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A new control method is developed for position tracking 
control of a flexible, non-collocated system. The desired trajec
tory is specified for the free end of a flexible beam that moves 
along a horizontal track actuated by a linear motor. First, a sys
tem model is reformulated based on a pendulum with stiffuess 
and dampening. Small angle approximations are used so that a 
linear model can be obtained. Next, variable stmcture control is 
chosen as the control method due to its seemingly robust nature. 
The sliding surface and feedback gains are designed using the 
developed model based on literature describing various variable 
stmcture control techniques. Simulations are then conducted to 
verify the control method and examine its robustness. Finally, 
the method is implemented on an actual system using a Kalman 
filter to estimate the states. 

Introduction 
A major goal for industrial machinery has been to increase 

motion speed without sacrificing precision, leading to increased 
interest in control schemes that are aimed at improving the per
formance of lightweight, flexible machinery. There have been 
some recently developed algorithms, such as command shaping 
and adaptive learning control, that attempt to improve the mo
tion control of flexible systems. These algorithms generally ad
dress collocated systems in which the sensors and actuators are at 
the same place. However, to address the exact placement of the 
mechanism's end-of-arm, a non-collocated system usually arises. 

CAMotion Inc. has been investigating this problem for a 
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lightweight, flexible manipulator that is prismatically actuated by 
a linear motor. The main objective of the work has been to move 
the end-of-arm through a desired periodic reference trajectory 
while minimizing error and vibration. Up to this point, this has 
been achieved through the use of command shaping and learning 
control in conjunction with a PID controller that uses encoder 
data from the motor. 

In the recent past, CAMotion examined the use of a Kalman 
filter to estimate the end-of-arm position based on accelerometer 
feedback at the tip. During the investigation, a machine vision 
system was used for verification. Since machine vision systems 
are more readily available in industry, CAMotion would like to 
incorporate them into a state-feedback control strategy. An ac
celerometer is still used so that the control algorithm can utilize 
the best aspects of each sensor. 

The application of variable stmcture control (VSC) to flex
ible systems has become of growing interest in the past decade 
due to the increased interest in the advantages of flexible robots 
over their rigid counterparts. Most of the work uses a flexible 
beam that rotates in a horizontal plane [1-4]. VSC has also been 
compared to other control methods, such as pole placement [5] 
and singular perturbation [6]. In addition to performance, robust
ness comparisons have also been made [7]. These comparisons 
have led to the conclusions that VSC is more robust and performs 
better than other control methods. Since robustness is an impor
tant issue to this research, VSC became the control strategy of 
interest. 

The rest of this paper details the application of VSC to the 
flexible link problem posed by CAMotion. First, the modeling 
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Figure 1. Model Schematic 

of the system is described. Next is a brief discussion of the VSC 
techniques used in this research. The simulation and experimen
tal methods and results are then discussed. FinaIly, conclusions 
based on the results shown are discussed. 

System Model 
Though mode shape analysis is widely used in flexible link 

problems, a different modeling approach was used for this prob
lem. The previous work done by CAMotion used a lumped mass
spring-damper approach [8]. However, concern that the config
uration used in the previous research may not represent possible 
non-minimum phase behavior of a robotic manipulator led to the 
development of a pendulum-type configuration. The resulting 
model can then be used in conjunction with the control formu
lation described in the next section to determine the necessary 
control gains. 

The new model configuration, as shown in Figure 1, includes 
a base mass, m I, that is constrained to move in the horizontal di
rection with the control force, F, acting on it. A tip mass is con
nected to ml by a long flexible beam. The mass of the beam and 
tip are considered to be a single inertial mass, m2. FinaIly, tor
sional stiffness and damping are chosen to act at the connection 
point. 

In order to derive the state-space representation of this new 
model the foIl owing set of differential equations is developed. 
Since the reaction force at the joint wiII not create a moment, 
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only the horizontal reaction force, /, is needed. 

(1) 

(2) 

Ie = /r - ke - be (3) 

It is assumed that the motion of the second mass relative to 
the first is small so that small angle approximations for e can be 
used. Choosing the states to be the mass positions and velocities, 
the foIlowing state space representation can be used. 

[ ° ° 1 ° J [OJ ° ° ° 1 X+ ° F ak -ak ab -ab d 
-ck ck -cb cb e 

(4) 

[ I ° ° 0] [0] y = -ck ck -cb cb X + e F 

° ° or 1 ° ° ° 
(5) 

The term 8 arises when the M matrix is inverted while solv
ing for XI andx2. Also, since a vision measurement is not avail
able at all times, the last row of (5) wiII be zero except when 
there is a vision measurement. 

Once the state-space representation is developed, it is de
sirable to have actual values for each of the system parameters. 
Table 1 lists the values, which were found experimentally. Also, 
the natural frequency of the beam when it is clamped at the joint 
was found to be 23 Hz. The transfer function between the tip 
position and the input was then calculated using these values so 
that the properties of the system could be examined. The poles 
are stable as expected from physical arguments. The zeros of the 
transfer function are also examined and are found to be in the left 
half plane. Therefore, the system is minimum phase which does 
not add complexity to the control design. However, since many 
of the parameters are not found by direct measurement, there 
is a great amount of uncertainty in the values obtained. There
fore, the controIler design must be robust enough to handle these 
uncertainties as weIl as any other variations due to outside influ
ences. 
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Parameters Value 

Base mass, m, 8 kg 

Tip mass, m2 2.55 kg 

Beam length, L 0.526m 

Distance to center of mass, r 0.377m 

Mass moment of inertia, I 0.4367 kgm 2 

Spring constant, k 32,199Nm 

Damping coefficient, b 9.8863 Nms 

Table 1. Pendulum Model Parameters 

Variable Structure Control 
Variable Stmcture Control (VSC) can be described as a 

switched feedback control method that drives a system trajec
tory to a specified surface in the state space. This surface, a = 0, 
is called a sliding surface because ideally the plant's trajectory 
slides along it for all time once the surface is reached, which 
is referred to as a sliding mode. To reach the surface, the con
trol gains are switched based on whether the states are "above" 
or "below" the sliding surface. Thus, the VSC design is a two
part process: the switching surface is designed first and then the 
switched feedback law [9]. 

Sliding Surface Design 
Since the sliding surface design determines the behavior of 

the plant while in sliding mode, the design is based on the plant 
dynamics ofthe state space representation. For linear systems, a 
linear transformation, Z = TX, into regular/arm is made. Regu
lar form consists of partitioned matrices, as shown in (6) and (7), 
where B2 and S2 are square matrices of order equal to the number 
of inputs. 

(6) 

(7) 

Using the fact that it is desired that a = 0, the sliding surface 
design problem now becomes that of a state feedback problem, 
Xi = (All -A,2S2'SdX" where the state matrix isA 11, the input 
matrix is A'2 and feedback gain is -S2'SI [9]. This allows the 
use of conventional feedback methods, such as LQG, in the slid
ing surface design. For convenience, S2 is usually set equal to the 
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identity matrix so that S, is equal to the gain obtained from the 
feedback method used. Once the surface is found using regular 
form, it must be transformed so that it can be used with the orig
inal state space representation. Therefore, a = Sz = STX = SX. 

A linear-quadratic approach with a cost function of J = 
t .I;;[XT (t)QX(t)+tl (t)ru(t)]dt was used to determine the slid
ing surface for this research. Since the control objective is to 
minimize position error of X2, Q was chosen to be a (n - 1)1" or
der square matrix whose only non-zero term is the diagonal term 
associated with X2, which is chosen to be a value greater than 
one. To further reduce the input cost, r is chosen to be a value 
less than one. If the system dynamics along the sliding surface 
are unsatisfactory, the surface can be redesigned using different 
Q and r values. For example, by increasing the non-zero value 
of Q, better position tracking control may be achieved. 

Switched State Feedback Control Design 
Once the sliding surface is determined, the next step is to 

design the switched feedback law that will drive the state tra
jectories to that surface. Since switching causes the problem 
to be non-linear, Lyapunov stability theory is used in the de
sign process. This theory states that given a positive definite 
function, V(x), the surface can be reached in a finite number 
of steps if V(x) < -71lsl, where 71 is a strictly positive num
ber [10]. However, for most practical applications, negative def
initeness, V(x) < 0, is a sufficiently convergent condition. The 
typical positive definite function used for single input systems is 
V(x) = ~a2(x), which leads to an inequality, (8), that needs to be 
satisfielto ensure stability. 

V(x) = as[AX +Bu] < 0 (8) 

The control gains are obtained by choosing a particular con
trol structure and substituting it directly into (8). The general 
stmcture for a feedback controller with switched gains, (9), was 
chosen for this research, resulting in (10). 

u = g,x, + g2X2 + ... + gnxn 

=KX 
. _ { (Xi aXi > 0 

g, - ~i aXi < 0 

V(x) = S[A +BK]aX 

(9) 

(10) 

Since it is desired to have a generic algorithm that can be 
used for any given set of state matrices with a single input, a pro
cess for calculating the controller gains based only on the state 
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matrices and sliding surface was developed. First, the right-hand 
side of (1 0) is said to be less than zero since it is a scalar. Noting 
that SB is also a scalar quantity for a single input, the equation 
can now be rewritten as follows. 

[

OXI j 
[
SA ] aX2 

SB SB+K : 

aXil 

<0 (11) 

A new variable, ,{, is chosen such that '{ = teA, which is a 
vector with the same dimensions as K. Thus, the coefficient of 
ax; is SB( -'{;+K.;) which then leads to the following statements. 

(12) 

This simplification only deals with single input systems, but 
the method can be extended to mUlti-input systems. First, a slid
ing surface is defined for each input, creating an S matrix with 
multiple rows. The gains for each input can then be determined 
using (12) where S is the row and B is the column corresponding 
to the input of interest. Thus, a general method to calculate the 
control gains has been derived for the control structure described 
by (9) for any given A, B, and S matrices. For further details on 
variable structure control, refer to [9, II, 12]. 

Simulation 
The electronic portion of the test system consists of a com

puter, Remote Axis Serial Interface Device (RASID), and am
plifier. The RASID is a compact unit located close to the motor 
that contains a digital signal processor to control the motor's po
sition. In this work, the computer is used as an operator interface 
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Figure 2. Control System Schematic 
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to the RASID and to do trajectory planning. The desired motor 
positions are sent to the RASID at a rate of I kHz. An internal 
PID routine in the RASID is used to calculate the control signal 
necessary to drive the error to zero using encoder measurements 
at 10 kHz. To implement state-feedback control, a Kalman filter 
and additional output measurements are added to create the over
all schematic shown in Figure 2, creating two levels of control. 
First, the high level VSC control is simulated at I kHz with per
fect feedback to tune the sliding mode control strategy. Next, the 
lower PD control at 10 kHz is added to the simulation. Finally, 
perfect feedback is replaced by estimated states obtained from a 
Kalman filter. 

Higher Level Control (VSC) Simulation 
The first step in simulation is to discretize the system model 

using a first order hold to approximate the RASID. The dis
cretized matrices are then transformed into regular form using 

[

I 0 0 ~j o I 0 -b2 
T= b4 

o 0 I =!l:J. 
b4 

000 I 

The sliding surface is then calculated using LQR, with 
Q = diag[O 0), which penalizes the tip position, and r = I, 
which penalizes the control effort. To calculate the control gains, 
(12) is used to obtain an upper bound for ct.; and a lower bound 
for Pi. In order to obtain an exact value, a fixed positive num
ber, £, is added or subtracted to each ofthe bounds. Initially, £ is 
chosen to be 5. 

Once the surface and control gains are calculated, they can 
be used to control the system so that the tip follows a specified 
trajectory. This trajectory is obtained using the existing computer 
software that calculates a jerk-limited path from one point to the 
next. In this case, a repetitive motion between the home position, 
0, and 55 mm is used, as shown in Figure 3. 

An error vector, E(k), is calculated using the desired posi
tion at the kth timestep. Since the tip position error is the only 
penalized state in the cost function, the error vector is calculated 
assuming the desired position and velocity of the base mass are 
the same as that of the tip. Thus, E(k) = [XI X2 XI X2V

[Xd Xd Xd Xd V. The error vector is used to first calculate the 
sliding surface, a = SE, and then the gain matrix, K, using e; in
stead of X;. Finally, the input, U = KE, is used to obtain the next 
set of state values where X(k+ I) = AX(k) + Bu. This process 
continues for every desired point of the trajectory. 

Initial simulations had a maximum tracking error of about 
0.4 mm. To improve tracking, the penalty on tip position could 
be increased by reducing r or increasing the nonzero term of Q. 
However, since the actual system can only output a maximum 
force of! 00 N, the error can only be reduced to 0.02 mm, as seen 
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Figure 4. VSC Simulation with Perfect State Feedback 

in Figure 4. Altering e can also affect the time response since the 
system will respond faster as e is increased. However, the control 
effort is increased and there are more induced vibrations that re
sult in increased switching ofthe control signal. Thus, choosing 
a smaller value of e and altering the sliding surface seems to be 
the best approach to tuning the controller. 

Low Level Control (PD) Simulation 
To add the RASID's PD control to the simulation, the force 

input calculated by the VSC controller must be converted into a 
desired position, r, that serves as an input to the RASID. This 
is done by equating the force to the proportional and derivative 
gains, resulting the discrete equation, u(k) = Kp[r(k) -Xl (k)] + 
Kd[r(k) -r(k-l) -xl(k)+Xl(k-l)]. Upon realTanging, an 
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expression for r(k) can be obtained as follows. 

r(k) = u(k) +Kdr(k-l) + (Kp + KC/)Xl (k) -KdXl (k-l) 
Kp+K" 

(13) 
To simulate the 10kHz PD loop, intermediate control values 

must be determined for simulation purposes. Since the RASID 
uses linear interpolation, the intermediate points are found by 
incrementing u(k-l) by (lI(k)-II(k-I))TlOkHz until u(k) is reached. 

TlkHz 
These values are then used in (13) to calculate the intermediate 
control values. 

The new states can then be calculated using X( k + I) = 
Ax(k) +B[Kp Kc/Hr IY, where A and Bare discretized at 10 
kHz using a zero-order hold. It is important to note that the slid
ing surface and control gains are still calculated using discretized 
matrices at I kHz with a first-order hold. Adjusting r so that the 
control effort remained under 100 N, the tracking elTor is about 
0.023mm. 

Simulation Using Estimated States 
The final step is to obtain state estimates using the outputs 

instead of using perfect feedback. Since the vision measurements 
are not available at all times and are delayed by a significant 
number of time steps, a multirate Kalman Filter, developed by 
Mashner [13], is used. In addition to the system model, the filter 
requires the specification of other parameters, listed in Table 2. 

The vision frequency and delay were estimated based on 
knowledge of the vision system to be used for experiments. The 
input covariance is multiplied by a factor relating to the unknown 
noise in the amplifier. The output covariance matrix is obtained 
by assuming that the covariance of each sensor is independant, 
thus it becomes diagonal. 

The outputs are calculated usingy(k) = CX(k) +Bu(k) with 
the states obtained fromX( k) = AX( k - I) + Bu( k - I). The filter 
calculates the estimated states using the simulated outputs, which 
are then used to obtain the control value for the next time step. 
The results are shown in Figure 5. As expected, the tracking error 
is not as good since the estimates are used, leading to a maximum 
error of 0.15 mm. 

Although the results in the previous simulations are accept
able, there are considerable oscillations of the base mass during 

Vision meas. frequency 30 Hz 

Vision meas. delay 

Input coval'. matrix 

Output coval'. matrix 

25ms 

(O.OI)BBT(O.OI) 

diag[2.08e-12 2.4le-3 2.03e-9] 

Table 2. Kalman Filter Parameters 
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Figure 5. VSC Simulation with Kalman Filter 

55.5 

55.4 

55.3 

55.2 
E .s 55.1 

§ 55.0 

~ 54.9 
c.. 

54.8 

54.7 

54.6 

54.5 
0.6 

System Response 

_. base 
- tip 

desired 

~. 
\ 

0.8 1.2 
Time(s) 

Figure 6. Simulation with x2 & VI Penalized 

the control process. Since this may not be desirable on an actual 
system due to limits on the motor's response time, the penal
ization of base velocity was investigated. Thus, Q is altered to 
contain two non-zero diagonal terms. The term corresponding to 
the velocity is chosen to be the same as r so that the tip position 
remains the most penalized term. The results, notably the reduc
tion of bass mass vibrations, are shown in Figure 6. The percent 
overshoot is about 0.36%. 
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Robustness of Control Strategy 
Up to this point, the simulations have been done asuming a 

perfect model. To examine the robustness of the control method, 
the A and !J matrices were calculated using altered parameters 
before being discretized. Since the variation initially caused the 
input to be above 100 N, the saturation of the motor was added 
to the simulation. Each parameter was varied from 10% to 200% 
of the nominal value and the ranges in which the tracking error 
remained less than 1 mm with perfect state feedback are listed in 
Table 3. Perfect feedback is used to isolate the control method 
since the filter also uses an assumed model. 

The preceding simulation results verify that the control 
method can achieve an acceptable level of tracking control. They 
also indicate that the choice of Q and r in the cost function di
rectly impacts the behavior of the closed loop system and must 
be chosen carefully. For example, the overshoot and oscillations 
are reduced when the base velocity was penalized. Finally, the 
robustness to paramater variations was also verified through sim
ulations. 

Experiments 
The structure used to test the developed control algorithm 

consists of a rectangular block of steel attached to the end of a 
1.5 m long piece of extruded aluminum. A notch is cut near 
the mounted end ofthe aluminum to increase its flexibility. The 
structure is mounted to an Anorad LW-IO linear stage that con
tains a brushless linear motor powered by an Anorad High Volt
age Brushless Servo Amplifier configured to run in current mode. 

The sensors used include an Anorad MER-50 encoder that is 
embedded into the stage to measure the position of the base plate 
with a resolution of l,um. A MEMS-type AXDL50EM-3 Analog 
Devices accelerometer with a +/- 4 G resolution is attached to 
the steel block. Finally, a DVT Camera with strobe is used to 
measure the tip's position by detecting a strip of reflective tape 
on the steel block. 

Since CAMotion would like to incorporate this new control 
algorithm into their existing software, the algorithm was added 
to the existing graphical user interface (GUI) software with the 
aid of CAMotion's engineers. Mashner's filter was also incor
porated into the software, making the estimated states available 
for the control signal calculations. In order to obtain estimated 

ml 40%-140% r 45%-200% 

m2 25%-105% L 75%-102% 

k 30%-135% I 96%-175% 

b 10%-200% 

Table 3. Robustness Ranges for Pendulum Model Parameters 
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Experimental Results 
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Figure 7. Experimental Results 

values with the correct units, the sensor outputs had to be con
verted into proper units for the filter calculations. Furthermore, 
the control effort had to be converted into the correct units before 
being output to the RASID. 

The variable structure control algorithm was then tested us
ing the same 55 milimeter jerk-limited trajectory used in the sim
ulations. Using r = 0.001 and Q = diag[O 100 0.001), the 
following sliding surface and control gains are obtained. 

S = [138.55 - 59.665 - 0.5562 2.1303] 

ex = [-5,325,907 3,414,075 8,517.5 -48,587] 

~ = [-5,325,897 3,414,085 8,527.5 -48,577] 

Figure 7 shows the results of this testing, which are not as 
good as indicated by simulation. This may be a result of mod
eling uncertainties, which affect the performance of the Kalman 
filter and control algorithms. Also, there are time delays of about 
2 ms on the encoder and accelerometer measurements due to the 
use of the RASID, which transmits the collected data via a USB 
cable, that are not accounted for in the control algorithm that may 
result in time responses that differ from the simulations. 

To verifY that the test system was set-up correctly, it was run 
using the existing PD control of the RASID in conjunction with 
CAMotion's our trajectory planning software. A laser measure
ment device was used to record the tip position using an oscillo
scope. Next, data was collected using an LQR control approach 
from work done by Mashner on the same system [13]. Laser 
measurement data was also taken with the variable structure con
trol and compared with the other control methods, as shown in 
Figure 8. 
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Neither state feedback methods track the desired tip posi
tion better than the current RASID PD controller, as verified by 
mean squared error calculations. However, the variable structure 
control method has a smaller mean squa~ t the LQR~ 
method. Thus, the method developed in t tHesis forms bet-
ter than the LQR feedback method when using the same state 
estimator. The poor performance of the state feedback methods 
when compared to the PD controller may be a result of poor es-
timates from the Kalman filter or significant time delays in the 
sensor measurements since the PD control is done in the RASID, 
not on the computer. Also, the Kalman filter design is based on 
the selection of noise covariances that are approximated based on 
anticipated model uncertainty and measurement discretization. 
Thus, it is uncertain that the most suitable values were selected 
for these experiments and further investigation is needed to im-
prove the system's performance. 

The final experiment that was conducted was to verifY the 
robustness of this control strategy. Since there were numerous 
slender rectangular pieces of aluminum readily available, these 
were added to the bottom of the steel block to increase the tip 
mass. Two trials were nm, one with a 10.5% increase in mass 
and the other with a 15.8% increase, using the same gains stated 
earlier. The resulting responses remained stable and the mean 
squared error was on the same order of magnitude as before. 

Conclusions 
A new tracking control method has been developed and 

proven to achieve acceptable tracking results. Although it did 
not perform better than PD control, it did achieve better track
ing results than LQR control for the same system with the same 
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filter. 
The control algorithm has been proven to be less sensitive 

to changes in the actual system, resulting in increased robust
ness with acceptable tracking results. Robustness is one of the 
major contributions of this work because flexible system models 
usually contain uncertainties due to truncation of flexible modes, 
small angle approximations, etc. Furthermore, the method has 
also been generalized so that it can be applied to any controllable, 
linear, state-space system. Finally, the model used, although not 
new, has not been widely investigated in VSC research. The use 
of this model may be favorable because it results in a more intu
itive model that is easier to explain to non-specialists and is ad
equate for the experimental system of interest, where most com
pliance is concentrated at a weak spot along the beam. 

Although the control method presented has been proven to 
be an acceptable tracking control strategy, there are some ways in 
which the results could be improved. For example, perfect track
ing is not achievable since the desired trajectory is designed for 
a rigid system, i.e. the base motion. Thus, if a better trajectory 
is planned that is achievable for the tip mass, tracking results 
could be greatly improved. Also, the use of LQR to select the 
sliding surface gains could be replaced by another feedback con
trol method, such as pole placement. Since the sliding surface is 
critical in the system's time response, a different design method 
my lead to more favorable responses. Finally, the application of 
adaptive learning control or input shaping in conjunction with 
variable structure control is another issue that could be explored. 
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