to this question, our participants experi-
enced that technical excellence is nurtured by the following three
strategies: 1) continuous learning; 2) continuous improvement; and
3) control of excellence using the “Definition of Done” (DoD).

Continuous Learning. Agile teams are meant to take actions and
implement the improvement necessary to achieve efficacy and ef-
ficiency, but to do so they must first practice curiosity and learn
through their mistakes. In the words of one participant, “continuous
attention to technical excellence is actually just experimenting and
learning all the time. So, experiment, make mistakes and learn from
the process. This is continuous attention. And share your mistakes
and frustration with the team” (P13). However, to stimulate this
quality, the working environment must facilitate openness and em-
powerment. P10 explained: “So in Agile, you empower your team
members to own the project, to own the product, to own the deliverable,
so you encourage them to take ownership, to take action, to participate
not only in the execution but also in the planning, in the design. So
the whole team, so that you get the best of your people, not only the
execution, but also the thinking, the creativity, the commitment.”

Continuous learning: Continuous learning requires orga-
nizations to encourage individuals and teams to continually
increase knowledge about their behavior, own processes and
practices, which is achieved by empowering them and pro-
moting openness. New knowledge should be translated into
actionable improvement initiatives.

Continuous Improvement. “In agile, you learn and improve all the
time” (P9). Continuous improvement is the endeavor to continu-
ously monitor, assess and enhance processes, methods and practices
for efficiency and effectiveness. This is a core agile value. P13 as-
serted: “Agile is worthless unless it serves as a catalyst for continuous
improvement.” According to our participants this principle also ap-
plies to the behaviors of individuals, who are expected to invest in
self-improvement. P14 explained: ‘T would say this has to start from
an individual level, because you would need to have people that are
curious, that they want to develop, they want to learn more.” Individ-
uals in agile teams are encouraged to be “egoless” (P2 and P9). P15
explained: “The self-improvement for the technical excellence is that
you should be a good receptor. By that I mean, you know, you should
be open for the reviews that your peers are giving, your seniors are
giving, because if the reviews are coming from the code or the testing
or any other deliverables that you have done, if you are taking those
reviews in a positive manner, then setting aside your egos, then you
will be able to have a constructive feedback.”

Continuous improvement: To achieve technical excellence,
organizations must support software development activities by
evolving their approach over time in a collaborative manner.
Learning should be translated into actionable initiatives to
improve the processes and the practices.

Then, what is the implication of these findings? P13 provided this
example:

“So, for me, technical excellence is about egoless development

and uncovering better ways of developing software by doing it and

Alami and Paasivaara

helping others do it. So, at the end excellence is the excellence of
the team. It is a simple process, learn, embrace, and implement. We
have knowledge sharing and improvement sessions. We feel em-
powered to discuss our failures, shortcomings, and imperfections.
Whether, it is technical, process or individuals’ behaviors.”
This example shows how, when a team is empowered to act and
grow, it will cultivate a habit of continuous self-improvement.

Recommendation 5: Agile teams should continuously iden-
tify aspects that can be improved and develop plans of action
to make these improvements.

Discussion of continuous improvement. Agile teams should be
empowered to self-reflect on their processes, performance, and
mindset. This reflection is necessary for teams to identify aspects
that can be improved and develop plans of action to make these
improvements [1].

Continuous improvement is a philosophy consisting of improve-
ment initiatives that improve software and reduce failure, which
may be translated into company-wide processes of focused improve-
ment. The continuous improvement philosophy produces methods
to enhance creativity and excellence formed within a culture of
sustained improvement that reduces waste [6]. Continuous im-
provement describes an evolutionary learning process that builds
upon a firm’s path and position, with a gradual accumulation and
integration of key behaviors over time through firm-specific pro-
cesses [6].

Without continuous improvement activities, problem solving is
random. Further, without continuous improvement activities being
organized into formal structures and problem-solving initiatives,
they may have minimal impact — perhaps resulting in some im-
provements to morale and motivation, but only in a short-lived and
localized manner. Structured and systematic continuous improve-
ment activity, meanwhile, results in sustainable improvements to
project performance, with little or no bottom-line impact [5].

To realize the full benefits of continuous improvement - in-
cluding cost reductions, quality improvements, and time savings
- strategic continuous improvement organizational policy uses
monitoring and measurement to reinforce the implementation of
continuous improvement processes. A rigorous company-wide con-
tinuous improvement program promotes autonomous innovation,
which has strategic benefits such as incremental problem-solving
and experimentation. When continuous improvement becomes the
dominant way of life in an organization, competitive advantages be-
come evident. Everyone is actively involved in innovation processes
that are both incremental and radical [5].

“Control of Excellence”. Our participants indicate that excellence is
controlled in every development cycle by the “Definition of Done
(DoD).” The DoD is a set of criteria to determine if a deliverable is
complete; these controls are opportunities to vet the artifacts for
quality and excellence. DoD ensures that the product must pass
quality and excellence checks before being released. P11 explained:
“Technical excellence is also controlled by the “Definition of Done’,
which is a set of quality checks to make sure code and other artifacts
meet our requirements for quality.” P4 explained that the control
of excellence does not supersede the people factors: “We control
technical excellence via the Definition of Done, but as I mentioned

How Do Agile Practitioners Interpret and Foster “Technical Excellence™?

before, we need to invest in people. We need to coach them to be
technically excellent.”

Control of Excellence: DoDs are measures to enforce techni-
cal excellence in every development iteration. However, DoD
is only a control mechanism for excellence. Excellence is cre-
ated by the people and an organizational environment that
advocate for excellence.

Discussion of control of excellence. Some researchers use a multi-
level approach to describe doneness, including story, sprint, release,
or project. DoD uses a variety of criteria that may include software
verification and validation, deploy, code inspection, test process
quality, regulatory compliance, software architecture design, pro-
cess management, configuration management and non-functional
requirements. However, there is little agreement between done
criteria in the various studies of DoD [42]. DoD is a key aspect
of technical excellence, and represents a place where developers
evaluate their work. However, there’s no agreement on standard
criteria for DoD.

Recommendation 6: Agile teams should develop explicit, ro-
bust, and sustainable criteria for DoD; established criteria for
DoD support technical excellence both by providing a con-
sistent standard of quality for work (through which the or-
ganization communicates its expectations to individuals and
teams) but also because once institutionalized, the DoD is itself
subject to continuous improvement processes.

The recommendations of our study are a starting point to create
awareness for technical excellence for organizations adopting ag-
ile. At this stage, the recommendations are derived from our data
and analysis but not having an operational or concrete plans for
implementations. This due to the nature of the questions we asked
our participants and the scope of our research. We focused on the
definition, but not on the operationalization of the Principle 9.

Not all our findings and recommendations are entirely new. Quite
on the contrary, some of them have been advocated by practitioners
and are known to agile researchers. Our contribution is collecting
and providing empirical evidence on how Principle 9 is inter-
preted and foster in practice, creating a single contribution that
demonstrates agile affinity for excellence.

5 LIMITATIONS AND VALIDITY

The following methodological issues may impact the conclusions
we draw from the data:

Scrum-focused data: All our participants practice Scrum, which
was not intended, but illustrates the popularity of this agile imple-
mentation in the industry. Given this constraint in our sample, our
findings may not be generalizable to non-Scrum applications.

No observation data: The research question two was investigated
using evidence-based practices and not direct observations of agile
teams. Direct observations may yield additional findings. The data
gathered for this question reflect only how our participants believe
technical excellence is nurtured, and not their actual practices.

Interviewee Transcript Review: This happens when the interviews
transcripts have become available [18]. We asked our participants
to review the transcripts of their interviews. Eighteen respondents

indicated that their transcripts were accurate, reflecting their re-
sponses; two did not respond.

Member validation. We opted for member validation for the val-
idation of our findings. Member validation involves sharing re-
search findings with the participants at the end of the study, and
it is intended as a verification procedure to enhance the study’s
credibility [39]. We invited all our interviewees to focus groups.
However, only six participated in this exercise from the twenty
invited. We arranged two focus groups, one with four and the other
with two participants. We ended up with this configuration due to
the participant availability. Participants were presented with our
interpretations of the data and invited to comment on the findings.
The participants of these focus groups were given the opportunity
to either confirm or deny that the summaries of findings reflect
their views, feelings and experiences. The focus group sessions for
this study were constructive and very supportive of the findings.
We made minor revisions according to the feedback we received in
the two sessions, but there were no major changes to the findings.
We made the two focus groups transcripts available here .

Saturation. A common standard for conducting qualitative re-
search [38] is saturation, that involves adding more participants to
the sample until reaching a point where no new additional codes,
themes, or information emerges. We reached saturation when new
data analysis became redundant with themes already identified.

Verifiability. To allow the verifiability of our data, we made it
available here ?; to preserve the anonymity of our participants, we
anonymized the interview transcripts.

6 CONCLUSION

Agile has become the de facto framework for delivering software.
This popularity calls for more dissection of agile values and princi-
ples to create detailed knowledge and actionable recommendations
for practitioners of agile. Technical excellence is to deliver sustain-
able software (future-proof design) with high-quality code (simple
and clean). This is achieved by software craftsmanship and sup-
ported by a mindset. Individuals should embrace excellence as a
core value. This cannot be achieved without being empowered and
a working environment that operate based on openness. Organiza-
tions adopting agile should be aware that technical excellence is a
culture that should be nurtured continuously.

ACKNOWLEDGMENTS

We would like to thank our interviewees and the focus group par-
ticipants for their time and effort for making this study possible.

REFERENCES

[1] PervaizK Ahmed, Ann YE Loh, and Mohamed Zairi. 1999. Cultures for continuous
improvement and learning. Total Quality Management 10, 4-5 (1999), 426—-434.

[2] Adam Alami. 2020. The Social, Organizational and Disciplinary Aspects of
Quality in Free and Open Source Software Communities. (2020).

[3] Gloria Arcos-Medina and David Mauricio. 2019. Aspects of software quality
applied to the process of agile software development: a systematic literature
review. International Journal of System Assurance Engineering and Management
10, 5 (2019), 867-897.

[4] Vebjorn Berg, Jorgen Birkeland, Anh Nguyen-Duc, Ilias O Pappas, and Letizia
Jaccheri. 2020. Achieving agility and quality in product development-an empirical
study of hardware startups. Journal of Systems and Software 167 (2020), 110599.

Uhttps://figshare.com/s/0f30e59c85¢2b145¢019
2https://figshare.com/s/5798cc8e800a00429¢0f

https://figshare.com/s/0f30e59c85c2b145e019
https://figshare.com/s/5798cc8e800a00429c0f

[5] John Bessant and David Francis. 1999. Developing strategic continuous improve-

ment capability. International journal of operations & production management 19,
11 (1999), 1106-1119.

Nadia Bhuiyan and Amit Baghel. 2005. An overview of continuous improvement:
from the past to the present. Management decision (2005).

Barry Boehm. 2002. Get ready for agile methods, with care. Computer 35, 1
(2002), 64-69.

André M Carvalho, Paulo Sampaio, Eric Rebentisch, Jodao Alvaro Carvalho, and
Pedro Saraiva. 2019. Operational excellence, organisational culture and agility:
the missing link? Total Quality Management & Business Excellence 30, 13-14
(2019), 1495-1514.

Adnan Causevic, Daniel Sundmark, and Sasikumar Punnekkat. 2011. Factors
limiting industrial adoption of test driven development: A systematic review. In
2011 Fourth IEEE International Conference on Software Testing, Verification and
Validation. IEEE, 337-346.

Jan Chong and Tom Hurlbutt. 2007. The social dynamics of pair programming. In
29th International Conference on Software Engineering (ICSE’07). IEEE, 354-363.
Alistair Cockburn. 2002. Agile software development joins the" would-be" crowd.
Cutter IT Journal 15, 1 (2002), 6—12.

IEEE Standards Coordinating Committee et al. 1990. IEEE standard glossary of
software engineering terminology (IEEE Std 610.12-1990). Los Alamitos. CA:
IEEE Computer Society 169 (1990), 132.

Daniela S Cruzes and Tore Dyba. 2011. Recommended steps for thematic synthesis
in software engineering. In 2011 international symposium on empirical software
engineering and measurement. IEEE, 275-284.

Torgeir Dingseyr, Sridhar Nerur, VenuGopal Balijepally, and Nils Brede Moe.
2012. A decade of agile methodologies: Towards explaining agile software devel-
opment.

Tore Dyba and Torgeir Dingseyr. 2008. Empirical studies of agile software
development: A systematic review. Information and software technology 50, 9-10
(2008), 833-859.

Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

Martin Fowler, Jim Highsmith, et al. 2001. The agile manifesto. Software Devel-
opment 9, 8 (2001), 28-35.

Hadass Goldblatt, Orit Karnieli-Miller, and Melanie Neumann. 2011. Sharing qual-
itative research findings with participants: Study experiences of methodological
and ethical dilemmas. Patient education and counseling 82, 3 (2011), 389-395.

Jo E Hannay, Tore Dyb4, Erik Arisholm, and Dag IK Sjeberg. 2009. The effective-
ness of pair programming: A meta-analysis. Information and Software Technology
51,7 (2009), 1110-1122.

Rashina Hoda, Norsaremah Salleh, and John Grundy. 2018. The rise and evolution
of agile software development. IEEE software 35, 5 (2018), 58—63.

Philipp Hohl, Jil Kliinder, Arie van Bennekum, Ryan Lockard, James Gifford,
Jiirgen Miinch, Michael Stupperich, and Kurt Schneider. 2018. Back to the future:
origins and directions of the “Agile Manifesto”-views of the originators. Journal
of Software Engineering Research and Development 6, 1 (2018), 1-27.

Hanna Hulkko and Pekka Abrahamsson. 2005. A multiple case study on the
impact of pair programming on product quality. In Proceedings of the 27th inter-

Alami and Paasivaara

13, 3 (2008), 289-302.

David Lorge Parnas and Mark Lawford. 2003. The role of inspection in software
quality assurance. IEEE Transactions on Software engineering 29, 8 (2003), 674-676.

Lutz Prechelt, Holger Schmeisky, and Franz Zieris. 2016. Quality experience: a
grounded theory of successful agile projects without dedicated testers. In 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE). IEEE,
1017-1027.

Bill Pyritz. 2003. Craftsmanship versus engineering: Computer programming—An
art or a science? Bell Labs technical journal 8, 3 (2003), 101-104.

Paula Rachow, Sandra Schréder, and Matthias Riebisch. 2018. Missing clean code
acceptance and support in practice-an empirical study. In 2018 25th Australasian
Software Engineering Conference (ASWEC). IEEE, 131-140.

Benjamin Saunders, Julius Sim, Tom Kingstone, Shula Baker, Jackie Waterfield,
Bernadette Bartlam, Heather Burroughs, and Clare Jinks. 2018. Saturation in qual-
itative research: exploring its conceptualization and operationalization. Quality
& quantity 52, 4 (2018), 1893-1907.

Thomas A Schwandt. 2014. The Sage dictionary of qualitative inquiry. Sage
publications.

Robert C Seacord, Joseph Elm, Wolf Goethert, Grace A Lewis, Daniel Plakosh, John
Robert, Lutz Wrage, and Mikael Lindvall. 2003. Measuring software sustainability.
In International Conference on Software Maintenance, 2003. ICSM 2003. Proceedings.
IEEE, 450-459.

Normand Séguin, Guy Tremblay, and Houda Bagane. 2012. Agile principles as
software engineering principles: An analysis. In International Conference on Agile
Software Development. Springer, 1-15.

Ana Silva, Thalles Araujo, Jodo Nunes, Mirko Perkusich, Ednaldo Dilorenzo,
Hyggo Almeida, and Angelo Perkusich. 2017. A systematic review on the use
of Definition of Done on agile software development projects. In Proceedings
of the 21st International Conference on Evaluation and Assessment in Software
Engineering. 364-373.

Jamie Stevenson and Murray Wood. 2018. Recognising object-oriented software
design quality: a practitioner-based questionnaire survey. Software Quality
Journal 26, 2 (2018), 321-365.

Marta-Christina Suciu. 2017. The culture of excellence. Challenges and opportu-
nities during changing times. In Proceedings of the International Conference on
Business Excellence, Vol. 11. Sciendo, 322-331.

Olli P Timperi. 2004. An overview of quality assurance practices in agile method-
ologies. In Seminar in Software Engineering.

John F Tripp and Deborah J Armstrong. 2014. Exploring the relationship between
organizational adoption motives and the tailoring of agile methods. In 2014 47th
Hawaii international conference on system sciences. IEEE, 4799-4806.

Colin C Venters, Caroline Jay, LMS Lau, Michael K Griffiths, Violeta Holmes,
Rupert R Ward, Jim Austin, Charlie E Dibsdale, and Jie Xu. 2014. Software sus-
tainability: The modern tower of babel. In CEUR Workshop Proceedings, Vol. 1216.
CEUR, 7-12.

Jennifer R Wolgemuth, Zeynep Erdil-Moody, Tara Opsal, Jennifer E Cross, Tanya
Kaanta, Ellyn M Dickmann, and Soria Colomer. 2015. Participants’ experiences
of the qualitative interview: Considering the importance of research paradigms.
Qualitative research 15, 3 (2015), 351-372.

national conference on Software engineering. 495-504.

Maarit Laanti, Jouni Simild, and Pekka Abrahamsson. 2013. Definitions of agile
software development and agility. In European Conference on Software Process
Improvement. Springer, 247-258.

[24] Thomas D LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining mental
models: a study of developer work habits. In Proceedings of the 28th international
conference on Software engineering. 492-501.

Bjorn Latte, Séren Henning, and Maik Wojcieszak. 2019. Clean code: On the use
of practices and tools to produce maintainable code for long-living. (2019).

[26] Lech Madeyski. 2009. Test-driven development: An empirical evaluation of agile
practice. Springer Science & Business Media.

Robert C Martin. 2013. Clean Code-Refactoring, Patterns, Testen und Techniken
fur sauberen Code: Deutsche Ausgabe. MITP-Verlags GmbH & Co. KG.

[28] Robert C Martin. 2018. Clean architecture: a craftsman’s guide to software structure
and design. Prentice Hall.

Pete McBreen. 2002. Software craftsmanship: The new imperative. Addison-Wesley
Professional.

[30] Tom Mens and Tom Tourwé. 2004. A survey of software refactoring. IEEE
Transactions on software engineering 30, 2 (2004), 126-139.

Martin Michlmayr. 2007. Quality improvement in volunteer free and open source
software projects—exploring the impact of release management. (2007).
Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto Sillitti, and Gi-
ancarlo Succi. 2007. A case study on the impact of refactoring on quality and
productivity in an agile team. In IFIP Central and East European Conference on
Software Engineering Techniques. Springer, 252-266.

Nachiappan Nagappan, E Michael Maximilien, Thirumalesh Bhat, and Laurie
Williams. 2008. Realizing quality improvement through test driven development:
results and experiences of four industrial teams. Empirical Software Engineering

[23

[25

[27

[29

[31

[32

[33

	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Craftsmanship
	2.2 Quality in Agile
	2.3 The need to define ``technical excellence'' in agile

	3 Methods
	4 Findings
	4.1 Software Craftsmanship
	4.2 Software Quality
	4.3 Mindset
	4.4 Engineering practices
	4.5 Fostering Technical Excellence

	5 Limitations and Validity
	6 Conclusion
	Acknowledgments
	References

