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Abstract 

The objective of this paper is to generate a closed form of the equations 
of motion for two serially connected manipulators. Instead of computing the 
coupled dynamics directly, this work constructs overall dynamic equations from 
previously known equations of each manipulator and coupling terms derived in 
this paper. This approach will reduce the number of computations significantly 
and show the structure of the coupling dynamics between two arms. The 
proposed technique has been coded in Malhemalica for symbolic computation. 
As a case study, the proposed approach is applied to two examples: micro/macro 
manipulators and a mobile manipulator. Each case shows not only simplicity of 
derivation but also a reduction in computation time of at least one-third 
compared to the conventional direct derivation. 

1. Introduction 

It is becoming popular to couple two robotic systems to obtain both 
accuracy and mobility of motion. For example, macro/micro manipulators can 
provide precise motion as well as a large workspace. Also, an autonomous 
vehicle equipped with a manipulator has distinct advantages in mobility and 
versatility. Understanding the coupled dynamics between two systems is 
essential to control these systems. However, it has been a time consuming and 
recursive procedure to derive the dynamic equations of these coupled systems. 
The objective of this paper is to generate a closed form of the equations of 
motion for two serially connected manipulators. Instead of computing the 
coupled dynamics directly, this work constructs overall dynamic equations from 
the previously known equations of each manipulator and coupling terms derived 
in this paper. In addition, this research incorporates the flexible link dynamics 
of a large arm (base system) because of common characteristic of large arm. 
Still, this work can be applied to a rigid large arm too. 

In the past, much research has been done in the formulation of the 
dynamic equations of motion for a manipulator. Some researchers have proposed 
several recursive formulations for computational efficiency using Lagrangian 
[Hollerbach,80], Newtonian-Euler [Luh,80], or Kane's method [Kane,83]. 
However, the recursive formulations fail to show the structure of dynamics 
which is critical information for a controller designer. With recent development 
of symbolic computational software, several algorithms have been developed to 
deriye the equations of motion in symbolic forms [Burdrick,86] [Murray,841 
[Cetinkunt,.87]. Sym~ol.ic formulation gives the controller designer insight to 
the dynanuc characte~sttcs of the system. The physical interpretations and 
st~ctural charactensttcs of the Lagrangian dynamics for rigid robots were 
denv~ by [TOUrasSlS,85] Some research has incorporated flexible links in 
modelmg and can be classified as three groups: (I) partial differential equation 
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[Bejczy,88] (2) finite element method [Bayo,87] (3) assumed mode method 
[Book,84]. However, the Lagrangian method with the assumed mode method 
approach has been widely used for real world applications. [Book 84] uses 
homogeneous transformations for flexible link deflection, and its systematic 
approach for multi-link dynamics was a major contribution. [Lee,90] applied 
Jacobian matrices that were used in rigid dynamic formulation in [Asada,86] to 
the flexible link case. This method shows that the inertia matrix can be derived 
from the Jacobian without computing Lagrangian equations. Although most 
work has been developed for dynamic formulation of a single manipulator, to 
date, no prior work has been done to handle a coupled dynamic system such as 
micro/macro manipulators [Sharon, 84] [Lew,91] and a mobile manipulator 
[Dubowsky,88] efficiently. 

The outline of this paper is as follows: First, the paper reviews an idea 
of forward kinematics for flexible manipulators using 4 x 4 homogeneous 
transformations which has been introduced in [Book,84]. Second, multi-link 
flexible manipulator dynamics is formulated in an easy-to-understand Jacobian 
approach using the assumed mode method similar to [Lee,90]. Third, as a major 
contribution of this work, the coupled dynamics term is derived when a small 
arm is mounted on the large arm without direct derivation. Finally, the proposed 
work is applied to two examples: a two flexible link arm with a two rigid link 
arm, and a moving vehicle with a 3 D.O.F. manipulator. 

2. Forward Kinematics of a Flexible Manipulator 

Consider the kinematic structure shown in Figure I representing a 
manipulator with serial links connected by rotational joints. The elements of the 
manipUlator are numbered, and body fixed moving coordinates are assigned as 
shown, where 0XIT is the inertial coordinate frame. 4 x 4 homogeneous 
transformation matrices are used to describe the position and orientation of one 
coordinate frame with respect to another. 

Thus, in terms of the fixed inertial coordinates of the base, the position 
of a point on the link i, hi, is given as 

(I) 

where the special case of W;' = W;. It is useful to separate the transformations 

due to the joint and the flexible link as shown in Figure I: 

(2) 

where A; = the joint transformation for joint i, and E'_I = the link 

tran,formation matrix for link i-I between joints i-I and i. To incorporate the 



~~-------------------------------------------------------------------

Figure 1 Joint Transformation (A,.) and Ll·nk T ' . E rans.ormatlOn ( i-I) 

for Flexible Link Manipulators 

deflection of the link, the assumed mode approach is used. The point position 

in link i with respect to joint i is 

(3) 

where Vlij' ¢ij = the j-th mode shape function for the bending of the i-th link in 

the Yi' Zi direction; Xij= thej-th mode shape function for the torsion of the i-th 

link, but it is negligible for the most cases; qfij = the time-varying amplitude of 

mode j of link i; and n
i 

= the number of modes used to described the deflection 

oflink i. 

The link transformation matrix, Ei_I , must also incorporate the 

deflection of the link. Here the rotations as weIl as the translations of the 
deflection must be represented by a differential coordinate transformation. This 
is an approximation in the kinematic description. The approximation is valid to 
the extent that the orientation change of coordinate frame i due to deflections is 
smaIl enough !o justify the foIlowing approximation: 

sina= e, 
cosa= a 

Therefore, the link transformation matrix can be written as 

~ 

Ei=Ti+ l.qfijVij 
j=l 

Wh=T,=[~ 
0 0 '] l 0 

-(e,)ij 

1 0 ~ and '-':j = ~a,)ij 0 

0 1 o (8)ij (aJij 

0 0 1 0 0 

(4) 

(e)ij 

-(er)ij 

0 

0 

where (ar)ij,(ay)ij' and (a,)ij = the Xi, Yi' and Zi rotation component of link 

i, respectively and can be defined as foIlows: 

Otf!·1 (er)ij = ~ 
aX·· 

IJ .%/=1/ 

3. Dynamics of a Flexible Manipulator 

In this section, dynamic equations of motion for flexible manipulators 
are formulated using kinematic transformations and Jacobian matrices. First, 
the expression for the system's kinetic energy is developed for use in Lagrange 
equations. Potential energy and elastic energy are also derived. Then, the 
Lagrange formulation shows that Jacobian matrices can be used to derive the 
inertia matrices. The coefficients of centrifugal and Coriolis force are derived 
from the inertia matrices using Christoffel's symbol. 
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The kinetic energy of i-th link is 

(5) 

where r
i 

is the velocity vector of an arbitrary point in the i-th link, and 

p"A,I, are the density, area, and the length of link i respectively. If ri is 

expressed in terms of joint and flexible mode coordinates, 

(6) 

where J, is the Jacobian matrix of the point Xi in the i-th link. Also, recall 

that qi includes the rigid joint coordinates q, and H,e. n<:xlbk 1l10d~ coordinates 

q! up till the i-th link. 

The Jacobian matrix J i can be comput.ed from the forward kinematic 

transformations. Since 

(7) 

where W/-1 = a 4 x 4 homogenous transformations for joint i and flexible link 
i-I; Rj = a 3x3 rotational matrix; and a = a 3xl vector of zeros, the Jacobian 
matrix for the point 'i in the i-th link is 

(8) 

Assume that there are L links. From now on, substitute dllli for 

pAdxi to simplify notation. Then, the total kinetic energy of the system is 

KE ~lP"r' 
= t:2"Jo Ii lidllli 

1 ~ P' . r . 2" t: Jo (Jiq,) (Jiq,) dill; 

1 .r ~ p, r . ? q (L.., Jo J; Jidlll,)q 
- 1=1 

1 'TM' 2"q q 
1 N 
2" l.Mkjqkqj 

.t,}=1 

(9) 

where the k,j-th element of the element of the matrix M can be expressed as 

L 

Mkj = (l.J;J;dlll;)'j (10) 
i=l 

The potential energy due to gravity is 

(11) 



g is the 3 x 1 gravity acceleration vector. 

The potential energy due to elastic deformation is 

where Ei is Young's modulus of elasticity, and Ii is the area moment of inertia, 
and Gj is the shear modulus of elasticity of the link. u; and 9; are the elastic 
deflection and rotation which can be expressed by m modes and modal 
coordinates. 

uy;(X,t) = i lJ!;i(x) qfii(t) 
i=1 

Uti (x~ t) = i ~;i (x) qfii (t) 
j=l 

e(X,t) = iX;i(X) qfii(t) 
j=l 

Therefore, the total potential energy is 

(13) 

Using Lagrange's equation with the total kinetic energy and potential 
energy, 

(14) 

compute the following terms to obtain the equations of motion. First, from 
equation (9), 

Then, take the time derivative of equation(15). 

Also, the generalized coordinate derivative of the kinetic energy is 

dKE 1~ dM;i 
-= -L..,~.q. 
dqk 2 ;,i=1 dqk ' } 

Finally, take the partial derivative of the potential energy. 

aPE 

a q. 
aUE aUE 
--+ --
a q. a q. 

(15) 

(16) 

(17) 

~ I a '", a '~ a '", 1/ , a U r 10' EliTl(------f)' + E I ( __ 1/)' + G/,;(--,-) dx,q. + __ E 
/_, aXI I y' ax; aXj a q. 

where 

(19) 

Therefore, the gravity matrix elements are defined as 

.(20) 

(18) 
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where Ji [j,k] is thej-throw and k-th column of Ji' 

Finally, the generalized force Qk can be obtained from the virtual work. 
The virtual work by the joint torque t is 

(21) 

Therefore, the closed form of the dynamic equations of the L link 
flexible manipulator can be expressed as 

M(q)i:j+ C(q,q)q+ Kq+ G(q)= B-r (22) 

where M(q) is defined in equation(1I), and the k,j-th element of the matrix 
CCq, q) consists of 

~ dMk · 1 dMIj . 
Cki = L.., (--' - -2 -o-)q; 

i=1 Jqi aq. 
(23) 

and all the elements of the matrix K are zeros except for the L+j-th diagonal 
element which is defined as 

a 21j1 •• 

GJ.aC-+)')dx, 
ax, 

(24) 

The element of the gravity G(q) is shown in equation(20), and the input matrix 
B is computed from equation(21). 

B= 

(25) 

4. Dynamics of Serially Connected Two Manipulators 

Our objective is to derive a closed form of the equations of motion for 
serially connected large and small manipulators using separately known 
dynamics of two manipulators. This approach will reduce the number of 
computations significantly and show the structure of coupling dynamics between 
two arms. 

Let us assume that the dynamics of a large manipulator is known as 

where qL includes the rigid joint coordinates qr and the flexible mode 
coordinates qf. The large manipulator has L links. Also, assume that a small 
manipulator is rigid and its dynamics can be represented with the following 
form: 

The small manipulator has Slinks. 

Consider the kinetic energy of the i-th link which is 

1 f.' ·r· ME, = 2' 0 r, r,dmi 

(27) 



If the small manipulator is mounted at the tip of the large manipulator, the 
position vector of the L+j link referenced to the fixed inertial frame will be 

rSi-l]hi 
1 J 

(28) 

where Wu = a 4 x 4 transformation of the large arm from the base to link L; 
WS· = a 4 x 4 transformation of a small arm from the base to the link j; EL = a 
li~ transformation of the large arm between the joint L and the link tip where 
the small arm is mounted. Then the position vector rL+j of an arbitrary point 
in the L+j th link is 

(29) 

and its velocity vector is 

rL+ i = rL + RLrSi + RLrSi (30) 

R· - dRL _ f dRL • 
L - - L..J -;:;-=-q Li 

dt i=1 dqLi 
where (31) 

The second term of the equation (30) gives the portion of changes of 'L + . that 
is attributable to rotation of the reference frame of the small arm. It needs ~o be 

expressed as a function itL of explicitly. Since qLi is a scalar in equation (31), 
the second term of equation (30) can be rewritten as 

(32) 

where Hj is defined as 

.. J= 
(33) 

Then, by substituting J L q, and J sAsj into rL and rSj ' we can build a 

quadratic form of the kinetic energy. As shown in the previous section, this 
quadratic form of kinetic energy makes the computation of the inertia matrix 
very easy. To compute the kinetic energy of serially connected two 
manipulators, pre-multiply the velocity term by transpose of itself. 

(34) 

Recall that RrRL = I where I is a 3 x 3 identity matrix. Therefore, the total 

kinetic energy of two serially connected manipUlators can be expressed as 
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and forms a quadratic expression where the inertia matrix is 

where 
S 

MLIS = If~' (h +Hjl(h +H) dmj 
j=1 

S 

= If~'(Jrh + 2JrH j + H~H) dmj 
j=l 

(36) 

(37) 

ML and MS are previously known as independent inertia matrices of the two 

arms. We only need to compute only terms MUS and Mcp defined in the 
Equations (37) and (38). 

The newly defined terms MUS and Me have a physical meaning 
when two arms couple together. To investigate the effect of each term, first, 

immobilize the small arm, i.e., q, = 0 and iI, = O. MUS represents the 

moment of inertia of the small arm with respect to the large arm joint 
coordinate. This is an inertia load that the large arm has to carry due to the 
attached small arm. Second, immobilize the large arm, i.e., let 

qL = 0 and iIL = iIs = 0, Mcp accounts for the coupling forces of the small 

arm motion upon the large arm.cp These are interacting forces between the large 
and small arm due to any motion of two systems. 

The nonlinear terms CL+S also can be computed from this inertia 
matrix ML+S. Its k,j-th element can be obtained from equation (36). 

N+S 

(CL+S)kj = :ECiikqi 
i=l 

N N+S 
(39) 

= :ECijkqj + :ECijkqj 
;=1 i=N+l 

where Cijk is known as the Christoffel symbol and defined as 

(40) 

Therefore, if we substitute the equation (36) into equation (39) and (40), and 
rewrite the nonlinear term in a matrix form, it will be 

C'PI ] 
C + C'P S S 

where C - f(dMts 1 dML). 
LIS - L..J ---- ---- qi 

i=1 dqi 2 dqk 

(Ci)kj = - .! ± dM:' iIi 
2 i=1 dqk 

(k = 1,2,3, ... , Nand j = 1,2,3, ... , N) 

1 f dM:' . 
- L..J-- qi 
2 i=1 dqk 

(41) 

(42) 

(43) 

(44) 



S ::lMij .!. ,,_u_'_P fll (Cnq = - £.J ~, 
2 1=1 ()qN+t 

(45) 

(k = 1,2,3, ... , Nand j = 1,2,3, ... , S) 

(46) 

N ~Mjl .!. ,,_u _'P q'l 
(Ci)'j = - £.J 

2 1=1 ()qt 
(47) 

(k = 1,2,3, ... , Sand j = 1,2,3, ... , N) 

Again, If CL and Cs were known previously, only CLiS + CLcP,Ccpl' 
C 2, and ClP terms need to be computed to derive the nonlinear part of 
&j~tion of motion for serially connected two arms. Therefore, the closed form 
of the dynamic &juations of motion for the serially connected large and small 

mani pulators is 

5. Case Study 

To show an advantage of the proposed approach, two case studies are 
carried out in this section. The first case is a mobile manipulator. The second 
case is macro/micro manipulators. Dynamics of two coupled systems are 
derived symbolically using Mathematica. The main difference of the two 
examples is that the base system is rigid in former case but is flexible in later 
case. 

5.1 Mobile Manipulator 

It is often envisioned that an autonomous vehicle &juipped with 
manipulators explores hostile unknown environments to collect data or provide 
the mobility to the robot to handle various tasks. This coupled robotic system, a 
vehicle with a manipulator, could be the ultimate form of robots in this decade 
and the next stage of robotic research topic due to its advantages over the base 
fixed manipulators. However, to control a complex system like a vehicle with a 
manipulator, it is essential to understand the coupled dynamics between two 
systems. Therefore, we can determine the stability of the system with the 
existing controllers. The proposed work can provide the coupling term in 
relatively simple form and explain where each term is coming from without 
computing the two systems' dynamics all over again. 

For example, a manipulator (3 D.O.F.) is attached to a vehicle (3 
D.O.F.) as shown in Figure 2. Its overall closed form equation can be derived 
by the proposed approach. However, this paper will show only the coupling 
inertia matrix due to available space. The vehicle itself is approximated as a 
lumped mass on the plane, and its inertia matrix with respect to the fixed frame 
can be obtained as: 

o 
m3 

o I~J 
where m3 is mass of the vehicle and I3z is the moment of inertia about z-axis at 
the mass center. The manipulator has two rigid links and three joints. Assume 
that we know the manipulator'S inertia matrix (3 D.O.F.) by independent 
computations as 

M~13] 
MA23 

M A33 

where MAij is assumed to be known. Details can be found in[Lew,92] 
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~'h. 

Figure 2 Mobile Manipulator 

When two systems are coupled, the coupling inertia between two is 
form &juation (38): 

M,p12 

M,p22 

M,p32 

where MCPll = -(C5*L5c*m5 + C5*L5*m6 + C56*L6c*m6)*S34 
MCP12 = -C34*(L5c*m5*SS + L5*m6*SS + L6c*m6*SS6) 
McpJ3 = -C34*L6c*m6*SS6 
MCP2l = C34*(CS*1.5c*m5 + CS*1.5*m6 + C56*L6c*m6) 
M CP22 = -S34*(1.5c*m5*S5 + 1.5*m6*SS + L6c*m6*SS6) 
MCP23 = -L6c*m6*S34*SS6 
M CP3l = CS-2*ISy + CS6-2*I6y + CS*L5c*(C4*L3 + C5*1.5c)*m5 

+ (CS*LS + CS6*L6c)*(C4*L3 + CS*1.5 + CS6*L6c)*m6 
+ ISx*SS-2 + 16x*S56-2 

MCP32 = -L3*S4*(L5c*m5*SS + LS*m6*S5 + L6c*m6*SS6) 
M CP33 = -L3*L6c*m6*S4*SS6 

CS is a short form notation of Cos(q[S]). Similarly SS6 is a short form for 
Sin(q[S]+q[6]). Lic is the distance between joint i and link i mass center, and Li 
is the length of link i. 

The inertia of the manipulator that the vehicle carries is from equation 
(37): 

J'vILSI3] 
M LS23 

MLS33 

where MLSll = m5 + m6 
MLS12 = 0 
MLSl3 = -(m5*(L3*S3 + C5*1.5c*S34)) - m6*(L3*S3 + CS*1.5*S34 

+ CS6*L6c*S34) 
MLS22 = m5 + m6 
MLS23 = C3*L3*mS + C34*C5*L5c*m5 + C3*L3*m6 + 

C34*C5*L5*m6 + C34*CS6*L6c*m6 
MLS33 = C5-2*ISy + CS6-2*I6y + (L3'2 + 2*C4*CS*L3*L5c + 

C5-2*L5c-2)*m5 + (L3'2 + 2*C4*C5*L3*1.5 + CS-2*1.5-2 
+ 2*C4*CS6*L3*L6c + 2*CS*CS6*1.5*L6c + 
C56-2*L6c-2)*m6 + ISx*SS-2 + 16x*SS6-2 

Now, we can construct the coupled system's inertia matrix from equation (36). 

5.2 Macro/Micro Manipulators 

The concept of a micro manipUlator mounted on the tip of a macro 
manipulator has been introduced to provide precise motion as well as a large 
workspace. This configuration comprises a large robot carrying the micro 
manipulator to the area of the interest and uses the micro manipulator for fine 
motion control necessary to eliminate positioning error. However, deriving the 
dynamics of these systems can be a time consuming and painful procedure. The 
proposed work generates a closed form of the &juations of motion for serially 
connected macro/micro manipulators with separately known dynamics of two 
manipulators. This approach will reduce the number of computations 
significantly and show the structure of coupling dynamics between two arms. 



Figure 3 Micro/Macro Manipulators 

For example, coupling dynamics can be investigated when SAM (2 
D.O.F.) is mounted on the tip of RALF (2 D.O.F.) as shown in Figure 3. 
Again, this paper will show only the coupling inertia matrix due to the 
complexity of the equation. Assume the inertia force of RALF to be known 
ahead with respect to the fixed frame. The inertia matrix of RALF, which has 
two flexible links with one assumed mode for each link, is 

lMW 
MLI2 MLIJ M,,, ] 

ML = MLI2 Mm M L23 ML24 

ML13 M L23 M L33 M L34 

MLl4 ML24 M L34 ML44 

where MLij is known ahead. Details can be found in [Lew,92]. 

Also, the inertia matrix of SAM, which has two rigid links, is known 
as 

where Msij is defined in [Lew,92] Then, based on the equation (38) and (37), 
we can compute the coupling dynamics. The coupling matrices are 

where MCPll = d3 + d4 + C2S*m4*1l*13 + CS*m4*12*13 + m4*13"2 + 
CS6*m4*12*14c + 2*C6*m4*13*14c + m4*S2S*13*qf1*she[l] 
+ m3*S2S*13c*qf1 *she[l] +m4*S2S6*14c*qf1 *she[l] + 
m4*SS*13*qf2*she[2] + m3*SS*13c*qf2*she[2] + 
m4*SS6*14c*qf2*she[2] 

MCP12 = d4 + C6*m4*13*14c + m4*14c*(C2S6*1l + CS6*12 + 
S256*qf1 *shern + SS6*qf2*she[2]) 

M CP21 = d3 + d4 + CS*m4*12*13 + m4*13-2 + CS*m3*12*13c + 
CS6*m4*12*14c + 2*C6*m4*13*14c + m4*SS*13*qf2*she[2] 
+ m3*SS*13c*qf2*she[2] + m4*SS6*14c*qf2*she[2] 

M CP22 = d4 + C6*m4*13*14c + m4*14c*(CS6*12 + SS6*qf2*she[2]) 
MCP31 = (C25*m4*13 + C2S*m3*13c + C2S6*m4*14c)*she[l] 
M CP32 = C256*m4*14c*she[l] 
MCP41 = (CS*m4*13 + CS*m3*13c + CS6*m4*14c)*she[2] 
M CP42 ':' CS6*m4*14c*she[2] 

where sheri] is a mode shape function of link evaluated at the end point. i.e., 
she[i] = 'l'i (li). 

The inertia of SAM that RALF has to carries is from equation (37). 
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where MLSll = d3 + d4 + m4*13-2 + 2*C6*m4*13*14c + (m3 + 
m4)*(1l-2 + 2*C2*11*12 + 12-2 + 2*S2*12*qf1 *she[l] + 
qf1-2*she[1]"2 - 2*S2*11 *qf2*she[2] + 
2*C2*qf1 *qf2*she[1]*she[2] + qf2-2*she[2r2) + 
2*(C2S*m4*1l *13 + m4*CS*12*13 + C2S*m3*1l *13c + 
m3*CS*12*13c + C2S6*m4*11*14c + CS6*m4*12*14c + 
m4*SS*13*qf2*she[2] + m3*SS*13c*qf2*she[2] + 
m4*SS6*14c*qf2*she[2] + m4*13*qf1 *she[ 1]*S2S + 
m3*13c*qf1*she[1]*S2S + m4*14c*qfl *she[I]*S2S6) 

MLS12 = d3 + d4 + m4*13"2 + 2*C6*m4*13*14c + (m3 + 
m4)*(C2*1l*12 + 12"2 + S2*12*qfl*she[l] -S2*Il*qf2*she[2] 
+ C2*qfl *qf2*she[1]*she[2] + qf2-2*she[2r2) + 
2*(C2S*m4*1l *13 + m4*CS*12*13 + C2S*m3*1l*13c + 
m3*CS*I2*I3c + C2S6*m4*1l *I4c + CS6*m4*I2*I4c + 
m4*SS*13*qf2*she[2] + m3*SS*13c*qf2*she[2] + 
m4*SS6*14c*qf2*she[2] + m4*I3*qfl *she[I]*S2S + 
m3*13c*qf1*she[I]*S2S + m4*14c*qfl*she[I]*S2S6) 

MLS13 = (m3 + m4)*she[I]*(1l + C2*12 - S2*qf2*she[2]) 
MLS14 = (m3 + m4)*(C2*1l + 12 + S2*qf1*she[1])*she[2] 
MLS22 = d3 + d4 + m4*13-2 + 2*C6*m4*13*14c + 

2*(m4*CS*12*13 + m3*CS*12*13c + CS6*m4*12*14c + 
m4*SS*13*qf2*she[2] + m3*SS*13c*qf2*she[2] + 
m4*SS6*14c*qf2*she[2]) + (m3 + m4)*(12-2 + 
qf2-2*she[2r2) 

MLS23 = (m3 + m4)*she[I]*(C2*12 - S2*qf2*she[2]) 
MLSU = (m3 + m4)*12*she[2] 
MLS33 = (m3 + m4)*she[lr2 
MLS34 = C2*(m3 + m4)*she[I]*she[2] 
MLS44 = (m3 + m4)*she[2r2 

Therefore, we can construct a closed form of the inertia matrix for two serially 
connected arms using equation (36). 

5.3 Discussion on Computation Time 

There is no doubt that the proposed work handles a lesser number of 
terms when it derives the dynamic equations. The efficiency of the proposed 
work can be compared with conventional direct derivation by examining the 
n~mbers of multiplication and additions. However, it is difficult to come up 
With a general case because the simplification procedure of kinematics is obscure 
for each case. Thus, computation time is used to give the idea of how the 
pro~osed work computes efficiently. Symbolic computation of two examples 
earned out on PC 486-33 MHz with Mathematica 2.0. For a vehicle with a 
manipulator case, the direct derivation took about 4 minutes, and the proposed 
method did in 2.S minutes. For micro/macro manipulator case the direct 
derivation took about 8 minutes, and the proposed method finished in S minutes. 
Each case shows a reduction in computation time of at least one-third compared 
to the conventional direct derivation. However, the authors would like to 
remind the readers that the simplification procedure such as 'Simplify[J , 
determines the majority of the computation time rather than the multiplication 
and addition process. It is very important that proper usage of the simplification 
procedure is applied in the efficient symbolic derivation. 

6. Conclusions 

. The pro~osed work generates a closed form of the equation of 
motion for two sen ally connected manipulators. Instead of computing the 
coupled .dynamics directly, this work constructs overall dynamic equations from 
~e pr~vlOusly known .equations of each manipUlator and coupling terms derived 
~ t.hls paper. This approach will reduce the number of computations 
slgruficantly and show the structure of coupling dynamics between two arms. 
The pro~sed technique has been coded in Mathematica for symbolic 
computation. As a case study, the proposed approach is applied to two 
exa~ples;. a two li~ flexible arm with a two link rigid arm, and a moving 
vehicle With a three link arm. Each case shows not only simplicity of derivation 
but also a reduction in computation time of at least one-third compared to the 
conventional derivation. 
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