
JSS Journal of Statistical Software
May 2021, Volume 98, Issue 8. doi: 10.18637/jss.v098.i08

Analysis of Multiplex Social Networks with R

Matteo Magnani
InfoLab

Uppsala University

Luca Rossi
NERDS group

IT University of Copenhagen

Davide Vega
InfoLab

Uppsala University

Abstract

Multiplex social networks are characterized by a common set of actors connected
through multiple types of relations. The multinet package provides a set of R functions
to analyze multiplex social networks within the more general framework of multilayer
networks, where each type of relation is represented as a layer in the network. The
package contains functions to import/export, create and manipulate multilayer networks,
implementations of several state-of-the-art multiplex network analysis algorithms, e.g., for
centrality measures, layer comparison, community detection and visualization. Internally,
the package is mainly written in native C++ and integrated with R using the Rcpp
package.

Keywords: networks, multiplex, multilayer, social network analysis, R.

1. Introduction and background

Multiplex social networks are characterized by a common set of actors connected through
multiple types of relations. In this article we introduce multinet (Magnani, Rossi, Hanteer,
and Vega 2021b), an R (R Core Team 2021) package to analyze multiplex social networks
represented within the more general framework of multilayer networks. This article is based
on version 4.0, available on the Comprehensive R Archive Network (CRAN) at https://
CRAN.R-project.org/package=multinet.
In the multilayer framework, each relation type is represented as a layer, so that for example
a layer can be used to store friendship ties while another layer contains working ties among
the same set of actors. Such a network can be used to study the relationships between these
two types of social ties, for example counting how often colleagues are also friends, and also to
study the relationships between actors and types of relations, for example whether a specific
actor tends to befriend all her co-workers or to keep these two social contexts separated.

https://doi.org/10.18637/jss.v098.i08
https://orcid.org/0000-0002-3437-9018
https://orcid.org/0000-0002-3629-2039
https://orcid.org/0000-0001-8795-1957
https://CRAN.R-project.org/package=multinet
https://CRAN.R-project.org/package=multinet

2 Analysis of Multiplex Social Networks with R

Figure 1: A multiplex network.

Throughout this work we will follow the terminology described in Dickison, Magnani, and
Rossi (2016). In particular, we will use the term “multilayer social network” to indicate a
network where vertices (V) are organized into multiple layers (L) and each vertex corresponds
to an actor (A), where the same actor can be mapped to vertices in different layers. This
model, when used to describe multiplex networks, is a simplified version of the models in
Magnani and Rossi (2011), where the same actor can correspond to multiple vertices in the
same layer, and Kivelä, Arenas, Barthelemy, Gleeson, Moreno, and Porter (2014), where
layers can be identified by an array of features called aspects (for example, each layer may
correspond to both, a type of social relationship and a time).

Definition 1 (Multiplex network) A multiplex network is a tuple (A,L, V, E) where A is
a set of actors, L is a set of layers, V ⊆ A × L and E ⊆ V × V where ∀(a1, l1, a2, l2) ∈ E :
l1 = l2.

In Figure 1 we have represented a multiplex network with two layers, six actors ({a1, . . . , a6}),
ten vertices and eight edges, four in each layer. As in multiplex networks each edge exists
inside a specific layer, we can also represent an edge as an element of A×A×L, e.g., (a1, a2, l).
However, multinet can also represent more general multilayer networks with edges connecting
different layers: as shown in the next section, edges are represented as in the definition above,
including two actors and two layers. Please notice that in multinet actors do not have to be
present in all layers: for each actor we can specify the layers where it exists.
As we will see in the following, multinet allows the definition of directed layers, containing
directed edges, and also attributes, that we can use to represent edge weights.

1.1. Related software

Several packages for network analysis are available in R. Notable examples are statnet (Hand-
cock, Hunter, Butts, Goodreau, and Morris 2003), containing a collection of packages such as
sna (Butts 2020b, 2008b), network (Butts 2020a, 2008a) and ergm (Hunter, Handcock, Butts,
Goodreau, and Morris 2008), igraph (Csardi and Nepusz 2006) and RSiena (Ripley, Snijders,
Bóda, Vörös, and Preciado 2021). multinet complements this collection with several functions
to analyze multiplex networks. In particular, the package provides functions focusing on the
multilayer structure of the networks, for example to find how relevant some layers are for an
actor or to discover communities spanning multiple layers. Individual layers of a multiplex
network, each corresponding to a simple network, can instead be analyzed using the above-

Journal of Statistical Software 3

mentioned packages, and in particular multinet contains functions to translate the layers into
igraph objects. The methods provided by multinet are distinct from the ones provided by
multiplex (Rivero Ostoic 2020). One can also be interested in the R packages MuxViz (De
Domenico and Bertagnolli 2021) and mully (Hammoud 2021).

1.2. Replicability

The order in which actors, layers, vertices, and edges are stored in the network may change if
the network is generated again, for example reading it again from file. In addition, the gener-
ation function (grow_ml()), the position of vertices in the visualizations and the community
detection methods are non-deterministic.

2. Basic data management
The multinet package defines a class to represent multilayer networks (‘Rcpp_RMLNetwork’).
Objects of this type are used as input or returned as output by most functions provided by
the package.
Internally, all the objects constituting the network are stored in sets with logarithmic lookup
and random access time, implemented as skip lists. This solution is (linearly) less efficient
than using a set in the C++ standard library, but supports quick random access to the objects
in the set, which is important when synthetic networks are generated. For efficiency reasons,
most of the functions in the package are written in native C++ and integrated with R using
the Rcpp package (Eddelbuettel and François 2011). Storage requirements for the network
class are on the order of the number of vertices plus the total number of edges (inter-layer
and intra-layer).
The ml_empty() function returns an empty multilayer network, not containing any actor,
layer, vertex or edge1. The function accepts an optional character argument name, indicating
the name of the network.

R> ml_empty()

Multilayer Network [0 actors, 0 layers, 0 vertices, 0 edges (0,0)]

For convenience, the call to any of the network’s constructors and readers returns an S4 object
with an associated S3 print method. Otherwise, all the other functions’ return types are, by
design, either (i) a named list of elements (if the data is not relational) or (ii) a data frame.

2.1. Adding, retrieving and deleting network objects

Objects in an ‘Rcpp_RMLNetwork’ object can be queried using a set of utility functions. Built-
in functions for retrieving and updating objects have the same signature name, following the
pattern: <op>_<objects>_ml, where <objects> can be actors, layers, vertices or edges,
and <op> is either blank, if we want to list the objects, or is the name of a specific operation:
num, to compute the number of objects of the requested type, add or delete. If the number

1Other ways to create networks, explained later, are the function read_ml() to load networks from files
and the grow_ml() function to produce synthetic networks.

4 Analysis of Multiplex Social Networks with R

of actors is requested without specifying any layer, the total number of actors is returned,
including those not present in any layer.
All the aforementioned functions require an ‘Rcpp_RMLNetwork’ object as first argument. List-
ing functions operating on actors and vertices also require an array of layer names: only the
actors/vertices in the input layers are returned. If the array is empty, all the actors/vertices
in the network are returned. Listing functions operating on edges, instead, require two pa-
rameters: one indicating the layer(s) from where the edges to be extracted start, and a second
one with the layer(s) where the edges to be extracted end. If an empty list of starting layers is
passed (default), all the layers are considered, while if an empty list of ending layers is passed
(default), the ending layers are set as equal to those in the first parameter.
Now we can show a small example of how these functions work together. We start by cre-
ating an empty network with two layers, named UL (upper layer) and BL (bottom layer),
respectively.

R> net <- ml_empty()
R> add_layers_ml(net, c("UL", "BL"))
R> layers_ml(net)

[1] "UL" "BL"

New layers are by default undirected, that is, edges added to them are treated as undi-
rected. Directed layers are created by setting the directed parameter to TRUE, or using the
set_directed_ml() function, which is necessary if we want to set directed intralayer edges.
This function takes an ‘Rcpp_RMLNetwork’ object and a directionality data frame as in-
put. The next fragment of code changes the directionality of the inter-layer edges between
the bottom and upper layers.

R> dir <- data.frame(layer1 = "UL", layer2 = "BL", dir = 1)
R> set_directed_ml(net, dir)
R> is_directed_ml(net)

layer1 layer2 dir
1 UL UL 0
2 UL BL 1
3 BL UL 1
4 BL BL 0

The next step to populate a network is to add vertices, where a pair actor-layer defines a
vertex. Actors are identified by their name, and are created automatically when vertices are
added to the network.

R> vertices <- data.frame(actors = c("A", "B", "C", "A", "B", "C"),
+ layers = c("UL", "UL", "UL", "BL", "BL", "BL"))
R> vertices

actors layers
1 A UL

Journal of Statistical Software 5

2 B UL
3 C UL
4 A BL
5 B BL
6 C BL

R> add_vertices_ml(net, vertices)
R> vertices_ml(net)

actor layer
1 C UL
2 B UL
3 A UL
4 C BL
5 B BL
6 A BL

From the previous command you can see how the objects in a network are stored into (math-
ematical) sets, that is, they are unordered: we cannot assume that actor A will always be
listed before actor B, and we have to sort the results if we want to keep a specific order.
We can now add some edges, in this case between all the vertices in the upper layer and
between vertices A and C in the bottom one. Inter-layer edges, although supported, are not
exemplified in this article focusing on multiplex networks.

R> edges <- data.frame(actors_from = c("A", "A", "B", "A"),
+ layers_from = c("UL", "UL", "UL", "BL"),
+ actors_to = c("B", "C", "C", "C"),
+ layers_to = c("UL", "UL", "UL", "BL"))
R> edges

actors_from layers_from actors_to layers_to
1 A UL B UL
2 A UL C UL
3 B UL C UL
4 A BL C BL

Now we can add these edges to the network, and observe the result.

R> add_edges_ml(net, edges)
R> edges_ml(net)

from_actor from_layer to_actor to_layer dir
1 B UL C UL 0
2 A UL C UL 0
3 A UL B UL 0
4 A BL C BL 0

6 Analysis of Multiplex Social Networks with R

UL

BL

Figure 2: A visualization of our first multiplex network.

R> edges_ml(net, layers1 = "BL")

from_actor from_layer to_actor to_layer dir
1 A BL C BL 0

In Figure 2 we can see a plot of the network we just created. More details on visualizing
multiplex networks are provided later.

2.2. Handling attributes

When we study a multiplex network, we can be interested in representing different types of
actors, add some categorical attribute to vertices or use a numerical value to represent the
strength of the ties. The multinet package provides a set of functions to create attributes and
add and retrieve attribute values. attributes_ml() returns a data frame with two columns,
the name of the attribute and its type. As most of the functions in the package, the function
accepts a filtering parameter, target, to limit the query to specific types of objects: “actor”
(attributes attached to actors), “vertex” (attributes attached to vertices) or “edge” (attributes
attached to edges). All the functions handling attributes use target = "actor" by default.

R> attributes_ml(net)

Journal of Statistical Software 7

[1] name type
<0 rows> (or 0-length row.names)

The list of attributes of a newly created network is empty. We can create attributes by calling
the add_attributes_ml() function and passing an ‘Rcpp_RMLNetwork’ object, names of the
attributes, types of the attributes (“string” or “numeric”) and the target as parameters.
For example, the following code creates two string attributes for actors (notice that "actor"
is the default target, and "string" is the default attribute type):

R> add_attributes_ml(net, c("name", "surname"))
R> attributes_ml(net)

name type
1 surname string
2 name string

Using the add_attributes_ml() function we can also specify different attributes for vertices
and edges on individual layers, for which we must supply the layer parameter. If we want,
instead, to manage inter-layer edges two parameters are needed, layer1 and layer2, so that
the attribute only applies to inter-layer edges from the first layer to the second and vice-versa.
The example below shows how to use these parameters in practice to create a string attribute
for the vertices in the bottom layer.

R> add_attributes_ml(net, "username", type = "string", target = "vertex",
+ layer = "BL")
R> attributes_ml(net, target = "vertex")

layer name type
1 BL username string

At this point the get_values_ml() and set_values_ml() functions can be used to set and
retrieve attribute values. Notice that if an attribute has not been set, then a default value is
returned, in particular an empty string in the following example.

R> set_values_ml(net, "name", c("A", "B"), values = c("Alice", "Scrondo"))
R> get_values_ml(net, "name", c("A", "C"))

value
1 Alice
2

2.3. Input/output

In the previous sections we have introduced the ‘Rcpp_RMLNetwork’ class and various methods
to modify ‘Rcpp_RMLNetwork’ objects. However, users would more often create objects of class
‘Rcpp_RMLNetwork’ by reading them from a file, artificially generating them, or loading some
of the datasets directly available in the package.

8 Analysis of Multiplex Social Networks with R

The multinet package provides two input/output functions: read_ml() and write_ml().
Networks can be read from files using a package-specific text-based format, and written
to files using the same format or the GraphML syntax (GraphML Working Group 2007).
GraphML is extensively used, e.g., by graph software such as iGraph, Gephy, yEd, as well
as in the boost C++ libraries. The multinet format is not compatible with other packages,
but it allows us to specify various details, such as the directionality of intra-layer edges and
attributes, as in the following example:

#VERSION
3.0

#TYPE
multiplex

#LAYERS
research, UNDIRECTED
twitter, DIRECTED

#ACTOR ATTRIBUTES
affiliation,STRING

#VERTEX ATTRIBUTES
twitter, num_tweets, NUMERIC

#EDGE ATTRIBUTES
research, num_publications, NUMERIC

#ACTORS
Luca,ITU
Matteo,UU
Davide,UU

#VERTICES
Luca,twitter,53
Matteo,twitter,13

#EDGES
Luca,Matteo,research,9
Luca,Matteo,twitter

When we read this multiplex network we can also specify that we want all the actors to be
present in all the layers, using the align parameter. The difference between the two obtained
networks can be seen by checking the basic network statistics:

R> net <- read_ml(file = file.path("Data", "example_io.mpx"))
R> net

Multilayer Network [3 actors, 2 layers, 4 vertices, 2 edges (2,0)]

Journal of Statistical Software 9

R> aligned_net <- read_ml(file.path("Data", "example_io.mpx"), align = TRUE)
R> aligned_net

Multilayer Network [3 actors, 2 layers, 6 vertices, 2 edges (2,0)]

Both ‘Rcpp_RMLNetwork’ objects, net and aligned_net, have two layers and three actors;
but the align = TRUE parameter in the second call to read_ml() adds a new vertex to each
layer for every actor in the input file.
When no special information is needed, e.g., there are no attributes, no isolated nodes and
all edges are undirected, the format becomes as simple as a list of layer-annotated edges:

Luca,Matteo,research
Davide,Matteo,research
Luca,Matteo,friendship

A multiplex network can also be created starting from igraph objects, where each graph
represents a layer. For this to be possible, the vertices of the graphs must have a name
attribute indicating the name of the corresponding actor.
For example, consider the following graphs:

R> l1 <- read.graph(file.path("Data", "example_igraph1.dat"),
+ format = "ncol")
R> l1

IGRAPH 86175e1 UN-- 3 3 --
+ attr: name (v/c)
+ edges from 86175e1 (vertex names):
[1] A--B A--C B--C

R> l2 <- read.graph(file.path("Data", "example_igraph2.dat"),
+ format = "ncol")
R> l2

IGRAPH 6542a24 UN-- 2 1 --
+ attr: name (v/c)
+ edge from 6542a24 (vertex names):
[1] A--C

They can be added as layers of a multiplex network as follows:

R> n <- ml_empty()
R> add_igraph_layer_ml(n, l1, "layer1")
R> add_igraph_layer_ml(n, l2, "layer2")
R> n

Multilayer Network [3 actors, 2 layers, 5 vertices, 4 edges (4,0)]

10 Analysis of Multiplex Social Networks with R

R> edges_ml(n)

from_actor from_layer to_actor to_layer dir
1 A layer2 C layer2 0
2 B layer1 C layer1 0
3 A layer1 C layer1 0
4 A layer1 B layer1 0

2.4. Generation

The package also provides basic functionality to generate synthetic multiplex networks, fol-
lowing the approach proposed by Magnani and Rossi (2013a). This problem is approached
by allowing layers to evolve at different rates, based on internal or external dynamics. In-
ternal dynamics can be modelled using existing network models (for example, preferential
attachment), assuming that how the layer grows can be explained only looking at the layer
itself. External dynamics involve importing edges from other layers. Within this perspective
the intuition is that relations existing on a layer might naturally expand over time into other
layers (e.g., co-workers starting to add each other as friends on Facebook). The package also
allows different growing rates for different layers.
In the following example we create a multiplex network with 3 layers based on the preferential
attachment (Barabási and Albert 1999) and the Erdős-Renyi models (Erdős and Rényi 1960).
The first and last layers will only evolve according to their internal models (pr.external =
0), while the second will have a probability of .8 of evolving according to external dynamics,
that is, importing edges from other layers (pr.external = 0.8). Note that all the probability
vectors must have the same number of fields, one for each layer. By defining pr.internal and
pr.external, we are also implicitly defining pr.no.action (1 minus the other probabilities,
for each field/layer). In the example, the third layer grows at a lower speed than the others,
having an (implicitly defined) pr.no.action = 0.1.

R> models_mix <- c(evolution_pa_ml(3, 1), evolution_er_ml(100),
+ evolution_er_ml(100))
R> pr.internal <- c(1, 0.2, 0.9)
R> pr.external <- c(0, 0.8, 0)

The probability to import edges from the other layers in case external events happen is
specified using a dependency matrix. The following matrix specifies that the second layer
should import edges from the first layer with probability 1 if an external evolutionary event
is triggered. It is expected that the values on each row of the matrix add to 1.

R> dependency <- matrix(c(1, 1, 0, 0, 0, 0, 0, 0, 1), 3, 3)
R> dependency

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 1 0 0
[3,] 0 0 1

Journal of Statistical Software 11

We can now generate the network, with 100 actors and 100 growing steps.

R> ml_generated_mix <- grow_ml(100, 100, models_mix, pr.internal,
+ pr.external, dependency)
R> num_edges_ml(ml_generated_mix, layers1 = "l0")

[1] 25

R> num_edges_ml(ml_generated_mix, layers1 = "l1")

[1] 90

R> num_edges_ml(ml_generated_mix, layers1 = "l2")

[1] 100

2.5. Predefined data

Another way to obtain network data without having to manually construct it is to load some
well-known networks already available inside the package. These are loaded using functions
beginning with “ml”, followed by the name of the network, e.g., ml_florentine().
In the remainder of the article we will use the Aarhus University Computer Science (AUCS)
network, included in the current version of the multinet package as an example dataset and
often used in the literature to test new methods. The data, described by Dickison et al.
(2016), were collected at a university research department and include five types of online
and offline relations. The population consists of 61 employees, incuding professors, postdocs,
PhD students and administrative staff.

R> net <- ml_aucs()
R> net

Multilayer Network [61 actors, 5 layers, 224 vertices, 620 edges (620,0)]

R> layers_ml(net)

[1] "leisure" "coauthor" "lunch" "work" "facebook"

3. Data exploration
multinet provides a basic visualization function. The multiforce layout, used for all graph
visualizations in this article, is described in Fatemi, Magnani, and Salehi (2018) and works
as shown in Figure 3. Inside each layer the algorithm uses a force-based approach as in the
commonly used Fruchterman-Reingold layout, to keep adjacent nodes close to each other,
but in addition it also applies forces to the vertices so that they remain aligned to vertices

12 Analysis of Multiplex Social Networks with R

Figure 3: An explanation of multiforce.

with the same actor on other layers. These two intra-layer and inter-layer forces can also
be weighted. In addition, in case the network contains multiple components it is possible to
specify a gravity force, that attracts the vertices towards the center of their layer so that
the distance between the components is controlled.
If the graph is very small we can produce a default visualization just by executing plot(net),
which in turns would use the multiforce layout with default settings, but to make the plot of
the AUCS network more readable we shall add a few details. In particular: (1) we explicitly
compute a layout that draws each layer independently of the others, as declared by setting
inter-layer weights (w_inter) to 0, (2) we plot the layers on two rows, to better use the
space on the page (grid), (3) we remove the labels from the vertices, to increase readability
(vertex.labels = ""), and (4) we add a legend with the names of the layers2. The result
of the following command is shown in Figure 4.

R> l <- layout_multiforce_ml(net, w_inter = 0, gravity = 1)
R> plot(net, layout = l, grid = c(2, 3), vertex.labels = "",
+ legend.x = "bottomright", legend.inset = c(0.05, 0.05))

As another example, we may want to align all the actors with respect to their layout in the
first layer. To achieve this we can set to 0 all the intra-layer weights in the other layers, so
that they do not affect the layout. However, to obtain a good layout we may have to repeat
the process and sometimes update some parameters. First, the iterative way in which forces
are computed may result in small variations with respect to the position of the same actor on
different layers. Second, the results of different executions are different in general, because
the initial positions of the vertices are chosen at random. Finally, one should consider that
not all actors exist in all layers; for example, if we set intra-layer forces to 0 all actors that
are only present on that layer will end up in a random position. The result of the following
layout is shown in Figure 5; please notice that not all actors are present on all layers in this
network.

R> l2 <- layout_multiforce_ml(net, w_inter = 1, w_in = c(1, 0, 0, 0, 0),
+ gravity = c(1, 0, 0, 0, 0))

2An aligned layout, with the same actor visualized in approximately the same position in all layers, can be
achieved by setting a high value of w_inter.

Journal of Statistical Software 13

leisure
coauthor
lunch
work
facebook

leisure coauthor lunch

work facebook

Figure 4: A basic visualization of the AUCS network.

leisure
coauthor
lunch
work
facebook

leisure coauthor lunch

work facebook

Figure 5: An aligned visualization of the AUCS network, following the layout in the first
layer.

14 Analysis of Multiplex Social Networks with R

leisure coauthor lunch

work facebook

Admin

Assistant

Associate

Emeritus

NA

PhD

Phd (visiting)

Postdoc

Professor

leisure

coauthor

lunch

work

facebook

Figure 6: A visualization of the AUCS network where vertex colors represent roles.

We can also use the attributes to inspect the relationship between the role of the actors and
the topology of the network. We start by retrieving the role of each vertex (vertex_roles).

R> roles <- get_values_ml(net, actors = vertices_ml(net)[[1]],
+ attribute = "role")
R> head(roles)

value
1 PhD
2 Postdoc
3 PhD
4 PhD
5 Postdoc
6 Postdoc

The utility function values2graphics() processes the attribute values and generates infor-
mation that can be used to plot these values in the network drawing. The result is shown in
Figure 6.

R> gr <- values2graphics(roles)
R> plot(net, layout = l, grid = c(2, 3), vertex.labels = "",
+ vertex.color = gr$color)

Journal of Statistical Software 15

R> legend("bottomright", legend = gr$legend.text, col = gr$legend.col,
+ pt.bg = gr$legend.col, pch = gr$legend.pch, bty = "n", pt.cex = 1,
+ cex = 0.5, inset = c(0.05, 0.05))
R> legend("bottomright", legend = layers_ml(net), bty = "n", pch = 20,
+ pt.cex = 1, cex = 0.5, inset = c(0.2, 0.05))

4. Measuring a network
A traditional way of measuring a multiplex network is to focus on each layer at a time,
considering it as an independent graph. For example, the summary() function computes a
selection of measures on all the layers, and also on the flattened network.

R> summary(net)

n m dir nc slc dens cc apl dia
flat 61 620 0 1 61 0.33879781 0.4761508 2.062842 4
coauthor 25 21 0 8 6 0.07000000 0.4285714 1.500000 3
facebook 32 124 0 1 32 0.25000000 0.4805687 1.955645 4
leisure 47 88 0 2 44 0.08140611 0.3430657 3.115911 8
lunch 60 193 0 1 60 0.10903955 0.5689261 3.188701 7
work 60 194 0 1 60 0.10960452 0.3387863 2.390395 4

The columns indicate:

• n: order (number of vertices).

• m: size (number of edges).

• dir: directionality. In case of directed relations (e.g., sending a message to someone)
the value will be 1.

• nc: number of connected components. The number of subgraphs in which any two ver-
tices are connected to each other by paths. In case of directed layers, edge directionality
will be taken into account, thus the number of strong components will be reported.

• dens: density. The ratio between the number of edges and the number of possible edges.

• cc: clustering coefficient. The ratio between the triangles and the connected triples in
the layer. In case of directed layers, edges will be treated as undirected.

• apl: average path length. The average graph-distance between all pairs of vertices in
the layer.

• dia: diameter. The longest graph distance between any two vertices in the layer.

To compute other functions or perform another type of layer-by-layer analysis we can convert
the layers into igraph objects, using the as.igraph() function, for a single (group of) layer(s),
or the as.list() function to obtain a list with all the layers as igraph objects in addition to

16 Analysis of Multiplex Social Networks with R

flattened

degree

F
re

qu
en

cy

10 20 30 40 50

0
1

2
3

4
5

leisure

degree

F
re

qu
en

cy

2 4 6 8 10 12 14

0
5

10
15

20

coauthor

degree

F
re

qu
en

cy

1 2 3 4 5

0
5

10
15

20

lunch

degree
F

re
qu

en
cy

2 4 6 8 10 12 14

0
5

10
15

work

degree

F
re

qu
en

cy

0 5 10 15 20 25

0
2

4
6

8

facebook

degree

F
re

qu
en

cy

2 4 6 8 10 12 14

0
1

2
3

4

Figure 7: Frequency distribution for vertices degree on each layer.

the flattened network. Once the igraph objects have been generated, all the network measures
available in igraph can be computed. The following code, for example, uses igraph to compute
the degree centralization of the facebook layer:

R> layers <- as.list(net)
R> names(layers)

[1] "_flat_" "coauthor" "facebook" "leisure" "lunch" "work"

R> centralization.degree(layers[[3]])$centralization

[1] 0.233871

As another example of layer-by-layer analysis, Figure 7 shows the degree distribution of each
layer, and also the degree distribution of the flattened network.

4.1. Layer comparison

In addition to a layer-by-layer analysis, we can compare layers using several different ap-
proaches. All the methods mentioned in this section are explained and evaluated in Brodka,
Chmiel, Magnani, and Ragozini (2018).

Journal of Statistical Software 17

For example, to quantify the difference between the degree distributions in different layers we
can use the layer_comparison_ml() function to produce a table with pair-wise comparisons.
The following code computes the dissimilarity between degree distributions, computed using
the Jeffrey dissimilarity function (the higher the values, the more dissimilar the two layers).
In this case it is possible to observe how the degree distribution of work and coauthor
layers are remarkably similar pointing at similar network structures (probably with few highly
connected hubs) and how they are both dissimilar from, e.g., lunch that shows a different
network structure, probably shaped by different social dynamics.

R> layer_comparison_ml(net, method = "jeffrey.degree")

leisure coauthor lunch work facebook
leisure 0.0000000 0.4521076 1.3288250 0.2118452 1.0177980
coauthor 0.4521076 0.0000000 2.8966530 0.5917494 2.0214010
lunch 1.3288250 2.8966530 0.0000000 0.8372414 0.4207678
work 0.2118452 0.5917494 0.8372414 0.0000000 0.7106788
facebook 1.0177980 2.0214010 0.4207678 0.7106788 0.0000000

The layer_comparison_ml() function can also be used to compute multiplex-specific com-
parisons considering the fact that the same actors may be present on the different layers. In
fact, one important comparison can be made to check to what extent this is true:

R> layer_comparison_ml(net, method = "jaccard.actors")

leisure coauthor lunch work facebook
leisure 1.0000000 0.4117647 0.7833333 0.7833333 0.5192308
coauthor 0.4117647 1.0000000 0.4166667 0.4166667 0.2954545
lunch 0.7833333 0.4166667 1.0000000 0.9672131 0.5333333
work 0.7833333 0.4166667 0.9672131 1.0000000 0.5333333
facebook 0.5192308 0.2954545 0.5333333 0.5333333 1.0000000

The function returns 0 if there are no common actors between the pair of layers, and 1 if the
same actors are present in the two layers. If there is a strong overlapping between the actors,
then we can ask whether actors having a high (or low) degree on one layer behave similarly
in other layers. To do this we can compute the correlation between the degrees:

R> layer_comparison_ml(net, method = "pearson.degree")

leisure coauthor lunch work facebook
leisure 1.00000000 0.4808447 0.2815167 0.06805041 0.3781743
coauthor 0.48084471 1.0000000 0.1486368 0.42719422 0.5472774
lunch 0.28151667 0.1486368 1.0000000 0.24647515 0.3125598
work 0.06805041 0.4271942 0.2464752 1.00000000 0.5406011
facebook 0.37817432 0.5472774 0.3125598 0.54060113 1.0000000

The Pearson (or linear) correlation between the degree of actors in the two layers is in the
interval [−1, 1]. The smallest value (−1) indicates that high-degree actors in one layer are

18 Analysis of Multiplex Social Networks with R

low-degree in the other and vice versa, while the largest value (1) is returned if high-degree
(respectively, low-degree) actors in one layer are high-degree (respectively, low-degree) actors
in the other. It is important to note that the correlation only depends on the number of
incident edges for each pair (actor, layer), and not on which actors are adjacent: they can be
the same or different actors.
We can also check to what extent actors are adjacent to the same other actors in different
layers, by checking the amount of overlapping between edges in the two layers, which will be
0 if no actors that are adjacent in one layer are also adjacent in the other and 1 if all pairs of
actors are either adjacent in both layers or in none.
As an example of how to use these functions we can look at the relation between the layers
lunch and work. From the Jeffrey dissimilarity function we know that lunch and work show
a very different degree distribution. Nevertheless, looking at Jaccard overlapping on the
actors we also see that the two layers share many actors. This clearly rises the question if
those actors, that are present in both layers, behave in a similar way. Observing the Jaccard
overlapping of the edges we can see that while several edges actually exist in both layers (edge
overlap between lunch and work is actually the highest in the multilayer network) vertices
that are higly connected on a layer are not necessarily highly connected on the other layer.
This is compatible with the intuition obtained from the analysis of the degree distribution
similarity: the two layers, while composed largely by the same actors and with several edges
in common, are actually organized according to different social dynamics.

R> layer_comparison_ml(net, method = "jaccard.edges")

leisure coauthor lunch work facebook
leisure 1.0000000 0.10101010 0.27727273 0.20512821 0.15846995
coauthor 0.1010101 1.00000000 0.06467662 0.09137056 0.05839416
lunch 0.2772727 0.06467662 1.00000000 0.33910035 0.17843866
work 0.2051282 0.09137056 0.33910035 1.00000000 0.18656716
facebook 0.1584699 0.05839416 0.17843866 0.18656716 1.00000000

The package provides additional similarity functions, listed in Table 1.

4.2. Degree and degree deviation

Various functions can be used to measure individual actors. As a starting point, the following
is the list of highest-degree actors on the whole multiplex network:

R> deg <- degree_ml(net)
R> top_degrees <- head(deg[order(-deg)])
R> top_actors <- head(actors_ml(net)[order(-deg)])
R> top_actors

[1] "U4" "U67" "U91" "U79" "U123" "U110"

R> top_degrees

[1] 49 47 46 44 44 41

Journal of Statistical Software 19

Overlapping Distribution dissimilarity Correlation
jaccard.actors dissimilarity.degree pearson.degree
jaccard.edges KL.degree rho.degree
jaccard.triangles jeffrey.degree
coverage.actors
coverage.edges
coverage.triangles
sm.actors
sm.edges
sm.triangles
rr.actors
rr.edges
rr.triangles
kulczynski2.actors
kulczynski2.edges
kulczynski2.triangles
hamann.actors
hamann.edges
hamann.triangles

Table 1: Similarity functions provided in the package.

However, in a multiplex context degree becomes a layer-specific measure. We can no longer
just ask “who is the most central actor” but we should ask “who is the most central actor
on this layer?” Let us see how the most central actors look like when we “unpack” their
centrality on the different layers:

R> data.frame(
+ facebook = degree_ml(net, actors = top_actors, layers = "facebook"),
+ leisure = degree_ml(net, actors = top_actors, layers = "leisure"),
+ lunch = degree_ml(net, actors = top_actors, layers = "lunch"),
+ coauthor = degree_ml(net, actors = top_actors, layers = "coauthor"),
+ work = degree_ml(net, actors = top_actors, layers = "work"),
+ flat = top_degrees,
+ row.names = top_actors)

facebook leisure lunch coauthor work flat
U4 12 1 15 NA 21 49
U67 13 2 12 NA 20 47
U91 14 14 7 3 8 46
U79 15 7 13 NA 9 44
U123 11 NA 6 NA 27 44
U110 9 7 7 4 14 41

From the above result we can see how neighbors may not be equally distributed across the
layers. Actor U4, for example, has the largest degree within the 6 actors analyzed in both the
facebook layer and the flattened network. However, it has no presence in the coauthor layer

20 Analysis of Multiplex Social Networks with R

and a very small degree in the leisure layer. If we want to quantify to what extent actors
have similar or different degrees on the different (combinations of) layers, we can compute
the standard deviation of the degree:

R> sort(degree_deviation_ml(net, actors = top_actors))

[1] 3.310589 4.261455 5.230679 7.418895 8.133880 9.987993

However, degree deviation should be used with care, because high variability may be due to
differing densities in different layers.

4.3. Neighborhood and exclusive neighboorhood

The neighbors of an actor a are those distinct actors that are adjacent to a on a specific input
layer, or on a set of input layers. While on a single layer degree and neighborhood have the
same value, they can be different when multiple layers are taken into account, because the
same actors can be adjacent on multiple layers leading to a higher degree but not a higher
neighborhood.

Definition 2 (Neighbors) Let M = (A,L, V, E) be a multiplex network. The neighbors of
a ∈ A on layers L ⊆ L are defined as follows:

neighbors(a, L) = {a′ ∈ A | (a, l, a′, l) ∈ E and l ∈ L}.

Definition 3 (Neighborhood centrality) Let M = (A,L, V, E) be a multiplex network.
The neighborhood of a ∈ A on layers L ⊆ L is defined as follows:

neighborhood(a, L) = |neighbors(a, L)|.

R> degree_ml(net, actors = "U4", layers = c("work", "lunch"))

[1] 36

R> neighborhood_ml(net, actors = "U4", layers = c("work", "lunch"))

[1] 21

The xneighborhood_ml() function (exclusive neighborhood) counts the neighbors that are
adjacent to a specific actor only on the input layer(s) (Berlingerio, Coscia, Giannotti, Mon-
reale, and Pedreschi 2012). A high exclusive neighborhood on a layer (or set of layers) means
that the layer is important to preserve the connectivity of the actor: if the layer disappears,
those neighbors would also disappear.

Definition 4 (Exclusive neighborhood) Exclusive neighborhood is defined as:

xneighborhood(a, L) = |neighbors(a, L) \ neighbors(a,L \ L)|,

where \ indicates the set difference operation.

Journal of Statistical Software 21

R> neighborhood_ml(net, actors = "U91", layers = c("facebook", "leisure"))

[1] 22

R> xneighborhood_ml(net, actors = "U91", layers = c("facebook", "leisure"))

[1] 13

In this case, studying actor U191 within the multilayer network, we can see that out of 22
neighbors on facebook and leisure, 13 are exclusively present in these two layers, thus
removing those layers will substantially impact the actor’s connectivity.

4.4. Relevance

Based on the concept of neighborhood, we can define a measure of layer relevance for actors
(Berlingerio, Pinelli, and Calabrese 2013). relevance_ml() computes the ratio between the
neighbors of an actor on a specific layer (or set of) and the total number of her neighbors.
Every actor could be described as having a specific “signature” represented by her presence
on the different layers.

Definition 5 (Relevance) Let M = (A,L, V, E) be a multiplex network. Relevance is de-
fined as follows:

relevance(a, L) = neighborhood(a, L)
neighborhood(a,L) .

R> data.frame(
+ facebook = relevance_ml(net, actors = "U123", layers = "facebook"),
+ leisure = relevance_ml(net, actors = "U123", layers = "leisure"),
+ lunch = relevance_ml(net, actors = "U123", layers = "lunch"),
+ coauthor = relevance_ml(net, actors = "U123", layers = "coauthor"),
+ work = relevance_ml(net, actors = "U123", layers = "work"),
+ row.names = "U123")

facebook leisure lunch coauthor work
U123 0.3793103 NA 0.2068966 NA 0.9310345

Similarly to neighborhood also relevance can be extended using the concept of exclusive
neighbor. The xrelevance_ml() function measures how much the connectivity of an actor
(in terms of neighbors) would be affected by the removal of a specific layer (or set of layers).

Definition 6 (Exclusive layer relevance) Let M = (A,L, V, E) be a multiplex network.
Exclusive relevance is defined as follows:

xrelevance(a, L) = xneighborhood(a, L)
neighborhood(a,L) .

22 Analysis of Multiplex Social Networks with R

R> data.frame(
+ facebook = xrelevance_ml(net, actors = "U123", layers = "facebook"),
+ leisure = xrelevance_ml(net, actors = "U123", layers = "leisure"),
+ lunch = xrelevance_ml(net, actors = "U123", layers = "lunch"),
+ coauthor = xrelevance_ml(net, actors = "U123", layers = "coauthor"),
+ work = xrelevance_ml(net, actors = "U123", layers = "work"),
+ row.names = "U123")

facebook leisure lunch coauthor work
U123 0.06896552 NA 0 NA 0.5172414

Relevance and exclusive relevance provide a simple way to estimate the relation between
the actors and the multilayer structure. That can be useful for several reasons: one can
use these functions to identify users who are extremely well connected on a specific layer or
combination of layers (e.g., users that are extremely active on Facebook) or to identify users
having some neighbors only on some of the layers, e.g., people one works with without having
lunch together. Relevance and exclusive relevance can be fruitfully observed together. For
example one can observe how U123 has a presence on the network that is largely based on
the work layer (relevance on work = 0.931, meaning that about 93% of the actor’s neighbors
are present on this layer), with more than half of the neighbors being present exclusively on
the work layer (exclusive relevance on work = 0.517).

4.5. Distances

In addition to single-actor measures, the package can also be used to compute multilayer
distances between pairs of actors. In a mulitplex network, when a path passes from a vertex
it can continue on any layer where the corresponding actor is present. As a consequence a
path can traverse multiple layers.

Definition 7 (Multiplex path length) The multiplex length of a path p on layers L =
{l1, . . . , lm} is a vector pl where pl[i] indicates the number of edges traversed in layer li.

Distances are defined by Magnani and Rossi (2013b) as sets of lengths of Pareto-optimal
multidimensional paths. As an example, if two actors are adjacent on two layers, both edges
would qualify as Pareto-optimal paths from one actor to the other, as edges on different layers
are considered incomparable (that is, it is assumed that it makes no sense in general to claim
that two adjacent vertices on Facebook are closer or further apart than two adjacent vertices
on the co-author layer). Pareto-optimal paths can also span multiple layers.

Definition 8 (shorter-than relation) Let pl1 and pl2 be two multilayer path lengths. pl1
is shorter than pl2 if and only if ∀i pl1[i] ≤ pl2[i] ∧ ∃i pl1[i] < pl2[i].

The distance between two actors a1 and a2 is the set of lengths of the shortest paths between
them.

R> distance_ml(net, "U91", "U4")

Journal of Statistical Software 23

from to leisure coauthor lunch work facebook
1 U91 U4 1 0 0 1 0
2 U91 U4 0 0 1 1 0
3 U91 U4 0 0 0 0 1
4 U91 U4 1 0 1 0 0
5 U91 U4 0 0 2 0 0
6 U91 U4 0 2 1 0 0
7 U91 U4 0 0 0 2 0
8 U91 U4 0 2 0 1 0
9 U91 U4 3 0 0 0 0
10 U91 U4 2 1 0 0 0

This concept of distance allows us to provide a more qualitative description of the relation
between two actors than what we would get using a single number. For example, we can
see whether two actors are closer on some layers than others, and we can also see if spe-
cific combinations of layers lead to shorter paths than those on single layers, indicating how
switching layer (for example discussing a work-related issue over lunch) may have an impact
on phenomena such as the spreading of information in the network.

5. Community detection
A common network mining task is the identification of communities. An imprecise but gener-
ally accepted definition of community is that it is a subgroup of actors who are more densely
connected among themselves than with the rest of the network.
The function glouvain_ml() uses the algorithm described by Mucha, Richardson, Macon,
Porter, and Onnela (2010) to find community structures across layers, where vertices in differ-
ent layers can belong to the same or a different community despite corresponding to the same
actor. This method belongs to the class of community detection methods based on modularity
optimization, that is, it tries to find an assignment of the vertices to communities so that the
corresponding value of modularity is as high as possible. Multilayer modularity is a quality
function that is high if most of the edges are between vertices in the same community and if
vertices corresponding to the same actors are also often in the same community. Modularity
as used in the package is defined as:

Qm = 1
2µ

∑
ijsr

[(aijs −
kiskjs

2ms
)δ(s, r) + ωδ(i, j)]δ(γis, γjr), (1)

where i, j are actors, s, r are layers, aijs is 1 if i, j are adjacent on layer s, kis is the degree
of actor i on layer s, µ is the number of pairs of vertices either adjacent on a layer or
corresponding to the same actor, ms is the number of edges in layer s, γis is the community
to which actor i on layer s is assigned to, δ is the Kronecker delta, and ω is a weight; when
the same actor belongs to the same community on two different layers, then Qm is increased
by ω.
The function glouvain_ml() accepts one main parameter: omega, corresponding to ω in the
formula of modularity.

24 Analysis of Multiplex Social Networks with R

leisure coauthor lunch

work facebook

Figure 8: Multilayer representation of communities in the AUCS network detected using the
generalized Louvain (glouvain) method.

R> ml_clust <- glouvain_ml(net)
R> head(ml_clust)

actor layer cid
1 U118 leisure 0
2 U118 coauthor 0
3 U118 lunch 0
4 U118 work 0
5 U22 leisure 0
6 U22 coauthor 0

The result of the function is a data frame with two columns identifying a vertex, as a pair
(actor, layer), and a third column with a numeric value (cid) identifying the community to
which the vertex belongs. The corresponding communities are visualized in Figure 8, where
we can see how five main groups of actors are identified (roughly corresponding to the research
groups at the department) and how connectivity on all layers is partially explainable by this
grouping.
The availability of community detection algorithms allows us to study their behaviors vary-
ing their parameters. For example, we can study the impact of the parameter omega. Higher
values will result in communities spanning multiple layers, because inlcuding the same actor
on different layers in the same community increases the value of modularity. With omega set

Journal of Statistical Software 25

to 0, having the same actors on different layers in the same community does not contribute
to modularity. In the following we can observe the impact of omega on the number of com-
munities and the number of layers spanned by each community (code to count communities
and layers not shown):

R> clus <- glouvain_ml(net, omega = 0)
R> num_communities(clus)

[1] 27

R> avg_layers_per_community(clus)

[1] 1

R> clus <- glouvain_ml(net, omega = 0.01)
R> num_communities(clus)

[1] 7

R> avg_layers_per_community(clus)

[1] 3.714286

R> clus <- glouvain_ml(net, omega = 1)
R> num_communities(clus)

[1] 5

R> avg_layers_per_community(clus)

[1] 5

The package provides other community detection algorithms: multilayer clique percolation
(ML-CPM; Afsarmanesh and Magnani 2018) and ABACUS (Berlingerio et al. 2013) for over-
lapping and partial community detection, and Infomap (De Domenico, Lancichinetti, Arenas,
and Rosvall 2015) for partitioning/overlapping community detection on undirected or directed
networks:

R> c1 <- abacus_ml(net, 4, 2)
R> c2 <- clique_percolation_ml(net, 4, 2)
R> c3 <- glouvain_ml(net)
R> c4 <- infomap_ml(net)

We can now compare these community detection methods by computing some statistics about
(1) the number of communities generated, (2) the average community size, (3) the proportion
of vertices included in at least one cluster (which is 1 for complete community detection

26 Analysis of Multiplex Social Networks with R

methods), (4) the proportion of actors included in at least one cluster (which is 1 for complete
community detection methods) and (5) the ratio between the number of actor-community
pairs and the number of clustered actors, indicating the level of overlapping (which is 1
for partitioning community detection methods and higher for overlapping methods). The
corresponding statistics for the AUCS network are the following (code to build the data
frame not shown):

R> com_stats_aucs

num avg_s clust_vertices clust_actors actor_overl
abacus 29 7.413793 0.8035714 0.8852459 3.981481
clique p. 11 5.181818 0.3750000 0.5081967 1.838710
louvain 5 12.200000 1.0000000 1.0000000 1.000000
infomap 6 10.166667 1.0000000 1.0000000 1.000000

The same comparison can be performed on some of the other datasets included in the package,
for example the bank wiring network (code to build the data frame not shown):

R> com_stats_bank

num avg_s clust_vertices clust_actors actor_overl
abacus 7 4.571429 0.5806452 0.8571429 2.666667
clique p. 2 4.000000 0.2580645 0.5714286 1.000000
louvain 2 7.000000 1.0000000 1.0000000 1.000000
infomap 1 14.000000 1.0000000 1.0000000 1.000000

The interpretation of these results is largely dependent on the interpretation of the result ob-
tained by the specific community detection method. All the methods that are implemented
in the package are based on pre-existing methods to detect communities on single-layer net-
works. The ideal definition of community in a single-layer context, that is different for each
method, was then extended, following different assumptions, into a multilayer context. For
this reason, while a simple and straightforward interpretation of the results is impossible, it
is surely possible to observe how different methods (thus different underlying definitions of
community) return very different results. An in-depth analysis, description and comparison of
these algorithms is available in Magnani, Hanteer, Interdonato, Rossi, and Tagarelli (2021a).

6. Conclusion
In this article we have presented the multinet package and some of its functions to create and
analyze multiplex networks. The package provides a wide range of network analysis methods
to analyze individual actors, identify groups (communities) and compare layers, in addition
to functions to explore and generate network data. multinet is also integrated with igraph,
so that single layers or flattened sets of layers can also be analyzed using more traditional
methods.
Future developments of the package that would extend its usability include: more support
for weighted and directed networks, that are not considered by all the algorithms, the ad-
dition of more network simplification/preprocessing methods (Interdonato, Magnani, Perna,

Journal of Statistical Software 27

Tagarelli, and Vega 2020), such as sampling, the integration with other network packages, the
porting to other programming languages and the addition of functions generating multiplex
and multilayer networks from other types of data, such as data extracted using social media
platforms’ APIs.

Acknowledgments
We thank Mikael Dubik for the implementation of the generalized Louvain method, and
several people who participated in our training workshops or contacted us to suggest features
and report bugs. The multinet package includes the following external code: Eclat (Borgelt
2020, for association rule mining), Eigen (Jacob and Guennebaud 2020) and Spectra (Qiu
2020, for matrix manipulation), infomap (Edler, Eriksson, and Rosvall 2020, for the Infomap
community detection method) and Howard Hinnant’s date and time library (Hinnant 2020).
We also thank the anonymous reviewers for their contribution to improve the quality of this
paper and of the package.
This work was partially supported by the European Community through the project “Values
and ethics in Innovation for Responsible Technology in Europe” (Virt-EU) funded under
Horizon 2020 ICT-35-RIA call Enabling Responsible ICT-related Research and Innovation.

References

Afsarmanesh N, Magnani M (2018). “Partial and Overlapping Community Detection in
Multiplex Social Networks.” In S Staab, O Koltsova, D Ignatov (eds.), Social Informatics,
volume 11186 of Lecture Notes in Computer Science, pp. 15–28. Springer-Verlag. doi:
10.1007/978-3-030-01159-8_2.

Barabási AL, Albert R (1999). “Emergence of Scaling in Random Networks.” Science,
286(5439), 509–512. doi:10.1126/science.286.5439.509.

Berlingerio M, Coscia M, Giannotti F, Monreale A, Pedreschi D (2012). “Multidimensional
Networks: Foundations of Structural Analysis.” World Wide Web, 16, 567–593. doi:
10.1007/s11280-012-0190-4.

Berlingerio M, Pinelli F, Calabrese F (2013). “ABACUS: Frequent Pattern Mining-Based
Community Discovery in Multidimensional Networks.” Data Mining and Knowledge Dis-
covery, 27(3), 294–320. doi:10.1007/s10618-013-0331-0.

Borgelt C (2020). Eclat: Frequent Item Set Mining. C sources, version 5.22, URL https:
//borgelt.net/eclat.html.

Brodka P, Chmiel A, Magnani M, Ragozini G (2018). “Quantifying Layer Similarity in
Multiplex Networks: A Systematic Study.” Royal Society Open Science, 5(8). doi:10.
1098/rsos.171747.

Butts CT (2008a). “network: A Package for Managing Relational Data in R.” Journal of
Statistical Software, 24(2), 1–36. doi:10.18637/jss.v024.i02.

https://doi.org/10.1007/978-3-030-01159-8_2
https://doi.org/10.1007/978-3-030-01159-8_2
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1007/s11280-012-0190-4
https://doi.org/10.1007/s11280-012-0190-4
https://doi.org/10.1007/s10618-013-0331-0
https://borgelt.net/eclat.html
https://borgelt.net/eclat.html
https://doi.org/10.1098/rsos.171747
https://doi.org/10.1098/rsos.171747
https://doi.org/10.18637/jss.v024.i02

28 Analysis of Multiplex Social Networks with R

Butts CT (2008b). “Social Network Analysis with sna.” Journal of Statistical Software, 24(6),
1–51. doi:10.18637/jss.v024.i06.

Butts CT (2020a). network: Classes for Relational Data. The Statnet Project (https:
//statnet.org/). R package version 1.16.1, URL http://CRAN.R-project.org/package=
network.

Butts CT (2020b). sna: Tools for Social Network Analysis. R package version 2.6, URL
https://CRAN.R-project.org/package=sna.

Csardi G, Nepusz T (2006). “The igraph Software Package for Complex Network Research.”
InterJournal, Complex Systems, 1695.

De Domenico M, Bertagnolli G (2021). MuxViz: Visualization and Analysis of Multilayer
Networks. R package version 3.1, URL https://github.com/manlius/muxViz/.

De Domenico M, Lancichinetti A, Arenas A, Rosvall M (2015). “Identifying Modular Flows on
Multilayer Networks Reveals Highly Overlapping Organization in Interconnected Systems.”
Physical Review X, 5, 011027. doi:10.1103/physrevx.5.011027.

Dickison ME, Magnani M, Rossi L (2016). Multilayer Social Networks. Cambridge University
Press.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Edler D, Eriksson A, Rosvall M (2020). infomap: A Network Clustering Algorithm Based on
the Map Equation. Python module version 1.3.0, URL https://www.mapequation.org/
infomap.

Erdős P, Rényi A (1960). “On the Evolution of Random Graphs.” Publication of the Mathe-
matical Institute of the Hungarian Academy of Sciences, 5(1), 17–60.

Fatemi Z, Magnani M, Salehi M (2018). “A Generalized Force-Directed Layout for Mul-
tiplex Sociograms.” In S Staab, O Koltsova, D Ignatov (eds.), Social Informatics, vol-
ume 11185 of Lecture Notes in Computer Science, pp. 212–227. Springer-Verlag. doi:
10.1007/978-3-030-01129-1_13.

GraphML Working Group (2007). The GraphML File Format. URL http://graphml.
graphdrawing.org/.

Hammoud Z (2021). mully: Create, Modify and Visualize Multi-Layered Networks. R package
version 2.1.31, URL https://CRAN.R-project.org/package=mully.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003). statnet: Soft-
ware Tools for the Statistical Modeling of Network Data. Seattle, WA. URL http:
//statnetproject.org.

Hinnant H (2020). Date: Several Separate C++11/C++14/C++17 Libraries for Date. Ver-
sion 3, URL https://github.com/HowardHinnant/date.

https://doi.org/10.18637/jss.v024.i06
https://statnet.org/
https://statnet.org/
http://CRAN.R-project.org/package=network
http://CRAN.R-project.org/package=network
https://CRAN.R-project.org/package=sna
https://github.com/manlius/muxViz/
https://doi.org/10.1103/physrevx.5.011027
https://doi.org/10.18637/jss.v040.i08
https://www.mapequation.org/infomap
https://www.mapequation.org/infomap
https://doi.org/10.1007/978-3-030-01129-1_13
https://doi.org/10.1007/978-3-030-01129-1_13
http://graphml.graphdrawing.org/
http://graphml.graphdrawing.org/
https://CRAN.R-project.org/package=mully
http://statnetproject.org
http://statnetproject.org
https://github.com/HowardHinnant/date

Journal of Statistical Software 29

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008). “ergm: A Package to
Fit, Simulate and Diagnose Exponential-Family Models for Networks.” Journal of Statistical
Software, 24(3), 1–29. doi:10.18637/jss.v024.i03.

Interdonato R, Magnani M, Perna D, Tagarelli A, Vega D (2020). “Multilayer Network
Simplification: Approaches, Models and Methods.” Computer Science Review, 36, 100246.
doi:10.1016/j.cosrev.2020.100246.

Jacob B, Guennebaud G (2020). Eigen: A C++ Template Library for Linear Algebra. Version
3.3.9, URL http://eigen.tuxfamily.org/.

Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014). “Multilayer
Networks.” Journal of Complex Networks, 2(3), 203–271. doi:10.1093/comnet/cnu016.

Magnani M, Hanteer O, Interdonato R, Rossi L, Tagarelli A (2021a). “Community Detection
in Multiplex Networks.” ACM Computing Surveys, 54(3), 48. doi:10.1145/3444688.

Magnani M, Rossi L (2011). “The ML-Model for Multi-Layer Social Networks.” In 2011
International Conference on Advances in Social Networks Analysis and Mining, pp. 5–12.
IEEE Computer Society. doi:10.1109/ASONAM.2011.114.

Magnani M, Rossi L (2013a). “Formation of Multiple Networks.” In AM Greenberg,
WG Kennedy, ND Bos (eds.), Social Computing, Behavioral-Cultural Modeling and Pre-
diction, volume 7812 of Lecture Notes in Computer Science, pp. 257–264. Springer-Verlag.
doi:10.1007/978-3-642-37210-0_28.

Magnani M, Rossi L (2013b). “Pareto Distance for Multi-Layer Network Analysis.” In
AM Greenberg, WG Kennedy, ND Bos (eds.), Social Computing, Behavioral-Cultural Mod-
eling and Prediction, volume 7812 of Lecture Notes in Computer Science, pp. 249–256.
Springer-Verlag, Berlin, Heidelberg. doi:10.1007/978-3-642-37210-0_27.

Magnani M, Rossi L, Hanteer O, Vega D (2021b). multinet: Analysis and Mining of Multilayer
Social Networks. R package version 4.0, URL https://CRAN.R-project.org/package=
multinet.

Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP (2010). “Community Structure
in Time-Dependent, Multiscale, and Multiplex Networks.” Science, 328(5980), 876–878.
doi:10.1126/science.1184819.

Qiu Y (2020). Spectra: C++ Library For Large Scale Eigenvalue Problems. Version 0.9.0,
URL https://spectralib.org/.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ripley RM, Snijders TAB, Bóda Z, Vörös A, Preciado P (2021). “Manual for Siena Version
4.0.” Technical report, Oxford: University of Oxford, Department of Statistics; Nuffield
College. R package version 1.3-0, URL https://CRAN.R-project.org/packages=RSiena.

Rivero Ostoic JA (2020). “Algebraic Analysis of Multiple Social Networks with multiplex.”
Journal of Statistical Software, 92(11), 1–41. doi:10.18637/jss.v092.i11.

https://doi.org/10.18637/jss.v024.i03
https://doi.org/10.1016/j.cosrev.2020.100246
http://eigen.tuxfamily.org/
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1145/3444688
https://doi.org/10.1109/ASONAM.2011.114
https://doi.org/10.1007/978-3-642-37210-0_28
https://doi.org/10.1007/978-3-642-37210-0_27
https://CRAN.R-project.org/package=multinet
https://CRAN.R-project.org/package=multinet
https://doi.org/10.1126/science.1184819
https://spectralib.org/
https://www.R-project.org/
https://CRAN.R-project.org/packages=RSiena
https://doi.org/10.18637/jss.v092.i11

30 Analysis of Multiplex Social Networks with R

Affiliation:
Matteo Magnani, Davide Vega
InfoLab
Department of Information Technology
Uppsala University
Sweden
E-mail: matteo.magnani@it.uu.se, davide.vega@it.uu.se

Luca Rossi
NERDS group
IT University of Copenhagen
Denmark
E-mail: lucr@itu.dk

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

May 2021, Volume 98, Issue 8 Submitted: 2018-12-17
doi:10.18637/jss.v098.i08 Accepted: 2020-05-14

mailto:matteo.magnani@it.uu.se
mailto:davide.vega@it.uu.se
mailto:lucr@itu.dk
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v098.i08

	Introduction and background
	Related software
	Replicability

	Basic data management
	Adding, retrieving and deleting network objects
	Handling attributes
	Input/output
	Generation
	Predefined data

	Data exploration
	Measuring a network
	Layer comparison
	Degree and degree deviation
	Neighborhood and exclusive neighboorhood
	Relevance
	Distances

	Community detection
	Conclusion

